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ABSTRACT 

A dynamical model for the characterization of a one-degree-of freedom Twin Rotor MIMO system 

(TRMS) in hover is depicted using a black-box system identification technique. It has striking 

similarity like Helicopter but it does not fly. Modelling of such complex air vehicle is very 

daunting task as it has a significant cross coupling between its horizontal & vertical directional 

motions. Therefore, it is an interesting control and identification problem. Identification for a 1-

DOF rigid-body, discrete time linear model is presented in detail. In this paper, a Fractional Order 

Integral Proportional Derivative (FOI-PD) controller has been realized and implemented in both 

simulation and real-time for the control of pitch and yaw angle of the TRMS. The novelty of the 

present work lies in the implementation of the robust FOI-PD controller. he nonlinear interior point 

optimization technique (fmincon function available in MATLAB optimization toolbox) has been 

utilized to identify the suitable controller parameter values by minimizing the cost functions within 

a predefined interval of controller parameters. In order to assess the performance of closed loop 

control system a continuously varying reference trajectory has been taken which is tracked by 

actual response. It is found in real time study that the FOI-PD controllers perform better than 

fractional order PID followed by integer order PID 

(IOPID) controllers based on same design criteria. 
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CHAPTER-1 

 

INTRODUCTION 

 

1.1 GENERAL  

 
Nowadays, there hasibeen a remarkable interest iniUnmanned Aerial Vehicles (UAVs). The 

Twin Rotor Motor system (TRMS) also has striking similarity like a helicopter, but it does 

not fly. The Helicopter is a highly non-linear system having unstable system dynamics. The 

main and tail rotors provide horizontal and vertical movement due to which it is lifted in the 

air. To land and take off vertically make it unique from others, due to this capability it has 

generally used in various tasks such as law enforcement and border patrolling, rescue 

operations, firefighting, terrain surveying, cinematography, etc. The main difficulties in 

designing the controllers for TRMS are the cross-couplings and non-linearity’s present in the 

system. The controllers proposed by various researchers are based on the linearized model 

or the other linearization technique. These linearized models are locally stable, but they are 

globally unstable when external disturbances are present. The Twin rotor MIMO system 

consistsiof aibeam mounted on its baseisuchithat it moves freelyiinibothilateraliand 

longitudinal planes. It has twoirotors the pitch and the yaw located at both ends of theibeam 

whichiis driven byiDC servo motors. A counterbalance arm weighting the endiis fixedito the 

beamiat theipivot. 

The beam stateiisidescribedibyifouriprocessivariables, the longitudinal & the lateraliangles 

whichiareimeasured byiencoders situated at theipivotiand twoiangularivelocities of the 

rotors, measured byispeed tachometers attached to DC motors. The TRMS also has striking 

similarity like a helicopter, but it does not fly. The Helicopter is a highly non-linear system 

having unstable system dynamics. The TRMS experimental setup is used to study flight 

dynamics and thus can be implemented for performing experiments with air vehicles. 

 

1.2 LITERATURE REVIEW 

 
TRMS is a non-linear model, and hence, the system identification technique is used for 

linearization[1]. The TRMS is benchmarked system to test various controllers, and control 

algorithms on a real-time environment. The modeling is done with no prior knowledge of the 

structural model, i.e., black-box modeling. The black box modeling is based on the analysis 

of input and output signal of the plant. Natheer Almtireen et al. studied the PID and LQR 

controllers through a simulation approach for a TRMS plant[2]. Peng Wen and W.Lu explain 

the identification and linearization of non-linear TRMS model, which is decoupled as (SISO) 

single-input-single-output systems, the cross-couplings between its twin rotors are 

considered as disturbances to each other [3]. Rajalakshmi and Manoharan presented the 
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untuned PID controlleriforiainon-linearimulti-inputimulti-outputisystemi(MIMO) based on 

the linearized model[4]. Darus et al. presentediSystemiidentification technique using 

parametricilineariapproachesiforimodelingiaitwin-rotor multi-input multi-output system 

(TRMS)iisihoveringipositioniandiutilizesiaigeneticialgorithmi(GA)ioptimizationitechnique 

foridynamicimodelingiofiaihighlyinon-linearisystem[5].iSuruziMiahietial.iexploresithe 

designiofiaigeneralizedifeedbackicontrolioperatoricouplediwithistateiestimationiforiaitwin-

rotoriMIMOisystemi(TRMS)iintendeditoiregulateiitsipredefinediconfigurationsi(i.e.,ipitch 

andiyaw)[6]. Valluru et al. designed two loops PID controllers tuned using frequency 

response, Linear Quadratic Regulator (LQR), LQG controllers are designed, and also LQR 

and LQG are full state feedback controllers in which the performance matrices Q and R are 

calculated. The results are compared with the PID controller, and it is found that the optimal 

controller, i.e., LQG and LQR, gives better performance in terms of overshoot, settling time, 

and robustness[7]. Debdoot Sain et al. presents performance analysis in real-time for 

Fractional Order I-PD (FOI-PD) controller for TRMS. In this (FOI-PD)ifractional-

orderiIntegral-ProportionaliDerivativeicontrollerihas beenidesigned and implemented 

inisimulation as well as in real-time for TRMS. The optimizationitechnique, namely 

(fminconifunctioniavailable iniMATLABioptimizationitoolbox), hasibeen used for 

identifyingithe appropriateicontroller parameteribyiminimizingitheicostifunction[8].  
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1.3 THESIS ORGANIZATION 

 
Chapter one presents the detailed introduction of the benchmarked Twin rotor MIMO system 

along with its unstable system dynamics. The vertical and horizontal movement operation of 

TRMS has been explained along with non-linearities due to cross-coupling between the two 

rotors. This chapter additionally consists of a literature review and organization of the thesis. 

Chapter two consists of the descriptive model of Twin rotor MIMO system in which its 

mechanical as well electrical unit is explained in details along with their figures. In this 

chapter, mathematical modeling of TRMS model is done, and its momentum equations for 

the vertical and horizontal plane is derived. After that from the TRMS non-linear simulation 

model, the transfer function for pitch and yaw rotor are obtained and linearized. Finally, the 

state-space representation of the TRMS model is obtained in the form of matrix A, B, and C. 

Chapter three gives an overview of designing controllers for TRMS. In this, designing of 

FO-PID, IO-PID, and FOI-PD controller has been done along with detailed mathematical 

equations. Advantages and disadvantages of these controllers are also described. Finally, 

tuning methods of controller parameters are discussed. 

 

Chapter four presents the experimental implementation of FO-PID, IO-PID, and FOI-PD 

controllers on Twin rotor MIMO system in detail. The problem is formulated, and optimized 

values of controller parameters are obtained and shown in tabular form. 

Chapter five presents the results and discussion, which consists of the real-time response of 

various controllers. A comparative analysis of all the controllers is discussed in tabular form. 

Chapter six presents the conclusion of the work done, i.e. designing and experimental 

implementation of various controllers on Twin rotor MIMO system followed by future work.  
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CHAPTER 2 

 

MODELING OF TRMS 

 

2.1 TRMS DESCRIPTION 

 
The TRMS setup described in this section refers to the mechanical part and control unit. The 

mechanical and electrical connection interface shows how to measure and transfer the signals 

to the PC from the TRMS. In Fig.2.1, the TRMSimechanicalipart comprises twoirotors 

which areiplacedion aibeamitogether with aicounterbalance. The whole set up isiattached to 

aitower whichiallows safeihelicopteriexperiments. 

                                                                                                                                                                                                                    

                    
    Figure 2.1 TRMS mechanical unit  
                    

The electrical system (positioned under the tower) performs a significant function for TRMS 

control apart from the mechanical systems. It enables the transfer of recorded data to the PC 

and the implementation of control signals via an I /O panel. A fully controlled environment is 

provided to TRMS by the mechanical and electrical units. The TRMS design consists of a 

beam mounted at its base that rotates freely in theihorizontaliandivertical planes. Atiboth 

endsiof theibeam, thereiare twoirotors, theimainiand the tail, drivenibyiDCimotors. A 

counterbalance frame is attached to the beam at the pivot with a weight at its bottom. Four 

process variables describe the state of the beam: horizontaliandivertical anglesimeasurediby 

pivot-fitted encodersiand theiritwo respective angularivelocities. There are alsoitwo other 

stateivariables, the linear rotorivelocities, which are evaluated by velocity sensors connected 

with drivingiDCimotors. 
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Theifundamentalidifference between the lab set-upiand the real helicopteriisithatithe 

aerodynamiciforce is regulated by altering the angleiofiattack in a helicopteriwhileithe angle 

of attack is fixed in the lab set-up. The aerodynamic force can be controlled in the TRMS 

model by changing the velocity ofithe two rotors. Since eachirotor affects both theiangles 

position, a significant cross-coupling between these rotors can be observed.  

The controller's design is based on the decoupled model to stabilize the TRMS. The TRMS 

scheme was designedito work withiPC-basedidigitalicontroller externally. Control 
computers are used to communicate with the position, speed sensors, and motors via a 

dedicated I/O board and power interface. Software operating in real-time in the 

MATLAB/Simulink environment responsible for controlling the I/O board. 

   

    Figure 2.2 TRMS electro-mechanical unit 
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 2.2 TRMS MATHEMATICAL MODELING 

 
The electro-mechanical phenomenological model of the TRMS is shown in Fig. 2.3 

 

                           Figure 2.3 TRMS phenomenological model 

 
Usually, phenomenological designs tend to be nonlinear, meaning that atileastioneiofithe 

statesi(i–rotor current, θ –position)iis ainon-linear function. It must be linearized to present 

such a model in the form of the transfer function. The previous non-linear model equations 

can be obtained, as illustrated in the electrical-mechanical diagram in Figure 2.3. 

For vertical movement the following momentum equation can be written as: 

 

       

                GBFG MMMMI   11
      (1)     

   Where 

1111 2
1

.  baM                                     --nonlinear characteristics  (2) 

sin.gFG MM                        -- gravity momentum   (3)  

)(..
.

21   signBBM B         -- frictional force momentum  (4)                                                                                                                                                               

 cos...
.

1MKM gyG        -- gyroscopic momentum  (5)                                              

                                                                                                                                               

A first-order transfer function approximates the motor and electrical control circuit, thus in 

s- domain the motor momentum is described by                                     
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                                                          1
1011

1
1 .u

TT

k


       (6) 

  

For horizontal plane motion, the equations are: 

                                                 
..

2.I RB MMM  2       (7) 

                                                                              22
2
222 ..  baM                                                         (8) 

                                                                         )(..
.

2

.

1   signBBM B                                  (9) 

 

The cross-reaction momentum MR is approximated by  

 

                                                       1
0 .

1

)1(







sT

sTk
M

p

c
R                                                 (10) 

 

Again, the DC motor with the electrical circuit is given          

    2
2021

2
2 .u

TsT

k


                       (11)  

  

                  

 

 

 Table 2.1 TRMS Parameters      

 

 

 

 

The TRMSiparametersiused in the aboveiequationsiareichoseniexperimentally,whichimakes 

the Twin rotor MIMO system a nonlinear semi-phenomenological model shown in the table 

                                     Parameters       Value 

I1 – vertical rotor moment of inertia 6.8.10-2 kg-m2 

I2 – horizontal rotor moment of inertia 2.10-2 kg-m2 

a1 – static characteristic parameter 0.0135 

b1 – static characteristic parameter 0.0924 

a2 – static characteristic parameter 0.02 

b2 – static characteristic parameter 0.09 

Mg – gravity momentum 0.32 N-m                                                              

B1ψ – friction momentum function parameter 6.10-3 N-m. s/rad 

B2ψ – friction momentum function parameter 1.10-3 N-m. s2/rad 

B1φ – friction momentum function parameter 1.10-1 N-m. s/rad 

B2φ – friction momentum function parameter 1.10-2 N-m. s2/rad 

Kgy – gyroscopic momentum parameter 0.05 s/rad 

k1 – motori1igain 1.10 

K2 – motori2igain 0.80 

T11 – motori1idenominatoriparameter 1.10 

T10 – motori1idenominatoriparameter 1.0 

T21 – motori2idenominatoriparameter 1.0 

T20 – motori2idenominatoriparameter 1.0 

Tp – crossireactionimomentumiparameter 2.0 

To – cross-reactionimomentumiparameter 3.5 

kc – cross-reactionimomentumigain                                                                                                -0.2 
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below: Since the TRMS model is a MIMO plant, i.e. multiple input multiple outputs. Figure 

2.4 gives a simplified schematic representation of the TRMS. 

 

 

 
     

 

    Figure 2.4 TRMS schematic MIMO model 
 

 

 

 

 

Two inputs u1 and u2 control the TRMS. One of the main characteristics of the TRMS is the 

cross-couplings between the two rotors (Figure 2.4). The beam location is measured using 

incremental encoders, providing a comparative position signal. Therefore, every time the 

simulation of Real-Time TRMS is run, one must remember that it is important to set the 

proper initial conditions.  

The TRMS is a nonlinear plant with important cross-couplings between the rotors, as stated 

in the previous chapter (Figure 2.4). The modelicanibeitreatedias twoilinearirotorimodels 

with two linear couplings in between to keep the identification simple. Thus, four linear 

models are toibeiidentified: twoiforitheimain dynamical pathifromiu1 to ψiand u2 to φ and 

others two are the cross-coupling dynamical paths fromiu1 to φ andiu2 to ψ. These models 

are used for designing the controller. 
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2.3 TWIN ROTOR MIMO SYSTEM NON-LINEAR 

SIMULATION MODEL 

 
 

 

 
    

   Figure 2.5 TRMS non-linear Simulink model 
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2.4 TRMS MODEL TRANSFER FUNCTION 
 

Step-1. 

Considering our first input 𝑢1  

 

𝑢1= input 1 

 

 

 

 

 

                                            𝐴1  
      

                             𝑀1        

𝑌1                                            

                           

 

 

𝐶1      𝐷1   𝐸1 

 

 
 

 
 
 

2

1
1

1
11

12.1

.1.1

12.1

.1.1























s

u
a

s

u
bM         (12) 

 

  dBA ..11                       (13) 

 

      dMkC gy ..cos. 11                      (14) 

 

    21 .2sin.0163.0  dD                      (15) 

 

sin.1 gfME                       (16) 

 

     dY1                      (17) 
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Step-2. 
Considering our second input 𝑢2 
 
𝑢2=input 2 
                          
 
                              𝑀2           𝐴2 

 
    𝐶2                                                                              𝑌2 

 
 

 
                 (18) 
 
                    
         
                        (19) 
 
                    
                                             (20) 
 
                    
         
                                                        (21) 
 

 
 
 
 
 
Step-3. 
Considering our second input 𝑢2 as zero 
 
When 𝑢2=0 
 
From step 2. 
 

𝑑𝜙 = −
1

𝐼2
[∫ 𝐵1. 𝜙. 𝑑𝜙 + 0.2𝑀1

3.5𝑠+1

2𝑠+1
]               (22) 

 
 

𝑑𝜙 = −
1

𝐼2
[

𝜙2

2
+ ∫ 0.2 ∗

3.5𝑠+1

2𝑠+1
∗ (𝑏1

1.1𝑢1

1.2𝑠+1
+ 𝑎 (

1.1𝑢1

1.2𝑠+1
)

2

)]                (23) 

                
 

 

Rewriting the equation (22) and (23)  

 

 

  odY

s

s
MC

dBA

s

u
a

s

u
bM













































2

12

12

2

2
2

2
12

12

15.3
2.0

.

1

8.0

1

8.0
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 
















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


















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



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




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
  dt

s

u
a

s

u
b

s

s

I
d

2

1
1

1
1

2

2 12.1

1.1

12.1

1.1
*

12

15.3*2.0

2

1 
             (24) 

 

 

 

                    (25) 

 

 

 

 

From-step 1.  

   





























































































d
s

u
a

s

u
bk

dt
s

u
a

s

u
bdB

I
d

gy .
12.1

1.1

12.1

1.1
*cos*

12.1

1.1

12.1

1.1
..

1

2

1
1

1
1

2

1
1

1
11

1

               (26) 

 

       dtMd fg  sin..2sin*0163.0
2

  

 

             dtMddB
I

d fg  sin..2sin*0163.0..
1 2

1

1

                         (27)

   

   od  2                      (28) 

 

 

 

From step-2. 

 

           

               (29) 

 

 

                  

              (30) 

 

 

 

              (31) 

 

   

 

 

Step-5. 

After solving the above equations and putting the system parameter values,  

we find SISO main pitch rotor transfer function as, 

 

  od 1

   

 



 

 















































od

dt
s

u
a

s

u
bdB

I
d

dtMdB
I

d







2

2

1
1

1
11

2

21

2

12.1

1.1

12.1

1.1
..

1

..
1
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Transfer Function = 
0313.126395.26354.24234.00166.0

5242.06952.03625.01703.00499.0
234

234





ssss

ssss
                  (32) 

 

 

And transfer function of SISO main yaw rotor as, 

 

Transfer Function = 
0887.01740.04205.00340.00010.0

1732.02154.06191.04829.00225.0
234

234





ssss

ssss
           (33) 

 

But since, the TRMS is a nonlinear model that implies atileastioneiof theistates (position or 

rotoricurrent) is an equation of the nonlinearifunction. Toidesignitheicontroller for 

controlling theiTRMS, first, the mathematicalimodelishouldibeilinearized. 

 
2.5 LINEARIZED MODEL 

 
The mathematical model presented above from equations is non-linear. To design the 

controller for TRMS, first, itishouldibeilinearized. Theifirstistep involves inilinearization 

techniqueiis finding ofiequilibriumipoints. 

The following steps show the linearization technique to find equilibrium points. 

The alternate model of the TRMS is given as:  

   

1

11

2

112111

2

11

2

2 cos..sin

I

dt

d
dck

dt

d
signB

dt

d
BMdc

dt

d
gyg 






























  (34) 

                                                       

 

11

101111

T

Tuk

dt

d 
                   (35)                                                                                                                                

2

2122

2

22

2

2
..

I

M
dt

d
signB

dt

d
Bbc

dt

d
R 




































             (36)                                                                                                                                                                          

 

P

R
cc

c

R

T

Mu
T

kTk

T

TTk
k

dt

dM


























1

11

10
1

11

100                  (37) 
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  Now let us assume: 
 

1x                               (38) 

            

2x                    (39) 

            

 

𝜏1 = 𝑥3                  (40) 

            

𝜏2 = 𝑥4                      (41) 

            

𝑀𝑅 = 𝑥5                      (42) 

            

6
dt

d
x


                      (43) 

            
𝑑φ

𝑑𝑡
= 𝑥7                      (44) 

            

Now with state-space variable, the equations in algebraic linear form can be represented as: 

 
𝑑𝑥1

𝑑𝑡
=𝑥6                      (45) 

            
𝑑𝑥2

𝑑𝑡
=𝑥7                       (46) 

            
𝑑𝑥2

𝑑𝑡
= -

𝑇10

𝑇11
𝑥2 + 

𝑘1

𝑇11
𝑢1                                (47)         

           
𝑑𝑥4

𝑑𝑡
= -

𝑇20

𝑇21
𝑥4 + 

𝑘2

𝑇21
𝑢2                                  (48) 

          

𝑑𝑥5

𝑑𝑡
=

(𝑘𝑐−
𝑘𝑐𝑇0𝑇10

𝑇11
)𝑥2

𝑇𝑝
 - 

𝑥5

𝑇𝑝
+

𝑘𝑐𝑇0𝑘1

𝑇𝑝𝑇11
𝑢1                     (49) 

        

𝑑𝑥6

𝑑𝑡
=

(𝑐1𝑥3
2+𝑑1𝑥3−𝑀𝑔 sin(𝑥1)−𝐵1𝑥1𝑥6−𝐵2𝑥1𝑠𝑖𝑔𝑛(𝑥6)−𝐾𝑔𝑦(𝑐1𝑥3

2+𝑑1𝑥3)𝑥7cos (𝑥1))

𝐼1
          (50) 

𝑑𝑥7

𝑑𝑡
=

(𝑐2𝑥4
2+𝑑2𝑥4−𝐵1𝑥2𝑥6−𝐵2𝑥2𝑠𝑖𝑔𝑛(𝑥7)−𝑥5)

𝐼2
               (51)  

 

Now applying Taylor series for finding the equilibrium points. Forithisimakeialliderivative 

term in equationsiequalitoizero and thenifind the equilibriumipoint by taking 𝑢1=0 and 𝑢2 

=0. 

Thus, the equilibrium point will be: - 
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 𝑥10= 0, π 

 𝑥20= 0 

 𝑥30= 0 

 𝑥40= 0   

 𝑥50= 0 

 𝑥60= 0                    (52) 

 𝑥70= 0 
 

Theinon-lineariequationsicanibeirepresentediinitheistate-spaceiform given as: - 

 

𝑥̇ = Ax+ Bu                          (53) 

                   

y = Cx+D                            (54) 

          

 

Now the elements of matrix A can be obtained in the following way: - 

 

dt

d
x

dt

dx 
 6

1                     (55) 

           
𝑑𝑥2

𝑑𝑡
=𝑥7 =

𝑑𝜑

𝑑𝑡
                    (56) 

           

Taking dt =1, 

 

On solving further, we get, 

1

1

6

6

1

1

x

dx

x
signx

I

M g









                    (57) 

         

2

2

7

7

2

2 1

x

dx

x
signx

I

B









                                      (58) 

          

 

11

103113

T

Txuk

dt

dx 
                     (59) 

          

 

21

204224

T

Txuk

dt

dx 
                    (60) 

          

 

 

Pp

c

P

c

T

x
x

TT

TTk

T

k

x

dx 5
3

11

100

3

5 













           (61) 

         











6

6
21

6

6

x

signx
BB

x

dx
           (62) 
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pT

dt

x

dx


5

5                    (63) 

           

 

 
dt

I

xM

x

dx G

1

1

1

6 sin
                               (64) 

          

 

2

242

4

7

I

dxc

x

dx 
                   (65) 

           

 

cxy  +d                     (66) 

           

 

 

Using these equations and putting 𝑢1 𝑎𝑛𝑑 𝑢2 equal to 0, matrices A, B, C can be found, 

where matrices are defined as: - 

 

 

A =   



















































x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

x
dx

7

7

6

7

5

7

4

7

3

7

2

7

1

7

7

6

6

6

5

6

4

6

3

6

2

6

1

6

7

5

6

5

5

5

4

5

3

5

2

5

1

5

7

4

6

4

5

4

4

4

3

4

2

4

1

4

7

3

6

3

5

3

4

3

3

3

2

3

1

3

7

2

6

2

5

2

4

2

3

2

2

2

1

2

7

1

6

1

5

1

4

1

3

1

2

1

1

1

                      (67) 

         

 

 

B = 



















































u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

u
dx

2

7

1

7

2

6

1

6

2

5

1

5

2

4

1

4

2

3

1

3

2

2

1

2

2

1

1

1

                         (68) 
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C = 





















x

dy

x

dy

x

dy

x

dy

x

dy

x

dy

x

dy
x

dy

x

dy

x

dy

x

dy

x

dy

x

dy

x

dy

7

2

6

2

5

2

4

2

3

2

2

2

1

2

7

1

6

1

5

1

4

1

3

1

2

1

1

1

                              (69) 

          
                               

  Thus, on solving and putting the values, we get the matrices as:  

 

A=







































5000.0000000169.0

000000.10000

7500.1805000.5006960.34820.1

00000000.100

0007060.40897.002460.1

000000000.10

0000008333.0

             (70) 

   

B=































00

00

00

00

00

10

01

                                   (71)     

              
    

C= 








0100000

0001000
                         (72)     

            
 
 

 D = 








00

00
                    (73) 

           
 
The transfer function of the linearized model of TRMS has been obtained as  

 

 

   
   
   










sGsG

sGsG
DBAsICsGp

2221

12111
             (74) 
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         (75) 

                 

               

Theiaboveiequationsishowiclearlyithatitheilinearizedimodeliisiunstableisinceitheiright 

halfiofitheis-planeiisitheiunstableiregioniandiweishouldinoteithatitheipoleioriginating in 

theiyawitransferifunctionishowsitheinecessaryiaction.iTheicouplingieffectibetweenithei

twoirotorsiinput,i(u1)ipitchianditheiyawianglei(ϕ)ialsoiisisignificant. 

 

 

 

 

 

 

  

  

 
      


























15

60.3

5.0833.05

2857.04824.1

0
706.408824.0833.0

2460.1
2

sssssss

s

sss
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CHAPTER 3 

 

CONTROLLER DESIGN 

 

3.1 INTRODUCTION 

The controller is a device that controls and changes the systemiparametersiinitheiform of 

analogicircuitsioridigitalicircuitsitoiachieveitheirequirediperformance.iBasically,ithe 

controlleriis applicable where the system doesn’t fulfill the desired results, i.e. accuracy and 

stability. Controllers are placed, either in parallel or series to the plant asiperithe requirement. 

AisimpleifeedbackicontrolialongiwithicontrolleriisishowniiniFigure 3.1. 

 

   Figure 3.1 control system feedback structure 

 

Theierrorisignali‘e’ishowsitheidifferenceibetweenireferencei‘r’ianditheioutputi‘y’,ias 

showniiniFigure-3.1.iTheierrorisignalideterminesitheimagnitudeiwithiwhichitheioutput 

signalideviatesifromireferenceivalue.iTheicontrolleriparameteri'iC'iis altered and control 

input 'u' is applied to the plant depending on the error signal value to give satisfactory 

output. It needs various controllers for a plant with various inputs and various outputs. If 

theisystemiisiaisingleiinputiandisingleioutputiSISOisystem, the controller requires a 

single controller depending on the configuration of the device i.e. (physical or non-

physical). By changing the input variable of the system (assumingiitiisiMIMO)iwill 

affectitheioperatingiparameteriknowniasitheicontrolledioutputivariable. It is possible to 

extend the concept of controllers to more complex systems. For proper operation, both 

natural processes and human-made systems requires controller. 
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3.2PROPORTIONAL INTEGRAL DERIVATIVE CONTROLLER (PID) 

The PID controller comprises three terms Proportional, Integral, and Derivative which 

represents the present errors, the accumulation of the past errors and prediction of the future 

errors. The PID controller comprises of 3 blocks Proportional, Integral and Derivative. The 

equations representing the PID controller is as follows: 

 

     
 

 
dt

tde
DdtteItePtu ...         (76) 

     tytyte desired            (77) 

 

By taking the Laplace transform of the above equation, it can be represented as: 

 

   sEsD
s

I
PsU .. 








          (78) 

 
 
  s

IPsDs
sD

s

I
P

sE

sU
sC













2

.        (79) 

 

Each of the blocks of PID controller (P, I and D) has a key role, but to obtain satisfactory 

results, integral or derivative part must be excluded for some applications. Mostly the 

Proportional block is responsible for the system reaction speed. In some plants, if the P value 

is set to be large, oscillations may occur. The Integral part is very essential and ensures 0 

error value in steady state, indicating the output will be exactly what we want it to be. 

Nevertheless, the controller's integral action leads the system to respond more slowly to 

desired changes in values and structure. 

 

3.2.1 INTEGER ORDER PROPORTIONAL INTEGRAL DERIVATIVE 

(IO- PID) CONTROLLER 

The integral order PID controller comprises three terms Proportional, Integral, and 

Derivative which represents the present errors, the accumulation of the past errors and 

prediction of the future errors. The PID controller comprises of 3 blocks Proportional, 

Integral and Derivative. The equations representing the PID controller is as follows: 

 

     
 

 
dt

tde
DdtteItePtu ...         (80) 

 

     tytyte desired            (81) 
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By taking Laplace transform of the above, it can be represented as: 

 

   sEsD
s

I
PsU .. 








          (82) 

 

 
 
  s

IPsDs
sD

s

I
P

sE

sU
sC













2

.        (83) 

 

Each of the blocks of PID controller (P, I and D) has a key role, but to obtain satisfactory 

results, integral or derivative part must be excluded for some applications. Mostly the 

Proportional block is responsible for the system reaction speed. In some plants, if the P value 

is set to be large, oscillations may occur. The Integral part is very essential and ensures 0 

error value in steady state, indicating the output will be exactly what we want it to be. 

Nevertheless, the controller's integral action leads the system to respond more slowly to the 

desired change in value and structure. 

Since some non-linearities are causing problems for integral action. Therefore, to make the 

response faster, the derivative part has been introduced. But it is very sensitive to an increase 

in noise amplitude and can cause the system to react nervously. So It is often ignored in the 

design of the controller. Derivative part can decrease the nervous reaction, but it also slows 

down the controller's response. Proper filtration can help to decrease high frequency noise 

without decreasing the efficiency of the control system in the lower frequency band. 

 

3.3 FRACTIONAL ORDER CONTROLLER (FOC) 

3.3.1 INTRODUCTION  

Fractionaliorder control scheme is an application ofifractional calculus in control 

engineering. As the name suggests, unlike the integer order which moves between integer 

numbers (order belongs to integer numbers), the fractional order moves along the real axis 

whose order belongs to the real number. But it is suggested that order is between' 0' and' 2' 

for process control application. In some literatures it is mentioned that order greater than ‘2’ 

in control application leads to unstable operation of system. In fractional order control there 

are various types of controllers such as FOPID controller, FOI-PD controller, FO-PD/PI 

controller, fractional lead-lag compensator, CRONE controller.iFOPIDicontrollersihave 

acknowledgediaiconsiderable attention in the recent years. They provide more flexibility in 

the controller design as they have five parameters. In recent past, FOPID controllers have 

been proposed by ‘I. Podlubny’ in time domain and by ‘Patras’ in frequency domain which 

isicapableiofienhancingitheiclosediloopiperformanceiofiaisystemioverianiintegeriorder 

controller. A FOPID controller's true prospect depends   
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heavilyioniitsituningimethodology,iandiperformanceicaniseverelyidegrade,iwith 

contradictoryidesignispecificationsibeingimetibyifractionaliorder controllers. 

3.3.2 FRACTIONAL CALCULUS 

Fractionalicalculusidealsiwithiintegersiandiderivativesitheoryiofinumbers.iItialso 

simplifies the integer order notation and the integration of "n" folds. The derivatives and 

integrals of fractional order provide a powerful tool for memory description. Fractional 

calculusiisialsoithreeicenturiesioldilikeiintegericalculus,ibutiisinoticommoniinithe field 

of research. Many researchers have been using this as a tool for their research work in 

various fields of science and engineering such as control engineering, mechanical, 

chemical, signal processing etc. since the last few centuries. 

 

3.3.3 DEFINITIONS OF FRACTIONAL CALCULUS 

Sinceimanyidefinitionsiofifractionalicalculusistartingiwithin-foldidefinitionsitoiother 

differentivariationsihasibeenigiven. 

Theifollowingifractionalicalculusioperatoriisiusediandii


 tD iisidefinedias follows: 
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    where  R  refers to the real part of  .    (84) 

Theifollowingidefinitionsiofifractionalicalculusiareiwidelyiusediinitheivariousiareasiofi

controlisystemigivenias follows: 

3.3.3.1 Grunwald-Letnikov (GL) definition: 

TheiGrunwald-Letnikovidefinitioniisirepresented as: 
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Wherei‘t’i&i‘a’iareitheioperator limits. ‘n’ is the is the integer value satisfying the 

condition -1< < n.  
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Binomialicoefficientivalueiisigiveniby: 
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Anditheifunctioniusediiniaboveiequationii.e.igammaifunctioniisidefined as: 
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1 dtetx tx           (87) 

 

This definition of GL is generally used in numerical evaluations, which is very useful for 

findingiainumericalisolutioniofidifferentialifractionaliequations. 

 

3.3.3.2iRiemann-Liouvillei(RL)idefinition: 

Liouvilleidefineditheiarbitraryiorderiderivativeiasianiinfiniteiseries. Theidrawback is that its 

orderimustibeirestricteditoitheivaluesiforiwhichitheiseriesiconverging.Toiobtainiaiformula 

relatingitheiintegrationiofianiarbitraryinumber,iRiemanniused the generalization of Taylor 

series. It can be illustratedithatitheiapproachesisuggestedibyiLiouvilleican be reduced inione 

singleiformula. 

 

It is defined as: 
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Where,iniisianiintegeriwhichisatisfiesitheicondition n-1<   <n. ‘a’iandi‘t’iareitheilimitsiof 

integration. 

The fractional integral and derivatives concept of RL is helpful for obtaining the analytical 

solutioniofisimpleifunctionsisuchias.  tte bt cos,, . 

 

3.3.3.3 M. Caputo definition 

The definition given by Caputo is widely used in engineering applications because it is a 

direct link between the initial conditions type and the fractional derivative type. 

It is stated as: 
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Where, n is an integer which satisfies the condition n-1<   <n. ‘a’ and ‘t’ are the limits of 

integration. 
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The Laplace transform of above fractional operator is defined as: 

 

    sFstfDL t


            (90) 

 

3.3.4 FRACTIONAL ORDER PID CONTROLLER 

 
For many decades, the PID controller has been the most widely used process control 

technique. PID controllers are certainly still commonly used in industrial processes despite 

significant developments in control theory and technology in recent years. This is because 

for a wide class of processes, they show good performance. They also provide robust 

efficiency for a wide range of working conditions. Many possible methods were described 

in the literature in time and frequency domain to define the tuning parameter on suitable PID 

controllers. There are four possible system and controller combinations in control system 

theory. 

 The system and controller both are integer order type. 

 Fractional order system which are controlled by integer order controller. 

 Fractional order system which are controlled by fractional order controller. 

 Integer order system which are controlled by fractional order controller. 

 

Since the majority of the systems are modelled as integer order ones, fourth one type of 

combination is most popular. 

 

FOPID (fractional form PID) is a stage further in PID controllers. Over the past two decades, 

FOPID controllers have gained considerable attention. Compared to conventional PID 

controllers, they provide more flexible in controller design. This is because there are five 

parameters in FOPID than standard PID controllers where only three parameters are selected. 

This flexibility also suggests that the controller's tuning may be much more complex. FOPID 

controller is proposed by I. Podlubny in 1994. They are able to improve a system's closed 

loop performance over a simple Integer order PID structure. This is because in the case of 

conventional PID controllers they have three parameters to select where as there are five in 

FOPID. FOPID controller design is simple and performance shown by them are good. For 

slow process systems, they will give less overshoot percentage and less settling time. A 

Fractional order device can easily attain Iso-damping properties. The system is said to have 

iso-damping properties if it provides a flat line at a frequency called "Tangent frequency" in 

the phase plot in Bode plot. It implies that the derivative of phase function w.r.t frequency 

results to zero at the frequency called tangent frequency. Systems with this property have 

constant over-shoot in closed loop step response for different values of control gain i.e. 
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Systems are robust against variations in gain. Fractional PIDs are from PIDs generation and 

its output is a linear combination of input, a fractional integral of the input, and a fractional 

derivative of input. 

 

 

   Figure 3.2 fractional order PID controller  

 

The equation of generalized transfer function of fractional PID controller is given by: 
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Where,  0,   

 

WhereitheicontrollerioutputiisiC(s),itheicontrolisignaliisiU(s),itheierrorisignaliisiE(s),ithe 

proportionaliconstantigainiisiKp,itheiintegraliconstantigainiisiKi,itheiderivativeiconstant 

gainiisiKd.iλiisitheiorderiofiintegrationianditheiorder of differentiation is μ. All conventional 

PID controllers of the integer order are the specific case of the PID controller of the fractional 

order where λ=1 and μ=1. 

As shown in the figure below, we have to move between four points in conventional PID 

controllers for four different kinds of controllers (P, PI, PD, and PID). Unlike the Integer 

order controller, it is possible to move continuously in the plane forifractionaliorder 

controllers. Theirangeiofifractionaliorderigenerallyivariesifromi0ito 2. 

 

 Ifivalueiofiλ=1i&iµ=1,itheniitiisiaiclassicaliPIDicontroller. 

 Ifivalueiofiλ=0i&iµ=1,itheniitiisiaiclassicaliPDicontroller. 

 Ifivalueiofiλ=1i&iµ=0,itheniitiisiaiclassicaliPIicontroller. 

 Ifivalueiofiλ=0i&iµ=0,itheniitiisiaiclassicaliPicontroller. 

 

 



26 
 

 

     Figure 3.3 Range of λ and μ 

 

3.3.5iADVANTAGESiOFiFRACTIONALiORDERiCONTROLLER 

OVER AN INTEGER ORDER  

 In FOPID it is possible to achieve five distinct specifications by varying 

five parameters, which is not possible in the case of IOPID. 

 Iso-damping properties can be easily obtained by FOPID compared to 

IOPID. 

 For higher order systems, the efficiency of the controller weakens when 

standard PID controllers are used. While in the case of FOPID, even with 

the higher order systems, it provides improved results. 

 Foriaisystemiwithimoreitimeidelay,itheiFractionaliPIDicontrollerigives    

betteriresultsithaniconventionaliPIDicontrollers. 

 

 As fractional PID have five parameters for tuning, it is more robust and 

stable whereas integer order PID provides less robustness and stability. 

 It is complicated and difficult to control a system that has nonlinearities 

using conventional PID controllers, in those cases, fractional PID 

controllers seem to give better. 

 For the Non-minimum phase system, the fractional PID controller gives 

better response. 

 If we work on a non-linear system, it is common practice to linearize the system at 

distinct operating points and then to design the controllers for distinct operating 
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points. But for non-linear systems, only fractional PID controller is typically 

sufficient. 

 

By considering above benefits of fractional controller over conventional type, FOPID 

controller has following applications/situations for efficient performance: 

 

 For Higher order systems. 

 Systems which are having long time delays. 

 Systems with non-linearities. 

 For Non-minimum phase system. 

 Systems in which we require robust stability. 

 

3.3.6 DISADVANTAGE OF FRACTIONAL ORDER CONTROLLER: 

 Since there are no generalized tuning methods for the tuning of 

FOPID whereas for conventional PID there are various tuning 

techniques. 

 For Obtaining the optimized five parameters of FPID by tuning 

is a very daunting task. 

 

 3.3.7 TUNING OF PID 

 

Tuning is the method for obtaining optimum controller parameter according to system 

requirements. For example, tuning will be done for getting the optimum values of Kp, Kd, 

and Ki in the case of a PID controller. Whereas in case of FOPID Kp, Kd, Ki, λ and μ. The 

presence of a number of tuning techniques and the automatic tuning function that simplifies 

theiridesigniisioneiofithe factors for the tremendous successiof conventional PID controllers. 

Forithisipurpose,imanyiFOPIDituningimethodsiare now being proposed by researchers in 

various literatures to improve the use of fractional controllers in different applications. 

Many researchers have proposed several tuning strategies for tuning of FO-PIDicontrollers 

inibothifrequencyianditimeidomain specification. It was discoveredithatitheimethod of 

frequencyidomainidesignineedsiaireduced order model of theioriginalihigheriorder process. 

Onitheiotherihand,ireducediorderimodeliisinotinecessarily required for time domain tuning 

techniques. Therefore, higheriorderiprocessimodeliisisufficientitoidetermineitheiparameters 

of controller through the optimization technique havingitimeidomainiperformanceiindices as 

theidesignicriteria.iNowiaidaysimostiofiindustrialiPIDicontrollersiareituneditoiaifewisets of 

designispecificationsieitheriinitimeidomaini(erroriindex,iriseitime,iover-shootipercentage, 
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settlingitime,iunder-shootiratio,ietc.) or inifrequencyidomaini(gainimargin,iphaseimargin, 

cross-overifrequencies,imaximumisensitivityiandicomplexisensitivityimagnitudes,ietc). 

That is whyiaisingleituningimethodicannotimeetialliofitheiaboveidesignispecifications,ii.e. 

satisfying the performance specifications of the time and frequency domain at the same time. 

Indeed,ibecauseiofiover-specification,isuchidesignicriteriaicanioftenigiveiunsatisfactory 

and sometimes even in closed loop response. Therefore, as mentioned above, a FOPID 

controller that satisfies few setsiof time domain specifications may not have sufficient 

robustnessiagainstisystemiparameteriuncertaintiesiinifrequencyidomainianalysisiandivice 

versa. It is evident from this discussion that eachituningistrategyihasiitsiownistrengthiand 

weakness inherent in it. 

 

3.3.8 TUNINGiMETHODiFORiFRACTIONAL ORDER 

CONTROLLER:  

Controller tuning is always a challenging task. There are five parameters to be tuned in the 

case of a fractional PID controller. So, it's quite complex and difficult. According to the 

tuning methods proposed by D. Valerio and J. Costa, which is divided into following three 

different categories: 

 Ruleibaseituningimethods  

 Analyticituning methods 

 Numericalituning methods 

Apartifromithisiabove-mentionedimethods,itwoiotherimethodsiself-tuningiandiauto-tuning 

canibeiusediforituningiofifractionaliordericontrollers. 

3.3.8.1 Rule base methods: 

It is one of revolutionary tuning techniques for PID controllers. e.g. Ziegler-Nichols 

technique. The performance of the control system is enhanced in most cases, but this 

technique is primarily applicable for selection of the starting tuning point. The process needs 

step response in S-shaped curve.  
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   Figure 3.4 response for step input to the plant  

The figure shown above is the response for the step input to the plant (plant is of the 1st- 

orderiwithisomeidelayisystem). In the above figure L represents apparent delay and T is the 

time constant resulting from the pole. As discussed earlier that Zeigler-Nichols method can 

beiusediforituningitheicontrolleriorichoosingitheistartingipointsiforifurtherituningiofithe 

fractionaliordericontroller. 

3.3.8.2 Analytical methods: 

The controller's parameters were obtained in the analytical tuning method by solving 

equations. We have to find five parameters in the fractional controller so that it needs five 

equations created by each specification. Thus, by using those values obtained by solving 

equations, we can fulfill five different specifications. 

 

3.3.8.3 Self tuning and Auto tuning: 

A self-tuning controller contains a traditional controller as well as a self-tuning function that 

tries to keep optimum closed loop performance by continually updating the controller 

parameter. An auto tuning is equivalent except that it only executes its tuning procedure once, 

then initiates closed loop control using the calculated parameters. The main components of 

the auto-tuning algorithm are the following: 

 To generate the identification input with a little or none a priori system 

information 

 Parameter identification of the transfer function through optimization 

 Verification of model 

 Synthesis of Controllers 

 Evaluation of performance parameters 
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3.3.9 CLASSICAL TUNING PROCEDUREiFORiFRACTIONAL 

ORDER PI/PD CONTROLLERS: 

TheitransferifunctioniofifractionaliorderiPIi/PDicontrolleriisidefinedias follow: 

  
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




 s

k
kSH i

pPIFO 1          (93) 

   skkSH dpPDFO  1          (94) 

Where fractional orders represented by µ, λ є (0, 2), Proportional gain constant Kp, integral 

gain constant Ki and the derivative gain constant Kd. One of the most commonly used 

fractional order controller tuning procedures begins with a set of specifications for the 

frequency domain. We have to get three parameters when tuning FO PI / PD. Thus, consider 

three specifications for the frequency domain. The three specifications to be met by controller 

are as follows 

1. Aigainicrossoverifrequency  gc  

Theigainicrossoverifrequencyiisiassociatediwithitheiclosediloopisystem'sisettling time. 

Itiisithusiusediasitheicontroller'siimportantituningiparameter.iAilargeigainicrossover 

frequencyiwillileadiiniaismallericlosediloopisettlingitime.iToiensureitheiimposedigain 

crossoverifrequencyiforiaisystem,itheifollowingiconditionimustihold 

 

  1 gcloopopen jH            (95) 

Where Hopen-loop(s) is the open loop transfer function defined as: 

     sHsPsH FOCloopopen *           (96) 

WhereiP(s)irepresentsitheitransferifunctioniofitheiprocessitoibeicontrollediandi  sHFOC iis 

eitheritheiFO-PIioriFO-PDicontrolleridefinediini(88)iandi(89)irespectively. 

 

2. A phase margin  m  

Phaseimarginiisiaisignificantimeasureiofitheistabilityiofiaisystemiandian 

indicatoriofitheiovershootiofitheiclosediloop.iAniintervalibetweeni45֯iand 

65֯iiiisiusuallyiuseditoiselectiaiproperiphaseimargin.iIniorderiforia system 

toiensureiaicertainiphaseimargin,itheifollowingiconditionimust satisfy: 

 

 
mgcloopopen jH            (97) 
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3. Iso-dampingiproperty: 

This condition guarantees that the system is more robust in order to gain 

changes and that the overshoot of the response within a gain range is almost 

constant. A steady phase margin across the desired gain crossover frequency 

must be maintained to ensure a constant overshoot, which eventually means 

that the open loop system phase must be kept constant around the specified. 

In order for a system to ensure the Iso-damping property, the following 

condition must be satisfied 
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Theicomplexirepresentationiinitheifrequencyidomainiofitheitransferifunctionsidescribing 

the FO-PI or FO-PD are as follows: 
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Theicorrespondingimagnitudesiofiaboveitwoiequationsiareiasifollows: 
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The phase of the equations and is as follows: 
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Now consider FO-PI controller and by applying three frequency domain specifications 

on it the equations got are as follows: 

 When we apply gain crossover frequency condition on FO-PI controller 

 gc
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 When we put a phase margin constraint 
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 When we apply Iso damping property on FO-PI controller 
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ForiproperituningiofitheiFO-PIicontroller,itheisystemiofinonlineariequationsi(100)-(102) to 

beisolvedibyiusingieitherigraphicalimethodsiorioptimization techniques. 

 

 

3.3.10 OPTIMIZATION TECHNIQUE: 
 

The MATLAB has a optimization toolbox which can be used for optimization techniques, 

the feature 'fmincon' for which the condition of the modulus in (105) can be used as the 

function to minimize i.e. objective function. While the condition of the phase in (106) and 

the condition of robustness (Iso damping property) in (107) are the non-linear constraints. 

 

Itiis also necessary to specify initial values of the controller parameters, havingithe 

possibilityiofisettingitheiloweriandiupperiboundaries as well. The ‘fmincon’ function returns 

the controller parameters (in this case the controller parameters are Kp, Ki and λ)isoithatithe 

modulusiconditioni(105)-(107)iisiminimizedianditheinonlineariconstraintsiareimet. 

 

 

3.3.11 GRAPHICAL METHOD: 
 

This technique involves evaluating the parameter of Ki as a function of the fractional order 

μ. Then the corresponding Ki values are calculated for different values of μ (varies from 0 to 

2). The graphical method then comprises of plotting different values of Ki which are derived 
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from the equation. Similarly, another graph for different values of Ki is computed on the 

same plot for the different values of µ. Then we get a point of intersection between the two 

plots. The final values of Ki and μ parameters are that intersection point. Now compute the 

final value of Kp using the initial values of Ki and μ by satisfying the modulus condition 

(105).  
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CHAPTER 4 

CONTROL SCHEME USING FO-PID, FO-I-PD & IO-PID 

CONTROLLERS FOR TWIN ROTOR MIMO SYSTEM 

 

4.1 FO-PID CONTROLLERS: 
 

TheiFOPIDicontrollerioriginatedifromitheifractionalicalculusithatiis as old as its counterpart 

i.e.iintegeriorder.iItiwasidifficultitoideal with due to very complex mathematical expressions 

ofifractionaliorderidifferential-integralioperators.iButiinirecentiyears, some techniques have 

been proposed describing how to use fractional calculus to solve differentiation and 

integration problems. In 1999, Podlubny introduced first significant work on FOPID 

controllers. Some of the commonly used phrases are described in Chapter 3 by Riemann-

Liouville,iGrunwald-LetnikoviandiCaputo.TheicontrolischemeiusingiFO-PIDicontroller is 

shown in figure 2 below: 

 

 

 

 

 

 

                          Figure 4.1 control scheme using FO-PIDiforiTRMS 

 

The FO-PID controller is in the form of 

       teDkteDktektu dip

           (108) 

Where kp, ki, and kd representsiproportional,iintegraliandiderivativeitermsisameiasiin IO-PID 

controlleributiFO-PIDicontrollerihasitwoiextraitermsiλiandiμifrom fractional differentiation 

andiintegrationiassociatediwithitheisecondiandithirditermiofi(103). TheiFOPIDiexpression 

inis-domainicanibeiobtainedithroughi(104)ias:  
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The λ and μ values vary from 0 to 1.  The FOPID acts as an IO-PID device for λ = 1, μ = 

1. It can therefore be concluded that FOPID is more flexible than the IOPID controller. 

The FOPID differential and integral terms are approximated to integer values using the 

approximation of Oustaloup's 5th order for optimal tuning and desired results. 
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   Figure 4.2 Pitch angle control using FO-PID 

 
   Figure 4.3 Yaw angle control using FO-PID
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4.2 FOI-PD CONTROLLERS 

ItiisisimpleimodificationiinitheiexistingiconventionaliPIDicontroller.iThei(P-D)iproportionaliand 

derivativeiblocksiareikeptiupiinitheipathiofifeedbackiwhereasitheiintegrali(I)iblockiisiplacediin 

theiforwardipath.iTheiI-PDicontroller's higher flexibility in satisfying the design criteria accurately 

isidueitoitheipresenceiofivariousisignalipathsiforitheiprocess output and the set-point. In Figure the 

structureiofitheiFOI-PDicontrolleriis provided. 

 

 

+

_

+

_

I TRMS

PD

OUTPUTref

 
    

   Figure 4.4 control scheme for FOI-PD controller  
 

 

TheicharacteristiciequationiofitheiTRMSiplantiwithiIOI-PDicontrolleriforiunityifeedbackiis 

given by: 

 

 

       01 1  sGsGsG CPDCP         (110) 
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CharacteristiciequationiofitheisystemiwithiFOI-PDicontrolleriforiunityifeedbackiisigiveniby: 

 

    01 







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


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


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
skk

s

k
sG dp

i
P         (112) 

 

 

Wherei andi  areitheifractionipoweriofis. 
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   Figurei4.5 Pitch angle control using FOI-PD 

 

 

 

 

   Figure 4.6 Yaw angle control using FOI-PD 
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4.3 IO-PID CONTROLLER    
    

   Figure 4.7 Pitch angle control using IO-PID 

 

 

   Figure 4.8 Yaw angle control using IO-PID 
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4.4 PROBLEM FORMULATION AND OBJECTIVE FUNCTION 

OPTIMIZATION 

 
Whileidesigningitheicontroller,itheimaximumipercentageiovershooti5i%iandisettlingitimeiless 

thani10isecondsiisiconsidereditoibeiaireasonablyigoodidesignispecificationi(althoughiitivaries 

from application to application). In the designing of controller for TRMS, the same design 

specifications are chosen i.e. Peakiovershooti≤i5%iandisettlingitimeitsi=i4/ζiωni≤i10is. Using 

theioptimalivaluesiofitheidesignispecifications,itheivaluesiofiζiandiωn are calculated and putting 

these values in the standard equation: 02 22  nnss   

the dominants poles are calculated as: 𝑠12 = 0.4 ± 0.4195𝑖 

TheicharacteristicsiequationiofitheisystemiwithiFOI-PDicontrolleriisigiveniby 
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




 


skk

s

k
sG dp

i
P         (113) 

TheitransferifunctionimodeliforitheiTRMSiisigivenias : 

 

     sGsGsGpitch 122111           (114) 

 

     sGsGsGyaw 222211            (115) 
 

 

Whereiτ1iandiτ2iareitheitransferifunctioniofitheimain rotor and tail rotor respectively 

already derived in Chapter two. Now, taking modulus of the characteristic polynomial which 

are calculatediatidominantipoleilocation,itheifollowing objective function has been obtained 

and are given by: 
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Minimizingitheiaboveiobjectiveifunction, we are trying to develop a set of controller 

parametersiwhich gives ultimately satisfactory results for plant as well as controller. The 

objective function values after optimization is equivalent to zero in an ideal case. Indeed, 

numbersioficostifunctionsiareiavailable in the literatureianditheseifunctionsicanialso be 

studied for optimization ofitheicontrolleriparameter.iBut this specific objective function was 

chosen for this research because of its simple implementation and flexibility. 

 

4.5 OPTIMIZATION OF OBJECTIVE FUNCTION 

At first, Equations (111) and (112) were optimized individually using the function fmincon 

whichiisiavailableiinitheiMATLABioptimizationitoolbox for identifying theipitchiandiyawiangle 

control parameters of the IOPID controller by setting λ1, β1, λ2 and β2= 1. The range for the 

unknown parameters were carefully selected as the solution's optimality relies to a great extent on 

the range selected. Atitheiinitialistageiofioptimization,iaiwiderisolutionispaceiisiconsidered and the 

space in the subsequent steps was reduced after the preliminary solution was obtained. Since the 

valuesiofitheisimulationiparameteridoinotiguaranteeisuccessiinireal-time, choosingitheirange 

oficontrolleriparametersithatiwilliworkibothiinisimulationiand in real-time is of primary 

importance. Table 4.1 provides the initial guess and the final range of parameter values of the 

controller to write the MATLAB code.  

Theivaluesiofi“kp1, ki1, kd1, kp2, ki2 & kd2” haveibeenifoundiandiareiprovidediin Table 

4.1 afterioptimizingitheiobjectiveifunctions. To design the IOPID controller, the optimized 

setioficontrolleriparameterivaluesihasibeen used. In addition, the same set wasiconsideredito 

designitheicontrolleriIOI-PDiandiFOI-PD. In the second stage, the values of fractional power 

of s relating to FOI-PDiareiobtainedibyioptimizingitheiobjectiveifunctions,ikeeping the 

controllerigainsitheisameiasitheiIO-PIDicontroller,ireducingithe number of Equations (111) 

and (112) unknowns from five to two. After the optimizationiofitheifollowingivaluesiofiλ1, β1, λ2 

and β2 have been found and provided in Table 4.2. 

The optimized values of the controller parametersiareieitheritheilowerioritheiupper 

parameter range. Thisibehavioriisiexpectedibecauseiininatureitheiobjectiveifunctionsiare 

convexiand a global minimum was not found. It can definitely be considered 

aniinterestingiproblemiofioptimizationitoifinditheiglobalioptima. However, as our idea 

was to show the FOI-PD controller's superior behavior over the FO-PID and IO-PID 

controller in real time. 
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   Table 4.1iRangeiforitheiControlleriparameters 

 

 

 

   Table 4.2 Range for the Controller parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Table 4.3 Optimized values for FO-PIDiControlleriparameter   

     Objective         Parameters       Lower range Upper 
range 

Initial 
guess 

Pitchiangle 
control 

             Kp1                 2.50 8.50    4.0 

             Ki1                 8.30 35.0    12.0 

             Kd1                 18.30 25.0    20.0 

Yawiangle 
control 

             Kp2                5.0 17.0    15.0 

             Ki2                17.50 25.0    20.0 

             Kd2 30 35.0    32.0 

 
Objective 

iiController 
iParameter 

 
Lowerirange 

 
Upperirange 

 
Initial 
guess 

Pitchiangle 
control 

         λ 1       0.875                1.0 0.90 

         ß 1       0.925                1.0 0.95 

Yawiangle 
icontrol 

         λ 2       0.915                1.0 0.95 

         ß 2       0.925                1.0 0.95 

Objective Parameters Optimizedivalue 

Pitchiangleicontrol i     Kp1                     7.46 

      Ki1                    34.31 

      Kd1                   15.30 

Yawiangleicontrol i     Kp2                    7.66 

 i    Ki2                    3.47 

 i    Kd2                    2.84 
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          Table 4.4 Optimized values for IO-PID Controller parameter  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Tablei4.5iOptimizedivaluesiforiController parameter 

 

  

Objective Parameters Optimized value 

Pitchiangleicontrol ii    Kp1 i        ii      5.5 

   i  Ki1 i        ii      8.3 

    iiKd1                18.3 

Yawiangleicontrol i     Kp2 17 

      Ki2                17.5 

 i    Kd2 30 

Objective i             Parameters Optimized value 

Pitchiangleicontrol                     λ 1          0.875 

                    ß 1          0.925 

Yaw angle control                     λ 2          0.915 

                    ß 2          0.925 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 
FO-PID’S & IO-PID has been designed separately for controlling the vertical and horizontal 

movement i.e. pitch rotor and yaw rotor in decoupled mode. Here the real time experiments 

are performed for 1-DOF plane. 

The real time response of non-linear model of TRMS for horizontal as well as vertical are 

shown in figures (5.1-5.12).iTheipitchiandiyawianglesiareicontrollediseparatelyiby FO-PID, 

& also FOI-PDiandiIO-PIDicontrollersirespectively.iTheiTRMSimodeliisioperatedineariits 

equilibrium points (origin). Average of three different sinusoidal waves of duration 100 

seconds and having amplitude betweeni0itoi1iareichoseniasireferenceisignalifor horizontal 

and vertical movement control. Average of vertical reference signal is found as 0.42 radians 

whereas horizontal reference signal has average of 0.57 radians. 

It is concluded that both FOI-PD and FO-PID gives satisfactory response than IO-PID 

controller by tracking the desired pitch as well as yaw angle respectively. In case of FOI-PD 

controller the response time for stabilization is much lesser than FO-PID and IO-PID. 

It is observed that IO-PID response has larger spikes and it takes more time to stabilize than 

FO-PID and because of theiderivativeikickiphenomenaioccurringiiniIOPIDicontrolleriwhichican 

beiavoidediinitheicaseiofiFOI-PDiandiFO-PID.iItiisiobservedithat the energy of the control 

signaliisiminimumiinicaseiofitheiFOI-PD controller as compared to the FO-PID and IO-PID 

controlleriforibothipitchiandiyawiangle control. 
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5.1 Real time response of (FO-PID) 

 

 

 
  Figure 5.1 FOPID Pitch Angle Plot (without disturbance) 

 

 

 

 

 

 
   Figure 5.2 FOPID Pitch Angle Plot (with disturbance)
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   Figure 5.3 Yaw Angle Control (without disturbance) 

 

    

 

 

 

 
    

   Figure 5.4 Yaw Angle Control (with disturbance)  
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5.2 Real time Response (FOI-PD) 

 

 
  Figure 5.5 FOI-PD Pitch Angle Plot (without disturbance) 

 

 

 

 
   Figure 5.6 FOI-PD Pitch Angle Plot (with disturbance)  
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   Figure 5.7 FOI-PD Yaw Angle Plot (without disturbance) 

 

 

 

   Figure 5.8 FOI-PD Yaw Angle Plot (with disturbance)  



48 
 

Figure 5.8 FOI-PD Yaw Angle Plot (with disturbance) 

 

   Figure 5.9 IO-PID Pitch Angle Plot (without disturbance) 

 

 

   Figure 5.10 IO-PID Pitch Angle Plot (with disturbance) 
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   Figure 5.11 IO-PID Yaw Angle Plot (without disturbance) 

 

 

 
   Figure 5.12 IO-PID Yaw Angle Plot (with disturbance)  
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5.4 COMPARATIVE ANALYSIS OF FO-PID, FOI-PD & IO-PID 

CONTROLLERS 
 

The following real time response of controllers are obtained for random disturbances given at 

different time instants (20th, 40th, 60th and 80th seconds) for controlling of pitch and yaw angle 

respectively. The stabilization time for various controllers has been noted and from that a 

comparative analysis on the performance of above controllers is concluded in the next section. 

 

 

 

From the above table it is observed that time taken to stabilize the TRMS pitch and yaw 

angle control for tracking of desired reference signal after giving disturbances is least in 

FOI-PD followed by FO-PID and then IO-PID controllers. 

 

 

 

 

 

 

 

 

 

 

 

                         FOI-PD                          FOPID                          IO-PID 

Disturba

nce 

given at 

(sec) 

Settl

ed at 

(sec) 

Stabiliz

ing 

time 

(sec) 

Disturba

nce 

given at  

(sec) 

Settl

ed at  

(sec) 

Stabiliz

ing 

time 

(sec) 

Disturba

nce 

given at 

(sec) 

Settl

ed at 

(sec) 

Stabiliz

ing 

time 

(sec) 

                   

 

P 

I 

T 

C 

H 

20th 29th 9 20th 30th 10 20th 32th 12 

40th 50th 10 40th 52th 12 40th 70th 30 

60th 64th 4 60th 68th 8 60th 70th 10 

80th 89th 9 80th 94th 14 80th 99th 19 

 

 

 

Y 

A

W 

20th 34th 14 20th 35th 15 20th 35th 15 

40th 54th 14 40th 53th 13 40th 54th 14 

60th 70th 10 60th 70th 10 60th 74th 14 

80th 90th 10 80th 93th 13 80th 94th 14 
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              CHAPTER 6 

 

CONCLUSION 
 

In this thesis, modelling and controlling of Twin rotor MIMO system has been presented. 

Three different controllers are designed namely (i) FO-PID (ii) FOI-PD (iii) IO-PID for 

controlling of vertical as well as horizontal movement and implemented in the real time for 

Twin Rotor MIMO Systemibyioptimizingitheiobjectiveifunctions using the function 

fmincon.  

For real time experimentation we introduce random disturbances to the TRMS system at 

different time instances (20th, 40th, 60th and 80th seconds) and the performance of the 

controllers has been compared. It is observed that the control signal gets improved as we moves 

from the FO-PID to FOI-PD and integer order to fractional order. 

From the real time implementation of above three controllers on Twin rotor MIMO system shows that 

FOI-PD controller gives best performance for stabilizing and tracking of desired pitch and yaw angle 

when the random disturbance is given to TRMS followed by FO-PID and then IO-PID. 

 

6.2 FUTURE SCOPE  

As a future research scope, MIMO Fractional Order controller can be designed for controlling the 

unstable nonlinear systems such as TRMS andiadvancedicontrolistrategiesisuchiasiadaptive control 

schemeicanialsoibeiexploreditoiproduce smooth control signal. In addition, in order to improve device 

efficiencyiand accurate trajectory tracking, this particular method of developing the FOI-PD controller 

mayibeiexpandeditoiotheriplanticategoriesiusediiniUAVsiiapplicationsiin future.
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