

EXPLORING EVOLUTIONARY ALGORITHMS INCORPORATING

TEACHER - STUDENT PREFERENCES FOR UNIVERSITY COURSE

SCHEDULING

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

INFORMATION SYSTEM

Submitted by:

Aparna Bhutani
2K17/ISY/17

Under the supervision of

Dr. SEBA SUSAN

INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi- 110042

JUNE, 2019

II

DECLARATION

I, Aparna Bhutani, student of M.Tech (ISY) hereby declare that the project

Dissertation titled “Exploring Evolutionary Algorithms incorporating Teacher-

Student preferences for University Course Scheduling” which is submitted by me to

Department of Information Technology, Delhi Technological University, Delhi in

partial fulfillment of the requirement for the award of the degree of Master of

Technology, is original and not copied from any source without proper citation. This

work has not previously formed the basis for the award of any Degree, Diploma

Associateship, Fellowship or other similar title or recognition.

Place: New Delhi

Date:

Aparna Bhutani

(Department of Information Technology)

Delhi Technological University

III

CERTIFICATE

I hereby certify that the project dissertation titled “Exploring Evolutionary Algorithms

incorporating Teacher-Student preferences for University Course Scheduling” which

is submitted by Aparna Bhutani, 2K17/ISY/17, Department of Information

Technology, Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology, is a record of the

project work carried out by the students under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any Degree of Diploma

to this University or elsewhere.

Place: New Delhi

Date:

Dr. Seba Susan

SUPERVISOR

Associate Professor

(Department of Information Technology)

Delhi Technological University

(ii)

IV

ACKNOWLEDGEMENT

The realization and absolute conclusion of this project involved a lot of guidance and

assistance from numerous people and I am really fortunate to have got this all along

the project. Whatever I have prepared is because of this guidance and assistance and it

is worth mentioning my thanks to them.

My grateful thanks is extended to Delhi Technological University for providing me

the platform to go in for this work. I would also like to acknowledge the Information

Technology department for providing me with useful and constructive resources.

I am grateful to and privileged enough to get relentless inspiration as well as valuable

suggestions from my parents and seniors who aided me to accomplish this project.

APARNA BHUTANI

(Department of Information Technology)

Delhi Technological University

(iii)

V

ABSTRACT

Timetable scheduling problem deals with arranging a set of events (classes, exams,

courses) into a defined number of timeslots making sure that the conflicts are avoided.

In our work, we have proposed a new course scheduling based on mining for

students’ preferences for Open Elective courses that makes use of optimization

algorithms for automated timetable generation and optimization. The Open Elective

courses currently running in an actual university system is used for the experiments.

Hard and soft constraints are designed based on the timing and classroom constraints

and minimization of clashes between teacher schedules. Two different optimization

techniques of Genetic Algorithm (GA) and Simulated Annealing (SA) are utilized for

our purpose. The generated timetables are analyzed with respect to the timing

efficiency and cost function optimization. The results highlight the efficacy of our

approach and the generated course schedules are found at par with the manually

compiled timetable running in the university.

We have also proposed a novel set of soft constraints for university course timetabling

that in addition to conventional constraints incorporate teacher’s preferences and

(iv)

VI

student time management as well. Here, the hard constraints are those that need to be

mandatorily satisfied. The soft constraints are the penalties that are sought to be

minimized through every iteration of the optimization algorithm. The evolutionary

algorithms- Genetic Algorithm, Particle Swarm Optimization, and the heuristic

Simulated Annealing algorithm are used for the optimization task. The timetables

generated based on actual university data are found to be more humanely optimized

than the previous work of the authors due to the incorporation of human factor

consideration both from the perspective of teachers and students.

Finally, we have proposed a new memetic algorithm that hybridizes the global search

strategies of Genetic Algorithm (GA) with the local search heuristics of Simulated

Annealing (SA) and a greedy randomized local search mutation in GA. The basic

framework of our memetic algorithm is that of GA. The population of chromosomes

in every generation of GA is first refined by a local neighbourhood search for each

chromosome as defined by the SA procedure, prior to the selection, crossover and

mutation steps of GA. The mutation step in GA is randomized, with a greedy

stochastic local search mutation being randomly selected over normal swap mutation

of the fittest chromosome in each iteration of GA. The convergence of the fitness

function and the stopping criterion are as determined by SA. As proved from the

experimental results, this hybridization presents highly optimal solutions with fast

convergence. Comparison to the state-of-the-art on a benchmark dataset for university

course scheduling proves the efficacy of our approach.

(v)

VII

LIST OF FIGURES

Figure No. Description Page No.

Fig. 1 The proposed memetic
algorithm

 13

Fig. 2 Timetable obtained using GA 32

Fig. 3 Timetable generated by
Simulated Annealing

33

Fig. 4 No of penalties vs Generations
for Genetic Algorithm

35

Fig. 5 No of penalties vs Iterations for
Simulated Annealing

36

Fig. 6 No of penalties vs Iterations for
Particle Swarm Optimization

37

Fig. 7 The number of penalties
minimized over

generation/iteration number

38

Fig. 8 The variation of execution time
(ms) over generation/iteration

number for GA

39

Fig. 9

Execution Time for each
iteration vs Iteration Number

for PSO

40

Fig.10

Execution Time for each
iteration vs Iteration Number

for SA

41

Fig. 11

Performance Analysis for 3
algorithms

42

Fig 12 The system GUI for accepting
teacher preference against

Teacher ID = 5

43

Fig 13 The system GUI for accepting
teacher preference against

43

VIII

Teacher ID = 3

Fig. 14

Two instances of timetables
generated by GA for the two

sections A and B

44

Fig. 15 Two instances of timetables
generated by SA for the two

sections A and B

45

Fig. 16 Two instances of timetables
generated by PSO for the two

sections A and B

46

Fig. 17 Comparisons of all the
algorithms for Instance 1

48

Fig. 18 Comparisons of all the
algorithms for Instance 2

49

Fig. 19 Comparisons of all the
algorithms for Instance 3

50

Fig. 20 Comparisons of all the
algorithms for Instance 4

51

Fig. 21 Comparisons of all the
algorithms for Instance 5

52

Fig. 22 Comparisons of all the
algorithms for Instance 6

53

Fig. 23 Comparisons of all the
algorithms for Instance 7

54

Fig. 24 Comparisons of all the
algorithms for Instance 8

55

Fig. 25 Comparisons of all the
algorithms for Instance 9

56

Fig. 26 Comparisons of all the
algorithms for Instance 10

57

Fig. 27 Comparisons of all the
algorithms for Instance 11

58

Fig. 28 Comparisons of all the
algorithms for Instance 12

59

Fig. 29 Comparisons of all the
algorithms for Instance 13

60

Fig. 30 Comparisons of all the
algorithms for Instance 14

61

IX

Fig. 31 Comparisons of all the
algorithms for Instance 15

62

Fig. 32 Comparisons of all the
algorithms for Instance 16

63

Fig. 33 Comparisons of all the
algorithms for Instance 17

64

Fig. 34 Comparisons of all the
algorithms for Instance 18

65

Fig. 35 Comparisons of all the
algorithms for Instance 19

66

Fig. 36 Comparisons of all the
algorithms for Instance 20

67

Fig. 37 Comparisons of all the
algorithms for Instance 21

68

Fig. 38 Electives page 69

Fig. 39 Teacher selection page 70

Fig. 40 Timetable for TW1TF3 using
GA

71

Fig. 41 Timetable for TW2GF2 using
GA

72

Fig. 42 Timetable for TW3TF3 using
GA

72

Fig. 43 Timetable for TW3TF3
 using SA

73

Fig. 44 Timetable for TW2GF2
using SA

73

Fig. 45 Timetable for TW3TF3
using SA

74

(viii)

X

LIST OF TABLES

Table No. Description Page No.

Table 1 ITC 2007 Benchmark Dataset 25

Table 2 Support Count and Support
Rank for elective subjects

29

Table 3 Associations for Elective
Subjects

30

Table 4 Comparison of SA and GA 31

Table 5 Comparison of Soft Constraint
values for all the algorithms

49

(ix)

XI

LIST OF ABBREVIATIONS

1. GA: Genetic Algorithm

2. SA: Simulated Annealing

3. PSO: Particle Swarm Optimization

4. MA: Memetic Algorithm

5. PRGA: Parallel Recombinative Genetic Algorithm

(x)

XII

CONTENTS

Candidate's Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vi

List of Tables ix

List of abbreviations x

Chapter 1 INTRODUCTION 01

Chapter 2 LITERATURE REVIEW 03

2.1 Timetable Scheduling 03

2.2 Optimization using Genetic Algorithm 04

2.3 Optimization using Simulated Annealing 06

2.4 Optimization using Particle Swarm Optimization 07

2.5 Optimization using Hybrid Algorithms 08

2.5.1 GA- SA 08

2.5.2 Hybrid Algorithm by Mahfoud 09

2.5.3 Local Search Algorithm 10

2.5.4 Memetic Algorithm 11

Chapter 3 PROPOSED WORK 15

3.1 Proposed Timetable Scheduling incorporating student preferences using 15

association rule mining for scheduling elective courses using Genetic

Algorithm and Simulated Annealing

3.1.1 Dataset used with initial parameters and assumptions 15

3.1.2 Proposed Set of constraints 16

3.1.3 Fitness function 17

3.1.4 Proposed algorithm using Association Rule Mining and GA 17

3.1.5 Proposed algorithm using Association Rule mining and SA 18

3.2 Proposed Timetable Scheduling incorporating teacher preferences for 19

XIII

Scheduling elective and core courses using Genetic Algorithm, Simulated

 Annealing and Particle Swarm Optimization

3.2.1 Dataset used with initial parameters and assumptions 19

3.2.2 Proposed Set of constraints 20

3.2.3 Fitness function 21

3.2.4 Proposed Algorithm using Simulated Annealing for Complete 21

Timetable Scheduling

3.2.5 Proposed Algorithm using Genetic Algorithm for Complete 22

Timetable Scheduling

3.2.6 Proposed Algorithm using Particle Swarm Optimization for 23

Complete Timetable Scheduling

3.3 Proposed new Memetic Algorithm for Course Scheduling 23

3.3.1 Dataset used with initial parameters 23

3.3.2 Proposed Set of constraints 25

3.3.3 Fitness function 26

3.3.4 Proposed Memetic Algorithm 27

Chapter 4 RESULTS 29

4.1 Results for Proposed Timetable Scheduling incorporating student 29

 preferences using association rule mining for scheduling elective courses

using Genetic Algorithm and Simulated Annealing

4.1.1 Association Rule Mining 29

4.1.2 Comparison of timetables generated by GA and SA 30

4.1.3 Timetables generated by GA and SA 32

4.2 Results for Proposed Timetable Scheduling incorporating teacher preferences 34

 for scheduling elective and core courses using Genetic Algorithm, Simulated

Annealing and Particle Swarm Optimization

4.2.1 Performance Analysis 34

4.2.2 No of penalties vs Generations/Iterations 34

4.2.3 Time taken for execution of each generation/iteration with respect to

generation/ iteration number 39

4.2.4 Timetables generated by GA and SA 42

4.3 Performance analysis of proposed Memetic Algorithm 46

XIV

4.4 GuI for Timetable Scheduling 69

CONCLUSION 75

REFERENCES 77

LIST OF PUBLICATION 81

1

CHAPTER 1

INTRODUCTION

Timetable Scheduling deals with developing course timetables, assigning courses to

teachers in the given timeslots and satisfying a set of constraints. Automation of

timetable generation has been of increasing interest due to the increase in the elective

or optional courses that universities offer to students. It is challenging to schedule the

classes for students in fixed time-slots with the available resources of classrooms and

instructors.

Some university scheduling problems requires hard and soft constraints to be satisfied

completely whereas some require soft constraints to be satisfied as much as possible

which eventually controls the quality of the timetable generated. Different fields deal

with this timetabling problem like operation research. It includes: Graph Coloring [1]

where the vertices represent courses and the edges represent students, Integer

Programming [2] and Constraint Satisfaction Programming [3]. The course

scheduling problem is a NP Hard problem and requires high amount of computation

complexity. This led to the emergence of algorithms like Simulated Annealing and

other local search techniques and also metaheuristics like evolutionary and genetic

algorithms. The range of optimization algorithms vary from mathematical to

evolutionary to heuristic. Genetic Algorithm (GA) is a highly efficient evolutionary

algorithm that follows the principle of the evolution of the fittest gene [4]. Its

application to the timetable scheduling problem is investigated in [5,6]. Highly

optimized schedules are generated by the heuristic Simulated Annealing (SA)

algorithm reportedly in minimal time as per research in [7-10]. The different types of

schedules generated by SA in [7-10] range from university course timetables, exam

timetables, staff job schedules etc. SA and GA are the most investigated optimization

algorithms for scheduling problems. Most of the algorithms differ in the initialization

2

routines or variant of SA and GA used. Several variants of GA are found in literature

[11]. Particle Swarm Optimization which is another evolutionary algorithm has been

explored in [12, 13] for timetable scheduling. Simulated annealing is used for

optimizing in scheduling problems and is very popular because of its less execution

and how it generates an optimized timetable. A new work used for elective course

scheduling has been seen in [14]. It requires initially the timetable template which

makes sure hard and soft constraints are satisfied and then it uses Genetic Algorithm

for timetable generation and optimization. Another recent work is [15] which

minimizes student conflicts for different courses that uses graphical models and

distance-based local search methods.

In first art of our work, we have proposed fully automated course scheduling

technique . Our approach uses algorithms GA and SA for generating timetables. We

have used association rule mining that mines patterns for the preference of students

for Elective courses they wish to attend. We have used our university data for the

electives that the students are currently studying. We compare the timetables

generated using optimization algorithms like Genetic Algorithm and Simultaed

Annealing are compared with the manually compiled timetable which is being used

by the university.

In second part of our work, we formulate new soft constraint functions in order to

generate more human-friendly optimized schedules. GA, SA and PSO optimization

algorithms are investigated for the task.

 Hybrid approaches which uses the concept of global and local search strategies have

emerged that seek to optimize the timetabling problem. These approaches much more

fast and optimal solutions. In our final work, we have proposed a memetic algorithm

which uses the concept of greedy stochastic local search mutation in order to generate

more optimal timetable schedules which offer faster convergence.

3

CHAPTER 2

LITERATURE REVIEW

2.1 TIMETABLE SCHEDULING

Timetable Scheduling is an optimizing problem that deals with assigning students –

courses, teacher - courses, teacher - students in set of given timeslots. Timetable

scheduling problem contains a set of hard constraint and soft constraints. The hard

constraints have to be followed by all valid solutions and the soft constraints define

the quality of valid solutions based on the number of soft constraint satisfied.

Course scheduling is a challenging task these days in schools and university because

of the huge amount of elective courses that are offered by the universities, This also

causes course scheduling to be a very tedious and time consuming job .

 Evolutionary algorithm are population based metaheuristic optimization algorithms.

They are inspired and use mechanisms of biological computation. A number of

evolutionary algorithms have been used for solving the course scheduling problem to

find optimal solution. Genetic Algorithm (GA) is an evolutionary algorithms that is

based on Darwin’s theory of “survival of the fittest”. GA and its variants such as

NSGA, CSGA etc have been used for automatic timetable generation with different

combinations of crossover and mutation steps. These help in generation more efficient

solutions. Another meta heuristic approach is a single solution approach such as

Simulated Annealing. SA uses a local search process in the neighborhood for

continuously refining one single solution. Hybrid approaches that combine

evolutionary mechanisms with local search have also emerged as highly efficient

alternatives. Some of the hybrid approaches include the multi-population hybrid GA

in [16], the hybrid fuzzy evolutionary approach in [17], the fuzzy genetic algorithm

with local search in [18].

4

Memetic algorithms (MA) were introduced by Moscato in 1989. It combines the best

features of population based evolutionary algorithms with local search techniques

[19]. As per Moscato and Cotta [20], the gene evoluton is improved by using various

local search techniques. MA is considered to be an amalgamation of GA and SA.

Most of these algorithms use the basic framework of Genetic Algorithms and are

called as hybridized evolutionary algorithms in [21-23]. Recent work in Memetic

Algorithm ensures combination of population based evolutionary approaches with

local neighborhood search. Examples of such hybridized approaches are: Whale

Optimization with Simulated Annealing [24], Harmony search with the hill climbing

algorithm [25], Water wave optimization hybridized with sequential quadratic

programming [26].

In our work we have used optimization tools such as genetic algorithm [27,28] ,

simulated annealing [29,30,31] and particle swarm optimization [12]. We have also

proposed a new memetic algorithm that incorporates the goodness of the global

search techniques of GA as well as the local search strategies of SA. This memetic

algorithm also consists of local search mutation instead of the normal mutation which

helps in faster convergence and generating an optimal solution.

2.2 OPTIMIZATION USING GENETIC ALGORITHM

Genetic Algorithm [27,28] is based on the concept of biological evolution that is

based on Darwin’s theory of “Survival of the Fittest”. This states that fittest organism

survives and in our case this means that the fittest or the most optimal solution

survives in the end . GA is used in optimization problems and produces the most

optimal solution.

Operations of Genetic Algorithm are as follows:

2.2.1 Initialize:

This step deals with initializing and defining the parameters that are used in the

further GA process. It consists of defining size of chromosome, gene, population, rate

of crossover, rate of mutation.

5

A Chromosome represents one single individual solution. In course scheduling it can

represent one timetable instance and so on. Fitness value of chromosomes is

calculated at each iteration/ generation of the algorithm.

Population is the entire collection of all the chromosomes.

We define all these in the initialize step of the GA process for the initial random set of

chromosomes.

2.2.2 Defining the fitness function:

Fitness function defines what we want to optimize i.e. the function which determines

the quality of our solution. It tells the goodness of a chromosome. For example, for a

minimizing problem, the lower the fitness value, the more optimal is the chromosome.

It helps us in analyzing a single solution and gives a measure to how far it is from its

best value.

2.2.3 Selection:

The selection operator helps us in selecting the fittest individuals so as to eventually

reach our optimal solution. After calculating the fitness value of each chromosome we

select the most fit individuals using various selection techniques such as rank

selection, roulette wheel selection, stodhastic universal sampling, tournament

selection, random selection and so on. It helps us select the parent chromosomes that

are further used for crossover. It helps direct the solution it in the right direction.

2.2.4 Crossover:

Crossover is the next genetic operator which involves combining genes of the parents

to generate a new offspring. The new offspring is retained if it has a higher fitness

value than the fitness value of the individual parents else it is discarded. The higher

fitness value helps us reach towards the optimal solution. Crossover combines genes

and features of the parents to generate a new offspring. It is similar to the concept of

biological crossover and reproduction. Crossover can be different types such as: One

point crossover, multipoint crossover, uniform crossover, davis’ order crossover and

so on. A crossover point or pints is chosen and crossover is performed at it.

6

2.2.5 Mutation:

Mutation is a genetic operator that is used to introduce heterogeneousness in the

chromosomes. It is similar to the concept of biological mutation where some gene

value of the child are drastically different from the parents or family. It is used to

introduce genetic diversity or variety in the solution. Mutation can be of various types

such as: swap mutation, bit flip mutation, random resetting, scramble mutation,

inversion mutation and so on. In mutation, the new chromosome generated is

drastically different from the parent chromosomes.

2.3 OPTIMIZATION USING SIMULATED ANNEALING

Simulated Annealing [29,30,31] is a metaheuristic technique which uses the concept

of annealing used for metails. In annealing, the metal is heated to very high

temperatures. It is then cooled slowly with given conditions and gives a metal which

is much more stronger than the original metal. The new metal obtained is more fit

than the parent and has less chances of breakage and is hence stronger.

Simulated Annealing is prominently used as an optimization technique. It is used

often when the search space is said to be discrete. Temperature(T) gives us the

randomness of the solution. The higher the temperature the more is the degree of

randomness. At very high temperatures the SA algorithm behaves like random walk.

As the temperature decreases the algorithm starts to behave like hill climbing. Higher

T, the more exploration is done in the search space for an optimal solution i.e. more

random solutions are obtained. As the temperature dereases, the randomness

decreases and the solutions start moving towards a particular place in the search space

which is eventually the optima.

The algorithm starts with T= very high. For every step, a random neighboring

solution is selected. We calculate the gap of energy level between the new and current

solution.

𝛥𝐸 = 𝐸(𝑛𝑒𝑤) − 𝐸(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) (2.1)

7

In Equation (2.1),

𝐸(𝑛𝑒𝑤) =energy value for new solution

𝐸(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) =energy value for current solution

if 𝛥𝐸 > 0: then E(new) is chosen with a probability P=1

if 𝛥𝐸 < 0: E(new) is selected with 0<P<1. Here the probability is given as:

𝑃 = 1	/	(1 +	𝑒7∆9/:) (2.2)

In Equation (2.2),

P represents the probability with which the new node is selected.

T represents the temperature

The temperature is decreased for every iteration. Hence, at the minimal temperatures

the optimal solution is obtained.

2.4 OPTIMIZATION USING PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization [12] is a heuristic method that uses the concept of

swarm and birds flocking. It is used in course scheduling problem and gives us an

optimal solution. Particle Swarm Optimization initially starts with randomly

generated solutions and tries to eventually converge towards the optimal solution.

The steps of PSO are given as follows:

2.4.1 Initialization:

Each solution in PSO is known as a particle. Every particle has a position and velocity

vector. The PSO is initialized with random particles i.e. random solutions.

2.4.2 Finding pBest and gBest:

At every generation fitness of the solution is found as per the fitness function. Each

particle is updated using the pBest and gBest values.
lBest denotes the best value of fitness achieved till now. It is also known as the best

local fitness value.

8

tBest denotes the overall best value of fitness i.e. the best global fitness value. It

denotes the overall best fitness value obtained taking into account all the particles

2.4.3 Updating velocity:

Using these values, the velocity and position of particles is updated in each generation

using following equations:

𝑣[𝑖] = 𝑣[𝑖 − 1] + 𝑐1 + 𝑟𝑎𝑛𝑑𝑜𝑚() ∗ (𝑝𝐵𝑒𝑠𝑡 − [𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖 − 1]) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() ∗

(𝑔𝐵𝑒𝑠𝑡 − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖 − 1]) (2.3)

 (2.4)

In Equation (2.3) and (2.4),
v[i-1] = The velocity for i-1th particle
present[i] = Tit denotes the current solution
random() = It is a random number in (0,1)
c1, c2 = These are known as learning factors. Value of c1, c2 taken for our work = 2

2.5 OPTIMIZATION USING HYBRID ALGORITHMS

Hybrid optimization techniques involving combination of global search techniques

with local search techniques and they give us more optimal solutions with faster

convergence. In our work, we have worked with different hybrid algorithms involving

GA and SA. These algorithms are as below:

2.5.1 GA-SA[32]

Genetic Algorithm and Simulated Annealing are two popular algorithms. In GA- SA

we combine features of GA and SA to generate solutions which are more optimal than

our solutions generated with GA and SA individually.

We have used the GA- SA algorithm described in [32] and used it on ITC 2007

dataset to observe the solutions generated and compare it with the other hybrid

algorithms.

𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖] = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[𝑖 − 1] + 𝑣[𝑖]

9

GA-SA combines the stopping criteria of SA along with the process of GA. The

temperature in GA-SA is initially set to be very high and then slowly cooling is done.

Initially for high temperatures,

We use a decision function to see if it is good or bad mutation. It is defined as below:

𝐷1 = 𝑎𝑐𝑐𝑒𝑝𝑡	{	𝑖𝑓	𝑟L ≤ 𝑒
NOPQOP

′ RS
T
U

OP 	}	 (2.5)

𝐷1 = 𝑟𝑒𝑗𝑒𝑐𝑡	{	𝑖𝑓	𝑟L > 𝑒
NOPQOP

′ RS
T
U

OP 	}	 (2.6)

In Equation (2.5) and (2.6),

𝑟L = Real number generated randomly between 0 and 1

𝑓X = Makespan time before mutation

𝑓XY = Makespan time after mutation

b = Bolzmann constant

t = Temperature

After mutation step is executed, GA-SA helps to obtain a more fit chromosome. From

D1, we can observe that GA-SA ensures there is no chromosome which has a worse

fitness value than the current chromosome.

We then select chromosomes and perform crossover similar to GA. After crossover,

adaptative mutation is performed as described above. In this, we check if the mutation

is a bad mutation or not and new population is selected based on the fittest

chromosomes. The final step is selection of a new set of individuals based on elitist

roulette wheel selection. After the completion of a cycle, temperature is decreased and

crossover, mutation, selection are performed for the next cycle.

10

2.5.2 Hybrid Algorithm by Mahfoud [33]

Mahfoud introduces the method of parallel recombinative simulated annealing. This

algorithm uses convergence properties of simulated annealing and uses GA for the

recombinative approach.

We have used the algorithm described in [33] and used it on ITC 2007 dataset to

observe the solutions generated and compare it with the other hybrid algorithms.

In Parallel recombinative simulated annealing (PRSA), the convergence of the

algorithm is controlled by simulated annealing, that is, the cooling procedure.

In PRSA, the initial temperature = very high. The population is initialized randomly.

The stopping criteria is chosen to be t/2. Here t gives us size of the populatin.

We use GA by initially selecting 2 random individuals from the population and

assigning them to be parents. 2 children are generated by using single point crossover

followed by mutation. Boltzmann trail is held between the children and parents.

Finally, the parents are overwritten by the winner of the bolzmann trials and the

process is carried out again.

The Bolzmann trials can be defined as the competition between x and y where 𝐸Z

represents the combined energy of the parents and 𝐸[represents the combined energy

of the children

∆𝐸 is defined in Equation (2.7) as,

∆𝐸 = 	𝐸Z −	𝐸[(2.7)

If 𝛥𝐸 > 0 then x wins with a probability of 1

if 𝛥𝐸 < 0 then x still wins but this time with a probability of P. P can be defined as

per Equation (2.8):

𝑃 = 1/(1 +	𝑒(9S79\)/: (2.8)

11

2.5.3 Local Search Algorithm [34]

The Local Search algorithm combines the properties of GA along with sequential

local search. We use this algorithm on the ITC 2007 dataset and compared it with

other hybrid algorithms and our proposed memetic algorithm.

 The steps of the Local Search Algorithm are described as follows:

• Generation of Initial population: Initial population is generated consisting of N

chromosomes. Each chromosome represents a timetable.

• Genetic Operation (Crossover): After generation of the initial population,

single point crossover is performed. Crossover point is chosen randomly from

(1,2, …M). Here, M is the length of chromosome

• Genetic Operation (Mutation): After crossover, mutation is performed.

Mutation points are also chosen randomly.

• Fitness Measure: In this step, we calculate fitness value of . The fitness

function is given as:

f = x (2.9)

Here in Equation (2.9),

f = fitness function

x = number of penalties

• Genetic Operation (Selection): After fitness calculation, we select

chromosomes with highest fitness value using tournament selection method.

• Local Search: After completion of the above steps we use local search to

improve the timetable and make its convergence faster.

2.4.4 Memetic Algorithm

Memetic algorithms are known as an extension of Genetic Algorithm. They combine

the concept of GA and SA. They are also known as hybrid evolutionary algorithms.

12

In our work, we have proposed a new memetic algorithm which combines the best

features of GA and SA and apply this to university course scheduling problem. We

intend to bring together the goodness global solutions of GA and the local

neighborhood search of SA. This memetic algorithm also incorporates the concept of

greedy stochastic local search mutation instead of the simple mutation step in GA

which leads to a more optimal solution with faster convergence.

In our SA implementation for MA, we initially begin with very high temperatures and

decrease it for every iteration using the formula.

 𝑇X^_ = 	𝑇X ∗ 	𝛽 (2.10)

In Equation (2.10),

β = Cooling Rate

𝑇X= Initial Temperature

𝑇X i.e. the initial temperature and the rate of cooling b is determined by the user

depending on the situation. At high temperatures, there is more randomness and the

algorithm tries to search the search space more for optimal solution. As the

temperature decreases, the randomness decreases and the solution converges towards

local minima.

Incorporating SA procedure into GA as a refinement procedure prior to the selection

mechanism of the fittest chromosomes in GA in each generation, improves the

efficiency and reduces the soft constraint violations, hence improving the quality of

the timetables generated. This forms the basis of our method that is described below

in more detail in Fig, 1.

13

Yes

 No

Fig. 1: The proposed memetic algorithm

The proposed memetic algorithm introduced here consists of firstly defining an initial

population for generation 1. This is followed by application of local search on the

current population. GA operations like Selection, Crossover and Mutation are applied

on the population. If algorithm converges we stop, else we proceed to the next

generation.

This algorithm further incorporates the concept of greedy stochastic local search

mutation. After the selection and crossover of the updated population, the local swap

mutation is done. In mutation we introduce a random number “r” which lies between

(0,1) . This random number determines whether to perform a simple swap mutation or

a local swap mutation. In a simple swap mutation 2 random genes of the chromosome

are exchanged. In case of local swap mutation, a random gene is taken and it is

swapped with every gene of the chromosome. We determine how fit the chromosome

is and compare it with current optimal fitness value and if the new chromosome is

 START

Set parameters of

GA and SA

Set Initial Population of

Generation 1

Local search by SA on

current population

Selection,

Crossover,

Mutation of

Updated

population

Did SA
converg
e?

 STOP Proceed to next

Generation

14

more optimal, it is selected. This algorithm was implemented for the job shop

scheduling problem in [35].

The stopping criterion for the memetic algorithm is same as that of SA i.e.

temperature value. Hence it brings together the best features of GA and SA and

provides a much more optimal solution with faster convergence.

15

CHAPTER 3

PROPOSED WORK

3.1 PROPOSED TIMETABLE SCHEDULING INCORPORATING STUDENT

PREFERENCES USING ASSOCIATION RULE MINING FOR SCHEDULING

ELECTIVE COURSES USING GENETIC ALGORITHM AND SIMULATED

ANNEALING

In this work, we apply Association Rule Mining to GA and SA, We compare GA and

SA based on generation/iteration number and makespan time.

3.1.1 Dataset used with initial parameters and assumptions

We have done Timetable scheduling for 6th semester IT students. Students are

divided into 2 sections 6-A and 6-B.

There are 6 elective courses:

1 Cyber Forensics and Cyber Crime (CFCC)

2 Real Time Systems (RTS)

3 Machine Learning (ML)

4 Optical networks (ON)

5 High speed Networks (HSN)

6 Multimedia System Design (MSD)

Two most commonly selected electives are chosen after association rule mining

process. These are:

• Cyber forensics and Cyber Crime

• Machine Learning

Assumptions:

There are two electives which are taken by the students of a department for a

particular semester. Three teachers are assigned to teach these electives. Elective 1 is

taught by one professor and the other 2 teach Elective 2.

16

There is a theory class of 3 hours every week for both the electives and a tutorial for 1

hour for every group.

Initial Parameters:

• Starting Temperature (for SA) = 1000

• Rate of Cooling (for SA) = 0.05

• Mutation Rate (for Genetic Algorithm) = 0.01

• Population size (for Genetic Algorithm) = 100

• Crossover Rate(for Genetic Algorithm) = 0.9

3.1.2 Proposed Set of constraints

In our work, we have defined a set of hard constraints and soft constraints. Hard

constraints cannot be violated and are necessary for timetable generation. Soft

constraints can be violated and represent the overall quality of solution. A penalty

cost of 1 is assigned for every soft constraint violation.

Hard Constraints:

1. Elective courses can only be taught during 4 hours in the morning from 08:00am

to 12:00am.

2. There are 2 electives for a semester.

3. All students of that particular semester are supposed to enroll in these electives

compulsorily.

Soft Constraints:

1. Classroom capacity should be greater than the size of the class.

2. No room should be assigned to a course or teacher if its already assigned to

another course or teacher for that particular time period.

3. Every course should have a professor to teach it.

4. Each student is assigned to only one classroom at a certain time period.

17

3.1.3 Fitness function:

The fitness function we are trying to maximize here is:

 f = 1 / 1 + x (3.1)

In Equation (3.1), x denotes the number of penalties.

3.1.4 Proposed algorithm using Association Rule Mining and GA

Stage 1: Use Data Mining to find electives:

1. Student’s 2 elective options are taken from them.

2. SUPCOUNT(Support count) is calculated for every elective.

3. A threshold value (T) is chosen.

4. If SUPCOUNT(elective) < T , it is eliminated. If SUPCOUNT(T) = T it is said

to be strongly associated.

5. FP Growth algorithm is used to find associations between the electives.

6. Table is created for associated electives.

4 A count the electives’ associations is done and they are arranged in a descending

order.

5 Associations with maximum count are selected as the two electives.

6 Selected electives are used for timetable generation using GA in stage 2.

Stage 2: Applying GA on selected electives to create optimized timetable

1. Initialize a timetable with given number of professors, time slots, classes and

electives.

2. Define population size, mutation rate, crossover rate.

3. Form one chromosome, clash_val is calculated. Here, clash_val denotes the

penalty value for current chromosome.

4. Calculate fitness of a chromosome (f) using fitness function given in Equation

(3.1)

18

5. Repeat for all generations:

1. Crossover()

2. Mutation()

3. Selection()

4. Compute new fitness f of a chromosome

6. If (clash_val == 0) or (f==1) STOP

7. Compare factors- generation number, makespan time with SA.

3.1.5 Proposed algorithm using Association Rule mining and SA

Stage 1: Use Data Mining to find electives

1. Student’s 2 elective options are taken from them.

2. SUPCOUNT(Support count) is calculated for every elective.

3. A threshold value (T) is chosen.

4. If SUPCOUNT(elective) < T , it is eliminated. If SUPCOUNT(T) = T it is said

to be strongly associated.

5. FP Growth algorithm is used to find associations between the electives.

6. Table is created for associated electives.

7 A count the electives’ associations is done and they are arranged in a descending

order.

8 Associations with maximum count are selected as the two electives.

9 Selected electives are used for timetable generation using GA in stage 2.

Stage 2 : Applying SA on selected electives to create optimized timetable

1. Initialize a timetable (number of professors, time slots, classes and subjects).

2. Define temperature, Rate of cooling.

3. While(T is greater than 1)

a. Define current node X, Initialize random neighbor P.

b. Evaluate ΔE = z(P)- z(X) (3.2)

z (P)= Total number of penalties for neighboring node for violating soft

constraints

z (X)= Total number of penalties for neighboring node for violating soft

constraints

19

c. If z(P) < z(X) i.e. ΔE <0 choose N, probability = 1.

d. If z(P) > z(X) i.e. ΔE >0 choose N, probability P= 𝑒7∆9/: (choose N if P >

0.77 only)

e. else Retain C

f. Temp = temperature * RateOfCooling.

g. When Temperature < 1 STOP

h. Compare parameters: Iteration at which solution obtained, makespan time

with Genetic Algorithm.

3.2 PROPOSED TIMETABLE SCHEDULING INCORPORATING TEACHER

PREFERENCES FOR SCHEDULING ELECTIVE AND CORE COURSES

USING GENETIC ALGORITHM, SIMULATED ANNEALING AND

PARTICLE SWARM OPTIMIZATION

In the second part of our work, we try and make the timetable more human centric by

taking teacher’s preferences. We then compare GA, SA and PSO based on Number of

penalties vs generations, Time taken for execution of each generation with respect to

generation number.

3.2.1 Dataset used with initial parameters and assumptions

Timetable scheduling is done for 6th semester undergraduate B.Tech (Information

Technology) students of Delhi Technological University. Students are divided into 2

sections 6-A and 6-B. The number of classrooms are only two- TW2GF2 and

TW1TF3 as opposed to three in our previous work in 5.1. The professors are the

current staff of Department of Information Technology, Delhi Technological

University.

 There are 5 theory courses:

Electives:

• Cyber Forensics (CFCC)

• Machine Learning (ML)

Core Courses:

20

• Compiler Design (CD)

• Software engineering (SE)

• Artificial Intelligence (AI)

There are 2 labs:

• Compiler Design (CD) Lab

• Artificial Intelligence (AI) Lab

3.2.2 Proposed Set of constraints

A collection of constraints is taken from different papers and additional constraints

are added to make the timetable more human centric.

• Hard Constraints (proposed):

Hard constraints cannot be violated (as per stringent rules of the Delhi Technological

University). Hard constraints are as follows:

i. Electives are scheduled in the time periods: 08:00am - 10:00am

ii. Core Courses are taught between time periods: 10:00am - 4:00pm

iii. All students of the 6th semester from IT department enroll for the theory and

practical courses

• Soft Constraints (proposed):

A 10 point penalty is assigned if soft constraints are violated. Soft constraints are as

follows:

i. Classroom capacity should be greater than the size of the class. [2]

ii. No room should be assigned to a course or teacher if its already assigned to

another course or teacher for that particular time period.[2]

iii. Every teacher can teach only one class at a particular time period. [1] [4]

iv. Every course should have a professor to teach it.

v. Classrooms and lab for separate courses should not overlap one another. [1]

[3]

vi. No student is assigned more than one class at the same time. [2]

21

• Additional Soft Constraints (Proposed):

Set of additional constraints are added in this paper. These are a part of soft

constraints and a 10 point penalty is assigned if they are violated. These additional

constraints are:

i. The students of a class are allotted one room in which they will have all

classes. This is done to avoid the time consumed for students while traveling

between classes.

ii. There are not a lot of free period gaps between classes in a day for the

students.

iii. The teacher’s preference to teach in a particular time slot is considered.

3.2.3 Fitness function

The fitness function we are trying to minimize here is:

 f = x (3.3)

In Equation (3.3), x denotes the number of penalties. We try and minimize the fitness

function.

3.2.4 Proposed Algorithm using Simulated Annealing for Complete Timetable

Scheduling

1 Timetable is initialized with given set of professors, electives, timeslots.

2 Take initial temperature to be very high (T=1000).

3 Repeat till (Temperature > 1)

a. Define current node C, Initialize random neighbor N.

b. Evaluate ΔE = eval(N)- eval(C).

 eval (N)= number of clashes (calculated for soft constraint violation) in

 new node

 eval (C)= number of clashes (calculated for soft constraint violation) in

 current node

c. If eval(N) < eval(C) i.e. ΔE <0 choose N, probability = 1.

22

d. If eval(N) > eval(C) i.e. ΔE >0 choose N, probability P=-ΔE/T

e. Fitness Function (cost function)= x; where x is the number of clashes.

4 Temp = temperature * coolingRate.

5 Stop when Temperature < 1 or max number of iterations are over.

6 Analyse the performance with respect to following factors:

f. No of penalties vs iterations.

g. Time taken for execution of each iteration with respect to generation

number

7 Compare these factors with Genetic Algorithm and PSO.

3.2.5 Proposed Algorithm using Genetic Algorithm for Complete Timetable

Scheduling

1. Initialize a timetable with given number of professors, time slots, classes and

electives.

2. Define population size, mutation rate, crossover rate.

3. Form one chromosome, calculate number of clashes as per constraints not

satisfied.

4. Calculate fitness of a chromosome using fitness function=x; where x denotes no

of penalties.

5. Repeat for all generations

a. Crossover

b. Mutation

c. Selection

d. Compute new fitness value for new chromosome obtained

6. Stop when max number of generations are over

7. Analyze the performance with respect to following factors:

a. No of penalties vs generations.

b. Time taken for execution of each generation with respect to generation

number

d) Compare these factors with Simulated Annealing and PSO

23

3.2.6 Proposed Algorithm using Particle Swarm Optimization for Complete

Timetable Scheduling

1 Initialize random set of particle (solutions)

2 Repeat till maximum iterations reached.

1. Calculate fitness value of each particle. Fitness value= number of penalties

2. If Current fitness value >pBest , do pBest = current fitness value else keep

previous pBest

3. Assign best particle’s pBest to gBest i.e. gBest= best pBest

4. Calculate velocity of each particle using (1)

5. Update data values in equations (2) using values from equation (1)

3 Analyze the performance with respect to following factors:

1. No of penalties vs iterations

2. Time taken for execution of each iteration with respect to generation number

4. Compare these factors with Genetic Algorithm and Simulated Annealing.

3.3 PROPOSED NEW MEMETIC ALGORITHM FOR COURSE SCHEDULING

In the third part of our work, we propose a novel memetic algorithm incorporationg

the concept of local search mutation. We then compare GA, SA, GA-SA, Mahfoud’s

Algorithm, Local search Mutation and our Memetic Algorithm.

3.3.1 Dataset used with initial parameters

In this work, we have used the dataset from Track 3 of International Timetabling

Competition- 2007: Curriculum-based Course Timetabling. It consists of the

following entities.

Days: This gives us the number of days in a week for which the timetable is

constructed.

Timeslots: Timeslots are the fixed number of slots in a day and is same for every day

of the week.

24

Periods: A period is composed of a day and a timeslot. The total number of

scheduling periods is the product of the days multiplied by the timeslots in a day.

Courses: These specify the total number of courses in a particular timetable instance.

Each course contains certain number of lectures. There are certain number of slots in

which particular courses cannot be assigned as defined in the dataset.

Teachers: Teachers teach the courses they are assigned to.

Rooms. Each room has a certain capacity as mentioned in the data set. The courses

can be assigned to any room provided the number of students are less than the

capacity of room.

Curriculum: A curriculum is a set of courses and these courses have students in

common. Based on this, we have the conflicts between courses and other soft

constraints.

Twenty-one instances were released for this track, seven for each set (early, late, and

hidden). All instances are real data and come from the University of Udine.

The number of courses in these instances ranges between 30 and 131, the total

number of lectures from 138 to 434, the number of rooms between 5 and 20, and the

number of curricula between 13 and 150.

Initial Parameters:

• Initial Temperature = 1000

• Cooling Rate = 0.05

Table 1 below, gives us the details regarding the 21 instances for the ITC 2007 data

set.

25

Table 1: ITC 2007 Benchmark Dataset

3.3.2 Proposed Set of constraints

A collection of constraints is taken from ITC 2007 curriculum based timetabling

problem.

Hard Constraints:

1. Lectures: All lectures of a course must be scheduled, and they must be

assigned to distinct periods. A violation occurs if a lecture is not scheduled.

2. Room Occupancy: Two lectures cannot take place in the same room in the

same period. Two lectures in the same room at the same period represent one

violation . Any extra lecture in the same period and room counts as one more

violation.

26

3. Conflicts: Lectures of courses in the same curriculum or taught by the same

teacher must be all scheduled in different periods. Two conflicting lectures in

the same period represent one violation. Three conflicting lectures count as 3

violations: one for each pair.

4. Availabilities: If the teacher of the course is not available to teach that course

at a given period, then no lectures of the course can be scheduled at that

period. Each lecture in a period unavailable for that course is one violation.

Soft Constraints:

The Soft constraints are as follows:

1. Room Capacity: For each lecture, the number of students that attend the

course must be less or equal than the number of seats of all the rooms that host

its lectures. Each student above the capacity counts as 1 point of penalty.

2. Minimum Working Days: The lectures of each course must be spread into

the given minimum number of days. Each day below the minimum counts as 5

points of penalty.

3. Curriculum Compactness: Lectures belonging to a curriculum should be

adjacent to each other (i.e., in consecutive periods). For a given curriculum we

account for a violation every time there is one lecture not adjacent to any other

lecture within the same day. Each isolated lecture in a curriculum counts as 2

points of penalty.

4. Room Stability: All lectures of a course should be given in the same room.

Each distinct room used for the lectures of a course, but the first, counts as 1

point of penalty.

3.3.3 Fitness function:

The fitness function as per ITC 2007 is given by:

 f = x (3.4)

27

In Equation (3.4), x denotes the number of penalties. We try and minimize the fitness

function.

3.3.4 Proposed Memetic Algorithm with Local Search Mutation:

 Algorithm 1: The Genetic Algorithm incorporating local search by SA

1. Initialization the: Initial population of chromosomes, Temperature T, Cooling

Rate

2. for each generation do

1. for each chromosome C in the current population do

• Procedure(SA): Steps 4(b,c,d,e,f)

2. end for

3. for the updated population do

• Selection

• Crossover

• Procedure (Local Search Mutation)

4. end for

5. current population=final population;

6. Update Temperature T as per Eq (2.10)

7. if T <1 STOP

8. end for

9. S=BEST(final population)

10. return S

Procedure (SA): Applying SA for optimized timetable generation:

1. Initialize a timetable (number of professors, time slots, classes and subjects).

2. Defineinitial parameters such as Rate of cooling and Temperature.

3. Temperature T is initialized to 1000

4. While(T is greater than 1)

i. Define current node X, Initialize random neighbor P.

j. Evaluate ΔE = z(P)- z(X) (3.5)

z (P)= Total number of penalties for neighboring node for violating soft

constraints

28

z (X)= Total number of penalties for neighboring node for violating soft

constraints

k. If z(P) < z(X) i.e. ΔE <0 choose N, probability = 1.

l. If z(P) > z(X) i.e. ΔE >0 choose N, probability P= 𝑒7∆9/: (choose N if P >

0.77 only)

m. else Retain C

n. Temp = temperature * RateOfCooling.

o. When Temperature < 1 STOP

Procedure (LSM): The greedy stochastic local search for mutation

• for entire updated population do

• select fittest individual 𝑓aXL

• end for

• Generate random number rϵ[0,1]

• if r ≤ 0.5 do simple swap mutation by exchanging two random genes of the fittest

individual 𝑓aXL

• else

• select random gene 𝑔X

• for (k=0 to chromosomeSize - 1) do

• swap 𝑔X and 𝑔b

• Calculate fitness value of new chromosome 𝑓Lcd

• if eval(𝑓Lcd) < eval(𝑓aXL)

• Update 𝑓aXL= 𝑓Lcd

• end if

• end for

• end if

29

CHAPTER 4

RESULTS

4.1 COMPARISON OF GENETIC ALGORITHM, SIMULATED

ANNEALING WITH ASSOCIATION RULE MINING FOR SCHEDULING

ELECTIVE COURSES

4.1.1 Association Rule Mining

For sixth semester IT students, there are 6 optional electives. Student give their

options for the 2 electives they plan to take. Table 2 gives us the support count and

support rank for each subject. Support count (SUPCOUNT) is the count for each

subject selected by students. The subjects are ranked (SUPRANK) as per the support

count of each subject. A threshold value is fixed. Subject having support count <

threshold are eliminated.

In our work, we take threshold=10 so MSD is discarded.

Table 2: Support Count and Support Rank for elective subjects

30

Here the electives are,

 Machine Learning (ML), Cyber Forensics and Cyber Crime (CFCC), Advanced

Database Management System (ADBMS), Real Time Systems(RTS), Optical

networks (ON), High speed Networks (HSN), Multimedia System Design (MSD).

Also SUPCOUNT represents the support count and SUPRANK is the support rank

The associations between electives is found using the FP growth algorithm and are

then counted. Associations having highest association count and rank = 1are the 2

electives.

As per Table 3, the two electives selected are Machine Learning (ML) and Cyber

Forensics and Cyber Crime (CFCC).

Table 3: Associations for Elective Subjects

4.1.2 Comparison of timetables generated by GA and SA

Finally after the timetables are generated using Genetic Algorithm and Simulated

Annealing, they are compared on the basis of following factors. The Timetables

generated by SA and GA are automated timetables which require no manual work.

They generated timetables have constraint violation (hard constraint or soft

31

constraint). The comparison is done on the basis of two parameters:

1. Execution/ Makespan time: It gives the time taken for timetable generation

2.No. of Generation/ iteration: This gives the iteration number (for SA) or

generation number (for GA) at which we obtain the solution .

Table 4: Comparison of SA and GA

From the results we see can see that,

1. Simulated annealing takes lesser time to generate timetable as compared to

Genetic algorithm and hence gives a faster result. Both genetic algorithm and

simulated annealing are much more faster than manual timetable scheduling.

2. Simulated annealing gives a solution in lesser number lesser number of

iterations as compared to genetic algorithm.

3. From the Table 4, we can see that Simulated Annealing takes lesser time as

compared to GA for all the best, average and worst case scenario. It also takes

lesser number of iterations as compared to GA to reach the optimal solution.

32

4.1.3 Timetables generated by GA and SA

Timetable obtained after GA

Fig. 2: Timetable generated by Genetic Algorithm

33

Timetable obtained after SA

Fig. 3: Timetable generated by Simulated Annealing

34

4.2 RESULTS FOR PROPOSED TIMETABLE SCHEDULING

INCORPORATING TEACHERS’S PREFERENCES FOR SCHEDULING

ELECTIVE AND CORE COURSES USING GENETIC ALGORITHM,

SIMULATED ANNEALING AND PARTICLE SWARM OPTIMIZATION

4.2.1 Performance Analysis:

In this work, we generate timetables using GA, SA and PSO algorithms by ensuring

that no hard constraints are violated and the soft constraints are minimized to the

maximum extent. We analyse the performance of GA, SA and PSO on the basis of 2

parameters:

4.2.2 No of penalties vs Generations/Iterations:

The 3 algorithms are compared with respect to number of penalties and generation/

iteration number in Fig. 4.

35

Performance of GA:

The graph in Fig 4 shows that the number of penalties decrease with the increase in

generations in GA. Initially there is a huge decrease in penalties and then it becomes

almost constant. The optimized fitness function is when the penalties =0.

Fig 4: No of penalties vs Generations for Genetic Algorithm

36

Performance of SA:

This graph in Fig. 5 shows that the number of penalties decrease with the increase in

generations in SA. The optimized solution is obtained near iteration = 900 where

number of penalties=0 and an optimized timetable is obtained.

Fig 5: No of penalties vs Iterations for Simulated Annealing

37

Performance of PSO:

This graph in Fig. 6 shows that the number of penalties decrease with the increase in

generations in PSO. The optimized fitness function is when the penalties =0 and then

an optimized timetable is obtained.

Fig. 6: No of penalties vs Iterations for Particle Swarm Optimization

38

Comparative graph giving their performance is as below:

The penalties obtained by PSO is smaller than GA at 400th iteration. Simulated

Annealing has least amount of penalties and obtains a solution in the least number of

iterations.

 200 400 600 800 1000

PSO 100 80 60 40 20

GA 120 100 60 60 40

SA 100 60 20 20 0

Fig 7: The number of penalties minimized over generation/iteration number

39

4.2.3 Time taken for execution of each generation/iteration with respect to generation/

iteration number

GA, SA and PSO are compared with respect to their execution time (in ms) for every

generation/iteration and generation/iteration number.

Performance of GA:

Here we study the execution time of each generation with respect to the generation

number. We can observe that for GA, the execution time for consecutive generations

decrease with increase in the number of generations. Initial execution time for GA

=240 ms and decreases to almost 20ms after 100 generations.

Fig. 8: The variation of execution time (ms) over generation/iteration number for GA

40

Performance of PSO:

Here we study the execution time of each iteration with respect to the iteration

number. We can observe that for PSO, the execution time for consecutive iterations

decrease with increase in the number of iterations. We can also observe that execution

time for PSO is less than GA and SA (execution time in initial generations = 97ms)

and decreases slowly as compared to GA, SA.

Fig 9: Execution Time for each iteration vs Iteration Number for Particle Swarm
Optimization

41

Performance of SA:

Here we study the execution time of each iteration with respect to the iteration

number. We can observe that for SA, the execution time for consecutive iterations

decrease with increase in the number of iterations. SA has maximum execution time

than GA and PSO in initial iterations i.e. 320 ms. However it decreases very fast to

less than 50 ms in less than 100 iterations.

Fig 10: Execution Time for each iteration vs Iteration Number for Simulated
Annealing

42

Comparative performance analysis of GA, SA, PSO

Fig 11: Performance Analysis for 3 algorithms

A comparison of the graphs in Figs. 8-10 indicates that initially, PSO followed by GA

has lower execution time. However, overall SA has faster execution as observed from

the tail portion of the graph in Fig. 4.

4.2.4 Timetables generated by GA and SA

The teacher preferences are shown in Fig. 12,13. Out of all the professors, the

following two professors of Delhi Technological University gave their choice of slots

while the other professors indicated that they were comfortable with all slots.

43

Fig. 12: The system GUI for accepting teacher preference against Teacher ID = 5

Professor 5 is Professor Nidhi and she is given slot 4 i.e. (11:00 - 12:00) and all her

classes are allotted in this slot for 6-B.

Fig. 13: The system GUI for accepting teacher preference against Teacher ID = 3

Professor 3 is Professor Rahul Katarya and he is given slot 3 i.e. (10:00 - 11:00) and

all his classes are allotted in this slot for 6-B.

The timetables generated by are shown below in Figs. 6, 7, 8 for GA, SA and PSO

respectively for the two sections 6-A and 6-B.

44

Timetable obtained after GA

Fig. 14: Two instances of timetables generated by GA for the two sections A and B

45

Timetable generated using SA

Fig. 15: Two instances of timetables generated by SA for the two sections A and B

46

Timetable generated using PSO

Fig. 16: Two instances of timetables generated by PSO for the two sections A and B

4.3 PERFORMANCE ANALYSIS OF MEMETIC ALGORITHM

The dataset used for memetic algorithm is the ITC-2007: Curriculum based Course

Timetabling (ITC-2007) dataset Track 3 for curriculum-based university. This was the

benchmark dataset used for international timetable scheduling competition

specifically for university timetabling problem.

47

The proposed memetic algorithm was implemented as per the steps in Section 4.2.3.

The results were compared to the course scheduling approaches using GA [28, 29],

SA [30, 31], the hybrid GA-SA [32], Mahfoud et al.’s method [33] and the local

search algorithm [34] both in terms of runtime penalty cost and soft constraint

satisfaction.

Table 5: Comparison of Soft Constraint values for all the algorithms

As per Table 5, we can observe that the soft constraint violation in minimum for

Memetic Algorithm with LSM. This proves that the solutions generated by memetic

Memetic Algorithm with LSM are highly optimal as compared to other solutions.

48

The fitness functions are plotted with respect to time for all 21 instances as shown in

Fig. 9,10,11,12,13,14,15,16,17. The graphs indicate a considerably low value for

Memetic Algorithm with LSM when compared to all the other methods. We can also

observe that Memetic Algorithm with LSM takes lesser time to reach the optimal

solution.

Fig. 17: Comparison of all the algorithms for Instance 1

49

Fig. 18: Comparison of all the algorithms for Instance 2

50

Fig. 19: Comparison of all the algorithms for Instance 3

51

Fig. 20: Comparison of all the algorithms for Instance 4

52

Fig. 21: Comparison of all the algorithms for Instance 5

53

Fig. 22: Comparison of all the algorithms for Instance 6

54

Fig. 23: Comparison of all the algorithms for Instance 7

55

Fig. 24: Comparison of all the algorithms for Instance 8

56

Fig. 25: Comparison of all the algorithms for Instance 9

57

Fig. 26: Comparison of all the algorithms for Instance 10

58

Fig. 27: Comparison of all the algorithms for Instance 11

59

Fig. 28: Comparison of all the algorithms for Instance 12

60

Fig. 29: Comparisons of all the algorithms for Instance 13

61

Fig 30: Comparisons of all the algorithms for Instance 14

62

Fig. 31: Comparisons of all the algorithms for Instance 15

63

Fig. 32: Comparisons of all the algorithms for Instance 16

64

Fig. 33: Comparisons of all the algorithms for Instance 17

65

Fig. 34: Comparisons of all the algorithms for Instance 18

66

Fig. 35: Comparisons of all the algorithms for Instance 19

67

Fig. 36: Comparisons of all the algorithms for Instance 20

68

Fig. 37: Comparisons of all the algorithms for Instance 21

69

4.4 GuI FOR TIMETABLE SCHEDULING

• Start Page

Fig. 38: Electives page

This page gives us the first page the 2 electives are displayed which are chosen after

association rule mining

70

• Teacher selection page

Fig. 39: Teacher selection page

This page is where we enter the names of 3 teachers who will be teaching the 2

electives. We click on “Generate Timetable” button to generate the timetable

71

• Timetable generation with GA

This gives us the final timetable schedule for the chosen electives using Genetic

Algorithm

Fig. 40: Timetable for TW1TF3 using GA

72

Fig. 41: Timetable for TW2GF2 using GA

Fig. 42: Timetable for TW3TF3 using GA

73

• Timetable generation with SA

This gives us the final timetable schedule for the chosen electives using Simulated

Annealing.

Fig. 43: Timetable for TW1TF3 using SA

Fig. 44: Timetable for TW2GF2 using SA

74

Fig. 45: Timetable for TW3TF3 using SA

75

CONCLUSION

In this work, we have compared the algorithms Simulated annealing and genetic

algorithm for timetable optimization. The generated timetables generate optimal

solutions and the data association rule mining help us determine the electives as per

students preferences, The optimization algorithms are compared on the basis of their

makespan time and generation/iteration number. SA is found to have better efficiency

than GA with respect to both the computational time as well as timetable generation.

We have also investigated genetic algorithm, simulated annealing and particle swarm

optimization algorithms for the task of automatically creating an entire timetable

(electives+ core courses+ lab) for third year undergraduate students for our

University. We have proposed a novel set of hard constraints and soft constraints

suited to the task that incorporate teacher’s preferences for slots and minimize student

movement between classes. The three optimization algorithms are compared on the

basis of Execution Time of each generation/iteration with respect to

generation/iteration number which decreases most in Simulated Annealing. We also

compared the algorithms on the basis of No of penalties vs Generations/Iterations.

The penalties can be ranked as SA < PSO < GA. Simulated Annealing has least

amount of penalties and obtains a solution in the least number of iterations.

76

Finally, we have proposed a novel memetic algorithm which uses the goodness of

both GA and SA and introduces the concept of greedy stochastic local search

mutation that finds optimal solutions with faster convergence. In the memetic

algorithm SA helps in providing the stopping criteria for MA which helps in

converging of the solution, GA helps in providing optimal solution and local search

mutation in GA helps in obtaining optimal solution in lesser time and better

convergence. ITC 2007 timetabling dataset is used for performing comparisons

between all the methods and gives us that performance of Memetic Algorithm along

with Local Search Mutation is better in terms of faster converging and optimal

solution. The approach has good potential to yield optimum results when applied to

other real-world optimization problems, and that forms the future scope of our work.

77

REFERENCES

[1] Dandashi, Amal, and Mayez Al-Mouhamed. "Graph coloring for class

scheduling." In ACS/IEEE International Conference on Computer Systems and

Applications-AICCSA 2010, pp. 1-4. IEEE, 2010.

[2] Daskalaki, Sophia, Theodore Birbas, and Efthymios Housos. "An integer

programming formulation for a case study in university timetabling." European

Journal of Operational Research 153, no. 1 (2004): 117-135.

[3] Zhang, Lixi, and SimKim Lau. "Constructing university timetable using

constraint satisfaction programming approach." In International Conference on

Computational Intelligence for Modelling, Control and Automation and

International Conference on Intelligent Agents, Web Technologies and Internet

Commerce (CIMCA-IAWTIC'06), vol. 2, pp. 55-60. IEEE, 2005.

[4] Holland, John Henry. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. MIT

press, 1992.

[5] Yu, Enzhe, and Ki–Seok Sung. "A genetic algorithm for a university weekly

courses timetabling problem." International transactions in operational research

9, no. 6 (2002): 703-717.

[6] Rozaimee, Azilawati, Adibah Nabihah Shafee, Nurul Anissa Abdul Hadi, and

Mohamad Afendee Mohamed. "A Framework for University’s Final Exam

Timetable Allocation Using Genetic Algorithm." World Applied Sciences Journal

35, no. 7 (2017): 1210-1215.

[7] Duong, Tuan-Anh, and Kim-Hoa Lam. "Combining Constraint Programming and

Simulated Annealing on University Exam Timetabling." In RIVF, pp. 205-210.

2004.

[8] Thompson, Jonathan, and Kathryn A. Dowsland. "General cooling schedules for

a simulated annealing based timetabling system." In International Conference on

the Practice and Theory of Automated Timetabling, pp. 345-363. Springer,

Berlin, Heidelberg, 1995.

78

[9] Zheng, Shuang, Long Wang, Yueyue Liu, and Rui Zhang. "A simulated

annealing algorithm for university course timetabling considering travelling

distances." International Journal of Computing Science and Mathematics 6, no. 2

(2015): 139-151.

[10] Brusco, Michael J., and Larry W. Jacobs. "A simulated annealing approach to

the cyclic staff‐scheduling problem." Naval Research Logistics (NRL) 40, no. 1

(1993): 69-84.

[11] Sastry, Kumara, David E. Goldberg, and Graham Kendall. "Genetic

algorithms." In Search methodologies, pp. 93-117. Springer, Boston, MA, 2014

[12] Chu, Shu-Chuan, Yi-Tin Chen, and Jiun-Huei Ho. "Timetable scheduling

using particle swarm optimization." In Innovative Computing, Information and

Control, 2006. ICICIC'06. First International Conference on, vol. 3, pp. 324-327.

IEEE, 2006

[13] Adrianto, Dennise. "Comparison Using Particle Swarm Optimization and

Genetic Algorithm for Timetable Scheduling." Journal of Computer Science 10,

no. 2 (2014): 341

[14] Wang, Yao-Te, Yu-Hsin Cheng, Ting-Cheng Chang, and S. M. Jen. "On the

application of data mining technique and genetic algorithm to an automatic

course scheduling system." In 2008 IEEE Conference on Cybernetics and

Intelligent Systems, pp. 400-405. IEEE, 2008.

[15] Chu, Shu-Chuan, Yi-Tin Chen, and Jiun-Huei Ho. "Timetable scheduling

using particle swarm optimization." In Innovative Computing, Information and

Control, 2006. ICICIC'06. First International Conference on, vol. 3, pp. 324-327.

IEEE, 2006

[16] Kohshori, Meysam Shahvali, and Mehrnaz Shirani Liri. "Multi Population

Hybrid Genetic Algorithms for University Course Timetabling." Annals of the

University Dunarea de Jos of Galati: Fascicle: I, Economics & Applied

Informatics 18, no. 2 (2012).

[17] Rachmawati, Lily, and Dipti Srinivasan. "A hybrid fuzzy evolutionary

algorithm for a multi-objective resource allocation problem." In Fifth

International Conference on Hybrid Intelligent Systems (HIS'05), pp. 6-pp. IEEE,

2005.

[18] Kohshori, Meysam Shahvali, Mohammad Saniee Abadeh, and Hedieh Sajedi.

"A fuzzy genetic algorithm with local search for university course timetabling."

79

In The 3rd International Conference on Data Mining and Intelligent Information

Technology Applications, pp. 250-254. IEEE, 2011.

[19] Moscato, Pablo. "On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms." Caltech concurrent computation

program, C3P Report 826 (1989): 1989.

[20] M oscato, Pablo, and Carlos Cotta. "A gentle introduction to memetic

algorithms." In Handbook of metaheuristics, pp. 105-144. Springer, Boston, MA,

2003.

[21] Cotta‐Porras, Carlos. "A study of hybridisation techniques and their

application to the design of evolutionary algorithms." AI Communications 11, no.

3, 4 (1998): 223-224.

[22] Grosan, Crina, and Ajith Abraham. "Hybrid evolutionary algorithms:

methodologies, architectures, and reviews." In Hybrid evolutionary algorithms,

pp. 1-17. Springer, Berlin, Heidelberg, 2007.

[23] Zeb, Alam, Mushtaq Khan, Nawar Khan, Adnan Tariq, Liaqat Ali, Farooque

Azam, and Syed Husain Imran Jaffery. "Hybridization of simulated annealing

with genetic algorithm for cell formation problem." The International Journal of

Advanced Manufacturing Technology 86, no. 5-8 (2016): 2243-2254.

[24] Mafarja, Majdi M., and Seyedali Mirjalili. "Hybrid Whale Optimization

Algorithm with simulated annealing for feature selection." Neurocomputing 260

(2017): 302-312.

[25] Assad, Assif, and Kusum Deep. "Harmony search based memetic algorithms

for solving sudoku." International Journal of System Assurance Engineering and

Management 9, no. 4 (2018): 741-754.

[26] Singh, Gurmukh, Munish Rattan, Sandeep Singh Gill, and Nitin Mittal.

"Hybridization of water wave optimization and sequential quadratic

programming for cognitive radio system." Soft Computing (2018): 1-21.

[27] Yu, Enzhe, and Ki–Seok Sung. "A genetic algorithm for a university weekly

courses timetabling problem." International transactions in operational

research 9, no. 6 (2002): 703-717.

[28] Rozaimee, Azilawati, Adibah Nabihah Shafee, Nurul Anissa Abdul Hadi, and

Mohamad Afendee Mohamed. "A Framework for University’s Final Exam

Timetable Allocation Using Genetic Algorithm." World Applied Sciences

Journal 35, no. 7 (2017): 1210-1215.

80

[29] Duong, Tuan-Anh, and Kim-Hoa Lam. "Combining Constraint Programming

and Simulated Annealing on University Exam Timetabling." In RIVF, pp. 205-

210. 2004.

[30] Thompson, Jonathan, and Kathryn A. Dowsland. "General cooling schedules

for a simulated annealing based timetabling system." In International Conference

on the Practice and Theory of Automated Timetabling, pp. 345-363. Springer,

Berlin, Heidelberg, 1995.

[31] Zheng, Shuang, Long Wang, Yueyue Liu, and Rui Zhang. "A simulated

annealing algorithm for university course timetabling considering travelling

distances." International Journal of Computing Science and Mathematics 6, no. 2

(2015): 139-151.

[32] Bettemir, Önder Halis, and Rifat Sonmez. "Hybrid genetic algorithm with

simulated annealing for resource-constrained project scheduling." Journal of

Management in Engineering 31, no. 5 (2014): 04014082.

[33] Mahfoud, Samir W., and David E. Goldberg. "Parallel recombinative

simulated annealing: a genetic algorithm." Parallel computing 21, no. 1 (1995):

1-28

[34] Abdullah, Salwani, and Hamza Turabieh. "Generating university course

timetable using genetic algorithms and local search." In 2008 Third International

Conference on Convergence and Hybrid Information Technology, vol. 1, pp. 254-

260. IEEE, 2008.

[35] Ombuki, Beatrice M., and Mario Ventresca. "Local search genetic algorithms

for the job shop scheduling problem." Applied Intelligence 21, no. 1 (2004): 99-

109.

81

LIST OF PUBLICATIONS

[1] Susan, Seba, and Aparna Bhutani. "Data Mining with Association Rules for

Scheduling Open Elective Courses Using Optimization Algorithms." In

International Conference on Intelligent Systems Design and Applications, pp.

770-778. Springer, Cham, 2018 [06-08 December 2018, Vellore, India]

[2] Susan, Seba, and Aparna Bhutani. "A Novel Memetic Algorithm incorporating

Greedy Stochastic Local Search Mutation for Course Scheduling.” In

International Conference on Computational Science and Engineering, IEEE,

2019[01-03 August 2019, New York, USA]

[3] Susan, Seba, and Aparna Bhutani. “Incorporating Teacher’s Preferences and

Student Time Management in University Course Timetabling”. In International

Journal of Computer Information Systems and Industrial Management

Applications, 2019 (Scopus Indexed, Article in Press)

Project page: https://github.com/users/aparna-bhutani/projects/1

