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ABSTRACT

Pedestrian movement direction recognition is an important factor in autonomous driver assistance
and security surveillance systems. Pedestrians are the most crucial and fragile moving objects in
streets, roads, and events, where thousands of people may gather on a regular basis. People flow
analysis on zebra crossings and in shopping centers or events such as demonstrations are a key
element to improve safety and to enable autonomous cars to drive in real life environments. This
thesis focuses on deep learning techniques such as hybrid Convolutional Neural Networks (CNN)
— Support Vector Machine (SVM) model to achieve a reliable detection of pedestrians moving in
a particular direction. We propose a CNN-based technique that leverages current pedestrian
detection techniques (histograms of oriented gradients-linear SVM) to generate a sum of
subtracted frames (flow estimation around the detected pedestrian), which are used as an input for
the hybrid CNN — SVM model.
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CHAPTER11. INTRODUCTION

Urbanization, and in particular the emergence of megacities, reflects the growth in the global
population and economy. Mobility and transport form the backbone for society’s increasing
prosperity and people’s greater participation in it. At the same time, managing traffic in these
urban agglomerations represents a special challenge because more and more people live not
only in the towns themselves, but also in the surrounding areas, and they commute between
home and work every day. The towns continue to expand, and urban agglomerations

themselves turn into cities

In developing countries and emerging economies in particular, many towns and cities are
growing so fast that infrastructural measures and urban planning can hardly keep up. The most
visible consequence is long traffic queues and too few parking spaces. This means that time is
lost and it also annoys the drivers. If the traffic does not flow, trade and productivity also

suffer, which has negative effects on the economy.

Growth and prosperity and participation in them require people and goods to be mobile. We
will need innovative solutions for secure mobility and transport to act as the motors driving
the future. It is no longer possible simply to “carry on as before.” In view of population growth
and urbanization, traffic flows, which are precisely what up to now has been the basis for
greater prosperity for more people, would be restricted. Automated driving has the potential to
contribute to resolving the challenges accompanying global development trends. The primary
objective is to make road traffic even safer. The challenge lies in accomplishing this while the

volume of traffic continues to rise, especially in the “megacities.

The technology in driver assistance systems potentially offers additional significant
reductions in the number of accidents and traffic jams. Adaptive cruise control systems, for
example, improve the traffic flow and make a major contribution to avoiding accidents.
Automated driving makes traffic not only safer, but also more efficient and comfortable.
Optimized traffic flow and less congestion bring about a decisive reduction in CO2 emissions.
During rush hour in particular, drivers of automated passenger cars and commercial vehicles
gain a newly won freedom and enjoy a better quality of driving. Furthermore, they can leave

parking to their vehicles. In short, automated driving functions support drivers and offer them



greatly improved driving comfort and flexibility. Yet despite all this progress in automation,
drivers remain in control. Just as today they can already decide whether they would like to
have an assistance system in their vehicle, they can also decide while driving whether they
want to use an assistance system that has been installed, such as adaptive cruise control.

TRAFFIC control, risk detection and Autonomous Driver Assistance Systems (ADAS) are
key elements for the development of future intelligent transportation systems. Furthermore,
dynamic pedestrian movement in traffic environments makes it necessary to develop people
flow analysis and movement intention recognition systems. In recent years, Convolutional
Neural Networks (CNN) and other deep learning techniques have demonstrated impressive
performance in many computer vision problems and therefore we believe they could be the
perfect approach for the aforementioned problems. Moreover, computer vision and machine
learning techniques have been transformed due to the rapid evolution and remarkable
performance of Graphics Processing Units (GPUs), which has enabled the development of
deep learning-based systems. In this work, our objective is the detection and recognition of
pedestrian intention on streets, zebra crossings or road junctions, so as to be able to alert

drivers or monitoring systems about possible risk situations.

1.1 NEED FOR PEDESTRIAN MOVEMENT DETECTION

1.1.1 PEDESTRIAN SAFETY

With rapid economic development, the use of automobiles has greatly increased in developing
countries, especially in China, India, and Vietnam, where vehicles are replacing bicycles as
the dominant transportation mode. Facing this great change, the space allocated to
automobiles has been expanded, thus alleviating traffic congestion, which encroaches on the
space for cyclists and pedestrians and constrains bicycling and walking. Consequently,
potential conflicts of vehicles, cycles, and pedestrians not only exacerbate travel delays but
also increase the randomness of pedestrian movements, substantially threatening pedestrian
safety. In a recent traffic safety report released by the World Health Organization (WHO),
road collisions are the world’s leading cause of preventable death; over 1.25 million people
die annually on the roads (especially at intersections) because of traffic collisions . In some

ways, active transportation users, such as cyclists and pedestrians, are more vulnerable to



injuries than other road users due to their labile speed and direction . Therefore, a walkable
city for people is regarded as one ultimate goals of future cities . Urban planners have taken
several actions to encourage walking, such as configuring special walkable lanes, designing
good walking interfaces, building friendly walkable infrastructures, etc. These actions also

highlight the necessity of pedestrian tracking and simulation.

Traditionally, pedestrian safety inspection largely relies on historical collision records.
However, due to the lack of detailed and precise historical data and the infrequent occurrence
of collisions, the task of inspection often cannot be fully accomplished. Recently, the use of
pedestrian conflicts as an alternative for collisions to analyze road safety has attracted
significant interest . Pedestrian conflicts can provide detailed information concerning road
dynamics at intersections, allowing the detection of the series of events that lead to collisions
. Pedestrian conflict analysis can be conducted by detecting and tracking moving traffic
objects or flawed design elements that may be causing safety issues . The introduction of
computer vision algorithms has greatly strengthened pedestrian conflict and violation analysis
by automating the extraction of accurate movements of traffic objects, overcoming many

shortcomings of manual pedestrian analysis techniques .

1.1.2 ADVANCED DRIVER ASSISTANCE SYSTEM (ADAS)

Today a large number of driver assistance systems is available for almost all vehicles. They
ensure stability in critical situations, maintain a safe distance to the vehicle in front, and
support the driver while parking. Monitoring the surroundings in all directions requires data
and information from the vehicle’s sensors (ultrasound, radar, cameras). The capabilities of
the sensors and the data processing by the control units are continually growing, and highly
advanced software is used to analyze this information in fractions of a second. In the future,
passenger cars and commercial vehicles will have a complete image of the surroundings in

real time.

Radar sensors that are usually located in the front and rear of the vehicle can detect other
vehicles and obstacles. The rear sensor detects traffic approaching from behind and vehicles

that are overtaking. The traffic in front is monitored by longrange radar. The short-range radar



surveys the vehicle’s immediate surroundings. Cameras are used, for instance to recognize
lane markings, traffic signs, traffic lights, and other road users. Ultrasound sensors have been
installed in vehicles from the beginning of the nineties, to help drivers maneuver into parking
spaces. Since then, their range of functions has increased markedly. They can measure

parking spaces while the vehicle is in motion, and detect vehicles driving in an adjacent lane

In the past, radar, cameras, and ultrasound sensors were used for separate functions, but now
all the relevant data can be linked intelligently and simultaneously by sensor fusion. That
makes automated driving possible in the first place. Special attention is paid to functional

safety.

The inclusion of redundancies and plausibility checks —that is, the system’s internal check on
whether the environmental data have been recorded correctly — prevents erroneous
interpretation of the data. The signals from the vehicle sensors are compared with one another.
Only if the data are consistent will the system actuate the steering and the engine.

The automated driving functions include “highway driving,” which in the case of highly
automated driving will be used up to a defined speed on highways and similar roads. The
driver can choose when to activate the system and does not have to monitor it continuously.
This takes away some of the stress of driving, and in certain situations they will be prompted
in good time to resume the task of driving. In the case of fully automated driving, the driver
does not have to monitor the system at all. In the distant future, in built-up areas the driving
function “urban driving” will make it possible to drive on various routes without the driver

intervening at all. In this case the driver will be free to use the time on the road as they choose
DEVELOPMENTS IN COMMERCIAL VEHICLE TECHNOLOGY

The information and functions both of tried-and-tested and of future driver assistance systems
are being bundled into an overall system in commercial vehicles just as in passenger cars. The
systems include adaptive cruise control (ACC), the lane keeping assistant, and the emergency
braking system — to name but a few examples. Then there are also innovations such as digital
3-D maps. With their aid, the vehicle’s handling is adapted to the features of the road
immediately ahead. So a truck can accelerate while approaching an incline in order to build up

momentum and ultimately reach the brow of the hill more economically. These systems can



very easily be expanded by car-to-X communication. Sharing information with other road

users results in additional improvements in safety and efficiency.

Automated driving functions are especially attractive to fleet operators. Fuel consumption and
emissions fall considerably because the traffic can flow more evenly. This means that higher
average speeds are possible without the need to increase the top speed. Transport times are
more predictable and there is less wear on the engines in trucks using the new features, owing

to the smoother driving style.

Relieving the stress on drivers is an important factor in further development. Today’s truck
drivers are subject to extreme demands. When driving in very dense traffic, they have to
remain attentive at all times and are often under time pressure. In the more distant future they
will be able to rely completely on the technological systems in their truck, and the truck itself
will drive to its destination safely and efficiently thanks to its sensor systems and the sharing
of data with its surroundings. This will make a lot of things easier for the drivers, who will be
able to turn their attention to other tasks, such as flexible organization of the current route or

planning future journeys.

1.1.3 LAND USE AND TRANSPORTATION PLANNING

The study of pedestrian movement is crucial for land-use and transportation planning which
mostly concentrates on improving the connection between urban places and public
transportation. Land use planning influences pedestrian movement behaviour in terms of the
element of accessibility that is controlled by urban structure, activities, and street networks,
all of which make different cities display the unique urban forms. This is especially the case in
the high-density areas such as a central business district or a major transit station district
where urban form is planned to support the use of land and potential accessibility between

people and places.

Urban structure plays a key role in providing available paths for pedestrian flows through
urban areas. Public spaces, sidewalks, and street crossings all influence the direction of crowd
movement along with the surrounding conditions that have an impact on people making

decisions on which access path they select. Pedestrians create their own path to reach their
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desired destination through their own choices of transit access routes, which are generated by
their estimation and perception of the quickest route whilst also considering secondary factors
that include the surroundings of the built-up environment such as the attractiveness of
facilities while avoiding negative features. Urban network analysis is useful for describing the
interaction between urban structures and street networks which leads to the impact prediction
on the project evaluation. The computer analysis is available for the transportation planning
on providing important spatial information which is precise data on spatial structure that
enables urban planners to see the whole picture of the planning area as well as to understand

the impact on both existing and future structures that might be assigned as a result of future

policy.

Survey methods used to identify pedestrian movement characteristics are questioned in terms
of their ability to obtain precise data for proceeding to the next step of spatial analysis. As the
development of data technology assists spatial survey methods with lower financial and time
costs, surveyors or analysts nowadays are able to conduct data collection processes via their
handheld device. Although counting the number of people passing by particular area is
considered as a traditional method for the study of transportation study, there are not always
definitions of precise pedestrian movement or behaviour due to limitations in the data
collection process. The integration of data surveying methods which are able to solve such
limitations by relying on more accessible devices and computer software are needed to
improve these collection methods for tracking the actual walking movement which seems to
be more precise in terms of identifying how pedestrians actually react to the pedestrian

infrastructure within specific land-use conditions.

1.2 LITERATURE REVIEW

Until 2012, most recognition, segmentation and classification image problems were
approached by extracting hand designed features and applying specific algorithms for those
particular features. For example, if a number plate on a car needed to be detected, we

segmented the image by looking for straight lines, then corners and finally the image was



reduced until we had an area similar to the geometry of a number plate. In essence, we looked

for the particular features that could solve a specific problem.

A common hand-crafted feature used for pedestrian detection is the Histogram of Oriented
Gradients (HOG) . The main idea behind this descriptor is that local object appearance and
shape within an image can be described by the intensity distribution of gradients or edge
directions. The image is divided into small connected areas, and for the pixels within each

area, a histogram of gradient directions is generated.

Recent work in this area has added a local sub-descriptor called Colour Self Similarity (CSS)
where colour histograms are compared within a HOG detected window, and for example,

colour histograms from the two arms have a high similarity.

In addition, extensive research has been done on pedestrian detection , where more than
sixteen different detectors were benchmarked against several public datasets. The features
were mainly based on window-sliding techniques and detection was performed using support
vector machines (SVM) for classification. Moreover, other approaches based on the Adaboost

work of Viola and Jones , and many others based on HOG and variants of the same method.

Since 2012, new approaches for pedestrian detection and related problems have emerged with
the advent of deep learning techniques. Deep learning is a new way of applying machine
learning algorithms, where neural networks are being made deeper and deeper by the addition
of tens, or even hundreds, of layers. Specifically, in computer vision, much work was done in
this regard before 2012, using multi-layer neural networks but obtaining poor results.
Recognition of characters was conducted using a CNN with a deeper layer structure.
However, it was after 2012, with the proposal of Alex Krizhevsky CNN, AlexNet, when the
real capabilities of CNNs became clear. These methodologies were first used at the Imagenet
Competition where the novel techniques, of deep multi-layer neural networks, were
accelerated using GPUs. Since then, new and better hardware has appeared. This increases the
possibility of bigger and deeper CNNs, providing better classification accuracy and making
the training of existing deep networks an affordable scientific tool in terms of training time.

Computer vision research groups focused on pedestrian detection have also benefited from the

rise of CNNs, and recent analyses have proved that better and more reliable results can be



achieved . However, our work focuses, not just on pedestrian detection, but also on pedestrian
movement direction recognition, analyzing, for example, whether the pedestrian moved to the
left, right or to the front of the scene. There are few studies in this area. Enzweiler and Gavrila
and Gandhi and Trivedi focused on that aspect using the HOG descriptor and SVM as a
classifier while Mogelmose et al. used pedestrian tracking techniques and trajectory analysis

for estimating pedestrian direction.

In general, the estimation of pedestrians’ trajectories have traditionally been addressed using
naive movement models based on human gait estimation and analysis of simple heuristics
based on that information . Other traditional approaches have focused on the use of Kalman
Filters (KF) to estimate pedestrian trajectories. Most of these existing techniques produced
poor results due to the impossibility of properly handling and adapting to changes in
pedestrians’ movements . More recently, a more complex method based on Artificial Neural
Networks (ANN) has been proposed for pedestrian trajectory estimation and intention
recognition . This work is able to estimate pedestrian trajectory based on pedestrian head
detection and the use of its position for tracking along the sequence. Other existing works in
the literature make use of features extracted from a dense optical compensated with ego-
motion techniques (car movement) . Using this approach, they are not only able to estimate a
pedestrian’s path but also to roughly estimate pedestrian intentions towards specific situations

such as crossing at intersections .

Finally, it is worth mentioning the existence of related works addressing this problem from a
different perspective. Most of these works are based on the information gathered by inertial
measurement units (IMUs) and similar technologies (accelerometers, gyroscopes, etcetera).
These types of approaches are very intrusive from the pedestrian viewpoint and do not
provide enough information to distinguish between different pedestrians’ actions. After
reviewing state-of-the-art techniques we can conclude that even though in recent years great
progress has been made in pedestrian recognition systems, more research is still required on
systems and new techniques that can provide better classification accuracy, improved

performance and ease of integration in current ADAS and security surveillance systems.



1.3 ORGANIZATION OF THE DISSERTATION

In this work, we contribute to the literature on pedestrian walking direction recognition with
the proposal of a hybrid CNN- SVM based system. The CNNs have been trained with a novel
dataset that was recorded in different scenarios. Pedestrians were video recorded and the
CNNs were fed with output images produced as a result of several image operations at pixel
level from this input video. The main purpose of this additional image processing was to
visually highlight image characteristics that may be relevant for pedestrian trajectory
recognition. Then the features were extracted from the last layer of the CNN architecture and
the SVM was trained using these features. This trained SVM is then used to classify the test
data.

To the best of our knowledge, not much work has been done on the classification of
pedestrians according to their motion direction using deep learning techniques.

The key contributions of our work are as follows:

» We propose a novel pipeline for pedestrian movement direction recognition, which provides

high recognition rates in the proposed dataset.

» We have evaluated state-of-the-art hybrid Convolutional Neural Network — Support Vector
Machine models for the problem presented and carried out a performance evaluation

providing quantitative metrics.

In chapter 2 , we briefly present Convolutional Neural Networks and other techniques like
optical flow , histograms of oriented Gradients , Support Vector Machines and multiclass
Support Vector Machines that we used in this work.. In Chapter 3 , we describe the dataset we
used in our work, and then we describe the proposed CNN based approach for the pedestrian
movement direction estimation. Chapter 4 presents the results (accuracy and run time ) for the
evaluated hybrid CNN Architecture and Chapter 5 draws conclusions and indicates future

scope of the work.



CHAPTER 2. TECHNIQUESUSED

2.1 CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network (CNN or ConvNet) is one of the most popular algorithms for
deep learning, a type of machine learning in which a model learns to perform classification

tasks directly from images, video, text, or sound.

CNNs are particularly useful for finding patterns in images to recognize objects, faces, and
scenes. They learn directly from image data, using patterns to classify images and eliminating
the need for manual feature extraction. Applications that call for object recognition and
computer vision such as self-driving vehicles and face-recognition applications rely heavily
on CNNs.

Using CNNs for deep learning has become increasingly popular due to three important

factors:

CNNs eliminate the need for manual feature extraction—the features are learned directly by
the CNN.

CNNs produce state-of-the-art recognition results.

CNNs can be retrained for new recognition tasks, enabling you to build on pre-existing

networks.

CNNs provide an optimal architecture for image recognition and pattern detection. Combined
with advances in GPUs and parallel computing, CNNs are a key technology underlying new

developments in automated driving and facial recognition.

A convolutional neural network can have tens or hundreds of layers that each learn to detect
different features of an image. Filters are applied to each training image at different
resolutions, and the output of each convolved image is used as the input to the next layer. The

filters can start as very simple features, such as brightness and edges, and increase in
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complexity to features that uniquely define the object. CNNs perform feature identification

and classification of images, text, sound, and video.

2.1.1 LAYERS OF CNN

The first step of creating and training a new convolutional neural network (ConvNet) is to
define the network architecture. The network architecture can vary depending on the types and
numbers of layers included. The types and number of layers included depends on the
particular application or data. A CNN has the following layers:

IMAGE INPUT LAYER :

An image input layer inputs images to a network and applies data normalization. The size of

an image corresponds to the height, width, and the number of color channels of that image.

CONVOLUTIONAL LAYER :

A 2-D convolutional layer applies sliding convolutional filters to the input. The convolutional

layer consists of various components.
FILTERS AND STRIDES :

A convolutional layer consists of neurons that connect to subregions of the input images or the
outputs of the previous layer. The layer learns the features localized by these regions while
scanning through an image. For each region while training a dot product of the weights and
the input is computed, and then a bias term is added. A set of weights that is applied to a
region in the image is called a filter. The filter moves along the input image vertically and
horizontally, repeating the same computation for each region. In other words, the filter
convolves the input. The step size with which the filter moves is called a stride. The number
of weights in a filter is h * w * ¢, where h is the height, and w is the width of the filter,

respectively, and c is the number of channels in the input.
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Figure 2.1 : A 3-by-3 filter scanning through the input. The lower map represents the input
and the upper map represents the output.[33]

Figure 2.2 : A 3-by-3 filter scanning through the input with a stride of 2. The lower map
represents the input and the upper map represents the output.[33]

FEATURE MAPS :

As a filter moves along the input, it uses the same set of weights and the same bias for the
convolution, forming a feature map. Each feature map is the result of a convolution using a
different set of weights and a different bias. Hence, the number of feature maps is equal to the

12



number of filters. The total number of parameters in a convolutional layer is ((h*w*c +
1)*Number of Filters), where 1 is the bias.

ZERO PADDING :

You can also apply zero padding to input image borders vertically and horizontally. Padding is
rows or columns of zeros added to the borders of an image input. By adjusting the padding,

you can control the output size of the layer.

Figure 2.3 : This image shows a 3-by-3 filter scanning through the input with padding of size
1. The lower map represents the input and the upper map represents the output.[33]

OUTPUT SIZE :

The output height and width of a convolutional layer is (Input Size — ((Filter Size —
1)*Dilation Factor + 1) + 2*Padding)/Stride + 1. This value must be an integer for the whole

image to be fully covered.

NUMBER OF NEURONS :

13



The product of the output height and width gives the total number of neurons in a feature map,
say Map Size. The total number of neurons (output size) in a convolutional layer is Map

Size*Number of Filters.

BATCH NORMALIZATION LAYER:

A batch normalization layer normalizes each input channel across a mini-batch. To speed up
training of convolutional neural networks and reduce the sensitivity to network initialization,
use batch normalization layers between convolutional layers and nonlinearities, such as ReLU

layers.

The layer first normalizes the activations of each channel by subtracting the mini-batch mean
and dividing by the mini-batch standard deviation. Then, the layer shifts the input by a
learnable offset B and scales it by a learnable scale factor y. p and y are themselves learnable
parameters that are updated during network training.

Batch normalization layers normalize the activations and gradients propagating through a

neural network, making network training an easier optimization problem.

ALGORITHM:
Batch normalization normalizes its inputs x; by first calculating the mean ps and variance og?

over a mini-batch and over each input channel. Then, it calculates the normalized activations

as

X— Hg

.f.;z

(2.1)

Vej+e
Here, € (the property Epsilon) improves numerical stability when the mini-batch variance is
very small. To allow for the possibility that inputs with zero mean and unit variance are not
optimal for the layer that follows the batch normalization layer, the batch normalization layer
further shifts and scales the activations as

Yi= 1%+ p.
(2.2)
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Here, the offset 3 and scale factor y (Offset and Scale properties) are learnable parameters that

are updated during network training.

When network training finishes, the batch normalization layer calculates the mean and
variance over the full training set and stores them . When you use a trained network to make
predictions on new images, the layer uses the trained mean and variance instead of the mini-

batch mean and variance to normalize the activations.

RELU LAYER:

A ReLU layer performs a threshold operation to each element of the input, where any value
less than zero is set to zero. Convolutional and batch normalization layers are usually
followed by a nonlinear activation function such as a rectified linear unit (ReLU), specified by
a ReLU layer. A ReLU layer performs a threshold operation to each element, where any input
value less than zero is set to zero, that is,

F(x)= X, x>=0 (2.3)
0,x<0

There are other nonlinear activation layers that perform different operations and can improve

the network accuracy for some applications.

MAX AND AVERAGE POOLING LAYERS :

A max pooling layer performs down-sampling by dividing the input into rectangular pooling
regions, and computing the maximum of each region. An average pooling layer performs
down-sampling by dividing the input into rectangular pooling regions and computing the
average values of each region. Pooling layers follow the convolutional layers for down-
sampling, hence, reducing the number of connections to the following layers. They do not
perform any learning themselves, but reduce the number of parameters to be learned in the
following layers. They also help reduce overfitting. Pooling layers scan through the input

horizontally and vertically in step sizes. If the pool size is smaller than or equal to the stride,
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then the pooling regions do not overlap. For nonoverlapping regions (Pool Size and Stride are
equal), if the input to the pooling layer is n-by-n, and the pooling region size is h-by-h, then
the pooling layer down-samples the regions by h . That is, the output of a max or average

pooling layer for one channel of a convolutional layer is n/h-by-n/h.

FULLY CONNECTED LAYER::

A fully connected layer multiplies the input by a weight matrix and then adds a bias vector
.The convolutional (and down-sampling) layers are followed by one or more fully connected

layers.

As the name suggests, all neurons in a fully connected layer connect to all the neurons in the
previous layer. This layer combines all of the features (local information) learned by the
previous layers across the image to identify the larger patterns. For classification problems,
the last fully connected layer combines the features to classify the images. This is the reason
that the output size of the last fully connected layer of the network is equal to the number of
classes of the data set. A fully connected layer multiplies the input by a weight matrix W and

then adds a bias vector b.

OUTPUT LAYERS:
SOTMAX AND CLASSIFICATION LAYERS :

A classification layer computes the cross entropy loss for multi-class classification problems
with mutually exclusive classes. For classification problems, a softmax layer and then a
classification layer must follow the final fully connected layer. For typical classification
networks, the classification layer must follow the softmax layer. In the classification layer,
trainNetwork takes the values from the softmax function and assigns each input to one of the

K mutually exclusive classes using the cross entropy function for a 1-of-K coding scheme
N K
loss = —E Ztﬁ In vy,

i=1 _1’=J

(2.4)
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where N is the number of samples, K is the number of classes, tjj is the indicator that the ith
sample belongs to the jth class, and yjj is the output for sample i for class j, which in this case,

is the value from the softmax function. That is, it is the probability that the network associates
the ith input with class j.

2.1.2 CASE STUDIES

LeNet. The first successful applications of Convolutional Networks were developed by Yann
LeCun in 1990’s. Of these, the best known is the LeNet architecture that was used to read zip

codes, digits, etc.

AlexNet. The first work that popularized Convolutional Networks in Computer Vision was
the AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton. The AlexNet
was submitted to the ImageNet ILSVRC challenge in 2012 and significantly outperformed the
second runner-up (top 5 error of 16% compared to runner-up with 26% error). The Network
had a very similar architecture to LeNet, but was deeper, bigger, and featured Convolutional
Layers stacked on top of each other (previously it was common to only have a single CONV
layer always immediately followed by a POOL layer).

ZF Net. The ILSVRC 2013 winner was a Convolutional Network from Matthew Zeiler and
Rob Fergus. It became known as the ZFNet (short for Zeiler & Fergus Net). It was an
improvement on AlexNet by tweaking the architecture hyperparameters, in particular by
expanding the size of the middle convolutional layers and making the stride and filter size on

the first layer smaller.

GooglLeNet. The ILSVRC 2014 winner was a Convolutional Network from Szegedy et al.
from Google. Its main contribution was the development of an Inception Module that
dramatically reduced the number of parameters in the network (4M, compared to AlexNet

with 60M). Additionally, this paper uses Average Pooling instead of Fully Connected layers
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at the top of the ConvNet, eliminating a large amount of parameters that do not seem to matter
much. There are also several followup versions to the GoogLeNet, most recently Inception-
v4,

VGGNet. The runner-up in ILSVRC 2014 was the network from Karen Simonyan and
Andrew Zisserman that became known as the VGGNet. Its main contribution was in showing
that the depth of the network is a critical component for good performance. Their final best
network contains 16 CONV/FC layers and, appealingly, features an extremely homogeneous
architecture that only performs 3x3 convolutions and 2x2 pooling from the beginning to the
end. Their pretrained model is available for plug and play use in Caffe. A downside of the
VGGNet is that it is more expensive to evaluate and uses a lot more memory and parameters
(140M). Most of these parameters are in the first fully connected layer, and it was since found
that these FC layers can be removed with no performance downgrade, significantly reducing

the number of necessary parameters.

ResNet. Residual Network developed by Kaiming He et al. was the winner of ILSVRC 2015.
It features special skip connections and a heavy use of batch normalization. The architecture
is also missing fully connected layers at the end of the network. The reader is also referred to
Kaiming’s presentation (video, slides), and some recent experiments that reproduce these
networks in Torch. ResNets are currently by far state of the art Convolutional Neural Network
models and are the default choice for using ConvNets in practice (as of May 10, 2016). In
particular, also see more recent developments that tweak the original architecture from

Kaiming He et al. Identity Mappings in Deep Residual Networks (published March 2016).

2.20PTICAL FLOW

Recent breakthroughs in computer vision research have allowed machines to perceive its
surrounding world through techniques such as object detection for detecting instances of

objects belonging to a certain class and semantic segmentation for pixel-wise classification.
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However, for processing real-time video input, most implementations of these techniques only
address relationships of objects within the same frame (x,y) disregarding time information (t).
In other words, they re-evaluate each frame independently, as if they are completely unrelated
images, for each run. However, if we do need the relationships between consecutive frames,
for example, we want to track the motion of vehicles across frames to estimate its current
velocity and predict its position in the next frame we use optical flow.

Optical flow is the motion of objects between consecutive frames of sequence, caused by the
relative movement between the object and camera. The problem of optical flow may be
expressed as:

I(x, y,t) I(x +dx, y +dy, t + dt)

(X, y) (x +dx, y + dy)

displacement = (dx, dy)

time =t time =t + dt

where between consecutive frames, we can express the image intensity | as a function of space
(x,y) and time (t). In other words, if we take the first image I(x,y,t) and move its pixels by
(dx,dy) over t time, we obtain the new image I(x+dx,y+dy,t+dt).

First, we assume that pixel intensities of an object are constant between consecutive frames.

[(x,y,)= [(x+8x,y+dy,t+0dt) 2.1)

Second, we take the Taylor Series Approximation of the RHS and remove common terms.
[(x+0x,y+0y,t+adt)= [(x,y,t)+0l/ox (0x) + Ol/Oy (dy) + dl/ot (6t) +... =0  (2.2)

Third, we divide by dt to derive the optical flow equation:
ol/ox (u) + ol/dy (v) + ol/ot =0 (2.3)

where u=dx/dt and v=dy/dt
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di/dx, dl/dy, and dl/dt are the image gradients along the horizontal axis, the vertical axis, and
time. Hence, we conclude with the problem of optical flow, that is, solving u(dx/dt) and
v(dy/dt) to determine movement over time. You may notice that we cannot directly solve the
optical flow equation for u and v since there is only one equation for two unknown variables.

We will implement some methods such as the Lucas-Kanade method to address this issue.

2.2.1 SPARSE VS DENSE OPTICAL FLOW

Sparse optical flow gives the flow vectors of some "interesting features” (say few pixels
depicting the edges or corners of an object) within the frame while Dense optical flow, which
gives the flow vectors of the entire frame (all pixels) - up to one flow vector per pixel. Dense

optical flow has higher accuracy at the cost of being slow/computationally expensive.

2.2.2 LUCAS-KANADE: SPARSE OPTICAL FLOW

Lucas and Kanade proposed an effective technique to estimate the motion of interesting
features by comparing two consecutive frames in their paper An Iterative Image Registration
Technique with an Application to Stereo Vision. The Lucas-Kanade method works under the

following assumptions:

1. Two consecutive frames are separated by a small time increment (dt) such that objects are
not displaced significantly (in other words, the method work best with slow-moving
objects).

2. A frame portrays a “natural” scene with textured objects exhibiting shades of gray that

change smoothly.

In a nutshell, we identify some interesting features to track and iteratively compute the optical
flow vectors of these points. However, adopting the Lucas-Kanade method only works for

small movements (from our initial assumption) and fails when there is large motion.
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2.2.3 OPTICAL FLOW USING DEEP LEARNING

While the problem of optical flow has historically been an optimization problem, recent
approaches by applying deep learning have shown impressive results. Generally, such

approaches take two video frames as input to output the optical flow (colour-coded image),
which may be expressed as:

U, V) =f(t1, 1) (2.4)

where u is the motion in the x direction, v is the motion in the y direction, and f is a neural

network that takes in two consecutive frames It—1 (frame at time = t—1and It(frame at time =)
as input.

Figure 2.4 : Output of a deep learning model: colour-coded image; colour encodes the
direction of pixel while intensity indicates their speed.[35]
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Figure 2.5 : Architecture of FlowNetCorr, a convolutional neural network for end-to-end
learning of optical flow.[35]

Computing optical flow with deep neural networks requires large amounts of training data
which is particularly hard to obtain. This is because labeling video footage for optical flow
requires accurately figuring out the exact motion of each and every point of an image to
subpixel accuracy. To address the issue of labeling training data, researchers used
computer graphics to simulate massive realistic worlds. Since the worlds are generated by
instruction, the motion of each and every point of an image in a video sequence is known.

Solving optical flow problems with deep learning is an extremely hot topic at the moment,
with variants of FlowNet, SPyNet, PWC-Net, and more each outperforming one another

on various benchmarks.
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Figure 2.6 Synthetically generated data for training Optical Flow Models — MPI-Sintel
dataset.[35]

Figure 2.7 Synthetically generated data for training Optical Flow Models — Flying Chairs
dataset[35]

2.2.4 APPLICATIONS OF OPTICAL FLOW

SEMANTIC SEGMENTATION

The optical flow field is a vast mine of information for the observed scene. As the techniques
of accurately determining optical flow improve, it is interesting to see applications of optical
flow in junction with several other fundamental computer visions tasks. For example, the task

of semantic segmentation is to divide an image into series of regions corresponding to unique
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object classes yet closely placed objects with identical textures are often difficult for single
frame segmentation techniques. If the objects are placed separately, however, the distinct
motions of the objects may be highly helpful where discontinuity in the dense optical flow
field correspond to boundaries between objects.

Original Shice Groundtruth Optical Flow 3D OF UCM

Figure 2.7 : Semantic segmentation generated from optical flow.[35]
OBJECT DETECTION AND TRACKING

Another promising application of optical flow may be with object detection and tracking or, in
a high-level form, towards building real-time vehicle tracking and traffic analysis systems.
Since sparse optical flow utilizes tracking of points of interest, such real-time systems may be
performed by feature-based optical flow techniques from either from a stationary camera or
cameras attached to vehicles.
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(b) Constant Speed Model

Figure 2.9 : Optical flow can be used to predict vehicle speeds[35]

Fundamentally, optical flow vectors function as input to a myriad of higher-level tasks
requiring scene understanding of video sequences while these tasks may further act as

building blocks to yet more complex systems such as facial expression analysis, autonomous
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vehicle navigation, and much more. Novel applications for optical flow yet to be discovered

are limited only by the ingenuity of its designers.

2.3 HISTOGRAMS OF ORIENTED GRADIENTS

Histogram of oriented gradients (HOG) is a feature descriptor used to detect objects in
computer vision and image processing. The HOG descriptor technique counts occurrences of
gradient orientation in localized portions of an image - detection window, or region of interest
(ROLI).

Implementation of the HOG descriptor algorithm is as follows:

Divide the image into small connected regions called cells, and for each cell compute a

histogram of gradient directions or edge orientations for the pixels within the cell.
Discretize each cell into angular bins according to the gradient orientation.
Each cell's pixel contributes weighted gradient to its corresponding angular bin.

Groups of adjacent cells are considered as spatial regions called blocks. The grouping of cells
into a block is the basis for grouping and normalization of histograms.

Normalized group of histograms represents the block histogram. The set of these block

histograms represents the descriptor.

Computation of the HOG descriptor requires the following basic configuration parameters:

Masks to compute derivatives and gradients
Geometry of splitting an image into cells and grouping cells into a block
Block overlapping

Normalization parameters
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According to Dalal the recommended values for the HOG parameters are:

1D centered derivative mask [-1, 0, +1]
Detection window size is 64x128
Cell size is 8x8

Block size is 16x16 (2x2 cells)

blodck
cells

cell histograms

$ & @@

normalization

LLI_ ___________________________

normalized histograms

detection window

Figure 2.10 : The HOG algorithm implementation scheme [32]

2.4 SUPPORT VECTOR MACHINE (SVM)

In machine learning, support-vector machines (SVMs, also support-vector networks) are
supervised learning models with associated learning algorithms that analyze data used for

classification. Given a set of training examples, each marked as belonging to one or the other
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of two categories, an SVM training algorithm builds a model that assigns new examples to
one category or the other, making it a non-probabilistic binary linear classifier . An SVM
model is a representation of the examples as points in space, mapped so that the examples of
the separate categories are divided by a clear gap that is as wide as possible. New examples
are then mapped into that same space and predicted to belong to a category based on the side

of the gap on which they fall.

In addition to performing linear classification, SVMs can efficiently perform a non-linear
classification using what is called the kernel trick, implicitly mapping their inputs into high-

dimensional feature spaces.

Support Vector Machines are based on the concept of decision planes that define decision
boundaries. A decision plane is one that separates between a set of objects having different
class memberships. A schematic example is shown in the illustration below. In this example,
the objects belong either to class GREEN or RED. The separating line defines a boundary on
the right side of which all objects are GREEN and to the left of which all objects are RED.
Any new object (white circle) falling to the right is labeled, i.e., classified, as GREEN (or
classified as RED should it fall to the left of the separating line).

Figure 2.11 : Example of linear SVM[36]

The above is a classic example of a linear classifier, i.e., a classifier that separates a set of
objects into their respective groups (GREEN and RED in this case) with a line. Most
classification tasks, however, are not that simple, and often more complex structures are
needed in order to make an optimal separation, i.e., correctly classify new objects (test cases)
on the basis of the examples that are available (train cases). This situation is depicted in the
illustration below. Compared to the previous schematic, it is clear that a full separation of the

GREEN and RED objects would require a curve (which is more complex than a line).

28


https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Kernel_method#Mathematics:_the_kernel_trick

Classification tasks based on drawing separating lines to distinguish between objects of
different class memberships are known as hyperplane classifiers. Support Vector Machines

are particularly suited to handle such tasks.

Figure 2.12 : Seperating lines to distinguish between objects.[36]

The illustration below shows the basic idea behind Support Vector Machines. Here we see the
original objects (left side of the schematic) mapped, i.e., rearranged, using a set of
mathematical functions, known as kernels. The process of rearranging the objects is known as
mapping (transformation). Note that in this new setting, the mapped objects (right side of the
schematic) is linearly separable and, thus, instead of constructing the complex curve (left
schematic), all we have to do is to find an optimal line that can separate the GREEN and the
RED objects.

Input space Feature space

Figure 2.13 : Original objects mapped to a new feature space[36]

2.5 MULTICLASS SVM :

In multi class or multinomial classification is the problem of classifying instances into one of

three or more classes. (Classifying instances into one of two classes is called binary
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classification.) SVM are by nature binary algorithms; these can, however, be turned into

multinomial classifiers by a variety of strategies. One such strategy is one vs rest.
ONE VS REST :

One-vs.-rest (or one-vs.-all, OvA or OVR, one-against-all, OAA) strategy involves training a
single classifier per class, with the samples of that class as positive samples and all other
samples as negatives. This strategy requires the base classifiers to produce a real-valued
confidence score for its decision, rather than just a class label; discrete class labels alone can

lead to ambiguities, where multiple classes are predicted for a single sample.

In pseudocode, the training algorithm for an OvA learner constructed from a binary

classification learner L is as follows:

Inputs:

e L, alearner (training algorithm for binary classifiers)

e samples X

o labelsywhereyi € {1, ... K} is the label for the sample X
Output:

o alistof classifiers fy fork € {1, ..., K}
Procedure:

e Foreachkin{l,...,K}
o Construct a new label vector z where z; = yi if yi = k and z; = 0 otherwise

o Apply Lto X, z to obtain fi

Making decisions means applying all classifiers to an unseen sample x and
predicting the label k for which the corresponding classifier reports the highest

confidence score:
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CHAPTER 3 DATASET

In this section we present our pedestrian movement direction recognition dataset. This dataset
is used for the training and evaluation of the proposed system. To test the proposed CNN-
based system we needed a specific dataset, designed to feed our network with images of
pedestrians moving in different directions and in different scenarios, boardwalks, zebra
crossings, sidewalks, etc. Video was recorded with a camera capturing at 30fps, 640x480
resolution. Videos were recorded in a static and dynamic manner, using a regular and a
handheld tripod. There are no other datasets that provide information about pedestrian

movement direction. Most existing datasets related to this topic, such as the:

Caltech benchmark Dataset consists of approximately 10 hours of 640x480 30Hz video taken
from a vehicle driving through regular traffic in an urban environment. About 250,000 frames
(in 137 approximately minute long segments) with a total of 350,000 bounding boxes and
2300 unique pedestrians were annotated. The annotation includes temporal correspondence

between bounding boxes and detailed occlusion labels.

Figure 3.1 : Caltech dataset[37]

The Pascal database is a set of additional annotations for PASCAL VOC 2010. It goes
beyond the original PASCAL semantic segmentation task by providing annotations for the
whole scene. The statistics section has a full list of 400+ labels. The INRIA person dataset
focus only on pedestrian detection, providing bounding boxes of the detected pedestrians, but

no information about the pedestrian direction or intention is provided.
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The Daimler dataset is the only one that not only provides ground truth information for
pedestrian detection tasks but also pedestrian intention information. Four different pedestrian
motion types are considered: crossing, stopping, starting to walk and bending in. Each video
sequence has the previously mentioned label about pedestrian intention.

In our dataset, we considered different motion types, not previously included in existing
datasets. We decided to recognize more generic motion types, such as moving left, right or to
the front, which can be used to recognize higher-level motion types like those proposed in the
Daimler dataset. This dataset was manually annotated, creating a ground truth split for

training the proposed CNN architecture.

RELATED DATASETS

e« GM-ATCI: Rear-View Pedestrians Dataset captured from a fisheye-lens camera.

o Daimler: Also captured in an urban setting, update of the older DaimlerChrysler
dataset. Contains tracking information and a large number of labeled bounding boxes.

e NICTA: A large scale urban dataset collected in multiple cities/countries. No
motion/tracking information, but significant number of unique pedestrians.

o ETH: Urban dataset captured from a stereo rig mounted on a stroller.

o TUD-Brussels: Dataset with image pairs recorded in an crowded urban setting with an
onboard camera.

e INRIA: Currently one of the most popular static pedestrian detection datasets.

o PASCAL: Static object dataset with diverse object views and poses.

e« CVC-ADAS: collection of pedestrian datasets including pedestrian videos acquired
on-board, virtual-world pedestrians (with part annotations), and occluded pedestrians.

e USC: A number of fairly small pedestrian datasets taken largely from surveillance
video.

e MIT: One of the first pedestrian datasets, fairly small and relatively well solved at this

point
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Figure 3.2 : Dataset images: Left, right and front samples
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CHAPTER 4. PROPOSED METHOD

This section describes our method for pedestrian trajectory recognition. It is based on a CNN
network trained with preprocessed data from a video feed as input. Once the CNN was
defined, and the dataset was annotated with ground truth information, we started to feed the

CNN with training data from the recorded dataset.

4.1 PREPROCESSING STEPS

In the proposed method, acquired video is passed through an image preprocessing pipeline for
image filtering, obtaining our final added video frames , which were used as input data for the
proposed CNN architecture. Only one of every six frames was used, as we saw that
consecutive frames at 30 frames per second contributed no new relevant features to our

network.

4.1.1 OPTICAL FLOW

To detect changes in scene or camera movements we use optical flow method. We are
estimating optical flow using Lucas-Kanade derivative of Gaussian method. We create an
optical flow object for estimating the direction and speed of moving objects using the Lucas-
Kanade method. The object of optical flow stores the direction and speed of a moving object
from one image or video frame to another. The properties of optical flow object are:

Vx — x component of velocity
x component of velocity, specified as an M-by-N matrix. If the input VX is not specified, the

default value of this property is set to 0-by-1 empty matrix.

Vy —y component of velocity
y component of velocity, specified as an M-by-N matrix. If the input Vy is not specified, the

default value of this property is set to 0-by-1 empty matrix.
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Orientation — Phase angles of optical flow

This property is read-only. Phase angles of optical flow in radians, specified as an M-by-N
matrix of the same size and data type as the components of velocity. The phase angles of
optical flow is calculated from the x and y components of velocity. If the inputs Vx and Vy are

not specified, the default value of this property is set to 0-by-1 empty matrix

Magnitude — Magnitude of optical flow

This property is read-only. Magnitude of optical flow, specified as an M-by-N matrix of the
same size and data type as the components of velocity. The magnitude of optical flow is
calculated from the x and y components of velocity. If the inputs VVx and Vy are not specified,
the default value of this property is set to 0-by-1 empty matrix.

Threshold -- The threshold of noise reduction

Threshold for noise reduction, specified as a positive scalar. As you increase this number, the
movement of the objects has less impact on optical flow calculation. We have taken the

threshold as 0.005 since we have to detect the movement of pedestrians.

We use the magnitude property of the object flow created in matlab to find if there is any
movement in the scene or not. If there is movement in the scene then the magnitude is greater
than 0.008. We have found this value after seeing the result over a video having movement
and no movement in the scene.
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Figure 4.1 : Plot of optical flow vectors .

4.1.2 PEDESTRIAN DETECTION

Once we have detected movement in the scene we move onto the next step of pedestrian
detection .We use Histograms of Oriented Gradients (HOG) features for classification and

Support Vector Machine (SVM) as the classifier. If pedestrian is detected we move onto the
next step.

4.1.3 IMAGE SUBTRACTION

After pedestrian detection we perform an image subtraction step , which is an absolute

difference between two consecutive frames. In this way, the contour of the pedestrian shows a
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slight movement in a particular direction. Then, we continue processing the sequence
obtaining the next subtracted frame.

Figure 4.2: Result obtained after image subtraction.

4.1.4 IMAGE ADDITION

Finally, using consecutive subtracted frames, we perform the sum (pixel level) of these
subtracted frames obtaining a similar black background frame. This output image is used as
input data for the proposed CNN architecture, which automatically learns to extract features
from these preprocessed images.

The images are then resized (downscaled) to 32x32 pixels. In addition, as the colour provides
no further relevant information, we decided to convert the images to greyscale just after the
acquisition step
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Figure 4.3: Sum of suubtrated frames
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SUBTRACTED FRAMES

SUM OF SUBTRACTED FRAMES

Figure 4.4: Preprocessing steps carried out on the images.
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Figure 4.5: Flowchart of the preprocessing steps

4.2 HYBRID CNN TRAINING

The last step is the training of the hybrid CNN. The architecture of the hybrid CNN we used
in this work is as follows:

Image Input Layer Animage Input Layer is where you specify the image size, which, in this
case, is 32-by-32-by-1. These numbers correspond to the height, width, and the channel size.
The digit data consists of grayscale images, so the channel size (color channel) is 1.
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https://in.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.imageinputlayer.html

Convolutional Layer — We have used a total of three convolutional layers the properties of
which will be discussed one by one below:

For the first layer we have used a filter size of 2 that is a 2x2 filter and for the next two layers
we used a filter size of three. The next argument we need to specify in this layer is the number
of filters, which is the number of neurons that connect to the same region of the input. This
parameter determines the number of feature maps. In the first layer we have used the number

of filters as 8 , in the second layer the number of filters used is 16 and in the third layer it is 32

We want the spatial output size same as the spatial input size for this we use padding. We can
calculate the padding using the formula but since we have used the parameter ‘same’ in our
code matlab software does it automatically for us and we do not have to worry about the
padding. In case we wanted the spatial input size and spatial output size different we could
have specified the padding required to do so using the formula. In all the three layers we have
used the padding parameter as ‘same’ since in all three layers we have kept the spatial input
size and output size same. Next parameter we have specified is the step size for traversing the
input image horizontally and vertically. We have used the default step size that is one. We
could have initialized the weights and the learn rate factor for the layer but we have the default
weight initializer which is the “glorot’ in our software and the default learn rate parameter of
1.

Batch Normalization Layer — This is the next layer after convolutional layer.

A batch normalization layer normalizes each input channel across a mini-batch. To speed up
training of convolutional neural networks and reduce the sensitivity to network initialization,
use batch normalization layers between convolutional layers and nonlinearities, such as ReLU
layers. The layer first normalizes the activations of each channel by subtracting the mini-batch
mean and dividing by the mini-batch standard deviation. Then, the layer shifts the input by a
learnable offset € and scales it by a learnable scale factor vy.

In this layer after network training finishes, the software calculates the input mean over the
entire training data set. The layer uses this trained mean (in place of the mini-batch mean) to
normalize the input during prediction. Similarly the the software calculates the input variance

over the entire training dataset , and then this trained variance is used in place of the mini
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batch variance to normalize the input during prediction. The value of epsilon used is 1e — 5.
The algorithm of this layer has been defined in Chapter 2.1.2 under the heading Normalization

Layer.

ReL.U Layer The batch normalization layer is followed by a nonlinear activation function.
The most common activation function is the rectified linear unit (ReLU) and in our work also
we have used a ReLU layer which is giving us good results.The ReLU layer does not change

the size of its input.

There are other nonlinear activation layers that perform different operations and can improve

the network accuracy for some applications. Other activation layers are as follows:

Leaky ReLU layer — It performs a threshold operation, where any input value less than zero is

multiplied by a fixed scalar.

A clipped ReLU layer - It performs a threshold operation, where any input value less than

zero is set to zero and any value above the clipping ceiling is set to that clipping ceiling.

An ELU activation layer - It performs the identity operation on positive inputs and an

exponential nonlinearity on negative inputs.
A hyperbolic tangent (tanh) activation layer - It applies the tanh function on the layer inputs.

A PReLU layer - It performs a threshold operation, where for each channel, any input value

less than zero is multiplied by a scalar learned at training time.
We tested our code for all these layers but got the best results for ReLU layer .

Max Pooling Layer — The next layer we have created after the ReLU layer is the max pooling
layer . This basically does the downsampling operation , it reduces the spatial size of the
feature map and reduces redundant spatial operation. Down-sampling makes it possible to
increase the number of filters in deeper convolutional layers without increasing the required
amount of computation per layer. One way of downsampling is max pooling which we have

used here. In this layer we specify the pool size which gives the maximum value of the
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rectangular region given by poolsize. In our work we have taken a poolsize of 2 that is a 2x2
filter which is convolved across the entire feature map to give the maximum value out of the
rectangular region. The stride we have taken is 2 . if the stride is taken as different from the
poolsize then the there is overlapping of the the downsampling operation . Here we have set
the default padding as ‘same’ that is the software automatically calculates the padding
required for the input feature map. After all the ReLU layer in each block we have used this

max pooling layer .

Fully Connected Layer The convolutional and down-sampling layers are followed by one or
more fully connected layers. This layer combines all the features learned by the previous
layers across the image to identify the larger patterns. The last fully connected layer combines

the features to classify the images. We have named it as fc layer.

SVM CLASSIFIER :

After the fully connected layer in the CNN architecture is the softmax layer which is used to
normalize the ouput of the fully connected layer , which is can be used as the classification
probabilities by the classification layer. But instead of using the softmax layer as the classifier
we are using an SVM classifier. The architecture of the hybrid CNN & SVM model was
designed by replacing the last layer (fc) of the CNN model with an SVM classifier in the
testing phase. For output units of the fc layer in the CNN network, they are the estimated
probabilities for the input sample. Each output probability is calculated by an activation
function. The input of the activation function is the linear combination of the outputs from the
previous f3 layer with trainable weights, plus a bias term. Looking at the output values of f3 is
meaningless, but only makes sense to the CNN network itself; however, these values can be
treated as features for any other classifiers. The prediction of the unknown sample is made by
an SVM classifier instead of the fc layer. After the original CNN has been trained by the back-
propagation algorithm, the outputs produced from Layer f3 are extracted as the new features.
They are sent to the SVM classifier for training. Once the SVM classifier has been well
trained, it conducts the recognition task with corresponding features from the testing data.
Firstly, the processed image is sent to the input layer, and the original CNN with the output

unit (fc) is trained with several epochs until the training process converges. Then, the SVM
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with an RBF kernel replaces the output layer fc. The SVM takes the outputs from the f3 layer
as a new feature vector. Finally, the trained SVM makes new decisions on testing images with

such automatically extracted features.
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Figure 4.6 : Architecture of the hybrid CNN — SVM model
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4.3 MERITS OF HYBRID CNN AND SVM MODEL :

The hybrid system compensates the limits of the CNN and SVM classifiers by incorporating
the merits of both classifiers. Since the theoretical learning method of CNN is the same as that
for the Multi-Layer Perceptron (MLP), it is an extension model of the MLP. The learning
algorithm of MLP is based on the Empirical Risk Minimization, which attempts to minimize
the errors in the training set. When the first separating hyperplane is found by the back-
propagation algorithm, no matter whether it is the local or the global minima, the training
process stops and the algorithm does not improve the separating hyperplane solution.
Therefore, the generalization ability of MLP is lower than that of SVM. On the other hand, the
SVM 27 classifier aims to minimize the generalization errors on the unseen data with a fixed
distribution of the training set, by using the Structural Risk Minimization principle. The
separating hyperplane is a global optimum solution. It is calculated by solving a quadratic
programming problem, and the margin area between two classes of training samples reaches
its maximum. As a result, the generalization ability of SVM is maximized. Due to the good
generalization ability of the SVM, it should enhance the classification accuracy after its
replacement of the fc output units from the CNN. The advantage of the CNN classifier is that
it automatically extracts the salient features of the input image. The features are invariant in a
certain degree to the shift and shape distortions of the input characters. This invariance occurs
because CNN adopts the weight sharing technique on one feature map. On the contrary, the
hand-designed feature extractor needs elaborately designed features. Therefore, the trainable
features of CNN can be used instead of the hand-designed features to collect more

representative and relevant information.
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CHAPTERS EXPERIMENTS

In this section, we describe the experimental setup and the different experiments carried out
for the validation of the proposed method. We evaluated the system using our proposed
Convolutional Neural Networks. In order to evaluate the performance of our proposal in terms
of accuracy, we used the dataset presented in Chapter 3. First, we tested the system using the
hybrid Convolutional neural nework - SVM and performed an exhaustive experimental tuning
process in order to boost the accuracy of the proposed system. Finally, we present qualitative
results showing the accuracy of the proposed system using our Hybrid CNN architectures. We

also compared the results with the work previously done in this field.

5.1 CNN EVALUATION

TRAINING OPTIONS :
The training options we have used in our code are as follows:

TRAINING ALGORITHM: We have trained our network using stochastic gradient
descent with momentum (SGDM) with an initial learning rate of 0.01.The standard gradient
descent algorithm updates the network parameters (weights and biases) to minimize the loss
function by taking small steps at each iteration in the direction of the negative gradient of the
loss, The stochastic gradient descent algorithm can oscillate along the path of steepest descent
towards the optimum. Adding a momentum term to the parameter update is one way to reduce

this oscillation . The stochastic gradient descent with momentum (SGDM) update is
00+1=00—aVE(B)+y(0¢—0¢-1), (5.1)

where y determines the contribution of the previous gradient step to the current iteration. We
varied the momentum from .8 to .95 but .9 gave optimum results. We also used the rmsProp

optimizer but the training is giving smoother results for SGDM so we used the latter.

Max epochs : Set the maximum number of epochs to 8. An epoch is a full training cycle on the
entire training data set. We also experimented using the epoch value of 6 and 10 but maximum

epoch of 8 gave optimum results. Also we shuffle the data after every epoch. For an epoch
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value of 6 we have the validation accuracy of 90.21% and classification accuracy of 82.24%.
An epoch of 8 is giving validation accuracy of 91.48% and classification accuracy of
86.06%.it means for an epoch value of 8 hybrid CNN is giving good results on the test data.
For an epoch value of 10 the validation accuracy is 95.74 % whereas the classification
accuracy is 81% which means overfitting of CNN is taking place in this case.

Validation data : we have split the dataset randomly into training , test, and validation data in
the ratio of 0.6, 0.1, 0.3 respectively. So the network is trained on the training set that is the
weights are updated on the training set and calculates the accuracy on validation data at

regular intervals of time. The validation data is not used to update the network weights.

Validation frequency: The 'validation frequency' value is the number of iterations between
evaluations of validation metrics. We have used a validation frequenvy of 30.

Validation patience : The "Validation Patience' value is the number of times that the loss on
the validation set can be larger than or equal to the previously smallest loss before network
training stops. We have used a validation patience of 5. It could be default value as well which

is inf , that is the training stops only after completing the number of epochs.

Mini batch size : A mini-batch is a subset of the training set that is used to evaluate the
gradient of the loss function and update the weights. We have used a mini batch size of 128 ,
which is giving us optimum results. On decreasing the batch size to 75 the validation accuracy

as well as test accuracy drops down.

5.2 RESULTS

The accuracy of the evaluated hybrid CNN was quantified using the validation/test splits
created during the dataset generation. After many different executions we get classification
accuracy ranging from 74.8% to 87% . Best results were obtained for a value of 0.9 for the
momentum parameter. It can be seen that the loss function in all the cases also tends to a
minimum of between 0.1 and 0.3. We use the maximum epochs of 8 since it is giving better
results on test data. The maximum iterations are 264 and iteration per epoch is 33.CNN

architecture of 4 layers is giving best results. So the maximum validation accuracy is 91.46%
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and maximum classification accuracy is 86.06% with the time taken for training as 12 min 41
sec.

/| 4 Training Progress (28-Jul-2019 11:00:43)

] X
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! Results
Validation accuracy. 91.46%
Training finished: Reached final iteration
Training Time
Starttime: 28-Jul-2019 11:00:43
D\.? Elapsed time: 12 min 41 sec
g Training Cycle
é Epoch: 8of8
<< Iteration: 264 of 264
Iterations per epoch: 33
20 Maximum iterations: 264
Epoch 1 Epoclp 2 Epoch 3 IEpoch 4 Epocn] 5 [Epoch 6 Epoch 7 Epoch‘ 8 Validation
0 F 30 iterati
0 50 100 150 200 250 Freauency S0 fterations
lteration
Accuracy
} Training (smoothed)
1N -
\\‘\ Training
0B LY — — @ — — Validation
@
@
QD6
= Loss
04
Training (smoothed)
02| \“.—-—""“——.-1-__ ——— _ @Final ’
Epoch 1 Epoch ch3 Epoch4 Epoch 5 Epoch 6 Ep&m7 — Efoch 8 Training
”0 - ~ ~ — — @ — — Validation
50 100 150 200 250

o

Figure 5.1 : Training progress of proposed hybrid CNN

FRONT LEFT RIGHT

FRONT 9250 .0050 0

LEFT 3026 .7684 .0789

RIGHT 0211 .0105 .8884

Table 5.1 : Confusion Matrix of proposed hybrid CNN
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Training on single CPU.
Initializing image normalization.

|
| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | WValidation | Base Learning |
| | | (hh:mm: s3) | Accuracy | RAccuracy | Loss | Loss | Rate |
I I
| 1] 11 00:00:08 | 34.38% | 38.09% | 1.1383 | 1.1068 | 0.0100 |
| 1] 30 | 00:05:03 | 79.65% | 76.59% | 0.5189 | 0.5341 | 0.0100 |
] 2 50| 00:06:50 | 53.75% | 1 0.1827 | ] 0.0100 |
| 2 60 | 00:07:04 | 95.44% | 94.22% | 0.0629 | 0.1848 | 0.0100 |
| 3] a0 | 00:07:57 | 100.00% | 92.16% | 0.0387 | 71 0.0100 |
| 4 | 100 | 00:08:22 | 99.22% | | 0.0238 | | 0.0100 |
| 4 ] 120 | 00:08:44 | 100.00% | 92.26% | 0.0127 | 0.20368 | 0.0100 |
| 51 150 | 00:09:31 | 100.00% | 93.80% | 0.0122 | 0.1572 | 0.0100 |
| 6 | 180 | 00:10:24 | 100.00% | 94.08% | 0.0122 | 0.2050 | 0.0100 |
| 71 200 | 00:11:02 | 100.00% | | 0.0209 | | 0.0100 |
I 7 210 | 00:11:13 | 100.00% | 94.73% | 0.0061 | 0.13%0 | 0.0100 |
| | 240 | 00:12:00 | 100.00% | 94.50% | 0.0075 | 0.1470 | 0.0100 |
| 8 | 250 | 00:12:26 | 100.00% | | 0.0132 | | 0.0100 |
| g 264 | 00:12:41 | 100.00% | 92.35% | 0.0105 | 0.2135 | 0.0100 |
I I

Figure 5.2: Training progress information chart.

5.3 COMPARISONWITH PREVIOUS WORK

We compare the proposed approach with the work proposed earlier for pedestrian movement
detection. In one such work an experiment was carried out where they used the dense optical
flow algorithm described in and the gradients of a Motion History Image (MHI) to detect
direction of motion. Given consecutive images where a pedestrian has been detected, the
optical flow is calculated and used to estimate the direction of the segmented pedestrian. It
was empirically tested using different thresholds for segmentation and MHI computation,
choosing the ones providing best performance (MHI duration = 0.05 milliseconds,
segmentation threshold = 35 (HSV distance), Max time delta = 125000.0 and min time delta =
5). Optical flow global direction is calculated as a mean weighted direction using all moving
pixels. This provides us with a value between 0 and 360 degrees. Finally, those values were
discretized in three ranges (120 bin size), for each predefined direction: left, right and front.
Table shows quantitative results on the proposed dataset using the approach described above.
It can be observed that this approach performs poorly in the test set, obtaining an average
accuracy of 51%, 39% and 40% respectively for each motion type.
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Front Left Right
Front 0.51 0.35 0.14
Left 0.36 0.39 0.25
Right 0.38 0.220 0.40

Table 5.2 : Confusion matrix results using optical flow and the gradients of a motion history

image
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK

We have presented a method to differentiate the motion of pedestrians in real life
environments. By building a novel input-filtered image based on the post-processing of static
recorded video frames, we have managed to successfully distinguish three different
pedestrian movement directions. Additionally, it has been proved how hybrid CNN —SVM
model can impressively perform in such a task by training them with a specialised dataset. We
have also presented an evaluation of our model giving a validation accuracy of 91.46% and a
test accuracy of 86.06%

As future directions, we are working on a better and more robust use of data augmentation,
which should provide a more robust model. Also we are planning to use this pipeline using
other hybrid CNN and making use of Long Short Term Memory (LSTM) and RNN, to give
more accurate results. In future we would also like to work on a model that detects the

direction of movement of the pedestrian as well as his/her speed.
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