
1

CHAPTER 1 INTRODUCTION

As internet users increases, content on the internet also increases. According to Netcraft

January 2018 Web Server Survey internet websites approaching over 1.8 billion, Now

every website has content that they call it unique. There are search engines like Google,

Bing they are caching websites on a daily basis. Roughly estimation of data around 10

billion GB. Now, this data is not 100% unique. For example in figure 1.1 when we

query “election 2019” on google, it gives around 1.5 billion(approx..) of search result

which means there are 1.5 billion webpages that probably contains the same

information.

 Figure 1.1: Google query results

That means there is billions of redundant data is flowing or the internet. And to store

2

and maintain the presence of this data investment and data disk are needed. Now, what

if we can save this large data, instead of 1 billion textual data only 1 MB is needed to

store. For that, we need to compare the data, but data is in the form of languages like

English, Hindi, Chinese. In this research, the English language is used, as its most

popular language. So to proceed with the research Natural language processing comes

into the picture. So we need to build a model that can identify or predict the sentence

similarity.

This can prediction model has very potential application like predicting the intention of

user, this prediction will help to detect the fake NEWS, for creating more interactive

artificial intelligent bot that will interact better respond better act better, for giving the

better recommendations such as recommending music [1], prevent suicides [2], helps to

build better A.I.(Artificial Intelligent) bot [3]. To achieve this it needs to be

computational means if we subtract “some word” from “another word” we must get

“some word” that contextually right [4]. For that, it needs to be stored in number so that

we can easily perform mathematical operations for example 10 – 5 = 5. This is

achieved by giving the weights to each and every words. This is again causing some

discrepancy because it won’t find the relation between two words. Let sentence 1 “Ram

is drinking orange juice” and sentence 2 “Sham is drinking apple ???” corpus of this be

[“Ram”, “drinking”, “orange”, “juice”, “Sham”, “apple”]. Now to predict ??? we need

to identify the context of the sentence. For that, we need vectorize on some features and

present them into a multidimensional space.

Table 1.1: Dummy Featured representation through word embedding

 Ram Sham Orange Apple Jobs

Gender -1 -1 0.01 0.01 0.00

3

Colour 0.05 0.10 0.25 0.50 0.01

Fruit 0.01 0.00 0.98 0.95 0.02

Employee 0.60 0.80 0.00 0.00 0.90

 … … … … … …

 N features … … … … …

Then corpus needs to be embedded then the prediction is done on the basis of some

weights assigned. So according to table 1.1 there are two possibilities C1: [“Sham”,

“Apple”, “Jobs”] and C2: [“Sham”, “Apple”, “Juice”], to predict which set is suitable

we need to check with this C3:[“Ram”, “orange”, “Juice”]. Let C3 weight is 100, C1

weight is 30 and C2 weight is 80. With the logistic equation, we can say C2 has a higher

probability than C1. So “Juice” is the most preferable option. We use this concept to

predict the sentence similarity. The proposed model is based consist of four things word

vectorization, represent the feature into multidimensional space, feature extraction

through convolution1d and prediction.

1.1 THESIS ORGANIZATION

Chapter two gives the detail of the previously done work in this field and also the

description of the enhancement techniques.

Chapter three covers the working of different models and their advantage are

discussed.

Chapter four presents the proposed work.

Chapter fifth presents the results of our current approach and validates the results

against ground truth.

Chapter Sixth concludes the thesis and further ideas for future work have been

presented.

4

CHAPTER 2 LITERATURE SURVEY

2.1. Research and improvement of feature words weight based on TFIDF

algorithm [5]

According to Aizhang Guo, Tao Yang among the various weight measuring algorithm

in a document such as entropy function frequency function, Boolean function, The Term

Frequency-Inverse Document Frequency(TFIDF) [6] gives better results. The main goal

of TIFDF [7] model is to detect the important word for example title of the document,

by taking the total count of word frequency divided by the total count of word frequency

in the whole document this will give the value between 0 and 1, higher the value more

important the word in the document and also it restricts the stopping words like 'is', 'the'

due to Inverse Document frequency [5]. Let 𝑝 be the term on which TfIdf is applied

then 𝐷𝑐(𝑝) be the occurrence of 𝑝 in the document, 𝑇𝑐 be the total of all the term in the

document, 𝑁𝐷 be the total number of documents where 𝑁𝐷(𝑝) be the total number of

documents with term 𝑝. Then term frequency of p will be,

 𝒕𝒇(𝒑) =
𝑫𝒄(𝒑)

𝑻𝒄
 (2.1)

And inverse document frequency,

 𝑰𝒅𝒇(𝒑) = 𝒍𝒐𝒈𝒆
𝑵𝑫

𝑵𝑫(𝒑)
 (2.2)

Then, TFIDF for 𝑝 will be, using equation (2.1) and (2.2),

 𝐭𝐟(𝐩) × 𝐈𝐝𝐟(𝐩) =
𝐃𝐜(𝐩)

𝐓𝐜
 × 𝐥𝐨𝐠𝐞

𝐍𝐃

𝐍𝐃(𝐩)
 (2.3)

Although the major drawback of TFIDF is the inability to account the context of the

word. Means it can't be used to predict the corresponding word from the corpus. For

5

that, we need word embedding word vectorization.

2.2. Inferring Affective Meanings of Words from Word Embedding [4]

Minglei Li, Qin Lu proposed a regression model to infer the effective meaning on the

basis of word embedding. They used a set of seed words on which they vectorized the

corpus and then represent it in multidimensional space. Each word consists set of weight

[8] on which they can apply mathematical operations to detect the probability in similar

words, after this they applied existing models on which they conclude Ridge, the

Bayesian Ridge and Support Vector Regression model with linear kernel give better

results.

Table 2.1: Comparison of TFIDF and Word Embedding

TFIDF Word Embedding

Creates one number per word Creates one vector per word

Good for classification of documents as a

whole

Good for identifying contextual content

They also test these models on various criteria like performance, accuracy, feasibility.

On which they found Ridge regression model is best suited for their proposed

framework.

Let, 𝑠 be the seed words its corresponding word embedding 𝑤𝑠⃗⃗⃗⃗ ⃗ ,

 𝒘𝒔⃗⃗⃗⃗ ⃗ = [𝒆𝟏
𝒔 + 𝒆𝟐

𝒔 + ⋯+ 𝒆𝒏
𝒔] (2.4)

And 𝑚𝑖 be the mapping function for the 𝑖𝑡ℎ affective dimension,

𝒎𝒊(𝒘𝒔)⃗⃗⃗⃗ ⃗⃗ ⃗ = 𝒈𝒊(𝒃𝟏
𝒊 𝒆𝟏

𝒔 + 𝒃𝟐
𝒊 𝒆𝟐

𝒔 + ⋯+ 𝒃𝒏
𝒊 𝒆𝒏

𝒔) (2.5)

Where 𝑏𝑗
𝑖 is the weight of feature 𝑗 and 𝑔𝑖 mapping function.

6

 Figure 2.1: Regression method for affective representation

The affective meaning is defined by, using 𝑠 seed words as a training sample in 𝑚

dimensional space. With word embedding, this is of 𝑛 size vector. This model can

predict through word embedding the affective value of a new word.

2.3. Two Improved Continuous Bag-of-Word Models [9]

Representing word relatively is an important and fundamental task in natural language

processing [10]. Continuous Bag of words(CBOW) is a technique by which one can

predict the particular word in the corpus by looking the adjacent words in a sentence.

Continuous Bag of words comes under prediction based word embedding and TFIDF

comes under frequency based that’s why for determining the relation between two

words continuous bag of words is used instead of TFIDF because it just tells the

frequency. To predict the “context” or “relation” between the words it creates the sliding

window on the word. It is used to predict one word from the entire corpus. For example:

consider this sentence “The rat sat on the table”, context word in the example will be

“the”, “rat”, “on” and “table”, to predict the “sat”. Continuous Bag of words is

probabilistic in nature, it is supposed to perform better to deterministic methods [11].

CBOW makes the prediction on the target word 𝑡𝑤 as the ℎ hidden layer obtained,

𝒑(𝒕𝒘|𝑪) =
𝒆𝒙𝒑(𝒆′(𝒕𝒘)𝑻𝒉)

∑ 𝒆𝒙𝒑(𝒆′(𝒕𝒘
′)𝑻𝒉)𝒕𝒘

′ ∈𝑽
⁄ (2.6)

𝐴𝑚 𝐴1

𝑏𝑛
𝑚

𝑏𝑗

𝑚

𝑏𝑗
1

𝑏1

𝑚

𝑏1
1

𝑤⃗⃗ 𝑒𝑛

𝑒𝑗

𝑒1

7

 Figure 2.2: Continuous Bag of the word network

Where 𝑒′ be the embedding and C is the context of 𝑡𝑤. They improved the CBOW by

introducing position encoding which provides the order of missing word. It uses the co-

occurrence matrix to create a vector for each word.

2.4. Weighted Word2vec Based On The Distance Of Words [12]

Mikolov et al proposed word2vec an application of natural language processing and

released by Google in 2013 which consider being very important in natural language

processing [13] [14] [15]. word2vec is built from two things Skip gram model and

Continuous Bag of Words(CBOW). CBOW perform better in Training Speed as

compare to Skip gram, but in case of accuracy is skip gram performance is higher. They

majorly worked on CBOW by introducing the fuzzy weight to influence the distance

between words in CBOW architecture. Also, they used different membership functions

like Gaussian, trapezoidal and triangle to show the slope and also they show it depends

on the window size.

8

2.5. ConceptVector: Text Visual Analytics via Interactive Lexicon Building using

Word Embedding [16]

As TFIDF fails to relate the corresponding words, word embedding is introduced that

gives the probability of the related words in the corpus by representing the words in the

high dimensional space through vectorization [17]. which can also deduce the relativity

of the words for example "queen - woman + man = king" this can be achieved from

word embedding [18].

2.6. Vector Representation of Words for Sentiment Analysis Using GloVe [19]

Standford proposed the Global vectors(GloVe) which work on the two algorithms

Continuous Bag Of Word(CBOW) and skip gram model, which able to generate word

vector in a fixed dimension. By which they assume two words are considered as same

meaning if they share the same context.

9

CHAPTER 3 TECHNIQUES & METHODS

3.1. Data Analysis

Data analysis is the most important task in natural language processing. The main

motive of data analysis to determine the complexity of data, how the data is organized,

is the data is authentic, is data contains a required field to evaluate the results, finding

the length of sentence or data contains more missing values that we cannot use all these

things lay under the data analysis. This research data analysis results are in the fourth

chapter.

3.2. Data Pre-Processing

3.2.1. Handling Missing Fields

As per the data analysis result, there were no missing data field found, So there’s no

need to tackle missing values or field, but not all data sets are same like this research

dataset so to tackle missing field problem there’s need to delete the entire row/sentence

because it will give false results.

3.2.2. Data Case Conversion

To make the data words more common, there’s a need to convert the entire data into the

upper case or lower case in this research data is converted into the lower case. For

example: [“Why this is so hot here?”, “I am Feeling to HOT!! why”], in this example

problem is that machine will treat “hot” and “HOT” both words differently because of

ASCII convention. To make it even it's needed to convert it into lowercase or uppercase.

10

3.2.3. Removing Irrelevant Words

After data conversion there’s need of removing the common irrelevant words that we

called it stopping words for example: “the”, “a”, “an”, “in”, these words contains

doesn’t affect the end result, also if we keep these stopping words the end result will

give poor results.

3.2.4. Keeping AlphaNumeric

After removing irrelevant words from the data, there’s a need to remove the special

characters only keeping the alphanumeric. This will decrease the complexity of the data

set and improve the prediction.

3.2.5. Building Corpus

Now each sentence after above data pre-processing steps corpus is created by splitting

the sentence against the white spaces and stored it into the array like: [“why”, “this”,

“is”, “hot”, “here”]. Which is further divided into 𝑆𝑡𝑟𝑎𝑖𝑛 and 𝑆𝑡𝑒𝑠𝑡 , training and testing

dataset respectively.

3.3. Corpus Representation

3.3.1. TFIDF Matrix

For simplification in computation, corpus needs to be converted into the matrix form.

TFIDF [20] is the fastest way to convert a document into a matrix. The whole process of

Term Frequency-Inverse Document Frequency is written in chapter 2. Also, it supports

longer sentences or documents, but it can be resolved through normalization. But this

matrix doesn’t perverse the semantic relationship between words, it can only deduce the

most relevant word in the corpus it's like one hot encoding. For example, consider two

11

similar words w1 and w2 but from one hot encoding representation placements of ‘1’ is

indifferent position, that means their dot product will give ‘0’ which is false.

 3.3.2. Embedding Matrix

Embedding in natural language processing for discrete variables referred to as low

dimensional continuous vector representations. We can generate Embedding matrix

from one-hot encoding but in that case there dot product will give zero that doesn’t

provide any meaning. So we need to generate meaningful embedding that can be used as

input to the prediction model. For instance let suppose [“Actor”, “Actress”, “Girl”,

“Boy”]. Now if we subtracts “Actress” from “Actor” then add “Boy”, which results in

“Girl” corresponding vectors.

Figure 3.1: Word vector representation

 In that case we need context of each and every word in the corpus, consider 𝑚 and 𝑛

be the two words that generates some meaning in particular interest and 𝐸 be the matrix

consist of word – word occurrence, 𝐸𝑚𝑛 be the occurrence of 𝑛 in context of 𝑚. Total

number of times arbitrary word from the corpus appears in the context of 𝑚 will be 𝐸𝑚 .

𝑬𝒎 = ∑ 𝑬𝒎𝒌𝒌 (3.1)

Let 𝑝𝑚𝑛 be the probability of 𝑛 in context of 𝑚.

12

𝒑𝒎𝒏 = 𝒑(𝒏 | 𝒎) =
𝑬𝒎𝒏

𝑬𝒎
 (3.2)

Embedding matrix consist of words of corpus with their related context measure in

terms of probability. Let 𝑤 ∈ 𝑅𝑑 are word vectors and 𝑤̌ ∈ 𝑅𝑑 are separated context

word vectors.

𝒇(𝒘𝒎
𝑻 𝒘̌𝒌) = 𝒑𝒎𝒌 =

𝑬𝒎𝒌

𝑬𝒊
 (3.3)

So, 𝑓 = 𝑒𝑥𝑝 then

𝒘𝒎
𝑻 𝒘̌𝒌 = 𝒍𝒐𝒈(𝒑𝒎𝒌) = 𝒍𝒐𝒈(𝑬𝒎𝒌) − 𝒍𝒐𝒈 (𝑬𝒊) (3.4)

 In order to get the vectors with minimum loss weighting function 𝑓(𝐸𝑚𝑛) is introduced

into the cost function 𝐽 [21]. Let 𝑉 be the size of corpus and log(𝐸𝑚) is considered as 𝑏𝑖

bais, so loss function will become,

𝑱 = ∑ 𝒇(𝑬𝒎𝒏) (𝒘𝒎
𝑻 𝑽

𝒎,𝒏=𝟏 𝒘̌𝒏 + 𝒃𝒊+ 𝒃̌𝒏 − 𝒍𝒐𝒈(𝑬𝒎𝒏))
𝟐 (3.5)

 Where,

𝒇(𝒙) = {
(𝒙 |𝒙_𝐦𝐚𝐱)𝜶 𝒊𝒇 𝒙 < 𝒙_𝐦𝐚𝐱

𝟏 , 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (3.6)

This will generate the Gobal vectors. We are using predefined GloVe [19] vector to

generate the context associated with each word in the sentence. GloVe vector contains

840 billion tokens of 300 dimension, So to generate embedding matrix, we need to

tokenize our sample space called it as a corpus in figure 3.1.

Figure 3.2 Embedding Matrix Generation

13

 After that for each word in the corpus will be matched in GloVe vector and assign

those values in the embedding matrix, which contains a total number of words as rows

and a total number of dimensions as columns. It uses Eigen which helps to denote the

semantic relationship between two words.

𝑬 × 𝒗⃗⃗ = 𝝁 × 𝒗 (3.7)

Where 𝐸 be the matrix, 𝑣 be the vector, 𝜇 scalar co-efficient. Eigenvector corresponds

to the matrix as though that matrix were a scalar coefficient. If there is a square matrix

of 𝑛 × 𝑛 then there will be 𝑛 eigenvectors.

To get the mean of the values, simply take the average value of all the 𝑣 and divide it

with the sum of all data points i.e., 𝑛

 𝒗̅ =
∑ 𝒗𝒋

𝒏
𝒋=𝟏

𝒏
 (3.8)

Then the square root of average square distances between data points to its mean will

produce the average deviation of the results

𝒔 = √
∑ (𝒗𝒋−𝒗̅)𝟐 𝒏

𝒋=𝟏

𝒏−𝟏
 (3.9)

Then the measure of data spread is

 𝝈 = 𝒔𝟐 (3.10)

This matrix consists of the probability of similarity which can be build from pre-trained

vector like GloVe [19].

14

3.4 Models

3.4.1 Multi Linear Regression(LR)

Linear Regression with multiple variables in the prediction model [24], which is used to

deduce the relationship between features to predict. In this method, features are

scattered in two-dimensional plane two generate hypothesis for new values.

 𝑯 = 𝒃𝟎 + 𝒃𝟏 × 𝑿𝟏 + 𝒃𝟐 × 𝑿𝟐 + ⋯+ 𝒃𝒏 × 𝑿𝒏 (3.11)

Here, 𝐻 is the hypothesis by multilinear regression 𝑏0 is bais, 𝑋1, 𝑋2 …𝑋𝑛 are the

features word vector. A two reduce the difference between hypothesis and the actual

output 𝑦, let 𝐿 will be the loss function in order to minimize it we used gradient descent.

𝑳(𝒃𝟎, 𝒃𝟏, … , 𝒃𝒏) =
𝟏

𝟐𝒎
∑ (𝑯𝒃(𝑿

𝒊 − 𝒚𝒎
𝒊=𝟏

𝒊
))𝟐 (3.12)

 We used gradient descent to optimize parameters of our cost function so that we can

find more suitable values of parameters for our hypothesis.

 𝒃𝒋 = 𝒃𝒋 − 𝜶
𝝏

𝝏𝒃𝒋
 𝑳(𝒃𝟎, 𝒃𝟏) (3.13)

Before applying the multilinear regression we need to assume linearity, multivariate

normality, homoscedasticity, lack of multicollinearity, independence of error. Multi-

linear regression will work on any size of data set. Multilinear regression model induces

the relation between two or more features.

3.4.2 Support Vector Machine Regression(SVR)

SVR is a non-parametric method because it relies on kernel function [25]. Where in

multi-linear regression is focusing on reducing error, while SVR is to fit the error within

a certain threshold, SVR is capable of working on data set of any size, linear and non-

linear. SVR creates a hyperplane that divides the dataset into two.

𝑷𝟎 + (𝑷𝟏 ∗ 𝑿𝟏) + (𝑷𝟐 ∗ 𝑿𝟐) = 𝟎 (3.14)

15

Where (𝑃1 and 𝑃2) are coefficients which tell the slope of the line and the intercept (𝑃0)

are found by the learning algorithm, and 𝑋1 and 𝑋2 are the two input variables.

Figure 3.3: SVR Hyperplane

3.4.3 Random Forest(RF)

 Random forest algorithm is “Ensemble Learning algorithm”, in which decision is made

by taking multiple decision trees to create the forest and then combine [26]. Depending

on the intensity level decision tree splits the node.

𝑰𝒏𝒇𝒐(𝑫) = ∑ −𝒑𝒊 𝒍𝒐𝒈𝟐 𝒑𝒊
𝒄
𝒊=𝟏 (3.15)

Entropy is the measurement of homogeneity in the data. Pi is the probability of arbitrary

tuple in 𝐷 belongs to Class 𝐶𝑖.

𝑮𝒂𝒊𝒏(𝑨) = 𝑰𝒏𝒇𝒐(𝑫) − ∑
|𝑫𝒊|

|𝑫|
|

𝒗

𝒋=𝟎
∗ 𝑰𝒏𝒇𝒐(𝑫) (3.16)

Random forest prediction model, take k data points for the given training data, then

build there associated decision tree. While choosing the N number of tree to build the

tree and repeat this procedure until it commences. For new data point, make each one of

your 𝑁 trees predict the value of 𝑦 to for the data point in sentence which assigns the

new data points average across all the predicted 𝑦 values.

16

3.4.3 Match-LSTM

LSTM(Long Short-Term Memory Networks), is a famous neural network for

remembering long term dependency. LSTM is a powerful recurrent neural network

(RNN), and a RNN is built to handle sequence dependency. Now, what makes RNN as

powerful as tuning machine is it has feedback connection back to the network, which

makes it self-adjusting neural network. Hence LSTM being powerful most valuable AI

achievement used in classification, decision making to music composition as well.

Figure 3.4: LSTM architecture

In LSTM, the smallest unit is composed of a cell, input-output gates and a forget gate. A

cell is memory unit in it, and flow of information is regulated via these gates in and out.

𝑶𝒕 = 𝒇(𝒉𝒕 ; 𝜽) (3.17)

 𝒉𝒕 = 𝒈(𝒉𝒕−𝟏 , 𝒙𝒕; 𝜽) (3.18)

To the evolution of RNN, let 𝑂𝑡 be the RNN at time 𝑡, ℎ𝑡 be the hidden layers at time 𝑡

with input 𝑥𝑡. In Match-LSTM(mLSTM) [24] model match word vector of two

sentences i.e., the premise 𝑝𝑖 and hypothesis ℎ𝑖. mLSTM architecture is base on LSTM.

In the model instead of directly matching two sentence embedding at once they matched

word by word.

17

Figure 3.5 Match-LSTM architecture

This architecture one by one process the premise 𝑝𝑖 and hypothesis ℎ𝑖. The mLSTM

sequentially went through all the word vectors of the ℎ𝑖 and this representational vector

of the current token of ℎ𝑖 will be feed into mLSTM. Then mLSTM will aggregate the

matching of the weighting 𝑝𝑖 to each token of the ℎ𝑖. After aggregated using LSTM into

a vector so that it will give the final result.

3.4.4 Convolution Neural Network(CNN)

As the data is in textual format, for faster retrieval and better results convolution 1D

neural network is suitable for this purpose [27]. For convolution neural network works

on the mechanism of sliding window, it not only extracts the relevant feature but also

extracts the feature. Here data is input in the form of embedding matrix.

 Figure 3.6: Convolution Neural Network 1 Dimensional

18

Convolution Neural Network consists of two things generally convolution and pooling.

Consider convolution as a sliding window or a kernel by which feature extraction can be

done. This convolution filter slides through the sentence and extracts the patch from the

corpus of the sentence this will be dot product and saved it in the output feature vector.

Figure 3.7: Convolution Sliding Window Working

 After convolution, pooling is done, there are mainly two types of pooling max pooling

and min pooling. For the max pooling, it takes a maximum of among all the corpus

words. And the min pooling will take the minimum from the patch.

 For the given 1 dimensional array of words in 𝑊𝑖 = 𝑤1, 𝑤2, … , 𝑤𝑁, 1D convolution

neural network is used for feature extraction. Where every word in the 𝑊𝑖 is associated

with an embedding vector of 𝐷 dimensionality. Let, 𝑅 be the convolution filter or kernel

and 𝐾 be the sliding window width size which slides over the sentence 𝑆𝑖. Now

applying Convolution1D on each window which is dot product of weighted vector 𝑢 and

embedding vector 𝐸.

19

 Let 𝛿 be the activation function, consider 𝑤𝑗 , 𝑤𝑗+1, … , 𝑤𝑗+𝑘 be the window of words.

Then 𝑧𝑗 be the concatenated vector of 𝑗𝑡ℎ window.

 𝒛𝒊 = [𝒘𝒋, . . , 𝒘𝒋+𝟑, . . 𝒘𝒊+𝒌] ∈ 𝑹𝒌×𝒅 (3.19)

𝑅 is then applied on the 𝑘 width window, then

𝒓𝒊 = 𝜹(𝒛𝒋. 𝒖) ∈ 𝑹 (3.20)

Pooling is used to remove the number of feature map coefficient and to process it well

to induce the spatial filter. This defines the pooling and the convolution as a feature

extractor.

3.4.5 Batch Normalization

Vignesh Thakkar, Suman Tewary [28] shows the importance of batch normalization in

terms of performance and in terms of capability to train the model. With the help of

Batch Normalization neural network become for reliable, fast and scalable. Its major

advantage is to increase the performance of the model and to make the training process

very fast. It is applied in between the convolution neural network and the activation

function.

𝒗𝒊̂ =
𝒗𝒊 − 𝒗̅

𝒔
 (3.21)

Where 𝑠 be the standard deviation and 𝑙 be the dimensionality. The performance of the

model increased due to a reduction in the internal covariate shift i.e, change in the

distribution of inputs.

In addition, the parameters or scale from the original value to less are dependent on

gradients and the higher discrepancies and data acquisition rates allow for saturation.

3.4.6 Rectified Linear Unit(Relu)

ReLu is the activation unit that is applied after the batch normalization [29], as our data

20

output contains only positive value we need output 0 when x is smaller than 0 and x

when x is bigger than zero.

 Figure 3.8: Working of Rectified Linear Unit

So Rectified Linear Unit is defined as 𝑦,

𝒚 = 𝒎𝒂𝒙 (𝟎, 𝒙) (3.22)

The major advantage of using ReLu is that it converges very fast and also simple to use.

3.5.7 Dropout

To prevent the overfitting we are using dropout of 25% that will be used for

regularization and prevent the overfitting. In such a case, the model is not considering

particular neurons and the training speed will drastically increase. We are using dropout

after the activation function in the processing unit.

3.4.8 Flattening

Flattening is used after the dropout so that it breaks the spatial structure of the data and

transforms your tridimensional tensor into a mono-dimensional tensor. In our case, it's

converting two column array into one column array.

21

CHAPTER 4 PROPOSED APPROACH

In this research, we make a good use word embedding, to get the weights of particular

words in vector to get Embedding Matrix. This Embedding matrix will further used to

predict the sentence similarity through different machine learning techniques. In this

section, we modeled our own approach i.e., Convolution over Word Embedding CoWe.

4.1 Data Preprocessing

The first step in this research is Data Preprocessing, which consist of two things Data

Analysis and Data Cleansing. In order to perform Data Cleansing process we need to

see how data looks like, is the data contains meaning or it’s data, number of rows, how

data is distributed, how many sentences are duplicate in training set, after considering

all these things we need to clean the data which contains removing empty rows,

stemming the data, keeping only alphanumeric data, converting the data into lower case.

4.2 Training And Prediction

 In this section, we use embedding matrix which consists of all the words that contain

in corpus with there corresponding probability from 0 to 1 that determine context

between the words. These word vectors are used as an input two our model. This model

is taking four input parameters shown in figure 4.1 i.e., word vectors of sent training set

sentence 1, training set of sentence 2, training set of sentence 1 and training set of

sentence 2. These embedding is passed through respective input units, we initialize

22

weights of node i.e, mean 0.0, standard deviation 0.05 and seed 2. In each layer, we are

using a number of filters 32, filter length 3 and dropout of 25%.

 Figure 4.1: Proposed Prediction model (CoWe)

Figure 4.2: Convolution layer

23

We are wrapping CNN layer with time distributed dense layer of 300 dimensions that

will apply a dense layer on every timestamp which gives required intersecting values

between its own timestamp. For the given 1 dimensional array of words vectors in

𝑊𝑖 = 𝑤1, 𝑤2, … , 𝑤𝑁, 1D convolution neural network is used for feature extraction.

Where every word in the 𝑊𝑖 is associated with an embedding vector of 𝐷

dimensionality. Let, 𝑅 be the convolution filter or kernel and 𝐾 be the sliding window

width size which slides over the sentence 𝑆𝑖. Now applying the Convolution1D on each

window which is dot product of weighted vector 𝑢 and embedding vector 𝐸.

 Let 𝛿 be the activation function, consider 𝑤𝑗 , 𝑤𝑗+1, … , 𝑤𝑗+𝑘 be the window of words.

Then 𝑧𝑗 be the concatenated vector of 𝑗𝑡ℎ window.

𝒛𝒊 = [𝒘𝒋, . . , 𝒘𝒋+𝟑, . . 𝒘𝒊+𝒌] ∈ 𝑹𝒌×𝒅 (4.5)

𝑅 is then applied on the 𝑘 width window, then

𝒓𝒊 = 𝜹(𝒛𝒋. 𝒖) ∈ 𝑹 (4.6)

Each unit of convolution is using ReLu activation function, in which output contains

only positive value we need output 0 when x is smaller than 0 and x when x is bigger

than zero.

𝒚 = 𝒎𝒂𝒙 (𝟎, 𝒙) (4.7)

To regularize the output of each layer dropout of 25% is used to minimize the

overfitting. As output consist of two arrays after combining the two layers, thus we used

dense layer of 128 x 2 nodes after then we applied dense layer of 128 nodes. At last to

deduce the similarity we need 1 output node which gives 0 for not similar and 1 for

similar. For that purpose we used Sigmoid function,

𝑺 = 𝟏/(𝟏 + 𝒆−𝒉) (4.8)

This will give either 0 or 1. Then we will check against our testing set.

24

CHAPTER 5 EXPERIMENTAL RESULTS

The following system configuration has been used while conducting the

experiments:

 Processor: Intel Core i5 4th Generation

 Clock Speed: 1.60 GHz

 Main Memory: 8 GB

 Hard Disk Capacity: 1024 GB

 Software Used: Jupyter Notebook

In this research, we are using a dataset that consists of 50,000 rows consist of 5 columns

in which 2 columns contain 2 sentences and 1 tells the two sentences is duplicate or not.

In this section, we performed an experiment on to evaluate our proposed model i.e.,

CoWe with Multi-linear regression(LR), Random Forest(RF), Support Vector Machine

Regression(SVR) and MaLSTM.

5.1 Data Analysis

Data consist of 31350 unique sentences and 18649 duplicate sentences. For the below

given graph 0 denotes unique sentences and 1 represents duplicate sentences.

 Figure 5.1: Duplicate graph visualization

25

Data set contains, 49999 total number of sentence pairs for training, 37.3% of duplicate

pairs.

 Figure 5.2: Number of occurrence of words

This graph shows the number of occurrences of particular words in a sentence. Figure

5.2 shows mostly there are 8 – 9 words in each sentence. This analysis is very important

when we are making a matrix of each sentence to make each one of the same lengths.

Figure 5.3: Log-Histogram of sentence appearance counts

Figure 5.3, shows the Log-Histogram of sentences appearance counts, which define a

number of sentences versus a number of occurrences of the sentence in this data set.

Figure 5.4, shows the normalized histogram of character count in each sentence, this

character counts will tell the data distribution in the data set, this will help in

26

Figure 5.4: Normalized Histogram of character count in sentences

determining the illogical sentences. This figure shows the probability versus a number

of characters.

Figure 5.5: Normalized Histogram of character count in sentences

Similarly, figure 5.5 shows the normalized histogram on the character count in the

sentences, this will be again used with the character counts both figure 5.4 and figure

27

5.5 is used to deduce the validity of data set by check its total characters divide by the

total words.

5.2 Evaluation

For the evaluation, we will first create the embedding matrix using pre-defined GloVe

vectors, GloVe vectors consist of pre-defined vectors of 300 dimension and 840 billion

tokens. To generate the word embedding, first, we transform each sentence into fixed

sized sentences and make it as a corpus in the array. For example: consider two

sentences S1: “What a good weather” and S2 “this is good”, Now we will generate this

in corpus of sentences: [[“what”, “a”, “good”, “Weather”],[“this”, “is”, “good”,

NULL]]. Now, this corpus is converted into the vectors by assigning the weights

through GloVe vectors.

5.2.1. Word Embedding Evaluation

Word Embedding graphical representation of generated word vectors are represented in

figure 5.6 which is the 2-dimensional representation.

Which can inference meaning of word “universe” in terms of probability, This shows

‘created’ is having 94.69% probability in terms of associativity rule.

[('created', 0.9469516277313232),

('dark', 0.9097416400909424),

('space', 0.9094343185424805),

('infinite', 0.9081777334213257),

('matter', 0.8620973825454712),

('point', 0.8504949808120728),

('energy', 0.8401374220848083),

('bang', 0.830245852470398),

('evidence', 0.7979810237884521),

('limit', 0.7881182432174683)]

28

Figure 5.6: Plotting word vectors in the 2-dimensional space

From this, we can actually relate words with others in terms of direction and also

deduce the meanings i.e, probability of similarity between two words. You can see in

the bottom-middle of Figure 5.6 the word “windows”, “iPhone” comes together which

means in the given corpus of words these words are used with each other more often

that’s why the distance between these two is very less.

5.2.2. Model Evaluation

For prediction evaluation we are using the following measurements matrices:

1) Accuracy

29

 𝑨𝑼𝑪 =
𝑪𝒏

𝑵
 (5.1)

2) Root Mean Squared Error(RM)

𝑹𝑴 = √∑
(𝑶𝒊−𝒑𝒊)

𝟐

𝒏

𝒏
𝒊=𝟏 (5.2)

3) Mean Absolute Error(MA)

 𝑴𝑨 =
𝟏

𝑵
∑ |𝑶𝒊 − 𝒑𝒊|

𝒏
𝒊=𝟏 (5.3)

4) Mean Absolute Percentage Error(MAPE)

 𝑴𝑨𝑷𝑬 =
𝟏

𝑵
∑ |𝑶𝒊 − 𝒑𝒊|

𝒏
𝒊=𝟏 × 𝟏𝟎𝟎 (5.4)

Where 𝐶𝑛 be the total number of correct predictions, 𝑁 be the total predictions made,

𝑂𝑖be the original value and 𝑝𝑖 be the predicted value.

Table 5.1: Evaluation of different techniques

S.No. Model AUC RM MA MAPE

1 LR 63.26 60.60 0.367 36.73

2 RF 62.70 61.06 0.372 37.29

3 SVR 62.81 60.98 0.371 37.18

4 MaLSTM 77.67 13.95 0.280 28.09

5 CoWe50 74.13 15.04 0.309 30.90

6 CoWe100 74.81 15.46 0.321 32.13

7 CoWe200 75.12 13.03 0.276 27.63

8 CoWe300 83.72 12.50 0.272 27.26

 Above, Table 5.1 represents the evaluation of different models, where LR stands for

multi-Linear regression, RF for Random forest, SVR for Support Vector Machine

Regression model, and CoWe for our proposed model for Sentence similarity with 50

dimensional, 100 dimensional, 200 dimensional, 300 dimensional. For this table 5.1,

we conclude our model CoWe with 300 dimensionalities outperform by the accuracy

of 83.72%.

30

 In this experimental results, we found all three regression model i.e., LR, RF, and

SVR are giving similar results but are very less in comparison to our approach CoWe

and MaLSTM. That is because these regression model will work great on inferencing

word meaning as researched by Minglei [4] but not on collective knowledge and long

term dependency. That’s why MaLSTM and our model performed well as they

preserve the contextual meaning of the whole sentence, not a particular word.

 MaLSTM is using two LSTM that takes the premise and hypothesis to each input of

LSTM. First hidden layer consist of 50 nodes and second hidden layer consist of 100

noes, with taking 25% dropout for preventing regularization and overfitting. Both

LSTM units consist of rectifier linear unit with batch normalization then output layer

consists of sigmoid function which gives an accuracy of 77.67%.

 In our model, it’s taking four input instead of two inputs in MaLSTM i.e., sentence 1

of the training set, sentence 2 of training set, sentence 1 of training set and sentence 2

of training set which passed through embedding layer to generate embedding vectors

through predefined GloVe [19] which generates Embedding Matrix. This embedding

is passed through respective input units, we initialize weights of node i.e, mean 0.0,

standard deviation 0.05 and seed 2. In each layer, we are using a number of filters 32,

filter length 3 and dropout of 25%. We are wrapping CNN layer with TimeDistributed

layer their output will flatten and merged to be input into Dense Layer which consists

128 x 2 nodes with activation function relu and this will be input into another Dense

Layer of 128. Other two inputs consist of TimeDistribution layer which consists of

Dense Neural Net their output will be merged through concatenation and their output

will be taken as input into Dense Layer which consists 128 x 2 nodes with activation

function relu and this will be input into another Dense Layer of 128 nodes. The output

coming from CNN and TimeDistribution is then merged through concatenation the

31

their output will be taken as input for the into Dense Layer which consists 128 x 2

nodes with activation function relu and this will be input into another Dense Layer of

128 nodes, but as it needs more processing we again pushed the output in the Dense

layer of 128 nodes and their output is then passed to 1 node Dense layer with Sigmoid

activation function. To this wrapping CNN layer with TimeDistribute dense layer and

increasing the hidden layers for better preprocessing and remembering dependency

achieved accuracy of 83.72% which is better then MaLSTM.

Figure 5.7: 50 Dimensional train loss vs valid loss CoWe

In figure 5.6, it shows the training loss and the valid loss with increasing the number

of epochs while using 50 Dimensional GloVe vector, the x-axis represents a number

of epochs and y-axis represents the percentage of train loss and the valid loss.

According to this, we achieved maximum accuracy at 12
th
 epochs i.e, 74.13%.

32

Figure 5.8: 100 Dimensions train loss vs valid loss CoWe

In figure 5.7, it shows the training loss and the valid loss with increasing the number

of epochs while using 100 Dimensional GloVe vector, the x-axis represents a number

of epochs and y-axis represents the percentage of train loss and the valid loss.

According to this, we achieved maximum accuracy at 12
th
 epochs i.e, 73.16%.

Figure 5.9: 200 Dimensions train loss vs valid loss CoWe

In figure 5.8, it shows the training loss and the valid loss with increasing the number

of epochs while using 200 Dimensional GloVe vector, the x-axis represents a number

33

of epochs and y-axis represents the percentage of train loss and the valid loss.

According to this, we achieved maximum accuracy at 8
th
 epochs i.e, 75.12%.

Figure 5.10: 300 Dimensions train loss vs valid loss CoWe

In figure 5.9, it shows the training loss and the valid loss with increasing the number

of epochs while using 300 Dimensional GloVe vector, the x-axis represents a number

of epochs and y-axis represents the percentage of train loss and the valid loss.

According to this, we achieved maximum accuracy at 2
nd

 epochs i.e, 83.72%.

Table 5.2: Evaluation of Proposed Approach CoWe

S.No. Embedding

dimension

Token

in

GloVe

(billion)

Number

of epoch

Training

Accuracy

Accuracy Training

Loss

Valid

Loss

1 50 6 12 78.10 74.13 15.03 16.99

2 100 6 12 79.54 73.16 14.29 17.81

3 200 6 8 81.79 75.12 13.03 16.63

4 300 840 2 80.79 83.72 14.98 43.72

We achieved the embedding dimension maximum accuracy of 83.72% with 300

dimensional and 840 billion tokens in 2 epoch. Which concludes as the number of

dimensionality increase and also the token counts directly proportional to the accuracy

achieved.

34

CHAPTER 6 CONCLUSION AND FUTURE WORK

In this research, it proves the power of word embedding with our proposed CoWe.

Which outperform from the rest of the regression models. We consider our approach

as a general purpose to predict the similarity between the sentences through CoWe

which achieved accuracy of 83.72%. In future work, we will be more focus on data

preprocessing and try with other neural networks.

35

References

[1] Picard, R. W., “Affective Computing,” Tech. Rep. 321, MIT Media Lab, 20 Ames

St., Cambridge, MA 02139, 1995.

[2] Hoste, B. Desmet and V., “Emotion detection in suicide notes,” Expert Systems

with Applications, vol. 40, p. 6351–6358, 2013.

[3] Lee, B. Pang and L., “Opinion mining and sentiment analysis,,” Foundations and

trends in information retrieval, vol. 2, pp. 1 - 135, 2008.

[4] Minglei Li, Qin Lu, Yunfei Long, and Lin Gui, “Inferring Affective Meanings of

Words from Word Embedding,” IEEE Transactions on Affective Computing, 2017.

[5] T. Y. Aizhang Guo, “Research and improvement of feature words weight based on

TFIDF algorithm,” IEEE Information Technology, Networking, Electronic and

Automation Control Conference, pp. Pages: 415 - 419, 2016.

[6] SALTON G, FOX E A, WUH., “Extended Boolean information retrieval,”

Communications of the ACM, vol. 26 (11), pp. 1022 - 106, 1983.

[7] S., JONES K, “A statistical interpretation of term specificity and itsap-plication in

retrieval,” Journal of Documentation, pp. 11-21, 1972.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” Proceedings of

27th Annual Conference on Neural Information Processing Systems (NIPS),

(Nevada, United States), p. 3111–3119, 2013.

[9] Qi Wang, Jungang Xu, Hong Chen, Ben He, “Two Improved Continuous Bag-of-

Word Models,” International Joint Conference on Neural Networks (IJCNN), pp.

pages 2851 - 2856, 2017.

[10] Salakhutdinov, G. E. Hinton and R. R., “Reducing the dimensionality of data with

neural networks,” Science, vol. 5786, pp. 504 - 507, 2015.

[11] Y. Bengio, H. Schwenk, J. S. Senecal, F. MOrin, Gauvain and J. L., “A neural

probabilistic language model,” Journal of Machine Learning Research, vol. 3, pp.

1137 - 115, 2003.

[12] Chia-Yang Chang, Shie Jue Lee , Chih Chin Lai, “Weighted Word2vec Based on

the Distance of Words,” International Conference on Machine Learning and

Cybernetics (ICMLC), 2017.

[13] T. Brants, A. C. Popat, P. Xu, F. J. Och and J. Dean, “Large language models in

machine translation,” In Proceedings of the Joint Conference on Empirical

Methods in Natural Language Processing and Computational Language Learning,

pp. 858 - 867, 2007.

[14] J.Weston, R. Collobert and, “A unified architecture for natural language

processing: deep neural networks with multitask learning,” In Proceedings of

International Conference on Machine Learning, pp. 160-167, 2008.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa,

“Natural language processing (Almost) from scratch,” Journal of Machine

Learning Research, vol. 12, pp. 2493 - 2537, 201.

[16] S. K. J. L. J. C. N. D. a. N. E. Deokgun Park, “ConceptVector: Text Visual

Analytics via Interactive Lexicon Building using Word Embedding,” IEEE

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, Vols.

VOL. 24, NO. 1, 2018.

36

[17] C. D. A. B. a. I. T. W. Ling, “Two/too simple adaptations of Word2vec for syntax

problems,” In Proceedings of the Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, p.

1299–1304, 2015.

[18] W. Ling, Y. Tsvetkov, S. Amir, R. Fermandez, C. Dyer, A. W. Black, I. Trancoso,

and C.-C. Lin, “Not all contexts are created equal: Better word representations with

variable attention,” In Proceedings of the Conference on Empirical Methods in

Natural Language Processing, pp. 1367 - 1372, 2015.

[19] G. A. P. J. Yash Sharma, “Vector Representation of Words for Sentiment Analysis

Using GloVe,” International Conference on Intelligent Communication and

Computational Techniques (ICCT), pp. 279 - 284, 2017.

[20] Z. X. CongyingShi, “Review TFIDF algorithm,” Computer Applications, pp. 167 -

170, 2009.

[21] Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global

Vectors forWord Representation,” conference on empirical methods in natural

language processing (EMNLP), p. 1532–1543, 2014.

[22] R. Torkzadeh, A. Mirzaei, M. M. Mirjalili, A. S. Anaraki, M. R. Sehhati and F.

Behdad, “Medium term load forecasting in distribution systems based on multi

linear regression & principal component analysis: A novel approach,” 19th

Conference on Electrical Power Distribution Networks (EPDC), pp. 66 - 70, 2014.

[23] Fu, Kun; Wang, You-Hua; Dong, Yong-Feng; Hou, Xiang-Dan; Shen, Xue-Qin;

Yan, Wei-Li, “Support vector regression method for boundary value problems,”

International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4295 -

4298, 2005.

[24] Torizuka, K.; Oi, H.; Saitoh, F.; Ishizu, S., “Research of Text Categorization Model

based on Random Forests,” IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), pp. 487 - 491, 2018.

[25] ShuohangWang, Jing Jiang, “Learning Natural Language Inference with LSTM,”

arXiv:1512.08849v2, 2016.

[26] Kiranyaz, Serkan; Ince, Turker; Abdeljaber, Osama; Avci, Onur; Gabbouj, Moncef,

“1-D Convolutional Neural Networks for Signal Processing Applications,” ICASSP

2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 8360 - 8364, 2019.

[27] Vignesh Thakkar, Suman Tewary, “Batch Normalization in Convolutional Neural

Networks – A comparative study with CIFAR-10 data,” Fifth International

Conference on Emerging Applications of Information Technology (EAIT), pp. 1 - 5,

2018.

[28] Fujii, Shohei; Hayashi, Hitoshi, “Comparing of performane by activation functions

on deep Image Prior,” International Conference on Artificial Intelligence in

Information and Communication (ICAIIC), pp. 255 - 258, 2019.

[29] V. R. K. R. Bhaskar Dhariyal, “Sentiment analysis via Doc2Vec and Convolutional

Neural Network hybrids,” IEEE Symposium Series on Computational Intelligence

(SSCI), pp. 666 - 671, 2018.

[30] Mukherjee, Sourabrata, “t-SNE based feature extraction technique for multi-layer

perceptron neural network classifier,” International Conference on Intelligent

Computing, Instrumentation and Control Technologies (ICICICT), pp. 660 - 664,

2017.

37

[31] Severoğlu, Nagihan, “Mammogram images classification using Gray Level Co-

occurence Matrices,” 24th Signal Processing and Communication Application

Conference (SIU), 2016.

[32] Yu, Hongchuan; Bennamoun, M., “1D-PCA, 2D-PCA to nD-PCA,” 18th

International Conference on Pattern Recognition (ICPR'06), vol. 4, pp. 181 - 184,

2006.

