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Preface

Multi-citeria decision making is concerned with structuring and solving decision and plan-

ning problems involving multiple criteria. In a decision scenario, a decision maker is gen-

erally required to provide his/her assessments of choices. To communicate the decision

maker’s preference data, preference relations are exceptionally helpful in various fields of

decision-making problem, for example, legislative issues, social brain science, designing,

administration, business, and financial aspects, and so on. Sometimes, it has witnessed

that in a situation a decision maker might not have a decent comprehension of a specific

query, thus he/she can not make an instaneous contrast between each two objects. Conse-

quently it necessities to allow the decision maker to avoid some questionable comparison

adaptably. Therefore sometimes, due to lack of time and busy schedule of the decision

maker, incomplete preference relations are obtained. In this case, incomplete preference

relations are obtained, and the whole process may slow down. In this work we have devel-

oped methods for complementing types of incomplete preference relations. Applications

of different preference relations in MCDM, are also discussed.

Introductory chapter presents a brief review of uncertainty theory that is Fuzzy set the-

ory and some extension of the fuzzy set theory, to fuzzy relation. Also, this chapter dis-

cusses type of preference relations for addressing multi-criteria decision making(MCDM).

Thus, the present chapter creates a background, gives the motive of thesis work.

Chapter 2 define (α̃, β̃ )-cuts and the resolution form of the interval-valued intuitionis-

tic fuzzy (IVIF) relations to develop a procedure for constructing a hierarchical clustering

for IVIF max-min similarity relations. The advantage of the proposed scheme is illus-

trated in determining the criteria weights in MCDM problems involving IVIF numbers.

A complete procedure is drawn to generate criteria weights starting from the criteria-

alternative matrix of the MCDM problem with entries provided by a decision maker as

interval-valued intuitionistic fuzzy numbers. The chapter is based on a research paper

“Hierarchical clustering of interval-valued intuitionistic fuzzy relations and its applica-

xiii



tion to elicit criteria weights in MCDM problems”, published in Opsearch, springer, 54,

388–416, (2017).

Chapter 3 propose a characterization of the consistency property using newly defined

transitivity property for intuitionistic multiplicative preference relations (IMPR) together

with complementing missing elements for incomplete IMPR. Using new transitivity prop-

erty of IMPR, we have developed two different methods to find the missing element of

IMPRs. Acceptably consistent with complete IMPRs is also checked. The another goal

of this chapter is to achieve the consistent intuitionistic multiplicative preference relation

using graphical approach. We have proposed two different characterization of the con-

sistency for intuitionistic multiplicative preference relation(IMPR). In the first approach,

we design an algorithm to achieve the consistency of IMPR by using the cycles of var-

ious length in a directed graph. The second approach proves isomorphism between the

set of IMPRs and the set of asymmetric multiplicative preference relations. That result

is explored to use the methodologies developed for asymmetric multiplicative preference

relations to the case of IMPRs and achieve the consistency of asymmetric multiplicative

preference relation using directed graph. Also, the above said method is applied for in-

complete IMPR, here consistency play an important role. The illustrations are provided to

exemplify the designed methods. The chapter is based on a research paper “New transi-

tivity property of intuitionistic fuzzy multiplicative preference relation and its application

in missing value estimation”, published in Annals of Fuzzy Mathematics and Informat-

ics, 16 (1), 71–86 (2018) and “Two different approaches for consistency of intuitionistic

multiplicative preference relation using directed graph”, is communicated in Asia-pacific

journal of operational research.

Chapter 4 study the consistency property, and especially the acceptably consistent

property, for incomplete interval-valued intuitionistic multiplicative preference relation-

s. We propose a technique to evaluate missing elements which first estimates the initial

values for all missing entries in an incomplete interval-valued intuitionistic multiplicative

preference relation and then improves them by a local optimization method. A method

is developed to estimate the importance of the experts to achieve resultant consistent de-

cision matrix in group decision situations. The proposed method is illustrated using two

examples involving group decision scenario. The chapter is based on a research paper

“Acceptably consistent incomplete interval-valued intuitionistic multiplicative preference

relations”, is published in Soft Computing, Springer, 22, 7463–7477 (2018).

In Chapter 5, a new definition of additive consistency property of hesitant fuzzy pref-

xiv



erence relation (HFPR) is given that preserves the property of hesitancy and is used to

construct the complete HFPR from incomplete one. The significance of consistency mea-

sure for HFPR make sure that the DMs are neither arbitrary nor unreasonable. We develop

a method to check consistency level of incomplete HFPR. A numerical example is illus-

trated to show the applicability of the designed methodology. Group decision-making

problem with incomplete HFPR is also considered. The chapter is based on a research pa-

per “Incomplete Hesitant Fuzzy Preference Relation”, is published in Journal of Statistics

& Management Systems, Taylor & Francis, 21, (8) 1459–1479 (2018).

Chapter 6 developed a method to complete incomplete hesitant multiplicative prefer-

ence relations (HMPRs). A new definition of multiplicative transitive property of HMPR

has given that preserve the hesitancy property and is used to construct the complete HM-

PR from incomplete one. An optimization model is developed to minimize the error.

Also a linear programming model is developed to directly calculate the missing elements

of incomplete HMPR. The satisfaction degree and the acceptably consistent of complete

HMPR is also checked. The whole procedure is explained with a suitable example. The

chapter is based on research paper “A Method to Complement Incomplete Hesitant Multi-

plicative Preference Relation”, published in International Journal of Research and Analyt-

ical Reviews, 5, (2)1421–1429 (2018) and “Incomplete Hesitant Multiplicative Preference

Relation”, revised version submitted in Opsearch, Springer.

After chapter 6 we present the summary of the research work carried out in this thesis.

Further, the future research plan has been discussed in brief.

Finally, the bibliography and list of publications have been given at the end of the thesis.
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Chapter 1

Introduction

In the present-day world, decision making is turning into a necessary action despite being

invaded by various updated technology advancements assisted decision tools. Sometimes,

technology is unsuccessful in delivering a decision without thinking about human subjec-

tive ability. Human equips with a good insight are expected to capitalize effective decision

making to reach a very agreeable decision. One of the most promising decision-making

tools that were conceptualized in the early seventies is multi-criteria decision-making

theory. The theory of decision making formed a basis for more systematic and rational

decision making especially in the situation where multiple criteria need to be accounted.

This decision theory does not take so much time to fully recognized with the four terms

consolidated to be known as multi-criteria decision making (MCDM). The theory was ad-

ditionally developed in line with the development of uncertainty and chaos theory. This

chapter presents a brief review of uncertainty theory like Fuzzy set theory and some exten-

sion of the fuzzy set theory, to the fuzzy relation. Also, this chapter discusses preference

relations for addressing MCDM. Another aim of this chapter is to provide a platform to

motivate the work carried out in this thesis.

1
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Decision Making is the expression of choosing between two or more courses of ‘action.’

On the other hand, it must always be remembered that there may not always be a ‘cor-

rect’ decision among the existing choices. There may have been a better choice that had

not been considered, or the right information may not have been accessible at the time.

Multiple-criteria evaluation problems consist of a finite number of alternatives, explicitly

known at the beginning of the solution process. Whereas, in multiple criteria design prob-

lems (multiple objective mathematical programming problems) the number of alternatives

is either infinite or not countable (when some variables are continuous) or typically very

large if countable (when all variables are discrete). The alternatives are not explicitly

known in multiple criteria design problems and an alternative (solution) can be found by

solving a mathematical model. These two types of problems are considered as subclasses

of Multi-Criteria Decision Making problems.

1.1 Different type of fuzzy sets and fuzzy relations

Among all the fields from psychologists, economists, to computer scientists, the fuzzy

decision is an important branch of fuzzy theory. Liu and Liao [1] gave a bibliometric anal-

ysis of fuzzy decision-related research to find out some underlying patterns and dynamics

in the direction of the fuzzy decision. The real world decision-making problem has been

broadly perceived that most decisions take place in an environment in which the goals and

constraints, are not known precisely, because of their complexity, and hence, the problem

cannot be precisely characterized or exactly represented in a crisp value [2].To deal with

the kind of qualitative, uncertain data or even not well-organized choice issues, Zadeh [3]

suggested employing the fuzzy set theory as a modeling tool for complex systems that can

be controlled by humans but are hard to define exactly.

Research on the theory of fuzzy sets has been developed relentlessly since the initiation

of the approach by Zadeh [3] and has a significant application in numerous fields like

building, medicinal science, sociology, diagram hypothesis and so forth. The fuzzy set

theory characterizes the membership of a fuzzy number in [0,1], that describes the level

of belonging-ness of the element to the fuzzy set. Be that as it may, indeed, it may not

generally be valid that the level of non-membership of a fuzzy set element is equal to

one minus the membership degree because there may be some hesitation degree. This

framework is not sufficient to model situations where one believes that x ∈ A with some

membership degree although not convinced on the value to be given to it and/or when
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some additional information is offered on the negation of the positive declaration.

A standout amongst the essential speculations of fuzzy sets (FSs, in shortened form)

is interval-valued fuzzy set (IVFS) presented by Zadeh [4] (also see Turksen [5]). The

significant thought behind IVFS is that the enrollment degree can barely be exact; an

interval can better clarify the vulnerability in it. Similarly, as a helpful development of

Zadeh’s fuzzy sets [3] is intuitionistic fuzzy sets (IFS) were initial introduced and fur-

ther developed in an exceedingly series of papers by Atanassov ( [6], [7], [8], [9]). The

idea of ambiguous sets was independently proposed by Gau and Buehrer [10] and was

later Bustince, and Burillo [11] resolved to be identical to IFS. More precisely, an IFS is

described by AI = {⟨x,µAI(x),νAI(x)⟩ | x ∈ X}, where the functions µAI ,νAI are the mem-

bership and non-membership degree of IFS AI , respectively. Both the membership and

non-membership belonging to [0,1], such that µAI(x)+νAI(x) ≤ 1. Thus, in IFS theory,

the non-membership degree νAI(x) is an independent degree with the only condition on it

being less than or equal to 1−µAI(x). An IFS can be seen as the first significant departure

away from the FS.

Initially the very name intuitionistic fuzzy set was somewhat debatable (see, Dubois

et al. [12]), but of late the same nomenclature has found acceptance with the range of

research papers using it. For more clarity, sometimes it is also referred to by Atanassov’s

I-fuzzy set. Yu and Liao [13] make a scientometric review on IFS studies to reveal the

most cited papers based on the 1318 references retrieved from SCIE and SSCI databases

via Web of science.

The principle thought behind IVFS is that the membership degree can barely be ex-

act; an interval can better clarify the uncertainty in it. Later Deschrijver and kerre [14]

demonstrated the two documentations IVFS and IFS are isomorphic.

In every day life, IFS turns out to be a versatile tool. Many researchers has been as-

sociated with this theories and applications on IFS to an extensive variety of domains,

for instance, multiple criteria decision making ( [15], [16], [17], [18]) and pattern recog-

nition [19]. Despite its duties concerning application to various scientific domain, IFS

itself has additionally been experiencing extraordinary theoretical advancements in the

previous a few decades. A smaller and contemporary study of the basic outcomes in IFS

has given by Atanassov [20]. These basic outcomes incorporate , for instance, geometric

interpretations of IFS (e.g., [21]- [24]), operators on and relations in IFS (e.g., [25]- [33])

and so on.

A theory of the possibility of the IFS is given in the light of ordinary IVFSs. Making fur-
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ther a stride towards displaying more subjective dubiousness, Atanassov and Gargov [34]

presented interval-valued intuitionistic fuzzy set (IVIFS). IVIFS is a natural augmenta-

tion of IVFS, where both the membership and additionally the non-membership degrees

require not to be indicated with accuracy yet rather permitted to lie in the interval [0,1].

Mathematically, the IVIFS is defined as

Definition 1.1.1. [34] An IVIFS AIV I in X is described by

AIV I = {⟨x, µ̃AIV I(x), ν̃AIV I(x)⟩ | x ∈ X},

where µ̃AIV I(x) = [µ
AIV I

(x),µAIV I
(x)], and µ

AIV I
(x) and µAIV I

(x) are respectively the low-

er and the upper values of the membership degree, while ν̃AIV I(x) = [νAIV I
(x),νAIV I(x)],

and νAIV I
(x) and νAIV I(x) are respectively the lower and the upper values of the non-

membership degree, such that the following hold.

0 ≤ µ
AIV I

(x)≤ µAIV I
(x)≤ 1, 0 ≤ νAIV I

(x)≤ νAIV I(x)≤ 1,

0 ≤ µAIV I
(x)+νAIV I(x)≤ 1, ∀ x ∈ X .

Xu and Cai [35] illustrated several real-life applications where the subjective granu-

larity is enhanced by adding an additional layer of flexibility in expressing information

using IVIFS. The rich structure supported by strong theory and several good aggrega-

tion operators, defined in the literature over the years, makes an IVIF theory an intuitive

and computationally efficient for handling uncertain and ambiguous information. The

interval-valued membership and non-membership values offer more flexibility regarding

describing favoritism (or membership value) and rejection (non-membership).

Also, cluster analysis is an important tool for clustering a data set into groups of sim-

ilar characteristics. Clustering or the cluster analysis refers to a procedure of grouping

an arrangement of objects in such a way that objects classified in one group show more

similarity to each other than to the objects in other groups. Clustering analysis as one

of the extensively grasped fundamental tools in dealing with information data, that has

been connected to the domains of example, pattern recognition [36], data mining [37],

and other real-world problems concerning social, medial, biological systems ( [38], [39])

and so on. In a genuine world, information utilized for clustering might be dubious and

fuzzy, to manage different type of fuzzy details. On the application side of FS and its

different variations, Bellmann et al. [40] and Ruspini [41] introduced thoughts of infor-

mation clustering utilizing FS theory. Fuzzy clustering is found to be useful in variety of
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areas ( [36], [42], [43]). The fuzzy clustering techniques can extensively be ordered into

two classifications. One of them is the fuzzy c-means (FCM) algorithm, and its varieties

are the natural methodologies in this classification ( [44] – [46]). In the cluster analysis,

the FCM clustering algorithm is one of the widely acknowledged and adopted technique.

The FCM clustering allows one information to have a place with at least two groups all

the while with relating membership degrees of belongingness. These techniques require

the information to be available in shape of highlight vectors so to compute their distances

from the prototypes.

The other important class of fuzzy clustering is based on fuzzy relations. In classical

set theory, a relation from a set X to a set Y is formally defined as a subset of the cartesian

product X ×Y , consequently, a fuzzy relation R from a set X to a set Y is defined as a

fuzzy set in the cartesian product X ×Y . Zadeh [47] characterized a fuzzy relation R f

between two sets X and Y as a fuzzy subset of X ×Y by taking a membership function

µR f : X ×Y → [0,1], with µR f (x,y) equals a membership degree of (x,y) ∈ R f . At that

point, Zadeh [47] moreover characterized a similarity relation that has been effectively

connected to various areas of matching, data classification and pattern recognition ( [48] –

[50]). This class of fuzzy clustering was initially produced for acquiring an agglomerative

(“bottom-up") hierarchical clustering. Hence, this approach is to set up various leveled

structures for the performance evaluation of vague, humanistic confounded frameworks

[51].

Sometimes, the criteria information is uncertain or insufficient, additionally the ambi-

guity of human thinking, or conflicting with decision-maker discrimination, higher-order

fuzziness is needed. In such scenario, the available strategies of fuzzy clustering based on

fuzzy relation might not be sufficient to manage these conditions. Despite the fact that,

decision makers used fuzzy relation-based techniques to implement pairwise comparisons

for the similarity among execution criteria. Sometimes, it is difficult to utilize the member-

ship relation values µR f (x,y) between two criteria x and y to manage higher-order uncer-

tainty. Thus, Guh et al. [52] first generalized the fuzzy relations to interval-valued fuzzy

relations(IVFR). Guh et al. [52] proposed a methodology to create hierarchical structure

using interval-valued fuzzy similarity relation. Taking inspiration from IFS, Bustince and

Burillo [53] characterized intuitionistic fuzzy relation(IFR). A generalization of the notion

of IFR is an interval-valued intuitionistic fuzzy relation (IVIFR).
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1.2 Preference relation

Decision-making procedures are progressively being utilized in different fields for es-

timation, determination and prioritization purposes, that is, making preference decisions

about a set of different choices. Furthermore, it is also obvious that in many cases of

decision problems, the comparison of different alternative activities as indicated by their

attractive quality, is not possible using one criterion or a single decision maker(DM).

For sure, in the larger part of decision-making problems, strategies have been built up

to combine opinions about alternatives identified with various perspectives. These meth-

ods depend on pair comparisons, in the sense that processes are connected somewhat of

believability of preference of one alternative over another.

In a decision-making process, a DM needs to provide his/her evaluations over alter-

natives. The pair wise comparison between each pair of objects is known as preference

relations, and it is applied in different domains of decision problems to communicate de-

cision maker’s preference information data for example, legislative issues, social brain

science, designing, administration, business, and financial aspects, and many more.

Amid the previous years, the utilization of preference relations is accepting expanding

consideration, and various research is done on this issue, and different kinds of preference

relations have been created including fuzzy preference relation (FPR)( [54]– [56]), multi-

plicative preference relation(MPR) ( [57], [58]), interval-valued fuzzy preference relation

(IV-FPR)( [59], [60]), interval-valued multiplicative preference relation (IV-MPR) [61],

intuitionistic fuzzy preference relation (IFPR)( [16], [20], [62]), intuitionistic multiplica-

tive preference relation (IMPR) ( [63] – [65]), interval-valued intuitionistic fuzzy prefer-

ence relation (IVI-FPR) [66], triangular fuzzy preference relation [67], triangular fuzzy

multiplicative preference relation( [68] – [70]), linguistic preference relation( [71] – [74]),

hesitant fuzzy preference relation (HFPR) [75], hesitant multiplicative preference relation

(HMPR) [76] and so on.

1.2.1 Fuzzy preference relation

A preference relation of fuzzy nature, considering fuzziness of the preference data given

by a DM in most decision-making problems. One of the most important classical pref-

erence relations is fuzzy preference relation (FPR)(or additive preference relation)( [54]-

[56]) where the decision maker provides the preference data using 0−1 scale. A FPR P
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on a finite set of alternatives X = {x1, . . . ,xn} is represented by a complimentary matrix

P = [pi j]n×n satisfying pi j + p ji = 1, pii = 0.5, for all i, j = 1,2, · · · ,n with 0 ≤ pi j ≤ 1,

where pi j is the preferred data of the objects xi over the objects x j. Particularly, pi j = 0.5

shows lack of interest amongst xi and x j; pi j > 0.5 demonstrates that xi is preferred to x j,

the bigger pi j, the more prominent the preference level of the option xi over x j, pi j = 1

shows that xi is absolutely preferred to x j; pi j < 0.5 demonstrates that x j is preferred xi,

the smaller pi j, the more noteworthy the preference level of the option x j over xi, pi j = 0

demonstrates that x j is absolutely preferred to xi. Orlovsky [54] study and analysed some

important properties of FPR in natural way which allow to introduce a fuzzy set of non-

dominated options.

In the decision making association, consistency is a fundamental issue in decision-

making problem. Generally according to Herrera-Viedma et al. [77] the question of con-

sistency includes two sub-problem (i) when can an expert be said to be consistent and, (ii)

when can a group of experts be viewed as good is called simply consensus measure. Our

work of all over the thesis focuses on the consistency measure of preference relation. In

1984, Tanino [78] defined the additive consistent FPR (also see [77], [79]) which satisfy

the additive transitive property:

pi j + p jk = pik +0.5 ∀ i, j,k = 1,2, · · · ,n (1.2.1)

and this equation 1.2.1 is equivalent to

pi j = 0.5(wi −w j +1) ∀ i, j,k = 1,2, · · · ,n (1.2.2)

where wi be the priority vector satisfying ∑n
i=1 wi = 1, wi > 0, i = 1,2, · · · ,n which is

given by Xu ( [79], [80]).

A FPR P = (pi j)n×n is said to be multiplicative consistent FPR if it satisfies the multi-

plicative transitivity property ( [77] – [79]),

pi j p jk pki = pik pk j p ji (1.2.3)

In the literature, much amount of work has been done by the researcher in this direction.

Xu and Da [81] originated a technique for improving the consistency of an FPR. Using

the additive transitivity property of FPRs, Herrera-Viedma et al. [77] proposed a strategy

for the consistency property and using n−1 preference data also they constructed consis-
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tent fuzzy preference relations. For the inconsistency of a reciprocal preference relation,

Ma et al. [82] developed a method to improve inconsistency by obtaining weak transi-

tivity based on additive transitivity property. To calculate the consistency level of FPR,

Herrera-Viedma et al. [83] developed the consistency index which is based on the additive

transitive property. Based on the multiplicative consistency property Xia et al. [84] investi-

gated the consistency of reciprocal preference relations. Also, they developed an algorith-

m to improve the consistency level of reciprocal preference relation. Khalili-Damghani

et al. [85] use the FPRs to help decision-makers expression concerning the membership

values of the fuzzy goals and propose a Goal Programming (GP) approach for portfo-

lio selection that embraces conflicting fuzzy goals with imprecise priorities. Zhou and

Xu [86] originated the asymmetric fuzzy preference relation (AFPR). Furthermore, also

they derived some properties of AFPR.

1.2.2 Multiplicative preference relation

To manage a complex and unbalanced system, Saaty [57] proposed the multiplicative

preference relation(MPR) and using the proportion scale 1/9− 9, also he measure the

intensity of the pairwise comparisons of objects. An MPR R over the set X is defined

as a reciprocal matrix R = (ri j)n×n is a subset of X × X , satisfying ri jr ji = 1, where,

ri j ∈ [1/9,9], with rii = 1, ∀ i, j = 1,2, · · · ,n, where ri j represent the preferred degree of

the object xi to the object x j.

As a rule the degree of preference ri j is estimated utilizing the proportion scale [87],

and specifically as Saaty [57] appeared the 1/9 − 9 ratio scale. The preferred degree

ri j = 1 suggests lack of interest among xi and x j; ri j > 1 demonstrates that the alternative

xi is prefer to the alternative x j, particularly, ri j = 9 shows that alternative xi is absolutely

preferred to alternative x j; ri j < 1 implies that x j is preferred to xi, and particularly, ri j =

1/9 demonstrates that x j is absolutely preferred to xi.

The primary contrast between the FPRs and MPRs as measured by using 0−1 and 1/9−

9 ratio scale respectively. Chiclana et al. [88] proved that MPR and FPR are isomorphic.

The consistency of preferences is related to rationality, which is associated with the tran-

sitivity property. To model transitivity, many features are suggested which are inappropri-

ate for preference relations. Also, Saaty [57] introduced the multiplicative transitivity of

MPR.

Definition 1.2.1. [57] Let R = (ri j)n×n be a MPR is said to be consistent MPR, if it is
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satisfied the multiplicative transitivity property

ri j = rikrk j, ∀ i, j = 1,2, · · · ,n (1.2.4)

and such MPR is given by

ri j =
wi

w j
, ∀ i, j = 1,2, · · · ,n (1.2.5)

Be that as it may, in practical an MPR is inconsistent. Saaty [57] recommended a con-

sistency index (CI) and the consistency ratio CR of multiplicative preference relation R to

measure the level of inconsistency as:

CI =
λmax −n

n−1
, CR =

CI
RIn

,

where λmax is the largest eigenvalue of the matrix [ri j] and RIn is the random index (de-

pending on the order n of a preference relation matrix)( [57]), and quoted in Table 1.1.

Table 1.1: Random index of MPR

n 1 2 3 4 5 6 7 8 9 10

RIn 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Definition 1.2.2. An MPR R is said to be acceptably consistent if CR ≤ 0.1, otherwise, R

is announced not acceptably consistent (or simply inconsistent).

To manage the unacceptable consistency (i.e Consistency Ratio is greater than 0.1) in

MPRs, there might be a methodology, to get new MPRs as shown by decision-maker

new judgments. This strategy will continue until the acceptably consistent of MPRs are

achieved. For large number of options, this methodology is dependable and exact but not

feasible. To avoid this limitation in an MPR, Xu and Wei [89] proposed an algorithm to

upgrade the consistency.

In decision-making problem, bunches of strategies with MPRs have been made. Jensen

[90] proposes the eigenvector technique. The least square method and the eigenvalue

method are given by Saaty and Vargas [91]. In 1985, Cogger and Yu [92] discuss the

gradient eigenvector method.

To chose a best option, Herrera et al. [87] characterized a decision model which satis-
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fy the multiplicative property dependent on the fuzzy majority. To calculate the priority

weights from an MPR Crawford and Williams [93] developed a logarithmic least square

technique. Furthermore, the application of MPRs has been profoundly considered in ana-

lytic hierarchy process (AHP) ( [57], [61], [90], [94]- [96]).

1.2.3 Interval valued preference relation

In real-world decision-making problems, the expert may have obscure data about the

assessment of one option over the other one. Also, because of vulnerability and com-

plexity, decision-maker can not appraise their preference with correct numerical esteem.

These circumstances lead by Xu ( [59], [60]) to characterize an IV-FPR in which the

preference degrees are described using intervals bounds in [0,1]. Using IV-FPR, Xu [79]

characterize the ideas of compatibility degree and compatibility index and also he ex-

tended the detailed analysis of the compatibility in group decision-making (GDM). For

overseeing non-homogenous data in GDM problem, Herrera et al. [97] proposed an ag-

gregation procedure composed of fuzzy binary preference relations, IV-FPR, and fuzzy

linguistic relations.

On the off chance that a decision maker used an IV-FPR to communicate his/her prefer-

ence data over criteria. Then, from the IV-FPR the priority weights are obtained and can

be utilized to rank the options. Obtaining the weights of criteria and the positioning of

options assume two vital parts in a MCDM process. Calculating priority weights from an

IV-FPR is a fascinating and essential research point.

To derive the priority weights from various IV-FPR, some practical and straightforward

linear programming models are established. Meng et al. [98] brought up inadequacies

in the current thoughts of multiplicative consistency for IV-FPR and specific consistency

idea for an IV-FPR.

Similarly, the extension of MPRs as interval-valued multiplicative preference relation

(IV-MPR) defined by Saaty and Vargas [61] allowing experts to use the interval-values in

(1/9)− 9 scale to record their preferences. Additionally, from IV-MPRs, a Monte Carlo

simulation approach is developed by Saaty and Vargas [61] to calculate the priority weight

intervals. Arbel [99] converted the detailed prioritization method of IV-MPRs as a linear

programming model. To get the weights from inconsistent IV-MPRs, Islam et al. [100]

set up a Lexico-graphic goal programming approach. A linear programming model is set

up by Xu [101] to derive the priority vector of alternatives by combining interval multi-
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plicative preference with interval attribute values. In IV-MPR scenario, Wang et al. [102]

developed another methodology based on linear programming method to obtain consistent

interval weights. In 2006, Yager and Xu [103] introduced weighted geometric operator

IV-MPR and furthermore, they applied its decision making association. Liu [104] present-

ed the idea of consistency for an IV-MPR and also he derived a formula that approaching

to rank interval weights for decision making. Recently, Meng and Tan [105] noticed the

limitations in the previously existing consistency concepts for IV-MPR and introduced a

new consistency concept for IV-MPR with several desirable properties.

1.2.4 Intuitionistic Preference relation

In some genuine circumstances, a decision maker will most likely be unable to precisely

communicate his/her preferences information data for choices because of that (i) the DM

may not have an exact or adequate level of information of the problem; (ii) the DM can not

segregate expressly how much one option are superior to others [83], in such a situation,

the DM may give his/her preferences for options in contrast to a specific degree, yet it is

possible that he/she is not so certain about it [106]. Along these lines, it is exceptionally

reasonable to represent the preference values of the DM by using intuitionistic fuzzy val-

ues instead of correct numerical values ( [16], [107], [108]). In such cases, motivated by

the idea of an IFS ( [20]), an expert prefers to express the imprecise cognition in the sense

of positive (preference), negative (non-preference), and hesitant (indeterminacy) degrees

leading to an intuitionistic preference relation (IPR). IPR are of two type i.e. IFPR and

IMPR.

1.2.5 Intuitinistic fuzzy preference relation

The extension of FPR is IFPR proposed by Szmidt and Kacprzyk [16] and characterized

the ideas of intuitionistic fuzzy core and consensus winner. In 2007 Xu [62] introduce the

concept of IFPR. An IFPR P̃ on the set is given by a matrix P̃ = (p̃i j)n×n ⊂ X ×X with

p̃i j = (µ(xi,x j),ν(xi,x j)) for all i, j ∈ N is called intuitionistic fuzzy number(IFN). For

convenience, p̃i j = (µ(xi,x j),ν(xi,x j)) = (µi j,νi j), where µi j represents the preference

value to which xi is preferred to x j and the certainty degree νi j to which xi is not preferred

to x j. Additionally, both the membership and non-membership degree should satisfy the

condition i.e. 0 ≤ µi j +νi j ≤ 1, µ ji = νi j, ν ji = µi j, µii = νii = 0.5 for all i, j = 1,2, · · · ,n.

Lio and Xu [109] formulated a fractional programming problem to calculate priority
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weights of IFPR using multiplicative consistency. Xu et al. [110] introduced a new con-

sistency index and used it to define an acceptable consistency for an IFPR. They followed

a goal programming approach to improve upon the consensus among several experts and

consistency in their IFPRs simultaneously which are not acceptably consistent.

1.2.6 Intuitionistic multiplicative preference relation

On the similar lines, an intuitionistic multiplicative number on an unbalanced scale of

(1/9)−9 give rise to an IMPR R̃ proposed by Xia et al. [63]. Each entry r̃i j in the matrix

R̃ representing IMPR is a two-tuple, the first component in which is used for depicting the

certainty degree of preference of an alternative xi over an alternative x j, and the second

component is used to indicate the certainty degree of not preferring xi to x j. The surplus,

one minus the sum of the first and the second components is an uncertainty degree (or

an indeterminacy degree or hesitancy degree) of an expert in distinguishing between two

extremes. Mathematically, Xia et al. [63] represents the IMPR as:

Definition 1.2.3. [63] An IMPR is R̃= [r̃i j(xi,x j)]n×n, where r̃i j(xi,x j)= (µ(xi,x j),ν(xi,x j)),

i, j ∈ N, is an intuitionistic multiplicative number (IMN), and µ(xi,x j) indicates certainty

degree to which xi is preferred to x j and in case of ν(xi,x j), xi is not preferred to x j, and

they satisfy the following characteristics:

1/9 ≤ µ(xi,x j) , ν(xi,x j)≤ 9 ,

µ(xi,x j) = ν(x j,xi) , ν(xi,x j) = µ(x j,xi) ,

µ(xi,xi) = ν(xi,xi) = 1, 0 < µ(xi,x j)ν(xi,x j)≤ 1, ∀ i, j ∈ N.

If µi j(xi,x j).νi j(xi,x j) = 1, ∀ i, j ∈ N, then the IMPR R̃ is equivalent to a MPR. For

convenience and without ambiguity, we shall be denoting r̃i j(xi,x j) = (µ(xi,x j),ν(xi,x j))

by r̃i j = (µi j,νi j).

A much amount of research has been done in IMPR scenario. Xu [64] built up a strategy

to determine the priority weights of alternatives from an IMPR. Jiang et al. [111] charac-

terized compatibility measure for IMPR and created two models for GDM problems. Xia

and Xu [65] were designed some intuitionistic multiplicative aggregation operators and

its application in GDM problems. Recently, Zhang and Pedrycz [112] check the consis-

tency of IMPR and generate weights by this relation. Ren [113] extend the intuitionistic

multiplicative information into AHP to enhance the ability of AHP in tackling various

decision-making problems and verified that the intuitionistic multiplicative weighted ge-
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ometric aggregation (IMWGA) operator is of excellent characteristics in remaining the

consistency of the IMPRs. To adjust the inconsistent IMPRs into an acceptably consistent

one, they proposed an iterative process and also, they provide an adjustment process to re-

store and improves the consistency of inconsistent IMPR. In IMPRs framework, Zhang et

al. [114] developed a methodology based on goal programming models to manage unity

and consensus of IMPRs. Also, they further proposed the consistency and consensus-

based techniques for solving GDM problems. Zhang and Guo [115] proposed two tech-

niques based on complete and incomplete IMPRs in GDM issue. They further discussed

the relationship between an IMPR and a normalized intuitionistic multiplicative weight

vector. Zhang and Guo [115] also developed a new method primarily based on linear

programming approach to verify and improve the consistency of an IMPR.

The more general extension of intuitionistic preference relation is called interval-valued

intuitionistic preference relation (short form as IVI-PR). The IVI-PR are two type such

as interval-valued intuitionistic fuzzy preference relation (IVI-FPR) and interval-valued

intuitionistic multiplicative preference relation (IVI-MPR).

1.2.7 Interval-valued intuitionistic fuzzy preference relation

Like IFPR, IVI-FPR have been broadly connected to the decision making problem.

Xu and Chen [116] first defined the IVI-FPR. An IVI-FPR P̃IV I on the set X is denoted

by an interval-valued intuitionistic fuzzy judgement matrix P̃IV I = [p̃i j]n×n, where p̃i j =

(µ̃i j, ν̃i j) is an IVIFV. µ̃i j = [µ
i j
, µ̄i j] represents the degree to which is an alternative xi

is preferred to the alternative x j, and ν̃i j = [ν i j, ν̄i j] represents the degree to which is an

alternative xi is non-preferred to the alternative x j satisfy the conditions: µ̃i j = [µ
i j
, µ̄i j]⊂

[0,1], ν̃i j = [ν i j, ν̄i j] ⊂ [0,1], µ̃ii = ν̃ii = [0.5,0.5], 0 ≤ µ̄i j + ν̄i j ≤ 1, µ̃i j = ν̃ ji, ν̃i j = µ̃ ji

for all i, j = 1,2, · · · ,n.

We know that, in the decision making framework, consistency of the preference relation

is a basic issue. The additive consistent IFPR is characterized by Wang [117] using both

the membership and non-membership degrees of intuitionistic fuzzy numbers. Gong et

al. [118] initiated the characterization of multiplicative consistent IFPR by proposing a

change between an IFPR and IV-FPR. In 2011, Xu et al. [119] elucidated multiplicative

consistent IFPR, analogous to the additive consistent IFPR [117]. Using some opera-

tional laws of interval-valued intuitionistic fuzzy numbers (IVIFNs), Xu and Chen [116]

proposed a consistent interval-valued intuitionistic judgment matrix.
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Recently, Wan et al. [120] defined consistency and acceptable consistency of an IVI-

FPR by separating it into two IFPRs. A new three-phase method is proposed for GDM

problems with IVI-FPRs by eliciting the full importance degrees of experts, extracting the

most optimistic and pessimistic consistent IFPRs from an IVI-FPR, and further minimiz-

ing the deviations and the hesitancy degrees via linear goal programming model. Wan

et al. [121] designed a novel likelihood comparison algorithm to rank interval-valued in-

tuitionistic fuzzy values. They also defined the additive consistency of an IVI-FPR ac-

cording to the additive consistency of IFPR. They proposed a linear programming model

by maximizing the group consensus to derive the weights of experts. Subsequently, a

collective IVI-FPR is applied to calculate the priority weights. Using the likelihood com-

parison algorithm, the order of alternatives is generated by ranking their priority weights.

Before these papers, Wan et al. [122] put forward a new iterative algorithm to repair the

consistency of an IVI-FPR with unacceptable consistency. They established an optimiza-

tion model by minimizing the deviations between each IVI-FPR and a collective one. A

TOPSIS based approach is designed to rank interval-valued Atanassov intuitionistic fuzzy

(IVAIF) priority weights in multi-criteria group decision making (MCGDM) problems.

1.2.8 Hesitant fuzzy preference relation

One of the most important extensions of a FS is a hesitant fuzzy set(HFS) proposed

by Torra [123] whose participation capacities are spoken to by an arrangement of a few

conceivable numerical qualities. The inspiration for presenting HFSs is that it is very

hard to decide the membership of an element into a set because there is a set of possible

values in this situation. In day to day life, the hesitant fuzzy set is another important tool

that expresses the human hesitancy. For representation if number of decision-makers are

reluctant about some conceivable incentive as 0.2, 0.5, and 0.7 to judge the participation

of a component x to a set A, all things considered, the membership of x to the set A can

be spoken by a hesitant fuzzy element (HFE) denoted by ‘he’= {0.2,0.5,0.7} which is

altogether different from FSs, IVFSs, IFSs, IVIFSs. In the area of HFSs, majorly work

has been done on the aggregation of HFEs [124], distance and similarity measures for

HFSs ( [125], [126]) and some decision making methods based on HFSs [127]. The

relationship between the different type of fuzzy sets with HFSs can be found in [128].

Due to absence of learning and shortage of time, the DMs regularly gave their prefer-

ences data with a few numerical possible values. Unmistakably, the previously mentioned

preference relations do not address such circumstances. Later research on hesitant prefer-
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ence relations has additionally gotten. For example, Zhu and Xu [75] proposed the idea

of a HFPR. Each component of HFPR is an HFE, which is an arrangement of function-

al numerical preference value that denotes the hesitant degree to which an alternative is

preferred over another option. HFPRs gave an exact description of the decision maker’s

hesitation in giving their preference.

Likewise, Zhu and Xu [75] developed a regression method to change HFPRs to FPRs

with the highest consistency level. Also, Liao et al. [129] explored the multiplicative

consistency of an HFPR and created a few calculations to enhance the gathering accord.

1.2.9 Hesitant Multiplicative Preference relation

As the HFS and the HFPRs are created in light of the 0− 1 scale and symmetrically

passed on around 0.5. In various genuine problem, it may be possible that, the considera-

tion of preference data around some value may not dependable and distributed symmetri-

cally. The best example in relation of this concept is while getting the ventures of similar

resources, the separation between the evaluations communicating bad information in an

organization ought to be not exactly the gap between the degree expressing good informa-

tion [63]. To address such a condition, Saaty’s 1−9 scale [58] is considered as a beneficial

tool which demonstrates the MPR that has been applied in various disciplines [130].

To express the preferences concerning two options, Xia and Xu [130] proposed a method-

ology to use the unbalanced 1− 9 ratio scale and there by presented the idea of HMPR.

Some of the experts in the decision organization in the above illustrations, do not prefer

to use the preference value lies between 0 and 1, however, would want to utilize Saaty’s

proportion scale to give how much the option xi is better than x j (i ̸= j). In the decision-

making association, some experts prefer to give their information as 1/3, some give as 2,

and others give as 5. These experts can not able to reach a consensus. In the above cas-

es, according to Xia and Xu [130], hesitant multiplicative element (HME) {1/3,2,5} as

mentioned, is considered when the degrees to which the choice xi is superior to the choice

x j for i ̸= j. And furthermore, the HME is the basic unit of the hesitant multiplicative

set(HMS) [130], thus, HMPR can be developed. Many research has been done in this

scenario ( [76] and many more).
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1.3 Incomplete preference relations

The above-cited works assume that an expert is always able to provide information on

each entry in a preference relation matrix. It may not be the case forever. Here and there,

DM might not have a decent comprehension of a specific query, thus he/she can not make

an instaneous contrast between each two objects; in this manner it is once in a while

important to enable the decision-maker to avoid some questionable comparisons flexibly.

In this case, incomplete preference relations are obtained, and the whole process may

slow down. At each level of the decision-making process, decision maker need n(n−1)
2

judgments to present a complete preference relation, and when n is large, it becomes an

onerous task. Therefore sometimes, due to lack of time and busy schedule of the decision

maker, incomplete preference relations are obtained. In this section, we briefly present

the literature on incomplete FPR and its various variants.

Xu [131] first studied an incomplete FPR. Fedrizzi and Giove [132] characterized a

methodology to complete the incomplete FPR. Alonso et al. [133] defined four type of in-

complete preference relations: incomplete FPR, incomplete MPR, incomplete IV-PR, in-

complete linguistic preference relations. A web consensus support system is developed by

Alonso et al. [134] to manage MCGDM problems with various types of incomplete prefer-

ence relations. Chen et al. [135] computed the missing preference values in an incomplete

FPR based on additive consistency. They then constructed the modified consistency matri-

ces which satisfy the additive consistency and order consistency simultaneously. Ureña et

al. [56] approaches a method to manage incomplete preference relations that estimate the

missing information in decision making are desirable. To get a priority vector for GDM

problems, Xu et al. [136] proposes a chi-square method (CSM) where DMs’ assessment

on alternatives is furnished with missing values in an incomplete reciprocal preference

relations .

Khalid et al. [137] proposed an upper bound condition to handle an incomplete IV-

FPR and utilizing this condition, missing preferences are estimated such that they are

expressible which results from the consistent, complete relation. Meng, Tan, and Chen

[98] formulated goal-programming models to determine missing values in an incomplete

IV-FPR that have the highest consistent level concerning known values.

On the other hand, in the area of incomplete MPR, Harker [96] devised different meth-

ods for dropping the complex elicited procedure with incomplete MPR. Nishizawa [138]

developed a method to find the various lengths in a directed graph for appraising the ele-
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ments in an intransitive incomplete MPR.

The process of checking consistency makes sure that the preferences of experts have no

self-contradiction. The notion of consistency is the most important tool used to calculate

the unknown values in an IPR(Liao et al. [139]). Xu and Cai [140] introduced additive

consistent, multiplicative consistent, and acceptably consistent incomplete preference re-

lations. Xu [141] extended an incomplete MPR into a complete MPR using multiplicative

transitivity property and utilized a simple iterative procedure to improve consistency. Liu

et al. [142] initiated the notion of an incomplete IV-MPR and presented an algorithm to

obtain a priority vector from the consistency property for the same. Meng and Tan [105]

defined a new notion of consistency for IV-MPR and applied it to formulate a 0−1 mixed

goal programming model to determine the missing values in an incomplete IV-MPR.

Jiang et al. [143] proposed a notion of incomplete IMPR and considered its applica-

tion to MCGDM problems. They also talked about consistent and acceptably consistent

incomplete IMPRs. Two approaches i.e. ‘estimating step’ and ‘adjusting step’ were pro-

posed to find all the unknown elements of an incomplete IMPR.

Zhang et al. [144] work on incomplete HFPRs and they proposed an algorithm to esti-

mate the missing data by utilizing the known preference element with the lowest number

of judgments and further extended it to more known judgments in an incomplete HFPR.

1.4 Motivation

In reality, multi-criteria decision-making problem has been extensively seen that most

choices happen in a situation in which the objectives and requirements, are not known

precisely, because of their complexity, and henceforth, the problem cannot be accurately

described using the crisp value. To manage the sort of subjective, unverifiable information

or on the other hand even not practical decision issues, the uncertainty theory called fuzzy

set theory came to existence. The present chapter is introductory which represents the

details of fuzzy set theory and extension of this theory to the fuzzy relation. The concept

of preference relation has been recently developed to allow the DMs to provide different

preference values over two alternatives.

Chapter 2 characterized the max−min similarity relation of IVIFR and further the ap-

plicability of this relation construct hierarchical clustering in the area of performance

evaluation. To express the application of the proposed hierarchical clustering, we have

developed a procedure to calculate the local weights and global weights from the criteria-
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alternative matrix in MCDM problem.

In chapter 3, we have developed a consistency property of IMPRs. Using this consis-

tency property, we have extended the work in incomplete IMPR scenario. Also, in this

chapter, we have checked the consistency of IMPR using the cyclic graph.

To extend the IMPR, we have developed the IVI-MPR in chapter 4. First of all, we study

the consistency property, and especially the acceptably consistent property, for incomplete

IVI-MPR. To complement the incomplete IVI-MPR, we have developed a local optimiza-

tion method. A method is designed to estimate the weight vector of DMs to achieve the

resultant consistent decision matrix in GDM problem.

In chapter 5, we work on HFPR. This chapter introduced an additive consistency prop-

erty of HFPR to construct the complete HFPR from incomplete one. We develop a method

to check the consistency level of incomplete HFPR. Group decision-making problem with

incomplete HFPR is also considered.

The aim of chapter 6 is to characterise two different approaches to calculate the miss-

ing element of incomplete hesitant multiplicative preference relations (HMPRs). In the

first approach, a new definition of multiplicative transitive property of HMPR has given

that preserve the hesitancy property and is used to construct the complete HMPR from

incomplete one which involves two-step involving “estimating step” and “adjusting step”.

Initial values of missing element are calculated using estimating step and an optimization

model is developed in the adjusting step to minimize the error. A linear programming

model is developed in the second approach to complement HMPR from incomplete one.

The satisfaction degree and the acceptably consistent of complete HMPR is also checked.

The whole procedure is explained with suitable example.

The summary and the future scope is given after chapter 6.



Chapter 2

Hierarchical Clustering of

Interval-Valued Intuitionistic Fuzzy

Relations and Its Application to Elicit

Criteria Weights in MCDM Problems

In this chapter1, we apply the (α̃, β̃ )-cuts and the resolution form of the interval-valued

intuitionistic fuzzy (IVIF) relations to develop a procedure for constructing a hierarchical

clustering for IVIF max-min similarity relations. The advantage of the proposed scheme is

illustrated in determining the criteria weights in multi-criteria decision making (MCDM)

problems involving IVIF numbers. The problem of finding the criteria weights is of critical

interest in the domain of MCDM problems. A complete procedure is drawn to generate

criteria weights starting from the criteria-alternative matrix of the MCDM problem with

entries provided by a decision maker as IVIF numbers.

1The content of this chapter is based on research paper “Hierarchical clustering of interval-valued in-
tuitionistic fuzzy relations and its application to elicit criteria weights in MCDM problems”, OPSEARCH,
springer 54, 388–416 (2017).
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2.1 Introduction

The concepts of fuzzy set, IVFS, IFS, IVIFS has been broadly discussed in the first

chapter.

Using fuzzy set theory, Bellmann et al. [40] and Ruspini [41] gave the ideas of data

clustering. Fuzzy clustering is the partitioning of a collection of data into fuzzy subsets

or clusters based on similarities between the data in some way. Fuzzy clustering methods

are divided into two categories. One of them is fuzzy c-means (FCM) algorithm which

is based on distance defined objective function. The other categories of fuzzy clustering

based on fuzzy relation which we have discussed in chapter 1. Zadeh [47] defined the

similarity relation of fuzzy relation. Hierarchical clustering is applied based on similarity

relation.

Guh et al. [52] extended a fuzzy relation (FR) to interval-valued fuzzy relation (IVFR)

and defined an interval-valued degree of similarity between any two elements x ∈ X and

y ∈ Y as [µ
R f
(x,y),µR f

(x,y)], with 0 ≤ µ
R f
(x,y)≤ µR f

(x,y)≤ 1.

Mathematically, Let X and Y be two non-empty sets, and Int([0,1]) = {(x1,x2) | x1,x2 ∈

[0,1], x1 ≤ x2}.

Definition 2.1.1. [52] (Interval valued fuzzy relation (IVFR)) An IVFR R̃ f on X and Y is

a mapping R̃ f : X ×Y → Int([0,1], defined as a fuzzy subset of X ×Y , with an interval-

valued membership grade µ̃R̃ f
(x,y) = [µ

R̃ f
(x,y), µ R̃ f

(x,y)], ∀ (x,y) ∈ X ×Y .

Definition 2.1.2. [52] (Interval-valued fuzzy proximity relation) An IVFR R̃ f on X which

is reflexive (that is, µ̃R̃ f
(x,x)= [1,1], ∀ x∈X) and symmetric (that is, µ̃R̃ f

(x,y)= µ̃R̃ f
(y,x),

∀ x,y ∈ X) is called an interval-valued fuzzy proximity relation.

Definition 2.1.3. [52] (Transitive IVFR) An IVFR R̃ f on X is called (max-min) transitive

if for all x,y ∈ X , the following hold:

µ
R̃ f
(x,y)≥ maxz∈X{min{µ

R̃ f
(x,z),µ

R̃ f
(z,y)}} and

µ R̃ f
(x,y)≥ maxz∈X{min{µ R̃ f

(x,z),µ R̃ f
(z,y)}}.

Definition 2.1.4. [52] (Interval-valued fuzzy (max-min) similarity relation) An interval-

valued fuzzy proximity relation R̃ f on X with transitivity property (in the sense of Defini-

tion 2.1.3) is called an interval-valued fuzzy (max-min) similarity relation.
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Guh [52] developed some results for IVFR and applied them for performance evaluation

by establishing a hierarchical clustering. According to Guh [52], the α̃-cut in the reso-

lution form of the interval-valued similarity relation, is interval-valued with α̃ = (α , α),

0 ≤ α ≤ α ≤ 1. In case of m number of α̃-cuts for interval-valued similarity relation, say

(α1, α1), . . . ,(αm, αm), the following conditions must be satisfied:

0 ≤ α1 ≤ . . . ≤ αm ≤ 1, 0 ≤ α1 ≤ . . .≤ αm ≤ 1.

But the same may fails to hold; for instance, if the α̃-cuts are of the form (0.4,0.9),

(0.5,0.6), (1,1) then, although 0.4 < 0.5 < 1 but 0.9 � 0.6 < 1. On the other hand,

Basnet [145] defined the (α,β )-cut for IFS AI , for 0 ≤ α, β ≤ 1, α +β ≤ 1, by AI(α,β ) =

{x | µAI(x)≥ α and νAI(x)≤ β}.

In this chapter, we extend the work of Guh et al. [52] to IVIF scenario. We introduce

the definition of (α̃, β̃ )-cuts for an interval-valued intuitionistic fuzzy relation (IVIFR)

and present decomposed resolution form of IVIFR. The same have been applied to cre-

ate a hierarchical structure for IVIFR. An MCDM with IVIF numbers is considered, and

an entropy measure [146] together with hierarchical clustering is applied to compute the

global weights of the criteria involved in the problem. MATLAB codes are developed

for all the proposed algorithms and methodologies. All codes are tested on a large num-

ber of matrices set-up in the domain backdrops of interval-valued fuzzy (IVF) numbers,

intuitionistic fuzzy (IF) numbers, and interval-valued intuitionistic fuzzy (IVIF) numbers.

The now onwards flow of the chapter is as follows. In Section 2.2, we modify the defini-

tion of α̃-cut for interval-valued fuzzy relation (IVFR) described in [52]. In Sections 2.3,

the hierarchical clustering procedure is developed to include intuitionistic fuzzy relation

(IFR). Section 2.4 presents some operations on IVIFR along with its resolution form. Sec-

tion 2.5 describes the hierarchical clustering procedure for IVIFR. Section 2.6 proposed

a procedure to compute the global weights of the criteria in an MCDM problem set-up in

IVIF environment. Section 2.7 summarizes the work of this chapter.

2.2 α̃-cut for IVFR

In this section, we revised the definition of α̃-cut for interval-valued fuzzy relation

(IVFR) described in [52]. Guh et al. [52] showed that an interval-valued similarity re-
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lation R̃ f can be decomposed into its resolution form using α̃-cuts, as follows:

R̃ f =
∪
α̃

(µα , µα) Rα̃ = (µα1
, µα1

)Rα̃1
+(µα2

,µα2
) Rα̃2

+ . . .+(µαm
,µαm

) Rα̃m
,

such that

0 ≤ µα1
≤ µα2

≤ . . .≤ µαm
≤ 1, 0 ≤ µα1

≤ µα2
≤ . . .≤ µαm

≤ 1 , (2.2.1)

where Rα̃i
, i = 1, . . . ,m, are the similarity relations, and (µαi

,µαi
), i = 1, . . . ,m, are the

corresponding α̃-cut. As discussed above, the following examples further justify our

observation that equation 2.2.1 may not always hold.

Example 2.2.1. Consider the following interval-valued proximity relation matrix which is

not (min-max) transitive.

R̃(0)
f =


1 (0.1,0.4) (0.2,0.3) (0.6,0.9)

(0.1,0.4) 1 (0.7,0.8) (0.4,0.7)

(0.2,0.3) (0.7,0.8) 1 (0.3,0.5)

(0.6,0.9) (0.4,0.7) (0.3,0.5) 1


.

Using the conventional procedure, we first convert the above relation into a max-min

transitive one. To accomplish this, we take R̃(1)
f = R̃(0)

f ◦ R̃(0)
f , where ◦ stands for the

max-min composition, we get

R̃(1)
f =


1 (0.4,0.7) (0.3,0.5) (0.6,0.9)

(0.4,0.7) 1 (0.7,0.8) (0.4,0.7)

(0.3,0.5) (0.7,0.8) 1 (0.4,0.7)

(0.6,0.9) (0.4,0.7) (0.4,0.7) 1


.

Note that R̃(1)
f ̸= R̃(0)

f . Again obtain R̃(2)
f = R̃(1)

f ◦ R̃(1)
f . Then,

R̃(2)
f =


1 (0.4,0.7) (0.4,0.7) (0.6,0.9)

(0.4,0.7) 1 (0.7,0.8) (0.4,0.7)

(0.4,0.7) (0.7,0.8) 1 (0.4,0.7)

(0.6,0.9) (0.4,0.7) (0.4,0.7) 1


.
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Since R̃(2)
f ̸= R̃(1)

f , we repeat the above procedure to get next relation from R̃(2)
f as follows:

R̃(3)
f =


1 (0.4,0.7) (0.4,0.7) (0.6,0.9)

(0.4,0.7) 1 (0.7,0.8) (0.4,0.7)

(0.4,0.7) (0.7,0.8) 1 (0.4,0.7)

(0.6,0.9) (0.4,0.7) (0.4,0.7) 1


.

Now, R̃(3)
f = R̃(2)

f , hence R̃(2)
f is an equivalence IVFR.

The α̃-cuts in R̃(2)
f are (0.4,0.7), (0.6,0.9), (0.7,0.8), (1,1) with 0.4 < 0.6 < 0.7 < 1

but 0.7 < 0.9 � 0.8 < 1, i. e. condition given by equation 2.2.1 does not hold.

Example 2.2.2. Consider the interval-valued fuzzy max-min similarity relation R̃(0)
f

R̃(0)
f =



1 (0.9,1) (0.6,0.9) (0.4,0.9) (0.4,0.8)

(0.9,1) 1 (0.6,0.9) (0.4,0.9) (0.4,0.8)

(0.6,0.9) (0.6,0.9) 1 (0.4,0.9) (0.4,0.8)

(0.4,0.9) (0.4,0.9) (0.4,0.9) 1 (0.5,0.8)

(0.4,0.8) (0.4,0.8) (0.4,0.8) (0.5,0.8) 1


.

It can easily be verified that R̃(0)
f is reflexive, symmetric and transitive IVFR. The α̃-cuts

are (0.4,0.8), (0.4,0.9), (0.5,0.8), (0.6,0.9), (0.9,1), (1,1). Again the noteworthy point

is that although the lower values of cuts satisfy the inequality in (2.2.1), the upper values

of cut fail to meet (2.2.1) as 0.8 < 0.9 � 0.8 < 0.9 < 1.

In this chapter, we attempt to improve this shortcoming and develop a new definition of

α̃-cut.

Definition 2.2.1. The α̃-cut of an IVFR R̃ f is defined by (max(µ
i
), min(µ i)), among all

α̃-cut (µα ,µα) of the interval-valued similarity relation derived following the approach

of Guh et al. [52].

For clarity of the above definition, we propose an algorithm for determining the α̃-cuts

of IVFR.

Algorithm 2.2.1. 1. First determine all α̃-cuts (µ
i
,µ i) of IVFR by the conventional

approach of Guh et al. [52]. Let this collection be denoted by set S.

2. Among all the elements of the set S, choose the one with maximum value of the

lower membership and fixed it. Then among all available pairs in S with this lower
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membership value, choose the one having minimum upper membership value. This

way, we extract the first element in α̃-cut of IVFR. Note that the first α̃-cut is a

member in S. Reduce the set S by deleting this element from it.

3. Continue the above procedure among all the remaining elements of the reduced S,

till finally all elements are searched.

This way we are able to extract α̃-cut of IVFR from the set S.

Recall the α̃-cuts of Example 2.2.2. Then, using Definition 2.2.1, the extracted α̃-cuts

of IVFR are given (1,1), (0.9,1), (0.6,0.9), (0.5,0.8),(0.4,0.8). Moreover, the resolu-

tion form of the similarity relation is given by

R̃(1)
f = 1



1

0 1

0 0 1

0 0 0 1

0 0 0 0 1


+(0.9,1)



1

1 1

0 0 1

0 0 0 1

0 0 0 0 1


+(0.6,0.9)



1

1 1

1 1 1

0 0 0 1

0 0 0 0 1



+(0.5,0.8)



1

1 1

1 1 1

0 0 0 1

0 0 0 1 1


+(0.4,0.8)



1

1 1

1 1 1

1 1 1 1

1 1 1 1 1


.

A MATLAB code is developed to construct the α̃-cuts of the IVFR of order m. The code

is tested on randomly generated IVFR matrices. One of the illustration is shown below.

Example 2.2.3. Let B̃(0)
f be a randomly generated interval-valued fuzzy proximity relation

matrix of order 8.

B̃(0)
f =



(1,1)

0.814724,

0.936168

 0.905792,

0.921919

 0.126987,

0.743374

 0.913376,

0.916133

 0.632359,

0.734167

 0.09754,

0.139208

 0.278498,

0.348579


0.814724,

0.936168

 (1,1)

0.546882,

0.920005

 0.957507,

0.987032

 0.964889,

0.976022

 0.157613,

0.958068

 0.970593,

0.971606

 0.957167,

0.97596


0.905792,

0.921919

 0.546882,

0.920005

 (1,1)

0.485376,

0.681735

 0.80028,

0.953169

 0.141886,

0.824258

 0.421761,

0.529818

 0.915736,

0.957005


0.126987,

0.743374

 0.957507,

0.987032

 0.485376,

0.681735

 (1,1)

0.792207,

0.884797

 0.959492,

0.985673

 0.655741,

0.899946

 0.035712,

0.763447


0.913376,

0.916133

 0.964889,

0.976022

 0.80028,

0.953169

 0.792207,

0.884797

 (1,1)

0.849129,

0.890773

 0.933993,

0.978858

 0.678735,

0.889195


0.632359,

0.734167

 0.157613,

0.958068

 0.141886,

0.824258

 0.959492,

0.985673

 0.849129,

0.890773

 (1,1)

0.75774,

0.797134

 0.743132,

0.773699


0.09754,

0.139208

 0.970593,

0.971606

 0.421761,

0.529818

 0.655741,

0.899946

 0.933993,

0.978858

 0.75774,

0.797134

 (1,1)

0.392227,

0.695119


0.278498,

0.348579

 0.957167,

0.97596

 0.915736,

0.957005

 0.035712,

0.763447

 0.678735,

0.889195

 0.743132,

0.773699

 0.392227,

0.695119

 (1,1)



.
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Using the max-min composition, an interval-valued max-min similarity relation is con-

structed and the same is given as follows:

B̃(3)
f =



(1,1)

0.9134,

0.9362

 0.9134,

0.9362

 0.9134,

0.9362

 0.9134,

0.9362

 0.9134,

0.9362

 0.9134,

0.9362

 0.9134,

0.9362


0.9134,

0.9362

 (1,1)

0.9157,

0.9570

 0.9575,

0.9870

 0.9649,

0.9760

 0.9575,

0.9857

 0.9706,

0.9760

 0.9572,

0.9760


0.9134,

0.9362

 0.9157,

0.9570

 (1,1)

0.9157,

0.9570

 0.9157,

0.9570

 0.9157,

0.9570

 0.9157,

0.9570

 0.9157,

0.9570


0.9134,

0.9362

 0.9575,

0.9870

 0.9157,

0.9570

 (1,1)

0.9575,

0.9760

 0.9595,

0.9857

 0.9575,

0.9760

 0.9572,

0.9760


0.9134,

0.9362

 0.9649,

0.9760

 0.9157,

0.9570

 0.9575,

0.9760

 (1,1)

0.9575,

0.9760

 0.9649,

0.9789

 0.9572,

0.9760


0.9134,

0.9362

 0.9575,

0.9857

 0.9157,

0.9570

 0.9595,

0.9857

 0.9575,

0.9760

 (1,1)

0.9575,

0.9760

 0.9572,

0.9760


0.9134,

0.9362

 0.9706,

0.9760

 0.9157,

0.9570

 0.9575,

0.9760

 0.9649,

0.9789

 0.9575,

0.9760

 (1,1)

0.9572,

0.9760


0.9134,

0.9362

 0.9572,

0.9760

 0.9157,

0.9570

 0.9572,

0.9760

 0.9572,

0.9760

 0.9572,

0.9760

 0.9572,

0.9760

 (1,1)



.

Using Definition 2.2.1, the α̃-cuts of B̃(3)
f are

(0.9134,0.9362), (0.9157,0.9570), (0.9572,0.9760), (0.9575,0.9760),

(0.9595,0.9857), (0.9649,0.9760), (0.9706,0.9760), (1,1).

And the resolution form of B̃(3)
f

=(0.9134,0.9362)


1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

+(0.9157,0.9570)


1

0 1

0 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1 1

0 1 1 1 1 1 1 1



+(0.9572,0.9760)


1

0 1

0 0 1

0 1 0 1

0 1 0 1 1

0 1 0 1 1 1

0 1 0 1 1 1 1

0 1 0 1 1 1 1 1

+(0.9575,0.9760)


1

0 1

0 0 1

0 1 0 1

0 1 0 1 1

0 1 0 1 1 1

0 1 0 1 1 1 1

0 0 0 0 0 0 0 1



+(0.9595,0.9857)


1

0 1

0 0 1

0 0 0 1

0 1 0 0 1

0 0 0 1 0 1

0 1 0 0 1 0 1

0 0 0 0 0 0 0 1

+(0.9649,0.9760)


1

0 1

0 0 1

0 0 0 1

0 1 0 0 1

0 0 0 0 0 1

0 1 0 0 1 0 1

0 0 0 0 0 0 0 1


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+(0.9706,0.9760)


1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 1 0 0 0 0 1

0 0 0 0 0 0 0 1

+(1,1)


1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

 .

Consequently, the hierarchical structure of the IVFR is depicted in Fig. 2.1
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82, 3, 4, 5, 6, 7, 8<
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81<

81<

81<
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82, 5, 7<

88<
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81<

81< 86<84<
88<
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82, 7< 85<

85<82< 87<

H0.9134, 0.9362L

H0.9157, 0.9570L

H0.9572, 0.9760L

H0.9575, 0.9760L

H0.9595, 0.9857L

H0.9649, 0.9760L

H0.9706, 0.9760L

H1, 1L

Figure 2.1: Hierarchical clustering for IVFR in Example 2.2.3

2.3 (α ,β )-cut for intuitionistic fuzzy relation (IFR)

Intuitionistic Fuzzy Relations (IFRs) has already been studied by many researchers. Com-

monly, IFRs are intuitionistic fuzzy sets in a cartesian product of universe [53]. In this

section we developed an algorithm to construct the (α ,β )-cuts for an intuitionistic fuzzy

relation (IFR). Taking motivation from IFS, Bustince and Burillo [53] defined IFR as fol-

lows.

Definition 2.3.1. (Intuitionistic fuzzy relation (IFR)) [53] An IFR RI on the two sets X and

Y is an intuitionistic fuzzy subset of X ×Y defined by RI = {⟨(x,y),µRI(x,y),νRI(x,y)⟩ |

x∈X , y∈Y}, where µRI , νRI : X×Y → [0,1] such that 0≤ µRI(x,y)+νRI(x,y)≤ 1, ∀(x,y)

∈ X ×Y .

Banerjee and Basnet [147] presented some properties of IFR.
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Definition 2.3.2 (Intuitionistic fuzzy proximity relation). An IFR RI on X is called intu-

itionistic fuzzy proximity relation if it satisfies the following properties:

1. Reflexive: µRI(x,x) = 1, νRI(x,x) = 0,∀ x ∈ X .

2. Symmetry: µRI(x,y) = µRI(y,x), νRI(x,y) = νRI(y,x), ∀ x, y ∈ X .

Definition 2.3.3 (Intuitionistic fuzzy (max-min) similarity relation). An intuitionistic fuzzy

proximity relation RI on X is called an intuitionistic fuzzy (max-min) similarity relation

if it satisfy the following transitive relation:

µRI(x,y) ≥ maxz∈X{min{µRI(x,z),µRI(z,y)}},

νRI(x,y) ≤ minz∈X{max{νRI(x,z),νRI(z,y)}}.

Definition 2.3.4. The (α,β )-cut of an IFS AI is defined in [145] as follows:

AI(α,β ) = {x ∈ X | µAI(x)≥ α , νAI(x)≤ β}.

We propose an algorithm for determining the (α ,β )-cut for intuitionistic fuzzy (max-

min) similarity relation.

Algorithm 2.3.1. 1. From all pair of (µi,νi) in the matrix representation of IFR, first

choose the maximum value of the membership µi, say µ∗
i .

2. Then among all possible tuples (µ∗
i ,νi), choose the one with maximum non- mem-

bership value. This gives the first (α ,β )-cut of IFR.

3. Cross-off this selected cut value from matrix of IFR. And, continue this procedure

to remaining elements (µi,νi) of the matrix of IFR.

Remark 2.3.1. Instead of starting with membership function, one can also start with a

non-membership function. For this, among all entries of the matrix representation of RI ,

choose the one with minimum non-membership value, and then for this value choose the

tuple with minimum membership value also. Continue this procedure with all elements

of the IFR till each of them is searched out.

A MATLAB code is designed for finding (α ,β )-cuts of IFR RI of order m. We present

below one instance of many examples generated through the code.
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Example 2.3.1. Consider a randomly generated IFR proximity relation matrix of order 9

as follows:

B(0)
I =



(1,0)

0.814724,

0.128735

 0.905792,

0.029873

 0.126987,

0.829556

 0.913376,

0.002984

 0.632359,

0.1613

 0.09754,

0.344341

 0.278498,

0.552322

 0.546882,

0.36032

0.814724,

0.128735

 (1,0)

0.957507,

0.007941

 0.964889,

0.017196

 0.157613,

0.375356

 0.970593,

0.019006

 0.957167,

0.030384

 0.485376,

0.38838

 0.80028,

0.055128

0.905792,

0.029873

 0.957507,

0.007941

 (1,0)

0.141886,

0.583262

 0.421761,

0.378803

 0.915736,

0.013702

 0.792207,

0.024727

 0.959492,

0.020188

 0.655741,

0.330401

0.126987,

0.829556

 0.964889,

0.017196

 0.141886,

0.583262

 (1,0)

0.035712,

0.32823

 0.849129,

0.0883

 0.933993,

0.014773

 0.678735,

0.241356

 0.75774,

0.061799

0.913376,

0.002984

 ,0.157613,

0.375356

 0.421761,

0.378803

 0.035712,

0.32823

 (1,0)

0.743132,

0.129964

 0.392227,

0.42488

 0.655478,

0.306936

 0.171187,

0..795074

0.632359,

0.1613

 ,0.970593,

0.019006

 0.915736,

0.013702

 0.849129,

0.0883

 0.743132,

0.129964

 (1,0)

0.706046,

0.160856

 0.031833,

0.134212

 0.276923,

0.107951

0.09754,

0.344341

 0.957167,

0.030384

 0.792207,

0.024727

 0.933993,

0.014773

 0.392227,

0.42488

 0.706046,

0.160856

 (1,0)

0.046171,

0.245619

 0.097132,

0.759057

0.278498,

0.552322

 0.485376,

0.38838

 0.959492,

0.020188

 0.678735,

0.241356

 0.655478,

0.306936

 0.031833,

0.134212

 0.046171,

0.245619

 (1,0)

0.823458,

0.044892

0.546882,

0.36032

 0.80028,

0.055128

 0.655741,

0.330401

 0.75774,

0.061799

 0.171187,

0.795074

 0.276923,

0.107951

 0.097132,

0.759057

 0.823458,

0.044892

 (1,0)



.

Applying the max-min composition given in definition 2.3.3, the similarity relation ma-

trix is generated.

B(3)
I =



(1,0)

0.9058,

0.0299

 0.9058,

0.0299

 0.9058,

0.0299

 0.9134,

0.0030

 0.9058,

0.0299

 0.9058,

0.0299

 0.9058,

0.0299

 0.8235,

0.0449


0.9058,

0.0299

 (1,0)

0.9575,

0.0079

 0.9649,

0.0172

 0.9058,

0.0299

 0.9706,

0.0137

 0.9572,

0.0172

 0.9575,

0.0202

 0.8235,

0.0449


0.9058,

0.0299

 0.9575,

0.0079

 (1,0)

0.9575,

0.0172

 0.9058,

0.0299

 0.9575,

0.0137

 0.9572,

0.0172

 0.9595,

0.0202

 0.8235,

0.0449


0.9058,

0.0299

 0.9649,

0.0172

 0.9575,

0.0172

 (1,0)

0.9058,

0.0299

 0.9649,

0.0172

 0.9572,

0.0148

 0.9575,

0.0202

 0.8235,

0.0449


0.9134,

0.0030

 0.9058,

0.0299

 0.9058,

0.0299

 0.9058,

0.0299

 (1,0)

0.9058,

0.0299

 0.9058,

0.0299

 0.9058,

0.0299

 0.8235,

0.0449


0.9058,

0.0299

 ,0.9706,

0.0137

 0.9575,

0.0137

 0.9649,

0.0172

 0.9058,

0.0299

 (1,0)

0.9572,

0.0172

 0.9575,

0.0202

 0.8235,

0.0449


0.9058,

0.0299

 0.9572,

0.0172

 0.9572,

0.0172

 0.9572,

0.0148

 0.9058,

0.0299

 0.9572,

0.0172

 (1,0)

0.9572,

0.0202

 0.8235,

0.0449


0.9058,

0.0299

 0.9575,

0.0202

 0.9595,

0.0202

 0.9575,

0.0202

 0.9058,

0.0299

 0.9575,

0.0202

 0.9572,

0.0202

 (1,0)

0.8235,

0.0449


0.8235,

0.0449

 0.8235,

0.0449

 0.8235,

0.0449

 0.8235,

0.0449

 0.8235,

0.0449

 0.8235,

0.0449

 0.8235,

0.0449

 0.8235,

0.0449

 (1,0)



.

The (α ,β )-cuts of B(3)
I are

(1,0), (0.9706,0.0137), (0.9649,0.0172), (0.9595,0.0202), (0.9575,0.0202),

(0.9572,0.0202), (0.9134,0.0030), (0.9058,0.0299), (0.8235,0.0449).

The resolution form resulting in the hierarchy tree is explained in Fig 2.2.
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Resolution form B(3)
I

=(0.8235,0.0449)



1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

+(0.9058,0.0299)



1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1



+(0.9134,0.0030)



1

0 1

0 1 1

0 1 1 1

1 0 0 0 1

0 1 1 1 0 1

0 1 1 1 0 1 1

0 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 1

+(0.9572,0.0202)



1

0 1

0 1 1

0 1 1 1

0 0 0 0 1

0 1 1 1 0 1

0 1 1 1 0 1 1

0 1 1 1 0 1 1 1

0 0 0 0 0 0 0 0 1



+(0.9575,0.0202)



1

0 1

0 1 1

0 1 1 1

0 0 0 0 1

0 1 1 1 0 1

0 0 0 0 0 0 1

0 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1

+(0.9595,0.0202)



1

0 1

0 0 1

0 1 0 1

0 0 0 0 1

0 1 0 1 0 1

0 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1



+(0.9649,0.0172)



1

0 1

0 0 1

0 1 0 1

0 0 0 0 1

0 1 0 1 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

+(0.9706,0.0137)



1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 1 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1



+(1,0)



1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

 .

2.4 Interval-valued Intuitionistic Fuzzy Relation (IVIFR)

and Operations

In this section we focus on extending the methodologies detailed in previous sections

on IVIFR.

Definition 2.4.1 ( Interval-valued intuitionistic fuzzy relation (IVIFR)). [34] An IVIFR R̃I

between two sets X and Y is an interval-valued intuitionistic fuzzy subset of X ×Y asso-
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81, 2, 3, 4, 5, 6, 7, 8, 9<

82, 3, 4, 6, 7, 8<

83<

82, 3, 4, 6, 8<

88<

81, 5<

82<

81<

81<

81< 82, 4, 6<

84<86<81<

81< 82, 6<

85<

88<83<

83, 8<

84< 87<

85<

85<

87<

H0.8235, 0.0449L

H0.9058, 0.0299L

H0.9134, 0.0030L

H0.9572, 0.0202L

H0.9575, 0.0202L

H0.9595, 0.0202L

H0.9649, 0.0172L

H1, 0L

85<

81, 2, 3, 4, 5, 6, 7, 8<
89<

89<

85<

89<

89<

89<

89<

87<

82, 3, 4, 6, 7, 8<

87< 89<

87< 89<83< 88<82, 4, 6<81< 85<

H0.9706, 0.0137L

Figure 2.2: Hierarchical clustering for IFR in Example 2.3.1

ciated with an interval-valued membership µ̃R̃I
(x,y) = [µ

R̃I
(x,y), µ R̃I

(x,y)] and interval-

valued non-membership

ν̃R̃I
(x,y) = [ν R̃I

(x,y), ν R̃I
(x,y)], for (x,y) in X ×Y . The values µ

R̃I
(x,y) and µ R̃I

(x,y)

denote the left and right endpoints of µ̃R̃I
(x,y) with 0 ≤ µ

R̃I
(x,y) ≤ µ R̃I

(x,y) ≤ 1, and

ν R̃I
(x,y) and ν R̃I

(x,y) denote the left and right end points of ν̃R̃I
(x,y) with 0 ≤ ν R̃I

(x,y)≤

ν R̃I
(x,y)≤ 1. An IVIFR R̃I on X = {x1, . . . ,xm} can be represented as follows:

R̃I =


([1,1], [0,0]) (µ̃R̃I

(x1,x2), ν̃R̃I
(x1,x2)) · · · (µ̃R̃I

(x1,xm), ν̃R̃I
(x1,xm))

(µ̃R̃I
(x2,x1), ν̃R̃I

(x2,x1)) ([1,1], [0,0]) · · · (µ̃R̃I
(x2,xm), ν̃R̃I

(x2,xm))
...

... · · · ...

(µ̃R̃I
(xm,x1), ν̃R̃I

(xm,x1)) (µ̃R̃I
(xm,x2), ν̃R̃I

(xm,x2)) · · · ([1,1], [0,0])


.

We define few operations and definitions on IVIFR.
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Definition 2.4.2 (Max and min operations for IVIFR).

Let (µ̃R̃I
(x1,x2), ν̃R̃I

(x1,x2)) = ([µ
R̃I
(x1,x2), µ R̃I

(x1,x2)], [ν R̃I
(x1,x2),ν R̃I

(x1,x2)]),

and (µ̃R̃I
(x3,x4), ν̃R̃I

(x3,x4)) = ([µ
R̃I
(x3,x4), µ R̃I

(x3,x4)], [ν R̃I
(x3,x4),ν R̃I

(x3,x4)])

be two interval-valued intuitionistic fuzzy values of IVIFR R̃I in X . Define

min{(µ̃R̃I
(x1,x2), ν̃R̃I

(x1,x2), (µ̃R̃I
(x3,x4), ν̃R̃I

(x3,x4))}= ([min{µ
R̃I
(x1,x2),µ R̃I

(x3,x4)},

min{µ R̃I
(x1,x2),µ R̃I

(x3,x4)}], [max{ν R̃I
(x1,x2),ν R̃I

(x3,x4)},max{ν R̃I
(x1,x2),ν R̃I

(x3,x4)}]) .

max{(µ̃R̃I
(x1,x2), ν̃R̃I

(x1,x2)), (µ̃R̃I
(x3,x4), ν̃R̃I

(x3,x4))}= ([max{µ
R̃I
(x1,x2), µ

R̃I
(x3,x4)},

max{µ R̃I
(x1,x2), µ R̃I

(x3,x4)}], [min{ν R̃I
(x1,x2), ν R̃I

(x3,x4)},min{ν R̃I
(x1,x2), ν R̃I

(x3,x4)}]) .

Similar to the IVFR and IFR, we define the similarity relation for IVIFR.

Definition 2.4.3 (Interval-valued intuitionistic fuzzy proximity relation). An IVIFR R̃I in

X is called interval-valued intuitionistic fuzzy proximity relation if it satisfies the follow-

ing two properties:

1. Reflexive: µ̃R̃I
(x,x) = [1,1], ν̃R̃I

(x,x) = [0,0], ∀ x ∈ X .

2. Symmetry: µ̃R̃I
(x,y) = µ̃R̃I

(y,x), ν̃R̃I
(x,y) = ν̃R̃I

(y,x), ∀ x,y ∈ X .

For example, the following R̃I is an IVIF proximity relation on X = {x1,x2,x3,x4}.

R̃I =


([1,1], [0,0]) ([0.2,0.4], [0.4,0.6]) ([0.5,0.7], [0.1,0.3]) ([0.3,0.6], [0.2,0.4])

([0.2,0.4], [0.4,0.6]) ([1,1], [0,0]) ([0.5,0.8], [0.1,0.2]) ([0.7,0.8], [0.1,0.2])

([0.5,0.7], [0.1,0.3]) ([0.5,0.8], [0.1,0.2]) ([1,1], [0,0]) ([0.2,0.3], [0.4,0.6])

([0.3,0.6], [0.2,0.4]) ([0.7,0.8], [0.1,0.2]) ([0.2,0.3], [0.4,0.6]) ([1,1], [0,0])

 .

Definition 2.4.4 (Interval-valued intuitionistic max-min similarity relation). An IVIF prox-

imity relation R̃I on X is called an interval-valued intuitionistic (max-min) similarity rela-

tion if for any x,y,z ∈ X , and any two interval-valued intuitionistic fuzzy values,

(µ̃R̃I
(x,y), ν̃R̃I

(x,y)) =
(
[µ

R̃I
(x,y), µ R̃I

(x,y)], [ν R̃I
(x,y), ν R̃I

(x,y)]
)

and

(µ̃R̃I
(y,z), ν̃R̃I

(y,z)) =
(
[µ

R̃I
(y,z), µ R̃I

(y,z)], [ν R̃I
(y,z), ν R̃I

(y,z)]
)
,
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the following transitivity property is satisfied.

µ
R̃I
(x,z) ≥ maxz∈X{min{µ

R̃I
(x,y),µ

R̃I
(y,z)}},

µ R̃I
(x,z) ≥ maxz∈X{min{µ R̃I

(x,y),µ R̃I
(y,z)}},

and

ν R̃I
(x,z) ≤ minz∈X{max{ν R̃I

(x,y),ν R̃I
(y,z)}},

ν R̃I
(x,z) ≤ minz∈X{max{ν R̃I

(x,y),ν R̃I
(y,z)}}.

We now define the (α̃ , β̃ )-cuts for IVIFS.

Definition 2.4.5. The (α̃ , β̃ )-cut for an IVIFS is described by AIV I(α̃,β̃ ) = {x | [µ,µ] ≥

α̃ and [ν ,ν ]≤ β̃}, where α̃ and β̃ are also interval-valued type.

Note that (α̃, β̃ )-cut is an order pair of membership and non-membership values with

(α̃, β̃ ) = (µ̃α , ν̃β ) = ([µα ,µα ], [νβ ,νβ ]), where 0 ≤ µα ≤ µα ≤ 1 and 0 ≤ νβ ≤ νβ ≤

1, 0 ≤ µα +νβ ≤ 1.

To explain Definition 2.4.5, we present an algorithm listing the procedure of construct-

ing all (α̃ , β̃ )-cuts in IVIFR R̃I .

Algorithm 2.4.1. 1. Among all pairs of elements of the form ([µ
i
,µ i], [ν i,ν i]) in the

matrix representation of R̃I , choose the maximum value among the lower values of

the membership, i. e. maxi{µ
i
}, and fixed it.

2. Thereafter, among all possible elements in R̃I having this fixed lower membership

value (as in preceding step), choose the one having minimum upper value of the

membership.

3. Among all elements in R̃I with the fixed interval membership degree (as obtained

in the previous two steps), choose those having maximum lower value for the non-

membership (fixed this one), and thereafter pick the corresponding maximum upper

non-membership value. The respective pair of membership and non-membership

degrees is the (α̃ , β̃ )-cut.

4. Crossed-off this element from R̃I , and continue the above listed procedure with the

remaining elements of R̃I , till all elements are searched through.

Definition 2.4.6 (Resolution form for interval-valued intuitionistic similarity relation). An

IVIF (max-min) similarity relation R̃I on X can be decomposed into a resolution form by
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using (α̃ , β̃ )-cuts with corresponding R
(α̃ ,β̃ ) being reflexive, symmetric and transitive.

R̃I =
∪

(α̃ ,β̃ )

(α̃ , β̃ )R
(α̃,β̃ ) =

m

∑
i=1

([µαi
, µαi

], [νβi
, νβi])R(α̃i,β̃i)

,

µ
i
≥ µαi

, µ i ≥ µαi
, ν i ≤ νβi

, ν i ≤ νβi, µαi
+νβi ≤ 1.

With this background, we are ready to explain the clustering scheme for IVIFR.

2.5 Hierarchical Clustering for IVIFR

The subjective information is commonly represented by a matrix which in general is

reflexive and symmetry but need not be transitive. However, transitivity is an essential

property to build hierarchal clustering [52]. An n-step procedure is employed to get an

interval-valued max-min similarity relation matrix using an interval-valued intuitionistic

max-min composition, described as follows.

Definition 2.5.1 (Interval-valued intuitionistic max-min composition). Given an initial

interval-valued intuitionistic relation matrix R̃(0)
I = (µ̃

r(0)i j
, ν̃

r(0)i j
)m×m = ([µ

r(0)i j
,µ

r(0)i j
], [ν

r(0)i j
,

ν
r(0)i j

]). Then R̃(n)
I =(µ̃

r(n)i j
, ν̃

r(n)i j
)m×m=([µ

r(n)i j
,µ

r(n)i j
], [ν

r(n)i j
,ν

r(n)i j
]) with

µ
r(n)i j

= maxk{min{µ
r(n−1)

ik
, µ

r(n−1)
k j

}} , µ
r(n)i j

= maxk{min{µ
r(n−1)

ik
, µ

r(n−1)
k j

}} ,

and

ν
r(n)i j

= mink{max{ν
r(n−1)

ik
, ν

r(n−1)
k j

}} , ν
r(n)i j

= mink{max{ν
r(n−1)

ik
, ν

r(n−1)
k j

}},

n = 1,2, . . . , is called an interval-valued intuitionistic relation matrix through an n-step

max-min composition.

Theorem 2.5.1. Let R̂(0)
I = (µ

r̂(0)i j
,ν

r̂(0)i j
)m×m and R̃(0)

I = (µ̃
r(0)i j

, ν̃
r(0)i j

) = ([µ
r(0)i j

,µ
r(0)i j

], [ν
r(0)i j

,

ν
r(0)i j

]) be respectively IFR and IVIFR with µ
r(0)i j

≤ µ
r̂(0)i j

≤ µ
r(0)i j

and ν
r(0)i j

≤ ν
r̂(0)i j

≤ ν
r(0)i j

, ∀ i,

j. If R̂(n)
I = (µ

r̂(n)i j
,ν

r̂(n)i j
) and R̃(n)

I = (µ̃
r(n)i j

, ν̃
r(n)i j

) = ([µ
r(n)i j

,µ
r(n)i j

], [ν
r(n)i j

,ν
r(n)i j

])m×m are re-

spectively IFR and IVIFR, through n-step max-min compositions, then we have µ
r(n)i j

≤

µ
r̂(n)i j

≤ µ
r(n)i j

and ν
r(n)i j

≤ ν
r̂(n)i j

≤ ν
r(n)i j

, for n = 1,2, . . ..
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Proof. Developing µ
r(1)i j

, µ
r(1)i j

, ν
r(1)i j

, ν
r(1)i j

, µ
r̂(1)i j

, and ν
r̂(1)i j

, we have,

µ
r(1)i j

= max
k

{min(µ
r(0)ik

,µ
r(0)k j

)}, µ
r(1)i j

= max
k

{min(µ
r(0)ik

,µ
r(0)k j

)}

ν
r(1)i j

= min
k
{max(ν

r(0)ik
,ν

r(0)k j
)}, ν

r(1)i j
= min

k
{max(ν

r(0)ik
,ν

r(0)k j
)}

µ
r̂(1)i j

= max
k

{min(µ
r̂(0)ik

,µ
r̂(0)k j

)}, ν
r̂(1)i j

= min
k
{max(ν

r̂(0)ik
,ν

r̂(0)k j
)}.

Since µ
r(0)i j

≤ µ
r̂(0)i j

≤ µ
r(0)i j

, and ν
r(0)i j

≤ ν
r̂(0)i j

≤ ν
r(0)i j

, ∀ i, j, it is easy to show that µ
r(1)i j

≤

µ
r̂(1)i j

≤ µ
r(1)i j

, and ν
r(1)i j

≤ ν
r̂(1)i j

≤ ν
r(1)i j

.

Following induction on n, we can easily obtain the requisite result; completeing the proof.

Remark 2.5.1. Since µ
r(n)i j

≤ µ
r̂(n)i j

≤ µ
r(n)i j

, and ν
r(n)i j

≤ ν
r̂(n)i j

≤ ν
r(n)i j

, n = 1,2,3, . . ., we have

µ
R̃(n)

I
≤ µ

R̂(n)
I

≤ µ
R̃(n)

I
and ν

R̃(n)
I

≤ ν
R̂(n)

I
≤ ν

R̃(n)
I

. It is implied that if a matrix representation

of IFR R̂(0)
I = (µ

R̂(0)
I
, ν

R̂(0)
I
) is taken so as to satisfy µ

R̃(0)
I

≤ µ
R̂(0)

I
≤ µ

R̃(0)
I

, ν
R̃(0)

I
≤ ν

R̂(0)
I

≤

ν
R̃(0)

I
, then we always have µ

R̃(n)
I

≤ µ
R̂(n)

I
≤ µ

R̃(n)
I

, and ν
R̃(n)

I
≤ ν

R̂(n)
I

≤ ν
R̃(n)

I
, n = 1,2, . . ..

The following algorithm provides the hierarchical clustering for IVIFR.

Algorithm 2.5.1. Let R̃(0)
I = (µ̃

R̃(0)
I
, ν̃

R̃(0)
I
) =

(
[µ

R̃(0)
I
, µ

R̃(0)
I
], [ν

R̃(0)
I
, ν

R̃(0)
I
]
)

be an IVIF

proximity relation.

1. Initialize k = 0.

2. Set R̃(k+1)
I = R̃(k)

I ◦ R̃(k)
I .

3. If R̃(k+1)
I ̸= R̃(k)

I , then set k = k+1, and go to 2 above.

4. Else an IVIF (max-min) similarity relation R̃(k)
I is obtained, and proceed to next

step.

5. Decompose R̃(k)
I into resolution form using (α̃, β̃ )-cuts with its corresponding R

(α̃,β̃ )

satisfying the reflexive, symmetric and transitivity properties.

6. Using resolution form, construct the hierarchical partition tree.

A MATLAB code is prepared to implement the above algorithm in which the matrix

corresponding to an IVIFR is randomly generated matrix of order m. For illustration

purpose, we present the following example.
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Example 2.5.1. Consider the IVIF proximity relation:

R̃(0)
I =



([1,1], [0,0])

[0.8147,0.8213],

[0.0956,0.1368]

 ([1,1], [0,0])

[0.9058,0.9857],

[0.0101,0.0113]

 [0.2785,0.5615],

[0.0801,0.3111]

 ([1,1], [0,0])

[0.1269,0.9423],

[0.0103,0.0107]

 [0.5468,0.8438],

[0.0990,0.1178]

 [0.9706,0.9787],

[0.0032,0.0034]

 ([1,1], [0,0])

[0.9134,0.9722],

[0.0074,0.0136]

 [0.9575,0.9647],

[0.0024,0.0097]

 [0.9571,0.9591],

[0.0017,0.0048]

 [0.1418,0.7381],

[0.0549,0.0891]

 ([1,1], [0,0])

[0.6323,0.9109],

[0.0055,0.0396]

 [0.9648,0.9896],

[0.0057,0.0070]

  [0.4854,0.5353],

[0.045523,0.231559]

 [0.4217,0.6051],

[0.1094,0.2311]

 [0.7922,0.7994],

[0.1252,0.1507]

 ([1,1], [0,0])

[0.0975,0.7682],

[0.0223,0.1498]

 [0.1576,0.1844],

[0.1301,0.5343]

 [0.8002,0.9647],

[0.0085,0.0338]

 [0.9157,0.9958],

[0.0003,0.0009]

 [0.9595,0.9772],

[0.0033,0.0058]

 [0.6557,0.7871],

[0.0592,0.1077]

 ([1,1], [0,0])


Applying the n-step procedure described in Definition 2.5.1, an IVIF symmetric relation

R̃(3)
I is obtained.

R̃(3)
I =



([1,1], [0,0])

[0.9134,0.9648],

[0.0057,0.0108]

 ([1,1], [0,0])

[0.9134,0.9858],

[0.0057,0.0108]

 [0.9572,0.9648],

[0.0025,0.0097]

 ([1,1], [0,0])

[0.9134,0.9787],

[0.0057,0.0108]

 [0.9572,0.9648],

[0.0032,0.0097]

 [0.9706,0.9787],

[0.0032,0.0035]

 ([1,1], [0,0])

[0.9134,0.9773],

[0.0057,0.0108]

 [0.9575,0.9648],

[0.0025,0.0097]

 [0.9572,0.9773],

[0.0017,0.0049]

 [0.9572,0.9773],

[0.0032,0.0049]

 ([1,1], [0,0])

[0.9134,0.9648],

[0.0055,0.0108]

 [0.9649,0.9897],

[0.0057,0.0070]

 [0.9572,0.9648],

[0.0057,0.0097]

 [0.9572,0.9648],

[0.0057,0.0097]

 [0.9575,0.9648],

[0.0057,0.0097]

 ([1,1], [0,0])

[0.9134,0.9787],

[0.0057,0.0108]

 [0.9575,0.9648],

[0.0032,0.0097]

 [0.9572,0.9787],

[0.0032,0.0035]

 [0.9572,0.9958],

[0.0003,0.0009]

 [0.9595,0.9773],

[0.0032,0.0049]

 [0.9575,0.9648],

[0.0057,0.0097]

 ([1,1], [0,0])


R̃(3)

I is expressed in a resolution form as follows:

R̃(3)
I = ([0.9134,0.9648], [0.0057,0.0108])


1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1


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+([0.9572,0.9648], [0.0057,0.0097])


1

0 1

0 1 1

0 1 1 1

0 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1 1



+([0.9575,0.9648], [0.0057,0.0097])


1

0 1

0 0 1

0 0 1 1

0 1 0 0 1

0 1 0 0 1 1

0 1 0 0 1 1 1



+([0.9595,0.9773], [0.0032,0.0049])


1

0 1

0 0 1

0 0 1 1

0 0 0 0 1

0 1 0 0 0 1

0 0 0 0 1 0 1



+([0.9649,0.9897], [0.0057,0.0070])


1

0 1

0 0 1

0 0 1 1

0 0 0 0 1

0 1 0 0 0 1

0 0 0 0 0 0 1



+([0.9706,0.9787], [0.0032,0.0035])


1

0 1

0 0 1

0 0 1 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 1



+([1,1], [0,0])


1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0 1

 .

The same is summarized by a clustering tree in Fig 2.3.

We now present an application of the hierarchical structures created for IVIFR in multi-

criteria decision making (MCDM) problems involving such relations.

2.6 Application to MCDM Problem: Determining the Cri-

teria Weights

An MCDM problem involves comparing n available alternatives A1, . . . ,An of one type

on m relevant criteria C1, , . . . ,Cm resulting in an m× n criteria-alternative matrix. The

entries of this matrix are provided by an expert/decision maker. A decision-maker has to
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81<

81<

81<

81<

81<

81<

82, 5, 6, 7<
83, 4<

83, 4< 82, 6< 85, 7<

82, 6<83, 4< 85< 87<

83, 4< 86<82< 85< 87<

83< 84< 82< 86< 85< 87<

H@0.9134, 0.9648D, @0.0057, 0.0108DL

H@0.9572, 0.9648D, @0.0057, 0.0097DL

H@0.9575, 0.9648D, @0.0057, 0.0097DL

H@0.9595, 0.9773D, @0.0032, 0.0049DL

H@0.9649, 0.9897D, @0.0057, 0.0070DL

H@0.9706, 0.9787D, @0.0032, 0.0035DL

H@1, 1D, @0, 0DL

Figure 2.3: Hierarchical clustering for IVIFR for Example 2.5.1

quantify how he/she rates and alternative Ai on criterion C j. These opinion entries togeth-

er with the criteria weights are then used to aggregate the entire information so as to rank

the alternatives on some preference scale. Various methods are available in literature to

rank the alternatives in an MCDM problem, like TOPSIS, VIKOR, PROMETHEE, ELEC-

TREE, to name a few. One can refer to several good texts, see ( [53], [145], [147] – [156])

and many more references cited therein, for detailed account of MCDM methodologies

and their applications, especially when the MCDM problems are set in intuitionistic fuzzy

framework. However, in this work, we only wish to exhibit an application of hierarchical

clustering for IVIFR, developed in previous section, to one of the important sub-problem

of determining the criteria weights within any MCDM problem. In this section we pro-

pose an algorithm to determine the global weights of the criteria in an MCDM problem

represented by a criteria-alternative matrix of order m×n having entries as IVIF numbers.

Algorithm 2.6.1. Step 1 Seek criteria-alternatives matrix from decision-maker with en-

tries provided are IVIF numbers.

Step 2 Use the following concepts of covariance and correlation coefficient of IVIFS,
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introduced by Bustince and Burillo [157], to compute the correlation between criteria in

the problem.

Definition 2.6.1 ( Correlation coefficient for IVIFN). [157] Let Cp = {⟨x j, [µCp
(x j), µCp

(x j)],

[νCp
(x j), νCp(x j)]} and Cq = {⟨xi, [µCq

(x j), µCq
(x j)], [νCq

(x j), νCq(x j)]} be two IVIF numbers.

Define the covariance COV(Cp,Cq) and the correlation R(Cp,Cq) between them, respectively, as

follows:

COV(Cp,Cq) =
1
2

n

∑
j=1

[µ
Cp
(x j)µ

Cq
(x j)+µCp

(x j)µCq
(x j)+νCp

(x j)νCq
(x j)+νCp(x j)νCq(x j)].

R(Cp,Cq) =
COV(Cp,Cq)√

COV(Cp,Cp) ·COV(Cq,Cq)
(2.6.1)

Note that R(Cp,Cq) is an m×m reflexive and symmetric matrix with crisp entries.

Step 3 Convert the crisp correlation values into IVIFV resulting in a column vector of

correlation IVIF values, denoted say by ϑ . We have briefly described a procedure by Yue

and Jia [158] to achieve this step in the Appendix-1.

Step 4 Using the max-min composition for membership values and min-max composi-

tion for non-membership values, determine the product ϑ ×ϑ . Take a relation R̃I ⊂ϑ ×ϑ

which is reflexive and symmetric.

Step 5 Construct the IVIF (max-min) similarity matrix from R̃I by invoking Steps 1–4

of Algorithm 4.

Step 6 If the IVIF similarity matrix is order 7 or less, then compute the weights of the

criteria using notion of entropy.

Definition 2.6.2. [146] For criterion Ci, the entropy is defined as follows:

E(Ci) =
1
m

n

∑
j=1

(
2−|µ

i j
−ν i j|− |µ i j −ν i j|+π i j +π i j

)
(

2+ |µ
i j
−ν i j|+ |µ i j −ν i j|+π i j +π i j

) . (2.6.2)

The local weights are computed by

wi =
1−E(Ci)

m−
m
∑

i=1
E(Ci)

. (2.6.3)

However, for large IVIF similarity matrices, apply Algorithm 4 to construct the hierar-

chical clustering. Suppose we have k number of disjoint clusters, each having ≤ 7 criteria.
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Step 7 Choose a pivot element (criterion) as the one having minimum score value de-

fined by

scorei =

n
∑
j=1

µ i j −
n
∑
j=1

ν i j +
n
∑
j=1

µ
i j
−

n
∑
j=1

ν i j

2
. (2.6.4)

Assign this pivot element (criterion) to every cluster.

Step 8 Compute the local weights of the criteria within each cluster using (2.6.2) and

(2.6.3).

Step 9 Compute the global weights of the criteria as described by Jalao et al. [159].

For each cluster l, l = 1, . . . ,k, divide the local weight of the criterion i in cluster l by the

local weight of the pivot element to get W (i, l). The global weight WG(i) of criterion i is

calculated by

WG(i) =
W (i, l)

k
∑

l=1
∑

i∈Sl

W (i, l)− k+1
, i = 1, . . . ,m. (2.6.5)

The flowchart figure 2.4 summarizes the above procedure.

Example 2.6.1. Suppose an Institute has to determine the most appropriate air condi-

tioning system for installation in its library. A contractor offers 8 feasible alternatives

A j, j = 1, . . . ,8. A decision is to be arrived at based on the following 10 criteria

C1: size of room,

C2: correct location of air conditioning system,

C3: seasonal energy efficiency ratio (SEER),

C4: coefficient of performance (COP),

C5: installation and maintenance cost,

C6: refrigerants and global warming potential (GWP),

C7: specified cooling power (SCP),

C8: sound pressure level,

C9: tonnage of air conditioning system,

C10: miscellaneous.

An Institute expert provides an IVIF criteria-alternatives matrix described in Table 2.1

and the correlation matrix between criteria is calculated using equation 2.6.1 in Table 2.2.

Following the method explained in Appendix-1, construct an IVIF numbers column
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Table 2.1: The criteria-alternative matrix

A1 A2 A3 A4 A5 A6 A7 A8

C1

(
[0.5,0.6],

[02,0.3]

) (
[0.03,0.2],

[0,0.32]

) (
[0.7,0.75],

[0.10,0.5]

) (
[0,0.02],

[0.8,0.9]

) (
[0.15,0.2],

[0.6,0.65]

) (
[0,0.3],

[0.2,0.5]

) (
[0,0.1],

[0.08,0.1]

) (
[0.5,0.55],

[0.3,0.35]

)

C2

(
[0,0],

[1,1]

) (
[0.7,0.8],

[0.2,0.2]

) (
[0.10,0.15],

[0.05,0.06]

) (
[0.8,1],

[0,0]

) (
[0.05,0.07],

[0.1,0.2]

) (
[0.7,0.75],

[0.1,0.15]

) (
[0.1,0.2],

[0,0.3]

) (
[0.2,0.4],

[0.2,0.2]

)

C3

(
[0.3,0.4],

[0.4,0.6]

) (
[0.1,0.4],

[0.3,0.5]

) (
[0.2,0.3],

[0.2,0.3]

) (
[1,1],

[0,0]

) (
[0,0.07],

[0.2,0.2]

) (
[0.1,0.4],

[0.3,0.5]

) (
[0.15,0.3],

[0.2,0.3]

) (
[0,0],

[1,1]

)

C4

(
[0.01,0.3],

[0.25,0.30]

) (
[0.2,0.5],

[0.1,0.2]

) (
[0.4,0.5],

[0.2,0.3]

) (
[0.2,0.3],

[0.4,0.5]

) (
[0.3,0.5],

[0.4,0.5]

) (
[0.6,0.6],

[0.1,0.2]

) (
[0.1,0.4],

[0.3,0.5]

) (
[1,1],

[0,0]

)

C5

(
[0.3,0.6],

[0.1,0.2]

) (
[0.1,0.2],

[0.2,0.3]

) (
[0.4,0.6],

[0.02,0.03]

) (
[0.13,0.34],

[0,0.3]

) (
[0,0.9],

[0,0.01]

) (
[0.1,0.4],

[0.3,0.5]

) (
[0.05,0.5],

[0.3,0.4]

) (
[0.25,0.34],

[0.4,0.5]

)

C6

(
[0.1,0.2],

[0.2,0.7]

) (
[0.03,0.04],

[0.04,0.06]

) (
[0.2,0.3],

[0.4,0.6]

) (
[0,0],

[1,1]

) (
[0.4,0.5],

[0.3,0.2]

) (
[0.8,1],

[0,0]

) (
[0.1,0.2],

[0.6,0.7]

) (
[0.01,0.3],

[0.25,0.38]

)

C7

(
[0.1,0.5],

[0.4,0.4]

) (
[0.7,0.7],

[0.1,0.2]

) (
[0.2,0.3],

[0.2,0.3]

) (
[0.5,0.6],

[0.1,0.2]

) (
[0.2,0.2],

[0.2,0.2]

) (
[0.2,0.56],

[0.2,0.2]

) (
[0.1,0.4],

[0.3,0.5]

) (
[0.1,0.2],

[0.06,0.2]

)

C8

(
[0.9,1.0],

[0,0]

) (
[0.4,0.5],

[0.2,0.3]

) (
[0,0.08],

[0.1,0.2]

) (
[0.3,0.5],

[0.4,0.5]

) (
[0.9,1],

[0,0]

) (
[0.15,0.2],

[0.7,0.75]

) (
[0.2,0.3],

[0,0.3]

) (
[0.05,0.05],

[0.03,0.03]

)

C9

(
[0.33,0.34],

[0.2,0.3]

) (
[0.5,0.6],

[0.05,0.09]

) (
[0,0],

[1,1]

) (
[0.1,0.2],

[0.06,0.5]

) (
[0.4,0.5],

[0.2,0.3]

) (
[0,0.1],

[0.75,0.8]

) (
[0.1,0.5],

[0.02,0.03]

) (
[0.05,0.07],

[0.1,0.2]

)

C10

(
[0,0.1],

[0.1,0.2]

) (
[0.3,0.5],

[0.1,0.4]

) (
[0.18,0.25],

[0,0.2]

) (
[0.04,0.44],

[0.23,0.3]

) (
[0.1,0.4],

[0.1,0.4]

) (
[0,1],

[0,0]

) (
[0.1,0.2],

[0.06,0.1]

) (
[0.1,0.3],

[0.03,0.2]

)

vector ϑ of order 10 for criteria.

ϑ =

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10



([0.0345,0.7238], [0.0122,0.2296])

([0.1481,0.6187], [0.0371,0.1962])

([0.0622,0.7934], [0.0133,0.1311])

([0.0101,0.7929], [0.0985,0.0985])

([0.0661,0.834], [0.05,0.04996])

([0.0032,0.8068], [0.0566,0.1333])

([0.0636,0.9364], [0,0])

([0.0096,0.7532], [0.0303,0.2069])

([0.0034,0.8248], [0.0172,01545])

([0.0183,0.893], [0.0443,0.0443])


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Table 2.2: Correlation matrix of criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 1 0.34143 0.4916 0.7519 0.6753 0.6545 0.5340 0.5456 0.5238 0.5916

C2 0.34143 1 0.6818 0.6196 0.4701 0.4649 0.8425 0.3626 0.4063 0.7271

C3 0.4916 0.6818 1 0.43789 0.7069 0.4174 0.7336 0.4799 0.4896 0.5392

C4 0.7519 0.6196 0.43789 1 0.68274 0.7151 0.71781 0.50639 0.51029 0.7957

C5 0.6753 0.4701 0.7069 0.6827 1 0.5608 0.6899 0.7058 0.5396 0.6407

C6 0.6545 0.4649 0.4174 0.7151 0.5608 1 0.5822 0.4546 0.5021 0.712

C7 0.5340 0.8425 0.7336 0.7178 0.6899 0.5822 1 0.6394 0.6318 0.7758

C8 0.5456 0.3626 0.4799 0.5064 0.7058 0.4546 0.6394 1 0.7034 0.5102

C9 0.5238 0.4063 0.4896 0.5103 0.5396 0.5021 0.6318 0.7034 1 0.4751

C10 0.5916 0.7271 0.5392 0.7957 0.6407 0.712 0.7758 0.5102 0.4751 1

Construct ϑ ×ϑ using max-min (membership) and min-max (non-membership) opera-

tions. Take a relation R̃I = ϑ ×ϑ with diagonal entries in R̃I replaced by ([1,1], [0,0]) to

make it reflexive.

Apply the hierarchical clustering (Algorithm 2.5.1), we obtain five clusters S1 = {C1,C2,C3,

C5,C7,C10}, S2 = {C4}, S3 = {C8}, S4 = {C9}, S5 = {C6}. The pivot element, from

(2.6.4), turns out to be C2; insert it in each Sl to get S
′
l, l = 1, . . . ,5.

S
′
1 =

C1 C2 C3 C5 C7 C10

C1 ([1,1], [0,0])


[0.034,0.62],

[0.037,0.23]



[0.034,0.724],

[0.013,0.23]



[0.034,0.724],

[0.05,0.23]



[0.034,0.724],

[0.012,0.23]



[0.018,0.724],

[0.044,0.23]



C2


[0.034,0.62],

[0.037,0.23]

 ([1,1], [0,0])


[0.0622,0.62],

[0.037,0.196]



[0.066,0.62],

[0.05,0.196]



[0.063,0.62],

[0.037,0.196]



[0.018,0.62],

[0.05,0.196]



C3


[0.034,0.724],

[0.013,0.23]



[0.0622,0.62],

[0.037,0.196]

 ([1,1], [0,0])


[0.062,0.793],

[0.05,0.131]



[0.062,0.793],

[0.13,0.131]



[0.018,0.793],

[0.05,0.131]



C5


[0.034,0.724],

[0.05,0.23]



[0.066,0.62],

[0.05,0.196]



[0.062,0.793],

[0.05,0.131]

 ([1,1], [0,0])


[0.063,0.834],

[0.05,0.05]



[0.018,0.534],

[0.05,0.05]



C7


[0.034,0.724],

[0.012,0.23]



[0.063,0.62],

[0.037,0.196]



[0.062,0.793],

[0.013,0.131]



[0.063,0.834],

[0.05,0.05]

 ([1,1], [0,0])


[0.018,0.893],

[0.044,0.044]



C10


[0.018,0.724],

[0.044,0.23]



[0.018,0.627],

[0.05,0.196]



[0.018,0.793],

[0.05,0.131]



[0.018,0.834],

[0.05,0.05]



[0.018,0.893],

[0.044,0.044]

 ([1,1], [0,0])
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S
′
2 =

C2 C4

C2 ([1,1], [0,0]) ([0.0101,0.62], [0.098,0.196])

C4 ([0.0101,0.6], [0.098,0.196]) ([1,1], [0,0])

S
′
3 =

C2 C8

C2 ([1,1], [0,0]) ([0.0096,0.62], [0.037,0.196])

C8 ([0.0096,0.62], [0.037,0.196]) ([1,1], [0,0])

S
′
4 =

C2 C9

C2 ([1,1], [0,0]) ([0.0034,0.62], [0.037,0.196])

C9 ([0.0034,0.62], [0.037,0.196]) ([1,1], [0,0])

S
′
5 =

C2 C6

C2 ([1,1], [0,0]) ([0.0033,0.62], [0.06,0.196])

C6 ([0.0033,0.62], [0.06,0.196]) ([1,1], [0,0])

The local and global weights are given in Table 2.3.

Once the global weight of the criteria are known, the entire information in the criteria-

alternatives, with entries as IVIF numbers, along with the global weights can be aggre-

gated to rank various alternatives in an MCDM problem. This can be achieved by variety

of methods, like TOPSIS [160], VIKOR [161], ELECTRE [162], AHP with preference

score [163], to name a few.

2.7 Conclusion

The chapter extends the work of Guh et al. [52] to laid down the procedure for con-

structing hierarchical clustering for IVIFRs. MATLAB codes are developed for each

algorithm presented in this work and the same are implemented on large number of ma-

trices representation of IVIFRs. MATLAB code are given in Appendix-2. The chapter

includes instances of few such implementations for illustrative and explanatory purpose.

To demonstarte the application of the proposed clustering scheme, an important problem

of determining the criteria weights in an MCDM problem, with DM providing entries of

criteria-alternative matrix as IVIF values, is addressed. A detailed procedure is presented
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Clusters Criteria Local weight Global weight

C1 0.1534 0.097

C2 0.1426 0.091

S
′
1 C3 0.1706 0.109

C5 0.1756 0.112

C7 0.1789 0.114

C10 0.1784 0.113

S
′
2 C2 0.5 0.091

C4 0.5 0.091

S
′
3 C2 0.5 0.091

C8 0.5 0.091

S
′
4 C2 0.5 0.091

C9 0.5 0.091

S
′
5 C2 0.5 0.091

C6 0.5 0.091

Table 2.3: Global weights of criteria

with supportive illustration to compute the global weights of the criteria.
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Figure 2.4: Flow chart describing procedure (Algorithm 2.6.1) for eliciting criteria
weights



Chapter 3

Consistency of intuitionistic

multiplicative preference relation

This chapter1, 2, is dedicated for the consistency of intuitionistic multiplicative preference

relation(IMPR). We propose two approach algebraic and graphical. In first approach

we propose a characterization of the consistency property using newly defined transi-

tivity property for intuitionistic multiplicative preference relations (IMPR) together with

complementing missing elements for incomplete IMPR. Using new transitivity property of

IMPR, we have developed two different methods to find the missing element of IMPRs.

The first method is two-step procedure method containing estimating step followed by ad-

justing step. In estimating step, the missing elements of incomplete IMPRs are calculated

by using a new transitive property. Sometimes the initial value may not satisfy the con-

ditions of IMPRs. An optimization model is developed in the second step to adjust the

initial values that are solved by MATLAB optimization tool. The second proposed method

is goal programming model based on new transitivity property to calculate the missing

elements directly. Acceptably Consistent with complete IMPRs is also checked. The sec-

ond approach is to achieve the consistent intuitionistic multiplicative preference relation

graphically. We have proposed two different characterization of the consistency for IMPR.

In the first method, we propose an algorithm to achieve the consistency of IMPR by using

the cycles of various length in a directed graph. The second method proves isomorphism

1The result of this chapter is based on a research paper “New transitivity property of intuitionistic multi-
plicative preference relation and its application in missing value estimation” Annals of Fuzzy Mathematics
and Informatics 16 (1) 71–86 (2018).

2“Two different Approaches for consistency of Intuitionistic Multiplicative Preference Relation using
Directed Graph submitted” in Asia-pacific journal of operational research.
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between the set of IMPRs and the set of asymmetric multiplicative preference relations.

That result is explored to use the methodologies developed for asymmetric multiplica-

tive preference relations to the case of IMPRs and achieve the consistency of asymmetric

multiplicative preference relation using directed graph. Also, the above said method is

applied for incomplete IMPR, here consistency play an important role. The examples are

provided to illustrate all the methods mentioning all cases.
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3.1 Introduction

Decision making is one of the most important tasks for individuals and organizations

and is an interdisciplinary research area attracting researchers from almost all fields from

psychologists, economists, to computer scientists.

Consistency plays a significant role in decision-making process. A good amount of

researchers has given their attention in decision-making to the use of consistency of pref-

erence relations under uncertain environments, which is discussed in chapter 1. For good

understanding one may refer to ( [77], [89], [164] – [168]).

In 2015 Jiang et al. [143] discussed the consistency and acceptable consistency property

of an IMPR. Also, Jiang et al. [143] worked on IMPRs in incomplete scenario, in which

the IMPRs split into two MPRs, and the missing elements were calculated by using the

consistency of MPRs. In light of it, two strategies were developed to estimate all missing

elements of incomplete IMPRs.

At times, it has witnessed that in a situation, decision maker might not have decent

comprehension of a specific query, and thus he/she can not make an instaneous contrast

between each two objects; subsequently, it necessities to allow the decision maker to

avoid some questionable comparisons adaptably. For this situation, incomplete preference

relations are obtained, and result of that the whole process may slow down. To introduce

a complete preference relation, a decision maker need n(n−1)
2 judgments at each level of

the decision-making process. When the order of complete preference relation matrix i.e.

n is large, it becomes an onerous task. Therefore sometimes, due to lack of time and busy

schedule of the decision maker, incomplete preference relations are obtained. Our work

focus on both complete and incomplete IMPR.

In this chapter, we have characterized a new consistency property of IMPR. In the view

of which, two novel techniques are provided, where one is traditional “two-step procedure

methods” and other is goal programming methods for finding the unknown element of

incomplete IMPRs. The “two-step procedure methods” is consists of two sub-steps such

as: (i) “Estimating step”: Initial values are evaluated for the missing elements of the

incomplete IMPRs without splitting into two MPRs; (ii)“Adjusting step”: An optimization

model is developed to adjust the initial values derived from the estimating step which is

solved by MATLAB optimization tool. In goal programming model missing elements are

estimated from incomplete IMPR without splitting into two MPRs. Both novel methods
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give the equivalent result. Then the acceptably consistent of IMPR has been checked.

Techniques are illustrated with suitable examples.

The another goal of this chapter is to improve the consistency of IMPR using graphi-

cal approach. Again we have developed two approaches. In the first approach, we have

developed an ordered-pair binary matrix from the IMPR and which is split into two bi-

nary arrays. Getting motivation from Nishizawa [138] algorithm, we have checked the

consistency of IMPR.

The second approach is to prove the mathematical equivalence between the set of IM-

PR and the set of asymmetric multiplicative preference relations. This result can thus be

exploited to use methodologies developed for MPRs to the case of IMPR and, ultimately,

to extend the use of IMPR in decision making and to overcome the computation complex-

ity mentioned above. In other words, this result will allow taking advantage of mature

and well-defined methodologies developed for MPRs while controlling the flexibility of

IMPR to model vagueness/uncertainty.

Indeed, an issue that can be addressed using the mentioned equivalence is the presence

of incomplete IMPR in decision-making process. Using directed graph [138] we check the

consistency of asymmetric multiplicative preference relation. The individual comparisons

of the two approaches and improvement in consistency of IMPR are also given.

Chapter is organised as follows. In section 3.2, some basic concepts are defined briefly,

and new transitivity property of IMPR is defined. In section 3.3, we have developed an al-

gorithm to find the missing elements by using newly defined transitivity property of IMPR

and proposed an optimization model for adjusting the initial values. Also a goal program-

ming model is intended to complete the incomplete IMPRs. Two numerical examples

illustrate the developed procedures. In this section we have given a comparative analysis

of our work with the work of [143] and [169]. Section 3.4 discuss the consistency of IM-

PR graphically. This section divides three subsection. The subsection 3.4.1 demonstrates

the first method that improves the consistency of IMPRs using directed graph. Also this

section include incomplete IMPRs also. In the second method, the set of IMPR and the set

of asymmetric multiplicative preference relations has proved mathematically isomorphic

which is discussed in subsection 3.4.2. Numerical example is also given in this section

for both complete or incomplete intuitionistic scenario. In subection 3.4.3, we have given

comparison between the two approaches and improve the consistency of IMPR.
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3.2 Preliminaries

Let X = {x1, · · · ,xn} be a discrete set of alternatives/criteria in a decision making prob-

lem and set N = {1, · · · ,n} be the set of indices. A decision maker needs to provide

his/her preferences over the alternatives/criteria using the pairwise comparison method.

The preference values are provided by the decision maker from the ratio scale [1/9,9]

introduced by Saaty [58] to estimate and differentiate the intensity of preferences. Based

on the above ratio scale, some basic concepts of IMPRs are defined.

In 2013 Xu [64] gave the concept of the consistent property of IMPR by denoting R̃ =

[r̃i j]n×n = [(µi j, νi j)]n×n using multiplicative transitivity property.

Definition 3.2.1. An IMPR R̃ is called multiplicative transitive if

µi j = µik µk j ,νi j = νik νk j ,∀ i ≤ k ≤ j, i,k, j ∈ N. (3.2.1)

It is to take note of that equation 3.2.1, for the condition i ≤ k ≤ j, there is some lim-

itation. While for all i, j,k ∈ N, the transitivity property of MPR is unconstrained. The

IMPR is consistent if the transitivity properties given in equation 3.2.1 is satisfied. But,

sometimes it may be the case that the transitivity and consistency properties does not hold.

For example: 
(1,1) (1/2,1) (1,1/2)

(1,1/2) (1,1) (2,1/2)

(1/2,1) (1/2,2) (1,1)


is a consistent IMPR given in [64]. Jiang et al. [143] relax the condition i ≤ k ≤ j, it

is follow that a23 = (µ21µ13,ν21ν13) = (1,1/4). But a23 = (2,1/2) ̸= (1,1/4). This

equation is not satisfy because when ‘k’ comes from the row of lower triangular matrix.

To over come this type of transitivity limitation, Jiang et al. [143] proposed a more general

consistency property of an IMPR by splitting into two MPRs by using the formula

b(1)i j =


µi j i < j

1 i = j

1/νi j i > j

and b(2)i j =


νi j i < j

1 i = j

1/µi j i > j .

(3.2.2)

where the MPRs B(1) = (b(1)i j )n×n and B(2) = (b(2)i j )n×n are the preferred and non-preferred

information matrix respectively given by the DM with respect to the alternative xi over x j.

In view of the above idea, Jiang et al. [143] characterized the consistent IMPR.
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Definition 3.2.2. [143] IMPR R̃ = [r̃i j]n×n is said to be consistent if both MPRs B(1) and

B(2) given by equation 3.2.2 are consistent such that

b(1)i j = b(1)ik b(1)k j , b(2)i j = b(2)ik b(2)k j ∀ i, j,k ∈ N

In this work, instead of splitting IMPRs into MPRs we have defined an new consistency

property of IMPR.

Definition 3.2.3. An IMPRs R̃ = [r̃i j]n×n is called consistent if it satisfy the transitivity

property, where r̃i j is

(µi j,νi j) =


(µik,νik)⊗ (µk j,νk j) if i ≤ k,k ≤ j

( 1
µki
, 1

νki
)⊗ (µk j,νk j) if i ≥ k,k ≤ j

(µik,νik)⊗ ( 1
µ jk

, 1
ν jk

) if i < k,k > j

(3.2.3)

In this work for convenience, we have used the multiplication of two IMNs as the mul-

tiplication of two order pairs. Let a = (µ,ν), a1 = (µ1,ν1) and a2 = (µ2,ν2) are intu-

itionistic multiplicative numbers (IMNs) and λ > 0, then

a1 ⊗a2 = (µ1,ν1)⊗ (µ2,ν2) = (µ1µ2,ν1ν2)

aλ =
(

2µλ

(2+µ)λ−µλ ,
(1+2ν)λ−1

2

)
is given by Xia [63] for λ > 0.

The idea of IMPRs is stretched out to the circumstances where the preference data are

given by decision maker is incomplete. Jiang et al. [143] propose to extend the above

situation to incomplete IMPR where some elements are missing in the preference relation

matrix.

Definition 3.2.4. [143] An IMPR r̃i j = (µi j,νi j)n×n is called an incomplete IMPR if some

elements in it are missing, and all available elements satisfy the characteristics of IMPR

stated in Definition 1.2.3.

3.3 Complementing an incomplete IMPRs

In this section, to evaluate the missing elements from an incomplete IMPRs, we define

the consistent property of incomplete IMPR.

Definition 3.3.1. An incomplete IMPR is said to be consistent if all the known element

satisfy equation 3.2.3.

In an incomplete MPR R = (ri j)n×n, the element ri j and rkl are called adjoining if
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(i, j)∩ (k, l) is non empty set, e.g if ri0 j0 = ri0k × rk j0 , where ri0k and rk j0 are adjoining

known elements and ri0 j0 be an unknown elements, then ri0 j0 can be found directly and

the corresponding incomplete MPR is called acceptable. MPR R is called an unaccept-

able incomplete MPR, if there does not exist adjoining known element such that unknown

factor can be calculated [66]. In that cases, therefore, it is necessary to return the u-

nacceptable incomplete MPR to the decision maker for revaluation until an acceptable

incomplete MPR can be obtained. Wang and Xu [170] showed that if their exit at least

n−1 judgment provided by the decision maker then an incomplete MPRs are acceptable.

In the other sense, there exists at least one known element(except diagonal elements) in

each line/column of MPR matrix R given by the decision maker. Later according to Cai

and Deng [171], Xu [66] and Alonso et al. [133] prove that in incomplete MPR which is

acceptable, there exists at least a set of an n− 1 number of non-leading diagonal known

elements, where each of the criteria is compared at least once, which includes the case

when a complete row or column of preference values is known. In this work, we have

applied the same above-said applications in the incomplete IMPRs scenario.

Taking inspiration from the work of Jiang et al. [143], we propose a two-step procedure

method to estimate the missing values in an incomplete IMPR without splitting IMPRs

into two MPRs. The idea is first to evaluate their values using the simple connecting path

approach and subsequently improve upon them using an optimization problem.

3.3.1 Estimating step

Harker ( [95], [96]) developed a geometric mean method dependent on the connective

paths to calculate the missing data from an incomplete MPR. The general structure of

a connecting path of length ℓ+ 1, denoted by cp(ℓ+1), has the following form: cp(ℓ+1):

∗i j = ri k1rk1 k2 . . .rkℓ j , where ri k1,rk1 k2, . . .rkℓ j are the known values in the connecting path

from i to j, where i, j, k1, . . . ,kℓ ∈ N, 0 ≤ ℓ≤ n−2, and ∗i j denotes the missing element

to be calculated. The connecting path of length two is an elementary connecting path

cp(2) : ∗i j = ri k1rk1 j for k1 ∈ N, and k1 ̸= i, j. Harker ( [95], [96]) also contended that

the unknown element ∗i j of MPR can be estimated by using the geometric mean of all

elementary connecting paths related to it with no vertex repeats more than once in the

path. Consequently, ∗i j =
(

∏nℓ
ξ=1 cp(ξ )

)1/nℓ
, where nℓ is the possible number of connect-

ing fully known paths (that is, no missing entries along the path) from i to j. A major

limitation of this technique in some genuine problem is that the number of connecting

paths of various length among i and j might be extremely large and computationally un-

manageable. For instance, Deschrijver and Kerre [106] presented an example of a matrix
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of size 10 only with the number of connecting paths exceeding 109,000. Jiang et al. [143]

improved this method for incomplete IMPR by taking elementary connecting path instead

of all connecting paths of all sizes. In that case the matrix of size 10, the number of all

elementary connecting path would not surpass 8, which is much less than 109,000. Here,

we have extended this technique in incomplete IMPRs framework. Based on the new con-

sistency property of IMPRs, the initial value of the missing element of incomplete IMPRs

can be calculated by using a geometric mean method which is denoted by r̃
′
i j, where

r̃
′
i j = (µ∗

i j,ν∗
i j) =



(
∏k∈Ti j{(µik,νik)⊗ (µk j,νk j)}

)1/ti j
if i ≤ k,k ≤ j;(

∏k∈Ti j{(
1

µki
, 1

νki
)⊗ (µk j,νk j)}

)1/ti j
if i ≥ k,k ≤ j;(

∏k∈Ti j{(µik,νik)⊗ ( 1
µ jk

, 1
ν jk

)}
)1/ti j

if i < k,k > j

(3.3.1)

where Ti j = {k|(µik,νik),(µk j,νk j) ∈ Ω}, Ω is the set of known element and ti j is the

number of element present in the set Ti j which indicates that there may exist different

pairs of adjoining known elements to find out the unknown elements. The initial values

are denoted by
(

µ∗(0)
i j ,ν∗(0)

i j

)
.

Remark 3.3.1. It is to note that in equation 3.3.1, µk j × 1
µki

̸= µk j × µik, and it should

follow in other expression also.

3.3.2 Adjusting step

The IMPR is consistent if equation 3.2.3 is satisfied. Sometimes initial values of the

missing element may not satisfy the conditions of IMPRs. To overcome this difficulty we

have developed a local optimization model (Model 3.1) by minimizing the error.

(Model 3.1)

Min
n

∑
i,k=1

n

∑
j=i+1

(
εk

i ji≤k,k≤ j
+ εk

i ji≥k,k≤ j
+ εk

i ji<k,k> j

)
Subject to

εk
i ji≤k,k≤ j

=| (µi j,νi j)− (µikµk j,νikνk j) |;

εk
i ji≥k,k≤ j

=

∣∣∣∣(µi j,νi j)−
(

µk j

µki
,
νk j

νki

)∣∣∣∣ ;
εk

i ji<k,k> j
=

∣∣∣∣(µi j,νi j)−
(

µik

µ jk
,

νik

ν jk

)∣∣∣∣ ;
µi jνi j ≤ 1; 1/9 ≤ µi j; νi j ≤ 9;

µ(0)
i j = µ∗(0)

i j ; ν(0)
i j = ν∗(0)

i j ; i ̸= j ̸= k; i, j,k ∈ N.
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where µ∗(0)
i j and ν∗(0)

i j are the initial value obtain from estimating step. For proper under-

standing, we have represented an algorithm that illustrates the above methods.

Algorithm 3.3.1. 1. Consider an incomplete IMPRs of R̃ = (r̃i j)n×n in which some

elements are missing and the known elements satisfy the transitivity property of

equation 3.2.3.

2. The initial value r̃
′
i j of the missing element of incomplete IMPRs is calculated using

equation 3.3.1.

3. Initial values obtained in step 2 are adjusted by the Model 3.1, and the adjusting

values are denoted by r̃
′′
i j.

4. The complete IMPRs R̃c = (r̃c,i j)n×n, is obtained where

r̃c,i j =

 r̃
′′
i j r̃i j /∈ Ω

r̃i j r̃i j ∈ Ω.
(3.3.2)

In the next subsection, we have developed a goal programming model to estimate the

missing values.

3.3.3 Goal programming model to estimate the missing values

In 2015 Meng and Chen [169] construct a linear programming model to evaluate the

missing value with incomplete MPRs, which is based on consistency index. To cope with

incomplete IMPR, this subsection developed a deviation model to evaluate the missing

value which is based on new transitivity property which was discussed in section 3.2.

Let R̃ = (µi j,νi j) be an incomplete IMPR. We know that R̃ is consistent if and only if

equation 3.2.3 holds for the strictly upper triangular elements. To minimize the errors,

Approximate the equation 3.2.3. Define

(εi j)i≤k,k≤ j = δi j
∣∣(µi j,νi j)−

(
µikµk j,νikνk j

)∣∣ (3.3.3)

(εi j)i≥k,k≤ j = δi j

∣∣∣∣(µi j,νi j)−
(

µk j

µki
,
νk j

νki

)∣∣∣∣
(εi j)i<k,k> j = δi j

∣∣∣∣(µi j,νi j)−
(

µik

µ jk
,

νik

ν jk

)∣∣∣∣
for i, j = 1,2, · · ·n, i < j

where, δi j =

 1 k ∈ Ti j

0 otherwise
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where Ti j = {k|(µik,νik),(µk j,νk j) ∈ Ω}, Ti j is the set of known element. Using above

equation 3.3.3, we construct the following goal programming model to estimate the miss-

ing value

Min(εi j)i≤k,k≤ j = δi j|(µi j,νi j)− (µikµk j,νikνk j)|

Min(εi j)i≥k,k≤ j = δi j

∣∣∣∣(µi j,νi j)−
(

µk j

µki
,
νk j

νki

)∣∣∣∣
Min(εi j)i<k,k> j = δi j

∣∣∣∣(µi j,νi j)−
(

µik

µ jk
,

νik

ν jk

)∣∣∣∣
subject to,

1
9
≤ µi j; νi j ≤ 9; (µi j,νi j) ∈U ;

where U = {(µi j,νi j)|(µi j,νi j) is a missing value

for i, j = 1,2, · · ·n, i < j}

The solution of the minimization problem can be obtained by solving the goal program-

ming Model 3.2.

(Model 3.2)

MinD =
n

∑
i,k=1

n

∑
j=i+1

(
d(+)

i j,k

)
i≤k,k≤ j

+
(

d(−)
i j,k

)
i≤k,k≤ j

+
(

d(+)
i j,k

)
i≥k,k≤ j

+
(

d(−)
i j,k

)
i≥k,k≤ j

+
(

d(+)
i j,k

)
i<k,k> j

+
(

d(−)
i j,k

)
i<k,k> j

subject to,

δi j{(µi j,νi j)− (µikµk j,νikνk j)}−
(

d(+)
i j,k

)
i≤k,k≤ j

+
(

d(−)
i j,k

)
i≤k,k≤ j

= 0;

δi j

{
(µi j,νi j)−

(
µk j

µki
,
νk j

νki

)}
−
(

d(+)
i j,k

)
i≥k,k≤ j

+
(

d(−)
i j,k

)
i≥k,k≤ j

= 0;

δi j

{
(µi j,νi j)−

(
µik

µ jk
,

νik

ν jk

)}
−
(

d(+)
i j,k

)
i<k,k> j

+
(

d(−)
i j,k

)
i<k,k> j

= 0;

µi jνi j ≤ 1; 1/9 ≤ µi j; νi j ≤ 9;(
d(+)

i j,k

)
i≤k,k≤ j

,
(

d(−)
i j,k

)
i≤k,k≤ j

,
(

d(+)
i j,k

)
i≥k,k≤ j

,
(

d(−)
i j,k

)
i≥k,k≤ j

,
(

d(+)
i j,k

)
i<k,k> j

,
(

d(−)
i j,k

)
i<k,k> j

≥ 0;

where,(
d(+)

i j,k

)
i≤k,k≤ j

=
[
(µi j,νi j)− (µikµk j,νikνk j)

]
∨0;

(
d(−)

i j,k

)
i≤k,k≤ j

=
[
(µikµk j,νikνk j)− (µi j,νi j)

]
∨0;(

d(+)
i j,k

)
i≥k,k≤ j

=

[
(µi j,νi j)− (

µk j

µki
,
νk j

νki
)

]
∨0;

(
d(−)

i j,k

)
i≥k,k≤ j

=

[
(

µk j

µki
,
νk j

νki
)− (µi j,νi j)

]
∨0;(

d(+)
i j,k

)
i<k,k> j

=

[
(µi j,νi j)− (

µik

µ jk
,

νik

ν jk
)

]
∨0;

(
d(−)

i j,k

)
i<k,k> j

=

[
(

µik

µ jk
,

νik

ν jk
)− (µi j,νi j)

]
∨0;
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For the sake of convenience, here we use,(
d(+)

i j,k

)
i≤k,k≤ j

=
(

d(+)
µi j,k ,d

(+)
νi j,k

)
i≤k,k≤ j

,
(

d(−)
i j,k

)
i≤k,k≤ j

=
(

d(−)
µi j,k ,d

(−)
νi j,k

)
i≤k,k≤ j

,(
d(+)

i j,k

)
i≥k,k≤ j

=
(

d(+)
µi j,k ,d

(+)
νi j,k

)
i≥k,k≤ j

,
(

d(−)
i j,k

)
i≥k,k≤ j

=
(

d(−)
µi j,k ,d

(−)
νi j,k

)
i≥k,k≤ j

,(
d(+)

i j,k

)
i<k,k> j

=
(

d(+)
µi j,k ,d

(+)
νi j,k

)
i<k,k> j

,
(

d(−)
i j,k

)
i<k,k> j

=
(

d(−)
µi j,k ,d

(−)
νi j,k

)
i<k,k> j

where,(
d(+)

µi j,k

)
i≤k,k≤ j

=
[
log µi j − (log µik + log µk j)

]
∨0;

(
d(−)

µi j,k

)
i≤k,k≤ j

=
[
(log µik + log µk j)− log µi j

]
∨0;(

d(+)
νi j,k

)
i≤k,k≤ j

=
[
logνi j − (logνik + logνk j)

]
∨0;

(
d(−)

νi j,k

)
i≤k,k≤ j

=
[
(logνik + logνk j)− logνi j

]
∨0;(

d(+)
µi j,k

)
i≥k,k≤ j

=
[
log µi j − (log µk j − log µki)

]
∨0;

(
d(−)

µi j,k

)
i≥k,k≤ j

=
[
(log µk j − log µki)− log µi j

]
∨0;(

d(+)
νi j,k

)
i≥k,k≤ j

=
[
logνi j − (logνk j − logνki)

]
∨0;

(
d(−)

νi j,k

)
i≥k,k≤ j

=
[
(logνk j − logνki)− logνi j

]
∨0;(

d(+)
µi j,k

)
i<k,k> j

=
[
log µi j − (log µik − log µ jk)

]
∨0;

(
d(−)

µi j,k

)
i<k,k> j

=
[
(log µik − log µ jk)− log µi j

]
∨0;(

d(+)
νi j,k

)
i<k,k> j

=
[
logνi j − (logνik − logν jk)

]
∨0;

(
d(−)

νi j,k

)
i<k,k> j

=
[
(logνik − logν jk)− logνi j

]
∨0

To illustrate the above procedure we have presented two examples.

Example 3.3.1. Let us consider a decision making problem with five sets of alternatives

xi, i = 1,2, · · · ,5. The decision maker judges these five alternatives by pairwise com-

parison and provides his/her judgement as r̃12 = (µ12,ν12) = (5,1/7), r̃14 = (µ14,ν14) =

(3,1/7), r̃23 = (µ23,ν23) = (9/5,3/7), r̃25 = (µ25,ν25) = (1/5,3), r̃35 = (µ35,ν35) =

(1/9,7), r̃45 = (µ45,ν45) = (1/7,3). The matrix representation of the above information

is given by

R̃ =



(1,1) (5,1/7) (∗,∗) (3,1/7) (∗,∗)

(1/7,5) (1,1) (9/5,3/7) (∗,∗) (1/5,3)

(∗,∗) (3/7,9/5) (1,1) (∗,∗) (1/9,7)

(1/7,3) (∗,∗) (∗,∗) (1,1) (1/7,3)

(∗,∗) (3,1/5) (7,1/9) (3,1/7) (1,1)


5×5

The initial value of missing element are calculated using equation 3.3.1, are given in table

3.1.

Some initial values does not satisfies the property of IMPRs e.g µ13 ×ν13 � 1. To adjust
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Table 3.1: Calculation of Missing element(initial value)

Missing element Adjoining element Calculated value(
µ∗(0)

13 ,ν∗(0)
13

)
(µ12,ν12), (µ23,ν23) (9,3/49)

(
µ∗(0)

15 ,ν∗(0)
15

)
(µ12,ν12), (µ25,ν25) (1.44877,0.0297)

(µ14,ν14), (µ45,ν45)(
µ∗(0)

24 ,ν∗(0)
24

)
(µ21,ν21), (µ14,ν14) (2.38454,0.366025)

(µ25,ν25), (µ54,ν54)(
µ∗(0)

34 ,ν∗(0)
34

)
(µ35,ν35), (µ54,ν54) (0.777,2.333)

Table 3.2: Consistency ratio

Two-step procedure Method CR(C) 0.0114

CR(D) 0.0094

Goal programming model (Model 3.2) CR(C′) 0.0144

CR(D′) 0.0094

these values we use an optimization Model 3.1.

Min {|{(9−µ13)
2 +(3/49−ν13)

2}0.5|+ |{(1−µ15)
2 +(3/7−ν15)

2}0.5|

+|{(3/7−µ15)
2 +(3/7−ν15)

2}0.5|+ |{(3/5−µ24)
2 +(1−ν24)

2}0.5|

+|{(7/5−µ24)
2 +(1−ν24)

2}0.5|+ |{(0.777−µ34)
2 +(2.333−ν34)

2}0.5|};

Subject to

µ13 ×ν13 ≤ 1; µ15 ×ν15 ≤ 1; µ24 ×ν24 ≤ 1;

µ34 ×ν34 ≤ 1;1/9 ≤ µ13;ν13 ≤ 9;

1/9 ≤ µ15;ν15 ≤ 9;1/9 ≤ µ24;ν24 ≤ 9;

1/9 ≤ µ34;ν34 ≤ 9; µ13
∗(0) = 9,ν13

∗(0) = 3/49;

µ15
∗(0) = 1.44877,ν15

∗(0) = 0.0297;

µ24
∗(0) = 2.3845,ν24

∗(0) = 0.366;

µ34
∗(0) = 0.777,ν13

∗(0) = 2.333;

After solving the above optimization model, the adjusting values are given µ13 = 9,ν13 =

0.111,µ15 = 0.74,ν15 = 0.429,µ24 = 0.912,ν24 = 1,µ34 = 0.441,ν34 = 2.268. This mod-

el is solved by MATLAB optimization tool box. The complete IMPR R̃c is given below
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

(1,1) (5,1/7) (9,0.111) (3,1/7) (0.74,0.429)

(1/7,5) (1,1) (9/5,3/7) (0.912,1) (1/5,3)

(0.111,9) (3/7,9/5) (1,1) (0.441,2.268) (1/9,7)

(1/7,3) (1,0.912) (2.268,0.441) (1,1) (1/7,3)

(0.429,0.74) (3,1/5) (7,1/9) (3,1/7) (1,1)


5×5

To check the consistency degree, the complete IMPR is split into two MPRs and their

corresponding CR values are given in row-1 of table 3.2.

C =



1 5 9 3 0.74
1
5 1 9

5 0.912 1
5

1
9

5
9 1 0.441 1

9
1
3

1
0.912

1
0.441 1 1

7
1

0.74 5 9 7 1


5×5

D=



1 1
7 0.111 1

7 0.429

7 1 3
7 1 3

1
0.111

7
3 1 2.268 7

7 1 1
2.268 1 3

1
0.429

1
3

1
7

1
3 1


5×5

The example 3.3.1 is also solved by the goal programming model(Model 3.2) and the

missing elements are µ13 = 9,ν13 = 0.111,µ15 = 1,ν15 = 0.429,µ24 = 1,ν24 = 1,µ34 =

0.428,ν34 = 2.333. This Model 3.2 is solved using Lingo software. The consistency ratio

of both MPRs obtain from two different methods such as two-step procedure method is

given in row-1 of table 3.2 and goal programming model method are given in row-2 of

table 3.2. Therefore, the complete IMPR R̃c is acceptably consistent. In table 3.2 C′,D′

are two MPRs are obtained by splitting the complete IMPRs where missing element are

found from the Model 3.2.

Example 3.3.2. Let us consider a decision making problem with seven sets of alterna-

tives xi, i = 1,2, · · · ,7. The decision maker judge these seven alternatives by pairwise

comparison and provides his/her judgement as follows: r̃12 = (µ12,ν12) = (3/5,1/4),

r̃16 = (µ16,ν16) = (1/5,1/2), r̃23 = (µ23,ν23) = (1/2,8/5), r̃26 = (µ26,ν26) = (1/3,2),

r̃34 = (µ34,ν34) = (2/9,15/4), r̃36 = (µ36,ν36) = (2/3,5/4), r̃45 = (µ45,ν45) = (7,1/7),

r̃46 = (µ46,ν46) = (3,1/3), r̃56 = (µ56,ν56) = (3/7,7/3), r̃67 = (µ67,ν67) = (1/7,3). The
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matrix representation of the above information is given by R̃1.

R̃1 =



(1,1) (3/5,1/4) (∗,∗) (∗,∗) (∗,∗) (1/5,1/2) (∗,∗)

(1/4,3/5) (1,1) (1/2,8/5) (∗,∗) (∗,∗) (1/3,2) (∗,∗)

(∗,∗) (8/5,1/2) (1,1) (2/9,15/4) (∗,∗) (2/3,5/4) (∗,∗)

(∗,∗) (∗,∗) (15/4,2/9) (1,1) (7,1/7) (3,1/3) (∗,∗)

(∗,∗) (∗,∗) (∗,∗) (1/7,7) (1,1) (3/7,7/3) (∗,∗)

(1/2,1/5) (2,1/3) (5/4,2/3) (1/3,3) (7/3,3/7) (1,1) (1/7,3)

(∗,∗) (∗,∗) (∗,∗) (∗,∗) (∗,∗) (3,1/7) (1,1)


7×7

The initial value of missing element are calculated by using equation 3.3.1 which is given

in table 3.3.

Some initial values does not satisfies the property of IMPRs e.g µ14,µ17,µ27,µ37,µ57 � 1
9 .

To adjust these value we have solved optimization Model 3.1, that minimize the error.

Min {2|{(3/10−µ13)
2 +(2/5−ν13)

2}0.5|+ |{(1/15−µ14)
2 +(3/2−ν14)

2}0.5|

+|{(7/15−µ15)
2 +(3/14−ν15)

2}0.5|+ |{(1/35−µ17)
2 +(3/2−ν17)

2}0.5|

+2|{(1/9−µ24)
2 +(6−ν24)

2}0.5|+ |{(7/9−µ25)
2 +(6/7−ν25)

2}0.5|

+|{(1/21−µ27)
2 +(6−ν27)

2}0.5|+2|{(14/9−µ35)
2 +(15/28−ν35)

2}0.5|

+|{(2/21−µ37)
2 +(15/4−ν37)

2}0.5|+ |{(3/7−µ47)
2 +(1−ν47)

2}0.5|

+|{(3/49−µ57)
2 +(7−ν57)

2}0.5|};

subject to

µ13 ×ν13 ≤ 1; µ14 ×ν14 ≤ 1; µ15 ×ν15 ≤ 1; µ17 ×ν17 ≤ 1; µ24 ×ν24 ≤ 1; µ25 ×ν25 ≤ 1;

µ27 ×ν27 ≤ 1; µ35 ×ν35 ≤ 1; µ37 ×ν37 ≤ 1; µ47 ×ν47 ≤ 1; µ57 ×ν57 ≤ 1;

1/9 ≤ µ13;ν13 ≤ 9;1/9 ≤ µ14;ν14 ≤ 9;1/9 ≤ µ15;ν15 ≤ 9;1/9 ≤ µ17;ν17 ≤ 9;

1/9 ≤ µ24;ν24 ≤ 9;1/9 ≤ µ25;ν25 ≤ 9;1/9 ≤ µ27;ν27 ≤ 9;1/9 ≤ µ35;ν35 ≤ 9;

1/9 ≤ µ37;ν37 ≤ 9;1/9 ≤ µ47;ν47 ≤ 9;1/9 ≤ µ57;ν57 ≤ 9;

µ13
∗(0) = 0.5237;ν13

∗(0) = 0.0745; µ14
∗(0) = 1/15,ν14

∗(0) = 3/2;

µ15
∗(0) = 7/15,ν15

∗(0) = 3/14; µ17
∗(0) = 1/35,ν17

∗(0) = 3/2;

µ24
∗(0) = 0.17,ν24

∗(0) = 3.77; µ25
∗(0) = 7/9,ν25

∗(0) = 6/7;

µ27
∗(0) = 1/21,ν27

∗(0) = 6; µ35
∗(0) = 5.69,ν35

∗(0) = 0.127;

µ37
∗(0) = 2/21,ν37

∗(0) = 15/4; µ47
∗(0) = 3/7,ν47

∗(0) = 1;

µ57
∗(0) = 3/49,ν57

∗(0) = 7;
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Table 3.3: Calculation of Missing element(initial value)

Missing element Adjoining element Calculated value(
µ∗(0)

13 ,ν∗(0)
13

)
(µ12,ν12), (µ23,ν23) (3/10,2/5)

(
µ∗(0)

14 ,ν∗(0)
14

)
(µ16,ν16), (µ64,ν64) (1/15,3/2)

(
µ∗(0)

15 ,ν∗(0)
15

)
(µ16,ν16), (µ65,ν65) (7/15,3/14)

(
µ∗(0)

17 ,ν∗(0)
17

)
(µ16,ν16), (µ67,ν67) (1/35,3/2)

(
µ∗(0)

24 ,ν∗(0)
24

)
(µ23,ν23), (µ34,ν34) (0.17,3.77)

(µ26,ν26), (µ46,ν46)

(
µ∗(0)

25 ,ν∗(0)
25

)
(µ26,ν26), (µ56,ν56) (7/9,6/7)

(
µ∗(0)

27 ,ν∗(0)
27

)
(µ26,ν26), (µ67,ν67) (1/21,6)

(
µ∗(0)

35 ,ν∗(0)
35

)
(µ34,ν34), (µ45,ν45) (5.69,0.13)

(µ36,ν36), (µ56,ν56)

(
µ∗(0)

37 ,ν∗(0)
37

)
(µ36,ν36), (µ67,ν67) (2/21,15/4)

(
µ∗(0)

47 ,ν∗(0)
47

)
(µ46,ν46), (µ67,ν67) (3/7,1)

(
µ∗(0)

57 ,ν∗(0)
57

)
(µ56,ν56), (µ67,ν67) (3/49,7)
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The adjusting value are given by (µ13,ν13)= (0.3,0.4), (µ14,ν14)= (0.111,1.5), (µ15,ν15)=

(0.467,0.214), (µ17,ν17)= (0.111,1.5), (µ24,ν24)= (0.111,6), (µ25,ν25)= (0.778,0.857),

(µ27,ν27)= (0.111,6), (µ35,ν35)= (1.556,0.536), (µ37,ν37)= (0.111,3.748), (µ47,ν47)=

(0.429,1), (µ57,ν57) = (0.111,7). Example 3.3.2 solved by Model 3.2 also and we ob-

tained the same result. The complete IMPR R̃c1 is given below.



(1,1) ( 3
5 ,

1
4 ) (0.3,0.4) (0.111,1.5) (0.467,0.214) ( 1

5 ,
1
2 ) (0.111,1.5)

( 1
4 ,

3
5 ) (1,1) ( 1

2 ,
8
5 ) (0.111,6) (0.778,0.857) ( 1

3 ,2) (0.111,6)

(0.4,0.3) ( 8
5 ,

1
2 ) (1,1) ( 2

9 ,
15
4 ) (1.556,0.536) ( 2

3 ,
5
4 ) (0.111,3.748)

(1.5,0.111) (6,0.111) ( 15
4 , 2

9 ) (1,1) (7, 1
7 ) (3, 1

3 ) (0.429,1)

(0.214,0.467) (0.857,0.778) (0.536,1.556) ( 1
7 ,7) (1,1) ( 3

7 ,
7
3 ) (0.111,7)

( 1
2 ,

1
5 ) (2, 1

3 ) ( 5
4 ,

2
3 ) ( 1

3 ,3) ( 7
3 ,

3
7 ) (1,1) ( 1

7 ,3)

(1.5,0.111) (6,0.111) (3.748,0.111) (1,0.429) (7,0.111) (3, 1
7 ) (1,1)


To check the consistency degree of IMPR, R̃c1 split into two MPRs C1 and D1, where,

C1 =



1 3
5 0.3 0.111 0.47 1

5 0.111
5
3 1 1

2 0.111 0.778 1
3 0.111

1
0.3 2 1 2

9 1.556 2
3 0.111

1
0.111

1
0.111

9
2 1 7 3 0.429

1
0.467

1
0.778

1
1.556

1
7 1 3

7 0.111

5 3 3
2

1
3

7
3 1 1

7
1

0.111
1

0.111
1

0.111
1

0.429
1

0.111 7 1


7×7

D1 =



1 1
4 0.4 1.5 0.214 1

2 1.5

4 1 8
5 6 0.857 2 6

1
0.4

5
8 1 15

4 0.536 5
4 3.748

1
1.5

1
6

4
15 1 1

7
1
3 1

1
0.214

1
0.857

1
0.536 7 1 7

3 7

2 1
2

4
5 3 3

7 1 3
1

1.5
1
6

1
3.748 1 1

7
1
3 1


7×7

CR(C1) = 0.0230 and CR(D1) = 0 both are acceptable threshold value. According to

Satty [58] both C1 and D1 are acceptably consistent. Therefore R̃c1 is also acceptably

consistent.
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3.3.4 A Comparative analysis with existing methods

In this subsection, we compare our proposed method with Jiang et al. [143] for IMPR

and Meng and Chen [169] for MPRs.

In 2015, Jiang et al. [143] discussed the consistency property, especially the acceptable

consistency of an IMPR by splitting into two MPRs. Based on it, Jiang et al. developed

two approaches to complement all missing elements of incomplete IMPRs. According

to Jiang et al. [143], the incomplete IMPR split into two MPRs, and the calculation of

missing factor involves two steps, i.e. “estimating step” and “ adjusting step”. In the esti-

mating step, initial values of missing entries are estimated using geometric mean method.

Some times the initial values does not satisfies the required condition. To improve these

initial values, two unique methodologies are produced: one is local optimization models,

which is efficient and other is an iterative method that can work the whole optimization

process reasonably.

Using Jiang et al. [143] methods, example 3.3.1 is solved where incomplete IMPRs

is split into two MPRs as C and D. Using geometric mean method missing element is

calculated and adjusting values are computed by using local optimization model (LOP1)

of [143]. Since the consistency ratio (CR) of C and D (using [143]) are 0.0197 and 0.0112.

Hence the complete IMPR is acceptably consistent. Consistency ratio of C and D obtained

from our methods (both two-step procedure method and Goal programming model) are

less than(see Table 3.2) from Jiang et al. [143] methods. Similarly, in the example, 3.3.2

the complete IMPR is also acceptably consistent. Both the model gives the equivalent

result.

To measure the multiplicative consistency of an MPR, Meng and Chen [169] proposed

the notion of multiplicative geometric consistent index (MGCI). The consistency of an

MPR is considered to be unacceptable if the MGCI of an MPR is less than the average

value tabulated in Table 1 of [169]. The authors continued their study to include the case

of incomplete MPR. They formulated multi-objective programming model to estimate the

missing values. Using the goal programming approach and a suitable transformation, the

proposed model was converted into an equivalent linear program. The missing values in

an MPR were then obtained using the inverse transformation of the optimal solution of

the linear program.

In example 3.3.1, the incomplete IMPR is split into two incomplete MPRs using equa-

tion 3.2.2. The missing elements of two incomplete MPRs are obtained using Meng and
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Chen’s linear programming model (LP)(see [169]). Consistency ratio of two MPRs ob-

tained from Meng and Chen’s model are 0.0199 and 0.0097 respectively which are less

than from both two-step procedure method and Goal programming model Model 3.2.

3.4 Consistency of IMPR using Graphical approach

Now we will discuss the another goal of this chapter. Nishizawa [172] in 1995 proposed

an algorithm for the consistency of MPRs by using the cycle of a directed graph. Later

Nishizawa [138] proposed two algorithms to find the cycles of various odd and even length

using incomplete directed graph. For finding cycles, vertex matrix of order n×n is needed,

where n is the number of vertices, corresponding to the directed graph whose (i, j) element

i.e V (i, j) is determined. If one points i is connected to another point j by an arrow,

say “i → j", then V (i, j) = 1 otherwise 0. Pairwise comparison data is represented by

θ or 1/θ ,where θ is a parameter whose value is greater than 1 in the binary AHP [57].

Nishizawa proposed two algorithms [138] for even and odd length cycle in the incomplete

directed graph. From the result Nishizawa [138], one can easily judge the consistency of

comparison matrix. If no cycles have found in the directed graph, then the comparison

matrix is consistent. The comparison matrix is inconsistent if at least one cycle is found

in the directed graph. In case of inconsistency, they find the minimum covering sets [172]

among the cycles, and then they eliminate the path of cycles such as the comparison matrix

is consistent.

In this chapter, we have discussed two approaches for checking the consistency of

IMPRs using graphical approach. Here we are extending the above method of Nishiza-

wa [138] in intuitionistic multiplicative preference relation scenario.

Here we have developed two different methods to check the consistency of IMPR and

incomplete IMPRs which are discussed in subsection 3.4.1 and 3.4.2 respectively.

3.4.1 Consistency for IMPR using binary array

The absence of consistency in decision making with preference relations is a big chal-

lenge to bring about conflicting conclusions. Numerous strategies on consistency measure

and improvement of preference relations with various structures have been exhibited pro-

gressively. This subsection checks the consistency of both IMPR and incomplete IMPR.
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Let R̃ be the intuitionistic multiplicative preference relation,

R̃ =



(µ11,ν11) (µ12,ν12) · · · (µ1i,ν1i) · · · (µ1n,ν1n)

(µ21,ν21) (µ22,ν22) · · · (µ2i,ν2i) · · · (µ2n,ν2n)
...

...
. . .

...
. . .

...

(µi1,νi1) (µi2,νi2) · · · (µii,νii) · · · (µin,νin)
...

...
. . .

...
. . .

...

(µn1,νn1) (µn2,νn2) · · · (µni,νni) · · · (µnn,νnn)



We define a ordered pair vertices matrix V = {vi j} = {(a,b)} as follows, where vi j is

an ordered pair (a,b) such that

For i < j

 i f µi j > 1 then a = 1, otherwise a = 0

i f νi j > 1 then b = 1, otherwise b = 0

For i > j

 i f 1
νi j

> 1 then a = 1, otherwise a = 0

i f 1
µi j

> 1 then b = 1, otherwise b = 0

For i = j both a = 0 and b = 0.

(3.4.1)

To illustrate, consider the following IMPR
(1,1) (1/2,2/3) (1/5,5)

(2/3,1/2) (1,1) (4/5,3/4)

(5,1/5) (3/4,4/5) (1,1)


Using the binary order paired vertex matrix V is given below

V =


(0,0) (0,0) (0,1)

(1,1) (0,0) (0,0)

(1,0) (1,1) (0,0)


Here, the binary order paired vertex matrix is split into two vertex matrix i.e lower vertex

matrix VL containing the lower element of order pair and upper vertex matrix VU contain-

ing the upper element of order pair.

VL =


0 0 0

1 0 0

1 1 0

 , VU =


0 0 1

1 0 0

0 1 0


Using the concept of order pair, we have defined a new definition of consistent IMPR.
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Definition 3.4.1. The IMPR is consistent if both the corresponding lower and upper vertex

matrices are consistent.

In this section, we have applied the graphical approach of Nishizawa [138] to check the

consistency of both complete IMPRs and incomplete IMPRs scenario. We have developed

an algorithm to illustrate the above method.

Algorithm 3.4.1. Step1: Let us consider an IMPR.

Step2: Order pair vertex matrix is obtained using equation 3.4.1. In case of incomplete

IMPRs, missing elements are treated as zero in the vertex matrix.

Step3: The ordered pair vertex matrix is split into lower vertex matrix and upper vertex

matrix.

Step4: Then apply the approach of Nishizawa [138] for finding the cycle of even and odd

length on both the vertex matrix.

Step5: If any cycle found then the vertex matrix is inconsistent, otherwise consistent.

Step6: IMPR is consistent if both the vertex lower and upper matrices are consistent,

otherwise matrix is inconsistent.

Step7: If the IMPR matrix is inconsistent, then remove the minimum number of path that

cover the cycles.

The above-said method is illustrated by an example.

Example 3.4.1. Let us consider a decision making problem with four sets of alterna-

tives xi, i = 1,2,3,4. The decision maker judge these four alternatives by pairwise com-

parison and provides his/her judgement as follows: r̃12 = (1/2,1/4), r̃13 = (2,1/8),

r̃14 = (2/3,1/4), r̃23 = (5,1/7), r̃24 = (7/5,2/3), r̃34 = (6,1/7). The matrix representa-

tion is given by

R̃1 =


(1,1)

(1
2 ,

1
4

) (
2, 1

8

) ( 2
3 ,

1
4

)( 1
4 ,

1
2

)
(1,1)

(
5, 1

7

) ( 7
5 ,

2
3

)(1
8 ,2
) ( 1

7 ,5
)

(1,1)
(
6, 1

7

)( 1
4 ,

2
3

) ( 2
3 ,

7
5

) ( 1
7 ,6
)

(1,1)


By using equation 3.4.1, the binary order pair vertex matrix is

V =


(0,0) (0,0) (1,0) (0,0)

(1,1) (0,0) (1,0) (1,0)

(0,1) (0,1) (0,0) (1,0)

(1,1) (0,1) (0,1) (0,0)


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The lower and upper vertex matrices are

VL =


0 0 1 0

1 0 1 1

0 0 0 1

1 0 0 0

 , VU =


0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0



Figure 3.1: Directed graph of VL of
example 3.4.1

Figure 3.2: Directed graph of VU of
example 3.4.1

There is only one cycle of length 3 is present in the lower vertex matrix. Directly we can

found the cycle from figure 3.1. In order to find the cycle of length 3 we use the algorithm

of odd length, step (3.2) to step (3.5) ( [138]), where m = 2. The form of the cycle of

length 3 is (i0 − k− j0). To find the elements i0,k, j0, we need VL and V 2
L . For this V 2

L as

follows:

V 2
L =


0 0 0 1

1 0 1 1

1 0 0 0

0 0 1 0


At the starting we have i0 = 1, k = 3, j0 = 4, satisfying the step (3.2) of algorithm of

odd length cycle [138], i.e VL(1,3) = 1, V 2
L (3,1) = 1, VL(3,4) = 1, V 2

L (4,3) = 1, and

VL(4,1) = 1. Then the cycle of length 3 is (1−3−4). There is no other cycle available in

VL. Similarly there is no cycle of any length in figure 3.2. The lower vertex matrix VL is

inconsistent and the upper vertex matrix VU is consistent. Therefore the complete IMPR

is inconsistent.

To propose the reason of inconsistency, an algorithm for extinguishing cycles grounded

on minimum covering sets is applied ( [172]). The cycle-arc incidence matrix is given in

Table 3.4.

From table 3.4, we get the several pairs of edges which cover the cycle. we have to

choose the pair that eliminate the cycle. In this example if we will change the pair of

vertex from any one of them from (1,4) to (4,1) or (1,3) to (3,1) or (3,4) to (4,3) in the

original IMPR R̃1, then the both the lower and upper vertex matrix are consistent. Then

IMPR R̃1 is also consistent.
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Table 3.4: Cycle-arc incidence matrix of VL

Cycle (1,3) (1,4) (3,4)
(1−3−4) 1 1 1

Example 3.4.2. Let us examine decision making problem with seven sets of alternatives

xi, i = 1,2, · · · ,7. The matrix representation of the decision maker judgement is a com-

parison matrix which is given by

R̃2 =



(1,1)
( 5

3 ,
1
4

) (
7, 1

9

) (
3, 1

7

) ( 5
3 ,

1
7

) (
1, 3

5

) ( 1
4 ,

5
3

)(1
4 ,

5
3

)
(1,1)

( 5
3 ,

1
4

) ( 5
3 ,

1
4

) ( 3
5 ,1
) (1

3 ,1
) (1

4 ,3
)( 1

9 ,7
) ( 1

4 ,
5
3

)
(1,1)

(
1, 3

5

) ( 1
4 ,

5
3

) ( 1
3 ,3
) (1

9 ,7
)( 1

7 ,3
) ( 1

4 ,
5
3

) ( 3
5 ,1
)

(1,1)
(3

5 ,
3
5

) ( 1
3 ,3
) (1

9 ,7
)(1

7 ,
5
3

) (
1, 3

5

) ( 5
3 ,

1
4

) ( 3
5 ,

3
5

)
(1,1)

(1
3 ,3
) (1

7 ,3
)( 3

5 ,1
) (

1, 1
3

) (
3, 1

3

) (
3, 1

3

) (
3, 1

3

)
(1,1)

(1
7 ,3
)(5

3 ,
1
4

) (
3, 1

4

) (
7, 1

9

) (
7, 1

9

) (
3, 1

7

) (
3, 1

7

)
(1,1)


Using 3.4.1, the binary order pair vertex matrix is given by

V =



(0,0) (1,0) (1,0) (1,0) (1,0) (0,0) (0,1)

(0,1) (0,0) (1,0) (1,0) (0,0) (0,0) (0,1)

(0,1) (0,1) (0,0) (0,0) (0,1) (0,1) (0,1)

(0,1) (0,1) (1,1) (0,0) (0,0) (0,1) (0,1)

(0,1) (1,0) (1,0) (1,1) (0,0) (0,1) (0,1)

(0,1) (1,0) (1,0) (1,0) (1,0) (0,0) (0,1)

(1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (0,0)


The above vertex matrix split into two binary array.

VL =



0 1 1 1 1 0 0

0 0 1 1 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 1 1 0 0 0

0 1 1 1 1 0 0

1 1 1 1 1 1 0


, VU =



0 0 0 0 0 0 1

1 0 0 0 0 0 1

1 1 0 0 1 1 1

1 1 1 0 0 1 1

1 0 0 1 0 1 1

1 0 0 0 0 0 1

0 0 0 0 0 0 0



By applying algorithm of odd and even length cycles [138], there is no cycle found in
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Figure 3.3: Directed graph of VL of
example 3.4.2

Figure 3.4: Directed graph of VU of
example 3.4.2

Table 3.5: Cycle-arc incidence matrix of VU

Cycle (3,4) (3,5) (4,5)
(3−5−4) 1 1 1

VL, and one cycle of length three, i.e., (3− 5− 4) is located in VU . In order to find the

cycle of length 3 in VU we use step (3.2) to step (3.5) of algorithm (odd length [138]),

where m = 2. The form of the cycle of length 3 is (i0 − k− j0). To locate these element

we need VU and V 2
U . For this V 2

U as follows:

V 2
U =



0 0 0 0 0 0 0

0 0 0 0 0 0 1

3 0 0 1 0 1 4

3 1 0 0 1 1 4

2 1 1 0 0 1 3

0 0 0 0 0 0 1

0 0 0 0 0 0 0


At the starting we have i0 = 3, k = 5, j0 = 4, satisfying VU(3,5) = 1, V 2

U(5,3) = 1,

VU(5,4) = 1, V 2
U(4,5) = 1, and VU(4,3) = 1. Then the cycle of length 3 is (3− 5− 4).

Similarly there is no cycle of any length in figure 3.4. The lower vertex matrix VL is

consistent and the upper vertex matrix VU is inconsistent. Therefore the complete IMPR

is inconsistent.

To propose the reason of inconsistency, we can find the minimum covering path which

cover the cycle [172]. The cycle-arc incidence matrix is given in Table 3.5.
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From table 3.5, we get the several pairs of edges which cover the cycle. we have to

chose the pair eliminate the cycle. In this example if we will change the pair (3,4) to

(4,3) in the original IMPR R̃2, then both the lower and upper vertex matrix are consistent.

Then IMPR R̃2 is consistent.

The above said method is also applied in incomplete IMPRs scenario which is given

below.

For an incomplete preference relation, it is very much essential for known elements to

satisfy consistency. We are applying the same graphical approach in incomplete IMPRs

scenario. For the incomplete case, we use the measure of inconsistency by the number of

the cycle in the graph corresponding to known elements of the IMPR matrix.

Example 3.4.3. We have another illustrations of decision making problem with six sets

of alternatives xi, i = 1,2,3,4,5,6. The decision maker judge these six alternatives by

pairwise comparison and provides his/her judgement as follows: r̃12 = (1/5,2), r̃13 =

(5,1/6), r̃15 = (1/9,8), r̃16 = (2,1/6), r̃24 = (1/4,1/5), r̃25 = (1/2,1/3), r̃26 = (3,1/5),

r̃35 = (6,1/7), r̃45 = (1/5,4). The matrix representation is given by

R̃3 =



(1,1)
(1

5 ,2
) (

5, 1
6

)
(∗,∗)

(1
9 ,8
) (

2, 1
6

)(
2, 1

5

)
(1,1) (∗,∗)

(1
4 ,

1
5

) ( 1
2 ,

1
3

) (
3, 1

5

)( 1
6 ,5
)

(∗,∗) (1,1) (∗,∗)
(
6, 1

7

)
(∗,∗)

(∗,∗)
( 1

5 ,
1
4

)
(∗,∗) (1,1)

(1
5 ,4
)

(∗,∗)(
8, 1

9

) ( 1
3 ,

1
2

) ( 1
7 ,6
) (

4, 1
5

)
(1,1) (∗,∗)( 1

6 ,2
) ( 1

5 ,3
)

(∗,∗) (∗,∗) (∗,∗) (1,1)


The order pair vertex matrix is obtained by using equation 3.4.1

V =



(0,0) (0,1) (1,0) (0,0) (0,1) (1,0)

(1,0) (0,0) (0,0) (0,0) (0,0) (1,0)

(0,1) (0,0) (0,0) (0,0) (1,0) (0,0)

(0,0) (1,1) (0,0) (0,0) (0,1) (0,0)

(1,0) (1,1) (0,1) (1,0) (0,0) (0,0)

(0,1) (0,1) (0,0) (0,0) (0,0) (0,0)


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The lower and upper vertex matrices are given below

VL =



0 0 1 0 0 1

1 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

1 1 0 1 0 0

0 0 0 0 0 0


, VU =



0 1 0 0 1 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 1 0

0 1 1 0 0 0

1 1 0 0 0 0



Figure 3.5: Directed graph of VL of
example 3.4.3

Figure 3.6: Directed graph of VU of
example 3.4.3

In order to find the cycle of length 3 in the lower vertex matrix VL, we need VL and V 2
L .

For this V 2
L as follows:

V 2
L =



0 0 0 0 1 0

0 0 1 0 0 1

1 1 0 1 0 0

1 0 0 0 0 1

1 1 1 0 0 2

0 0 0 0 0 0


At the starting we have i0 = 1, k = 3, j0 = 5, satisfying the step (3.2) of algorithm for

finding odd length cycle [138] i.e VL(1,3) = 1, V 2
L (3,1) = 1, VL(3,5) = 1, V 2

L (5,3) = 1,

and VL(5,1) = 1. Then the cycle of length 3 is (1−3−5).

Similarly using algorithm [138], there is also one cycle of length 3 in VU . Here also, for

finding the cycle of length 3 in VU , we need VU and V 2
U . For this V 2

U as follows:

V 2
U =



0 1 1 0 0 0

0 0 0 0 0 0

0 1 0 0 1 0

0 1 1 0 0 0

1 0 0 0 0 0

0 1 0 0 1 0


Also we have i0 = 1, k = 5, j0 = 3, satisfying VU(1,5) = 1, V 2

U(5,1) = 1, VU(5,3) = 1,
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Table 3.6: Cycle-arc incidence matrix of VL and VU

Cycle (1,5) (1,3) (3,5)
(1−3−5) 1 1 1
(1−5−3) 1 1 1

V 2
U(3,5) = 1, and VU(3,1) = 1. Then the cycle of length 3 is (1−5−3).

Both the lower and upper vertex matrix are VL and VU is inconsistent. Therefore the

incomplete IMPR is inconsistent. Like previous example the cycle-arc incidence matrix

is given in Table 3.6. From the Table 3.6, we can find the minimum covering path from

the cycle to suggest the cause of inconsistency.

From table 3.6, we get the several pairs of the edges which cover the cycle. We have

to chose the few to eliminate the cycle. In this example, if we will change the pair (3,5)

to (5,3) in the original IMPR R̃3, then the both the lower and upper vertex matrix are

consistent. Then incomplete IMPR R̃3 is also consistent.

Example 3.4.4. Let us take an example of incomplete IMPRs of order 10× 10 given as

below

R̃4 =



(1,1) ∗
(1

2 ,
1
5

) ( 1
3 ,2
) (

3, 1
6

)
∗ ∗

(8
3 ,

1
8

) ( 1
7 ,4
) (

5, 1
5

)
∗ (1,1)

(2
3 ,

6
10

) (1
8 ,

1
2

) ( 1
4 ,1
)

∗
(1

5 ,5
)

∗
( 1

3 ,3
)

∗

(1
5 ,

1
2

) ( 6
10 ,

2
3

)
(1,1)

(3
5 ,

2
3

)
∗

(
2, 1

2

) (
4, 1

8

) (
7, 1

8

) ( 1
8 ,5
)

∗

(
2, 1

3

) ( 1
2 ,

1
8

) ( 2
3 ,

3
5

)
(1,1) ∗

(
3, 1

7

) (
5, 1

6

)
∗

(
2, 1

2

)
∗

(1
6 ,3
) (

1, 1
4

)
∗ ∗ (1,1)

( 1
8 ,7
) (

8, 1
9

) ( 1
6 ,3
)

∗
(
4, 1

5

)
∗ ∗

(1
2 ,2
) ( 1

7 ,3
) (

7, 1
8

)
(1,1) ∗ ∗

( 1
5 ,4
) (

2, 1
3

)
∗

(
5, 1

5

) (1
8 ,4
) ( 1

6 ,5
) ( 1

9 ,8
)

∗ (1,1)
( 1

9 ,6
) ( 1

7 ,2
) (

4, 1
8

)
(1

8 ,
8
3

)
∗

(1
8 ,7
)

∗
(
3, 1

6

)
∗

(
6, 1

9

)
(1,1) ∗

(
6, 1

6

)
(
4, 1

7

) (
3, 1

3

) (
5, 1

8

) ( 1
2 ,2
)

∗
(
4, 1

5

) (
2, 1

7

)
∗ (1,1)

( 1
3 ,2
)

(1
5 ,5
)

∗ ∗ ∗
( 1

5 ,4
) ( 1

3 ,2
) (1

8 ,4
) ( 1

6 ,6
) (

2, 1
3

)
(1,1)


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The binary order pair vertex matrix is given by

V =



(0,0) (0,0) (0,0) (0,1) (1,0) (0,0) (0,0) (1,0) (0,1) (1,0)

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,1) (0,0)

(1,1) (1,1) (0,0) (0,0) (0,0) (1,0) (1,0) (1,0) (0,1) (0,0)

(1,0) (1,1) (1,1) (0,0) (0,0) (1,0) (1,0) (0,0) (1,0) (0,0)

(0,1) (1,0) (0,0) (0,0) (0,0) (0,1) (1,0) (0,1) (0,0) (1,0)

(0,0) (0,0) (0,1) (0,1) (1,0) (0,0) (0,0) (0,0) (0,1) (1,0)

(0,0) (1,0) (0,1) (0,1) (0,1) (0,0) (0,0) (0,1) (0,1) (1,0)

(0,1) (0,0) (0,1) (0,0) (1,0) (0,0) (1,0) (0,0) (0,0) (1,0)

(1,0) (1,0) (1,0) (0,1) (0,0) (1,0) (1,0) (0,0) (0,0) (0,1)

(0,1) (0,0) (0,0) (0,0) (0,1) (0,1) (0,1) (0,1) (1,0) (0,0)


The lower and upper vertex matrices are given below:

VL =



0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 1 0 0

1 1 1 0 0 1 1 0 1 0

0 1 0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 0 1

1 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0



,VU =



0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 1 0 1 0

1 1 0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 1 0 0

0 0 1 1 0 0 0 0 1 0

0 0 1 1 1 0 0 1 1 0

1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1

1 0 0 0 1 1 1 1 0 0


There are three cycles of length 3 is found in the lower vertex matrix i.e. (1− 10− 9),

Figure 3.7: Directed graph of VL of
example 3.4.4

Figure 3.8: Directed graph of VU of
example 3.4.4

(6−10−9) and (7−10−9). In order to find the cycle of length 3 in VL we use step (3.2)
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to step (3.5)(algorithm of odd length cycle [138]), where m = 2. The form of the cycle of

length 3 is (i0 − k− j0). To find the element of the cycle, we need V 2
L as follows:

V 2
L =



0 1 0 0 1 0 2 0 1 2

0 0 0 0 0 0 0 0 0 0

0 1 0 0 3 0 1 1 0 4

2 3 1 0 2 2 2 2 0 3

0 1 0 0 0 0 0 0 1 1

0 1 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 1 0

0 2 0 0 0 0 1 0 1 2

1 2 0 0 2 1 1 2 0 3

1 1 1 0 0 1 1 0 0 0


For the cycle (1− 10− 9), we have i0 = 1, k = 10, j0 = 9, satisfying VL(1,10) = 1,

V 2
L (10,1)> 0, VL(10,9)> 0, V 2

L (9,10)> 0, and VL(9,1) = 1. Then the cycle of length 3

is (1−10−9). Similarly for the cycle (6−10−9), we have i0 = 6, k = 10, j0 = 9, such

that VL(6,10)> 0, V 2
L (10,6)> 0, VL(10,9)> 0, V 2

L (9,10)> 0, and VL(9,6) = 1. For the

cycle (7−10−9), we have i0 = 7, k = 10, j0 = 9, such that V (7,10)> 0, V 2
L (10,7)> 0,

VL(10,9)> 0, V 2
L (9,10)> 0, and VL(9,7) = 1.

Next we try to find out the cycle of length 4. The form of the cycle of length 4 is

(i0 − i1 − j0 − j1). By using the algorithm of even length cycle [138], there are five cycle

of length 4 that is (5−10−9−6), (1−10−9−3), (3−6−10−9), (3−7−10−9),and

(3− 8− 10− 9). To find cycle of length 4, we need V 2
L . For the cycle (5− 10− 9− 6),

we have i0 = 5, j0 = 9 , satisfying step (2.2) of algorithm of even length cycle [138],

since V 2
L (5,9) > 0 and V 2

L (9,5) > 0, and we have i1 = 10 and j1 = 6 satisfying step

(2.3) of even length cycle algorithm [138] for α = 1. Since VL(5,10) = 1, V 2
L (10,6)> 0,

V 2
L (6,10) > 0 and VL(9,6) = 1. After that it is confirm VL(10,9) = 1 and VL(6,5) =

1. Then we have cycle of length 4 is (5− 10− 9− 6). Similarly cycle of length 4 is

(1−10−9−3), (3−6−10−9), (3−7−10−9),and (3−8−10−9). To find the cycle

of length 5, using the algorithm for odd cycles, we need VL, V 2
L and V 3

L . For this V 3
L as
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follows:

V 3
L =



1 4 1 0 0 1 2 0 2 3

0 0 0 0 0 0 0 0 0 0

0 4 0 0 1 0 4 0 4 5

1 5 0 0 6 1 5 3 3 10

1 1 1 0 0 1 1 0 1 0

1 2 1 0 0 1 1 0 1 1

1 1 1 0 0 1 1 0 0 0

1 2 1 0 0 1 1 0 2 1

0 3 0 0 4 0 4 1 3 7

1 2 0 0 2 1 1 2 0 3


The form of the cycle of length 5 is (i0 − j1 − k − i1 − j0). We have i0 = 3, k = 7,

j0 = 9, satisfying V 2
L (3,7)> 0, V 3

L (7,3)> 0, V 2
L (7,9)> 0, V 3

L (9,7)> 0 and VL(9,3) = 1.

For α = 1, we have to find out i1 and j1 where i1 = 10 and j1 = 8 with V 3
L (3,10) > 0,

V 2
L (10,3)> 0, VL(7,10) = 1, V 2

L (9,8)> 0, V 3
L (8,9) > 0 and VL(8,7) = 1. After that it is

confirm VL(10,9) = 1 and VL(3,8) = 1. Then we have cycle of length 5 is (3− 8− 7−

10− 9). Similarly cycle of length 5 are obtained i.e (3− 6− 5− 10− 9), (1− 8− 10−

9−3), (1−5−10−9−3),and (5−7−10−9−6).

Next we will try to find the cycle of length 6. The form of the cycle of length 6 is

(i0− i1− i2− j0− j1− j2). We have i0 = 1 j0 = 10 with V 3
L (1,10)> 0, V 3

L (10,1)> 0. For

α = 1 we have to find the vertices i1 = 5 and j1 = 9 satisfying step (2.3) of algorithm for

even length cycles [138] satisfying VL(1,5) = 1, V 3
L (5,9)> 0, V 3

L (9,5)> 0, VL(10,9) = 1.

Similarly, for α = 2 we have i2 = 7 and j2 = 3 satisfying step (2.4) (algorithm of even

length cycles [138]) i.e. VL(5,7) = 1, V 3
L (7,3) > 0, V 3

L (3,7) > 0, VL(9,3) = 1. After

that it is confirm VL(7,10) = 1 and VL(3,1) = 1. Then we have cycle of length 6 is

(1−5−7−10−9−3). Other cycle of length 6 are given by (1−8−7−10−9−3), (3−

6−5−7−10−9), (3−8−5−7−10−9),and (1−8−5−10−9−3). Similarly, one

cycle of length 7 is found that is (1−8−5−7−10−9−3). There is no cycle of length

8, 9 and 10 is detected. For easy understanding, all the cycles of VL are presented in Table

3.7.

Similarly the possible cycles of the upper vertex matrix VU are given in table 3.8.

Since both the lower and upper matrix VL and VU are inconsistent, therefore IMPR R̃4

is also inconsistent. In this example, from table 3.7 and 3.8, the path 2−7, 3−4, 9−10

which cover all the cycle. If we will change the pair (3,4) to (4,3), (2,7) to (7,2), (9,10)

to (10,9), in the original IMPR R̃4, then the lower vertex matrix VL and the upper vertex



74

Table 3.7: All possible cycle of VL

Length Cycles

3 (1 10 9), (6 10 9), (7 10 9)

4 (5 10 9 6), (1 10 9 3), (3 6 10 9), (3 7 10 9), (3 8 10 9)

5 (3 8 7 10 9), (3 6 5 10 9), (1 8 10 9 3),(1 5 10 9 3) , (5 7 10 9 6)

6 (1 5 7 10 9 3), (1 8 7 10 9 3), (3 6 5 7 10 9), (3 8 5 7 10 9), (1 8 5 10 9 3)

7 (1 8 5 7 10 9 3)

8 ∼ 10 nothing

matrix VU are both consistent. Then IMPR R̃4 is also consistent.

3.4.2 Isomorphism between Intuitionistic multiplicative preference

relations(IMPR) and asymmetric multiplicative preference re-

lation

This section discusses the equivalence between the set of IMPR and the set of asym-

metric multiplicative preference relation that leads to derive an asymmetric multiplicative

preference relation from a given IMPR. From the asymmetric multiplicative preference

relation, we obtained the vertex matrix and check for the consistency by using directed

graph in IMPR scenario.

Consider an intuitionistic multiplicative preference relation

R̃ =



(µ11,ν11) (µ12,ν12) · · · (µ1i,ν1i) · · · (µ1n,ν1n)

(µ21,ν21) (µ22,ν22) · · · (µ2i,ν2i) · · · (µ2n,ν2n)
...

...
. . .

...
. . .

...

(µi1,νi1) (µi2,νi2) · · · (µii,νii) · · · (µin,νin)
...

...
. . .

...
. . .

...

(µn1,νn1) (µn2,νn2) · · · (µni,νni) · · · (µnn,νnn)


The above relation can completely characterised using just its upper triangular part, be-
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Table 3.8: All possible cycle of VU

Length Cycles

3 (1 4 3), (2 7 4), (2 7 3), (3 9 4), (1 9 10), (6 9 10),

4 (2 7 4 3), (2 7 8 3), (1 9 4 3), (2 7 9 4), (3 9 10 6), (3 9 10 8),

(1 9 10 8), (3 9 10 7), (1 9 10 5), (5 6 9 10), (2 9 4 3)

5 (2 7 5 6 3), (2 7 5 6 4), (1 4 2 7 5),(1 4 2 7 3) , (1 4 2 7 8), (2 7 5 8 3),

(2 7 3 9 4), (1 4 2 9 10), (3 9 10 7 8), (1 9 10 8 3), (1 9 10 7 3), (3 9 10 7 4),

(1 9 10 6 3),(3 9 10 6 4), (1 9 10 5 8), (2 9 10 8 3), (2 9 10 7 3), (2 9 10 6 3),

(2 9 10 6 4), (2 9 10 7 4),

6 (2 7 5 6 4 3), (1 4 3 2 7 5), (1 4 2 7 5 8), (1 4 3 2 7 8), (1 4 2 7 8 3),

(1 9 4 2 7 3), (2 9 10 7 4 3), (1 9 4 2 7 8), (2 7 8 3 9 4), (1 9 4 2 7 5),

(2 7 5 6 9 4), (2 7 9 10 8 3), (1 4 2 9 10 5), (2 9 10 5 6 4), (1 4 3 9 10 8),

(1 9 10 7 4 3), (1 9 10 6 4 3), (3 9 10 5 6 4)

7 (1 4 2 7 5 6 3), (1 4 2 7 5 8 3), (1 9 4 2 7 8 3), (2 7 5 6 3 9 4),

(1 9 4 2 7 5 8), (1 4 2 9 10 6 3), (2 7 5 8 3 9 4), (1 9 4 3 2 7 5),

(2 7 5 6 9 4 3), (1 4 3 9 10 5 8), (1 9 10 5 6 4 3), (1 4 3 2 9 10 8),

(2 9 10 5 6 4 3), (1 4 2 9 10 5 8)

8 (1 9 4 2 7 5 6 3), (1 9 4 2 7 5 8 3), (1 9 4 3 2 7 5 8), (1 9 4 3 2 7 8 10)

(1 4 3 2 9 10 5 8) , (1 4 3 2 7 9 10 8)

9 (1 4 2 7 8 3 9 10 5), (1 9 10 5 6 4 2 7 8)

10 (1 9 10 5 6 4 3 2 7 8)

cause the intuitionistic multiplicative element (µi j,νi j) is the mirror image of (µ ji,ν ji).

UR̃ =



(µ11,ν11) (µ12,ν12) · · · (µ1i,ν1i) · · · (µ1n,ν1n)

(µ22,ν22) · · · (µ2i,ν2i) · · · (µ2n,ν2n)

. . .
...

. . .
...

(µii,νii) · · · (µin,νin)

. . .
...

(µnn,νnn)


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and this can be represented equivalently as the following multiplicative preference rela-

tion

R =



µ11 µ12 · · · µ1i · · · µ1n

ν12 µ22 · · · µ2i · · · µ2n
...

...
. . .

...
. . .

...

ν1i ν2i · · · µii · · · µin
...

...
. . .

...
. . .

...

ν1n ν2n · · · νin) · · · µnn


Since µi j = ν ji and νi j = µ ji then the above multiplicative preference relation becomes

R =



µ11 µ12 · · · µ1i · · · µ1n

µ21 µ22 · · · µ2i · · · µ2n
...

...
. . .

...
. . .

...

µi1 µi2 · · · µii · · · µin
...

...
. . .

...
. . .

...

µn1 µn2 · · · µni) · · · µnn


Let Q̃ denote the set of IMPRs, where

Q̃=
{

R̃ = (r̃i j)|∀i, j : r̃i j = (µi j,νi j),µi j,νi j ∈ [1/9,9],µii = νii = 1,µi j = ν ji,µ ji = νi j,0 ≤ µi jνi j ≤ 1
}

and ℜ be the set of multiplicative preference relations ℜ =
{

R = (ri j)|∀i, j : ri j ∈ [1/9,9]
}

Define a mapping f : [1/9,9]× [1/9,9] → [1/9,9] by the function f (x1,x2) = x1. We can

define the following mapping, F : Q̃ → ℜ between the set of IMPRs Q̃ and the set of

multiplicative preference relations, ℜ

{ f (r̃i j)}= {µi j} i.e R = F(R̃)

The following properties can be proved

Proposition 3.4.1. Function F is well defined, i.e. For given R̃ ∈ Q̃ ⇒ f (R̃) ∈ ℜ.

Proof. Let R̃ = (r̃i j) ∈ Q̃.

Here r̃i j = (µi j,νi j)⇒ f (r̃i j) = f (µi j,νi j) = µi j ∈ R

Proposition 3.4.2. Function F is one-one.

Proof. Let R̃1 = (r̃1
i j) and R̃2 = (r̃2

i j) are IMPR such that F(R̃1) = F(R̃2). Then we have

that

f (r̃1
i j) = f (r̃2

i j) ∀ i, j ⇔ µ1
i j = µ2

i j ∀ i, j.
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Because of the conditions of µ1
i j = ν1

ji and µ2
i j = ν2

ji, then it is obvious that ν1
i j = ν2

i j, ∀ i, j

Therefore, we have that

(µ1
i j,ν1

i j) = (µ2
i j,ν2

i j)⇔ R̃1 = R̃2 ∀ i, j

For the function to be onto, the following conditions to be verified:

∀R ∈ ℜ ∃ R̃ ∈ Q̃ : F(R̃) = R.

By the definition of F and Q̃, we have that R = (ri j) = (µi j) satisfies:

0 ≤ ri jr ji = µi jµ ji ≤ 1.

Thus R is asymmetric multiplicative preference relation that proves the range of the func-

tion F is the subset of multiplicative preference relations which are asymmetric.

Theorem 3.4.1. The set of intuitionistic multiplicative preference relations is isomorphic

to set of asymmetric multiplicative preference relations.

Proof. We know that when R̃ ∈ Q̃ has hesitancy degree always zero, then we have that:

µi jνi j = 1, ∀ i, j (3.4.2)

In this case, F(R̃) = R is also reciprocal, i.e. ri jr ji = 1 ∀ i, j. The proof of this is quite

simple as we have the following:

∀ i, j : ri j = f (r̃i j) = µi j ∧ r ji = f (r̃ ji) = µ ji.

Since R̃ ∈ Q̃ then we have that µ ji = νi j∀i, j and by using equation 3.4.2 it is ri jr ji =

µi jµ ji = µi jνi j = 1 ∀ i, j.

Example 3.4.5. Isomorphic asymmetric multiplicative preference relation of IMPR of ex-
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ample 3.4.2 is

IR̃2
=



1 5
3 7 3 5

3 1 1
4

1
4 1 5

3
5
3

3
5

1
3

1
4

1
9

1
4 1 1 1

4
1
3

1
9

1
7

1
4

3
5 1 3

5
1
3

1
9

1
7 1 5

3
3
5 1 1

3
1
7

3
5 1 3 3 3 1 1

7
5
3 3 7 7 3 3 1


The vertex matrix of above asymmetric MPR is

V =



0 1 1 1 1 0 0

0 0 1 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 1 1 0 0

1 1 1 1 1 1 0


By using the algorithm of odd and even length cycle [138], there is no cycle is present in

the vertex matrix V . Hence R̃2 is consistent. Also we can directly see from the figure 3.9.

Figure 3.9: Directed graph of exam-
ple 3.4.5

Also same isomorphism approach is applied in incomplete IMPRs scenario.
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Example 3.4.6. Isomorphic asymmetric MPR of of example 3.4.3 is

IR̃3
=



1 1
5 5 ∗ 1

9 2

2 1 ∗ 1
4

1
2 3

1
6 ∗ 1 ∗ 6 ∗

∗ 1
5 ∗ 1 1

5 ∗

8 1
3

1
7 4 1 ∗

1
6

1
5 ∗ ∗ ∗ 1


Vertex matrix of the asymmetric MPR, IR̃3

is

V =



0 0 1 0 0 1

1 0 0 0 0 1

0 0 0 0 1 0

0 0 0 0 0 0

1 0 0 1 0 0

0 0 0 0 0 0


Using the algorithm [138], the is one cycle of length 3 i.e. (1−3−5) is present. There-

fore, R̃3 is inconsistent. In this example, if we will change the pair (3,5) to (5,3) in the

Figure 3.10: Directed graph of 3.4.6

original incomplete IMPR R̃3, then it is consistent.
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Example 3.4.7. Isomorphic asymmetric MPR of example 3.4.4 is

IR̃4
=



1 ∗ 1
2

1
3 3 ∗ ∗ 8

3
1
7 5

∗ 1 2
3

1
8

1
4 ∗ 1

5 ∗ 1
3 ∗

1
5 0.6 1 3

5 ∗ 2 4 7 1
8 ∗

2 1
2

2
3 1 ∗ 3 5 ∗ 2 ∗

1
6 1 ∗ ∗ 1 1

8 8 1
6 ∗ 4

∗ ∗ 1
2

1
7 7 1 ∗ ∗ 1

5 2

∗ 5 1
8

1
6

1
9 ∗ 1 1

9
1
7 4

1
8 ∗ 1

8 ∗ 3 ∗ 6 1 ∗ 6

4 3 5 1
2 ∗ 4 2 ∗ 1 1

3
1
5 ∗ ∗ ∗ 1

5
1
3

1
8

1
6 2 1


and the vertex matrix of IR̃4

is

V =



0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0

1 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 1 0 0 1

1 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 0


By using the algorithm of odd and even length cycle [138], the corresponding cycles are

given in table 3.9,

Therefore, R̃4 is inconsistent. In table 3.9 it is conclude the path 9− 10 that cover all

the cycle. If we will change the pair (9,10) to (10,9), in the original IMPR R̃4, then R̃4 is

consistent.

3.4.3 Comparison between two different Method using graphical ap-

proach:

In example 3.4.2, R̃2 is inconsistent according to first method has no cycle found in the

lower vertex matrix and one cycle of length 3 i.e (3− 5− 4) found in the upper vertex

matrix. But it is consistent according to second method. To suggest the cause of incon-
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Figure 3.11: Directed graph of Ex-
ample 3.4.7

Table 3.9: All possible cycle of V

Length Cycles

3 (1 10 9), (6 10 9), (7 10 9)

4 (5 10 9 6), (1 8 10 9), (1 5 10 9), (3 7 10 9), (3 8 10 9), (3 6 10 9)

5 (3 8 7 10 9), (3 6 5 10 9), (1 8 7 10 9),(1 8 5 10 9),

(5 7 10 9 6), (3 8 5 10 9), (1 5 7 10 9)

6 (1 8 5 7 10 9), (5 7 10 9 3 6), (3 6 5 7 10 9), (3 8 5 7 10 9), (5 7 10 9 3 8)

7−10 nothing

sistency in first method, we will change the path (3,4) to (4,3) in the original IMPR R̃2,

then both the lower and upper vertex are consistent. Therefore R̃2 is consistent. From the

two approach we have conclude that second method is better than first method.

In example 3.4.3, R̃3 is inconsistent according to first method has one cycle found i.e

(1−3−5) in the lower vertex matrix and one cycle of length 3 i.e. (1−5−3) is found in

the upper vertex matrix. Also according to second method R̃3 is inconsistent where one

cycle is found in isometric matrix i.e. (1− 3− 5). In both the methods the path 3− 5

which cover the cycle. We have to choose the couple to eliminate the cycle. In this case

if we will change the pair (3,5) to (5,3) in the original IMPR R̃3, then both the lower

and upper vertex are consistent. Then IMPR R̃3 is also consistent. Therefore method 2 is

better than method 1 because less no of cycle is found in method 2.

In example 3.4.4, According to first method, 19 cycles are found in the lower vertex
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matrix VL and 78 cycles are found in VU that are given in table 3.7 and 3.8. Similarly

according to second method, 21 cycles are found that are given in table 3.9. From the first

method, we conclude that if we change the path 9− 10, 4− 3, and 2− 7 then the IMPR

R̃4 is consistent. But according to second method, if we will change the pair (9,10) to

(10,9), in the original IMPR R̃4, then R̃4 is consistent. Therefore, second method is better

than first method.

3.5 Conclusion

In this chapter, we have introduced a new transitivity property of IMPR. Based on this,

we have presented two approaches for completing incomplete IMPRs. In the first ap-

proach, missing element can be calculated by using the new transitivity property, and

an optimization model has been developed to adjust the initials values. Also goal pro-

gramming model is developed to calculate the unknown element based on new transitivity

property. Also, we have compared our method with Jiang et al. [143] and Meng and

Chen [169] method.

In the second approach, we have proposed two different methods to get the characteri-

zation of the consistency for IMPR. In the first method, we propose an algorithm to check

the consistency of IMPR by using the cycles of various length in a directed graph and

same procedure is applied for incomplete IMPRs also. The second method proves iso-

morphism between the set of IMPRs and the set of asymmetric multiplicative preference

relations. Also, consistency property is then checked for asymmetric preference relation

using directed graph that is used to get the consistency of IMPR.



Chapter 4

Acceptably Consistent Incomplete

Interval-Valued Intuitionistic

Multiplicative Preference Relations

In this chapter1, We study the consistency property, and especially the acceptably consis-

tent property, for incomplete interval-valued intuitionistic multiplicative preference rela-

tions. We propose a technique which first estimates the initial values for all missing entries

in an incomplete interval-valued intuitionistic multiplicative preference relation and then

improves them by a local optimization method. Two examples are presented in order to

illustrate applications of the proposed method in group-decision making problems.

1The content of this chapter is based on research paper “Acceptably Consistent Incomplete Interval-
Valued Intuitionistic Multiplicative Preference Relations”, Soft Computing, Springer, 22, 7463– 7477
(2018).
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4.1 Introduction

Multi-criteria group decision making (MCGDM) problems aim to rank a finite number

of alternatives based on specific criteria relevant to the characteristics of alternatives in

context. The issues require deliberations from experts/decision makers and stakeholders

to compare these alternatives on the pre-identified criteria. Different techniques for ag-

gregating the elicited information thus received dates back to the classical works of [173]

(ELECTRE), Saaty ( [57], [58]) (AHP), Brans and Vincke [174] (PROMETHEE), Hwang

and Yoon [175] (TOPSIS), to name a few. One can refer to the good texts (Figueira et

al. [176]; Triantaphyllou [177]) for a detailed description of these methods along with

numerous real-life case studies. The process of comparing different alternatives naturally

embed the preference of an alternative over the other alternatives by an expert and hence

preference relations are an integral part of such problems. Because of varying evaluation

scales across the problems, the preference relations have been studied in more than one

way, for instance, see ( [60], [62], [66], [131], [134], [142], [143], [167], [178]) and many

more.

In any of the framework mentioned above, although the scale and the domain of the

preference relations may differ, yet an expert has to populate n(n−1)/2 judgments for

presenting a complete preference relation matrix of order n. It is indeed an enormous

task especially when n is reasonably large. Rezaei [179] proposed the best-worst multi-

criteria decision-making method which reduces the number of pairwise comparisons of n

alternatives to 2n−3. The technique requires identifying a priori the best among all and

the worst among all criteria.

The above-cited works assume that an expert is always able to provide information on

each entry in a preference relation matrix. It may not be the case forever. An expert may

not have expertise on a particular criterion or considers two alternatives incomparable

on satisfied criterion(a). An extreme example is when an expert does not provide any

information about an alternative on a particular criterion. This situation is an ignorance in

the literature. As a result, an expert declines to make a comparison between two choices

leading to an incomplete preference relation, that is, a preference relation matrix with

missing entries. The critical issue to address is how to apply the MCGDM methods in

incomplete preference relations? The majority of the studies in the literature suggested

carrying out a completion process before the aggregation of information in an MCGDM

problem.
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To the best of our literature survey, there does not exist any study in the literature guid-

ing how to populate the missing entries in an interval-valued intuitionistic multiplicative

preference relation (IVI-MPR). This research gap incentivizes us to fixate on this topic in

the present study.

The present chapter aims to analyze the class of IVI-MPR and incomplete IVI-MPR

preference relations. The proposed work demonstrates an approach to determine the miss-

ing elements in an incomplete IVI-MPR. The procedure comprising of the estimating step

(based on the elementary connecting paths of length two) and the adjusting step (requir-

ing to solve an optimization problem iteratively) is formulated to determine all missing

elements in an incomplete IVI-MPR.

The remainder of the chapter unfolds as follows. Section 4.2 reviews the concepts of

IVI-MPR, acceptably consistent IVI-MPR and incomplete IVI-MPR. In Section 4.3, a

two-step procedure is devised to compute the missing entries of IVI-MPR. The algorithm

uses the geometric mean to calculate the initial estimates of all missing entries in the first

step called ‘estimating step.’ After that, an optimization model is presented to improve

these initial estimates in the second step called the ‘adjusting step.’ Section 4.4 presents

an application of incomplete IVI-MPR to MCGDM problems together with illustrative

examples. Section 4.5 makes a comparative analysis of the proposed methodology with

the two existing works relevant to the context. The paper concludes in Section 4.6.

4.2 Preliminaries

Jiang et al. (2014) introduced the concept of interval-valued intuitionistic multiplicative

set (IVI-MS) as follows.

D̃ = {⟨x, µ̃D(x), ν̃D(x)⟩ | x ∈ X},

where µ̃(x)⊆ [1/9,9] and ν̃(x)⊆ [1/9,9] are intervals satisfying

0 < sup
x∈X

µ̃(x). sup
x∈X

ν̃(x)≤ 1.

The pair (µ̃D(x), ν̃D(x)) is called interval-valued intuitionistic multiplicative number (IVI-

MN).

Based on the result of Jiang et al. [180], IVI-MPR is introduced where the preference

degree and the non-preference degree of xi over x j are now interval-valued. Let us denote
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r̃i j(xi,x j)= ([µ
i j
(xi,x j),µ i j(xi,x j)] , [ν i j(xi,x j) ,ν i j(xi,x j)] ) by r̃i j =([µ

i j
,µ i j] , [ν i j,ν i j] ).

Definition 4.2.1. (IVI-MPR) An IVI-MPR is defined as R̃IV I = [r̃i j]n×n, where

r̃i j = ([µ
i j
,µ i j] [ν i j,ν i j] ), i, j ∈ N,

and [µ
i j
, µ i j] indicates the interval of certainty degree to which xi is preferred to x j , while

[ν i j, ν i j] is the interval of certainty degree to which xi is not preferred to x j , and they

satisfy the following characteristics:

1/9 ≤ µ
i j
≤ µ i j ≤ 9, 1/9 ≤ ν i j ≤ ν i j ≤ 9 ,

0 ≤ µ i j ν i j ≤ 1,

[µ
i j
, µ i j] = [ν ji , ν ji] , [ν i j , ν i j] = [µ

ji
, µ ji] ,

[µ
ii
, µ ii] = [ν ii , ν ii] = [1,1] , ∀ i, j ∈ N.

If we define consistency for IVI-MPR by simply extending the relation in (3.2.1) as

follows:

( [µ
i j
,µ i j] , [ν i j,ν i j] ) = ([µ

ik
,µ ik] [µk j

,µk j] , [ν ik,ν ik] [νk j,νk j]),

i ≤ k ≤ j , i, j, k ∈ N , (4.2.1)

where,

µ
i j
= min{µ

ik
µ

k j
, µ

ik
µk j, µ ikµ

k j
, µ ikµk j}, µ i j = max{µ

ik
µ

k j
, µ

ik
µk j, µ ikµ

k j
, µ ikµk j},

ν i j = min{ν ikνk j, ν ikνk j, ν ikνk j, ν ikνk j}, ν i j = max{ν ikνk j, ν ikνk j, ν ikνk j, ν ikνk j} ,

then, an IVI-MPR R̃IV I may not be consistent according to (4.2.1).

Example 4.2.1. Consider an IVI-MPR described by

R̃IV I =


([1,1], [1,1]) ([1

6 ,
1
5 ], [3,4]) ([1

3 ,
1
3 ], [3,3])

([3,4], [1
6 ,

1
5 ]) ([1,1], [1,1]) ([1

4 ,
1
3 ], [

1
5 ,

3
2 ])

([3,3], [1
3 ,

1
3 ]) ([1

5 ,
3
2 ], [

1
4 ,

1
3 ]) ([1,1], [1,1])

 .
We have

r̃12 r̃23 = ([µ
12
,µ12][µ23

,µ23] , [ν12,ν12][ν23,ν23])

= ([0.04167,0.067] , [0.6,6] ) ̸= r̃13 ,
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hence, the above R̃IV I is not consistent according to equation 4.2.1.

To overcome the limitation, imposed by the restriction on indices in the transitivity

property, we discuss a more general consistent property of an IVI-MPR by splitting an

IVI-MPR into matrices.

An interval-valued intuitionistic multiplicative number (IVI-MN) r̃i j =([µ
i j
,µ i j] , [ν i j,ν i j

]) contains two parts, [µ
i j
,µ i j] is the preferred information and [ν i j,ν i j] is the non-

preferred information. In this sense, an IVI-MPR R̃IV I = [r̃i j]n×n can be splitted into

two matrices, A(1) = [a(1)i j ]n×n and A(2) = [a(2)i j ]n×n expressing the preferred information

and the non-preferred information in R̃IV I , respectively. The concrete forms are listed as

follows.

a(1)i j =



[µ
i j
,µ i j] i < j

[
1,1
]

i = j

[ 1
ν i j

,
1

ν i j

]
i > j

and a(2)i j =



[ν i j,ν i j] i < j

[
1,1
]

i = j

[ 1
µ i j

,
1

µ
i j

]
i > j

(4.2.2)

For instance, going back to example in (4.2.1) of IVI-MPR R̃IV I , we have

A(1) =



[1,1]
[1

6 ,
1
5

] [1
3 ,

1
3

]
[
5,6
]

[1,1]
[1

4 ,
1
3

]
[
3,3
] [

3,4
]

[1,1]


, A(2) =



[1,1]
[
3,4
] [

3,3
]

[1
4 ,

1
3

]
[1,1]

[1
5 ,

3
2

]
[1

3 ,
1
3

] [2
3 ,5
]

[1,1]


.

Definition 4.2.2. [104] An interval-valued multiplicative reciprocal matrix S = [s̃i j]n×n =

([s−i j ,s
+
i j ])n×n, where

S =



[
1,1
] [

s−12,s
+
12
]

· · ·
[
s−1n,s

+
1n

]
[
s−21,s

+
21
] [

1,1
]

· · ·
[
s−2n,s

+
2n

]
...

... · · · ...[
s−n1,s

+
n2
] [

s−n2,s
+
n2
]

· · ·
[
1,1
]


,

with 0 ≤ s−i j ≤ s+i j , s−i j s+ji = 1 , s+i j s−ji = 1, is said to be consistent if the two multiplicative

reciprocal matrices, S(1) = [s(1)i j ]n×n and S(2) = [s(2)i j ]n×n, obtained by splitting S as follows,
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are consistent, where

s(1)i j =


s+i j i < j

1 i = j

s−i j i > j

and s(2)i j =


s−i j i < j

1 i = j

s+i j i > j .

(4.2.3)

Here, by consistency of matrices S(1) and S(2), we mean, that they both satisfy the

transitivity property s(1)i j = s(1)ik s(1)k j and s(2)i j = s(2)ik s(2)k j , ∀ i, j,k ∈ N.

Motivated by Definition 4.2.2, we propose to further split the matrix A(1) into C(q), q =

1,2, and matrix A(2) into C(q), q = 3,4, in spirit of (4.2.3). The elements in C(q) satisfy

the relation c(q)i j c(q)ji = 1 , ∀ i, j ∈ N, and q = 1,2,3,4. Thus, [c(q)i j ]n×n , q = 1,2,3,4, are

four MPRs obtained from an IVI-MPR R̃IV I .

Definition 4.2.3. An IVI-MPR R̃IV I = [r̃i j]n×n = ([µ
i j
,µ i j] , [ν i j ,ν i j])n×n, is said to be

consistent if the four MPRs C(q) , q = 1,2,3,4, obtained using (4.2.2) and (4.2.3), are

consistent, that means

c(q)i j = c(q)ik c(q)k j , ∀ i, j, k ∈ N, q = 1,2,3,4. (4.2.4)

Definition 4.2.4. An IVI-MPR R̃ = [r̃i j]n×n = ([µ
i j
,µ i j] , [ν i j ,ν i j] )n×n is called accept-

ably consistent if the four MPRs C(q), q = 1,2,3,4, obtained using (4.2.2) and (4.2.3), are

acceptably consistent; otherwise R̃IV I is called not acceptably consistent or inconsistent.

Consider an IVI-MPR given by

R̃IV I =



([1,1], [1,1]) ([3,4], [1
5 ,

1
4 ]) ([2,3], [1

9 ,
1
8 ])

([1
5 ,

1
4 ], [3,4]) ([1,1], [1,1]) ([2

3 ,
3
2 ], [

1
4 ,

1
2 ])

([1
9 ,

1
8 ], [2,3]) ([1

4 ,
1
2 ], [

2
3 ,

3
2 ]) ([1,1], [1,1])


.

This IVI-MPR is split into the following four MPRs

C(1) =


1 4 3
1
4 1 3

2
1
3

2
3 1

 , C(2) =


1 3 2
1
3 1 2

3
1
2

3
2 1


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C(3) =


1 1

4
1
8

4 1 1
2

8 2 1

 , C(4) =


1 1

5
1
9

5 1 1
4

9 4 1

 .

Observe C(1) and C(4) are not consistent whereas C(2) and C(3) are consistent (in spirit of

Definition 1.2.1). Moreover, CR < 0.1 for all four matrices. Hence R̃IV I is not consistent

but acceptably consistent.

Now, if we replace ν12 =
1
5 by ν12 =

1
7 in R̃IV I , then the CR of the MPR C(4) is 0.1392;

and then R̃IV I is not acceptably consistent.

We next propose to extend the above situation to incomplete IVI-MPR where some

elements are missing in the preference relation matrix.

Definition 4.2.5. An IVI-MPR R̃IV I = [r̃i j]n×n = ([µ
i j
,µ i j] , [ν i j ,ν i j] )n×n is called an

incomplete IVI-MPR if some elements in it are missing, and all available elements satisfy

the characteristics of IVI-MPR stated in Definition 4.2.1.

Definition 4.2.6. An incomplete IVI-MPR R̃IV I = [r̃i j]n×n = ([µ
i j
,µ i j] , [ν i j ,ν i j] )n×n is

called consistent if all known elements of the associated four MPRs C(q) , q = 1,2,3,4,

satisfy condition in (4.2.4).

Definition 4.2.7. An incomplete IVI-MPR R̃IV I = [r̃i j]n×n = ([µ
i j
,µ i j] , [ν i j ,ν i j] )n×n is

called acceptably consistent if the associated four MPRs C(q), q= 1,2,3,4, are acceptably

consistent; otherwise, R̃IV I is called not acceptably consistent or inconsistent.

4.3 Complementing the Incomplete IVI-MPR

In this section, taking inspiration from the work of Jiang et al. [143], we propose a

two-step procedure to calculate all missing entries in an IVI-MPR. The idea is first to

estimate their values using the simple connecting path approach and subsequently improve

upon them using an optimization problem. In the latter step, an optimization problem is

constructed so to achieve transitivity and hence acceptably consistent resultant complete

IVI-MPR. The objective function of the optimization problem is designed to minimize

the overall absolute error occurring in the transitivity equation of the logarithmic values

of the (missing) entries in an IVI-MPR. The detailed description of the procedure is laid

down in the following subsection.
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4.3.1 Estimating Step

Let Ω be the set of all known elements in IVI-MPR R̃IV I = [r̃i j]n×n; Γ = {(i, j) ∈ N ×

N | r̃i j is missing}; the associated four MPRs be C(q) = [c(q)i j ]n×n , q = 1,2,3,4; Ω(q) be the

set of all known elements in C(q) , q= 1,2,3,4; Γ(q)= {(i, j)∈N×N |c(q)i j is missing} , q=

1,2,3,4. Then, Ω =
∪4

q=1 Ω(q) and Γ =
∪4

q=1 Γ(q).

The missing value ∗̃i j = ([c(∗2)
i j ,c(∗1)

i j ] , [c(∗4)
i j ,c(∗3)

i j ]) can be estimated by

c(∗q)
i j =

(
∏

k1∈MC(q)
i j

(
c(q)ik1

c(q)k1 j

)) 1

mc(q)i j , q = 1,2,3,4, (4.3.1)

where MC(q)
i j = {k1 |c

(q)
ik1
, c(q)k1 j ∈ Ω(q)}, and mc(q)i j is the cardinality of the set MC(q)

i j , q =

1,2,3,4.

If the length of the path cp(ℓ+1) (as discussed in section 3.3) increases, then the value

of c(∗q)
i j ≡ ∗̃i j decreases. It means that the value of ∗i j is largely determined by the paths

of smaller lengths. The elementary connecting paths of length 2 are indeed the smallest

one and hence significant contributors to estimating the value of ∗̃i j. This idea is used

in formulating (4.3.1). We shall be denoting the initial values, obtained from (4.3.1), by

∗̃((0))i j , i, j ∈ N.

4.3.2 Adjusting Step: Optimization Model

If R̃IV I is an incomplete IVI-MPR, then at least one of the associated four MPRs C(q) is

an incomplete MPR. In other words, an incomplete IVI-MPR R̃IV I can be complemented

by complementing C(q). This task is proposed to be accomplished by solving an optimiza-

tion problem.

If R̃IV I is consistent then by Definition 4.2.3, (4.2.4) holds, and hence we have,

logc(q)i j = logc(q)ik + logc(q)k j ,

i, j, k ∈ N, i ̸= j ̸= k, q = 1,2,3,4. (4.3.2)

Using this, we propose to solve the scalar-optimization problem Model 4.1 which aims at

minimizing the total absolute error in (4.3.2). The formulation of Model 4.1 is in the spirit

to ensure that the optimal values lie in the interval range of IVI-MPR. Also, the optimal

values of the missing entries will bring the complete IVI-MPR more closer (if not exactly)

to acceptably consistent.
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(Model 4.1) min ∑4
q=1 ∑(i, j)∈Γ(q) ∑k∈Ω(q) εc(q)

i jk

subject to

εc(q)
i jk −| logc(q)i j − (logc(q)ik + logc(q)k j )| = 0 q = 1,2,3,4,

c(q)i j ≥ (1/9) q = 1,2

c(q)i j ≤ 9 q = 3,4

c(q)i j c(q+2)
i j ≤ 1 q = 1,2, i, j, k ∈ N, i ̸= j ̸= k

c(q+1)
i j ≤ c(q)i j q = 1,3, i < j, i, j ∈ N

c(q+1)
i j ≥ c(q)i j q = 1,3, i > j, i, j ∈ N.

Starting from the initial values c(∗q)((0))
i j for c(∗q)

i j , (i, j) ∈ Γ(q), q = 1,2,3,4, Model 4.1

is iteratively solved to generate all unknown elements in the incomplete MPRs C(q) , q =

1,2,3,4. Consequently the complete IVI-MPR R̃IV I can be obtained.

The following two examples illustrate the above methodology for finding the missing

elements in an IVI-MPR.

Example 4.3.1. Consider a simple case involving an incomplete IVI-MPR with at most

one missing entry in C(q), q = 1,2,3,4.

R̃IV I =


([1,1], [1,1]) ([1/6,1/5], [∗,∗]) ([∗,1/3], [3,3])

([∗,∗], [1/6,1/5]) ([1,1], [1,1]) ([1/4,∗], [1/5,3/2])

([3,3], [∗,1/3]) ([1/5,3/2], [1/4,∗]) ([1,1], [1,1])


where ∗ denotes the missing element. Using (4.2.2) and (4.2.3), the associated four MPRs

are as follows:

C(1) =


1 1/5 1/3

5 1 c(∗1)
23

3 1/c(∗1)
23 1

 ,C(2) =


1 1/6 c(∗2)

13

6 1 1/4

1/c(∗2)
13 4 1

 ,

C(3) =


1 c(∗3)

12 3

1/c(∗3)
12 1 3/2

1/3 2/3 1

 ,C(4) =


1 c(∗4)

12 3

1/c(∗4)
12 1 1/5

1/3 5 1

 .
The initial values of the missing elements are calculated using (4.3.1) as follows:

c(∗1)((0))
23 = c(1)21 c(1)13 = 1.67, c(∗2)((0))

13 = c(2)12 c(2)23 = 0.041,

c(∗3)((0))
12 = c(3)13 c(3)32 = 2, c(∗4)((0))

12 = c(4)13 c(4)32 = 15.

Sometimes the initial values do not lie in the range of IVI-MPRs; like the values

c(∗2)((0))
13 and c(∗4)((0))

12 in above example. To adjust these initial values, we solve prob-
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lem (Model 4.1) using LINGO software, and after 34 iterations we obtain

c(∗1)
23 = 0.667, c(∗2)

13 = 0.111, c(∗3)
12 = 5, c(∗4)

12 = 5.

Therefore, the complete IVI-MPR is

R̃IV I =


([1,1], [1,1]) ([1/6,1/5], [5,5]) ([0.111,1/3], [3,3])

([5,5], [1/6,1/5]) ([1,1], [1,1]) ([1/4,0.667], [1/5,3/2])

([3,3], [0.111,1/3]) ([1/5,3/2], [1/4,0.667]) ([1,1], [1,1])

 .

Since the CR for C(q), q = 2,4, are greater than 0.1, the complete IVI-MPR R̃ is not

acceptably consistent.

Example 4.3.2. Consider an incomplete IVI-MPR with more than one missing element in

the associated MPRs.

R̃IV I =


([1,1], [1,1]) ([∗,∗], [∗,∗]) ([0.2,0.4], [0.3,0.5]) ([0.2,0.4], [0.4,∗])

([∗,∗], [∗,∗]) ([1,1], [1,1]) ([0.2,0.3], [∗,0.7]) ([∗,0.4], [0.4,0.6])

([0.3,0.5], [0.2,0.4]) ([∗,0.7], [0.2,0.3]) ([1,1], [1,1]) ([0.2,0.2], [0.5,0.7])

([0.4,∗], [0.2,0.4]) ([0.4,0.6], [∗,0.4]) ([0.5,0.7], [0.2,0.2]) ([1,1], [1,1])

 .

The associated four MPRs are as follows:

C(1) =


1 c(∗1)

12 0.4 0.4

1/c(∗1)
12 1 0.3 0.4

1/0.4 1/0.3 1 0.2

1/0.4 1/0.4 1/0.2 1

 ,C(2) =


1 c(∗2)

12 0.2 0.2

1/c(∗2)
12 1 0.2 c(∗2)

24

1/0.2 1/0.2 1 0.2

1/0.2 1/c(∗2)
24 1/0.2 1

 ,

C(3) =


1 c(∗3)

12 0.5 c(∗3)
14

1/c(∗3)
12 1 0.7 0.6

1/0.5 1/0.7 1 0.7

1/c(∗3)
14 1/0.6 1/0.7 1

 ,C(4) =


1 c(∗4)

12 0.3 0.4

1/c(∗4)
12 1 c(∗4)

23 0.4

1/0.3 1/c(∗4)
23 1 0.5

1/0.4 1/0.4 1/0.5 1

 .

The following initial values of missing elements are calculated using (4.3.1)

c(∗1)((0))
12 = [(c(1)13 c(1)32 )(c

(1)
14 c(1)42 )]

1/2 = 1.1547, c(∗2)((0))
12 = c(2)13 c(2)32 = 1,

c(∗2)((0))
24 = c(2)23 c(2)34 = 0.04, c(∗3)((0))

12 = c(3)13 c(3)32 = 0.7143, c(∗3)((0))
14 = c(3)13 c(3)34 = 0.35,

c(∗4)((0))
12 = c(4)14 c(4)42 = 1 ,c(∗4)((0))

23 = c(4)24 c(4)43 = 0.8.

In this case c(∗2)((0))
24 = 0.04 does not satisfies the condition of IVI-MPRs. To adjust

the initial value solving problem (Model 4.1) in LINGO, after 42 iteration yield, c(∗1)
12 =

1, c(∗2)
12 = 1, c(∗2)

24 = 0.111, c(∗3)
12 = 0.714, c(∗3)

14 = 0.4, c(∗4)
12 = 0.714, c(∗4)

23 = 0.7.
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It is observed that C(q), q= 2,3,4, are acceptably consistent while CR of C(1)= 0.155>

0.1, hence it is not acceptably consistent.

4.4 Acceptably Consistent Multi-Criteria Group Decision

Making

For a more informed recommendation, it is essential to have a collective opinion of

experts and participating stakeholders. Though GDM mostly increases the complexity of

decision making yet, it is unavoidable in many strategic decisions. In this section, we aim

to extend the results of the earlier section to GDM.

Consider m decision makers/experts and their weight vector w = (w1, . . . ,wm)
t , with

wi ≥ 0, and ∑m
i=1 wi = 1. Set, M = {1, . . . ,m}. Suppose each decision maker eg (g ∈ M)

provides a preference relation matrix in the form of IVI-MPR

R̃IV I, g = [r̃i j,g]n×n = ([µ
i j,g

,µ i j,g], [ν i j,g,ν i j,g] )

. Before proceeding ahead, we must verify whether each preference matrix R̃IV I,g is

consistent. This can be accomplished by invoking the following result from Elsner et

al. [181](see, Theorem 1) on acceptably consistent aggregation of MPRs.

Proposition 4.4.1. Let m experts provide n×n acceptably consistent MPRs, T1 = [t(1)i j ], . . . ,

Tm = [t(m)
i j ]. Let the importance (or weight) of the g-th expert be γg, γg ∈ (0,1), g =

1, . . . ,m, ∑m
g=1 γg = 1. Then, the weighted geometric mean aggregated MPR, T = [ti j]n×n =

T γ1
1 T γ2

2 · · · T γm
m , where ti j =

m

∏
g=1

(
t(g)i j
)γg, ∀ (i, j)∈ N×N, is an acceptably consistent MPR.

Proof. Since Tg , g = 1, . . . ,m, are acceptably consistent MPRs, by Definition 1.2.2, we

have

λTg,max < 0.1(n−1)RIn +n, g = 1, . . . ,m ,

where λTg,max denotes the maximum eigenvalue of the MPR matrix Tg. The above along

with ∑m
g=1 γg = 1, yields

m

∏
g=1

(λTg,max)
γg < 0.1(n−1)RIn +n. (4.4.1)
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Invoking the following result from (Elsner et al. [181]),

ρ(T ) = ρ(T γ1
1 T γ2

2 · · ·T γm
m )≤ ρ(T1)

γ1ρ(T2)
γ2 · · ·ρ(Tm)

γm ,

where ρ(Tg) is the spectral radius of the MPR matrix Tg, along with (4.4.1), we get,

λT ,max < 0.1(n−1)RIn +n,

yielding acceptably consistent MPR T .

Remark 4.4.1. It may so happen that each MPR is not acceptably consistent but the

weighted geometric mean aggregated MPR is acceptably consistent.

Let m decision makers provide n×n MPRs out of which k MPRs are acceptably consis-

tent and remaining m− k are not acceptably consistent. Suppose T1, . . . ,Tk are acceptably

consistent while Tk+1, . . . ,Tm are not acceptably consistent. By above Proposition, for

any scalars γ1, . . . ,γk, all in (0,1) with their sum being 1, the weighted geometric mean

aggregated MPR T = T γ1
1 T γ2

2 · · ·T γk
k is acceptably consistent.

Petra et al. [182] provided the following sufficient condition for the weighted geomet-

ric mean aggregated MPR, constituted from the MPRs T , Tk+1, . . . ,Tm , to be acceptably

consistent, and that is,

(λT ,max)
δ (λTk+1,max)

δ1 · · ·(λTm,max)
δm−k

< (n−1)β RIn +n ,

where λT,max is the maximum eigenvalue of the MPR matrix T , and δ ,δ1, . . . ,δm−k, are s-

calars all in (0,1), with δ +∑m−k
g=1 δg = 1. Also, β is the threshold of acceptably consistent2

aggregated matrix.

Hence, we can identify scalars δ , δ1, . . . ,δm−k in (0,1) with their sum being 1, in such

a way that the weighted geometric mean aggregated MPR of the given m MPRs is accept-

ably consistent although some of the individual MPRs are not acceptably consistent.

2Saaty [183] showed that β = 0.05 and β = 0.08 are quite reasonable for n = 3 and n = 4, respectively,
for acceptably consistent aggregated matrix computed by geometric mean. Note, β = 0.1 in Definition
1.2.2.
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Consider the following 4×4 MPRs

T1 =


1 1 2 6

1 1 2 3

1/2 1/2 1 5

1/6 1/3 1/5 1

 , T2 =


1 2 3 4

1/2 1 3 2

1/3 1/3 1 2

1/4 1/2 1/2 1

 ,

T3 =


1 3 5 6

1/3 1 6 9

1/5 1/6 1 7

1/6 1/9 1/7 1

 , T4 =


1 4 3 6

1/4 1 7 8

1/3 1/7 1 6

1/6 1/8 1/6 1

 ,

T5 =


1 2 2 3

1/2 1 1 3

1/2 1 1 2

1/3 1/3 1/2 1


The maximum eigenvalues are respectively 4.14, 4.1179,4.6169, 4.7867, 4.0458. Then,

three MPRs T1, T2 and T5 are acceptably consistent (with n = 4 and β = 0.08) while the

remaining two MPRs T3 and T4 are not so. Now, aggregating the acceptably consistent

MPRs with α1 = α2 = α3 =
1
3

. The aggregated matrix T is as follows:

T =


1 1.5874 2.2894 4.1601

1 1.8171 2.6207

1 2.7144

1


The MPR T has maximum eigenvalue λT ,max = 4.0386, and hence it is acceptably con-

sistent. Next, we choose scalars δ , δ1, δ2 so to satisfy the following conditions:

(4.0386)δ (4.6169)δ1(4.7867)δ2 < (n−1)β RI4

= 4.2136

δ +δ1 +δ2 = 1

δ , δ1, δ2 ≥ 0.
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This system has infinitely many solutions. One such solution is δ = 0.73, δ1 = 0.13, δ2 =

0.14.

Remark 4.4.2. For wg ≥ 0, g ∈ M, ∑m
g=1 wg = 1, it follows from Petra et al. [182] that

a sufficient condition for the weighted geometric mean aggregated MPR (matrix) C(q)
agg =(

C(q)
R̃1

)w1
· · ·
(

C(q)
R̃m

)wm
, to be acceptably consistent is that

m

∏
g=1

(
λ

C(q)
R̃g

,max

)wg
< (n−1)β RIn +n , (4.4.2)

where λ
C(q)

R̃g
,max

is the maximum eigenvalue of the MPR matrix C(q)
R̃g

, and β is the threshold

of acceptably consistent aggregated matrix.

Returning back to our main discussion, we propose an algorithm which identifies ac-

ceptably consistent IVI-MPR in a MCGDM scenario.

Algorithm 4.4.1. 1. Elicit g, g ∈ M, incomplete IVI-MPR

R̃IV I, t = [r̃i j,g]n×n = ([µ
i j,g

,µ i j,g], [ν i j,g,ν i j,g]), ∀ i, j ∈ N, and represent the miss-

ing elements by ∗.

2. Using (4.2.2) and (4.2.3), construct the incomplete MPRs C(∗q)
g , q = 1,2,3,4, g ∈

M.

3. The initial values of missing elements in C(∗q)
g , q = 1,2,3,4, g ∈ M, are calculated

using (4.3.1).

4. The initial values adjusted using the local optimization model (Model 4.1), and

obtain the complete MPRs C(q)
g , q = 1,2,3,4, g ∈ M.

5. Check the consistency of C(q)
g , q= 1,2,3,4, g∈M. If the consistency ratio of C(q)

g <

β , ∀ q = 1,2,3,4, g ∈ M, then use geometric mean 3 to aggregate the decision

matrices are corresponding to these MPRs.

Else, compute the weighted geometric mean matrix and test whether it is acceptably

consistent using (4.4.2).

The following example illustrates the algorithm.

3Aczél and Saaty [184] proved that to synthesize the group judgments, the geometric mean must be
used in order to preserve the reciprocal property, that is, ri jr ji = 1, ∀ i, j ∈ N, must hold in the resultant
aggregated matrix. Note that the weighted geometric mean preserves reciprocality on aggregation resulting
in an aggregated MPR, while the same gets distorted if instead arithmetic mean is used for aggregating two
or more MPRs.



97

Example 4.4.1. Suppose three experts eg , g= 1,2,3, with the weight vector w=(1/3,1/3,

1/3)t , provide their individual judgement on four alternatives in terms of incomplete IVI-

MPRs given by R̃IV I,g , g = 1,2,3, where the missing elements are marked distinctly.

R̃IV I,1 =


([1,1], [1,1]) ([∗,∗], [∗,∗]) ([0.4,0.6], [0.2,0.4]) ([0.2,0.3], [0.5,0.6])

([∗,∗], [∗,∗]) ([1,1], [1,1]) ([0.6,0.7], [∗,0.3]) ([0.4,0.7], [0.2,0.2])

([0.2,0.4], [0.4,0.6]) ([∗,0.3], [0.6,0.7]) ([1,1], [1,1]) ([0.5,∗], [0.2,0.3])
([0.5,0.6], [0.2,0.3]) ([0.2,0.2], [0.4,0.7]) ([0.2,0.3], [0.5,∗]) ([1,1], [1,1])



R̃IV I,2 =


([1,1], [1,1]) ([0.3,0.6], [0.3,0.4]) ([∗,∗], [∗,∗]) ([0.3,0.4], [0.2,0.2])

([0.3,0.4], [0.3,0.6]) ([1,1], [1,1]) ([0.5,0.5], [∗,∗]) ([0.2,0.5], [0.3,0.4])

([∗,∗], [∗,∗]) ([∗,∗], [0.5,0.5]) ([1,1], [1,1]) ([∗,∗], [0.2,0.5])
([1,2], [0.3,0.4]) ([0.3,0.4], [0.2,0.5]) ([0.2,0.5], [∗,∗]) ([1,1], [1,1])



R̃IV I, 3 =


([1,1], [1,1]) ([0.5,0.6], [0.3,0.4]) ([0.3,∗], [0.2,0.3]) ([∗,0.4], [0.2,0.5])

([0.3,0.4], [0.5,0.6]) ([1,1], [1,1]) ([0.6,0.7], [0.2,0.2]) ([∗,∗], [∗,∗])
([0.2,0.3], [0.3,∗]) ([0.2,0.2], [0.6,0.7]) ([1,1], [1,1]) ([0.3,0.5], [0.2,0.4])

([0.2,0.5], [∗,0.4]) ([∗,∗], [∗,∗]) ([0.2,0.4], [0.3,0.5]) ([1,1], [1,1])

 .
For the first expert preference relation matrix R̃IV I, 1, the four incomplete MPRs are ob-

tained using (4.2.2) and (4.2.3) as follows:

C(1)
R̃IV I, 1

=


1 c(∗1)

12 0.6 0.3

1/c(∗1)
12 1 0.7 0.7

1/0.6 1/0.7 1 c(∗1)
34

1/0.3 1/0.7 1/c(∗1)
34 1

 ,C(2)
R̃IV I, 1

=


1 c(∗2)

12 0.4 0.2

1/c(∗2)
12 1 0.6 0.4

1/0.4 1/0.6 1 0.5

1/0.2 1/0.4 1/0.5 1

 ,

C(3)
R̃IV I, 1

=


1 c(∗3)

12 0.4 0.6

1/c(∗3)
12 1 0.3 0.2

1/0.4 1/0.3 1 0.3

1/0.6 1/0.2 1/0.3 1

 ,C(4)
R̃IV I, 1

=


1 c(∗4)

12 0.2 0.5

1/c(∗4)
12 1 c(∗4)

23 0.2

1/0.2 1/c(∗4)
23 1 0.2

1/0.5 1/0.2 1/0.2 1

 .

The initial values are described as follows:

c(∗1)((0))
12 = ((c(1)13 c(1)32 )(c

(1)
14 c(1)42 ))

1/2 = 0.6060,

c(∗1)((0))
34 = ((c(1)31 c(1)14 )(c

(1)
32 c(1)24 ))

1/2 = 0.7071,

c(∗2)((0))
12 = ((c(2)13 c(2)32 )(c

(2)
14 c(2)42 ))

1/2 = 0.577,

c(∗3)((0))
12 = ((c(3)13 c(3)32 )(c

(3)
14 c(3)42 ))

1/2 = 2,

c(∗4)((0))
12 = c(4)14 c(4)42 = 2.5, c(∗4)((0))

23 = c(4)24 c(4)43 = 1.
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Solving problem (Model 4.1), using these initial values, we obtain,

c(1)12 = 0.5, c(2)12 = 0.5, c(3)12 = 2, c(4)12 = 2,

c(4)23 = 0.3, c(1)34 = 1.

Similarly, we work out the missing elements values for the MPRs of the other two experts.

For an expert e2, we obtain,

c(1)13 = 0.3, c(1)34 = 1, c(2)13 = 0.15, c(2)34 = 0.4,

c(3)13 = 0.4, c(3)23 = 1.5, c(4)13 = 0.4, c(4)23 = 1.5 ,

while for an expert e3, we have,

c(1)13 = 0.8, c(1)24 = 0.67, c(2)14 = 0.111, c(2)24 = 0.18,

c(3)24 = 1.25, c(4)24 = 0.66.

It is noted that among the twelve MPRs, C(q)
R̃IV I, 1

, q = 1,2,3, C(q)
R̃IV I, 2

, q = 1,3,4, and

C(q)
R̃IV I, 3

, q = 1,2, are acceptably consistent, while C(4)
R̃IV I, 1

, C(2)
R̃IV I, 2

, C(3)
R̃IV I, 3

, and C(4)
R̃IV I, 3

, are

not acceptably consistent.

For w1 = w2 = w3 = 1/3, construct the weighted geometric mean judgement matrix of

the three matrices C(1)
R̃IV I, 1

, C(1)
R̃IV I, 2

, and C(1)
R̃IV I, 3

,

C(1)
agg =


1 0.567 0.567 0.367

1.778 1 0.633 0.623

2.083 1.619 1 0.833

2.778 1.640 1.333 1

 .

Then, λ
C(1)

agg,max
= 4.103 which is less than (n−1)βRIn+n = 4.2136, for n = 4, β = 0.08.

Hence, C(1)
agg is acceptably consistent.

In Table 4.1, we summarize the acceptably consistent behavior of the weighted geo-

metric mean matrices for different weights of three experts. For notational convenience

the maximum eigenvalue of the weighted geometric mean comparison matrices C(q)
agg, q =

1,2,3,4, is denoted by λmax in Table 4.1.

From Table 4.1, we find that though the individual preference matrices are not accept-

ably consistent yet their geometric mean aggregated preference matrix turns out to be

acceptably consistent for some specific choices of weight vectors w indicating the signif-



99

icance of importance attached to the experts. Also, from Table 4.1, note that (4.4.2) is

only a sufficient condition for the aggregated matrix (and hence of MPR) to be acceptably

consistent as, for some specific weight vector w, we do have (4.4.2) failing to hold yet the

weighted geometric mean C(q)
agg is acceptably consistent.

Table 4.1: Consistency of the weighted geometric mean aggregated preference relation
matrix

Aggregated (w1,w2,w3)
t

3

∏
t=1

(
λ

C(q)
R̃IV I, t

,max
)wt

Is (4.4.2) λmax Is C(q)
agg, q = 1,2,3,4,

matrix satisfied? acceptably consistent?

C(1)
agg (1

3 ,
1
3 ,

1
3)

t 4.037 yes 4.1033 yes

( 9
20 ,

1
10 ,

9
20)

t 4.0473 yes 4.0918 yes

(1
5 ,

3
5 ,

1
5)

t 5.7133 no 4.0888 yes

( 1
20 ,

9
10 ,

1
20)

t 4.0145 yes 4.0366 yes

( 1
100 ,

98
100 ,

1
100)

t 4.0112 yes 4.0160 yes

C(2)
agg (1

3 ,
1
3 ,

1
3)

t 4.1156 yes 4.0475 yes

( 9
20 ,

1
10 ,

9
20)

t 4.0400 yes 4.1232 yes

(1
5 ,

3
5 ,

1
5)

t 4.2039 yes 4.2650 yes

( 1
20 ,

9
10 ,

1
20)

t 4.3054 no 4.3242 no

( 1
100 ,

98
100 ,

1
100)

t 4.3329 no 4.3369 no

C(3)
agg (1

3 ,
1
3 ,

1
3)

t 4.3418 no 4.1302 yes

( 9
20 ,

1
10 ,

9
20)

t 4.4533 no 4.2868 no

(1
5 ,

3
5 ,

1
5)

t 4.2177 no 4.0333 yes

( 1
20 ,

9
10 ,

1
20)

t 4.0824 yes 4.0203 yes

( 1
100 ,

98
100 ,

1
100)

t 4.0471 yes 4.0338 yes

C(4)
agg (1

3 ,
1
3 ,

1
3)

t 4.5057 no 4.3099 no

( 9
20 ,

1
10 ,

9
20)

t 4.6591 no 4.9598 no

(1
5 ,

3
5 ,

1
5)

t 4.3365 no 4.6849 no

( 1
20 ,

9
10 ,

1
20)

t 4.1538 yes 4.1048 yes

( 1
100 ,

98
100 ,

1
100)

t 4.1064 yes 4.1350 yes
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4.5 A comparative analysis with existing methods

Research studies on FPR, IFPR, and IVI-FPR exist in the literature. For instance, one may

refer to (Xu and Cai [140], Chen et al. [135], Meng, Tan, and Chen [98]). In this chapter,

we primarily focused on IVI-MPR rather than IVI-FPR. To the best of our understanding,

there does not exist any study in the literature guiding how to populate the missing entries

in an IVI-MPR.

In this section, we compare our proposed method with those of Meng and Chen [169]

for MPR and Jiang et al. [143] for IMPR and show that our method generalizes their

works.

Meng and Chen [169] proposed the notion of the multiplicative geometric consistent index

(MGCI) to measure the multiplicative consistency of an MPR. The consistency of an MPR

is considered to be unacceptable if the MGCI of an MPR is less than the average value

tabulated in Table 1 in their paper. The authors continued their study to include the case

of incomplete MPR. They formulated a multi-objective programming model to estimate

the missing values. Using the goal programming approach and a suitable transformation,

the proposed model was converted into an equivalent linear program. The missing values

in an MPR were then obtained using the inverse transformation at the optimal solution of

the linear program.

Observe that if we set q = 1, C(q) = C(q+θ), θ = 1,2,3, in Model 4.1 of sub-section

4.3.2, and use only the first three constraints of Model 4.1, then the deviation model (OP)

of Meng and Chen [169] follows as a special case of Model 4.1. Our proposed approach

thus encompasses the case of incomplete MPR. However, for the wholeness of discussion,

we additionally provide the linear goal programming deviation model for IVI-MPR.

Meng and Chen [169] developed a deviation model for an MPR. In the same spirit, we

formulate an equivalent deviation model for the Model 4.1 proposed in Section 4.3.
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(Model 4.2) min D = ∑4
q=1 ∑n

i, j=1,i< j, k∈Ω(q)(d
(q)+
i j, k +d(q)−

i j, k )

subject to

δi j

(
loga(q)i j − (loga(q)ik + loga(q)k j )

)
−d(q)+

i j, k +d(q)−
i j, k = 0,

i < j, ∀ i, j ∈ N, k ∈ Ω(q), q = 1,2,3,4

1/9 ≤ a(q)i j ,q = 1,2, a(q)i j ∈ Γ(q)

a(q)i j ≤ 9, q = 3,4, a(q)i j ∈ Γ(q)

a(q)i j a(q+2)
i j ≤ 1, q = 1,2, i, j, k ∈ N, i ̸= j ̸= k

a(q+1)
i j ≤ a(q)i j , q = 1,3, i < j, i, j ∈ N

a(q+1)
i j ≥ a(q)i j , q = 1,3, i > j, i, j ∈ N

d(q)+
i j, k , d(q)−

i j, k ≥ 0, i, j = 1, . . . ,n, i < j ,

where d(q)+
i j, k =

(
loga(q)i j − (loga(q)ik + loga(q)k j )

)
∨0, k ∈ Ω(q),

and d(q)−
i j, k =

(
(loga(q)ik + loga(q)k j )− loga(q)i j

)
∨0, k ∈ Ω(q), and

δi j =

 1 k ∈ Ω(q)

0 otherwise

It is observed that both model i.e. Model 4.1 and the above deviation model (Model 4.2)

are equivalent and yield the same optimal outputs. Moreover, the model formulated by

Meng and Chen [169] is a particular case of the above model and hence of Model 4.1.

The method proposed by us in the current work and the one suggested by Meng and

Chen [169] are based fundamentally on the principle of transitivity for MPR. However,

unlike the approach by Meng and Chen [169] for MPR, which requires solving a goal

programming model, our proposed method for IVI-MPR is a two stage iterative scheme

involving initial estimation of missing values and after that improving upon them by solv-

ing optimization model (Model 4.1). Though it may so happen that the stage one itself

is sufficient to produce optimal values of the missing entries making the second stage

redundant.

Consider the following incomplete MPR

A =


1 0.6 x 0.4

1/0.6 1 0.7 y

1/x 1/0.7 1 0.5

1/0.4 1/y 1/0.5 1


The results on solving the proposed Model 4.1 and the (OP) model of Meng and Chen
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[169] are same. Moreover, in this matrix, if 0.6 and 0.4 are changed to 0.2 and 4, respec-

tively, then also the two approaches yield same results; see, Table 4.2.

Table 4.2: Missing entries x and y values and the CR values of the original MPR A (in
columns 2-4) and the MPR A with two changes (in columns 5-7)

Optimization Model x y CR x y CR
Meng and Chen (2015) model (OP) 0.579 0.483 0.0097 1.0583 2.6458 0.4169

Our proposed (Model 4.1) model 0.579 0.483 0.0097 1.0583 2.6458 0.4169

In section 4.3, if C(1) = C(2) and C(3) = C(4), then the IVI-MPR gets converted into

IMPR studied by Jiang et al. [143]. In fact, our proposed methodology is very much

inspired by the work of Jiang et al. [143].

We can conclude that our methodology is an alternative procedure to compute missing

entries. The proposed method is indeed not inferior to the one existing for incomplete M-

PR in the literature despite IVI-MPR being a generalization of MPR and its other variants.

4.6 Conclusion

The contribution of this chapter is twofold. Firstly, we introduce the notion of accept-

ably consistent for IVI-MPR, and secondly, we propose a two-step method to populate the

missing entries in an incomplete IVI-MPR. The first step of the recommended two-step

approach identifies the initial values of all missing entries in an incomplete IVI-MPR and

the subsequent second step improves the initial values by solving a linear programming

problem. Although certain research is available in the literature on MPRs in the intu-

itionistic framework yet the proposed integration of IVI-MNs in MPR, especially in the

incomplete preference relations, can be considered as a novel contribution of this chapter.

The primary limitation of the proposed procedure for finding the missing entries lies in

its estimating step where we have assumed that, for a missing entry ∗̃i j, we can always

find an elementary connecting path in the given preference relation matrix such that all

other entries along this path are completely known. This assumption may not hold. An-

other concern in the present study is that the weights or different levels of expertise of

experts are assumed to be precisely known. A suitable choice of a weight vector ensures

acceptably consistent group aggregated preference relation matrix. However, we have not

explored a mechanism to guide on the selection of weight vector for experts to enable

them to converge to an acceptably consistent aggregated preference matrix. The only suf-

ficient condition available to guide on this choice of weight vector is the inequality in

equation 4.4.2. Besides the weights of experts, for aggregation, the weights/importance
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of the evaluation criteria can be devised using their importance ratings from experts.





Chapter 5

Incomplete Hesitant Fuzzy Preference

Relation

Preference relations are obtained in the process of decision making by comparing dif-

ferent alternatives/criteria by the decision maker. In this chapter1 we work on hesitant

fuzzy preference relation (HFPR). A decision maker might give his/her perception by uti-

lizing 0−1 scale for HFPR to overcome hesitancy and uncertainty, lying in the definition

framework of the decision-making problem. The hesitant preference relation is found

to be incomplete due to the restraint of the expert’s efficient proficiency, experience and

shortage of time. Zhang et al. [144] proposed the notion of incomplete HFPR (I-HFPR)

and additive consistency property of I-HFPR. The additive consistency property of HFPR

defined by Zhang et al. [144] does not satisfy the property of hesitancy given by Zhu and

Xu [75]. The study of consistency of preference relation is an important feature to keep

away from the puzzling solution. This chapter aims to develop a method with I-HFPRs. A

new definition of additive consistency property of HFPR is given that preserves the prop-

erty of hesitancy and is used to construct the complete HFPR from incomplete one. The

significance of consistency measure for HFPR make sure that the DMs are neither arbi-

trary nor unreasonable. We develop a method to check the consistency level of I-HFPR.

Group decision-making problem with I-HFPR is also considered.

1The work presented in this chapter comprises the results of a research paper entitled “Incomplete Hes-
itant Fuzzy Preference Relation”, Journal of Statistic and Management Systems, Taylor & Francis 21, (8)
1459–1479 (2018).
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5.1 Introduction

From the extension of fuzzy set, Torra [123] propose the concept of the Hesitant fuzzy

set(HFS) whose membership functions are expressed by a collection of several feasible

values. The hesitant fuzzy set is a new important tool that expresses the human hesitancy

in daily life. For instance, sometimes, in a decision making problems, decision makers are

uncertain about some feasible values such as 0.3, 0.4, and 0.5 to determine the member-

ship of a particular element belonging to a set. Henceforth, the membership of an element

in a set is represented by ‘he’= {0.3,0.4,0.5} which is known as hesitant fuzzy element

(HFE) distinct from the conventional fuzzy sets [3] , IVFS [4], IFS( [6], [185], [186]),

IVIFS [34] and type-2 fuzzy sets ( [187], [188]).

Preference relation is one of the most powerful technique in the decision making frame

work. The choice of preferences over the given criteria by making a comparison among

each pair of alternative is suggested by decision makers. Different type of preference

relations has been proposed. For ready reference one may refer to( [54], [58], [60]- [64],

[67], [78], [140], [189], [190] – [192]) and not limited to these only.

The preference relation as mentioned above does not explore all promising estimation of

preferences of the decision maker because all these preference relations do not think about

undecided fuzzy data while making a pairwise comparison in real life situation. Howev-

er, in a decision organization, to get a more sensible choice outcome, decision maker is

approved to give the preferences utilizing 0-1 proportion scale by comparing each pair of

alternatives. The fact may conform that, the decision maker while making a decision may

not be sure about an accurate value but has uncertainty between several feasible values.

These conceivable feasible values can be considered as an HFE and HFPR. It is note-

worthy that the extension of FPR is HFPR, where the preferences values are expressed

utilizing 0−1 ratio scale, which is symmetrically conveyed around 0.5. Zhu and Xu [75]

give the definition of HFPRs, and they gave some properties on HFPRs. Decision mak-

er requires n(n−1)
2 judgements in its entire lower or upper triangular part to represent a

complete preference relation of order n×n. In numerous real world circumstances, such

like medical diagnosis, personal examination and so forth, by a result of time pressure,

lack of sufficient knowledge, sometimes it is challenging to obtain a complete HFPR. In

a situation of HFPR, where some elements are missing results in the establishment of an

I-HFPR. Therefore, there is a need to proposed a technique to acquire complete HFPR

from existing incomplete one.
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Consistency plays an important role in a situation where experts have to work in uncer-

tain or vague situations. Zhang et al. [144] defined the concept of I-HFPR and its additive

consistency. But Zhang’s additive consistency property does not satisfy the property of

hesitancy i.e hσ(s)
ei j + h

σ(lhei j
−s+1)

e ji = 1 given by [75]. This chapter aims to propose a new

definition of additive consistency property of HFPR that satisfies the said property of h-

esitancy. We have developed a method to evaluate the missing element of I-HFPR by

using additive consistency. Consistency level for HFPR ensures that the DMs are neither

arbitrary nor unreasonable. We have also devised a method to check the consistency level

of complete HFPR. The above procedure is illustrated by a numerical example. A new

algorithm is then given to handle group decision-making problems.

Remainder of this chapter is modified as follows. In section 5.2, some basic concepts

of HFS and HFPR are defined briefly. Estimating procedure of missing element from

I-HFPR is given in section 5.3. A methodology is proposed to check the consistency

level of HFPR is given in section 5.4 and the developed procedure is illustrated via a

numerical example. An algorithm is given in section 5.5 to handle the group decision-

making problem and is illustrated by an example. Comparison of our work is also given

and finally last section constitute the concluding remarks.

5.2 Preliminaries

The concept of hesitant fuzzy set and hesitant fuzzy preference relations are reminded

very briefly in this section. The concept of HFS is first characterized by Torra [123] where

the membership of an element are the collection of feasible values.

Definition 5.2.1. [123] A HFS on X is defined by H = {(x,h(x))|x ∈ X}, where h(x) is a

set of possible membership degree of the element x ∈ X to the set H that lies between 0

and 1. For convenience h(x) = he is called the hesitant fuzzy element (HFE).

For a HFE he = {hσ(s)
e |s = 1,2, · · · , lhe} where lhe represents the number of elements

in the HFE he and σ(s) denotes the position of HFE. It is important to note that all the

possible values of the HFE i.e. he are assumed to be arranged in an increasing order and

hσ(s)
e is the sth smallest value in he.

If the length of the HFE is not the same, then the one which is smaller, can be extend-

ed to maintain the uniformity by adding the numerical values as given by the following

definition.

Definition 5.2.2. [193] Let h+e and h−e are the maximum and minimum values respectively
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in HFE he = {hσ(s)
e |s = 1,2, · · · , lhe} respectively and ζ be an optimized parameter that

lies between 0 and 1 which can be decided by the decision makers indicated by their own

risk preferences, then the linear combination ζ h+e +(1− ζ )h−e is called added element

that is denoted by h̄e.

Particularly the added element h+e and h−e respectively extracted from the conditions

ζ = 1 and ζ = 0 that corresponds to optimism and pessimism rules proposed by Xu

et al. [125]. Zhu and Xu [75] proposed the idea of HFPRs based on HFEs [123] and

FPRs [78] given as follows:

Definition 5.2.3. [75] A HFPR HR over X is defined by HR = (hei j)n×n which is sub-

set of X ×X , where hei j = {hσ(s)
ei j |s = 1,2, · · · , lhei j

} is a HFE indicating all the possible

preference value to which an alternative xi is prefer to alternative x j satisfying

hσ(s)
ei j +h

σ(lhei j
−s+1)

e ji = 1, heii = 0.5, lhei j
= lhe ji

, ∀i, j ∈ N. (5.2.1)

where hσ(s)
ei j is the sth smallest element in hei j .

For example, the HFPR, HR is shown below.
{0.5} {0.5,0.6,0.7} {0.1,0.4}

{0.3,0.4,0.5} {0.5} {0.2,0.3,0.4,0.5}

{0.6,0.9} {0.5,0.6,0.7,0.8} {0.5}


In the above HFPR matrix, length of the preference degree of alternative xi over x j are

not same. According to definition 5.2.2, the optimised parameter ζ is used to add some

elements to an HFPR and finally obtained a normalised HFPR defined as follows

Definition 5.2.4. [193] Let the maximum and minimum elements at (i, j)th position of

HFPR, HR = (hei j)n×n is represented by h+ei j
and h−ei j

where i, j = 1,2, · · · ,n, respectively.

Based on definition 5.2.2 if we add some elements h̄ei j = ζ h+ei j
+(1−ζ )h−ei j

to hei j if i ≤ j

and add some elements h̄e ji=(1− ζ )h+e ji
+ ζ h−e ji

to he ji if i ≤ j, where, ζ is an optimized

parameter, then the normalized HFPR H̄R={h̄σ(s)
ei j |s = 1,2, · · · , lh̄ei j

} satisfying

lh̄ei j
= max{lhei j

|i, j = 1,2, · · · ,n, i ̸= j}, h̄σ(s)
ei j + h̄

σ(lh̄ei j
−s+1)

e ji = 1, h̄eii = {0.5}. (5.2.2)

where h̄σ(s)
ei j and h̄σ(s)

e ji is the sth smallest element in h̄ei j and h̄e ji respectively.

Due to limitation of DMs proficient knowledge, experience or time pressure, the pro-

vided preference value in HFPR are incomplete. It might be difficult at times, to get the

complete preference relation corresponding to the higher order preference relation. In
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such a case, the expert is unable to communicate DM opinion over other pairs of alter-

natives. Then the incomplete HFPR (I-HFPR) is obtained in which some elements are

missing. Zhang et al. [144] defined the I-HFPR.

Definition 5.2.5. [144](I-HFPR) The HFPR HR =(hei j)n×n where hei j = {hσ(s)
ei j |s= 1,2, · · · ,

lhei j
} is called an I-HFPR, if some elements in it are missing that is denoted by “ ∗ ” and

the other elements are given by DMs should satisfy the condition of definition 5.2.3.

According to definition 5.2.4, an optimized parameter ζ is used for the uniformity of

length of I-HFPR. Thus a normalized I-HFPR is obtained which is defined as follows.

Definition 5.2.6. [144](Normalized I-HFPR) I-HFPR is called normalized I-HFPR if the

known elements satisfying the equation 5.2.2.

The study of consistency of the HFPR is an important feature to avoid the false solution.

Zhang et al. [144] defined the additive consistency i.e

h̄σ(s)
ei j = h̄σ(s)

eik − h̄σ(s)
e jk +0.5 ∀i, j,k = 1,2, · · ·n, s = 1,2, · · · lh̄ei j

and i ≤ j ≤ k (5.2.3)

(where lh̄ei j
is the length of the normalized HFE)

The above said additive consistency does not satisfy the property of hesitancy given by

Zhu and Xu [75] as discussed below.

h̄σ(s)
ei j + h̄

σ(lh̄ei j
−s+1)

e ji = h̄σ(s)
eik − h̄σ(s)

e jk +0.5+ h̄
σ(lh̄ei j

−s+1)
e jk − h̄

σ(lh̄ei j
−s+1)

eik +0.5 ̸= 1.

According to Zhang et al. [144], if i = k, the additive consistency property becomes

hσ(s)
ei j +hσ(s)

e ji = hσ(s)
eii +0.5 = 1

It again contradicts the property of hesitancy. It is the special case if lh̄ei j
− s + 1 =

s. Therefore we have defined a new formula of the additive consistency of HFPR that

satisfies the hesitancy property too.

Definition 5.2.7. Let HR = (hei j)n×n be HFPR and H̄R = (h̄ei j)n×n be its normalized HFPR

on X with an optimization operator ζ , satisfying the following condition

h̄σ(s)
ei j = h̄σ(s)

eik − h̄
σ(lh̄ei j

−s+1)
e jk +0.5, s = 1,2, · · · , lh̄ei j

and i ≤ j ≤ k, i, j,k ∈ N. (5.2.4)

where h̄σ(s)
ei j , h̄σ(s)

eik and h̄σ(s)
e jk are the sth smallest elements in h̄ei j , h̄eik and h̄e jk respectively

then HR is said to be an additive consistent HFPR.

It is noteworthy that the above additive consistent property satisfy the hesitancy property
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as follows:

h̄σ(s)
ei j + h̄

σ(lh̄ei j
−s+1)

e ji = h̄σ(s)
eik −h

σ(lh̄ei j
−s+1)

e jk +0.5+ h̄
σ(lh̄ei j

−s+1)
e jk − h̄σ(s)

eik +0.5

= 1.

It is necessary for a HFPR to be additive consistent such that i ≤ j ≤ k, ∀ i, j,k ∈ N,

otherwise the HFPR is reduced to FPR with crisp value. Indeed assume that h̄σ(s)
ei j =

h̄σ(s)
eik − h̄

σ(lh̄ei j
−s+1)

e jk +0.5 and h̄σ(s+1)
ei j = h̄σ(s+1)

eik − h̄
σ(lh̄ei j

−s)
e jk +0.5 for all i, j,k = 1,2, · · · ,n

and s = 1,2, · · · lh̄ei j
−1. For i = k, the above equations should also hold, and we have

h̄σ(s)
ei j + h̄

σ(lh̄ei j
−s+1)

e ji = 1 and h̄σ(s+1)
ei j + h̄

σ(lh̄ei j
−s)

e ji = 1

By the definition 5.2.4 of the normalized HFE, we must have

h̄σ(s)
ei j ≤ h̄σ(s+1)

ei j , h̄
σ(lh̄ei j

−s+1)
e ji ≤ h̄

σ(lh̄ei j
−s)

e ji

Thus,

1 = h̄σ(s)
ei j + h̄

σ(lh̄ei j
−s+1)

e ji ≤ h̄σ(s+1)
ei j + h̄

σ(lh̄ei j
−s)

e ji = 1 (5.2.5)

Equation 5.2.5 hold if and only if h̄σ(s)
ei j = h̄σ(s+1)

ei j , h̄
σ(lh̄ei j

−s+1)
e ji = h̄

σ(lh̄ei j
−s)

e ji , which means

HR = (hei j)n×n may be a crisp fuzzy preference relation if the condition i ≤ j ≤ k violates.

The additive consistency property of HFPR will take part in an important role to construct

complete HFPRs based on an I-HFPRs. We define an additive consistent I-HFPR.

Definition 5.2.8. The I-HFPR, HR = (hei j)n×n is called additive consistent if all the known

elements satisfy the conditions of equation 5.2.4.

5.3 Constructing complete HFPR from an I-HFPR

In I-HFPR, missing element is due to the inability of a DM to measure the degree of

preference information of one criteria over other. It has been witnessed that an expert

utilize an I-HFPR to judge his/her preference value over the criteria, such that the weights

in the precedence are extracted from the I-HFPR which can be further used as the weights

of the criteria. Here, we develop a practical technique to derive the weights of the criteria

from an I-HFPR. Let HR = (hei j)n×n = {hσ(s)
ei j |s = 1,2, · · · , lhei j

} be an I-HFPR and w =

(w1,w2, · · · ,wn)
T be the weight vector of HR, where wi indicates the preference value of
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the alternative Ai to all alternative A j with wi ≥ 0 and ∑n
i=1 wi = 1, i ∈ N.

The difference between the value hσ(s)
ei j − h

σ(lhei j
−s+1)

e ji depicts the strength of preference

value of the alternative Ai over A j. Thus we have

hσ(s)
ei j −h

σ(lhei j
−s+1)

e ji = wi
σ(s)−w j

σ(lhei j
−s+1) (5.3.1)

where hσ(s)
ei j = wi

σ(s), preference value of alternative Ai over A j at sth position and

h
σ(lhei j

−s+1)
e ji = w j

σ(lhei j
−s+1)

, preference value of alternative A j over Ai at (lhei j
− s+1)th

position

In such cases consistency property must satisfy:

hσ(s)
ei j = hσ(s)

eik −h
σ(lhei j

−s+1)
e jk +0.5, ∀ hei j ,heik ,he jk ∈ Ω (5.3.2)

where Ω denotes the set of known elements. Also from equation 5.3.1 and 5.3.2 we

have

hσ(s)
ei j = 0.5(wi

σ(s)−w j
σ(lhei j

−s+1)
+1), ∀ hei j ∈ Ω (5.3.3)

For an I-HFPR, HR = (hei j)n×n, replace the unknown element ‘∗’ in HR by 0.5(wi
σ(s)−

w j
σ(lhei j

−s+1)
+1). Then the new I-HFPR becomes H

′
R = (h

′
ei j
)n×n where

h
′
ei j

=

 hei j if hei j ∈ Ω;

0.5(wi
σ(s)−w j

σ(lhei j
−s+1)

+1) otherwise.
(5.3.4)

From 5.3.4, it is clear that in the HFPR H
′
R, value not only contain the preference informa-

tion provided by the DM and also improve the consistency of the I-HFPR, HR = (hei j)n×n.

Following algorithm demonstrates the method to estimate the missing element of an I-

HFPR.

Algorithm 5.3.1.

1. Consider an I-HFPR, HR.

2. Normalized the I-HFPR by using definition 5.2.4 is denoted by H̄R.

3. Replace the unknown element ‘∗’ in normalized I-HFPR, H̄R by

0.5(wi
σ(s)−w j

σ(lh̄ei j
−s+1)

+1) and the resultant matrix is H̄
′
R.

4. Calculate the preference degree Pσ(s)
i (w), s = 1,2, · · · , lh̄ei j

of the alternative Ai over



112

all the other alternatives by using the following formula.

Pσ(s)
i (w) =

n

∑
j=1

h̄
′σ(s)
ei j , i ̸= j, s = {1,2, · · · , lh̄′ei j

} (5.3.5)

5. Evaluate the collective preference degree p(w) of all alternatives.

p(w) =
n

∑
i=1

l
h̄
′
ei j

∑
s=1

pi
σ(s)(w), s = {1,2, · · · , lh̄′ei j

} (5.3.6)

6. Since the weight wi
σ(s) indicates the degree of importance of the alternative Ai.

Therefore, weight wi
σ(s) can be estimated by the ratio of Pσ(s)

i (w) to p(w) in the

collective preference value of all alternatives.

wi
σ(s) =

Pσ(s)
i (w)
p(w)

,
n

∑
i=1

wi
σ(s) = 1, wi

σ(s) ≥ 0, ∀s (5.3.7)

7. Complete HFPR matrix is obtain by replacing the value of ‘∗’ by 0.5(wi
σ(s) −

w j
σ(lh̄ei j

−s+1)
+1).

The scruting of the consistency of HFPR turns into a prominent characteristic to keep

away from a critical solution. Following section discuss the consistency level of the HF-

PR.

5.4 Consistency level of HFPR:

In the previous section the complete HFPR obtained using the additive consistency.

Herrera-viedma et al. [189] developed a method to measure the consistency level of FPR

based on error analysis. Motivated by this method Zhu [194], used the concept of error

analysis to manage with the selection procedure and the FPR has obtained from the HFPR

with highest consistency level. For a given HFPR, represented by a matrix H =(hei j)n×n ⊂

X ×X , where X = {x1,x1, · · ·xn} is the set of alternatives, Zhu [194] first defined some

necessary operations. Using equation 5.2.4, all preference degree of all pairs of alternative

(xi,x j) represented an HFE hei j (i ̸= j) can be estimated using an intermediate alternative

xk (k ̸= i, j) which we have defined as follows:

hσ(s)
ek

i j
= hσ(s)

eik −h
σ(lhei j

−s+1)
e jk +0.5 (5.4.1)
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To estimate hek
i j

, the alternatives in HFPR, HR should generally be classified into several

sets [194] given as follows:

A = {(i, j)|i, j ∈ {1,2, · · · ,n}∧ (i ̸= j)}

OV A = {(i, j) ∈ A|hei j is an estimated HFE}

KV A = (OV A)c

Mk
i j = {k ̸= i, j|(i,k),(k, j) ∈ KV A}

where A is the set of all pairs of alternatives, OV A is a set of pairs of alternatives whose

preference degree are represented by the HFE hei j and it is said to be estimated HFE. KV A

is the set of complement (OV )A. Mk
i j is the set of the intermediate alternatives xk, (k ̸= i, j)

that is used to find hek
i j

by using equation 5.4.1. Consequently by using equation 5.4.1 we

may get several HFEs, hek
i j
(k = 1,2, · · · ,n,k ̸= i, j) indicating all possible estimated pref-

erence degree of the pair of alternatives (i, j).

Motivated from work of Zhu [194] we discuss the following method to check the consis-

tency level for HFPR.

Calculate the average estimated preference degree defined as follows

hEST
ei j

=
∑∪k∈Mk

i j
hek

i j

∑k∈Mk
i j
(lhei j

)
(5.4.2)

where lhei j
is the number of all possible preference degree in hek

i j
.

Find all possible error between an estimated HFE hei j and its average estimated preference

degree hEST
ei j

is defined as

εhei j = β (∪εi j∈(hei j −̃hEST
ei j

)|εi j|) (5.4.3)

where the coefficient 0 < β < 1 is used to make sure each error in |εi j| belongs to the

interval [0,1]. The consistency level of HFPR for i jth position is given as

cli j = 1−min(εhei j) (5.4.4)

The consistency level of each alternative xi is given as :

cli =
∑n

j=1
i̸= j

(cli j + cl ji)

2(n−1)
(5.4.5)
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The consistency level of HFPR is given by

clH =
∑n

i=1cli
n

(5.4.6)

Following example illustrates the previous section.

Example 5.4.1. Consider a decision making problem with five sets of alternatives xi (i =

1,2, · · · ,5). The decision maker judge these five alternatives by pairwise comparison

and provides his/her judgement as follows: he12 = {0.1,0.6,0.8,0.9}, he13 = {0.2,0.7},

he15 = {0.6,0.8}, he23 = {0.3,0.4,0.6}, he25 = {0.4,0.5,0.7,1}, he45 = {0.5,0.6,0.9}. The

matrix representation of the above information is given by

HR =



{0.5} {0.1,0.6,0.8,0.9} {0.2,0.7} ∗ {0.6,0.8}

{0.1,0.2,0.4,0.9} {0.5} {0.3,0.4,0.6} ∗ {0.4,0.5,0.7,1}

{0.3,0.8} {0.4,0.6,0.7} {0.5} ∗ ∗

∗ ∗ ∗ {0.5} {0.5,0.6,0.9}

{0.2,0.4} {0,0.3,0.5,0.6} ∗ {0.1,0.4,0.5} {0.5}


5×5

Here ‘*’ represents missing information. Since the length of the HFPR are not same. By

using the pessimism or optimism rule to normalized the incomplete HFPR. The normal-

ized I-HFPR is given as follows:

H̄R =


{0.5} {0.1,0.6,0.8,0.9} {0.2,0.7,0.7,0.7} ∗ {0.6,0.8,0.8,0.8}

{0.1,0.2,0.4,0.9} {0.5} {0.3,0.4,0.6,0.6} ∗ {0.4,0.5,0.7,1}
{0.3,0.3,0.3,0.8} {0.4,0.4,0.6,0.7} {0.5} ∗ ∗

∗ ∗ ∗ {0.5} {0.5,0.6,0.9,0.9}
{0.2,0.2,0.2,0.4} {0,0.3,0.5,0.6} ∗ {0.1,0.1,0.4,0.5} {0.5}



Replacing the unknown elements ‘∗’ of i jth position to 0.5(wi
σ(s)−w j

σ(lh̄ei j
−s+1)

+ 1)

in normalized I-HFPR. Let this is denoted by H̄
′
R. Then calculate the preference degree

Pσ(s)
i (w) of alternative Ai over all the other alternatives using equation 5.3.5 and collec-

tive preference P(w) of all alternatives is calculated by using the equation 5.3.6 given as

follows:

P(w) = ∑4
i=1 ∑

l
h̄
′
ei j

s=1 Pσ(s)
i (w) = 40

Weights of I-HFPR can be calculated by solving the system of linear equation using equa-

tion 5.3.7 which is given in table 5.1.

The missing elements are obtained using equation 5.3.3 as follows

h14 = {0.49,0.5,0.51,0.51}, h41 = {0.49,0.49,0.5,0.51}, h24 = {0.48,0.49,0.50,0.51},

h42 = {0.49,0.5,0.51,0.52}, h34 = {0.49,0.49,0.5,0.51}, h43 = {0.49,0.5,0.51,0.51},
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Table 5.1: Weights of the missing element

w1 w2 w3 w4 w5

w1
σ(1) = 0.0347 w2

σ(1) = 0.0321 w3
σ(1) = 0.0421 w4

σ(1) = 0.0492 w5
σ(1) = 0.0195

w1
σ(2) = 0.0651 w2

σ(2) = 0.0397 w3
σ(2) = 0.0423 w4

σ(2) = 0.0523 w5
σ(2) = 0.0272

w1
σ(3) = 0.0702 w2

σ(3) = 0.0550 w3
σ(3) = 0.0477 w4

σ(3) = 0.0604 w5
σ(3) = 0.0400

w1
σ(4) = 0.0728 w2

σ(4) = 0.0753 w3
σ(4) = 0.0632 w4

σ(4) = 0.0609 w5
σ(4) = 0.0501

h35 = {0.5,0.5,0.51,0.52}, h53 = {0.48,0.49,0.5,0.5}.

The complete HFPR matrix is given by



{0.5} {0.1,0.6,0.8,0.9} {0.2,0.7,0.7,0.7} {0.49,0.5,0.51,0.51} {0.6,0.8,0.8,0.8}

{0.1,0.2,0.4,0.9} {0.5} {0.3,0.4,0.6,0.6} {0.48,0.49,0.5,0.51} {0.4,0.5,0.7,1}

{0.3,0.3,0.3,0.8} {0.4,0.4,0.6,0.7} {0.5} {0.49,0.49,0.5,0.51} {.5,0.5,0.51,0.52}

{0.49,0.49,0.5,0.51} {0.49,0.5,0.51,0.52} {0.49,0.5,0.51,0.51} {0.5} {0.5,0.6,0.9,0.9}

{0.2,0.2,0.2,0.4} {0,0.3,0.5,0.6} {0.48,0.49,0.5,0.5} {0.1,0.1,0.4,0.5} {0.5}


For checking the consistency level of the complete HFPR, we find all the possible pairs

of preference degree represented by an HFE hei j are calculated using an intermediate

alternative xk (k ̸= i, j) by using equation 5.4.1. As an illustration, the estimated HFE of

he12 is h3
12 = {0.1,0.6,0.8,0.9}, h4

12 = {0.48,0.5,0.52,0.53}, h5
12 = {0.1,0.6,0.8,0.9}.

The average estimated HFE is calculated using equation 5.4.2 hEST
12 = 0.569.

Calculate the error between estimated HFE and and the its average estimated preference

degree using equation 5.4.3, taking β = 2/3 we have εh12 = {0.313,0.021,0.154,0.2204}

and min(εh12) = 0.021.

Similarly minimum error is calculated for other element as given below

min(εh13) = 0.062, min(εh14) = 0.036, min(εh15) = 0.057, min(εh21) = 0.021,

min(εh23) = 0.0413, min(εh24) = 0.0313, min(εh25) = 0.0553, min(εh31) = 0.0613,

min(εh32) = 0.0413, min(εh34) = 0.0533, min(εh35) = 0.122, min(εh41) = 0.036,

min(εh42) = 0.044, min(εh43) = 0.0533, min(εh45) = 0.0246, min(εh51) = 0.058,

min(εh52) = 0.055, min(εh53) = 0.1137, min(εh54) = 0.0249.

Consistency level for a particular alternatives xi is calculated by using equation 5.4.5,

given as cl1 = 0.956, cl2 = 0.961, cl3 = 0.931, cl4 = 0.962, cl5 = 0.936.
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Consistency level of the complete HFPR is given by

clH̄R
=

cl1 + cl2 + cl3 + cl4 + cl5
5

= 0.9492

The resultant complete HFPR from HR is consistent with consistency level 94.92%.

5.5 A method for Group decision-making problem with

I-HFPR

The present section concern with the issue of group decision making with I-HFPR. A

group decision making problem is considered with ‘m’ decision maker D=D1,D2, · · · ,Dm

and α = (α1,α2, · · · ,αm)
T the weights vector, representing weights of corresponding

DMs. Suppose ‘m’ DMs provides their judgement over ‘n’ number of decision alterna-

tives X = {x1,x2, · · · ,xn} in form of I-HFPR Ht
R = (ht

ei j
)n×n, t = 1,2, · · · ,m. If the weights

of the DMs already known we can use same weights. In this work, we have used criteria

to give more weight to DM with less missing values. Following algorithm illustrates the

procedure of missing element for group decision problem with I-HFPR.

Algorithm 5.5.1. Let γ = (γ1,γ2, · · · ,γn)
T be the collective weight vector of the I-HFPR

Ht
R = (ht

ei j
)n×n,(t = 1,2, · · ·m).

1. Consider a GDM problem with ‘m’ I-HFPR provided by ‘m’ number of DMs.

2. Normalized the I-HFPRs by using definition 5.2.4 denoted by H̄t
R, t = 1,2, · · · ,m.

3. Replace the unknown element ‘∗’ in H̄t
R by 0.5(γi

σ(s)− γ j
σ(lh̄t

ei j
−s+1)

+ 1), where lh̄t
ei j

is the number of elements present in HFE and construct a new I-HFPR H̄
′t
R =

(h̄
′t
ei j
)n×n, t = 1,2, · · · ,m, where

h̄
′t
ei j

=

 h̄t
ei j

if h̄t
ei j

̸= ∗;

0.5(γi
σ(s)− γ j

σ(lh̄t
ei j

−s+1)
+1) if h̄t

ei j
= ∗.

(5.5.1)

4. Aggregate the individual decision judgement of HFPR matrix into a collective HF-

PR matrix using the additive weighted averaging operator is given as follows.

h̄
′
ei j,Agg =

m

∑
t=1

αt h̄
′t
ei j
, i, j ∈ N (5.5.2)

where αt are weight vector of DM.

5. Calculate the missing element using algorithm 5.3.1.
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6. Complete aggregated HFPR is obtain.

7. The consistency level of aggregated HFPRs is calculated as discussed in section 5.4.

To illustrates the above algorithm, here we have taken an example.

Example 5.5.1. Let us consider an GDM problem with four alternatives X = {x1,x2,x3,x4}
and three decision makers dt = {d1,d2,d3}. Let α = (0.5,0.2,0.3) be the weights vector

of the DMs. These DMs provide their preference information over four alternatives and

three I-HFPR matrix H1,H2,H3 are given as follows:

H1 =


{0.5} {0.2,0.3,0.4} ∗ {0.6,0.7,0.8}

{0.6,0.7,0.8} {0.5} {0.1,0.2,0.4} ∗

∗ {0.6,0.8,0.9} {0.5} ∗

{0.2,0.3,0.4} ∗ ∗ {0.5}



H2 =


{0.5} {0.5,0.6,0.7} ∗ ∗

{0.3,0.4,0.5} {0.5} ∗ ∗

∗ ∗ {0.5} ∗

∗ ∗ ∗ {0.5}



H3 =


{0.5} ∗ {0,0.2,0.4} ∗

∗ {0.5} ∗ {0.5,0.6,0.7}

{0.6,0.8,1} ∗ {0.5} ∗

∗ {0.3,0.4,0.5} ∗ {0.5}


4×4

The known elements of incomplete HFPR should satisfy the condition hi j
σ(s) = hik

σ(s)−
h jk

σ(lhi j−s+1)
+ 0.5. Let α = (0.5,0.2,0.3)T be the weight vector of DMs. It is here to

note that the more weights are assigned to decision maker to the less number of missing
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element. The aggregated matrix H̄
′
agg is given by

                                     

{0
.5
},

{0
.3

5
+

0.
15

(w
1σ

(1
)
−

w
2σ

(3
) )
,

{0
.3

5(
w

1σ
(1
)
−

w
3σ

(3
)
+

1)
,

{0
.5

5
+

0.
25

(w
1σ

(1
)
−

w
4σ

(3
) )
,

0.
42

+
0.

15
(w

1σ
(2
)
−

w
2σ

(2
) )
,

0.
41

+
0.

35
(w

1σ
(2
)
−

w
3σ

(2
) )
,

0.
6
+

0.
25

(w
1σ

(2
)
−

w
4σ

(2
) )
,

0.
49

+
0.

15
(w

1σ
(3
)
−

w
2σ

(1
) )
}

0.
47

+
0.

35
(w

1σ
(3
)
−

w
3σ

(1
) )
}

0.
65

+
0.

25
(w

1σ
(3
)
−

w
4σ

(1
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}
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1
+

0.
15

(w
2σ
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)
−

w
1σ

(3
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,
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}
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+
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(w
2σ
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w
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+
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35
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2σ
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)
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w
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0.
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0.
35

+
0.

25
(w

2σ
(2
)
−

w
3σ

(2
) )
,

0.
53

+
0.

35
(w

2σ
(2
)
−

w
4σ

(2
) )
,

0.
65

+
0.

15
(w

2σ
(3
)
−

w
1σ

(1
) )
}

0.
45

+
0.

25
(w

2σ
(3
)
−

w
3σ

(1
) )
}

0.
56

+
0.

35
(w

2σ
(3
)
−

w
4σ

(1
) )
}

{0
.5

3
+

0.
35

(w
3σ

(1
)
−

w
1σ

(3
) )
,

{0
.5

5
+

0.
25

(w
3σ

(1
)
−

w
2σ

(3
) )
,

{0
.5
}

{0
.5
(w

3σ
(1
)
−

w
4σ

(3
)
+

1)
,

0.
59

+
0.

35
(w

3σ
(2
)
−

w
1σ

(2
) )
,

0.
65

+
0.

25
(w

3σ
(2
)
−

w
2σ

(2
) )
,

0.
5(

w
3σ

(2
)
−

w
4σ

(2
)
+

1)
,

0.
65

+
0.

35
(w

3σ
(3
)
−

w
1σ

(1
) )
}

0.
7
+

0.
25

(w
3σ

(3
)
−

w
2σ

(1
) )
}

0.
5(

w
3σ

(3
)
−

w
4σ

(1
)
+

1)
}

{0
.3

5
+

0.
25

(w
4σ

(1
)
−

w
1σ

(3
) )
,

{0
.4

4
+

0.
35

(w
4σ

(1
)
−

w
2σ

(3
) )
,

{0
.5
(w

4σ
(1
)
−

w
3σ

(3
)
+

1)
,

{0
.5
}

0.
4
+

0.
25

(w
4σ

(2
)
−

w
1σ

(2
) )
,

0.
47

+
0.

35
(w

4σ
(2
)
−

w
2σ

(2
) )
,

0.
5(

w
4σ

(2
)
−

w
3σ

(2
)
+

1)
,

0.
45

+
0.

25
(w

4σ
(3
)
−

w
1σ

(1
) )
}

0.
5
+

0.
35

(w
4σ

(3
)
−

w
2σ

(1
) )
}

0.
5(

w
4σ

(3
)
−

w
3σ

(1
)
+

1)
}

                                     

The preference degree of the alternative xi over other alternatives is calculated by using

equation 5.3.5 and the collective preference of all alternatives p(w) of H̄
′
agg has valued 18.

Weights are calculated by solving the system of linear equations by using equation 5.3.7
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Table 5.2: Weights of the missing element

w1 w2 w3 w4

w1
σ(1) = 0.0684 w2

σ(1) = 0.0720 w3
σ(1) = 0.0879 w4

σ(1) = 0.0700
w1

σ(2) = 0.0791 w2
σ(2) = 0.0810 w3

σ(2) = 0.0979 w4
σ(2) = 0.0753

w1
σ(3) = 0.0899 w2

σ(3) = 0.0929 w3
σ(3) = 0.1049 w4

σ(3) = 0.0807

and are shown in table 5.2. We obtained complete aggregated HFPR matrix with

consistency level 95.25% is given as follows:

H̄
′
agg =


{0.5} {0.35,0.42,0.49} {0.34,0.4,0.47} {0.55,0.601,0.65}

{0.51,0.58,0.65} {0.5} {0.29,0.34,0.45} {0.5,0.53,0.57}

{0.53,0.6,0.66} {0.55,0.66,0.71} {0.5} {0.5,0.51,0.52}

{0.35,0.399,0.45} {0.43,0.47,0.5} {0.48,0.49,0.45} {0.5}


4×4

5.5.1 Comparison with comparative work

Zhu and Xu [75] introduce HFPR as given in definition 5.2.3. Xu, Chen et al. [195]

introduce a new HFPR as given below.

Definition 5.5.1. A hesitant fuzzy preference relation HR over X = {x1,x2, · · ·xn} is de-

fined by HR = (hei j)n×n which is subset of X ×X , where hei j = {hσ(s)
ei j |s = 1,2, · · · , lhei j

}
is a HFE indicating all the possible preference value to which an alternative xi is prefer to

alternative x j satisfying

hσ(s)
ei j +hσ(s)

e ji = 1, heii = 0.5, lhei j
= lhe ji

, ∀i, j ∈ N.

where hσ(s)
ei j is the sth largest element in hei j .

It is to note that the above equation does not satisfy the hesitancy property of Zhu and

Xu [75] as given in equation 5.2.1. Xu, Chen et al. [195] developed a goal programming

model by using the additive consistency of FPR to derive the priority weights from an

I-HFPRs. By using the goal programming model [195], we have solved our I-HFPR of

example 5.4.1 and derived the priority weights. According to Xu Chen et al. [195],

hσ(s)
ei j or · · · or h

σ(lhei j
−s+1)

ei j = 0.5+
n−1

2
(wi −w j), ∀i, j ∈ N.

where wi and w j are the priority weights. Then we can get the complete HFPR.

Using the model (M − 8) given by Xu, Chen et al. [195], we solved example 5.4.1

and the weights are given by w1 = 0.32,w2 = 0.12,w3 = 0.22,w4 = 0.17,w5 = 0.17. This

model is solved by by Lingo software. The missing elements are h14 = 0.5+2(w1−w4) =
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0.8, h24 = 0.5+2(w2−w4)= 0.4, h34 = 0.5+2(w3−w4) = 0.6, h35 = 0.5+2(w3−w5) =

0.6. By using section, 5.4 the consistency level of the complete HFPR is 93.33%.

Remark 5.5.1. (i) According to Xu, Chen, et al. [195] the priority weights has a single

value for each hesitant fuzzy preference information. However, our method has different

priority weights for each position of the hesitant fuzzy preference information that leads

to the more generalized method.

(ii) According to Xu, Chen, et al. [195], some restriction is there for an I-HFPR that the

necessary condition of acceptable I-HFPR is that at least one element is present in each

row or column, i.e., needs at least (n− 1) judgment. Whereas in our method there is no

such restriction. If all data are missing then also we can find out the priority weights of

I-HFPRs. This point is strong in the case of group decision-making problem.

(iii) Consistency level is also improved in our method.

5.6 Conclusion:

In decision-making problem, to make sure that the DMs are neither arbitrary nor un-

reasonable, the study of the consistency plays an important role in the situation where the

DM has to work in case of vague situations. Zhang et al. [144] defined the additive con-

sistency property of HFPR which not satisfy the property of hesitancy given by Zhu and

Xu [75]. In this chapter, we have characterized a new definition of additive consistency

property of HFPR which are the common tool to assemble and present preference data

given by the DM in decision-making problem. By using additive consistency, we have de-

veloped a method that helps to find the missing elements of an incomplete HFPR. Using

error analysis, the consistency level of HFPR is also calculated. Also, we have develope-

d an algorithm for group decision making with I-HFPRs and presented two example to

illustrates the above methods with highest consistency level.



Chapter 6

Incomplete Hesitant Multiplicative

Preference relation

This chapter1, 2, discussed another important tool in the process of decision-making that

is hesitant multiplicative preference relation (HMPR) for hesitancy and uncertainty in

the scale of 1/9−9. Limitation of time, experience and lack of the experts’ professional

knowledge lead to form an incomplete HMPR. This chapter aims to develop a method to

complete incomplete HMPRs. The study of the consistency of HMPRs are very essential

feature to keep away from the confusing solution. A new definition of multiplicative tran-

sitive property of HMPR has also given that preserve the hesitancy property and is used

to construct the complete HMPR from incomplete one. An optimization model is devel-

oped to minimize the error. Also, a linear programming model is developed to estimate

the unknown element of incomplete HMPR. The satisfaction degree and the acceptably

consistent of complete HMPR is also checked. The whole procedure is explained with

suitable examples.

1This chapter is based on a research paper entitled “A method to complement incomplete hesitant mul-
tiplicative preference relation” published in International Journal of Research and Analytical Reviews 5,
(2)1421–1429 (2018).

2“Incomplete hesitant multiplicative preference relation” revised version submitted in OPSEARCH, Sp-
inger.
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6.1 Introduction

In the framework of decision making problem, a DM is normally requested to give

his/her judgement by contrasting the relationship of each pair of object. To communi-

cate the DMs preference value of alternative/criteria, preference relations is utilized as an

essential tool. Some of the researchers named the preference relation by pairwise com-

parison matrices. Different type of preference relation has been developed discussed in

chapter 1.

In the above existing preference relations, DM do not provide the hesitancy information

by making a comparison among each pair of alternative. Once in a while, to get a more

sensible choice outcome, the decision maker is approved to give the preference data about

an set of alternatives/criteria. The fact may conform that, the DM while making a decision

may not be sure about an single value but has uncertainty between several feasible values.

These conceivable feasible values can be considered as hesitant preference relation. The

classification of hesitant preference relation is of two type. One of them is HFPR which

was briefly discussed in chapter 5.

The preference value in HFPR are expressed using the 0−1 proportion scale which is

symmetrically conveyed around 0.5. Sometimes, the degree of the preference data are

unsymmetrically conveyed around some value. Specially the separation between the eval-

uations communicating good information ought to be more critical than the ones between

the evaluations communicating bad information [63]. Saaty [58] developed 1/9−9 scale

to address such problem expressing the MPR which has been used in various field. Some

of the DM do not prefer to utilize the preference between 0 and 1. However, he/she might

prefer to utilize Saaty’s ratio scale to give the data that the alternatives xi is better than

x j. For instance, in a decision-organization, some experts prefer to give their information

as 1/3, some give as 4, and some give as 5. The representation of the set of possible

values as {1/3,4,5} which is called hesitant multiplicative element (HME) [130]. Xia

and Xu [130] used the 1−9 scale and characterized the idea of HMPR. In this work, we

concentrate only on HMPR.

A complete preference relation of order n×n need n(n−1)
2 judgements in its whole lower

or upper triangular part. Because of time pressure, and absence of adequate information,

it is complicated to obtain a complete HMPR in many practical situations, such as medical

diagnosis, personal examination. The situation in which some elements are missing re-

sults an incomplete HMPR. Therefore, it is necessary to develop a method to get complete
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HMPR from incomplete one. In this chapter, we have defined the multiplicative transitive

property of HMPRs that preserve the hesitancy property of HMPRs. By using this prop-

erty, we have developed an algorithm to construct a complete HMPRs from incomplete

one and developed an optimization model to minimize the error. Zhu et al. [196] devel-

oped a method to measure the satisfaction degree of the HMPRs. We have checked the

satisfaction degree of new complete HMPRs. An algorithm is illustrated via a suitable ex-

ample with the satisfaction degree more than 80%. Also, we have checked the acceptably

consistent of HMPR.

The rest of the chapter is organized as follows. In section 6.2, some basic concepts of

HMPRs are defined briefly. Multiplicative transitive property for HMPRs defined that is

used to construct a complete HMPRs from the incomplete one discussed in section 6.3.

In section 6.4, also, we have developed a methodology based on linear programming

model to calculate the missing data from an incomplete HMPR. Satisfaction degree and

acceptably consistent of complete HMPR is checked. An example is given to illustrates

the whole procedure. Some concluding remarks are given in the last section.

6.2 Preliminaries

In this section, we discuss some basic concept of hesitant multiplicative set and HMPRs.

Xia and Xu [130] give the definition of hesitant multiplicative set in which elements are

the set of possible values.

Definition 6.2.1. ( [130]) A hesitant multiplicative set on X is defined by M = {(x,bM(x))|x

∈ X}, where bM(x) is a set of some values that lies between 1/9 to 9. For the shake of

convenience bM(x) = be is called HME.

Given a HME be = {bσ(s)
e |s = 1,2, · · · , lbe} where lbe denotes the number of elements in

the HME be, σ(s) denotes the position of HME.

Let bσ(s)
e , bσ(s)

e1 ,bσ(s)
e2 , are the sth position value of HME be, be1 , and be2 respectively.

Additionally suppose that lbe1
= lbe2

= l, or else we can extend the smaller one by adding

the numerical values given as the following definition.

Definition 6.2.2. ( [197]) Let b+e and b−e are the maximum and minimum elements in

HME be = {bσ(s)
e |s = 1,2, · · · , lbe} respectively and δ be an optimized parameter that lies

between 0 and 1. This optimized parameter is chosen by the DMs preferences as indicated

by their own risk, then (b+e )
δ × (b−e )

1−δ is an added element that is denoted by b̄e.

Particularly the added element b+e and b−e respectively extracted from the conditions
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δ = 1 and δ = 0 that corresponds to the optimism and pessimism rules are taken by the

decision makers.

Xia and Xu [130] developed the concept of HMPRs by HMEs and MPRs given as

follows.

Definition 6.2.3. ( [130]) A HMPR BR over X is defined by BR = (bei j)n×n which is sub-

set of X ×X , where bei j = {bσ(s)
ei j |s = 1,2, · · · , lbei j

} is a HME indicating all the possible

preference value to which an alternative xi is prefer to alternative x j satisfying

bσ(s)
ei j ×b

σ(lbe ji
−s+1)

e ji = 1, beii = {1}, lbei j
= lbe ji

, ∀i, j ∈ N. (6.2.1)

where bσ(s)
ei j is the sth position element in bei j . Xia and Xu [130] mentioned that HME are

assumed in increasing order. But it may be the case that some decision makers gives their

preference in decreasing order that also satisfy the hesitancy property (equation 6.2.1).

Also Zhang and Guo [197] proved following theorem

Theorem 6.2.1. Let B = (bei j)n×n, where bei j = {bσ(s)
ei j |s = 1,2, · · · , lbei j

} be an HMPR. It

can be transfered into HFPR H = (hei j)n×n, hei j = {hσ(s)
ei j | s = 1,2, · · · , lhei j

} by using the

transformation hσ(s)
ei j =

bσ(s)
ei j

1+bσ(s)
ei j

, then transfer the HFPR H into the HMPR B
′
= (b

′
ei j
)n×n

by using the transformation b
′
ei j

=
hσ(s)

ei j

1−hσ(s)
ei j

, where b
′
ei j

= {b
′ σ(s)
ei j | s = 1,2, · · · , lb′ei j

}, then

B = B′.

In our case, we are taking the HME into increase/decrease that also satisfy the theorem

6.2.1. We are not considering the case that HMEs are arranged in increasing order always.

For example let the HMPR, BR as shown below

BR =


{1} {1

6 ,
1
5 ,

1
4} {3}

{4,5,6} {1} {4,2}

{1
3} {1

2 ,
1
4} {1}


In the above HMPR, length of the preference degree of alternative xi over x j are not same.

According to definition 6.2.2, optimized parameter δ is used to add few elements to an

HMPR. Thus a normalized HMPR is obtained which is defined as follows.

Definition 6.2.4. ( [76]) Let b+ei j
and b−ei j

be the maximum and minimum elements of

HMPR, BR = (bei j)n×n be respectively, for i, j = 1,2, · · · ,n, and let δ be an optimized

parameter. According to definition 6.2.2 if we add some elements b̄ei j=(b
+
ei j
)δ ×(b−ei j

)(1−δ )

to bei j if i ≤ j and add some elements b̄e ji=(b
+
e ji
)(1−δ )× (b−e ji

)δ to be ji if i ≤ j, then the
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normalized HMPR B̄R={b̄σ(s)
ei j |s = 1,2, · · · , lb̄ei j

} satisfying

lb̄ei j
= max{lbei j

|i, j = 1,2, · · · ,n, i ̸= j}, b̄σ(s)
ei j × b̄

σ(lb̄e ji
−s+1)

e ji = 1, b̄eii = {1}. (6.2.2)

where b̄σ(s)
ei j and b̄σ(s)

e ji is the sth position element in b̄ei j and b̄e ji respectively.

The normalized HMPR B̄R (let δ = 1) of the HMPR BR from the above example as

shown in below

B̄R =


{1} {1

6 ,
1
5 ,

1
4} {3,3,3}

{4,5,6} {1} {4,4,2}

{1
3 ,

1
3 ,

1
3} {1

2 ,
1
4 ,

1
4} {1}


Sometimes it is complicated to obtain a complete preference relation especially for the

preference relation with higher order. It may be the case that an expert is unable to express

his/her opinion over other pairs of alternatives, due to the limitation of decision makers’

proficient knowledge, shortage of time, the provided preference value in HMPR becomes

incomplete. Then the incomplete HMPR is obtained in which some of the elements are

missing. We have defined the incomplete HMPR (I-HMPR).

Definition 6.2.5. (I-HMPR) The HMPR BR =(bei j)n×n where bei j = {bσ(s)
ei j |s= 1,2, · · · , lbei j

}

is called an I-HMPR, if some elements in it are missing that is denoted by “∗” and the oth-

er elements are given by decision makers should satisfy the condition of definition 6.2.3.

Following is an example of incomplete HMPR,
{1} {1

6 ,
1
5} ∗

{5,6} {1} {2,4}

∗ {1
4 ,

1
2} {1}


where “ ∗ ” is the missing element. Based on definition 6.2.4, an optimized parameter δ

is used to add some elements to an I-HMPR and a normalized I-HMPR is obtained. The

definition of normalized I-HMPR is given as follows.

Definition 6.2.6. (normalized I-HMPR) The incomplete HMPR is called normalized I-

HMPR, if the known elements are satisfying equation 6.2.2.

Zhang and Wu [76] mentioned that if B = (bei j)n×n, bei j = {bσ(s)
ei j |s = 1,2, · · · , lbei j

} be

a HMPR and B̄ = (b̄ei j)n×n, b̄ei j = {b̄σ(s)
ei j |s = 1,2, · · · , l, (l = max{lbei j

|i, j = 1,2, · · ·n, i ̸=

j}) be its normalized HMPR with the optimized parameter δ , then l number of MPR

P(s) = (p(s)i j )n×n,(s = 1,2, · · · , l) are obtained where,
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pi j =


b̄σ(s)

i j i < j

1 i = j

b̄σ(l−s+1) i > j

(6.2.3)

In 2014 Zhang and Wu [76] defined the consistent HMPR.

Definition 6.2.7. ( [76]) Let B = (bei j)n×n be a HMPR and B̄ = (b̄ei j)n×n be its normalized

HMPR with optimized operator δ . If HMPR is said to be consistent if all the MPRs

obtained from B̄ using 6.2.3 are consistent.

Definition 6.2.8. ( [76]) Let B = (bei j)n×n be a HMPR and B̄ = (b̄ei j)n×n be its normalized

HMPR with optimized operator δ . If HMPR is acceptably consistent if all the MPRs

obtained from B̄ are acceptably consistent.

6.3 Constructing complete HMPR from an incomplete

HMPR

In this section, before discussing about constructing complete HMPR from an incom-

plete HMPR, Especially, for a HMPR BR = (bei j)n×n , we have defined the consistency

property.

Definition 6.3.1. Let BR = (bei j)n×n and B̄R = (b̄ei j) be HMPR and its normalized HMPR

on X with an optimization operator δ , satisfying the following multiplicative transitive

property

b̄σ(s)
ei j = b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j ∀ i, j,k ∈ N, and i ̸= k ̸= j, s = 1,2, · · · , lb̄ei j

.

(6.3.1)

where b̄σ(s)
ei j , b̄σ(s)

eik and b̄σ(s)
ek j are the sth position elements in b̄ei j , b̄eik and b̄ek j respectively

then the HMPR, BR is said to be a multiplicative consistent HMPR with optimization

parameter δ . The multiplicative transitive property of HMPRs satisfy the property of

hesitancy i.e b̄σ(s)
ei j × b̄

σ(lb̄e ji
−s+1)

e ji = 1.

For example, 
{1} {1

4 ,
1
3 ,

1
2} {1

2 ,
1
2 ,

2
3}

{2,3,4} {1} {8
3 ,

3
2 ,1}

{3
2 ,2,2} {1, 2

3 ,
3
8} {1}


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The above HMPR is consistent. If we replace the value of bσ(3)
13 to 2

5 in place of 2
3 in the

above HMPR matrix, then it becomes inconsistent.

The multiplicative consistency property of HMPR will take part as an important role

to construct complete HMPRs from I-HMPRs. We define a multiplicative consistent I-

HMPR.

Definition 6.3.2. The I-HMPR, BR = (bei j)n×n is called multiplicative consistent if all the

known elements satisfy the conditions of equation 6.3.1.

Zhang and Wu [76] proposed the definition of acceptable incomplete HMPR.

Definition 6.3.3. [76]I-HMPR is said to be acceptable I-HMPR if at least one known

element present in each row or each column of HMPR.

Before going to the next section, we have defined an algorithm for constructing a com-

plete HMPR from an incomplete one.

Algorithm 6.3.1.

1. Consider an incomplete HMPR, BR.

2. Normalized the incomplete HMPR using definition 6.2.4 is denoted by B̄R = b̄ei j .

b̄ei j =

 ∗ if b̄ei j /∈ Ω;

b̄ei j if b̄ei j∈Ω.
(6.3.2)

Where Ω is the set of known element and ‘∗’ is the value of the missing element.

3. Initially the missing element can be calculated using the formula

b̄σ(s)(∗(0))
ei j =

{
∏

k∈Ti j

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)}1/ti j

(6.3.3)

where ti j is the number of the elements of the set Ti j = {k|b̄
σ(lb̄eik

−s+1)
eik , b̄

σ(lb̄ek j
−s+1)

ek j ∈

Ω} which indicates that there exist different pairs of adjoining known elements to

calculate the missing element b̄ei j . It is noted that the subsequent missing elements

are evaluated by using the previously calculated missing values.

4. The initial values are obtained.
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Sometimes initial values obtained may not lie in between 1/9 to 9 or does not satisfy

the required condition of hesitancy as well as consistency. For solving this type of dif-

ficulties, we have developed an optimization model that minimizes the error. MATLAB

optimization toolbox is used to solve the optimization model.

The multiplicative transitive property given by equation 6.3.1 of HMPR can be rewritten

as

log b̄σ(s)
ei j = log b̄

σ(lb̄eik
−s+1)

eik + log b̄
σ(lb̄ek j

−s+1)
ek j ∀ i, j,k ∈ N, and i ̸= k ̸= j, s = 1,2, · · · , lb̄ei j

.

(6.3.4)

In case of inconsistency, equation 6.3.4 is utilize to minimize the error. To do this we

have constructed the following optimization model.

(Model 6.1) Min ∑(i, j)/∈Ω εb̄
ek
i j

subject to

εb̄
ek
i j

−| log b̄σ(s)
ei j −

(
log b̄

σ(lb̄eik
−s+1)

eik + log b̄
σ(lb̄ek j

−s+1)
ek j

)
| = 0, i ̸= k ̸= j, s = 1,2 · · · lb̄ei j

1/9− b̄σ(s)
ei j ≤ 0,s = 1,2 · · · lb̄ei j

b̄σ(s)
ei j −9 ≤ 0,s = 1,2 · · · lb̄ei j

b̄σ(s)(0)
ei j = b̄σ(s)(∗(0))

ei j ,s = 1,2 · · · lb̄ei j

b̄σ(s)
ei j × b̄

σ(lb̄ei j
−s+1)

e ji = 1

where b̄σ(s)(∗(0))
ei j are the intial value obtained from the algorithm 6.3.1.

In the next section, we have developed a linear programming model to calculate the

missing element of I-HMPR.

6.4 Linear programming model to complete incomplete

HMPR

Many researcher ( [63], [67], [84], [131], [198]) noted preference relation may incom-

plete for numerous reason. To manage the incomplete hesitant multiplicative preference

relation, here we have constructed a linear programming model to compute the missing

element. The suggested model addresses the situations with ignorance. Let B̄R = (b̄ei j)n×n

ba a normalized I-HMPR is called consistent then equation 6.3.3 is satisfied.
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From definition 6.2.3, we know that B̄R is consistent if and only if the strictly upper

triangular elements of I-HMPR satisfy the equation 6.3.3, namely

b̄σ(s)
ei j =

{
n

∏
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n

∀ i, j ∈ N, and i ̸= k ̸= j, i < j,

s = 1,2, · · · , lb̄ei j
. (6.4.1)

Sometimes, for making consistency of I-HMPR, the missing values does not satisfy the

equation 6.4.1. For higher and better approximation, we have minimized the error εi j,

where

εi j =

∣∣∣∣∣∣b̄σ(s)
ei j −

{
n

∏
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n
∣∣∣∣∣∣ ∀ i, j ∈ N, and i ̸= k ̸= j, i < j,

s = 1,2, · · · , lb̄ei j
. (6.4.2)

εi j is a constant when all the values of equation 6.4.2 are known. Therefore, equations

having missing values are only considered. To do this, Let Ω is the set of all known

element of HMPRs and

δi j =

 1 k ∈ Ω

0 otherwise

Define

εi j = δi j

∣∣∣∣∣∣b̄σ(s)
ei j −

{
n

∏
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n
∣∣∣∣∣∣ ∀ i, j ∈ N, and i ̸= k ̸= j, i < j,

s = 1,2, · · · , lb̄ei j
. (6.4.3)

Thus, the following multi-objective programming model(Model 6.2) is construct to cal-
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culate the missing values:

(Model 6.2)

minεi j = δi j

∣∣∣∣∣∣b̄σ(s)
ei j −

 n

∏
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

) 1
n


∣∣∣∣∣∣ ∀ i, j ∈ N,

and i ̸= k ̸= j, i < j, s = 1,2, · · · , lb̄ei j

Subject to 1/9 ≤ b̄σ(s)
ei j ≤ 9, b̄σ(s)

ei j ∈ Γ,

Where Γ = {b̄σ(s)
ei j |b̄σ(s)

ei j is a missing value, i, j ∈ N, i < j, s = 1,2, · · · , lb̄ei j
}

The above mentioned minimization problem (Model 6.2) can be solved by using the

following goal programming model

(Model 6.3)
n

∑
i, j=1,i< j k∈Ω,s=1,2,··· ,lb̄ei j

(
dσ(s)+

i j,k +dσ(s)−
i j,k

)
Subject to

δi j

(
b̄σ(s)

ei j −
{

∏n
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n
)

−dσ(s)+
i j,k +dσ(s)−

i j,k = 0; i, j ∈ N, i < j, s = 1,2, · · · , lb̄ei j

1/9 ≤ b̄σ(s)
ei j ≤ 9 b̄σ(s)

ei j ∈ Γ

dσ(s)+
i j,k ,dσ(s)−

i j,k ≥ 0 i, j ∈ N, i < j, s = 1,2, · · · , lb̄ei j

where dσ(s)+
i j,k =

b̄σ(s)
ei j −

{
∏n

k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n

∨0 and

dσ(s)−
i j,k =

{∏n
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n

− b̄σ(s)
ei j

∨0

∀ i, j ∈ N, i < j, s = 1,2, · · · , lb̄ei j
.

The missing values of I-HMPR are obtained using the model (Model 6.3). Since the

above goal programming model (Model 6.3) is nonlinear, to make linear take zi j = ln b̄σ(s)
ei j

for all i, j ∈ N, i < j, s = 1,2, · · · , lb̄ei j
.
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Then equation 6.4.1 can be transformed into

zi j = ln b̄σ(s)
ei j = ln

{
n

∏
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)} 1
n

=
1
n

ln

{
n

∏
k=1

(
b̄

σ(lb̄eik
−s+1)

eik × b̄
σ(lb̄ek j

−s+1)
ek j

)}

=
1
n

n

∑
k=1

ln
(

b̄
σ(lb̄eik

−s+1)
eik × b̄

σ(lb̄ek j
−s+1)

ek j

)
=

1
n

n

∑
k=1

(
ln b̄

σ(lb̄eik
−s+1)

eik + ln b̄
σ(lb̄ek j

−s+1)
ek j

)
=

1
n

n

∑
k=1

(zik + zk j) (6.4.4)

Then we developed a linear programming model (Model 6.4)

(Model 6.4)
n

∑
i, j=1,i< j k∈Ω,s=1,2,··· ,lb̄ei j

(
dσ(s)+

i j,k +dσ(s)−
i j,k

)
Subject to

δi j
(
zi j − 1

n ∑n
k=1(zik + zk j)

)
−dσ(s)+

i j,k +dσ(s)−
i j,k = 0, i, j ∈ N, i < j s = 1,2, · · · , lb̄ei j

1/9 ≤ zi j ≤ 9 zi j ∈ Γ′

dσ(s)+
i j,k ,dσ(s)−

i j,k ≥ 0 i, j ∈ N, i < j s = 1,2, · · · , lb̄ei j

where Γ′
= {zi j|zi jis a missing value, i, j ∈N, i< j}, dσ(s)+

i j,k =
(
zi j − 1

n ∑n
k=1(zik + zk j)

)
∨

0 and dσ(s)−
i j,k =

(1
n ∑n

k=1(zik + zk j)− zi j
)
∨0 ∀i, j ∈ N, i < j s = 1,2, · · · , lb̄ei j

.

To illustrate the above two model, i.e., optimization model (Model 6.1) and linear pro-

gramming model (Model 6.4), we have taken an example, which is discussed below.

Example 6.4.1. Consider a decision making problem with five sets of alternatives xi with

i = 1,2,3,4,5. The matrix representation of decision-maker judgement is a pairwise com-
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parison matrix denoted by BR given as follows:

{1} {7
4 ,

5
6 ,

1
3} {3,5,7} ∗ {3

5 ,
4
5}

{3, 6
5 ,

4
7} {1} {4,6,9} ∗ {16

35 ,
24
25 ,

18
10}

{1
7 ,

1
5 ,

1
3} {1

9 ,
1
6 ,

1
4} {1} ∗ ∗

∗ ∗ ∗ {1} {1
4 ,

1
4 ,

1
4}

{5
4 ,

5
3} {10

18 ,
25
24 ,

35
16} ∗ {4,4,4} {1}


It is to note that above given preference relation is incomplete. The corresponding nor-

malized I-HMPR B̄R is given by

{1} {7
4 ,

5
6 ,

1
3} {3,5,7} ∗ {3

5 ,
4
5 ,

4
5}

{3, 6
5 ,

4
7} {1} {4,6,9} ∗ {16

35 ,
24
25 ,

18
10}

{1
7 ,

1
5 ,

1
3} {1

9 ,
1
6 ,

1
4} {1} ∗ ∗

∗ ∗ ∗ {1} {1
4 ,

1
4 ,

1
4}

{5
4 ,

5
4 ,

5
3} {10

18 ,
25
24 ,

35
16} ∗ {4,4,4} {1}


The missing element are calculated using equation 6.3.3

b̄σ(1)
e14 = (b̄σ(3)

e15 × b̄σ(3)
e54 ) = 16/5, b̄σ(2)

e14 = (b̄σ(2)
e15 × b̄σ(2)

e54 ) = 16/5, b̄σ(3)
e14 = (b̄σ(1)

e15 × b̄σ(1)
e54 ) = 12/5.

Therefore, b̄e14 = {b̄σ(1)
e14 , b̄σ(2)

e14 , b̄σ(3)
e14 }= {16

5 ,
16
5 ,

12
5 }

b̄σ(1)
e24 = {(b̄σ(3)

e21 × b̄σ(3)
e14 )× (b̄σ(3)

e25 × b̄σ(3)
e54 )}1/2 = 3.142

b̄σ(2)
e24 = {(b̄σ(2)

e21 × b̄σ(2)
e14 )× (b̄σ(2)

e25 × b̄σ(2)
e54 )}1/2 = 3.84

b̄σ(3)
e24 = {(b̄σ(1)

e21 × b̄σ(1)
e14 )× (b̄σ(1)

e25 × b̄σ(1)
e54 )}1/2 = 4.189
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Therefore, b̄e24 = {b̄σ(1)
e24 , b̄σ(2)

e24 , b̄σ(3)
e24 }= {3.142,3.84,4.189}

b̄σ(1)
e34 = {(b̄σ(3)

e31 × b̄σ(3)
e14 )× (b̄σ(3)

e32 × b̄σ(3)
e24 )}1/2 = 0.9153

b̄σ(2)
e34 = {(b̄σ(2)

e31 × b̄σ(2)
e14 )× (b̄σ(2)

e32 × b̄σ(2)
e24 )}1/2 = 0.64

b̄σ(3)
e34 = {(b̄σ(1)

e31 × b̄σ(1)
e14 )× (b̄σ(1)

e32 × b̄σ(1)
e24 )}1/2 = 0.399

Therefore, b̄e34 = {b̄σ(1)
e34 , b̄σ(2)

e34 , b̄σ(3)
e34 }= {0.9153,0.64,0.399}.

b̄σ(1)
e35 = {(b̄σ(3)

e31 × b̄σ(3)
e15 )× (b̄σ(3)

e32 × b̄σ(3)
e25 )× (b̄σ(3)

e34 × b̄σ(3)
e45 )}1/3 = 0.2287

b̄σ(2)
e35 = {(b̄σ(2)

e31 × b̄σ(2)
e15 )× (b̄σ(2)

e32 × b̄σ(2)
e25 )× (b̄σ(2)

e34 × b̄σ(2)
e45 )}1/3 = 0.16

b̄σ(3)
e35 = {(b̄σ(1)

e31 × b̄σ(1)
e15 )× (b̄σ(1)

e32 × b̄σ(1)
e25 )× (b̄σ(1)

e34 × b̄σ(1)
e45 )}1/3 = 0.09986

Therefore, b̄e35 = {b̄σ(1)
e35 , b̄σ(2)

e35 , b̄σ(3)
e35 }= {0.2287,0.16,0.09986}.

It is to note that the initial value of b̄e35 not lies in between 1/9−9 ratio scale, therefore an

error occurs. Thus the error is minimized using minimize the error, the above optimization

model (Model 6.1) solved by MATLAB optimization toolbox. The complete normalized

HMPR B̄R is given below:

{1} { 7
4 ,

5
6 ,

1
3} {3,5,7} { 16

5 , 16
5 , 12

5 } { 3
5 ,

4
5 ,

4
5}

{3, 6
5 ,

4
7} {1} {4,6,9} {3.142,3.84,4.189} { 16

35 ,
24
25 ,

18
10}

{ 1
7 ,

1
5 ,

1
3} { 1

9 ,
1
6 ,

1
4} {1} {0.915,0.64,0.399} {0.229,0.16,0.111}

{ 5
16 ,

5
16 ,

5
12} { 1

4.189 ,
1

3.84 ,
1

3.142} { 1
0.399 ,

1
0.64 ,

1
0.915} {1} { 1

4 ,
1
4 ,

1
4}

{ 5
4 ,

5
4 ,

5
3} { 10

18 ,
25
24 ,

35
16} { 1

0.111 ,
1

0.16 ,
1

0.229} {4,4,4} {1}



Similarly, using linear programming model (Model 6.4), the missing elements of nor-

malized I-HMPR B̄R are obtained i.e., b̄14 = {16
5 ,

16
5 ,

12
5 }, b̄24 = {3.142,3.84,4.189},

b̄34 = {0.915,0.64,0.399}, b̄35 = {0.229,0.16,0.111}. The above linear programming

model (Model 6.4) is solved by LINGO software. Once we have complete HMPR, our

next goal is to check the consistency of the obtained relation. Therefore to validate the re-
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sult, in the next subsection, we have found the satisfaction index and acceptably consistent

of HMPR.

6.4.1 Checking the Satisfaction index and Acceptably consistent for

HMPR

Zhu and Xu [196] gave a method to calculate the maximum satisfaction degree of HM-

PRs that can deal with hesitant judgement and produce a solution of priorities of the objec-

tives of the decision makers. To accomplish the above task, Zhu and Xu [196] developed

the following model

Maxλ

Subject to

tλ +

(
wi −w j(b

σ(1)
ei j or · · · or b

|σ(lbei j
)|

ei j )

)
≤ t,

tλ −
(

wi −w j(b
σ(1)
ei j or · · ·orb

|σ(lbei j
)|

ei j )

)
≤ t,

i, j ∈ N, i < j

∑n
i=1 wi = 1, wi ≥ 0, i ∈ N

where λ is a parameter which is used to measure the satisfaction degree of the decision

maker to the solution and wi, wi ≥ 0, i ∈ N are the priority weights of the objectives and

t is the deviation parameter such that if t is large enough, then 0 ≤ λ ≤ 1; if t is small or

the hesitant judgement given by the decision makers are very inconsistent and then λ < 0,

though the value of priority weights remain same.

The satisfaction degree of the complete normalized HMPR (for t = 1) of example 6.4.1 is

given by

Max λ ;

sub ject to:

λ +w1 − 7
4w2 ≤ 1; λ +w1 − 5

6w2 ≤ 1; λ +w1 − 1
3w2 ≤ 1; λ +w1 −3w3 ≤ 1;

λ +w1 −5w3 ≤ 1; λ +w1 −7w3 ≤ 1; λ +w1 − 16
5 w4 ≤ 1; λ +w1 − 16

5 w4 ≤ 1;

λ +w1 − 12
5 w4 ≤ 1; λ +w1 − 6

10w5 ≤ 1; λ +w1 − 8
10w5 ≤ 1; λ +w1 − 8

10w5 ≤ 1;
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λ +w2 −4w3 ≤ 1; λ +w2 −6w3 ≤ 1; λ +w2 −9w3 ≤ 1; λ +w2 −3.142w4 ≤ 1;

λ +w2 −3.84w4 ≤ 1; λ +w2 −4.189w4 ≤ 1; λ +w2 − 16
35w5 ≤ 1; λ +w2 − 24

25w5 ≤ 1;

λ +w2− 18
10w5 ≤ 1; λ +w3−0.915w4 ≤ 1; λ +w3−0.64w4 ≤ 1; λ +w3−0.399w4 ≤ 1;

λ +w3−0.229w5 ≤ 1; λ +w3−0.16w5 ≤ 1; λ +w3−0.111w5 ≤ 1; λ +w4− 1
4w5 ≤ 1;

λ +w4 − 1
4w5 ≤ 1; λ +w4 − 1

4w5 ≤ 1; λ −w1 +
7
4w2 ≤ 1; λ −w1 +

5
6w2 ≤ 1;

λ −w1 +
1
3w2 ≤ 1; λ −w1 +3w3 ≤ 1; λ −w1 +5w3 ≤ 1; λ −w1 +7w3 ≤ 1;

λ −w1 +
16
5 w4 ≤ 1; λ −w1 +

16
5 w4 ≤ 1; λ −w1 +

12
5 w4 ≤ 1; λ −w1 +

6
10w5 ≤ 1;

λ −w1 +
8
10w5 ≤ 1; λ −w1 +

8
10w5 ≤ 1; λ −w2 +4w3 ≤ 1; λ −w2 +6w3 ≤ 1;

λ −w2 +9w3 ≤ 1; λ −w2 +3.142w4 ≤ 1; λ −w2 +3.84w4 ≤ 1; λ −w2 +4.189w4 ≤ 1;

λ −w2 +
16
35w5 ≤ 1; λ −w2 +

24
25w5 ≤ 1; λ −w2 +

18
10w5 ≤ 1; λ −w3 +0.915w4 ≤ 1;

λ −w3+0.64w4 ≤ 1; λ −w3+0.399w4 ≤ 1; λ −w3+0.229w5 ≤ 1; λ −w3+0.16w5 ≤ 1;

λ −w3 +0.111w5 ≤ 1; λ −w4 +
1
4w5 ≤ 1; λ −w4 +

1
4w5 ≤ 1; λ −w4 +

1
4w5 ≤ 1;

w1 +w2 +w3 +w4 +w5 = 1; w1,w2,w3,w4,w5 ≥ 0

The satisfaction degree of complete HMPR is 0.8024 i.e 80.24% and the weights vector

are (0.2903,0.2787,0.0529,0.11365,0.2645). The above linear programming problem is

solved by LINGO software. For different value of deviation parameter t, has different

satisfaction degree but same weights vector that is given in table 6.1.
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Table 6.1: Priorities obtained for different t.

t = 1 t = 0.5 t = 0.3
λ 0.8024 0.6052 0.3420
w1 0.2903 0.2903 0.2903
w2 0.2787 0.2787 0.2787
w3 0.0529 0.0529 0.0529
w4 0.11365 0.11365 0.11365
w5 0.2645 0.2645 0.2645

6.4.2 Acceptably consistent for HMPR

In the previous section, we have calculated satisfaction degree of complete HMPR.

Zhang and Wu [76] give a method to check the acceptably consistent of HMPR by splitting

HMPR to MPRs. Complete HMPR B̄R obtained from example 6.4.1 is splitted with three

MPRs given as P(i), i = 1,2,3.

P(1)=



1 7
4 3 16

5
3
5

4
7 1 4 3.142 16

35
1
3

1
4 1 0.915 0.229

5
16

1
3.142

1
0.915 1 1

4
5
3

35
16

1
0.229 4 1


5×5

P(2)=



1 5
6 5 16

5
4
5

6
5 1 6 3.84 24

25
1
5

1
6 1 0.64 0.16

5
16

1
3.84

1
0.64 1 1

4
5
4

25
24

1
0.16 4 1


5×5

P(3) =



1 1
3 7 12

5
4
5

3 1 9 4.189 18
10

1
7

1
9 1 0.399 0.111

5
12

1
4.189

1
0.399 1 1

4
5
4

10
18

1
0.111 4 1


5×5

Consistency ratio(CR) of MPRs P(1), P(2), P(3) is 0.0182, 0, 0.0169 respectively which

are less than 0.1. Therefore the complete HMPR B̄R is acceptably consistent.

6.5 Conclusion

In this chapter, we have defined a new multiplicative transitive property of HMPR. We

have developed an algorithm to construct a complete HMPRs from an incomplete one. It

may be the case that the initial values obtained from algorithm 6.3.1 not lies in the ratio

scale 1/9−9. We have developed an optimization model to minimize the error. Also, we

have developed a methodology which is based on linear programming model to complete
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the incomplete HMPR. Satisfaction degree and acceptably consistent of complete HMPR

is also checked. We have presented an example to illustrates the above method.





Summary and future scope of the work

In the real world multi-criteria decision-making problem has been broadly perceived that

most decisions take place in an environment in which the goals and constraints, are not

known precisely, because of their complexity, and hence, the problem cannot be accurately

characterized or correctly represented in a crisp value [2]. Zadeh [3] suggested fuzzy

set theory to deal with the kind of qualitative, uncertain data or even not well-organized

choice issues, as a modeling tool for complex systems that can be controlled by humans

but are hard to define precisely. In this thesis, we have discussed the different type of

fuzzy relation, a clustering method based on different type of fuzzy relation.

We have revised the ᾱ-cut of interval-valued fuzzy relation given by Guh et al. [52].

Two algorithms are developed to chose the ᾱ-cut for interval-valued fuzzy relation and

(α,β )-cut for intuitionistic fuzzy relation. We have extends the work of Guh et al. [52]

to set out the system for constructing hierarchical clustering for interval-valued intuition-

istic fuzzy relation. Determining the criteria weights in an MCDM problem, with deci-

sion maker providing entries of a criteria-alternative matrix as IVIF value, is tended to

demonstrate the utilization of the proposed clustering scheme. A detailed procedure is

given a strong outline to calculate the global weights of the criteria. MATLAB codes are

developed for each algorithm presented in this work (in chapter 2) and the same are imple-

mented on the large number of matrices representation of IVFR, IFR, IVIFRs. MATLAB

codes are given in Appendix 2.

It would be interesting to see if the hierarchical clustering approach can be extended to

more than one IVIFR and hence can be applied to MCGDM problems for computing the

importance of many experts along with the criteria weight vector.

The applicability of decision-making procedures are constantly increasing in various do-

mains of assessment, selection and prioritization purposes, that is, making preference de-

cisions about a set of different choices. Furthermore, it is also apparent that in many cases,

distinct alternatives cannot be compared in view of their desirability in decision situations
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employing a single expert or one criterion. Obviously, in widely existing decision-making

situations, techniques to combine opinions with distinct points of view about alternatives

have been established. These techniques involve pairwise comparisons as the methods

are linked to some degree of credibility of preference of one alternative over another. In

literature, a number of research work has been done on the use of preference relations

in several fields. In decision-making problem, the facts may confirm that the decision

maker might not have an excellent comprehension on a specific inquiry, and sometimes,

he/she can not make a direct comparison between two options or criteria. In that cases,

the decision maker might need to communicate their information with incomplete data. It

is to note that, a DM require n(n−1)
2 judgments for comparison of a complete preference

relation. However, due to lack of time and busy schedule of the decision maker, he/she

may give less than results the incomplete preference relation.

Among the existing preference relation, IMPR is one of the most useful tool to express

the decision makers preference data which is the generalization of MPR. In this work,

we have presented the transitivity property of IMPR. In light of this, we have introduced

two methodologies for completing incomplete IMPRs. In the first approach, the missing

element can be ascertained by utilizing the new transitivity property, and an optimization

model has been produced to adjust the initial values. Also, goal programming model

is developed in light of new transitivity property to calculate the missing values. In the

second approaches, we have developed a method to check the consistency of IMPR by

using the cycles of various length in a directed graph and the same procedure apply for

incomplete IMPRs also.

Also, we have generalised the IVI-MPR and proposed a two-advance technique to pop-

ulate the missing entries in an incomplete IVI-MPR. Although certain research papers

are available in the literature on MPRs in the intuitionistic framework yet the proposed

integration of IVI-MNs in MPR, especially in the incomplete preference relations, can

be considered as a novel contribution. The primary goal of the proposed procedure for

finding the missing element lies in its estimating step. We can always find an elemen-

tary connecting path in the given preference relation matrix such that all other elements

along this path are completely known. Sometimes, this assumption may not hold. An-

other concern in the present study is that the weights or different levels of experts are

supposed to be precisely known. A suitable choice of a weight vector ensures acceptably

consistent group aggregated preference relation matrix. These grey patches of this study

can be quickly filled in near future research taking inspiration from the approaches of
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very recent works of Wan, Xu, Wang, and their co-researchers (2016-2017). One can also

investigate Choquet integral approach for aggregating information in preference relation

matrices than the presently used traditional geometric mean operator. Moreover, one can

attempt to define group consensus in IVI framework and design a procedure to accomplish

the same.

Also in this thesis, we have worked on incomplete HFPR and incomplete HMPR. We

have build up different methods that help to find the missing elements from the incomplete

one. Comparison of our methods with comparative work are also discussed. The present

work can be extended to intuitionistic hesitant multiplicative preference relation, hesitant

linguistic preference relation their application in decision-making problem.





APPENDIX

APPENDIX-1

Converting crisp value to an IVIF value (for detail reasoning, plz. refer to [158])

For each column i of the criteria correlation matrix, find the minimum and the maximum

values among all values in (0.5, 1], yielding an interval [ξ l
i , ξ u

i ], called the satisfactory

interval. Next, for the same i, find the minimum and the maximum values among all values

in [0, 0.5) to generate the dissatisfactory interval [δ l
i , δ u

i ]. If no entry in i-th column of the

criteria correlation matrix lies in (0.5, 1] or [0, 0.5), then take the satisfactory interval or

the dissatisfactory interval equals [0.5,0.5].

For instance for the first column corresponding to criterion C1 in Table 2.2 of chapter 2,

the satisfactory interval is [0.5238, 1] and the dissatisfactory interval is [0.3414, 0.4916].

Use the linear transformation y = 2x− 1 in the interval [ξ l
i , ξ u

i ] to transform it to in-

terval [ρ l
i , ρu

i ]. Similarly the interval [δ l
i ,δ u

i ] be transformed to [υ l
i ,υu

i ], using the linear

transformation y = 1−2x.

Let τi = ρ l
i +ρu

i +υ l
i +υu

i . Apply the transformation,

µ
i
=

ρ l
i

τi
, µ i =

ρu
i

τi
, ν i =

υ l
i

τi
, ν i =

υu

τi
,

to get an IVIF number ([µ
i
, ν i], [ν i, ν i]), i = 1, . . . ,m.

For instance, from the first column in the criteria correlation matrix in Table 2.2 of

chapter 2, µ
1
= 0.0345, µ1 = 0.7238, ν1 = 0.0121, ν1 = 0.2295.

APPENDIX-2

1. MATLAB code for finding α̃-cut of interval valued fuzzy relation(IVFR)

close all;

clear all;

clc;

%making initial matrix for decision maker %
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x = input(’Enter the value as to how do you want to take the initial

data from decision makers : \n1)Through excel sheet \n2)Create

data through matlab\n ’);

if(x==2)

m = input(’Enter number of criterias you want : ’);

membershipmat = zeros(m,m,2);

for i = 1:m

for j = 1:m

if(i==j)

membershipmat(i,j,1) = 1;

elseif(i<j)

membershipmat(i,j,1) = 0+[1*rand];

else

membershipmat(i,j,1) = membershipmat(j,i,1);

end

end

end

for i = 1:m

for j=1:m

if(i==j)

membershipmat(i,j,2) = 1;

elseif(i<j)

membershipmat(i,j,2) = membershipmat(i,j,1)+

[(1-membershipmat(i,j,1))*rand];

else

membershipmat(i,j,2) = membershipmat(j,i,2);

end

end

end

a = input(’Enter the name of excel file in which you need

to save the data : ’,’s’);

xlswrite(a,membershipmat(:,:,1),1);

xlswrite(a,membershipmat(:,:,2),2);

else

a = input(’Enter the name of excel file which you need to
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import : ’,’s’);

membershipmat(:,:,1) = xlsread(a,’Sheet1’);

membershipmat(:,:,2) = xlsread(a,’Sheet2’);

siz = size(membershipmat(:,:,1));

m = siz(1,1);

n = siz(1,2);

end

numberstep = 0;

for i = 1:m

for j = 1:m

for k=1:m

a1(k) = min(membershipmat(i,k,1),membershipmat(k,j,1));

a2(k) = min(membershipmat(i,k,2),membershipmat(k,j,2));

end

midmat1(i,j,1) = max(a1);

midmat1(i,j,2) = max(a2);

a1 = [];

a2 = [];

end

end

finalmat = midmat1;

midmat1 = membershipmat;

while(isequal(midmat1,finalmat)==0)

for i = 1:m

for j = 1:m

for k=1:m

a1(k) = min(membershipmat(i,k,1),finalmat(k,j,1));

a2(k) = min(membershipmat(i,k,2),finalmat(k,j,2));

end

midmat1(i,j,1) = max(a1);

midmat1(i,j,2) = max(a2);

a1 = [];

a2 = [];

end

end
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midmat2 = finalmat;

finalmat = midmat1;

midmat1 = midmat2;

numberstep = numberstep+1;

end

numberstep

finalmat % equivalence matrix

%-------- alpha cut --------%

finalmatt = finalmat;

resmatt = zeros(m);

k=1;

sresmatt=0;

while(sresmatt ~= m^2)

atemp = find(finalmatt(:,:,1) == max(max(finalmatt(:,:,1))));

[co1,co2] = ind2sub(m,atemp);

[s1,s2]=size(co1);

alphal(k) = max(max(finalmatt(:,:,1)));

resmatt(atemp) = 1;

resmat(:,:,k) = resmatt;

for l = 1:s1

btemp(l) = finalmatt(co2(l),co1(l),2);

finalmatt(co2(l),co1(l),1) = nan;

finalmatt(co2(l),co1(l),2) = nan;

end

alphau(k) = min(min(btemp));

variable = 1;

atemp = [];

btemp = [];

sresmatt=0;

for i = 1:m

for j=1:m

sresmatt = sresmatt + resmatt(i,j);

end

end
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k=k+1;

end

sno = [1:(k-1)];

for i = 1:k-1

tempresmat(:,:,k-i) = resmat(:,:,i);

end

resmat = tempresmat;

resmat(:,:,1)

colum = 1;

i = 1;

while(i ~= k-1)

xtemp = find(tempresmat(:,colum,i) == 1);

ytemp = find(tempresmat(:,colum,i+1) == 0);

ftemp = intersect(xtemp,ytemp);

if(isempty(ftemp))

colum = colum+1;

if(colum == k-1) %new part included

colum = 1;

end

else

resmat(:,:,i+1)

position = ftemp

i = i+1;

end

xtemp = [];

ytemp = [];

ftemp = [];

end %

alphabeta = [flipud(alphal’) ,flipud(alphau’)]

2. MATLAB code for finding (α ,β )-cut of intuitionistic fuzzy relation(IFR)

close all;

clear all;
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clc;

x = input(’Enter the value as to how do you want to

take the initial data from decision makers : \n1)

Through excel sheet \n2)Create data through

matlab\n ’);

if(x==2)

m = input(’Enter number of criterias you want : ’);

membershipmat = zeros(m,m,2);

for i = 1:m

for j = 1:m

if(i==j)

membershipmat(i,j,1) = 1;

elseif(i<j)

membershipmat(i,j,1) = 0+[1*rand];

else

membershipmat(i,j,1) = membershipmat(j,i,1);

end

end

end

for i = 1:m

for j=1:m

if(i==j)

membershipmat(i,j,2) = 0;

elseif(i<j)

membershipmat(i,j,2) = [(1-membershipmat(i,j,1))*rand];

else

membershipmat(i,j,2) = membershipmat(j,i,2);

end

end

end

a = input(’Enter the name of excel file in which you

need to save the data : ’,’s’);

xlswrite(a,membershipmat(:,:,1),1);

xlswrite(a,membershipmat(:,:,2),2);

else
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a = input(’Enter the name of excel file which you need to

import : ’,’s’);

membershipmat(:,:,1) = xlsread(a,’Sheet1’);

membershipmat(:,:,2) = xlsread(a,’Sheet2’);

siz = size(membershipmat(:,:,1));

m = siz(1,1);

n = siz(1,2);

end

numberstep = 0;

for i = 1:m

for j = 1:m

for k=1:m

a1(k) = min(membershipmat(i,k,1),membershipmat(k,j,1));

a2(k) = max(membershipmat(i,k,2),membershipmat(k,j,2));

end

midmat1(i,j,1) = max(a1);

midmat1(i,j,2) = min(a2);

a1 = [];

a2 = [];

end

end

finalmat = midmat1;

midmat1 = membershipmat;

while(isequal(midmat1,finalmat)==0)

for i = 1:m

for j = 1:m

for k=1:m

a1(k) = min(membershipmat(i,k,1),finalmat(k,j,1));

a2(k) = max(membershipmat(i,k,2),finalmat(k,j,2));

end

midmat1(i,j,1) = max(a1);

midmat1(i,j,2) = min(a2);

a1 = [];

a2 = [];

end
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end

midmat2 = finalmat;

finalmat = midmat1;

midmat1 = midmat2;

numberstep = numberstep+1;

end

numberstep

finalmat

%finalmat = midmat1;

%finalmat % equivalence matrix

%-------- alpha cut --------%

finalmatt = finalmat;

resmatt = zeros(m);

k=1;

sresmatt=0;

while(sresmatt ~= m^2)

atemp = find(finalmatt(:,:,1) == max(max(finalmatt(:,:,1))));

[co1,co2] = ind2sub(m,atemp);

[s1,s2]=size(co1);

alphal(k) = max(max(finalmatt(:,:,1)));

resmatt(atemp) = 1;

resmat(:,:,k) = resmatt;

for l = 1:s1

btemp(l) = finalmatt(co2(l),co1(l),2);

finalmatt(co2(l),co1(l),1) = nan;

finalmatt(co2(l),co1(l),2) = nan;

end

alphau(k) = min(min(btemp));

variable = 1;

atemp = [];

btemp = [];

sresmatt=0;

for i = 1:m

for j=1:m

sresmatt = sresmatt + resmatt(i,j);
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end

end

k=k+1;

end

sno = [1:(k-1)];

for i = 1:k-1

tempresmat(:,:,k-i) = resmat(:,:,i);

end

resmat = tempresmat;

resmat(:,:,1)

colum = 1;

i = 1;

while(i ~= k-1)

xtemp = find(tempresmat(:,colum,i) == 1);

ytemp = find(tempresmat(:,colum,i+1) == 0);

ftemp = intersect(xtemp,ytemp);

if(isempty(ftemp))

colum = colum+1;

if(colum == k-1) %new part included

colum = 1;

end

else

resmat(:,:,i+1)

position = ftemp

i = i+1;

end

xtemp = [];

ytemp = [];

ftemp = [];

end

alphabeta = [(flipud(alphal’)),(flipud(alphau’))]

3. MATLAB code for finding (α̃ , β̃ )-cut of interval-valued intuitionistic fuzzy re-

lation (IVIFR) and calculate the local and global weight

close all;
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clear all;

clc;

x = input(’Enter the value as to how do you want to take the initial

data from decision makers : \n1)Through excel sheet \n2)Create

data through matlab\n ’);

if(x==2)

m = input(’Enter number of criterias you want : ’);

membershipmat = zeros(m,m,4);

for i = 1:m

for j = 1:m

if(i==j)

membershipmat(i,j,1) = 1;

elseif(i<j)

membershipmat(i,j,1) = 0+[1*rand];

else

membershipmat(i,j,1) = membershipmat(j,i,1);

end

end

end

for i = 1:m

for j=1:m

if(i==j)

membershipmat(i,j,2) = 1;

elseif(i<j)

membershipmat(i,j,2) = membershipmat(i,j,1)+

[(1-membershipmat(i,j,1))*rand];

else

membershipmat(i,j,2) = membershipmat(j,i,2);

end

end

end

for i = 1:m

for j = 1:m

if(i==j)

membershipmat(i,j,4) = 0;
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elseif(i<j)

membershipmat(i,j,4) = 0+[(1-membershipmat(i,j,2))*rand];

else

membershipmat(i,j,4) = membershipmat(j,i,4);

end

end

end

for i = 1:m

for j = 1:m

if(i==j)

membershipmat(i,j,3) = 0;

elseif(i<j)

membershipmat(i,j,3) = 0+[(membershipmat(i,j,4)-0)*rand];

else

membershipmat(i,j,3) = membershipmat(j,i,3);

end

end

end

a = input(’Enter the name of excel file in which you

need to save the data : ’,’s’);

xlswrite(a,membershipmat(:,:,1),1);

xlswrite(a,membershipmat(:,:,2),2);

xlswrite(a,membershipmat(:,:,3),3);

xlswrite(a,membershipmat(:,:,4),4);

else

a = input(’Enter the name of excel file which you need to

import : ’,’s’);

membershipmat(:,:,1) = xlsread(a,’Sheet1’);

membershipmat(:,:,2) = xlsread(a,’Sheet2’);

membershipmat(:,:,3) = xlsread(a,’Sheet3’);

membershipmat(:,:,4) = xlsread(a,’Sheet4’);

siz = size(membershipmat(:,:,1));

m = siz(1,1);

m = siz(1,2);

end
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numberstep = 0;

for i = 1:m

for j = 1:m

for k=1:m

a1(k) = min(membershipmat(i,k,1),membershipmat(k,j,1));

a2(k) = min(membershipmat(i,k,2),membershipmat(k,j,2));

a3(k) = max(membershipmat(i,k,3),membershipmat(k,j,3));

a4(k) = max(membershipmat(i,k,4),membershipmat(k,j,4));

end

midmat1(i,j,1) = max(a1);

midmat1(i,j,2) = max(a2);

midmat1(i,j,3) = min(a3);

midmat1(i,j,4) = min(a4);

a1 = [];

a2 = [];

a3 = [];

a4 = [];

end

end

finalmat = midmat1;

midmat1 = membershipmat;

while(isequal(midmat1,finalmat)==0)

for i = 1:m

for j = 1:m

for k=1:m

a1(k) = min(membershipmat(i,k,1),finalmat(k,j,1));

a2(k) = min(membershipmat(i,k,2),finalmat(k,j,2));

a3(k) = max(membershipmat(i,k,3),finalmat(k,j,3));

a4(k) = max(membershipmat(i,k,4),finalmat(k,j,4));

end

midmat1(i,j,1) = max(a1);

midmat1(i,j,2) = max(a2);

midmat1(i,j,3) = min(a3);

midmat1(i,j,4) = min(a4);

a1 = [];
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a2 = [];

a3 = [];

a4 = [];

end

end

midmat2 = finalmat;

finalmat = midmat1;

midmat1 = midmat2;

numberstep = numberstep+1;

end

numberstep

finalmat

%finalmat = midmat1;

%finalmat % equivalence matrix

%-------- alpha cut --------%

finalmatt = finalmat;

resmatt = zeros(m);

k=1;

sresmatt=0;

while(sresmatt ~= m^2)

atemp = find(finalmatt(:,:,1) == max(max(finalmatt(:,:,1))));

[co1,co2] = ind2sub(m,atemp);

[s1,s2]=size(co1);

alphal(k) = max(max(finalmatt(:,:,1)));

resmatt(atemp) = 1;

resmat(:,:,k) = resmatt;

for l = 1:s1

btemp(l) = finalmatt(co2(l),co1(l),2);

ctemp(l) = finalmatt(co2(l),co1(l),3);

dtemp(l) = finalmatt(co2(l),co1(l),4);

finalmatt(co2(l),co1(l),1) = nan;

finalmatt(co2(l),co1(l),2) = nan;

finalmatt(co2(l),co1(l),3) = nan;

finalmatt(co2(l),co1(l),4) = nan;

end
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alphau(k) = min(min(btemp));

betal(k) = max(max(ctemp));

betau(k) = max(max(dtemp));

variable = 1;

atemp = [];

btemp = [];

ctemp = [];

dtemp = [];

sresmatt=0;

for i = 1:m

for j=1:m

sresmatt = sresmatt + resmatt(i,j);

end

end

k=k+1;

end

resmat

alphabeta = [flipud(alphal’) ,flipud(alphau’),

flipud(betal’),flipud(betau’)]

% finding pivotal element for equivalence matrix

for i = 1:m

sum1(i) = 0;

sum2(i) = 0;

sum3(i) = 0;

sum4(i) = 0;

for j = 1:m

sum1(i) = sum1(i) + finalmat(i,j,1);

sum2(i) = sum2(i) + finalmat(i,j,2);

sum3(i) = sum3(i) + finalmat(i,j,3);

sum4(i) = sum4(i) + finalmat(i,j,4);

end

pel(i) = [sum1(i)+sum2(i)-sum3(i)-sum4(i)]/2;

end

[val,loc] = min(pel);

pivotcri = loc
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%finding local weights

k = input(’Enter number of subets that are formed : ’);

localweight = nan(k,k);

for m = 1:k

criterianum = input(’Enter the criteria number which

we need to take in subset matrix(if

entering first time start with largest

set) : ’);

pivotcriloc(m) = find(criterianum == pivotcri);

subsetmat = finalmat(criterianum,criterianum,:)

siz2 = size(subsetmat);

entropsum = 0;

for i = 1:siz2(1,1)

entropm(i) = 0;

for j = 1:siz2(1,1)

entropm(i) = entropm(i) + [2-abs(subsetmat(i,j,1)

-subsetmat(i,j,3))-abs(subsetmat(i,j,2)-subsetmat(i,j,4))

+(1-subsetmat(i,j,1)-subsetmat(i,j,3))+(1-subsetmat(i,j,2)

-subsetmat(i,j,4))]/[2+abs(subsetmat(i,j,1)-subsetmat(i,j,3))

+abs(subsetmat(i,j,2)-subsetmat(i,j,4))+(1-subsetmat(i,j,1)

-subsetmat(i,j,3))+(1-subsetmat(i,j,2)-subsetmat(i,j,4))];

end

entropym(i) = entropm(i)/siz2(1,1);

entropsum = entropsum + entropym(i);

end

for i = 1:siz2(1,1)

localweightt(i) = [1 - entropym(i)]/[siz2(1,1)-entropsum];

localweight(i,m) = localweightt(i);

end

end

zeroloc = find(localweight == 0);

localweight(zeroloc) = nan;

localweight

[asize1, asize2] = size(localweight);

%finding global weight
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for j = 1:asize2

for i = 1:asize1

nlocalweight(i,j) = localweight(i,j)/localweight(pivotcriloc(j),j);

end

end

snlocalweight = 0;

for j = 1:asize2

for i = 1:asize1

if(isnan(nlocalweight(i,j)) == 0)

snlocalweight = snlocalweight + nlocalweight(i,j);

end

end

end

for j = 1:asize2

for i = 1:asize1

if(nlocalweight(i,j) ~= nan)

globalweight(i,j) = nlocalweight(i,j)/[snlocalweight-k+1];

end

end

end

globalweight
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