
1

GAN BASED OBJECT DETECTION OF NOISY IMAGES

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

INFORMATION SYSTEMS

Submitted by:

Jayanthi Adilakshmi Visali

2K17/ISY/07

Under the supervision of

Dr. ANIL SINGH PARIHAR

INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

JULY 2019

i

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

CANDIDATE’S DECLARATION

I, Jayanthi Adilakshmi Visali, 2K17/ISY/07 student of M.Tech (Information System),

hereby declare that the project Dissertation titled “GAN Based Object Detection of

Noisy Images” which is submitted by me to the Department of Information

Technology, Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology, is original and not

copied from any source without proper citation. This work has not previously formed

the basis for the award of any Degree, Diploma Associate ship, Fellowship or other

similar title or recognition.

Place: Delhi JAYANTHI ADILAKSHMI VISALI

Date:

ii

INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

CERTIFICATE

I hereby certify that the project Dissertation titled “GAN Based Object Detection of

Noisy Images” which is submitted by Jayanthi Adilakshmi Visali, 2K17/ISY/07 to

Department of Information Technology, Delhi Technological University, Delhi in

partial fulfillment of the requirement for the award of degree of Master of Technology,

is a record of the project work carried out by the student under my supervision. To the

best of my knowledge this work has not been submitted in part or full for any Degree

of Diploma to this University or elsewhere.

Place: Delhi Dr. ANIL SINGH PARIHAR

Date: SUPERVISOR

Associate Professor

Department of Computer Science and Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

iii

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my project

supervisor Dr. Anil Singh Parihar for providing the opportunity of carrying out this

project and being the guiding force behind this work. I am deeply indebted to him for

the support, advice and encouragement he provided without which the project could

not have been a success.

Secondly, I am grateful to Dr. Kapil Sharma, HOD, Information Technology

Department, DTU for his immense support. I would also like to acknowledge Delhi

Technological University library and staff for providing the right academic resources

and environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends

for constantly encouraging me during the completion of work.

JAYANTHI ADILAKSHMI VISALI

iv

ABSTRACT

Due to increased use of CGI imagery in many application across different fields, it is

high time there is a Generative Adversarial Network which worked in synergy with an

object detection algorithm like YOLO to overcome the difficulty in perception of

various kinds of noises contributing to the decreased accuracy of object class

prediction. The problem with CGI imagery in real time is that they are replete with

objects which are of different proportions when compared to real life objects and also

they anthropomorphize every type of object like cars, trees, houses, toys which makes

it difficult for default anchor boxes to act as good priors in drawing the bounding boxes

around them. So we have integrated a network which can generate denoised images

with the help of generative and discriminator networks competing against each other

and the generated denoised image will directly be pushed through another object

detection network which here is YOLOv3 with improved IoU. So with the integration

of these networks and tuning the parameters for our custom dataset the output will be

an image which can be used for real-time rendering.

v

CONTENTS

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Tables viii

List of Figures ix

List of Abbreviations and Nomenclature xii

CHAPTER 1 INRODUCTION 1

1.1 IMAGES, NOISE AND PHOTO-REALISTIC RENDERING 1

1.2 OBJECT DETECTION 3

1.3 DEEP LEARNING & CNNS 3

1.3.1 Convolutional Neural Networks (CNNs) 4

1.3.2 Spatial Arrangement 6

1.4 PROBLEM STATEMENT 8

CHAPTER 2 LITERATURE REVIEW 9

2.1 GENERATIVE ADVERSARIAL NETWORKS (GANS) 9

2.1.1 Algorithm 10

2.1.2 SR-GANs 11

2.1.3 Residual Blocks 12

2.1.4 Why SRGAN for Denoising? 14

https://docs.google.com/document/d/1NT-_JO75LpCgYoPHjDg9kO5FQmW9J_p3g3FS66UmO68/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1NT-_JO75LpCgYoPHjDg9kO5FQmW9J_p3g3FS66UmO68/edit#heading=h.1fob9te
https://docs.google.com/document/d/1NT-_JO75LpCgYoPHjDg9kO5FQmW9J_p3g3FS66UmO68/edit#heading=h.3znysh7

vi

 2.2 OBJECT DETECTION USING YOU ONLY LOOK ONCE

 ALGORITHM 14

 2.2.1 YOLO V 1 15

 2.2.2 YOLO V 2 16

 2.2.3 K-Means Clustering Algorithm 18

 2.2.4 YOLO V 3 19

 2.2.5 Need for Custom Anchor Boxes 20

 2.2.6 Intersection Over Union(IOU) 21

 2.3 RELU 21

 2.3.1 Simple ReLU 22

 2.3.2 Drawbacks of ReLU 22

 2.3.3 Leaky ReLU 23

 2.4 TRANSFER LEARNING 24

CHAPTER 3 PROPOSED WORK 25

3.1 THE PIPELINE 25

3.2 IMAGE DENOISING USING GAN 26

3.2.1 Gaussian Distribution 26

3.2.2 Uniform Distribution 27

 3.3 OBJECT DETECTION USING YOLO VERSION 3

 WITH IMPROVED IOU 28

3.3.1 Tuning Leaky ReLU for the Improvement of Detection

 Accuracy 28

3.3.2 Generating custom anchor boxes for an improved IoU 30

3.4 EXPERIMENTAL SETUP 32

3.4.1 Data Set 32

3.4.2 Hardware Used 33

vii

3.4.3 Software Used 34

CHAPTER 4 RESULTS AND DISCUSSION 35

4.1 RESULTS 35

4.1.1 Denoising of Photo-Realistic Rendered Images with

 Monochromatic Gaussian Noise Using GAN 35

4.1.2 Denoising of Photo-realistic Rendered Images with

 Monochromatic Uniform Noise Using GAN 36

 4.1.3 Denoising of CT Scanand MRI Images with Monochromatic

 Gaussian Noise Using GAN 37

 4.1.4 Denoising of CT Scan and MRI Images with Monochromatic

 Uniform Noise Using GAN 38

 4.1.5 Denoising of Camera-taken Real Noisy Images using GAN 39

 4.1.6 Object Detection in Photo-Realistic Rendered Images Using

 YOLO Version 3 with Improved IoU 39

 4.1.7 Object Detection in Denoised Images Using YOLO Version 3

 with Improved IoU 40

 4.1.8 Object Detection in Photos Taken from Digital Camera Using

 YOLO Version 3 with Improved IoU 41

 4.2 FALSE POSITIVES AND FALSE NEGATIVES 43

 4.2.1 False Positives 43

 4.2.2 False Negatives 43

 CHAPTER 5 CONCLUSION 45

 CHAPTER 6 FUTURE WORK 46

 REFERENCES 47

 LIST OF PUBLICATIONS 50

viii

LIST OF TABLES

TABLE 2.1. DarkNet - 19 17

TABLE 2.2. DarkNet - 53 20

https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc
https://docs.google.com/document/d/1BvOpx-ToQkzjZKM0TqLrUQpQP56zos8ek2Kaz3CwFzg/edit#heading=h.1pxezwc

ix

LIST OF FIGURES

FIGURE NO. FIGURE PAGE NO.

FIGURE. 1.1

Example of a Photo-realistic Rendered

Image

2

FIGURE. 1.2
Basic network structure of Neural

Networks

4

FIGURE. 1.3
Understanding the internal functioning

of CNN
5

FIGURE. 1.4 Illustration of Average Pool layer 7

FIGURE. 1.5 Illustration of the Max Pool layer 7

FIGURE. 2.1 Generative Adversarial Network 10

FIGURE. 2.2 SR-GAN 12

FIGURE. 2.3 Residual Blocks 13

FIGURE. 2.4 YOLO Network 16

FIGURE. 2.5
K-Means Clustering: No. of Centroids

vs. Mean IoU
19

FIGURE. 2.6 Illustration of IoU 21

FIGURE. 2.7 ReLU Activation Function 22

FIGURE. 2.8
Leaky ReLU/PReLU Activation

Function
23

FIGURE. 3.1 The Block Diagram 25

x

FIGURE. 3.2 Gaussian Distribution 27

FIGURE. 3.3 Uniform Distribution 27

FIGURE. 3.4 Leaky_relu @ 0.090 28

FIGURE. 3.5 Leaky_relu @ 0.095 28

FIGURE. 3.6 Leaky_relu @ 0.100 29

FIGURE. 3.7 Leaky_relu @ 0.105 29

FIGURE. 3.8 Leaky_relu @ 0.110 29

FIGURE. 3.9 Leaky_relu @ 0.120 29

FIGURE. 3.10 Leaky_relu @ 0.111 30

FIGURE. 3.11 Mean IoU with VOC dataset(5) 31

FIGURE. 3.12 Mean IoU with custom dataset(5) 31

FIGURE. 3.13 Mean IoU with VOC dataset(9) 31

FIGURE. 3.14 Mean IoU with custom dataset(9) 31

FIGURE. 3.15
Default anchor box sizes visualized for

representative purpose
32

FIGURE. 3.16
Custom anchor box sizes visualized for

representative purpose
33

FIGURE. 4.1

GAN results on photo-realistic rendered

images with monochromatic gaussian

noise

35

FIGURE. 4.2

GAN results on photo-realistic rendered

images with monochromatic uniform

noise

36

xi

FIGURE. 4.3
GAN results on CT Scan images with

monochromatic gaussian noise
37

FIGURE. 4.4
GAN results on MRI images with

monochromatic gaussian noise
37

FIGURE. 4.5
GAN results on CT Scan images with

monochromatic uniform noise
38

FIGURE. 4.6
GAN results on MRI images with

monochromatic uniform noise
38

FIGURE. 4.7 GAN results on real-noisy images 39

FIGURE. 4.8
Object Detection for Photo-Realistic

Rendered Image 1
40

FIGURE. 4.9 Object Detection for Denoised Image 1 40

FIGURE. 4.10 Object Detection for Denoised Image 2 41

FIGURE. 4.11 Object Detection for Denoised Image 3 41

FIGURE. 4.12
Object Detection for Denoised Digital

Image
42

FIGURE. 4.13 Example of False Positive 43

FIGURE. 4.14 Example of False Negative 44

xii

LIST OF ABBREVIATIONS AND NOMENCLATURE

1. CNN: Convolutional Neural Network

2. GAN: Generative Adversarial Network

3. YOLO: You Only Look Once

4. CGI: Computer Generated Imagery

5. MRI: Magnetic Resonance Imaging

6. CT: Computed Tomography

7. SR-GAN: Super Resolution Generative Adversarial Network

8. GPU: Graphical Processing Unit

9. API: Application Programming Interface

10. ReLU: Rectified Linear Unit

12. PReLU: Parametric Rectified Linear Unit

13. R-CNN: Regions with CNN features

14. IoU: Intersection Over Union

15. HOG: Histogram of Oriented Gradients

16. SVM: Support Vector Machine

17. DL: Deep Learning

18. ML: Machine Learning

19. AI: Artificial Intelligence

xiii

20. LR: Low Resolution

21. HR: High Resolution

22. SR: Super Resolution

23. PDF: Probability Density Function

24. ISO: International Organization of Standardization

25. ANN: Artificial Neural Network

26. VOC: Visual Object Classes

27: COCO: Common Objects in Contexts

28: VGG: Visual Geometry Group

29. MSE: Mean Squared Error

30. NLP: Natural Language Processing

31. CV: Computer Vision

32. PSNR: Peak Signal-to-Noise Ratio

33. FC: Fully Connected

34. CONV: Convolution

35. v1: Version 1

36. v2: Version 2

37. v3: Version 3

38. CPU: Central Processing Unit

39. RMSE: Root Mean Square Error

xiv

40. FPN: Feature Pyramid Network

41. W: Input Volume Size

42. K: Kernel Field Size

43. S: Stride

44. P: Amount of Zero Padding applied

1

CHAPTER 1

INTRODUCTION

1.1 IMAGES, NOISE AND PHOTO-REALISTIC

RENDERING

An image, derived from Latin word ‘Imago’ means an artifact that depicts ,

such as a 2D picture or a photograph. In , an image is nothing but a distributed

amplitude of color(s). Digital Images are nothing but a collection of picture elements

called pixels which are arranged in a rectangular array. These images may naturally

contain noise in them due to external factors such as shooting at higher ISO settings,

light available, etc. We can add whichever noise we deem necessary to the image

externally. There are various noises like salt-and-pepper, gaussian, speckle, sh0t,

poiss0n noises, etc. Image noise is nothing more than variations of brightness or

information related to the specific color in the images, and is usually a part of the

electronic noise. It could potentially be produced by the sensor of a digital camera or

the circuit work in scanner of the same. Most common type of noise that is used in

image processing are Gaussian Noise, which is named after the German mathematician

Carl Friedrich Gauss and Uniform N0ise. Statistically, Gaussian n0ise has the

pr0bability density functi0n (PDF) same as that of normal distribution, als0 known as

Gaussian Distributi0n, which means that the values of the n0ise have been distributed

normally. Many natural sources for Gaussian noise are present like black-b0dy

radiati0n from the Earth and other warm objects, shot n0ise, the thermal vibrati0ns of

atoms in conductors also known as thermal or Johns0n-Nyquist noise, and celestial

sources such as Sun. It can also be added into the image externally by image processing

techniques. The gaussian noise in images is mainly caused during acquisition e.g.

sensor noise caused by high temperature and/or poor illumination.

Computer Generated Imagery(CGI) has become a part of many daily life

applications such as video games, movies and commercials. Many software like

Pixar’s Renderman [1] software are available to generate photo-realistic imagery.

2

Nowadays, animation movie companies like Dreamworks and Pixar use a technique

called pathtracing [2] for rendering their 3D scenes. Pathtracing is a technique in which

hundresds of rays are directed int0 a single pixel randomly (achieved by “Monte Carlo”

Method) to create high quality photo-realistic frames. The technique of pathtracing is

well-described in Section 3.2. and the color of the pixel is obtained by averaging the

colors generated by these rays, and this process is repeated for each and every pixel.

Figure 1.1 is an example photo-realistic image taken from the Pixar movie Monsters

University [3]. Frame by frame rendering of photo-realistic images is time consuming

and very expensive as we need thousands of rays per pixel and thus increased

computational complexity. With the development of large memories, efficient

software APIs and CPUs, GPUs technology, there has been a great progress in

rendering, but real-time rendering is less feasible as it takes around 1/3-2/3 of a whole

day to render a single frame. We can apply image denoising methods to almost any

scanned image, CGI or camera-captured image with noise.

Fig. 1.1 Example of a Photo-Realistic Rendered Image

3

1.2 OBJECT DETECTION

We, the humans have an amazing ability to identify objects that are in any

image we look at, the location of the objects and relation of each other in the scene.

Making a computer master this ability of human vision, which is to know what is where

by looking as fast and as accurate as a human does is a complex problem which is

widely studied as the field of Computer Vision. Even as humans, it is sometimes

difficult to distinguish what we are seeing when the objects are too similar like

differentiating between two dogs belonging to different breeds in retriever dogs like

Nova Scotia Duck Tolling Retriever breed and Golden Retriever breed or when only

some part of an object is only present in an image like head of an animal. Finding

exactly where in a given image an object is present is called the problem of Object

Localization. The problem of where an object is present and what it is in a given image

is called Object Detecti0n. Another challenging tasks of object detection is doing

object detection when too many objects are present in the image.

With the advances in technology in the Computer Vision, Object Detection has

become an integral part of many real-time applications. Object Detection has become

a requisite in many problems of Computer Science and Artificial Intelligence(AI) like

Self-driving cars, Responsive Robotics, medical applications, video surveillance, etc.

Many algorithms have been discovered in 0rder to s0lve the pr0blem of object

detection. Before Neural Networks, methods like Support Vector Machine and HOG

are used for Object Detection. Nowadays, many efficient deep learning algorithms

have been invented for detecting objects in an image.

1.3 DEEP LEARNING AND CNNs

With the advances in technology, computer software and hardware, Deep

Learning(DL) has seen an incredible growth in the last two decades. There is an

immense work going on this field. Artificial Neural Networks(ANN) have solved

many complex problems till date. For unstructured data like images, video, text and

audio, ANNs have been widely used. Especially for images, CNNs have showed a

4

better perf0rmance in solving many problems of image processing like image

denoising, super resolution of images, deraining in images, coloring the images, etc.

than traditional algorithms. Many promising results for the problems of Computer

Vision like Image Localization and Classification, Semantic Segmentation, Object

Detection Instance Segmentation, etc., have been given by CNNs. For the problem of

object detection alone, many algorithms, both region-proposal and single shot

detectors like R-CNN [4], Fast R-CNN [5], Faster R-CNN [6], YOLO Version 1 [7] [8],

YOLO version 2 [7] [9], YOLO Version 3 [7] [10], SSD [11], etc., have been proposed.

Convolutional Neural Networks are similar in architecture with conventional neural

networks except that they assume image as an input. In visual recognition tasks, deeper

networks tend to give better results.

1.3.1 Convolutional Neural Networks(CNNs)

CNNs [12] are like any other type of the Neural Netw0rks that are made of

neur0ns that have trainable biases and weights. Every neuron gets an input, performs

an inner pr0duct and sometimes follows it12with some non-linear function in between

the network. Neural Networks transforms an input through a train of hidden layers

which have multiple neurons in them, and each of the neuron is then connected to

all14of the neurons of the previous layer. The last FC layer is the 0utput layer which

throws out probabilities of classes or a binary classification. The basic network

structure of neural networks is illustrated in Figure 1.2.

Fig. 1.2 Basic network structure of Neural Networks

5

ConvNet architectures are explicitly made for inputs that are images and these

increases the124efficiency of the forward function and try reducing123the number of

parameters the network usually depends on. CNNs have neur0ns arranged in three

dimensions;123width, height, depth. Figure 1.3 helps in understanding internal

functioning of the CNNs.

Fig. 1.3 Understanding the internal functioning of CNN

CNN is a sequence of layers, where each layer of a CNN converts 0ne volume of

activations into another with the help of a specific function called activation function.

Most common type of activation functions in a CNN is one or the other variant of

ReLU. Convolutional Layer, Fully-Connected12Layer(FCL) and Pooling Layers12are

the 3 main types of layers used in CNN. Every CNN architecture is made by stacking

these types of layers on top of each other in various configurations.

⚫ INPUT [W x H x C] will hold the raw image pixel values, where W is width,

H is height and C represents number of channels (RGB).

⚫ CONV layer is used to compute the neuron output which are inter-connected

to sub-sections in the input, all c0mputing a product between the weights

resulting in [W x H x F] where F represents filters.

⚫ RELU layer is used to apply activati0n function to every element outputted by

the layer. Others include Leaky-Relu, Sigmoid and Tanh activation functions.

6

⚫ POOL layer is used for down-sampling (converting an image to low-resolution)

operation along the dimensions. Types include average and max pooling. The

pooling layer is used to reduce the representation size and thereby reducing the

number of parameters which ultimately benefits in decreasing the amount of

computations in the network. This ultimately controls overfitting. The figures,

Figure 1.4 illustrates the average pool layer and figure 1.5 illustrates the max

pool layer.

⚫ FC Layer is used to compute the class scores at the output layer.

A CNN is able enough to inherently capture the ‘what’ and ‘where’ aspects of an

image through the application of relevant and necessary filters. The performance of

the architecture fits better to the dataset with images as the number of parameters are

reduced and re-usability of weights is made possible. Unlike in ordinary neural

networks, in a CONV layer, neurons get the input from something called a “receptive

field”, which is a restricted area of previ0us layer.

1.3.2 Spatial Arrangement

Following hyper parameters decide the size of the output v0lume of the CONV

layer:

⚫ The depth of12 output volume is the number of filters12we shall use; each filter

tries to learn s0mething unique in the input.

⚫ The stride we use to slide the chosen filter. For instance, if the stride is 1, then

the filter is moved 0ne pixel at a time which leads to heavy receptive field

overlap. Practically using smaller strides are advantageous.

⚫ The padding of the input with zeroes all along the image border is another

hyper parameter. With Zero padding we can control the spatial size of the

output image. Usage of zero padding in CONV layers avoids the reduction of

7

the size of the volumes of the images by a certain amount after every CONV,

and stops the fast escape of the information at the image borders.

Fig. 1.4 Illustration of the Average Pool layer

Fig. 1.5 Illustration of the Max Pool layer

The computation of the spatial size for the output is defined by the Eq. (1).

M = ((W − K + 2 P)/S) + 1 (1)

where, M denotes Spatial size of the output,

 W denotes size of input,

 P denotes amount of applied zero padding,

 K denotes kernel field size and

 S denotes stride.

8

1.4 PROBLEM STATEMENT

Even with the availability of computationally high GPU machines, the real-

time rendering and detection of the photo-realistic images is still an expensive problem.

Nowadays there is an increased requirement of CGI imagery in many fields like

entertainment industry, video gaming, and medicine. Even with increase in powerful

GPUs, the real-time rendering of a single image takes around 8 - 16 hours. So, real-

time object detection in photo-realistic image while they are rendered real time is a

challenging task. Also, when the problem of object detection is concerned, when there

is noise in the images, it is very difficult for the object detection algorithms to

accurately detect the objects. Especially in the real-time, it is very difficult to detect

objects in applications like video surveillance where the images are usually very noisy

and in the wild where noise causing factors like rain, fog, smoke, etc., are present.

9

CHAPTER 2

LITERATURE REVIEW

2.1 GENERATIVE ADVERSARIAL NETWORKS (GANS)

GAN [13] [14] was first introduced in 2014 by Ian Good Fellow, et al. GANs

are basically a scenario of game theory where “the generator network will compete

against an adversary (discriminator network)”. The Generator is forced to generate

new data similar to the expected values, and constantly convince the discriminator t0

believing that the generated samples are real. The Discriminator attempts to learn to

classify samples as real (the data the network will be trained on) and fake (the samples

generated by the Generator network) correctly. This process is illustrated in the figure

2.1.

Generator network produces sample x = g (z, theta_g), which is a mapping of

input (usually drawn from a random probability distribution) noise variables Z t0 a

desired network space x (images). Discriminator gives out a probability value solved

by d (x, theta_d),1 depicting the pr0bability of x being a real training sample instead 0f

a fake one. Theta_i represents weights of parameters that define each neural network.

Learning in GANs is like a zero-sum game, where the function v(theta_g,

theta_d) calculates the loss of the discriminator, as the function is received by the

generator as its own loss. During learning, each network attempts to minimize its own

loss, so at the convergence g* = arg min max v(g, d). Discriminator’s weights are

updated in order to “maximize the pr0bability that any real data input x is classified

correctly as being real, while minimizing the probability that any fake image is

classified as being real”. Maximize d(x, theta_d), minimize d(g(z, theta_g)).

Generator, meanwhile, updates weights so as to maximize the probability of

the fake sample is classified by the discriminator as being from a real dataset,

compared to being coming to decrease the log-probability that the prediction made by

the discriminator is correct.

10

Fig. 2.1 Generative Adversarial Network

This rework is different from both zero-sum and maximum likelihood. And

was introduced with the heuristic motivation in which it will keep the difference

between the derivative of the generator’s cost function and the discriminator’s log huge

even when discriminator keeps confidently rejecting all the generated samples.

The loss functions of the generative adversarial network are given by the

following Eq.2.

 (2)

2.1.1 Algorithm

Following is a pseudo code that comprehensively describes the functioning of

a Generative Adversarial Network:

11

There are various types of GANs like SR-GANs, Conditional GANs, Deep

Convolutional Gans, infoGAN, Obj-GANs,etc.

2.1.2 SR-GANs

Super Resolution Generative Adversarial Networks (SR-GANs) [15] are a type

of GANs used to convert low-res images to high-res images. Super-resolution GAN

employs a deep neural network which works in synergy with a discriminator network

to produce images with higher resolution. During the training, an image of high-res

(HR) is down-sampled to a low-res0lution image (LR). Then, a GAN12generator up-

samples images to12super-resolution images (SR) from low-res (LR). A

discriminator is used f0r distinguishing the HR images and back-propagate the GAN

l0ss for further training both the discriminator and the generator. Figure 2.2 describes

an SR-GAN.

The network below composes of convolution layers which go through batch

normalization and parameterized ReLU (PReLU). Similar to ResNet, the generator

implements skip connections. The convolution layer with 3x3 kernel filters outputting

64 channels with stride 1 is represented as “k3n64s1”.

12

Fig. 2.2 SR-GAN

2.1.3 Residual Blocks

As it is comparatively more difficult to train deeper networks, the residual

learning framework facilitates the training of these networks, and contributes to the

improvement of the performance with deeper network. 16 “Residual Blocks” are used

in Generator. Skip architecture or residual connection is commonly used as a “Skip

Connection” between the output and the input, or between convolution and transposed

convolution. To use skip connection, the dimension equality of both input and output

should be maintained. By using skip connection, it provides an alternative for gradient

to back propagation bettering the model’s convergence as depicted in Figure 2.3.

The perceptual loss function lSR is vital for the generator network’s

performance. While lSR is inspired from the Mean Square Error, a new loss function is

created that inspects a solution to th0se characteristics that are perceptually123relevant.

The perceptual l0ss is calculated as the weighted sum of a c0ntent loss and an

adversarial loss comp0nent as given in the following Eq.3.

13

Fig. 2.3 Residual Blocks

The pixel-wise123Mean Squared Error (MSE) l0ss is calculated as per the

following Eq.4.

 (3)

 (4)

The VGG loss is nothing but Euclidean distance between the reconstructed

image and the reference image’s feature representations because although achieving

particularly high PSNR, MSE optimizati0n problem solutions couldn’t produce high

frequency content resulting in unsatisfying solutions with overly smooth textures. The

following Eq.5 gives this VGG Loss that is based upon the ReLU activation layers of

pretrained 19-layer VGG network.

 (5)

Here Wi,j and Hi,j define within the VGG network, dimensions 0f their

respective feature maps. The generative loss is defined depending upon the

probabilities of discriminat0r over all training samples as given by the following Eq.6.

14

 (6)

Here, DθD (GθG (I
LR)) is the probability that the reconstructed image GθG (I

LR)

is a natural High Resolution image. For better gradient behavior we minimize −log

DθD (GθG (I
LR)) instead of log [1 − DθD (GθG (I

LR))].

2.1.4 Why SRGAN for Denoising?

The most related GAN-based work to denoise is the SRGAN, a GAN for Single

Image Super-Res0lution. Unlike the networks previously proposed for image super

resolution that used “Mean Squared Error(MSE) as the12optimization function,

SRGAN proposes a loss function that resolves perceptually satisfying high-res0lution

image. Architecture used is a very deep residual net architecture based on GAN. By

minimizing the perceptual loss functi0n (weighted sum of content loss and adversarial

loss) the training of the network is achieved”. When we do not rely upon the pixel

wise error measures like MSE based optimization, a better perceptual loss function

that has both adversarial loss and content loss is implemented.

2.2 OBJECT DETECTION USING YOU ONLY LOOK

ONCE (YOLO) ALGORITHM

YOLO [7] [10] [8] [9] is a popular state-of-the-art real-time object detecti0n

algorithm. YOLO was first developed by J. Redmon et al [8]. There are three versions

of the algorithm which is refined through years. The advantage of YOLO over other

object detection algorithms is that it can be generalized to any other type of images

like artwork [8] [16]. In this project, we improved accuracy of YOLO Version 3 for

object detection in photo-realistic rendered images.

15

2.2.1 YOLO V 1

Usually to perform detection object detection employs classifiers. Instead, in

YOLO [8] object detection is seen as a regression-problem intended to separate

bounding boxes spatially and the probabilities associated thereof the classes. The

network “can be optimized end-t0-end on detection performance directly as a single

neural network is enough to predict b0unding boxes and class probabilities directly in

0ne evaluation of images. Although YOLO makes more errors related to localization

when compared to classical methods, it is less likely to predict false positives 0n

background. It also learns very general representation of objects in an image. It is better

than other networks like DPM, R-CNN when it comes to generalization from an image

to artwork.

While deformable parts models (DPM) uses an approach called sliding window

in which the classifier is run at evenly spaced l0cations over the entirety of the image

and systems like R-CNN use region prop0sal methods to generate potential bounding

boxes in an image first and then run a classifier 0n these proposed boxes which are

refined in post-processing. The duplicate detections are eliminated and scoring of the

boxes is done based on the other objects in the scene. But in YOLO, you only look at

the image once to predict and locate. Unlike sliding window and region prop0sal-based

techniques, YOLO implicitly understands contextual information about the classes as

well as their appearance because during training and test time it looks at the entire

image.

An input image taken and is marked int0 an S × S grid. And if the center of a

particular 0bject falls into that grid cell, it is that cell’s responsibility for detecting an

0bject. Every grid cell predicts B bounding boxes and c0nfidence scores (tells how

sure the model is that the box has an object) respectively. They also tell how accurate

it thinks the b0x is that it predicts. Confidence is defined as Pr (Object) ∗ IOU

(prediction, truth). Absence of the object means the confidence scores will be zero.

The confidence score is the intersection 0ver union (IOU) between the predicted box

and the ground truth. The bounding box prediction is made of 5 components: (x, y, w,

h, confidence). The (x, y) are coordinates normalized to [0,1] to represent the box

16

centers, relative to location of the grid cell. The (w, h) box dimensions are normalized

to [0, 1]” too, relative to the size of the image.

The detection network of YOLO has 24 CONV layers that have been foll0wed

by another two FC layers. The feature space from the preceding layers is reduced by

the alternating 1x1 CONV layers. The network architecture of YOLO is as depicted in

Figure 2.4.

Fig. 2.4 YOLO Network

2.2.2 YOLO V 2

The second version of YOLO is called YOLO9000 [9] as it can detect over

9000 different object categories. They improved it over the first version of YOLO for

better, accurate and faster detections. Improvements are made in YOLOv2 over the

network. Darknet-19 [7] has been introduced as a new classification model that is

used as a base for YOLOv2. It mostly uses 3x3 filters and the doubling of number of

channels is done after each pooling step. Table 2.1 describes the Darknet-19 model.

It has got 19 convolutional layers along with 5 max po0ling layers. It requires around

5.6 billion operations for a single image to be processed.

L0ss1234functi0n is given in Eq.7. Of the loss function equation, the first 0ne is

implemented to penalize the objectness score prediction of the bounding boxes that are

resp0nsible for predicting objects, and the second one for bounding b0xes having no

objects, the last one acts as a punishing parameter for the class predicti0n for the

bounding box which predicts the objects. In the YOLO V2, instead of directly

17

predicting the bounding boxes, YOLO predicts off-sets from a predetermined set of

boxes with particular height-width ratios called anchor boxes. They are defined to

capture the scale and aspect ratio of an object class you want to detect and are typically

chosen based on the object sizes in the dataset used for training. During detection, the

anchor boxes are spread across the test image and the network predicts the probability

and other metrics like intersection over union (IoU) and offsets for all tiled anchor

boxes. Post prediction, each individual anchor box is refined.

TABLE. 2.1 Darknet – 19

 (7)

18

2.2.3 K-Means Clustering Algorithm

K-Means [17] [9] is a very often used clustering algorithm known for its

efficiency. The algorithm w0rks by storing k centroids that it uses t0 define

the12clusters. When a point is closer to a cluster’s centroid than rest of the centroids,

then that point is said to belong to that particular cluster. The best centroids are found

by switching constantly between assigning data points to clusters depending on the

current centroids and choosing centroids based on the current allocation of data points

to clusters. The Algorithm is given below. Euler distance metric for K-means

minimizes error for larger bounding boxes, but not for smaller ones. Hence, in

YOLOv2, intersection over union (IOU) is used as the distance metric.

Figure 2.5 depicts the analysis of no. of centroids vs. Mean IoU. It is clear from

the plot in the following figure 2.5 that as the number of centroids increases, the mean

IoU between anchor boxes and bounding boxes plateaus after a steady increase after

about 15 centroids. By Elbow method, in the plot the location of a bend (elbow) is

usually considered an indicator for deciding the appropriate number of clusters. So

from the plot it is apparent that 5 clusters will yield good results. But in the thesis, use

of different number of cluster centroids has been experimented with to see how YOLO

algorithm performs.

19

Fig. 2.5 K-Means Clustering: No. of Centroids vs. Mean IoU

Every few iterations, the network in YOLO9000 is changed, rather than fixing

the input image size. F0r every 10 batches, a new image dimension size is chosen by

the network randomly. As the model is down-sampled by a factor of 32, the smallest

dimension is 320 × 320 and the largest is 608 × 608 for the detection. Resizing of the

network happens during training which makes it possible for the network to predict on

variety 0f the input dimensions. This means that the same network can be used to

predict detections at various resolutions. Given smaller dimensions, the network runs

faster. Thus, YOLOv2 offers a tradeoff between accuracy and speed.

2.2.4 YOLO V 3

YOLOv3 [10] incorporates residual blocks, up-sampling and skip connections.

Although YOLOv3 is better, it is not necessarily faster. YOLOv3 has a 53-layer

network that has been trained 0n Imagenet [18]. But for these detecti0n tasks, another

53 more layers are stacked on it to get a 106 layered fully convolutional architecture

making it slower compared to YOLOv2. Whereas in YOLOv2 we are using only a 19

layered network. In YOLOv3, for each and every bounding b0x an objectness score is

predicted using logistic regressi0n method. Feature extraction is done by the robust

Darknet – 53 which has been depicted in Table 2.2. Residual connections are added to

the new Darknet – 53.

20

YOLOv3 predicts the b0unding boxes at three different scales. The system

extract features from these scales to feature pyramid netw0rks (FPNs). From the base

feature extract0r, several convolutional layers were added. The last one predicts a

three-dimensional tensor encoding bounding b0x, objectness, and class predictions.

The confidence and class predictions of the objects are done through logistic-

regression.

TABLE.2.2 Darknet-53

Detections at various layers are used to solve the issue of detecting smaller

objects which cannot be done properly in YOLOv2. We up sample the layers that are

conjoined with previous layers so as to preserve the fine features of the smaller objects

for better detections. Different layers – a 13 x 13 layer is used to detect large objects,

a 52 x 52 layer is used to detect smaller objects and a 26 x 26 layer is used to detect

medium size objects. In YOLOv3, the last three terms are cross entropy error terms

unlike the squared errors in YOLOv2.

2.2.5 Need for Custom Anchor Boxes

Given that our dataset comprises of animated images where the sizes of the

21

objects are exaggerated for visual effect, it is necessary to understand that default

anchor boxes provided by the YOLOv3 algorithm may work, but use of custom anchor

boxes should improve the accuracy of the bounding box around the object classes.

With increase in cluster centroids in the generation of anchor boxes increases the mean

IoU of the generated priors to the actual ground truth. But after a certain number of

centroids, the mean IoU plateaus and it will no longer be a relevant parameter to decide

whether we can decide the trade-off of IoU on it. YOLOv3 uses 9 anchor boxes

generated based off on the VOC dataset [19].

2.2.6 Intersection-Over-Union(IoU)

Intersection over Union, also called Jaccard Index, is a popular, and efficient

metric of evaluation used to “measure the accuracy of an object detector on any given

dataset. It is often used in object detection challenges like PASCAL VOC challenge

[19] or any other classification tasks which require the understanding of correctness.

The ground-truth bounding boxes are needed in order to apply IoU to evaluate a given

object detector and the predicted bounding boxes from our model. Intersection over

Union (IoU) is depicted in the figure 2.6.

Fig. 2.6 IoU Illustration

2.3 RELU

There are many activation functions that are implemented in the CNNs like

sigmoid, tanh, ReLU, PReLU, etc. Among all the activation functions used, variants

of Rectified Linear Unit, also called as ReLU are the most frequently used.

22

2.3.1 Simple ReLU

ReLU is an activation function defined as y = max (0, x). ReLU is normally

applied element-wise to the 0utput of any other function like a product of matrices etc.

The simple ReLU activation function is illustrated in Figure 2.7. ReLU is one of the

m0st common activation functions in NNs, especially in CNNs. From the function

definition one can see that “ReLU is linear (identity) for all positive values, and zer0(0)

for all the negative values”.

Fig. 2.7 ReLU Activation Function

Simple mathematics make it easily understandable for someone starting out

with NN. Due to simplicity of mathematics the model will now take12less time to12train

too. It converges faster. Linearity as in “the slope doesn’t plateau when x gets very

large. Unlike sigmoid function, it won’t be suffering from the vanishing gradient

pr0blem. Since ReLU is zer0(0) for all negative inputs, indicating it being inactivate

for any given value” which is desirable most of the times.

2.3.2 Drawbacks

The drawback for having12zero for every negative value is a12problem called

“dying ReLU. A ReLU neuron is considered dead if it cannot come out of the negative

side and always outputs 0 irrespective of the input. Because the slope of ReLU in the

negative range is also zer0(0), once a neuron gets negative, the neuron can’t come out

of it. Such neurons don’t play any r0le in discriminating the input and is basically

useless”. Over the time it can be observed that a large part of the neural network is

useless or inactive. So, we use another variant of ReLU like parametric ReLU which

23

do not suffer from these drawbacks.

2.3.3 Leaky RELU

“Leaky ReLU” has a small slope for negative values, 12instead of altogether

zero(0) which is12developed on top of ReLU. The function looks like its leaking with a

slope in the negative values, hence the name. For instance, 12leaky ReLU might have y

= 0.01x when x < 0.

“Parametric ReLU (PReLU)” is another kind of leaky ReLU, which instead of

having a12predetermined slope like 0.01, makes it a parameter12for the NN that has to

be trained and learned: y = ax when x < 0. Figure 2.8 illustrates Leaky ReLU/ PReLU

activation function.

Leaky ReLU has two benefits:

⚫ Due to the lack of zero-slope parts, it doesn’t suffer from the problems ReLu

suffers from.

⚫ Training with a leaky ReLU is faster. It can be observed empirically that with

“mean activation” being closer to 0 makes training faster. 12Leaky ReLU is

much “balanced,” and may learn12faster than12ReLU.

Fig. 2.8 Leaky ReLU/PReLU Activation Function

Although the result is not always consistent, leaky12ReLU is usually better

than12plain ReLU, but not always is, and should be considered only as an alternative.

24

2.4 TRANSFER LEARNING

Transfer learning [20] is an ML method in which a model developed to solve12a

specific task, is reused for learning another12model on another task. It is a very usual

thing in DL12where pre-trained models are used as the starting points12of various tasks

of CV and12NLP. Due to large12computing time and12resources needed for the

development of the neural networks on these problems, transfer learning is vital here.

The knowledge acquired in solving a task ‘X’ is used to solve another task ‘Y’.

There are two types of transfer learning -

1. Transductive Transfer Learning

2. Inductive Transfer Learning

In Inductive Transfer Learning is a traditional supervised learning approach in

which we learn a model from the given labeled examples and then we predict the labels

pf those examples which we have not known about or seen. Where as in Transductive

Transfer Learning, we learn from a lot of examples, and then we try only to predict a

known (test) set of unlabeled examples. As we can see, transductive transfer learning

is a less ambitious approach compared to the inductive transfer learning approach. In

Deep Learning, we use transfer learning for speeding up the training and for improving

the performance12of the DL12models. We use the pre-trained models as starting point

on the Natural12Language Pr0cessing(NLP) and Computer Vision(CV) tasks as it saves

lots of computing resources and time.

It is a very n0rmal practice to perf0rm transfer learning with the predictive

modeling pr0blems that use image or video data as input. For the problems in

Computer Vision, it12is a very common approach to use the DL models that are pre-

trained for challenging image classification tasks like ImageNet [19] 1000-class

photograph classification competition. Many organizations like Google, Microsoft,

etc., develop models for these types of competitions and often release their final

models for reuse under permissive licenses. These complex models take days 0r weeks

to train using these modern hardware and infrastructure which may be not be available

in normal schools and colleges and even in mid-sized research laboratories.

Some of these models include Google Inception Model [21], Oxford VGG

Model [22], Microsoft ResNet Model [23].

25

CHAPTER 3

PROPOSED WORK

3.1 THE PIPELINE

The block diagram of our implementation is as depicted in the figure 3.1. We

take an image with noise and pass it through a Denoising Generative Adversarial

Network to get the denoised image. The image which is inputted into the GAN could

contain any type of noise like real-time noise, or gaussian or uniform with varied

amounts of noise in them. For the sake of experiments, we explicitly added gaussian

and uniform noise of varied amounts to the images and made them noisy. The denoised

image, which is an output of the GAN, is again given as input to the improved YOLO

Version 3 algorithm for object detection of the images so that bounding boxes with

much improved IoU are predicted.

Fig. 3.1 The Block Diagram

The work-flow of our implementation is well understood by the figure 3.1. The

entire implementation can be broadly divided into two parts. One, denoising of the

image using a generative adversarial network and two, object detection using YOLOv3

with improved IoU for better detection. Denoising of an image is required before

object detection as it may be difficult for the object detection algorithms to predict the

bounding boxes when noise is present. A lot of noise will be present when photo-

realistic rendering is done with four or eight rays instead of thousands of rays. We use

a denoising generative adversarial network for the purpose of denoising. Then, we

input the denoised image to the object detection algorithm YOLOv3 with improved

Intersection over Union (IoU) for predicting the bounding boxes. which can be

generalized to any type of images like artwork, etc. Finally, an image with bounding

boxes is obtained as the output.

26

3.2 IMAGE DENOISING USING GAN

Path-tracing is the technique that is used in rendering12high quality photo-

realistic frames of123D scenes. This technique12involves shooting of thousands12of rays

into a single12pixel using the Monto12Carlo simulation. When a ray hits the objects in

the12image scene which will12either refract120r reflect or12become absorbed. Average of

the color12generated will be the color of that12pixel. As this is method will be applied

for all the pixels rendering photo-realistic scenes frame by frame is very time

consuming and also expensive. The implemented method is t0 render using12very small

number of12samples per pixel and pass the noisy12image to the network, which will

generate a photo-realistic image with high quality. The network is based on the ResNet,

which specializes in residual blocks which will carry important features forward into

the network without fail. The key is nothing but the12defined l0ss12function and the deep

GAN. Also a12refined perceptual12l0ss has been defined to preserve color, texture,

properties of the scene.

The check points of the pre-trained network are used for implementing the

GAN using the Tensorflow [24] API. We introduced monochromatic Gaussian and

Uniform noises of varying amounts to our ground truth images.

3.2.1 Gaussian Distribution

Gaussian functions are very much 0ften used to represent the PDF of a

normally distributed random12variable with expected12value(μ) and variance(σ2).

Figure 3.2 depicts the Gaussian distribution. And the Gaussian distribution sh0wn is

normalized s0 that the sum over all values of x gives a pr0bability of 1. In this case,

the Gaussian is as depicted in figure 3.2 and is given by the Eq.8.

 (8)

27

Fig. 3.2 Gaussian Distribution

3.2.2 Uniform Distribution

The continuous uniform distribution is a probability distributi0n in which all

outcomes are equally likely; each variable has the same pr0bability that it will be the

outcome. The distribution is defined by the two parameters, a (minimum) and b

(maximum). And the Uniform distributi0n is abbreviated U (a,b) and is illustrated in

figure 3.3.

Fig. 3.3 Uniform Distribution

The probability density function of continu0us uniform distribution as in the

given Eq.9.

28

 (9)

3.3 OBJECT DETECTION USING YOLO VERSION 3

WITH IMPROVED IOU

3.3.1 Tuning Leaky ReLU for the Improvement of Detection

Accuracy

Leaky ReLU converges faster if both positive and negative values are expected

in the output unlike traditional ReLU. It is one of the parameter which can be

customized based on the working dataset and an increase in the object prediction can

be achieved by tuning it. Following is an experiment which illustrates the increase in

accuracy of the prediction of different classes in an image and improper increase in the

slope of the leaky ReLU will result in unnecessary detections or false positives.

Fig. 3.4 leaky_relu @ 0.090 Fig. 3.5 leaky_relu @ 0.095

29

Fig. 3.6: leaky_relu @ 0.100 Fig.3.7 leaky_relu @ 0.105

Fig. 3.8 leaky_relu @ 0.110 Fig. 3.9 leaky_relu @ 0.120

The above figures, figure 3.4, figure 3.5, 12figure 3.6, figure 3.7, figure 3.8,

12figure 3.9 and figure 3.10 depict the leaky_relu for different slopes. In the above

results, we can observe that for a slope of 0.090, the detection of the person could not

be made, but for a slope of 0.120, there is a false positive of cat object. And fine tuning

of the parameter resulted in the result below in figure 3.10 which illustrates the perfect

detection system for the used dataset at slope 0.111 in the duration of detection time.

30

 Fig. 3.10 leaky_relu @ 0.111

3.3.2 Generating custom anchor boxes for an improved IoU

A few ground truth images are taken from the training data of the GANs and

annotated to get the values of the bounding boxes in .xml format. The annotated files

will be the input for the custom anchor box generation script, which takes in the xmin,

xmax, ymin, ymax values for each object in an image to understand the aspect ratio and

the scale of the object with respect to the whole image. Then after the calculation with

the help of clustering algorithm, which here is ‘k means’ algorithm, it will give out the

possible cluster centroids with priors bound around them in various aspect ratios and

scales. Here we can see from the results that when compared to a traditional IoU which

is obtained by training on a large common dataset, the mean IoU of the custom made

anchor boxes fit better with the predictions and are higher considerably. Further

increase in diversity of the dataset with various exaggerated shapes of the animated

characters could provide more insights into efficiency of the custom made anchor

boxes on the detection accuracy and necessity to decide the priors based on the cluster

centroids which converge better with the subject dataset. Figure 3.11 shows mean IoU

with VOC dataset with k=5. Figure 3.12 shows mean IoU with custom dataset with

k=5. Figure 3.13 shows mean IoU with VOC dataset with k=9. Figure 3.14 shows

mean IoU with custom dataset with k=9.

31

Fig. 3.11 Mean IoU with VOC dataset(5) Fig. 3.12 Mean IoU with custom

dataset(5)

Fig. 3.13 Mean IoU with VOC dataset(9) Fig. 3.14 Mean IoU with custom

dataset(9)

The above values titled boxes are the different sizes of prior boxes created by

the k means clustering algorithm which play a major12role in deciding the IoU of the

predictions on the images. Diversity in the ratios will be decided by the annotations of

the custom dataset and the requirement of the proportions at the time of detection. Ideal

algorithm creates thousands of anchor boxes for every prediction that depicts the ideal

location, size and shape of the object it particularly specializes in predicting.

Figure 3.15 and figure 3.16 are visualization of the default anchor boxes in

RetinaNet and beside is the amount of reduction in size of the boxes that can be

achieved in order to maintain higher IoU and to detect much smaller objects of rare

proportions.

32

Fig. 3.15 Default anchor box sizes visualized for representative purpose

3.4 EXPERIMENTAL SETUP

3.4.1 Data Set

All the image samples are image frames of the Pixar movie [3] and Gaussian

noise of varied standard12deviation has been added to diversify the DataSet [15]. All the

images are of the size 256*144. The observed images set consists of the noisy images

and the ground truth image set consists of the corresponding clean images. The test set

for YOLO Version 3 with improved IoU are nothing but the denoised images which

are output of the denoising GAN. The camera-taken images of the test set for improved

YOLO Version 3 are taken from the drive.ai sample dataset [25]. CT scan [26] and MRI

33

Images [26] are also included in the test set. We have also created custom test set of

about 100 photo-realistic rendered images from Pixar movies [3].

Fig. 3.16 Custom anchor box sizes visualized for representative purpose

3.4.2 Hardware Used

⚫ Lenovo Ideapad 320 Notebook

⚫ Nvidia GeForce 920MX/PCIe/SSE2 GPU

⚫ Intel Core i5-7200U CPU @ 2.50GHz × 4

⚫ 1 TB SATA Hard Disk

⚫ 8.00 GB RAM

34

3.4.3 Software Used

⚫ Ubuntu 16.04 LTS 64-bit Operating System

⚫ Python 3

⚫ Tensorflow 1.12 API

⚫ LabelImg Tool

⚫ PyCharm 2018.2.4 (Community Edition)

⚫ Jupyter Notebook

⚫ Open CV Version 3

35

CHAPTER 4

RESULTS AND DISCUSSION

4.1 RESULTS

The results of GAN based object detection of noisy images are illustrated and

discussed here. Using GAN, we did denoising of photo-realistic rendered images

which have varying amounts of monochromatic Gaussian and monochromatic

Uniform Noises in them.

4.1.1 Denoising of Photo-realistic Rendered Images with

Monochromatic Gaussian Noise Using GAN

 Using GAN, denoising is done for photo-realistic rendered images with

monochromatic gaussian noise and the results12are shown12in figure 4.1.

Fig. 4.1 GAN results on photo-realistic rendered images with monochromatic

gaussian noise

36

4.1.2 Denoising of Photo-realistic Rendered Images with

Monochromatic Uniform Noise Using GAN

 Using GAN, denoising is done for photo-realistic rendered images with

monochromatic Uniform Noise and the corresponding results12are depicted in the

figure 4.2.

Fig. 4.2 GAN results on photo-realistic rendered images with monochromatic

uniform noise

37

4.1.3 Denoising of CT Scan and MRI Images with Monochromatic

Gaussian Noise Using GAN

 Using GAN, denoising is done for CT Scan images with monochromatic

gaussian noise and MRI images with monochromatic gaussian noise and the results

are depicted in figure 4.3 and12figure 4.4.

Fig. 4.3 Results on CT Scan

Fig. 4.4 Results on MRI

38

4.1.4 Denoising of CT Scan and MRI Images with Monochromatic

Uniform Noise Using GAN

 Using GAN, denoising is done for CT scans image with monochromatic

uniform noise and MRI images which have monochromatic uniform noise and the

results are12shown in the following12figures, Figure 4.5 and12Figure 4.6.

 Fig. 4.5 Results on CT Scan

Fig. 4.6 Results on MRI

39

4.1.5 Denoised Images of Camera-taken Real Noisy Images using

GAN

Using GAN, denoising of images that are taken by camera with real noisy

images is performed and the results are depicted in the following12figure 4.7.

Fig. 4.7 GAN Results on real-noisy images

4.1.6 Object Detection in Photo-Realistic Rendered Images Using

YOLO Version 3 with Improved IOU

Object detection has been done on photo-realistic rendered images using

YOLO Version 3 with Improved IoU and the results of cross-depiction problem is

depicted in the following12figure 4.8.

40

Fig. 4.8 Object Detection in Photo-Realistic Image 1

4.1.7 Object Detection in Denoised Images Using YOLO Version 3

with Improved IoU

Object detection has been done on denoised photo-realistic rendered images

using YOLO Version 3 with Improved IoU and the results of various class detections

are depicted in the foll0wing figures, figure 4.9, 12figure 4.10 and12figure 4.11.

Fig. 4.9 Object Detection on Denoised Photo-Realistic Rendered Image 1

41

Fig. 4.10 Object Detection on Denoised Photo-Realistic Rendered Image 2

Fig. 4.11 Object Detection on Denoised Photo-Realistic Rendered Image 3

4.1.8 Object Detection in Photos Taken from Digital Camera Using

YOLO Version 3 with improved IoU

Object detection has been done on denoised camera-captured images using

YOLO Version 3 with Improved IoU and the results of various class detections are

depicted in figure 4.12.

42

Fig. 4.12 Object Detection in Denoised Digital Image

43

4.2 FALSE POSITIVES AND FALSE NEGATIVES

4.2.1 False Positives

False positive is a test result that wrongly shows that a particular attribute is

present.

Fig. 4.13 Example of False Positive

In the Figure 4.13, even though an object scissors is not present, it still shows

that it is present, thus a false positive.

4.2.2 False Negatives

False negative is a test result that wrongly shows that a particular attribute is

absent. In the Figure 4.14, even though an object person is present thrice, it detected it

only one instance and left the other two instances of the person class undetected, thus

a false negative.

44

Fig. 4.14 Example of False Negative

45

CHAPTER 5

CONCLUSION

In this project, we implemented the proposed pipeline for denoising photo-

realistic images using GANs for detecting objects using YOLOv3 with improved IoU.

We discovered the slope at which Leaky ReLU works best for our dataset, also, we

increased the mean IoU of the bounding boxes by generating custom anchor boxes

using k means clustering for our dataset. Different noisy MRI and CT scan images,

CGI and camera captured images with different types of noises and different amounts

in them have been denoised using denoising GAN. We generalized YOLO for photo-

realistic images. So real-time object detection in real-time rendering helps identify the

objects and localize them in a rendered image. Denoising photo-realistic images helps

reduce the production time from many hours to a few seconds. Thereby, improving the

speed of real-time rendering.

46

CHAPTER 6

FUTURE WORK

In future, noises that are produced by Monte Carlo Rendering can be included

and we can extend this to other types of noises other than just monochromatic noise.

This can further be extended to work in real-time rendering and for12real-time object

detection and for12object detection in the wild for12counting the12wild-life, to

detect12forest-fires, etc and during rain to detect the12objects by12deraining12the images.

Also this can be extended for other types of images like Artwork. We can also try

implementing K-Means++ for initialization in K-Means clustering in YOLO algorithm.

47

REFERENCES

[1] “https://renderman.pixar.com/,” [Online].

[2] “https://sciencebehindpixar.org/pipeline/rendering,” [Online].

[3] “https://www.pixar.com/feature-films-launch,” [Online].

[4] “Girshick, R.B., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on

Computer Vision and Pattern Recognition, 580-587”.

[5] “R. B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015R. B. Girshick. Fast R-CNN.

CoRR, abs/1504.08083, 2015”.

[6] “Ren, S., He, K., Girshich, R., et al.: ‘Faster R-Cnn: Towards Real-Time Object Detection

with Region Proposal Networks’, IEEE transactions on pattern analysis and machine

intelligence, 2017, 39, (6), pp. 1137–1149”.

[7] “J. Redmon. Darknet: Open source neural networks in c.

http://pjreddie.com/darknet/.,” [Online].

[8] “J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-

Time Object Detection," 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, 2016, pp. 779-788”.

[9] “Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In Computer Vision and

Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 6517–6525. IEEE, 2017”.

[10] “J. Redmon and A. Farhadi. Yolov3: An incremental improvement. ArXiv, 2018”.

[11] “W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, and A. C. Berg. Ssd: Single

shot multibox detector. In European conference on computer vision, pages 21–37.

Springer, 2016”.

[12] “Zhang, Qianru & Zhang, Meng & Chen, Tinghuan & Sun, Zhifei & Ma, Yuzhe & Yu, Bei.

(2018). Recent Advances in Convolutional Neural Network Acceleration”.

[13] “Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, and Aaron Courville Yoshua Bengio. Generative adversarial nets. In NIPS,

2014”.

[14] “William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M. Dai, Shakir

Mohamed, and Ian Goodfellow. Many paths to equilibrium: GANs do not need to

48

decrease a divergence at every step. In ICLR, 2018”.

[15] “A. Alsaiari, R. Rustagi, A. Alhakamy, M. M. Thomas and A. G. Forbes, "Image

Denoising Using A Generative Adversarial Network," 2019 IEEE 2nd International

Conference on Information and Computer Technologies (ICICT), Kahului, HI, USA,

2019, pp. 126-132”.

[16] “H. Cai, Q. Wu, T. Corradi, and P. Hall. The cross-depiction problem: Computer vision

algorithms for recognising objects in artwork and in photographs. arXiv preprint

arXiv:1505.00110, 2015”.

[17] “https://en.wikipedia.org/wiki/K-means_clustering,” [Online].

[18] “http://www.image-net.org/,” [Online].

[19] “http://host.robots.ox.ac.uk/pascal/VOC/,” [Online].

[20] “Tan, Chuanqi & Sun, Fuchun & Kong, Tao & Zhang, Wenchang & Yang, Chao & Liu,

Chunfang. (2018). A Survey on Deep Transfer Learning: 27th International Conference

on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part

III. 10.10”.

[21] “C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact

of residual connections on learning. CoRR, abs/1602.07261, 2016”.

[22] “http://www.robots.ox.ac.uk/~vgg/research/very_deep/,” [Online].

[23] “He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (pp. 770-778)”.

[24] M. i. A. P. B. J. C. Z. C. A. D. J. D. M. D. S. G. G. I. M. I. M. K. J. L. R. M. S. M. D. M. B. S. P.

T. V. V. P. W. M. W. Y. Y. and X. Z. , “Tensorflow: A system for large-scale machine

learning,” in 12th USENIX Conference on Operating Systems Design and

Implementation, OSDI'16, Berkeley, CA, USA, 2016.

[25] “https://www.drive.ai/,” [Online].

[26] “https://imaging.sansumclinic.org/medical-services/medical-

service/details/radiology,” [Online].

[27] “J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y.

Song, S. Guadarrama et al., "Speed/accuracy trade-offs for modern convolutional ob

ject detectors", IEEE CVPR, 2017”.

49

[28] “T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick. Microsoft coco: Common objects in context. In European conference on

computer vision, pages 740–755. Springer, 2014”.

[29] “Sang, Jun et al. “An Improved YOLOv2 for Vehicle Detection.” Sensors (Basel,

Switzerland) vol. 18,12 4272. 4 Dec. 2018, doi:10.3390/s18124272”.

[30] “http://cocodataset.org/#home,” [Online].

[31] “Lin, Tsung-Yi & Goyal, Priya & Girshick, Ross & He, Kaiming & Dollar, Piotr. (2017).

Focal Loss for Dense Object Detection. 2999-3007. 10.1109/ICCV.2017.324”.

50

LIST OF PUBLICATIONS

[1] A research paper titled “A Novel Cipher using Cipher Squares” has been

submitted.

