GAN BASED OBJECT DETECTION OF NOISY IMAGES

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE AWARD OF THE DEGREE
OF

MASTER OF TECHNOLOGY
IN
INFORMATION SYSTEMS

Submitted by:

Jayanthi Adilakshmi Visali

2K17/1SY/07

Under the supervision of

Dr. ANIL SINGH PARIHAR

INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi- 110042

JULY 2019

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi- 110042

CANDIDATE’S DECLARATION

I, Jayanthi Adilakshmi Visali, 2K17/I1SY/07 student of M.Tech (Information System),
hereby declare that the project Dissertation titled “GAN Based Object Detection of
Noisy Images” which is submitted by me to the Department of Information
Technology, Delhi Technological University, Delhi in partial fulfillment of the
requirement for the award of the degree of Master of Technology, is original and not
copied from any source without proper citation. This work has not previously formed
the basis for the award of any Degree, Diploma Associate ship, Fellowship or other

similar title or recognition.

Place: Delhi JAYANTHI ADILAKSHMI VISALI
Date:

INFORMATION TECHNOLOGY
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi- 110042

CERTIFICATE

I hereby certify that the project Dissertation titled “GAN Based Object Detection of
Noisy Images” which is submitted by Jayanthi Adilakshmi Visali, 2K17/ISY/07 to
Department of Information Technology, Delhi Technological University, Delhi in
partial fulfillment of the requirement for the award of degree of Master of Technology,
is a record of the project work carried out by the student under my supervision. To the
best of my knowledge this work has not been submitted in part or full for any Degree

of Diploma to this University or elsewhere.

Place: Delhi Dr. ANIL SINGH PARIHAR
Date: SUPERVISOR

Associate Professor

Department of Computer Science and Engineering
Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my project
supervisor Dr. Anil Singh Parihar for providing the opportunity of carrying out this
project and being the guiding force behind this work. | am deeply indebted to him for
the support, advice and encouragement he provided without which the project could

not have been a success.

Secondly, | am grateful to Dr. Kapil Sharma, HOD, Information Technology
Department, DTU for his immense support. | would also like to acknowledge Delhi
Technological University library and staff for providing the right academic resources

and environment for this work to be carried out.

Last but not the least 1 would like to express sincere gratitude to my parents and friends

for constantly encouraging me during the completion of work.

JAYANTHI ADILAKSHMI VISALI

ABSTRACT

Due to increased use of CGI imagery in many application across different fields, it is
high time there is a Generative Adversarial Network which worked in synergy with an
object detection algorithm like YOLO to overcome the difficulty in perception of
various kinds of noises contributing to the decreased accuracy of object class
prediction. The problem with CGI imagery in real time is that they are replete with
objects which are of different proportions when compared to real life objects and also
they anthropomorphize every type of object like cars, trees, houses, toys which makes
it difficult for default anchor boxes to act as good priors in drawing the bounding boxes
around them. So we have integrated a network which can generate denoised images
with the help of generative and discriminator networks competing against each other
and the generated denoised image will directly be pushed through another object
detection network which here is YOLOv3 with improved loU. So with the integration
of these networks and tuning the parameters for our custom dataset the output will be

an image which can be used for real-time rendering.

CONTENTS

Candidate’s Declaration i
Certificate i

Acknowledgement ii

Abstract v
Contents %
List of Tables viii
List of Figures IX
List of Abbreviations and Nomenclature Xii
CHAPTER 1 INRODUCTION 1

1.1 IMAGES, NOISE AND PHOTO-REALISTIC RENDERING 1

1.2 OBJECT DETECTION 3
1.3 DEEP LEARNING & CNNS 3
1.3.1 Convolutional Neural Networks (CNNs) 4
1.3.2 Spatial Arrangement 6
1.4 PROBLEM STATEMENT 8
CHAPTER 2 LITERATURE REVIEW 9

2.1 GENERATIVE ADVERSARIAL NETWORKS (GANS) 9

2.1.1 Algorithm 10
2.1.2 SR-GANs 11
2.1.3 Residual Blocks 12

2.1.4 Why SRGAN for Denoising? 14

v

https://docs.google.com/document/d/1NT-_JO75LpCgYoPHjDg9kO5FQmW9J_p3g3FS66UmO68/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1NT-_JO75LpCgYoPHjDg9kO5FQmW9J_p3g3FS66UmO68/edit#heading=h.1fob9te
https://docs.google.com/document/d/1NT-_JO75LpCgYoPHjDg9kO5FQmW9J_p3g3FS66UmO68/edit#heading=h.3znysh7

2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3

2.3.1
2.3.2
2.3.3
2.4

OBJECT DETECTION USING YOU ONLY LOOK ONCE
ALGORITHM
YOLO V1
YOLOV 2
K-Means Clustering Algorithm
YOLOV 3
Need for Custom Anchor Boxes
Intersection Over Union(10U)
RELU
Simple ReLU
Drawbacks of ReL.U
Leaky ReLU

TRANSFER LEARNING

CHAPTER 3 PROPOSED WORK

3.1
3.2
3.2.1

3.2.2
3.3

3.3.1

3.3.2
3.4
34.1

3.4.2

THE PIPELINE
IMAGE DENOISING USING GAN
Gaussian Distribution

Uniform Distribution
OBJECT DETECTION USING YOLO VERSION 3
WITH IMPROVED IOU

Tuning Leaky ReLU for the Improvement of Detection

Accuracy

Generating custom anchor boxes for an improved loU
EXPERIMENTAL SETUP

Data Set

Hardware Used

vi

14
15
16
18
19
20
21
21
22
22
23
24

25
25
26
26

27

28

28
30
32
32

33

3.4.3 Software Used 34
CHAPTER 4 RESULTS AND DISCUSSION 35
4.1 RESULTS 35
4.1.1 Denoising of Photo-Realistic Rendered Images with

Monochromatic Gaussian Noise Using GAN 35
4.1.2 Denoising of Photo-realistic Rendered Images with

Monochromatic Uniform Noise Using GAN 36
4.1.3 Denoising of CT Scanand MRI Images with Monochromatic
Gaussian Noise Using GAN 37
4.1.4 Denoising of CT Scan and MRI Images with Monochromatic
Uniform Noise Using GAN 38
4.1.5 Denoising of Camera-taken Real Noisy Images using GAN 39
4.1.6 Object Detection in Photo-Realistic Rendered Images Using
YOLO Version 3 with Improved loU 39
4.1.7 Object Detection in Denoised Images Using YOLO Version 3

with Improved loU 40
4.1.8 Object Detection in Photos Taken from Digital Camera Using

YOLO Version 3 with Improved loU 41
4.2 FALSE POSITIVES AND FALSE NEGATIVES 43
4.2.1 False Positives 43
4.2.2 False Negatives 43
CHAPTER 5 CONCLUSION 45
CHAPTER 6 FUTURE WORK 46
REFERENCES 47

LIST OF PUBLICATIONS 50

vii

LIST OF TABLES

TABLE 2.1. DarkNet - 19

TABLE 2.2. DarkNet - 53

viii

17

20

https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc

FIGURE NO.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

1.1

1.2

1.3

1.4

1.5

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

LIST OF FIGURES

FIGURE

Example of a Photo-realistic Rendered
Image

Basic network structure of Neural
Networks

Understanding the internal functioning
of CNN

[llustration of Average Pool layer
Illustration of the Max Pool layer

Generative Adversarial Network

SR-GAN

Residual Blocks

YOLO Network

K-Means Clustering: No. of Centroids

vs. Mean loU

Ilustration of loU

ReLU Activation Function

Leaky ReLU/PRelLU Activation

Function

The Block Diagram

PAGE NO.

10

12

13

16

19

21

22

23

25

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

Gaussian Distribution

Uniform Distribution

Leaky relu @ 0.090

Leaky relu @ 0.095

Leaky relu @ 0.100

Leaky relu @ 0.105

Leaky relu @ 0.110

Leaky relu @ 0.120

Leaky relu @ 0.111

Mean loU with VOC dataset(5)
Mean loU with custom dataset(5)
Mean loU with VOC dataset(9)

Mean loU with custom dataset(9)

Default anchor box sizes visualized for
representative purpose

Custom anchor box sizes visualized for
representative purpose

GAN results on photo-realistic rendered
images with monochromatic gaussian
noise

GAN results on photo-realistic rendered
images with monochromatic uniform

noise

27

27

28

28

29

29

29

29

30

31

31

31

31

32

33

35

36

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

FIGURE.

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

GAN results on CT Scan images with
monochromatic gaussian noise
GAN results on MRI

monochromatic gaussian noise

images with

GAN results on CT Scan images with
monochromatic uniform noise
GAN results on MRI

monochromatic uniform noise

Images with

GAN results on real-noisy images

Object Detection for Photo-Realistic

Rendered Image 1

Object Detection for Denoised Image 1
Object Detection for Denoised Image 2

Object Detection for Denoised Image 3

Object Detection for Denoised Digital

Image

Example of False Positive

Example of False Negative

Xi

37

37

38

38

39

40

40

41

41

42

43

44

10.

12.

13.

14,

15.

16.

17.

18.

19.

LIST OF ABBREVIATIONS AND NOMENCLATURE

CNN:

GAN:

YOLO:

CGl:

MRI:

CT:

SR-GAN:

GPU:

API:

RelLU:

PReLU:

R-CNN:

loU:

HOG:

SVM:

DL:

ML:

Al:

Convolutional Neural Network
Generative Adversarial Network
You Only Look Once

Computer Generated Imagery
Magnetic Resonance Imaging
Computed Tomography

Super Resolution Generative Adversarial Network
Graphical Processing Unit
Application Programming Interface
Rectified Linear Unit

Parametric Rectified Linear Unit
Regions with CNN features
Intersection Over Union

Histogram of Oriented Gradients
Support Vector Machine

Deep Learning

Machine Learning

Artificial Intelligence

Xii

20.

21,

22,

23.

24,

25,

26.

27:

28:

29.

30.

31.

32,

33.

34,

35.

36.

37.

38.

39.

LR:

HR:

SR:

PDF:

ISO:

ANN:

VOC:

COCO:

VGG:

MSE:

NLP:

CV:

PSNR:

FC:

CONV:

v1:

V2:

v3:

CPU:

RMSE:

Low Resolution

High Resolution

Super Resolution

Probability Density Function
International Organization of Standardization
Artificial Neural Network
Visual Object Classes
Common Objects in Contexts
Visual Geometry Group
Mean Squared Error

Natural Language Processing
Computer Vision

Peak Signal-to-Noise Ratio
Fully Connected

Convolution

Version 1

Version 2

Version 3

Central Processing Unit

Root Mean Square Error

Xiii

40.

41.

42.

43.

44,

FPN:

Feature Pyramid Network
Input Volume Size
Kernel Field Size

Stride

Amount of Zero Padding applied

Xiv

CHAPTER 1

INTRODUCTION

1.1 IMAGES, NOISE AND PHOTO-REALISTIC
RENDERING

An image, derived from Latin word ‘Imago’ means an artifact that depicts |,
such as a 2D picture or a photograph. In , an image is nothing but a distributed
amplitude of color(s). Digital Images are nothing but a collection of picture elements
called pixels which are arranged in a rectangular array. These images may naturally
contain noise in them due to external factors such as shooting at higher I1SO settings,
light available, etc. We can add whichever noise we deem necessary to the image
externally. There are various noises like salt-and-pepper, gaussian, speckle, shot,
poisson noises, etc. Image noise is nothing more than variations of brightness or
information related to the specific color in the images, and is usually a part of the
electronic noise. It could potentially be produced by the sensor of a digital camera or
the circuit work in scanner of the same. Most common type of noise that is used in
Image processing are Gaussian Noise, which is named after the German mathematician
Carl Friedrich Gauss and Uniform Noise. Statistically, Gaussian noise has the
probability density function (PDF) same as that of normal distribution, also known as
Gaussian Distribution, which means that the values of the noise have been distributed
normally. Many natural sources for Gaussian noise are present like black-body
radiation from the Earth and other warm objects, shot noise, the thermal vibrations of
atoms in conductors also known as thermal or Johnson-Nyquist noise, and celestial
sources such as Sun. It can also be added into the image externally by image processing
techniques. The gaussian noise in images is mainly caused during acquisition e.g.
sensor noise caused by high temperature and/or poor illumination.

Computer Generated Imagery(CGl) has become a part of many daily life
applications such as video games, movies and commercials. Many software like

Pixar’s Renderman [1] software are available to generate photo-realistic imagery.

Nowadays, animation movie companies like Dreamworks and Pixar use a technique
called pathtracing [2] for rendering their 3D scenes. Pathtracing is a technique in which
hundresds of rays are directed into a single pixel randomly (achieved by “Monte Carlo”
Method) to create high quality photo-realistic frames. The technique of pathtracing is
well-described in Section 3.2. and the color of the pixel is obtained by averaging the
colors generated by these rays, and this process is repeated for each and every pixel.
Figure 1.1 is an example photo-realistic image taken from the Pixar movie Monsters
University [3]. Frame by frame rendering of photo-realistic images is time consuming
and very expensive as we need thousands of rays per pixel and thus increased
computational complexity. With the development of large memories, efficient
software APIs and CPUs, GPUs technology, there has been a great progress in
rendering, but real-time rendering is less feasible as it takes around 1/3-2/3 of a whole

day to render a single frame. We can apply image denoising methods to almost any

scanned image, CGI or camera-captured image with noise.

1.2 OBJECT DETECTION

We, the humans have an amazing ability to identify objects that are in any
image we look at, the location of the objects and relation of each other in the scene.
Making a computer master this ability of human vision, which is to know what is where
by looking as fast and as accurate as a human does is a complex problem which is
widely studied as the field of Computer Vision. Even as humans, it is sometimes
difficult to distinguish what we are seeing when the objects are too similar like
differentiating between two dogs belonging to different breeds in retriever dogs like
Nova Scotia Duck Tolling Retriever breed and Golden Retriever breed or when only
some part of an object is only present in an image like head of an animal. Finding
exactly where in a given image an object is present is called the problem of Object
Localization. The problem of where an object is present and what it is in a given image
is called Object Detection. Another challenging tasks of object detection is doing
object detection when too many objects are present in the image.

With the advances in technology in the Computer Vision, Object Detection has
become an integral part of many real-time applications. Object Detection has become
a requisite in many problems of Computer Science and Artificial Intelligence(Al) like
Self-driving cars, Responsive Robotics, medical applications, video surveillance, etc.
Many algorithms have been discovered in order to solve the problem of object
detection. Before Neural Networks, methods like Support Vector Machine and HOG
are used for Object Detection. Nowadays, many efficient deep learning algorithms

have been invented for detecting objects in an image.

1.3 DEEP LEARNING AND CNNs

With the advances in technology, computer software and hardware, Deep
Learning(DL) has seen an incredible growth in the last two decades. There is an
immense work going on this field. Artificial Neural Networks(ANN) have solved
many complex problems till date. For unstructured data like images, video, text and

audio, ANNs have been widely used. Especially for images, CNNs have showed a

better performance in solving many problems of image processing like image
denoising, super resolution of images, deraining in images, coloring the images, etc.
than traditional algorithms. Many promising results for the problems of Computer
Vision like Image Localization and Classification, Semantic Segmentation, Object
Detection Instance Segmentation, etc., have been given by CNNs. For the problem of
object detection alone, many algorithms, both region-proposal and single shot
detectors like R-CNN [4], Fast R-CNN [5], Faster R-CNN [6], YOLO Version 1 [7] [8],
YOLO version 2 [7] [9], YOLO Version 3 [7] [10], SSD [11], etc., have been proposed.
Convolutional Neural Networks are similar in architecture with conventional neural
networks except that they assume image as an input. In visual recognition tasks, deeper

networks tend to give better results.

1.3.1 Convolutional Neural Networks(CNNSs)

CNNs [12] are like any other type of the Neural Networks that are made of
neurons that have trainable biases and weights. Every neuron gets an input, performs
an inner product and sometimes follows it with some non-linear function in between
the network. Neural Networks transforms an input through a train of hidden layers
which have multiple neurons in them, and each of the neuron is then connected to
all of the neurons of the previous layer. The last FC layer is the output layer which
throws out probabilities of classes or a binary classification. The basic network

structure of neural networks is illustrated in Figure 1.2.

o

hidden layer 1 hidden layer 2

e
4

3
)

¢
{‘4
@

SIS
/"§ (&2
‘\"

input layer

X
2
(O

output layer

()
b

Fig. 1.2 Basic network structure of Neural Networks

ConvNet architectures are explicitly made for inputs that are images and these
increases the efficiency of the forward function and try reducing the number of
parameters the network usually depends on. CNNs have neurons arranged in three
dimensions; width, height, depth. Figure 1.3 helps in understanding internal

functioning of the CNNs.

depth
So5a0m M
- ~IOO0O0K) ~ —
OOOOOK width

Fig. 1.3 Understanding the internal functioning of CNN

CNN is a sequence of layers, where each layer of a CNN converts one volume of
activations into another with the help of a specific function called activation function.
Most common type of activation functions in a CNN is one or the other variant of
ReLU. Convolutional Layer, Fully-Connected Layer(FCL) and Pooling Layers are
the 3 main types of layers used in CNN. Every CNN architecture is made by stacking

these types of layers on top of each other in various configurations.

® INPUT [W x H x C] will hold the raw image pixel values, where W is width,
H is height and C represents number of channels (RGB).

® CONV layer is used to compute the neuron output which are inter-connected
to sub-sections in the input, all computing a product between the weights

resulting in [W x H x F] where F represents filters.

® RELU layer is used to apply activation function to every element outputted by

the layer. Others include Leaky-Relu, Sigmoid and Tanh activation functions.

® POOL layer is used for down-sampling (converting an image to low-resolution)
operation along the dimensions. Types include average and max pooling. The
pooling layer is used to reduce the representation size and thereby reducing the
number of parameters which ultimately benefits in decreasing the amount of
computations in the network. This ultimately controls overfitting. The figures,
Figure 1.4 illustrates the average pool layer and figure 1.5 illustrates the max

pool layer.

® FC Layer is used to compute the class scores at the output layer.

A CNN is able enough to inherently capture the ‘what’ and ‘where’ aspects of an
image through the application of relevant and necessary filters. The performance of
the architecture fits better to the dataset with images as the number of parameters are
reduced and re-usability of weights is made possible. Unlike in ordinary neural
networks, in a CONV layer, neurons get the input from something called a “receptive

field”, which is a restricted area of previous layer.

1.3.2 Spatial Arrangement
Following hyper parameters decide the size of the output volume of the CONV

layer:

® The depth of output volume is the number of filters we shall use; each filter

tries to learn something unique in the input.

® The stride we use to slide the chosen filter. For instance, if the stride is 1, then
the filter is moved one pixel at a time which leads to heavy receptive field

overlap. Practically using smaller strides are advantageous.

® The padding of the input with zeroes all along the image border is another
hyper parameter. With Zero padding we can control the spatial size of the

output image. Usage of zero padding in CONV layers avoids the reduction of

the size of the volumes of the images by a certain amount after every CONV,

and stops the fast escape of the information at the image borders.

12|17 |0 |86 e
. 24.5

19(8 [0 (12

—l
275 (23 | 4 35.25| 30.5
97112 |35|60 N

a = 2.2

N

Fig. 1.4 lllustration of the Average Pool layer

Single depth slice

% 1112 | 4
max pool with 2x2 filters
ONNeN 7 | 8 and stride 2 6 | 8
3 | 2 (G] 3|4
1 | 2 S
¥

Fig. 1.5 Illustration of the Max Pool layer

The computation of the spatial size for the output is defined by the Eq. (1).
M=(W-K+2P)/S)+1 (1)
where, M denotes Spatial size of the output,

W denotes size of input,
P denotes amount of applied zero padding,
K denotes kernel field size and

S denotes stride.

1.4 PROBLEM STATEMENT

Even with the availability of computationally high GPU machines, the real-
time rendering and detection of the photo-realistic images is still an expensive problem.
Nowadays there is an increased requirement of CGI imagery in many fields like
entertainment industry, video gaming, and medicine. Even with increase in powerful
GPUgs, the real-time rendering of a single image takes around 8 - 16 hours. So, real-
time object detection in photo-realistic image while they are rendered real time is a
challenging task. Also, when the problem of object detection is concerned, when there
is noise in the images, it is very difficult for the object detection algorithms to
accurately detect the objects. Especially in the real-time, it is very difficult to detect
objects in applications like video surveillance where the images are usually very noisy

and in the wild where noise causing factors like rain, fog, smoke, etc., are present.

CHAPTER 2

LITERATURE REVIEW

2.1 GENERATIVE ADVERSARIAL NETWORKS (GANS)

GAN [13] [14] was first introduced in 2014 by lan Good Fellow, et al. GANs
are basically a scenario of game theory where “the generator network will compete
against an adversary (discriminator network)”. The Generator is forced to generate
new data similar to the expected values, and constantly convince the discriminator to
believing that the generated samples are real. The Discriminator attempts to learn to
classify samples as real (the data the network will be trained on) and fake (the samples
generated by the Generator network) correctly. This process is illustrated in the figure
2.1.

Generator network produces sample x = g (z, theta_g), which is a mapping of
input (usually drawn from a random probability distribution) noise variables Z to a
desired network space x (images). Discriminator gives out a probability value solved
by d (x, theta_d), depicting the probability of x being a real training sample instead of
a fake one. Theta_i represents weights of parameters that define each neural network.

Learning in GANs is like a zero-sum game, where the function v(theta_g,
theta_d) calculates the loss of the discriminator, as the function is received by the
generator as its own loss. During learning, each network attempts to minimize its own
loss, so at the convergence g* = arg min max v(g, d). Discriminator’s weights are
updated in order to “maximize the probability that any real data input x is classified
correctly as being real, while minimizing the probability that any fake image is
classified as being real”. Maximize d(x, theta_d), minimize d(g(z, theta_g)).

Generator, meanwhile, updates weights so as to maximize the probability of
the fake sample is classified by the discriminator as being from a real dataset,
compared to being coming to decrease the log-probability that the prediction made by

the discriminator is correct.

Real
Samples
=]

=

Latent
Space
; IsD ¥
m ‘. Correct? ./
B . G
Generat Generated
= enerator Fake
= Samples
| :
I:] = % ! Fine Tune Training
Noise

Fig. 2.1 Generative Adversarial Network

This rework is different from both zero-sum and maximum likelihood. And
was introduced with the heuristic motivation in which it will keep the difference
between the derivative of the generator’s cost function and the discriminator’s log huge
even when discriminator keeps confidently rejecting all the generated samples.

The loss functions of the generative adversarial network are given by the
following Eq.2.

minmax V (D, G) = Egrpu ()[108 D(®)] + Exrp o [loa(1 — D(G(2)))]

max V(D) = Exrpgu(e) 108 D(@)] + Eznp, (2)[log(1 — D(G(2)))]
recognize real images better recognize generated images better

mci.n V(G) == Ez~p,(z)[log(1 = D(G(Z)))]

Optimize G that can fool the discriminator the most.

)

2.1.1 Algorithm

Following is a pseudo code that comprehensively describes the functioning of
a Generative Adversarial Network:

10

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {1, ..., z("™)} from noise prior p,(2).
e Sample minibatch of m examples {m(l), .. .,a:(m)} from data generating distribution
Pdata (CC)

e Update the discriminator by ascending its stochastic gradient:

m

LS e (20) st 10 (6 ()]

end for
e Sample minibatch of mn noise samples {2, ..., z(m)} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

Vo, S (10 (6 (=),

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

There are various types of GANs like SR-GANs, Conditional GANs, Deep
Convolutional Gans, infoGAN, Obj-GANS,etc.

2.1.2 SR-GANSs

Super Resolution Generative Adversarial Networks (SR-GANS) [15] are a type
of GANSs used to convert low-res images to high-res images. Super-resolution GAN
employs a deep neural network which works in synergy with a discriminator network
to produce images with higher resolution. During the training, an image of high-res
(HR) is down-sampled to a low-resolution image (LR). Then, a GAN generator up-
samples images to super-resolution images (SR) from low-res (LR). A
discriminator is used for distinguishing the HR images and back-propagate the GAN
loss for further training both the discriminator and the generator. Figure 2.2 describes
an SR-GAN.

The network below composes of convolution layers which go through batch
normalization and parameterized ReLU (PReLU). Similar to ResNet, the generator
implements skip connections. The convolution layer with 3x3 kernel filters outputting

64 channels with stride 1 is represented as “k3n64s1”.

11

Generator Network B residual blocks
A

kn64s1 ' k3n64s1 k3n6ds1

' Kk3n64s1

k3n256s1

i PixelShuffler x2

skip connection

Discriminator Network k3n128s2 k325652 k3n512s2
k3n64s1 k3n64s2 k3n128s1 k3n25651 k3n512s1

=1 =
T °
< (-4
= =z
3 3
poc £ rhoe

Leaky RetU

Fig. 2.2 SR-GAN

2.1.3 Residual Blocks

As it is comparatively more difficult to train deeper networks, the residual
learning framework facilitates the training of these networks, and contributes to the
improvement of the performance with deeper network. 16 “Residual Blocks” are used
in Generator. Skip architecture or residual connection is commonly used as a “Skip
Connection” between the output and the input, or between convolution and transposed
convolution. To use skip connection, the dimension equality of both input and output
should be maintained. By using skip connection, it provides an alternative for gradient
to back propagation bettering the model’s convergence as depicted in Figure 2.3.

The perceptual loss function ISR is vital for the generator network’s
performance. While ISR is inspired from the Mean Square Error, a new loss function is
created that inspects a solution to those characteristics that are perceptually relevant.
The perceptual loss is calculated as the weighted sum of a content loss and an

adversarial loss component as given in the following Eq.3.

12

Y

weight layer
‘F(X) Y rEIU X
weight layer identity

F(x)+x
Fig. 2.3 Residual Blocks

The pixel-wise Mean Squared Error (MSE) loss is calculated as per the
following Eq.4.

ISR — ISR 4+ 10~ {E(‘,—n
: ' 3
content loss adversarial loss

-
perceptual loss (for VGG based content losses)

1 W
91?

IHJQ - GBG (ILR):?:-.‘*J)Q

||Mm

(4)

The VGG loss is nothing but Euclidean distance between the reconstructed
image and the reference image’s feature representations because although achieving
particularly high PSNR, MSE optimization problem solutions couldn’t produce high
frequency content resulting in unsatisfying solutions with overly smooth textures. The

following Eq.5 gives this VGG Loss that is based upon the ReLU activation layers of
pretrained 19-layer VGG network.

W, . H. .
1 i, 44,5
SR _ HR
.‘TVGG/'.E.‘;{' - I/I'rLJ-H.tJ ; ;(@tj(f) T,y
' I T p (5)
- @i-.j(c'ec; (‘rLR)):r:-_’!))‘2

Here Wi; and Hi; define within the VGG network, dimensions of their
respective feature maps. The generative loss is defined depending upon the

probabilities of discriminator over all training samples as given by the following Eq.6.

13

I\."
Gien =) —10g Doy, (G (1))

n=1 (6)

Here, Dop (Goa (1)) is the probability that the reconstructed image Gog (1'F)
Is a natural High Resolution image. For better gradient behavior we minimize —log
Dop (Goa (I'R)) instead of log [1 — Dep (Goea (I-7))].

2.1.4 Why SRGAN for Denoising?

The most related GAN-based work to denoise is the SRGAN, a GAN for Single
Image Super-Resolution. Unlike the networks previously proposed for image super
resolution that used “Mean Squared Error(MSE) as the optimization function,
SRGAN proposes a loss function that resolves perceptually satisfying high-resolution
image. Architecture used is a very deep residual net architecture based on GAN. By
minimizing the perceptual loss function (weighted sum of content loss and adversarial
loss) the training of the network is achieved”. When we do not rely upon the pixel
wise error measures like MSE based optimization, a better perceptual loss function

that has both adversarial loss and content loss is implemented.

2.2 OBJECT DETECTION USING YOU ONLY LOOK
ONCE (YOLO) ALGORITHM

YOLO [7] [10] [8] [9] is a popular state-of-the-art real-time object detection
algorithm. YOLO was first developed by J. Redmon et al [8]. There are three versions
of the algorithm which is refined through years. The advantage of YOLO over other
object detection algorithms is that it can be generalized to any other type of images
like artwork [8] [16]. In this project, we improved accuracy of YOLO Version 3 for

object detection in photo-realistic rendered images.

14

221YOLOV1

Usually to perform detection object detection employs classifiers. Instead, in
YOLO [8] object detection is seen as a regression-problem intended to separate
bounding boxes spatially and the probabilities associated thereof the classes. The
network “can be optimized end-to-end on detection performance directly as a single
neural network is enough to predict bounding boxes and class probabilities directly in
one evaluation of images. Although YOLO makes more errors related to localization
when compared to classical methods, it is less likely to predict false positives on
background. It also learns very general representation of objects in an image. It is better
than other networks like DPM, R-CNN when it comes to generalization from an image
to artwork.

While deformable parts models (DPM) uses an approach called sliding window
in which the classifier is run at evenly spaced locations over the entirety of the image
and systems like R-CNN use region proposal methods to generate potential bounding
boxes in an image first and then run a classifier on these proposed boxes which are
refined in post-processing. The duplicate detections are eliminated and scoring of the
boxes is done based on the other objects in the scene. But in YOLO, you only look at
the image once to predict and locate. Unlike sliding window and region proposal-based
techniques, YOLO implicitly understands contextual information about the classes as
well as their appearance because during training and test time it looks at the entire
image.

An input image taken and is marked into an S x S grid. And if the center of a
particular object falls into that grid cell, it is that cell’s responsibility for detecting an
object. Every grid cell predicts B bounding boxes and confidence scores (tells how
sure the model is that the box has an object) respectively. They also tell how accurate
it thinks the box is that it predicts. Confidence is defined as Pr (Object) * 10U
(prediction, truth). Absence of the object means the confidence scores will be zero.
The confidence score is the intersection over union (IOU) between the predicted box
and the ground truth. The bounding box prediction is made of 5 components: (x, y, w,

h, confidence). The (x, y) are coordinates normalized to [0,1] to represent the box

15

centers, relative to location of the grid cell. The (w, h) box dimensions are normalized
to [0, 1]” too, relative to the size of the image.

The detection network of YOLO has 24 CONV layers that have been followed
by another two FC layers. The feature space from the preceding layers is reduced by
the alternating 1x1 CONV layers. The network architecture of YOLO is as depicted in
Figure 2.4.

n2
il
54
3 3{
448 3 4 28 :’ﬁ
3 b 7 7 7
nz 5 3 3.g >< HX @
28 14
L 7 7 7
3 192 256 512 1024 1024 1024 4096 0
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. lLayers Conn. Layer Conn. Layer
Tx7x6452 3x3x192 1x1x128 1x1x256 7,4 1x1x512 7,5 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 Ix3x1024
%252 2x2-52 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2
Maxpool Layer Maxpool Layer
2x2-52 2252

Fig. 2.4 YOLO Network

222YOLOV?2

The second version of YOLO is called YOLO9000 [9] as it can detect over
9000 different object categories. They improved it over the first version of YOLO for
better, accurate and faster detections. Improvements are made in YOLOV2 over the
network. Darknet-19 [7] has been introduced as a new classification model that is
used as a base for YOLOV2. It mostly uses 3x3 filters and the doubling of number of
channels is done after each pooling step. Table 2.1 describes the Darknet-19 model.
It has got 19 convolutional layers along with 5 max pooling layers. It requires around

5.6 billion operations for a single image to be processed.

Loss function is given in Eq.7. Of the loss function equation, the first one is
implemented to penalize the objectness score prediction of the bounding boxes that are
responsible for predicting objects, and the second one for bounding boxes having no
objects, the last one acts as a punishing parameter for the class prediction for the

bounding box which predicts the objects. In the YOLO V2, instead of directly

16

predicting the bounding boxes, YOLO predicts off-sets from a predetermined set of
boxes with particular height-width ratios called anchor boxes. They are defined to
capture the scale and aspect ratio of an object class you want to detect and are typically
chosen based on the object sizes in the dataset used for training. During detection, the
anchor boxes are spread across the test image and the network predicts the probability
and other metrics like intersection over union (loU) and offsets for all tiled anchor

boxes. Post prediction, each individual anchor box is refined.

Type Filters Size/Stride Output
Convolutional 32 3 x 3 224 x 224
Maxpool 2 x 2/2 112 x 112
Convolutional 64 3 x 3 112 x 112
Maxpool 2 x 2/2 56 x 56
Convolutional 128 3x 3 H6 x 56
Convolutional 64 1 x1 H6 x 56
Convolutional 128 3x 3 56 x 56
Maxpool 2% 2/2 28 x 28
Convolutional 256 3x 3 28 x 28
Convolutional 128 1x1 28 x 28
Convolutional 256 3x 3 28 x 28
Maxpool 2x 2/2 14 x 14
Convolutional 512 3x 3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Maxpool 2x 2/2 7T X T
Convolutional 1024 3 x 3 T =T
Convolutional 512 1 x1 T =T
Convolutional 1024 3x 3 T =T
Convolutional 512 1 x1 TxT
Convolutional 1024 3 x 3 TxT
Convolutional 1000 1 x1 TxT
Avgpool Global 1000
Softmax

TABLE. 2.1 Darknet — 19

52 B
Aeoord 3 D100 (i —)% + (yi —)°

i=03=0

+ Acoord QZ i 1 (v - Vi) + ("m_ - Vﬁ;)

i=03=0

s? B _ s
LY (ei-¢)’

i=03=0

52 B _ i
+ oty 32 32 15 (€ = 65)

i=0 j=0

+3°18 S (mie) - pile))?

i=0 o Eclasses (7)

17

2.2.3 K-Means Clustering Algorithm

K-Means [17] [9] is a very often used clustering algorithm known for its
efficiency. The algorithm works by storing k centroids that it uses to define
the clusters. When a point is closer to a cluster’s centroid than rest of the centroids,
then that point is said to belong to that particular cluster. The best centroids are found
by switching constantly between assigning data points to clusters depending on the
current centroids and choosing centroids based on the current allocation of data points
to clusters. The Algorithm is given below. Euler distance metric for K-means
minimizes error for larger bounding boxes, but not for smaller ones. Hence, in

YOLOV2, intersection over union (I0OU) is used as the distance metric.

1. Initialize cluster centroids ju;, o, g € B" randomly.
2. Repeat until convergence: {

For every i, set
2

L) - arg min ||.r'{i] - I"j“ :
i

For each j. set
S, Yl = j}a®
SARED VS TECEY I

Figure 2.5 depicts the analysis of no. of centroids vs. Mean loU. It is clear from
the plot in the following figure 2.5 that as the number of centroids increases, the mean
loU between anchor boxes and bounding boxes plateaus after a steady increase after
about 15 centroids. By Elbow method, in the plot the location of a bend (elbow) is
usually considered an indicator for deciding the appropriate number of clusters. So
from the plot it is apparent that 5 clusters will yield good results. But in the thesis, use
of different number of cluster centroids has been experimented with to see how YOLO

algorithm performs.

18

0.7 1 - *

0.6 1 -

Mean loU

0.5 1

04

01 2 3456 7 8 910111213141516171819 20 21
No. of Centroids

Fig. 2.5 K-Means Clustering: No. of Centroids vs. Mean loU

Every few iterations, the network in YOLO9000 is changed, rather than fixing
the input image size. For every 10 batches, a new image dimension size is chosen by
the network randomly. As the model is down-sampled by a factor of 32, the smallest
dimension is 320 x 320 and the largest is 608 x 608 for the detection. Resizing of the
network happens during training which makes it possible for the network to predict on
variety of the input dimensions. This means that the same network can be used to
predict detections at various resolutions. Given smaller dimensions, the network runs

faster. Thus, YOLOV2 offers a tradeoff between accuracy and speed.

224YOLOV3

YOLOv3[10] incorporates residual blocks, up-sampling and skip connections.
Although YOLOV3 is better, it is not necessarily faster. YOLOv3 has a 53-layer
network that has been trained on Imagenet [18]. But for these detection tasks, another
53 more layers are stacked on it to get a 106 layered fully convolutional architecture
making it slower compared to YOLOvV2. Whereas in YOLOv2 we are using only a 19
layered network. In YOLOV3, for each and every bounding box an objectness score is
predicted using logistic regression method. Feature extraction is done by the robust

Darknet — 53 which has been depicted in Table 2.2. Residual connections are added to
the new Darknet — 53.

19

YOLOvV3 predicts the bounding boxes at three different scales. The system
extract features from these scales to feature pyramid networks (FPNs). From the base
feature extractor, several convolutional layers were added. The last one predicts a
three-dimensional tensor encoding bounding box, objectness, and class predictions.
The confidence and class predictions of the objects are done through logistic-
regression.

Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1 x1

1x| Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x 3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1

8x| Convolutional 256 3x3

Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x1

8x| Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x 3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

TABLE.2.2 Darknet-53
Detections at various layers are used to solve the issue of detecting smaller
objects which cannot be done properly in YOLOvV2. We up sample the layers that are
conjoined with previous layers so as to preserve the fine features of the smaller objects
for better detections. Different layers —a 13 x 13 layer is used to detect large objects,
a 52 x 52 layer is used to detect smaller objects and a 26 x 26 layer is used to detect
medium size objects. In YOLOvV3, the last three terms are cross entropy error terms

unlike the squared errors in YOLOV2.

2.2.5 Need for Custom Anchor Boxes

Given that our dataset comprises of animated images where the sizes of the

20

objects are exaggerated for visual effect, it is necessary to understand that default
anchor boxes provided by the YOLOvV3 algorithm may work, but use of custom anchor
boxes should improve the accuracy of the bounding box around the object classes.
With increase in cluster centroids in the generation of anchor boxes increases the mean
loU of the generated priors to the actual ground truth. But after a certain number of
centroids, the mean loU plateaus and it will no longer be a relevant parameter to decide
whether we can decide the trade-off of loU on it. YOLOV3 uses 9 anchor boxes
generated based off on the VOC dataset [19].

2.2.6 Intersection-Over-Union(loU)

Intersection over Union, also called Jaccard Index, is a popular, and efficient
metric of evaluation used to “measure the accuracy of an object detector on any given
dataset. It is often used in object detection challenges like PASCAL VOC challenge
[19] or any other classification tasks which require the understanding of correctness.
The ground-truth bounding boxes are needed in order to apply loU to evaluate a given
object detector and the predicted bounding boxes from our model. Intersection over

Union (loU) is depicted in the figure 2.6.

Area of Overlap
loU =

Area of Union

Fig. 2.6 loU Illustration

2.3 RELU

There are many activation functions that are implemented in the CNNs like
sigmoid, tanh, ReLU, PReLU, etc. Among all the activation functions used, variants
of Rectified Linear Unit, also called as ReLU are the most frequently used.

21

2.3.1 Simple ReLLU

ReLU is an activation function defined as y = max (0, x). ReLU is normally
applied element-wise to the output of any other function like a product of matrices etc.
The simple ReLU activation function is illustrated in Figure 2.7. ReLU is one of the
most common activation functions in NNs, especially in CNNs. From the function
definition one can see that “ReL.U is linear (identity) for all positive values, and zero(0)

for all the negative values”.
ReLU

10

R(z) =max(0, z)

0
-10 -5 L]]]

Fig. 2.7 ReLU Activation Function

Simple mathematics make it easily understandable for someone starting out
with NN. Due to simplicity of mathematics the model will now take less time to train
too. It converges faster. Linearity as in “the slope doesn’t plateau when x gets very
large. Unlike sigmoid function, it won’t be suffering from the vanishing gradient
problem. Since ReLU is zero(0) for all negative inputs, indicating it being inactivate

for any given value” which is desirable most of the times.

2.3.2 Drawbacks

The drawback for having zero for every negative value is a problem called
“dying ReLU. A ReLU neuron is considered dead if it cannot come out of the negative
side and always outputs 0 irrespective of the input. Because the slope of ReLU in the
negative range is also zero(0), once a neuron gets negative, the neuron can’t come out
of it. Such neurons don’t play any role in discriminating the input and is basically
useless”. Over the time it can be observed that a large part of the neural network is

useless or inactive. So, we use another variant of ReLU like parametric ReLU which

22

do not suffer from these drawbacks.

2.3.3 Leaky RELU

“Leaky ReLU” has a small slope for negative values, instead of altogether
zero(0) which is developed on top of ReLU. The function looks like its leaking with a
slope in the negative values, hence the name. For instance, leaky ReLU might have y
= 0.01x when x < 0.

“Parametric ReLU (PReLU)” is another kind of leaky ReL U, which instead of
having a predetermined slope like 0.01, makes it a parameter for the NN that has to
be trained and learned: y = ax when x < 0. Figure 2.8 illustrates Leaky ReLU/ PReLU
activation function.

Leaky ReLU has two benefits:

® Due to the lack of zero-slope parts, it doesn’t suffer from the problems ReLu

suffers from.

® Training with a leaky ReLU is faster. It can be observed empirically that with
“mean activation” being closer to 0 makes training faster. Leaky RelLU is

much “balanced,” and may learn faster than ReLU.

Yi = iTi

I
Leaky ReLU/PReLU

Fig. 2.8 Leaky ReLU/PReLU Activation Function
Although the result is not always consistent, leaky ReLU is usually better

than plain ReLU, but not always is, and should be considered only as an alternative.

23

2.4 TRANSFER LEARNING

Transfer learning [20] is an ML method in which a model developed to solve a
specific task, is reused for learning another model on another task. It is a very usual
thing in DL where pre-trained models are used as the starting points of various tasks
of CV and NLP. Due to large computing time and resources needed for the
development of the neural networks on these problems, transfer learning is vital here.
The knowledge acquired in solving a task <X’ is used to solve another task “Y’.

There are two types of transfer learning -

1. Transductive Transfer Learning
2. Inductive Transfer Learning

In Inductive Transfer Learning is a traditional supervised learning approach in
which we learn a model from the given labeled examples and then we predict the labels
pf those examples which we have not known about or seen. Where as in Transductive
Transfer Learning, we learn from a lot of examples, and then we try only to predict a
known (test) set of unlabeled examples. As we can see, transductive transfer learning
Is a less ambitious approach compared to the inductive transfer learning approach. In
Deep Learning, we use transfer learning for speeding up the training and for improving
the performance of the DL models. We use the pre-trained models as starting point
on the Natural Language Processing(NLP) and Computer Vision(CV) tasks as it saves
lots of computing resources and time.

It is a very normal practice to perform transfer learning with the predictive
modeling problems that use image or video data as input. For the problems in
Computer Vision, it is a very common approach to use the DL models that are pre-
trained for challenging image classification tasks like ImageNet [19] 1000-class
photograph classification competition. Many organizations like Google, Microsoft,
etc., develop models for these types of competitions and often release their final
models for reuse under permissive licenses. These complex models take days or weeks
to train using these modern hardware and infrastructure which may be not be available
in normal schools and colleges and even in mid-sized research laboratories.

Some of these models include Google Inception Model [21], Oxford VGG
Model [22], Microsoft ResNet Model [23].

24

CHAPTER 3

PROPOSED WORK

3.1 THE PIPELINE

The block diagram of our implementation is as depicted in the figure 3.1. We
take an image with noise and pass it through a Denoising Generative Adversarial
Network to get the denoised image. The image which is inputted into the GAN could
contain any type of noise like real-time noise, or gaussian or uniform with varied
amounts of noise in them. For the sake of experiments, we explicitly added gaussian
and uniform noise of varied amounts to the images and made them noisy. The denoised
image, which is an output of the GAN, is again given as input to the improved YOLO
Version 3 algorithm for object detection of the images so that bounding boxes with

much improved loU are predicted.

Image

Denoised o Improved with
Image " YOLOV3 bounding

boxes

Image Generative
with Adversarial
Noise Network

h 4

h

h 4

Fig. 3.1 The Block Diagram

The work-flow of our implementation is well understood by the figure 3.1. The
entire implementation can be broadly divided into two parts. One, denoising of the
image using a generative adversarial network and two, object detection using YOLOv3
with improved loU for better detection. Denoising of an image is required before
object detection as it may be difficult for the object detection algorithms to predict the
bounding boxes when noise is present. A lot of noise will be present when photo-
realistic rendering is done with four or eight rays instead of thousands of rays. We use
a denoising generative adversarial network for the purpose of denoising. Then, we
input the denoised image to the object detection algorithm YOLOv3 with improved
Intersection over Union (loU) for predicting the bounding boxes. which can be
generalized to any type of images like artwork, etc. Finally, an image with bounding
boxes is obtained as the output.

25

3.2 IMAGE DENOISING USING GAN

Path-tracing is the technique that is used in rendering high quality photo-
realistic frames of 3D scenes. This technique involves shooting of thousands of rays
into a single pixel using the Monto Carlo simulation. When a ray hits the objects in
the image scene which will either refract or reflect or become absorbed. Average of
the color generated will be the color of that pixel. As this is method will be applied
for all the pixels rendering photo-realistic scenes frame by frame is very time
consuming and also expensive. The implemented method is to render using very small
number of samples per pixel and pass the noisy image to the network, which will
generate a photo-realistic image with high quality. The network is based on the ResNet,
which specializes in residual blocks which will carry important features forward into
the network without fail. The key is nothing but the defined loss function and the deep
GAN. Also a refined perceptual loss has been defined to preserve color, texture,
properties of the scene.

The check points of the pre-trained network are used for implementing the
GAN using the Tensorflow [24] API. We introduced monochromatic Gaussian and

Uniform noises of varying amounts to our ground truth images.

3.2.1 Gaussian Distribution

Gaussian functions are very much often used to represent the PDF of a
normally distributed random variable with expected value(n) and variance(c2).
Figure 3.2 depicts the Gaussian distribution. And the Gaussian distribution shown is
normalized so that the sum over all values of x gives a probability of 1. In this case,

the Gaussian is as depicted in figure 3.2 and is given by the Eq.8.

1 1 r— a)?

o\ 2T

26

1.0

0.8

0.2

0.0

Fig. 3.2 Gaussian Distribution

3.2.2 Uniform Distribution

The continuous uniform distribution is a probability distribution in which all
outcomes are equally likely; each variable has the same probability that it will be the
outcome. The distribution is defined by the two parameters, a (minimum) and b

(maximum). And the Uniform distribution is abbreviated U (a,b) and is illustrated in

figure 3.3.
f(x)
1 e .
b—a | |
0 a b X

Fig. 3.3 Uniform Distribution

The probability density function of continuous uniform distribution as in the

given EQ.9.

27

L fora<z<b

b—a -7 =7

f(w)—{ (©)
0 forz <aorxz>b

3.3 OBJECT DETECTION USING YOLO VERSION 3
WITH IMPROVED IOU

3.3.1 Tuning Leaky ReLU for the Improvement of Detection

Accuracy

Leaky ReLU converges faster if both positive and negative values are expected
in the output unlike traditional ReLU. It is one of the parameter which can be
customized based on the working dataset and an increase in the object prediction can
be achieved by tuning it. Following is an experiment which illustrates the increase in
accuracy of the prediction of different classes in an image and improper increase in the

slope of the leaky ReL.U will result in unnecessary detections or false positives.

Class name: person Class name: person

Confidence: 70.20437121391296 Confidence: 74.76561665534973
Class name: dog Class name: person

Confidence: 93.35347414016724 Confidence: 59.104371070861816

Class name: dog
Confidence: 96.49674892425537

Total time: 25.487714290618896 secs

Total time: 23.343185663223267 secs

Fig. 3.4 leaky relu @ 0.090 Fig. 3.5 leaky _relu @ 0.095

28

Class name: person Class name: person

Coence: it Confidence: 79.98812794685364
z " Class name: person
Confidence: 70.18781304359436 Confidence: 72.93789982795715

Class name: dog

Confidence: 98.32143783569336 Cla== e, 0og

Confidence: 99.28789734840393

Total time: 23.721565008163452 secs Total time: 20.99589204788208 secs

Fig. 3.6: leaky relu @ 0.100 Fig.3.7 leaky relu @ 0.105

Class name: person
Confidence: 96.96634411811829
Class name: person

Class name: person - X

: : Confidence: 92.35162138938904
Clonfldence._ 88.22876214981079 Class:name::cat
Class name: person Confidence: 86.44795417785645

Confidence: 81.33618235588074
Class name: dog
Confidence: 99.70197081565857

Class name: dog

Confidence: 99.96446371078491
Class name: backpack
Confidence: 74.84027743339539

Total time: 21.618655681610107 secs
Total time: 21.34204888343811 secs

Fig. 3.8 leaky relu @ 0.110 Fig. 3.9 leaky _relu @ 0.120

The above figures, figure 3.4, figure 3.5, figure 3.6, figure 3.7, figure 3.8,
figure 3.9 and figure 3.10 depict the leaky relu for different slopes. In the above
results, we can observe that for a slope of 0.090, the detection of the person could not
be made, but for a slope of 0.120, there is a false positive of cat object. And fine tuning
of the parameter resulted in the result below in figure 3.10 which illustrates the perfect
detection system for the used dataset at slope 0.111 in the duration of detection time.

29

Class name: person

Confidence: 89.802485704422
Class name: person

Confidence: 82.71081447601318
Class name: dog

Confidence: 99.75413084030151
Class name: backpack
Confidence: 53.162264823913574

Total time: 21.792546033859253 secs

Fig. 3.10 leaky relu @ 0.111

3.3.2 Generating custom anchor boxes for an improved loU

A few ground truth images are taken from the training data of the GANs and
annotated to get the values of the bounding boxes in .xml format. The annotated files
will be the input for the custom anchor box generation script, which takes in the Xmin,
Xmax, Ymin, Ymax Values for each object in an image to understand the aspect ratio and
the scale of the object with respect to the whole image. Then after the calculation with
the help of clustering algorithm, which here is ‘k means’ algorithm, it will give out the
possible cluster centroids with priors bound around them in various aspect ratios and
scales. Here we can see from the results that when compared to a traditional 1oU which
is obtained by training on a large common dataset, the mean loU of the custom made
anchor boxes fit better with the predictions and are higher considerably. Further
increase in diversity of the dataset with various exaggerated shapes of the animated
characters could provide more insights into efficiency of the custom made anchor
boxes on the detection accuracy and necessity to decide the priors based on the cluster
centroids which converge better with the subject dataset. Figure 3.11 shows mean loU
with VOC dataset with k=5. Figure 3.12 shows mean loU with custom dataset with
k=5. Figure 3.13 shows mean loU with VOC dataset with k=9. Figure 3.14 shows

mean loU with custom dataset with k=9.

30

Accuracy: 60.68% Accuracy: 86.01%

Boxes: Boxes:
[[0.792 0.77066667] [[©.328125 0.47265625]
[0.042 0.07733333] [0.33398438 0.5390625]

[06.368 ©.52533333] [6.20117188 0.35546875]
[0.096 0.152] [0.171875 0.46875]
[0.176 0.324 1] [0.47265625 0.45507812]]

Fig. 3.11 Mean loU with VOC dataset(5) Fig. 3.12 Mean loU with custom
dataset(5)

Accuracy: 67.54%

Boxes:
[[0.038 0.07185629]
[0.374 .70133333]
[0.102 .288]
[0.634 .45066667]
[0.176 .16533333]
[0.308 .31466667]
[0.834 .836]
[6.192 .49866667]
[0.078 .128 11

[[0.23046875 0.3515625]
[0.29882812 0.42578125]
[0.46875 .48828125]
[0.49023438 0.41015625]

[0.171875
[0.3046875
[0.33398438
[6.33398438

.46875]
.28125]
.5390625]
.49609375]]

0
0
0
0
0
0
0
0

0
0
0
[0.171875 0.36132812]
0
0
0
0

Fig. 3.13 Mean loU with VOC dataset(9) Fig. 3.14 Mean loU with custom
dataset(9)

The above values titled boxes are the different sizes of prior boxes created by
the k means clustering algorithm which play a major role in deciding the loU of the
predictions on the images. Diversity in the ratios will be decided by the annotations of
the custom dataset and the requirement of the proportions at the time of detection. Ideal
algorithm creates thousands of anchor boxes for every prediction that depicts the ideal
location, size and shape of the object it particularly specializes in predicting.

Figure 3.15 and figure 3.16 are visualization of the default anchor boxes in
RetinaNet and beside is the amount of reduction in size of the boxes that can be
achieved in order to maintain higher loU and to detect much smaller objects of rare

proportions.

31

1l |
|

Il
t=

T
NI}
1
181
T[TRT

]
£
|
===
]

[l
T H NIl |iiih_

i It 1
Fig. 3.15 Default anchor box sizes visualized for representative purpose

T
i

3.4 EXPERIMENTAL SETUP

3.4.1 Data Set

All the image samples are image frames of the Pixar movie [3] and Gaussian
noise of varied standard deviation has been added to diversify the DataSet [15]. All the
images are of the size 256*144. The observed images set consists of the noisy images
and the ground truth image set consists of the corresponding clean images. The test set
for YOLO Version 3 with improved loU are nothing but the denoised images which
are output of the denoising GAN. The camera-taken images of the test set for improved

YOLO Version 3 are taken from the drive.ai sample dataset [25]. CT scan [26] and MRI

32

Images [26] are also included in the test set. We have also created custom test set of

about 100 photo-realistic rendered images from Pixar movies [3].

PP SOOI fo L4 || R e
B+ i T I 07 |:-F
[t [Il D 3 = "] E%H
ST ORI | } = = H h | | | '_'I_-E
] il == 5 ll_] % 1 Il |i_J| |=l|_|.o-.i--|- j:'l L [
- H =3 = M 1l 51 (il =1 —
= e 1] :1:1 :ll'F Lt E:f'_' t T ILI_JI T T ia]
R i [THTT il | i O O O = =
i A e il E%‘T? e e
S iEs WL el e D et T T
I:ll. ﬂ__ -#é 1 e iiny)| © [] rj@—' __?I_' L1
= S o g e e e | 0=
==
milly H C T = .
:|:|) ﬁ) ._.J . i pr=m g o
= nJ = o]] = = - -J::F'I_
L miE =Nl == T =i T L
L — i | i d &l AR rm Y [
Hi J%_‘_A.l I |I TR e ummi L-fE A 1
T H ul
! T ! — T II (== i W B i
—-r—rruu| £ 5 ’ BLEE= it —IHERH il - ol
o0 [rﬂ d!?; e =
o) 0 £ S - H = —1f | ,_J:]|j—=r-|- e
!_I s B L =) u o _tlll | =i
i T : = i —H Hiin
. e e iRisas = =+ HLI
1 f SH _@ i = = | T T H im
L] el [T B = = pig
B It o i | i = R =
=0 : :,L_l paim 200 Bl ﬂ 0] 1] = ==l = i Y |
i el BT
[T = e £ oo i i Lt e
i . I —
| =iyy=illm H s jj I H = o 7
| _ | : T S _| = 0O [l
i, i i S Lol oeh O] LT
] [H| | | - - e =T
LT Bk : i< = e
] | ﬁ_! _:Dul_l —FH‘I‘FI I 1|_ +-L|—4 7 — i
ﬁ H I~ ':_ | HO [T H in L 1— | __I L:_Tlﬁﬂ _J_
U arEH—H ilmiein s W i i e i1 med 1| HSmssm el
= L H Iy B Jj:l =:| [i
| B TP orfi T e A e e
Fig. 3.16 Custom anchor box sizes visualized for representative purpose

3.4.2 Hardware Used

® | enovo ldeapad 320 Notebook
Nvidia GeForce 920MX/PCle/SSE2 GPU
Intel Core i5-7200U CPU @ 2.50GHz x 4
1 TB SATA Hard Disk
8.00 GB RAM

33

3.4.3

Software Used

Ubuntu 16.04 LTS 64-bit Operating System
Python 3

Tensorflow 1.12 API

Labellmg Tool

PyCharm 2018.2.4 (Community Edition)
Jupyter Notebook

Open CV Version 3

34

CHAPTER 4

RESULTS AND DISCUSSION

4.1 RESULTS

The results of GAN based object detection of noisy images are illustrated and
discussed here. Using GAN, we did denoising of photo-realistic rendered images
which have varying amounts of monochromatic Gaussian and monochromatic

Uniform Noises in them.

4.1.1 Denoising of Photo-realistic Rendered Images with

Monochromatic Gaussian Noise Using GAN

Using GAN, denoising is done for photo-realistic rendered images with

monochromatic gaussian noise and the results are shown in figure 4.1.

Gaussian Monochromatic Noise

Noisy Image Denoisy Image

Fig. 4.1 GAN results on photo-realistic rendered images with monochromatic

gaussian noise

35

4.1.2 Denoising of Photo-realistic Rendered Images with

Monochromatic Uniform Noise Using GAN
Using GAN, denoising is done for photo-realistic rendered images with
monochromatic Uniform Noise and the corresponding results are depicted in the

figure 4.2.

Uniform Monochromatic Noise

Denoised Image

Fig. 4.2 GAN results on photo-realistic rendered images with monochromatic

uniform noise

36

4.1.3 Denoising of CT Scan and MRI Images with Monochromatic

Gaussian Noise Using GAN

Using GAN, denoising is done for CT Scan images with monochromatic
gaussian noise and MRI images with monochromatic gaussian noise and the results

are depicted in figure 4.3 and figure 4.4.

CT Scan

Noisy Image Denoised Image

Fig. 4.3 Results on CT Scan

MRI Scan

Noisy Image Denoised Image

Fig. 4.4 Results on MRI

37

4.1.4 Denoising of CT Scan and MRI Images with Monochromatic
Uniform Noise Using GAN

Using GAN, denoising is done for CT scans image with monochromatic
uniform noise and MRI images which have monochromatic uniform noise and the

results are shown in the following figures, Figure 4.5 and Figure 4.6.

Uniform Monochromatic Noise

Noisy Image Denoised Image

Fig. 4.5 Results on CT Scan

Uniform Monochromatic Noise

Noisy Image Denoised Image

Fig. 4.6 Results on MRI

38

4.1.5 Denoised Images of Camera-taken Real Noisy Images using
GAN

Using GAN, denoising of images that are taken by camera with real noisy
images is performed and the results are depicted in the following figure 4.7.

Real Noisy Images

Noisy Image Denoised Image

Fig. 4.7 GAN Results on real-noisy images

4.1.6 Object Detection in Photo-Realistic Rendered Images Using
YOLO Version 3 with Improved 10U

Object detection has been done on photo-realistic rendered images using
YOLO Version 3 with Improved loU and the results of cross-depiction problem is
depicted in the following figure 4.8.

39

Fig. 4.8 Object Detection in Photo-Realistic Image 1

4.1.7 Object Detection in Denoised Images Using YOLO Version 3
with Improved loU

Obiject detection has been done on denoised photo-realistic rendered images
using YOLO Version 3 with Improved loU and the results of various class detections
are depicted in the following figures, figure 4.9, figure 4.10 and figure 4.11.

Class name: person

Confidence: 89.77555632591248
Class name: person

Confidence: 82.77071118354797
Class name: dog

Confidence: 99.75026249885559
Class name: backpack
Confidence: 53.20969223976135

Total time: 20.80360507965088 secs

Fig. 4.9 Object Detection on Denoised Photo-Realistic Rendered Image 1

40

Class name: person
Confidence: 89.17433023452759
Class name: person
Confidence: 83.43595862388611

Fig. 4.10 Object Detection on Denoised Photo-Realistic Rendered Image 2

Class name: person

Confidence: 99.95991587638855
Class name: laptop

Confidence: 98.8497257232666

Fig. 4.11 Object Detection on Denoised Photo-Realistic Rendered Image 3

4.1.8 Object Detection in Photos Taken from Digital Camera Using
YOLO Version 3 with improved loU

Object detection has been done on denoised camera-captured images using
YOLO Version 3 with Improved loU and the results of various class detections are

depicted in figure 4.12.

41

Class name: zebra
Confidence: 99.80953335762024
Class name: giraffe
Confidence: 99.93719458580017

Total time: 29.125305891036987 secs

Fig. 4.12 Object Detection in Denoised Digital Image

42

4.2 FALSE POSITIVES AND FALSE NEGATIVES

4.2.1 False Positives

False positive is a test result that wrongly shows that a particular attribute is

present.

Class name: person

Confidence: 99.62313771247864
Class name: person

Confidence: 99.00327920913696
Class name: dog

Confidence: 99.97349381446838
Class name: scissors

Confidence: 66.45312309265137

Fig. 4.13 Example of False Positive
In the Figure 4.13, even though an object scissors is not present, it still shows

that it is present, thus a false positive.

4.2.2 False Negatives

False negative is a test result that wrongly shows that a particular attribute is
absent. In the Figure 4.14, even though an object person is present thrice, it detected it
only one instance and left the other two instances of the person class undetected, thus
a false negative.

43

Class name: person

Confidence: 64.1047716140747
Class name: sports ball
Confidence: 55.05834221839905

Fig. 4.14 Example of False Negative

44

CHAPTER 5

CONCLUSION

In this project, we implemented the proposed pipeline for denoising photo-
realistic images using GANs for detecting objects using YOLOv3 with improved loU.
We discovered the slope at which Leaky ReLU works best for our dataset, also, we
increased the mean loU of the bounding boxes by generating custom anchor boxes
using k means clustering for our dataset. Different noisy MRI and CT scan images,
CGl and camera captured images with different types of noises and different amounts
in them have been denoised using denoising GAN. We generalized YOLO for photo-
realistic images. So real-time object detection in real-time rendering helps identify the
objects and localize them in a rendered image. Denoising photo-realistic images helps
reduce the production time from many hours to a few seconds. Thereby, improving the

speed of real-time rendering.

45

CHAPTER 6

FUTURE WORK

In future, noises that are produced by Monte Carlo Rendering can be included
and we can extend this to other types of noises other than just monochromatic noise.
This can further be extended to work in real-time rendering and for real-time object
detection and for object detection in the wild for counting the wild-life, to
detect forest-fires, etc and during rain to detect the objects by deraining the images.
Also this can be extended for other types of images like Artwork. We can also try

implementing K-Means++ for initialization in K-Means clustering in YOLO algorithm.

46

[1]

(2]

3]

[4]

(5]

(6]

(7]

(8]

[9]

REFERENCES

“https://renderman.pixar.com/,” [Online].
“https://sciencebehindpixar.org/pipeline/rendering,” [Online].
“https://www.pixar.com/feature-films-launch,” [Online].

“Girshick, R.B., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on
Computer Vision and Pattern Recognition, 580-587".

“R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015R. B. Girshick. Fast R-CNN.
CoRR, abs/1504.08083, 2015”.

“Ren, S., He, K., Girshich, R., et al.: ‘Faster R-Cnn: Towards Real-Time Object Detection
with Region Proposal Networks’, IEEE transactions on pattern analysis and machine
intelligence, 2017, 39, (6), pp. 1137-1149".

“J. Redmon. Darknet: Open source neural networks in c.
http://pjreddie.com/darknet/.,” [Online].

“J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-
Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, 2016, pp. 779-788".

“Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 6517—-6525. IEEE, 2017”.

[10] “J. Redmon and A. Farhadi. Yolov3: An incremental improvement. ArXiv, 2018".

[11] “W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, and A. C. Berg. Ssd: Single

shot multibox detector. In European conference on computer vision, pages 21-37.
Springer, 2016”.

[12] “Zhang, Qianru & Zhang, Meng & Chen, Tinghuan & Sun, Zhifei & Ma, Yuzhe & Yu, Bei.

(2018). Recent Advances in Convolutional Neural Network Acceleration”.

[13] “lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, and Aaron Courville Yoshua Bengio. Generative adversarial nets. In NIPS,
2014”.

[14] “William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir

Mohamed, and lan Goodfellow. Many paths to equilibrium: GANs do not need to

47

decrease a divergence at every step. In ICLR, 2018”.

[15] “A. Alsaiari, R. Rustagi, A. Alhakamy, M. M. Thomas and A. G. Forbes, "Image
Denoising Using A Generative Adversarial Network," 2019 IEEE 2nd International
Conference on Information and Computer Technologies (ICICT), Kahului, HI, USA,
2019, pp. 126-132”.

[16] “H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision
algorithms for recognising objects in artwork and in photographs. arXiv preprint
arXiv:1505.00110, 2015”.

[17] “https://en.wikipedia.org/wiki/K-means_clustering,” [Online].
[18] “http://www.image-net.org/,” [Online].
[19] “http://host.robots.ox.ac.uk/pascal/VOC/,” [Online].

[20] “Tan, Chuangi & Sun, Fuchun & Kong, Tao & Zhang, Wenchang & Yang, Chao & Liu,
Chunfang. (2018). A Survey on Deep Transfer Learning: 27th International Conference
on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part
ll.10.10”.

[21] “C. Szegedy, S. loffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact
of residual connections on learning. CoRR, abs/1602.07261, 2016”.

[22] “http://www.robots.ox.ac.uk/~vgg/research/very _deep/,” [Online].

[23] “He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 770-778)".

[24] M.i.A.P.B.J.C.Z.C.A.D.J.D.M.D.S.G.G. . M. I. M. K. J.L.R.M.S. M. D. M. B.S. P.
T.V.V.P.W.M.W.Y.Y.and X. Z., “Tensorflow: A system for large-scale machine
learning,” in 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI'16, Berkeley, CA, USA, 2016.

[25] “https://www.drive.ai/,” [Online].

[26] “https://imaging.sansumclinic.org/medical-services/medical-
service/details/radiology,” [Online].

[27] “J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, |. Fischer, Z. Wojna, Y.
Song, S. Guadarrama et al., "Speed/accuracy trade-offs for modern convolutional ob

ject detectors", IEEE CVPR, 2017”.

48

[28] “T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L.
Zitnick. Microsoft coco: Common objects in context. In European conference on
computer vision, pages 740-755. Springer, 2014”.

[29] “Sang, Jun et al. “An Improved YOLOv2 for Vehicle Detection.” Sensors (Basel,
Switzerland) vol. 18,12 4272. 4 Dec. 2018, d0i:10.3390/s18124272".

[30] “http://cocodataset.org/#home,” [Online].

[31] “Lin, Tsung-Yi & Goyal, Priya & Girshick, Ross & He, Kaiming & Dollar, Piotr. (2017).
Focal Loss for Dense Object Detection. 2999-3007. 10.1109/1CCV.2017.324".

49

LIST OF PUBLICATIONS

[1] A research paper titled “A Novel Cipher using Cipher Squares” has been
submitted.

50

