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ABSTRACT 

 

 

 

 

Timetable scheduling problem deals with arranging a set of events (classes, exams, 

courses) into a defined number of timeslots making sure that the conflicts are avoided. 

In our work, we have proposed a new course scheduling based on mining for 

students’ preferences for Open Elective courses that makes use of optimization 

algorithms for automated timetable generation and optimization. The Open Elective 

courses currently running in an actual university system is used for the experiments. 

Hard and soft constraints are designed based on the timing and classroom constraints 

and minimization of clashes between teacher schedules. Two different optimization 

techniques of Genetic Algorithm (GA) and Simulated Annealing (SA) are utilized for 

our purpose. The generated timetables are analyzed with respect to the timing 

efficiency and cost function optimization. The results highlight the efficacy of our 

approach and the generated course schedules are found at par with the manually 

compiled timetable running in the university. 

We have also proposed a novel set of soft constraints for university course timetabling 

that in addition to conventional constraints incorporate teacher’s preferences and  

(iv) 



VI 
 

 

student time management as well. Here, the hard constraints are those that need to be 

mandatorily satisfied. The soft constraints are the penalties that are sought to be 

minimized through every iteration of the optimization algorithm. The evolutionary 

algorithms- Genetic Algorithm, Particle Swarm Optimization, and the heuristic 

Simulated Annealing algorithm are used for the optimization task. The timetables 

generated based on actual university data are found to be more humanely optimized 

than the previous work of the authors due to the incorporation of human factor 

consideration both from the perspective of teachers and students. 

Finally, we have proposed a new memetic algorithm that hybridizes the global search 

strategies of Genetic Algorithm (GA) with the local search heuristics of Simulated 

Annealing (SA) and a greedy randomized local search mutation in GA. The basic 

framework of our memetic algorithm is that of GA. The population of chromosomes 

in every generation of GA is first refined by a local neighbourhood search for each 

chromosome as defined by the SA procedure, prior to the selection, crossover and 

mutation steps of GA. The mutation step in GA is randomized, with a greedy 

stochastic local search mutation being randomly selected over normal swap mutation 

of the fittest chromosome in each iteration of GA. The convergence of the fitness 

function and the stopping criterion are as determined by SA. As proved from the 

experimental results, this hybridization presents highly optimal solutions with fast 

convergence. Comparison to the state-of-the-art on a benchmark dataset for university 

course scheduling proves the efficacy of our approach. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Timetable Scheduling deals with developing course timetables, assigning courses to 

teachers in the given timeslots and satisfying a set of constraints. Automation of 

timetable generation has been of increasing interest due to the increase in the elective 

or optional courses that universities offer to students. It is challenging to schedule the 

classes for students in fixed time-slots with the available resources of classrooms and 

instructors.  

Some university scheduling problems requires hard and soft constraints to be satisfied 

completely whereas some require soft constraints to be satisfied as much as possible 

which eventually controls the quality of the timetable generated. Different fields deal 

with this timetabling problem like operation research. It includes: Graph Coloring [1] 

where the vertices represent courses and the edges represent students, Integer 

Programming [2] and Constraint Satisfaction Programming [3]. The course 

scheduling problem is a NP Hard problem and requires high amount of computation 

complexity. This led to the emergence of algorithms like Simulated Annealing and 

other local search techniques and also metaheuristics like evolutionary and genetic 

algorithms. The range of optimization algorithms vary from mathematical to 

evolutionary to heuristic. Genetic Algorithm (GA) is a highly efficient evolutionary 

algorithm that follows the principle of the evolution of the fittest gene [4]. Its 

application to the timetable scheduling problem is investigated in [5,6]. Highly 

optimized schedules are generated by the heuristic Simulated Annealing (SA) 

algorithm reportedly in minimal time as per research in [7-10]. The different types of 

schedules generated by SA in [7-10] range from university course timetables, exam 

timetables, staff job schedules etc. SA and GA are the most investigated optimization 

algorithms for scheduling problems. Most of the algorithms differ in the initialization 
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routines or variant of SA and GA used. Several variants of GA are found in literature 

[11]. Particle Swarm Optimization which is another evolutionary algorithm has been 

explored in [12, 13] for timetable scheduling. Simulated annealing is used for 

optimizing in scheduling problems and is very popular because of its less execution  

and how it generates an optimized timetable. A new work used for elective course 

scheduling has been seen in [14]. It requires initially the timetable template which 

makes sure hard and soft constraints are satisfied and then it uses Genetic Algorithm 

for timetable generation and optimization. Another recent work is [15] which 

minimizes student conflicts for different courses that uses graphical models and 

distance-based local search methods. 

In first art of our work, we have proposed fully automated course scheduling 

technique . Our approach uses algorithms GA and SA for generating timetables. We 

have used association rule mining that mines patterns for the preference of students 

for Elective courses they wish to attend. We have used our university data for the 

electives that the students are currently studying. We compare the timetables 

generated using optimization algorithms like Genetic Algorithm and Simultaed 

Annealing are compared with the manually compiled timetable which is being used 

by the university.  

In second part of our work, we formulate new soft constraint functions in order to 

generate more human-friendly optimized schedules. GA, SA and PSO optimization 

algorithms are investigated for the task.  

 Hybrid approaches which uses the concept of global and local search strategies have 

emerged that seek to optimize the timetabling problem. These approaches much more 

fast and optimal solutions. In our final work, we have proposed a memetic algorithm 

which uses the concept of greedy stochastic local search mutation in order to generate 

more optimal timetable schedules which offer faster convergence. 
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CHAPTER 2 

 

LITERATURE REVIEW 
 

 

 

2.1 TIMETABLE SCHEDULING 

Timetable Scheduling is an optimizing problem that deals with assigning students –

courses, teacher - courses, teacher - students in set of given timeslots. Timetable 

scheduling problem contains a set of hard constraint and soft constraints. The hard 

constraints have to be followed by all valid solutions and the soft constraints define 

the quality of valid solutions based on the number of soft constraint satisfied.  

Course scheduling is a challenging task these days in schools and university because 

of the huge amount of elective courses that are offered by the universities, This also 

causes course scheduling to be a very tedious and time consuming job .   

 Evolutionary algorithm are population based metaheuristic optimization algorithms. 

They are inspired and use mechanisms of biological computation. A number of 

evolutionary algorithms have been used for solving the course scheduling problem to 

find optimal solution. Genetic Algorithm (GA) is an evolutionary algorithms that is 

based on Darwin’s theory of “survival of the fittest”. GA and its variants such as 

NSGA, CSGA etc have been used for automatic timetable generation with different 

combinations of crossover and mutation steps. These help in generation more efficient 

solutions. Another meta heuristic approach is a single solution approach such as 

Simulated Annealing. SA uses a local search process in the neighborhood for 

continuously refining one single solution. Hybrid approaches that combine 

evolutionary mechanisms with local search have also emerged as highly efficient 

alternatives. Some of the hybrid approaches include the multi-population hybrid GA 

in [16], the hybrid fuzzy evolutionary approach in [17], the fuzzy genetic algorithm 

with local search in [18].  
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Memetic algorithms (MA) were introduced by Moscato in 1989. It combines the best 

features of population based evolutionary algorithms with local search techniques 

[19]. As per Moscato and Cotta [20], the gene evoluton is improved by using various 

local search techniques. MA is considered to be an amalgamation of GA and SA. 

Most of these algorithms use the basic framework of Genetic Algorithms and are 

called as hybridized evolutionary algorithms in [21-23]. Recent work in Memetic 

Algorithm  ensures combination of population based evolutionary approaches with 

local neighborhood search. Examples of such hybridized approaches are: Whale 

Optimization with Simulated Annealing [24], Harmony search with the hill climbing 

algorithm [25], Water wave optimization hybridized with sequential quadratic 

programming [26].  

In our work we have used optimization tools such as genetic algorithm [27,28] , 

simulated annealing [29,30,31] and particle swarm optimization [12]. We have also 

proposed a new memetic algorithm that incorporates the goodness of the global 

search techniques of GA as well as the local search strategies of SA. This memetic 

algorithm also consists of local search mutation instead of the normal mutation which 

helps in faster convergence and generating an optimal solution. 

2.2 OPTIMIZATION USING GENETIC ALGORITHM 

Genetic Algorithm [27,28] is based on the concept of biological evolution that is 

based on Darwin’s theory of “Survival of the Fittest”. This states that fittest organism 

survives and in our case this means that the fittest or the most optimal solution 

survives in the end . GA is used in optimization problems and produces the most 

optimal solution.  

 

Operations of Genetic Algorithm are as follows: 

2.2.1 Initialize: 

This step deals with initializing and defining the parameters that are used in the 

further GA process. It consists of defining size of chromosome, gene, population, rate 

of crossover, rate of mutation. 
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A Chromosome represents one single individual solution. In course scheduling it can 

represent one timetable instance and so on. Fitness value of chromosomes is 

calculated at each iteration/ generation of the algorithm. 

 

Population is the entire collection of all the chromosomes.  

We define all these in the initialize step of the GA process for the initial random set of 

chromosomes. 

  

2.2.2 Defining the fitness function: 

Fitness function defines what we want to optimize i.e. the function which determines 

the quality of our solution. It tells the goodness of a chromosome. For example, for a 

minimizing problem, the lower the fitness value, the more optimal is the chromosome. 

It helps us in analyzing a single solution and gives a measure to how far it is from its 

best value. 
 

2.2.3 Selection: 

The selection operator helps us in selecting the fittest individuals so as to eventually 

reach our optimal solution. After calculating the fitness value of each chromosome we 

select the most fit individuals using various selection techniques such as rank 

selection, roulette wheel selection, stodhastic universal sampling, tournament 

selection, random selection and so on. It helps us select the parent chromosomes that 

are further used for crossover. It helps direct the solution it in the right direction.  

 

2.2.4 Crossover: 

Crossover is the next genetic operator which involves combining genes of the parents 

to generate a new offspring. The new offspring is retained if it has a higher fitness 

value than the fitness value of the individual parents else it is discarded. The higher 

fitness value helps us reach towards the optimal solution. Crossover combines genes 

and features of the parents to generate a new offspring. It is similar to the concept of 

biological crossover and reproduction. Crossover can be different types such as: One 

point crossover, multipoint crossover, uniform crossover, davis’ order crossover and 

so on. A crossover point or pints is chosen and crossover is performed at it. 
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2.2.5 Mutation: 

Mutation is a genetic operator that is used to introduce heterogeneousness in the 

chromosomes. It is similar to the concept of biological mutation where some gene 

value of the child are drastically different from the parents or family. It is used to 

introduce genetic diversity or variety in the solution. Mutation can be of various types 

such as: swap mutation, bit flip mutation, random resetting, scramble mutation, 

inversion mutation and so on. In mutation, the new chromosome generated is 

drastically different from the parent chromosomes.  

 

2.3 OPTIMIZATION USING SIMULATED ANNEALING 

Simulated Annealing [29,30,31] is a metaheuristic technique which uses the  concept 

of annealing used for metails. In annealing, the metal is heated to very high 

temperatures. It is then cooled slowly with given conditions and gives a metal which 

is much more stronger than the original metal. The new metal obtained is more fit 

than the parent and has less chances of breakage and is hence stronger. 

 

Simulated Annealing is prominently used as an optimization technique. It is used 

often when the search space is said to be discrete. Temperature(T) gives us the 

randomness of the solution. The higher the temperature the more is the degree of 

randomness. At very high temperatures the SA algorithm behaves like random walk. 

As the temperature decreases the algorithm starts to behave like hill climbing. Higher 

T, the more exploration is done in the search space for an optimal solution i.e. more 

random solutions are obtained. As the temperature dereases, the randomness 

decreases and the solutions start moving towards a particular place in the search space 

which is eventually the optima. 

 

The algorithm starts with T= very high. For every step, a random neighboring 

solution is selected. We calculate the gap of energy level between the new and current 

solution. 

 

𝛥𝐸 = 𝐸(𝑛𝑒𝑤) − 𝐸(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)       (2.1) 
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In Equation (2.1), 

𝐸(𝑛𝑒𝑤) =energy value for new solution 

𝐸(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =energy value for current solution 

 

if 𝛥𝐸 > 0: then E(new) is chosen with a probability P=1 

if 𝛥𝐸 < 0: E(new) is selected with 0<P<1. Here the probability is given as: 

 

𝑃 = 1	/	(1 +	𝑒7∆9/: )                    (2.2) 

 

In Equation (2.2), 

P represents the probability with which the new node is selected. 

T represents the temperature 

 

The temperature is decreased for every iteration. Hence, at the minimal temperatures 

the optimal solution is obtained.  

 
2.4 OPTIMIZATION USING PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization [12] is a heuristic method that uses the concept of 

swarm and birds flocking. It is used in course scheduling problem and gives us an 

optimal solution. Particle Swarm Optimization initially starts with randomly 

generated solutions and tries to eventually converge towards the optimal solution.  

The steps of PSO are given as follows:  

2.4.1 Initialization:  

Each solution in PSO is known as a particle. Every particle has a position and velocity 

vector. The PSO is initialized with random particles i.e. random solutions.  

 

2.4.2 Finding pBest and gBest:  

At every generation fitness of the solution is found as per the fitness function. Each 

particle is updated using the pBest and gBest values. 
lBest denotes the best value of fitness achieved till now. It is also known as the best 

local fitness value.  
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tBest denotes the overall best value of fitness i.e. the best global fitness value. It 

denotes the overall best fitness value obtained taking into account all the particles  

 

2.4.3 Updating velocity:  

Using these values, the velocity and position of particles is updated in each generation 

using following equations: 

 

𝑣[𝑖] = 𝑣[𝑖 − 1] + 𝑐1 + 𝑟𝑎𝑛𝑑𝑜𝑚() ∗ (𝑝𝐵𝑒𝑠𝑡 − [𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖 − 1]) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() ∗

(𝑔𝐵𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖 − 1])                      (2.3)    

      

   (2.4) 

 

In Equation (2.3) and (2.4), 
v[i-1] = The velocity for i-1th particle  
present[i] = Tit denotes the current solution 
random() = It is a random number in (0,1)  
c1, c2 = These are known as learning factors. Value of c1, c2 taken for our work = 2  

2.5 OPTIMIZATION USING HYBRID ALGORITHMS 

Hybrid optimization techniques involving combination of global search techniques 

with local search techniques and they give us more optimal solutions with faster 

convergence. In our work, we have worked with different hybrid algorithms involving 

GA and SA. These algorithms are as below: 

2.5.1 GA-SA[32] 

Genetic Algorithm and Simulated Annealing are two popular algorithms. In GA- SA 

we combine features of GA and SA to generate solutions which are more optimal than 

our solutions generated with GA and SA individually.  

We have used the GA- SA algorithm described in [32] and used it on ITC 2007 

dataset to observe the solutions generated and compare it with the other hybrid 

algorithms. 

𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖] = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖 − 1] + 𝑣[𝑖] 
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GA-SA combines the stopping criteria of SA along with the process of GA. The 

temperature in GA-SA is initially set to be very high and then slowly cooling is done. 

Initially for high temperatures,  

We use a decision function to see if it is good or bad mutation. It is defined as below: 

𝐷1 = 𝑎𝑐𝑐𝑒𝑝𝑡	{	𝑖𝑓	𝑟L ≤ 𝑒
NOPQOP

′ RS
T
U

OP 	}	       (2.5) 

𝐷1 = 𝑟𝑒𝑗𝑒𝑐𝑡	{	𝑖𝑓	𝑟L > 𝑒
NOPQOP

′ RS
T
U

OP 	}	       (2.6) 

 

In Equation (2.5) and (2.6),  

𝑟L = Real number generated randomly between 0 and 1 

𝑓X = Makespan time before mutation 

𝑓XY = Makespan time after mutation 

b = Bolzmann constant 

t = Temperature 

After mutation step is executed, GA-SA helps to obtain a more fit chromosome. From 

D1, we can observe that GA-SA ensures there is no chromosome which has a worse 

fitness value than the current chromosome. 

We then select chromosomes and perform crossover similar to GA. After crossover, 

adaptative mutation is performed as described above. In this, we check if the mutation 

is a bad mutation or not and new population is selected based on the fittest 

chromosomes. The final step is selection of a new set of individuals based on elitist 

roulette wheel selection. After the completion of a cycle, temperature is decreased and 

crossover, mutation, selection are performed for the next cycle. 
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2.5.2 Hybrid Algorithm by Mahfoud [33] 

Mahfoud introduces the method of parallel recombinative simulated annealing. This 

algorithm uses convergence properties of simulated annealing and uses GA for the 

recombinative approach. 

We have used the algorithm described in [33] and used it on ITC 2007 dataset to 

observe the solutions generated and compare it with the other hybrid algorithms. 

In Parallel recombinative simulated annealing (PRSA), the convergence of the 

algorithm is controlled by simulated annealing, that is, the cooling procedure.  

In PRSA, the initial temperature = very high. The population is initialized randomly. 

The stopping criteria is chosen to be t/2. Here t gives us size of the populatin. 

We use GA by initially selecting 2 random individuals from the population and 

assigning them to be parents. 2 children are generated by using single point crossover 

followed by mutation. Boltzmann trail is held between the children and parents. 

Finally, the parents are overwritten by the winner of the bolzmann trials and the 

process is carried out again. 

The Bolzmann trials can be defined as the competition between x and y where 𝐸Z 

represents the combined energy of the parents and 𝐸[ represents the combined energy 

of the children 

∆𝐸 is defined in Equation (2.7) as, 

∆𝐸 = 	𝐸Z −	𝐸[	           (2.7) 

If  𝛥𝐸 > 0 then x wins with a probability of 1 

if 𝛥𝐸 < 0 then x still wins but this time with a probability of P. P can be defined as 

per Equation (2.8): 

 

𝑃 = 1/(1 +	𝑒(9S79\)/:         (2.8) 
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2.5.3 Local Search Algorithm [34] 

The Local Search algorithm combines the properties of GA along with sequential 

local search. We use this algorithm on the ITC 2007 dataset and compared it with 

other hybrid algorithms and our proposed memetic algorithm. 

 The steps of the Local Search Algorithm are described as follows: 

• Generation of Initial population: Initial population is generated consisting of N 

chromosomes. Each chromosome represents a timetable. 

• Genetic Operation (Crossover): After generation of the initial population, 

single point crossover is performed. Crossover point is chosen randomly from 

(1,2, …M). Here, M is the length of chromosome 

• Genetic Operation (Mutation): After crossover, mutation is performed. 

Mutation points are also chosen randomly. 

• Fitness Measure: In this step, we calculate fitness value of . The fitness 

function is given as: 

f = x            (2.9) 

Here in Equation (2.9), 

f = fitness function 

x = number of penalties 

• Genetic Operation (Selection): After fitness calculation, we select 

chromosomes with highest fitness value using tournament selection method. 

• Local Search: After completion of the above steps we use local search to 

improve the timetable and make its convergence faster. 

2.4.4 Memetic Algorithm 

Memetic algorithms are known as an extension of Genetic Algorithm. They combine 

the concept of GA and SA. They are also known as hybrid evolutionary algorithms. 
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In our work, we have proposed a new memetic algorithm which combines the best 

features of GA and SA and apply this to university course scheduling problem. We 

intend to bring together the goodness global solutions of GA and the local 

neighborhood search of SA. This memetic algorithm also incorporates the concept of 

greedy stochastic local search mutation instead of the simple mutation step in GA 

which leads to a more optimal solution with faster convergence. 

In our SA implementation for MA, we initially begin with very high temperatures and 

decrease it for every iteration using the formula. 

  𝑇X^_ = 	𝑇X ∗ 	𝛽        (2.10) 

In Equation (2.10), 

β = Cooling Rate 

𝑇X= Initial Temperature 

𝑇X i.e. the initial temperature and the rate of cooling b is determined by the user 

depending on the situation. At high temperatures, there is more randomness and the 

algorithm tries to search the search space more for optimal solution. As the 

temperature decreases, the randomness decreases and the solution converges towards 

local minima. 

Incorporating SA procedure into GA as a refinement procedure prior to the selection 

mechanism of the fittest chromosomes in GA in each generation, improves the 

efficiency and reduces the soft constraint violations, hence improving the quality of 

the timetables generated. This forms the basis of our method that is described below 

in more detail in Fig, 1.  
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Fig. 1: The proposed memetic algorithm 

The proposed memetic algorithm introduced here consists of firstly defining an initial 

population for generation 1. This is followed by application of local search on the 

current population. GA operations like Selection, Crossover and Mutation are applied 

on the population. If algorithm converges we stop, else we proceed to the next 

generation. 

This algorithm further incorporates the concept of greedy stochastic local search 

mutation. After the selection and crossover of the updated population, the local swap 

mutation is done. In mutation we introduce a random number “r” which lies between 

(0,1) . This random number determines whether to perform a simple swap mutation or 

a local swap mutation. In a simple swap mutation 2 random genes of the chromosome 

are exchanged. In case of local swap mutation, a random gene is taken and it is 

swapped with every gene of the chromosome. We determine how fit the chromosome 

is and compare it with current optimal fitness value and if the new chromosome is 
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more optimal, it is selected.  This algorithm was implemented for the job shop 

scheduling problem in [35]. 

The stopping criterion for the memetic algorithm is same as that of SA i.e. 

temperature value. Hence it brings together the best features of GA and SA and 

provides a much more optimal solution with faster convergence. 
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CHAPTER 3 

 

PROPOSED WORK 

 

 

 

3.1 PROPOSED TIMETABLE SCHEDULING INCORPORATING STUDENT 

PREFERENCES USING ASSOCIATION RULE MINING FOR SCHEDULING 

ELECTIVE COURSES USING GENETIC ALGORITHM AND SIMULATED 

ANNEALING  

In this work, we apply Association Rule Mining to GA and SA, We compare GA and 

SA based on generation/iteration number and makespan time. 

 

3.1.1 Dataset used with initial parameters and assumptions 

We have done Timetable scheduling for 6th semester IT students. Students are 

divided into 2 sections 6-A and 6-B.  

There are 6 elective courses:  

1 Cyber Forensics and Cyber Crime (CFCC) 

2 Real Time Systems (RTS) 

3 Machine Learning (ML) 

4 Optical networks (ON) 

5 High speed Networks (HSN) 

6 Multimedia System Design (MSD) 

Two most commonly selected electives are chosen after association rule mining 

process. These are: 

• Cyber forensics and Cyber Crime  

• Machine Learning  

 

 

Assumptions:  

There are two electives which are taken by the students of a department for a 

particular semester. Three teachers are assigned to teach these electives. Elective 1 is 

taught by one professor and the other 2 teach Elective 2. 
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There is a theory class of 3 hours every week for both the electives and a tutorial for 1 

hour for every group. 

 

Initial Parameters: 

• Starting Temperature (for SA) = 1000 

• Rate of Cooling (for SA) =  0.05 

• Mutation Rate (for Genetic Algorithm) = 0.01 

• Population size (for Genetic Algorithm) = 100 

• Crossover Rate(for Genetic Algorithm) = 0.9 

 

3.1.2 Proposed Set of constraints 

In our work, we have defined a set of hard constraints and soft constraints. Hard 

constraints cannot be violated and are necessary for timetable generation. Soft 

constraints can be violated and represent the overall quality of solution. A penalty 

cost of 1 is assigned for every soft constraint violation.  

Hard Constraints: 

1. Elective courses can only be taught during 4 hours in the morning from 08:00am 

to 12:00am. 

2. There are 2 electives for a semester. 

3. All students of that particular semester are supposed to enroll in these electives 

compulsorily. 

 

Soft Constraints: 

1. Classroom capacity should be greater than the size of the class. 

2. No room should be assigned to a course or teacher if its already assigned to 

another course or teacher for that particular time period. 

3. Every course should have a professor to teach it. 

4. Each student is assigned to only one classroom at a certain time period. 
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3.1.3 Fitness function: 

 

The fitness function we are trying to maximize here is: 

 

 f = 1 / 1 + x            (3.1) 

 
In Equation (3.1), x denotes the number of penalties. 

 

3.1.4 Proposed algorithm using Association Rule Mining and GA 

 

Stage 1: Use Data Mining to find electives: 

 

1. Student’s 2 elective options are taken from them. 

2. SUPCOUNT(Support count) is calculated for every elective. 

3. A threshold value (T) is chosen.  

4. If   SUPCOUNT(elective) < T , it is eliminated. If SUPCOUNT(T) = T it is said 

to be strongly associated. 

5. FP Growth algorithm is used to find associations between the electives.  

6. Table is created for associated electives. 

4 A count the electives’ associations is done and they are arranged in a descending 

order. 

5 Associations with maximum count are selected as the two electives. 

6 Selected electives are used for timetable generation using GA in stage 2. 

 

Stage 2: Applying GA on selected electives to create optimized timetable 

 

1. Initialize a timetable with given number of professors, time slots, classes and 

electives. 

2. Define population size, mutation rate, crossover rate. 

3. Form one chromosome, clash_val is calculated. Here, clash_val denotes the 

penalty value for current chromosome. 

4. Calculate fitness of a chromosome (f) using fitness function given in Equation 

(3.1) 
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5. Repeat for all generations: 

1. Crossover() 

2. Mutation() 

3. Selection() 

4. Compute new fitness f of a chromosome  

6. If ( clash_val == 0) or (f==1)  STOP 

7. Compare factors- generation number, makespan time with SA. 

 

3.1.5 Proposed algorithm using Association Rule mining and SA 

 

Stage 1: Use Data Mining to find electives 

1. Student’s 2 elective options are taken from them. 

2. SUPCOUNT(Support count) is calculated for every elective. 

3. A threshold value (T) is chosen.  

4. If   SUPCOUNT(elective) < T , it is eliminated. If SUPCOUNT(T) = T it is said 

to be strongly associated. 

5. FP Growth algorithm is used to find associations between the electives.  

6. Table is created for associated electives. 

7 A count the electives’ associations is done and they are arranged in a descending 

order. 

8 Associations with maximum count are selected as the two electives. 

9 Selected electives are used for timetable generation using GA in stage 2. 

 

Stage 2 : Applying SA on selected electives to create optimized timetable 

1. Initialize a timetable (number of professors, time slots, classes and subjects). 

2. Define temperature, Rate of cooling. 

3.  While(T is greater than 1) 

a. Define current node X, Initialize random neighbor P. 

b. Evaluate  ΔE = z(P)- z(X)      (3.2) 

 

z (P)= Total number of penalties for neighboring node for violating soft 

constraints 

z (X)= Total number of penalties for neighboring node for violating soft 

constraints 
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c. If z(P) < z(X) i.e. ΔE <0 choose N, probability = 1. 

d. If z(P) > z(X) i.e. ΔE >0 choose N, probability P= 𝑒7∆9/: ( choose N if P > 

0.77 only) 

e. else Retain C 

f. Temp = temperature * RateOfCooling. 

g. When Temperature < 1 STOP 

h. Compare parameters: Iteration at which solution obtained, makespan time 

with Genetic Algorithm. 

 

3.2 PROPOSED TIMETABLE SCHEDULING INCORPORATING TEACHER 

PREFERENCES FOR SCHEDULING ELECTIVE AND CORE COURSES 

USING GENETIC ALGORITHM, SIMULATED ANNEALING AND 

PARTICLE SWARM OPTIMIZATION 

In the second part of our work, we try and make the timetable more human centric by 

taking teacher’s preferences. We then compare GA, SA and PSO based on Number of 

penalties vs generations, Time taken for execution of each generation with respect to 

generation number. 

 

3.2.1 Dataset used with initial parameters and assumptions 

Timetable scheduling is done for 6th semester undergraduate B.Tech (Information 

Technology) students of Delhi Technological University. Students are divided into 2 

sections 6-A and 6-B. The number of classrooms are only two- TW2GF2 and 

TW1TF3 as opposed to three in our previous work in 5.1. The professors are the 

current staff of Department of Information Technology, Delhi Technological 

University. 

 There are 5 theory courses: 

 

Electives: 

• Cyber Forensics (CFCC)  

• Machine Learning (ML) 

 

Core Courses: 
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• Compiler Design (CD) 

• Software engineering (SE) 

• Artificial Intelligence (AI) 

 

There are 2 labs:  

• Compiler Design (CD) Lab 

• Artificial Intelligence (AI) Lab 

 

3.2.2 Proposed Set of constraints 

A collection of constraints is taken from different papers and additional constraints 

are added to make the timetable more human centric. 

• Hard Constraints (proposed):  

Hard constraints cannot be violated (as per stringent rules of the Delhi Technological 

University). Hard constraints are as follows:  

i. Electives are scheduled in the time periods: 08:00am - 10:00am  

ii. Core Courses are taught between time periods: 10:00am - 4:00pm  

iii. All students of the 6th semester from IT department enroll for the theory and 

practical courses  

• Soft Constraints (proposed):  

A 10 point penalty is assigned if soft constraints are violated. Soft constraints are as 

follows:  

i. Classroom capacity should be greater than the size of the class. [2]  

ii. No room should be assigned to a course or teacher if its already assigned to 

another course or teacher for that particular time period.[2]  

iii. Every teacher can teach only one class at a particular time period. [1] [4]  

iv. Every course should have a professor to teach it.  

v. Classrooms and lab for separate courses should not overlap one another. [1] 

[3]  

vi. No student is assigned more than one class at the same time. [2]  
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• Additional Soft Constraints (Proposed):  

Set of additional constraints are added in this paper. These are a part of soft 

constraints and a 10 point penalty is assigned if they are violated. These additional 

constraints are:  

i. The students of a class are allotted one room in which they will have all 

classes. This is done to avoid the time consumed for students while traveling 

between classes. 

ii. There are not a lot of free period gaps between classes in a day for the 

students. 

iii. The teacher’s preference to teach in a particular time slot is considered.  

 

3.2.3 Fitness function 

The fitness function we are trying to minimize here is: 

  f = x              (3.3) 

In Equation (3.3), x denotes the number of penalties. We try and minimize the fitness 

function. 

 

3.2.4 Proposed Algorithm using Simulated Annealing for Complete Timetable 

Scheduling 

 

1 Timetable is initialized with given set of  professors, electives, timeslots. 

2 Take initial temperature to be very high (T=1000). 

3 Repeat till (Temperature > 1) 

a. Define current node C, Initialize random neighbor N. 

b. Evaluate ΔE = eval(N)- eval(C). 

 

        eval (N)= number of clashes (calculated for soft constraint violation) in  

  new node 

        eval (C)= number of clashes (calculated for soft constraint violation) in  

  current node 

 

c. If eval(N) < eval(C) i.e. ΔE <0 choose N, probability = 1. 
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d. If eval(N) > eval(C) i.e. ΔE >0 choose N, probability P=-ΔE/T 

e. Fitness Function (cost function)= x; where x is the number of clashes. 

4 Temp = temperature * coolingRate. 

5 Stop when Temperature < 1 or max number of iterations are over. 

6 Analyse the performance with respect to following factors:  

f. No of penalties vs iterations.  

g. Time taken for execution of each iteration with respect to generation 

number  

7 Compare these factors with Genetic Algorithm and PSO. 

 

3.2.5 Proposed Algorithm using Genetic Algorithm for Complete Timetable 

Scheduling 

 

1. Initialize a timetable with given number of professors, time slots, classes and 

electives. 

2. Define population size, mutation rate, crossover rate. 

3. Form one chromosome, calculate number of clashes as per constraints not 

satisfied. 

4. Calculate fitness of a chromosome using fitness function=x; where x denotes no 

of penalties. 

5. Repeat for all generations 

a. Crossover 

b. Mutation 

c. Selection 

d. Compute new fitness value for new chromosome obtained  

6. Stop when max number of generations are over  

7. Analyze the performance with respect to following factors:  

a. No of penalties vs generations.  

b. Time taken for execution of each generation with respect to generation 

number  

d) Compare these factors with Simulated Annealing and PSO 
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3.2.6  Proposed Algorithm using Particle Swarm Optimization for Complete 

Timetable Scheduling 

 
1 Initialize random set of particle (solutions) 

2 Repeat till maximum iterations reached. 

1. Calculate fitness value of each particle. Fitness value= number of penalties  

2. If Current fitness value >pBest , do pBest = current fitness value else keep 

previous pBest  

3. Assign best particle’s pBest to gBest i.e. gBest= best pBest  

4. Calculate velocity of each particle using (1)  

5. Update data values in equations (2) using values from equation (1)  

 

3 Analyze the performance with respect to following factors:  

1. No of penalties vs iterations  

2. Time taken for execution of each iteration with respect to generation number 

4. Compare these factors with Genetic Algorithm and Simulated Annealing. 

 

3.3 PROPOSED NEW MEMETIC ALGORITHM FOR COURSE SCHEDULING 

In the third part of our work, we propose a novel memetic algorithm incorporationg 

the concept of local search mutation. We then compare GA, SA, GA-SA, Mahfoud’s 

Algorithm, Local search Mutation and our Memetic Algorithm. 

 

3.3.1 Dataset used with initial parameters  

In this work, we have used the dataset from Track 3 of International Timetabling 

Competition- 2007: Curriculum-based Course Timetabling. It consists of the 

following entities.  

Days: This gives us the number of days in a week for which the timetable is 

constructed. 

Timeslots: Timeslots are the fixed number of slots in a day and is same for every day 

of the week.  
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Periods: A period is composed of a day and a timeslot. The total number of 

scheduling periods is the product of the days multiplied by the timeslots in a day. 

Courses: These specify the total number of courses in a particular timetable instance. 

Each course contains certain number of lectures. There are certain number of slots in 

which particular courses cannot be assigned as defined in the dataset. 

Teachers: Teachers teach the courses they are assigned to. 

Rooms. Each room has a certain capacity as mentioned in the data set. The courses 

can be assigned to any room provided the number of students are less than the 

capacity of room.  

Curriculum: A curriculum is a set of courses and these courses have students in 

common. Based on this, we have the conflicts between courses and other soft 

constraints.  

Twenty-one instances were released for this track, seven for each set (early, late, and 

hidden). All instances are real data and come from the University of Udine.  

The number of courses in these instances ranges between 30 and 131, the total 

number of lectures from 138 to 434, the number of rooms between 5 and 20, and the 

number of curricula between 13 and 150.  

Initial Parameters:  

• Initial Temperature = 1000  

• Cooling Rate = 0.05  

Table 1 below, gives us the details regarding the 21 instances for the ITC 2007 data 

set. 
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Table 1: ITC 2007 Benchmark Dataset 

 

3.3.2 Proposed Set of constraints 

A collection of constraints is taken from ITC 2007 curriculum based timetabling 

problem. 

Hard Constraints: 

1. Lectures: All lectures of a course must be scheduled, and they must be 

assigned to distinct periods. A violation occurs if a lecture is not scheduled.  

2. Room Occupancy: Two lectures cannot take place in the same room in the 

same period. Two lectures in the same room at the same period represent one 

violation . Any extra lecture in the same period and room counts as one more 

violation.  
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3. Conflicts: Lectures of courses in the same curriculum or taught by the same 

teacher must be all scheduled in different periods. Two conflicting lectures in 

the same period represent one violation. Three conflicting lectures count as 3 

violations: one for each pair.  

4. Availabilities: If the teacher of the course is not available to teach that course 

at a given period, then no lectures of the course can be scheduled at that 

period. Each lecture in a period unavailable for that course is one violation.  

Soft Constraints: 

The Soft constraints are as follows:  

1. Room Capacity: For each lecture, the number of students that attend the 

course must be less or equal than the number of seats of all the rooms that host 

its lectures. Each student above the capacity counts as 1 point of penalty.  

2. Minimum Working Days: The lectures of each course must be spread into 

the given minimum number of days. Each day below the minimum counts as 5 

points of penalty.  

3. Curriculum Compactness: Lectures belonging to a curriculum should be 

adjacent to each other (i.e., in consecutive periods). For a given curriculum we 

account for a violation every time there is one lecture not adjacent to any other 

lecture within the same day. Each isolated lecture in a curriculum counts as 2 

points of penalty.  

4. Room Stability: All lectures of a course should be given in the same room. 

Each distinct room used for the lectures of a course, but the first, counts as 1 

point of penalty.  

3.3.3 Fitness function: 

The fitness function as per ITC 2007 is given by: 

 f = x              (3.4) 
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In Equation (3.4), x denotes the number of penalties. We try and minimize the fitness 

function. 

3.3.4 Proposed Memetic Algorithm with Local Search Mutation: 

 Algorithm 1: The Genetic Algorithm incorporating local search by SA  

1. Initialization the: Initial population of chromosomes, Temperature T, Cooling 

Rate  

2. for each generation do  

1. for each chromosome C in the current population do  

• Procedure(SA): Steps 4(b,c,d,e,f)  

2. end for  

3.  for the updated population do  

• Selection 

• Crossover  

• Procedure (Local Search Mutation)  

4. end for  

5. current population=final population;  

6. Update Temperature T as per Eq (2.10)  

7.  if T <1 STOP 

8. end for  

9. S=BEST(final population) 

10. return S 

Procedure (SA): Applying SA for optimized timetable generation: 

1. Initialize a timetable (number of professors, time slots, classes and subjects). 

2. Defineinitial parameters such as Rate of cooling and Temperature. 

3. Temperature T is initialized to 1000 

4. While(T is greater than 1) 

i. Define current node X, Initialize random neighbor P. 

j. Evaluate  ΔE = z(P)- z(X)    (3.5) 

 

z (P)= Total number of penalties for neighboring node for violating soft 

constraints 
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z (X)= Total number of penalties for neighboring node for violating soft 

constraints 

k. If z(P) < z(X) i.e. ΔE <0 choose N, probability = 1. 

l. If z(P) > z(X) i.e. ΔE >0 choose N, probability P= 𝑒7∆9/: ( choose N if P > 

0.77 only) 

m. else Retain C 

n. Temp = temperature * RateOfCooling. 

o. When Temperature < 1 STOP 

 
 
Procedure (LSM): The greedy stochastic local search for mutation  

• for entire updated population do 

• select fittest individual 𝑓aXL  

• end for  

• Generate random number rϵ[0,1]  

• if r ≤ 0.5 do simple swap mutation by exchanging two random genes of the fittest 

individual 𝑓aXL 

• else  

• select random gene 𝑔X 

• for (k=0 to chromosomeSize - 1) do  

• swap 𝑔X and 𝑔b 

• Calculate fitness value of new chromosome 𝑓Lcd  

• if eval(𝑓Lcd) < eval(𝑓aXL)  

•  Update 𝑓aXL= 𝑓Lcd 

• end if  

• end for  

• end if 
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CHAPTER 4 

 

RESULTS 

 

 

 

4.1   COMPARISON OF GENETIC ALGORITHM, SIMULATED 

ANNEALING WITH ASSOCIATION RULE MINING FOR SCHEDULING 

ELECTIVE COURSES 

4.1.1 Association Rule Mining 

For sixth semester IT students, there are 6 optional electives. Student give their 

options for the 2 electives they plan to take. Table 2 gives us the support count and 

support rank for each subject. Support count (SUPCOUNT) is the count for each 

subject selected by students. The subjects are ranked (SUPRANK) as per the support 

count of each subject. A threshold value is fixed. Subject having support count < 

threshold are eliminated. 

In our work, we take threshold=10 so MSD is discarded. 

 

Table 2: Support Count and Support Rank for elective subjects 
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Here the electives are, 

 Machine Learning (ML), Cyber Forensics and Cyber Crime (CFCC), Advanced 

Database Management System (ADBMS), Real Time Systems( RTS), Optical 

networks (ON), High speed Networks (HSN), Multimedia System Design (MSD). 

Also SUPCOUNT represents the support count and  SUPRANK is the support rank  

The associations between electives is found using the FP growth algorithm and are 

then counted. Associations having highest association count and rank = 1are the 2 

electives. 

As per Table 3, the two electives selected are Machine Learning (ML) and Cyber 

Forensics and Cyber Crime (CFCC). 

 

 

Table 3: Associations for Elective Subjects 

  

4.1.2 Comparison of timetables generated by GA and SA 

Finally after the timetables are generated using Genetic Algorithm and Simulated 

Annealing, they are compared on the basis of following factors. The Timetables 

generated by SA and GA are automated timetables which require no manual work. 

They generated timetables have constraint violation (hard constraint or soft 
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constraint). The comparison is done on the basis of two parameters:  

 

1. Execution/ Makespan time: It gives the time taken for timetable generation  

2.No. of Generation/ iteration: This gives the iteration number ( for SA) or 

generation number (for GA) at which we obtain the solution . 

 

 
 

Table 4: Comparison of SA and GA 

 

From the results we see can see that,  

1. Simulated annealing takes lesser time to generate timetable as compared to 

Genetic algorithm and hence gives a faster result. Both genetic algorithm and 

simulated annealing are much more faster than manual timetable scheduling. 

2.  Simulated annealing gives a solution in lesser number lesser number of 

iterations as compared to genetic algorithm.  

3. From the Table 4, we can see that Simulated Annealing takes lesser time as 

compared to GA for all the best, average and worst case scenario. It also takes 

lesser number of iterations as compared to GA to reach the optimal solution. 
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4.1.3 Timetables generated by GA and SA 

Timetable obtained after GA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Timetable generated by Genetic Algorithm 
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Timetable obtained after SA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Timetable generated by Simulated Annealing 
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4.2 RESULTS FOR PROPOSED TIMETABLE SCHEDULING 

INCORPORATING TEACHERS’S PREFERENCES FOR SCHEDULING 

ELECTIVE AND CORE COURSES USING GENETIC ALGORITHM, 

SIMULATED ANNEALING AND PARTICLE SWARM OPTIMIZATION 

4.2.1 Performance Analysis:  

In this work, we generate timetables using GA, SA and PSO algorithms by ensuring 

that no hard constraints are violated and the soft constraints are minimized to the 

maximum extent. We analyse the performance of GA, SA and PSO on the basis of 2 

parameters: 

4.2.2 No of penalties vs Generations/Iterations: 

The 3 algorithms are compared with respect to number of penalties and generation/ 

iteration number in Fig. 4. 
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Performance of GA:  

The graph in Fig 4 shows that the number of penalties decrease with the increase in 

generations in GA. Initially there is a huge decrease in penalties and then it becomes 

almost constant. The optimized fitness function is when the penalties =0.  

 

 

Fig 4: No of penalties vs Generations for Genetic Algorithm 
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Performance of SA:  

This graph in Fig. 5 shows that the number of penalties decrease with the increase in 

generations in SA. The optimized solution is obtained near iteration = 900 where 

number of penalties=0 and an optimized timetable is obtained.  

 

 
 

Fig 5: No of penalties vs Iterations for Simulated Annealing 
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Performance of PSO:  

This graph in Fig. 6 shows that the number of penalties decrease with the increase in 

generations in PSO. The optimized fitness function is when the penalties =0 and then 

an optimized timetable is obtained.  

 

 

 
 

Fig. 6: No of penalties vs Iterations for Particle Swarm Optimization 
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Comparative graph giving their performance is as below:  

The penalties obtained by PSO is smaller than GA at 400th iteration. Simulated 

Annealing has least amount of penalties and obtains a solution in the least number of 

iterations.  

 

 
 
 

 200 400 600 800 1000 

PSO 100 80 60 40 20 

GA 120 100 60 60 40 

SA 100 60 20 20 0 

 
Fig 7: The number of penalties minimized over generation/iteration number 
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4.2.3 Time taken for execution of each generation/iteration with respect to generation/ 

iteration number  

GA, SA and PSO are compared with respect to their execution time (in ms) for every 

generation/iteration and generation/iteration number.  

Performance of GA:  

Here we study the execution time of each generation with respect to the generation 

number. We can observe that for GA, the execution time for consecutive generations 

decrease with increase in the number of generations. Initial execution time for GA 

=240 ms and decreases to almost 20ms after 100 generations.  

 

 
 

Fig. 8: The variation of execution time (ms) over generation/iteration number for GA  

 

 

 

 



 

40 

Performance of PSO:  

Here we study the execution time of each iteration with respect to the iteration 

number. We can observe that for PSO, the execution time for consecutive iterations 

decrease with increase in the number of iterations. We can also observe that execution 

time for PSO is less than GA and SA (execution time in initial generations = 97ms) 

and decreases slowly as compared to GA, SA.  

 

 
 

Fig 9: Execution Time for each iteration vs Iteration Number for Particle Swarm 
Optimization 
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Performance of SA:  

Here we study the execution time of each iteration with respect to the iteration 

number. We can observe that for SA, the execution time for consecutive iterations 

decrease with increase in the number of iterations. SA has maximum execution time 

than GA and PSO in initial iterations i.e. 320 ms. However it decreases very fast to 

less than 50 ms in less than 100 iterations.  

 

 
 

Fig 10: Execution Time for each iteration vs Iteration Number for Simulated 
Annealing 
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Comparative performance analysis of GA, SA, PSO  

 

 
 

Fig 11: Performance Analysis for 3 algorithms 
 

A comparison of the graphs in Figs. 8-10 indicates that initially, PSO followed by GA 

has lower execution time. However, overall SA has faster execution as observed from 

the tail portion of the graph in Fig. 4.  

4.2.4 Timetables generated by GA and SA 

The teacher preferences are shown in Fig. 12,13. Out of all the professors, the 

following two professors of Delhi Technological University gave their choice of slots 

while the other professors indicated that they were comfortable with all slots.  
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Fig. 12: The system GUI for accepting teacher preference against Teacher ID = 5  

 

Professor 5 is Professor Nidhi and she is given slot 4 i.e. (11:00 - 12:00) and all her 

classes are allotted in this slot for 6-B. 

 

 

 
 
 
 
 
 
 
 
 

Fig. 13: The system GUI for accepting teacher preference against Teacher ID = 3  

 

Professor 3 is Professor Rahul Katarya and he is given slot 3 i.e. (10:00 - 11:00) and 

all his classes are allotted in this slot for 6-B. 

 

The timetables generated by are shown below in Figs. 6, 7, 8 for GA, SA and PSO 

respectively for the two sections 6-A and 6-B.  
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Timetable obtained after GA 

  

 

 
Fig. 14: Two instances of timetables generated by GA for the two sections A and B  

 

 

 

 

 

 

 

 

 

 



 

45 

Timetable generated using SA 

 

 

 

Fig. 15: Two instances of timetables generated by SA for the two sections A and B  
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Timetable generated using PSO  

 

Fig. 16: Two instances of timetables generated by PSO for the two sections A and B  

4.3 PERFORMANCE ANALYSIS OF MEMETIC ALGORITHM 

The dataset used for memetic algorithm is the ITC-2007: Curriculum based Course 

Timetabling (ITC-2007) dataset Track 3 for curriculum-based university. This was the 

benchmark dataset used for international timetable scheduling competition 

specifically for university timetabling problem. 
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The proposed memetic algorithm was implemented as per the steps in Section 4.2.3. 

The results were compared to the course scheduling approaches using GA [28, 29], 

SA [30, 31], the hybrid GA-SA [32], Mahfoud et al.’s method [33] and the local 

search algorithm [34] both in terms of runtime penalty cost and soft constraint 

satisfaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Table 5: Comparison of Soft Constraint values for all the algorithms 

As per Table 5, we can observe that the soft constraint violation in minimum for 

Memetic Algorithm with LSM. This proves that the solutions generated by memetic 

Memetic Algorithm with LSM are highly optimal as compared to other solutions. 
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The fitness functions are plotted with respect to time for all 21 instances as shown in 

Fig. 9,10,11,12,13,14,15,16,17. The graphs indicate a considerably low value for 

Memetic Algorithm with LSM when compared to all the other methods. We can also 

observe that Memetic Algorithm with LSM takes lesser time to reach the optimal 

solution. 

 

 
 

 

 

 

Fig. 17: Comparison of all the algorithms for Instance 1 
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Fig. 18: Comparison of all the algorithms for Instance 2 
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Fig. 19:  Comparison of all the algorithms for Instance 3 
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Fig. 20:  Comparison of all the algorithms for Instance 4 
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Fig. 21: Comparison of all the algorithms for Instance 5 
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Fig. 22: Comparison of all the algorithms for Instance 6 
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Fig. 23: Comparison of all the algorithms for Instance 7 
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Fig. 24: Comparison of all the algorithms for Instance 8 
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Fig. 25: Comparison of all the algorithms for Instance 9 
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Fig. 26: Comparison of all the algorithms for Instance 10 
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Fig. 27: Comparison of all the algorithms for Instance 11 
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Fig. 28: Comparison of all the algorithms for Instance 12 
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Fig. 29: Comparisons of all the algorithms for Instance 13 
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Fig 30: Comparisons of all the algorithms for Instance 14 
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Fig. 31: Comparisons of all the algorithms for Instance 15 
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Fig. 32: Comparisons of all the algorithms for Instance 16 
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Fig. 33: Comparisons of all the algorithms for Instance 17 
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Fig. 34: Comparisons of all the algorithms for Instance 18 
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Fig. 35: Comparisons of all the algorithms for Instance 19 
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Fig. 36: Comparisons of all the algorithms for Instance 20 
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Fig. 37: Comparisons of all the algorithms for Instance 21 

 

 

 



 

69 

4.4 GuI FOR TIMETABLE SCHEDULING 

 

• Start Page 

 
Fig. 38: Electives page 

 

This page gives us the first page the 2 electives are displayed which are chosen after 

association rule mining 
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• Teacher selection page 

 

Fig. 39: Teacher selection page 

This page is where we enter the names of 3 teachers who will be teaching the 2 

electives. We click on “Generate Timetable” button to generate the timetable 
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• Timetable generation with GA 

This gives us the final timetable schedule for the chosen electives using Genetic 

Algorithm 

 

Fig. 40: Timetable for TW1TF3 using GA 
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Fig. 41: Timetable for TW2GF2 using GA 

 

 

 

 

Fig. 42: Timetable for TW3TF3 using GA 
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• Timetable generation with SA 

This gives us the final timetable schedule for the chosen electives using Simulated 

Annealing. 

 

 

Fig. 43: Timetable for TW1TF3 using SA 

 

Fig. 44: Timetable for TW2GF2 using SA 
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Fig. 45: Timetable for TW3TF3 using SA 
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CONCLUSION 

 

 

 

In this work, we have compared the algorithms Simulated annealing and genetic 

algorithm for timetable optimization. The generated timetables generate optimal 

solutions and the data association rule mining help us determine the electives as per 

students preferences, The optimization algorithms are compared on the basis of their 

makespan time and generation/iteration number. SA is found to have better efficiency 

than GA with respect to both the computational time as well as timetable generation.  

We have also investigated genetic algorithm, simulated annealing and particle swarm 

optimization algorithms for the task of automatically creating an entire timetable 

(electives+ core courses+ lab) for third year undergraduate students for our 

University. We have proposed a novel set of hard constraints and soft constraints 

suited to the task that incorporate teacher’s preferences for slots and minimize student 

movement between classes. The three optimization algorithms are compared on the 

basis of Execution Time of each generation/iteration with respect to 

generation/iteration number which decreases most in Simulated Annealing. We also 

compared the algorithms on the basis of No of penalties vs Generations/Iterations. 

The penalties can be ranked as SA < PSO < GA. Simulated Annealing has least 

amount of penalties and obtains a solution in the least number of iterations.  
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Finally, we have proposed a novel memetic algorithm which uses the goodness of 

both GA and SA and introduces the concept of greedy stochastic local search 

mutation that finds optimal solutions with faster convergence. In the memetic 

algorithm SA helps in providing the stopping criteria for MA which helps in 

converging of the solution, GA helps in providing optimal solution and local search 

mutation in GA helps in obtaining optimal solution in lesser time and better 

convergence.  ITC 2007 timetabling dataset is used for performing comparisons 

between all the methods and gives us that performance of Memetic Algorithm along 

with Local Search Mutation is better in terms of faster converging and optimal 

solution. The approach has good potential to yield optimum results when applied to 

other real-world optimization problems, and that forms the future scope of our work.  
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