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ABSTRACT 

 

Ultrasound imaging has become one of the most popular medical imaging modalities with 

numerous diagnostic applications. However, ultrasound (US) image segmentation, which is 

the essential process for further analysis, is a challenging task due to the poor image quality. 

In this paper, we propose a new segmentation scheme to combine both region- and edge-

based information into the robust graph-based (RGB) segmentation method. The only 

interaction required is to select two diagonal points to determine a region of interest (ROI) on 

the original image. The ROI image is smoothed by a bilateral filter and then contrast-

enhanced by histogram equalization. Then, the enhanced image is filtered by pyramid mean 

shift to improve homogeneity. With the optimization of particle swarm optimization (PSO) 

algorithm, the RGB segmentation method is performed to segment the filtered image. The 

segmentation results of our method have been compared with the corresponding results 

obtained by three existing approaches, and four metrics have been used to measure the 

segmentation performance. The experimental results show that the method achieves the best 

overall performance and gets the lowest ARE (10.77%), the second highest TPVF (85.34%), 

and the second lowest FPVF (4.48%). 
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CHAPTER 1 

 

INTRODUCTION 

 

Ultrasound (US) imaging is one of the most popular medical imaging modalities with numerous 

diagnostic applications due to the following merits: no radiation, faster imaging, higher sensitivity and 

accuracy, and lower cost compared to other imaging modalities, such as computed tomography (CT) or 

magnetic resonance imaging (MRI) [1–6]. However, sonography is operator-dependent, and reading 

US images requires well-trained and experienced radiologists. To reduce the interobserver variation 

among different clinicians and help them generate more reliable and accurate diagnos-tic conclusions, 

computer-aided diagnosis (CAD) has been proposed [3, 7, 8]. Generally, the CAD system based on the 

US image involves the following four steps: prepro-cessing, segmentation, feature extraction and 

selection, and classification [9, 10]. Among these four procedures, image segmentation which 

separates the lesion region from the background is the key to the subsequent processing and 

determines the quality of the final analysis. In the pre-vious clinical practice, the segmentation task is 

generally performed by manual tracing, which is laborious, time-consuming, and skill- and experience-

dependent. Conse-quently, reliable and automatic segmentation methods are preferred to segment the 

ROI from the US image, to improve the automation and robustness of the CAD system. However, 

accurate and automatic US image segmentation remains a challenging task [11–13] due to various US 

artifacts, including high speckle noise [14], low signal-to-noise ratio, and inten-sity inhomogeneity 

[15]. 
 

In the last decade, a large number of segmentation methods have been developed for US images, for 

example, thresholding-based methods [16–18], clustering-based meth-ods [19–23], watershed-based 

methods [24–27], graph-based methods [28–35], and active contour models [36–42]. Thresholding is 

one of the frequently used segmentation techniques for the monochrome image. Yap et al. [18] adopted 

the thresholding segmentation to separate the lesion region from the background before detecting the 

initial boundary via edge detection. Clustering is a classification technique and has been successfully 

applied to image segmentation based on similarity between image regions or pixels. Isa et al. [19] used 

the moving -means clustering to automatically select the seed and proposed a modif ied seed based 

region growing algorithm to detect the edge. Shan et al. [20] used a novel neu-trosophic clustering 

approach to detect the lesion boundary. Moon et al. [22] used the fuzzy C-means (FCM) clustering to 

extract the tumor candidates in their CAD system. The watershed transformation which is frequently 

used in the segmentation of grey scale images considers the gradient magnitude of an image as a 

topographic surface. Chen et al. [24] employed the two-pass watershed transformations to generate the 

cells and proposed a region-based approach called cell-competition algorithm to simultaneously 

segment multiple objects in a sonogram. L. Zhang and M. Zhang [26] used an extended fuzzy 

watershed method to segment US images fully automatically. The experiments showed that the 

proposed method could get good results on blurry US images. 
 

In the last few years, graph-based segmentation has become a research hotspot due to the simple 

structure and solid theories. In graph-based segmentation, the image is modeled as a weighted, 
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undirected graph. Zhang et al. [28] applied the discriminative graph-cut approach to segment-ing 

tumors after discrimination between tumors and the background via a trained classifier. In 2014, Zhou 

et al. [29] proposed a novel US image segmentation method based on mean shift and graph cuts 

(MSGC). It uses mean shift filter to improve the homogeneity and applies graph-cut method, whose 

energy function combines region- and edge-based information to segment US images. The result 

showed that the method is rapid and efficient. Huang et al. [30] designed a novel comparison criterion 

for pairwise subregions which takes local statistics into account to make their method more robust to 

noises, and hence it was named as robust graph-based (RGB) segmentation method. The experimental 

results showed that accurate segmentation results can be obtained by this method. However, two 

significant parameters determin-ing the segmentation result should be set empirically, and for different 

images they need to be adjusted by repeated tests to obtain good segmentation results. In 2013, Huang 

et al. 
 

[31] proposed an improvement method for RGB by using PSO algorithm to optimize the two 
significant parameters automatically. The between-class variance, which denotes the difference 

between the reference region and its adjacent regions, was introduced as the objective function and the 

method was named as parameter-automatically optimized robust graph-based (PAORGB) 
segmentation.  

The active contour model (ACM), more widely known as snake, is another very popular segmentation 

method for US images and has been massively used as an edge-based segmentation method. This 

approach attempts to minimize the energy associated with the initial contour as the sum of the internal 

and external energies. During the deformation process, the force is calculated from the internal energy 

and external energy. The internal energy derived from the contour model is used to control the shape 

and regularity of the contour, and the external energy derived from the image feature is used to extract 

the contour of the desired object. A 3D snake technique was used by Chang et al. [36] to obtain the 

tumor contour for the pre- and postoperative malignant tumor excision. Jumaat et al. [37] applied the 

Balloon Snake to segment the mass in the US image taken from Malaysian population. To overcome 

the curvature and topology problems in the ACM, level set has been employed to improve the US 

image segmentation. Sarti et al. [38] used a level set formulation to search the minimal value of ACM, 

and the segmentation results showed that their model is efficient and flexible. Gao et al. [40] combined 

an edge stopping term and an improved gradient vector flow snake in the level set framework, to 

robustly cope with noise and to accurately extract the low contrast and/or concave ultrasonic tumor 

boundaries. Liu et al. [39] proposed a novel probability density difference-based active contour method 

for ultra-sound image segmentation. In 2010, Li et al. [43] proposed the new level set evolution model 

Distance Regularized Level Set Evolution (DRLSE) in which it adds a distance regularization term 

over traditional level set evolution to eliminate the need for reinitialization in evolution process and 

improve the efficiency. Some researchers combined texture information with other methods for US 

images segmentation [44–47]. In 2016, Lang et al. [44] used a multiscale texture identifier integrated 

in a level set framework to capture the spiculated boundary and showed improved segmentation result. 

 

However, most of the above methods are purely region-based or edge-based. For region-based 

methods, they use homogeneity statistics and low-level image features like intensity, texture, and 

histogram to assign pixels to objects. Two pixels would be assigned to the same object if they are 

similar in value and connected to each other in some sense. The problem of applying these approaches 

to US images is that, without considering any shape information, they would classify pixels within the 

acoustic shadow as belonging to the tumor, while posterior acoustic shadowing is a common artifact 

in US images [48, 49]. For edge-based methods (ACM), they are used to handle only the ROI, not the 

entire image. Although they can obtain the precise contour of the desired object, they are sensitive to 

noise and heavily rely on the suitable initial contour which is very difficult to generate properly. Also, 
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the deformation procedure is very time-consuming. Therefore, segmentation approaches which 

integrate region-based techniques and edge-based techniques have been proposed to obtain accurate 

segmentation results for US images [50–55]. Chang et al. 
 

[50] introduced the concepts of 3D stick, 3D morphologic process, and 3D ACM. T he 3D stick is used 
to reduce the speckle noise and enhance the edge information in 3D US images. Then, the 3D 

morphologic process is used to obtain the initial contour of the tumor for the 3D ACM. Huang and 
Chen [51, 52] utilized the watershed transform and ACM to overcome the natural properties of US 

images 
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(i.e., speckle, noise, and tissue-related textures), to segment tumors precisely. In their methods, the 

watershed transform is performed as the automatic initial contouring procedure for the ACM. Then, the 

ACM automatically determines the exquisite contour of the tumor. Wang et al. [55] presented a 

multiscale framework for US image segmentation based on speckle reducing anisotropic diffusion and 

geodesic active contour. In general, the region-based technique is used to generate the initial contour 

for the edge-based technique. The experimental results of these approaches indicate that accurate 

segmentation results can be obtained by combining region-based and edge-based information of the US 

image. 

 

In this paper, we propose a novel segmentation scheme for US images based on the RGB segmentation 

method [30] and particle swarm optimization (PSO) algorithm [56, 57]. In this scheme, the PSO is used 

to optimally set the two significant parameters determining the segmentation result automatically. To 

combine region-based and edge-based information, we consider the optimization as a multiobjective 

problem comparing with PAORGB. We use multiobjective optimization method (maximizing the 

difference between target and background, improving the uniformity within the target region, and 

considering the edge gradient) to improve the segmentation performance. We take the uniformity of the 

region and the information of the edge as the objective contents in the process of optimization. First, 

one rectangle is manually selected to determine the ROI on the original image. However, because of 

the low contrast and speckle noises of US images, the ROI image is filtered by a bilateral filter and 

contrast-enhanced by histogram equalization. Next, pyramid mean shif t is executed on the enhanced 

image to improve homogeneity. A novel objective function consisting of three parts corresponding to 

region-based and edge-based information is designed in the PSO. With the optimization of PSO, the 

RGB segmentation method is performed to segment the ROI image. Finally, the segmented image is 

processed by morphological opening and closing to refine the tumor contour. 

 

This paper is organized as follows. Section 2 introduces the proposed method in detail. Next, the 

experimental results and comparisons among different methods are presented in Section 3. Finally, we 

provide some discussion and draw the conclusion in Section 4. 
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                                                                CHAPTER 2 

 

METHODS 

In this paper, our method is called multi-objectively optimized robust graph-based (MOORGB) 

segmentation method, which utilizes PSO algorithm to optimize the two key parameters of RGB 

segmentation method. In the MOORGB, a multiobjective optimization function which combines 

region-based and edge-based information is designed in the PSO to optimize the RGB. The flowchart 

of the proposed approach is shown in Figure 1. In the rest of this section, we introduce each step in 

the proposed approach in detail. 

 

 

 

 

 

(a) (b) 

 

Figure 2: Example of extracting a TCI: (a) the original image and (b) the TCI image 

 

 

                           

2.1 Preprocessing 

 

 

2.1.1. Cropping Tumor Centered ROI.  

 

According to [11] a good segmentation method for clinical US should have taken advantage 

of a priori knowledge to improve the seg-mentation result due to the relatively low quality. In 

addition images it is hard to describe the segmentation result quantitatively without any a 

priori knowledge; therefore, it is difficult to design objective function(s) without any a priori 

knowledge Therefore, we employ the a priori knowledge used in [31], namely, asking the 

operator to roughly extract a relatively small rectangular ROI (in which the focus of interest 
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is fully contained and located in the central part) from the US image. In this way, 

interferences from other unrelated regions can be reduced as much as possible, making the 

segmentation easier and more efficient. Besides, it gives useful a priori knowledge for design 

of objective function(s). Such a ROI is called tumor centered image (TCI) in this paper, and 

Figure 2 shows how a TCI is extracted from a US image 

 

2.1.2. Bilateral Filtering. 

  

Because of diverse interferences (e.g., attenuation, speckle, shadow, and signal dropout) in 

US images, speckle reduction is necessary to improving the quality of US images. Bilateral f 

ilter [58] which has proven to be an efficient and effective method for speckle reduction is 

adopted in the MOORGB images, 

 

 2.1.3. Histogram Equalization.  

 

To improve the contrast of US histogram equalization is conducted to enhance the(the given 

histogram of intensity values in the filtered TCI) images, histogram equalization is conducted 

to enhance the filtered TCI. Histogram equalization maps one distribution to another 

distribution (a wider and uniform distribution of intensity values). The classical histogram 

equalization method [59] is used in the MOORGB. 

 

2.1.4. Mean Shift Filtering.  

 

After contrast enhancement, we improve the homogeneity by performing mean shift filtering. 

Mean shif t f iltering is based on mean shif t clustering over  increases grayscale and can well 

improve the homogeneity of US images and suppress the speckle noise and tissue-related 

texture[60] . figure 3 shows the preprocessing results of the image. 

2.2. RGB Segmentation Method.  

 

Given an image which is initially regarded as a graph, the RGB method [30] aims to merge 

spatially neighboring pixels with similar intensities into a minimal spanning tree (MST), 

which corresponds to a subgraph (i.e., a subregion in the image). The image is therefore 

divided into several subregions (i.e., a forest of MSTs). Obviously, the step for merging 

pixels into a MST is the key, determining the final segmentation results. A novel pairwise 

region comparison predicate was proposed in the RGB to determine whether or not a 

boundary between two subgraphs should be eliminated. 
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(a) (b) 
 

 

 

 

 

 

 

                                                   (c) (d) 

 

Figure 3: Example of preprocessing, (a) the TCI image, (b) the image after the bilateral filtering, (c) the image after 

histogram equalization, and (d) the image after mean shift filtering. 

Based on the pairwise region comparison predicate, the general procedures of segmenting an image are 

as follows. 
 

Step 1. Construct a graph = (  ,  )for the US image to be segmented. In , each pixel corresponds to a 

vertex and each edge connects two spatially neighboring vertices. The edge weight is defined by the 

absolute intensity difference between two adjacent pixels. Initially, each vertex is regarded as a 

subgraph and all edges constituting the edge set are invalid. 
 

Step 2. Sort the edges in in nondescending order according to the edge weight, and set = 1. 

 

Step 3. Pick the th edge in the sorted . If the th edge is an invalid edge (connecting two different 

subgraphs) and the boundary between these two subgraphs can be eliminated according to the pairwise 

region comparison predicate as mathematically expressed in (1)–(4); then merge these two subgraphs 

into a larger subgraph and set this edge valid. Let =  +1. 
 

Step 4. Repeat Step 3until all edges in are traversed. When all edges are traversed, a forest including a 

number of MSTs can be obtained. Each MST corresponds to a subregion in the image. However, the 

selection of and in (4) can significantly influence RGB’s segmentation results. 
 

As shown in Figure 4, it can be seen that inappropriate selections of and can lead to under- or 
oversegmentation. In [30], two significant parameters in RGB segmentation algorithm were 

empirically selected and usually manually assigned by testing repeatedly to achieve acceptable results. 
It cannot be fixed for real clinical application because good selections of and may be quite different for 

different images due to the diversity of US images.Therefore, the PAORGB was proposed to optimize 
these two parameters and to achieve a good selection of them automatically for each US image [31]. 

However, only region-based information and only one optimization goal (maxi-mizing the difference 

between target and background) have been used. Although the PAORGB can obtain good seg-
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mentation results for some US images, its performance is not adequately stable. Therefore, we propose 

the MOORGB which uses multiobjective optimization method (maximizing the difference between 
target and background, improving the uniformity within the target region, considering the edge 

gradient) to improve the segmentation performance. The method makes comprehensive consideration 
of edge-based and region-based information. 

 

 

 

2.3 PSO Optimization of parameter. 

 

PSO algorithm is an evolutionary computation technique mimicking the behavior of flying birds 
and their means of information exchange [56, 57]. In PSO, each particle represents a potential 
solution, and the particle swarm is initialized with a population of random/uniform individuals in 
the search space. PSO searches the optimal solution by updating positions of particles in an 
evolutionary manner. 

 

Suppose that there np solutions, each of which corresponds to a particle, and the position (i.e., the 
solution) and velocity of the the particle(i=1,……np) are represented by two m-diamentional (m=2) in 
our study, vectors(ie;  xi =(xi1, xi2 ,……xim) and yi =( yi1, yi2,….. yim), respectively. Position  is a vector and 
in our method x=(k,α) Velocity V means the varied distance of the position at every iteration c1, γ1, c2, γ2 

and ω are scalars According to specific issues, one or more objective functions are used to evaluate 
fitness of each particle, and then the comparison criterion is employed to obtain superior particles. 
Assume that ;  pi =(pi1, pi2 ,……pim) is the best position visited until the moment of the th particle during 
the update process, and the global best position of the whole particle swarm obtained so far is indicated 
as   pg =(pg1, pg2 ,……pgm) At each generation each particle updates its velocity and position according to 

 

 

 

                                                             Original 
 

                                                             images 

 

 

                                                                                                    (a) 
 

 

k = 2000 

 

 

 

 

α=40 α=1 α=0.02 
 

(b) 
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α = 0.02 

 

                                   

 

 

                                           k = 3000 k = 100 k = 20 
 

(c) 

 

Figure 4: Influence of and : the image of (a) is the original image, the image of (b) shows the segmentation result with 
different , and (c) shows the segmentation result with different k. 

 

the following equations after pi and pg are acquired through fitness evaluation and the comparison 
criterion.    

 

 

                            Vi 
t+1

  =  ωvi
 t  

+ c1 γ1  (pi
t
 -xi

t
) + c2 γ2  (pg

t
 -xi

t
) 

                            xi
 t+1

  = xi
 t
 + vi

 t+1
   

             ω
 t
  = ωmax –   

             

    
     

                                                       
 
 
 
 

where t is the generation number, tmax is the maximum iteration, ω
t
 is the value of the i

th
 iteration, ω is 

the inertia weight, c1 and c2 are positive parameters known as acceleration coefficients, determining the 
relative influence of cognition and social components, and r1 and r2 are independently uniformly 
distributed random variables within the range of (0, 1). The value of ω describes the influence of 
historical velocity. T he method with higher ω will have stronger global search ability and the method 
with smaller ω will has stronger local search ability. At the beginning of the optimization process, we 
initially set ω to a large value in order to make better global exploration and gradually decrease it to 
find optimal or approximately optimal solutions and thus reduce the number of the iterations. Hence we 
let ω decrease linearly from 1 towards 0.2, as shown in (7). We set ω max =1, ω min = 0.2, and Tmax =200. 
In (5),  ωvi

 t  
represents the influence of the previous velocity on the current one, and 1 c1 γ1  (pi

t
 -xi

t
) 

repre-sents the personal experience while c2 γ2  (pg
t
 -xi

t
) represents the collaborative effect of particles, 

which pulls particles to the global best solution the whole particle swarm has found so far. As 
suggested in [41], we set c1 = 0.5 and c2 = 0.5 and make personal experience and collaborative effect of 
particles play the same important role in optimization as shown in Figure 5.                                                          

                                                                                                         
 

 

To conclude, at each generation, the velocity and position of each particle are updated according to 

(5), and its position is updated by (6). At each time, any better position is stored for the next 

generation. Then, each particle adjusts its position based on its own “flying” experience and the 

experience of its companions, which means that if one particle arrives at a 
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                                                xi
 t+1

                                                                                                                                                                              

                                                                         pi
t
 

                        pg
t
                                                                                       

                                                      

                                                                              vi
t
 

                                           xi
 t
     

                                  Figure 5: Update of the particle. 

 

 

new promising position, all other particles then move closer to it. T his process is repeated until a 

satisfactory solution is found or a predefined number of iterative generations is met. 

 

 

 

The general procedure is summarized as follows. 

 

Step 1. Properly set the size of particle swarm and ran-domly/uniformly initialize them according to 

the search space. In this study, the size of particle swarm is np= 200, and the particles are uniformly 

initialized. According to the work in [30], varies from 100 to 4000 and varies from 0.001 to 4.000, 

which form the search space. 

 

Step 2. Traverse all particles: in each traversal (i.e., at each generation), each particle is evaluated 

through the objective function, and pi and pj are acquired according to the comparison criterion. 

 

Step 3. Update the velocity and position of each particle according to (5) and (6). As suggested in 
[57], we set c1 = 0.5 and c2 = 0.5, and let decrease linearly from 1 towards 0.2. 
 

Step 4. Repeat Steps 2 and 3 until all particles converge to the predefined extent or the iterative 

number arrives at the predefined maximum. The predefined extent in this study is that pg does not 

change for four iterations, and the maximum iteration is set to N= 200 empirically. 

 

 

2.4. The Proposed Objective Function in the PSO. 
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 At each time, we use RGB to segment the TCI according to the information (i.e., and ) of one particle. 

According to the a priori knowledge that the focus of interest is located in the central part of TCI, the 

central subregion with the central pixel of TCI is the possible tumor region. This central subregion is 

defined as the reference region, which varies with the setting of and , and the reference region is the 

expected tumor region when and are optimally set. Figure 6 gives an example of reference region (the 

original image is shown in Figure 2). 
 

In MOORGB, a novel objective function consisting of three parts corresponding to region-based 

and edge-based information is adopted. Based on the above a priori knowledge, these three parts, 

that is, between-class variance, within-class variance, and average gradient, are defined as follows. 

Compared with PAORGB, we add two objective functions, within-class variance and average 

gradient. It is not enough to optimize parameters just relying on edge information or region 

information for segmentation. We take the uniformity of the region and the information of the edge 

as the objective contents in the optimization process. 

 

2.4.1. Between-Class Variance.  

 Inspired by the idea of Otsu’s method [61] which utilizes the difference between subregions to 

quantitatively describe the segmentation result to select an optimal threshold, the between-class 

variance (VB )is defined as follows:  

                          VB =∑                      
   

2
 

 

 where VB denotes the sum of difference of mean intensity between subregion C and the reference 

region, K denotes the number of subregions adjacent to the reference region, and   µ(C) denotes the 

mean intensity of subregion C while   P(Ci ) denotes the proportion of the the subregion in the whole 

TCI and is expressed as 

 

                                          P(Ci)  =       |  |   

                                                            |   | 

where |Ci  | is the number of pixels in the i
th 

subregion and |TCI|is the number of pixels in the whole 

TCI. 
 

From the definition, VB denotes the difference between the reference region and its adjacent 

regions. Since the reference region corresponds to the interested tumor region in the US image, it is 

easy to understand that maximizing VB can well overcome oversegmentation. By the way, this is 

the only part adopted in PAORGB [31]. 

 

2.4.2. Within-Class Variance. 

The aim of image segmentation is to segment a region with uniformity, which is always the target 

object, out of the background [62]. T herefore, considering the uniformity within the target region, 

we come up with another part called within-class variance (VW ) defined as follows: 
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                             VW =arctan((1/|    | ∑           
    
   )

2
 

                            

  

 where | C Ref | is the number of pixels in the reference region and Ii   denotes the intensity i
th 

 pixel 
while         denotes the mean intensity of the reference region, and |TCI|  is the no of pixels in 

the whole TCI since the minimizing of pure within-class varience  ((1/|    | ∑               
   )

2
  

will lead to oversegmentation, we add         to suppress it.since the value range of   

((1/|    | ∑               
   )

2
  is much larger than the value range of         , we use arctan 

operation to make them comparable. From the definition VW denotes the difference within the 
reference region, and the undersegmentation problem can be well overcome by minimizing VW . 

                                                      

 

 

 

 

 

(a) (b) 

 

Figure 6: Example of reference region: (a) a segmented image by the RGB and (b) the reference region of (a). 

 

2.4.3. Average Gradient.  

 

As mentioned above, the purpose of segmenting US images is to support the latter analysis and 

classification in the CAD system, and a wealth of useful and significant information for 
classification is contained in the contour of the focus. Accordingly, to achieve the objective of 
acquiring better tumor contours, another part called average gradient ( GA) is employed in our 
objective function. With the inspiration of the definition of energy in ACM, GA is defined as 
follows: 

                                        

 

                                         GA = 
 

 
∑ |  | 
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Where m is the no of pixels included in the edge of the reference region and Gi denotes the 

gradient(calculated by sobel operator) of the i
th

 pixel, sobel operator is an edge detection operator 

based on 2D spatial gradient measurement, it can smooth the nise of the image and provide more 

accurate edge direction information tha prewit and Roberts operators[59]. GA denotes the average 

energy of the edge of the reference region. 

                           Maximizing average gradient GA obtains more accurate contour and avoids 

oversegmentation. If ,the reference region would be included within the real target area; real target area 

would be a relatively homogeneous region within which every partitioned smaller region would force 

the contour of the reference region to move towards that of the real target area. Very often, the edges of 

the targets in the US image are not sufficiently clear and sharp such that we cannot use GA in the above 

function . we take average gradient into account as one of the three objective functions in optimization 

process to improve the segmentation result. In ACM ,the initial edge is forced to approach the reak 

edge through maximizing the energy similar to ACM, maximizing GA can force the contour of the 

reference region to approach the real contour of the tumor. 

 

2.4.4. the final objective function. 

Based on the sbove three parts,the objective function is defined as follows: 

                           

                             FO= a*
  

  
 - b*

   

  
 + c*

  

  
 

                                          

                              FB=
 

 
∑    

  
     

                             

                              FW=
 

  
∑    

  
    

                           

                               FA=
 

  
∑    
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                             FO= 0.3*
  

  
 – 0.3*

   

  
 + 0.4*

  

  
 

 

Where a,b,c are the weights of the different objective parts (a = 0.3,b = 0.3,c = 0.4 in our experiment 

;they can be adjusted as nedded). The final objective function in the experiment is defined as (16). 

VB,VW and GA are between class varience,within class varience ,and average gradient respectively. FB, 

FW and FA  are normalized factors while np =200 is the size of particle swarm.because the value ranges 

of VB,VW and GA are quite different,they should be normalized to be comparable. for each US image , 

FB, FW and FA  are calculated once after uniform initialization of particle swarm but before the first 

iteration. We try to maximize FO by the PSO. 

2.5. Postprocessing. 

 After the TCI is segmented by the RGB with the optimal α and κ obtained by the PSO, we turn it into a 

binary image containing the object (tumor) and the background (tissue). Next, morphological opening 

and closing are conducted to refine the tumor contour, with opening to reduce the spicules and closing 

to fill the holes. A 5*5 elliptical kernel is used for both opening and closing. 

 

2.6. The Proposed MOORGB Segmentation Method.  

 

                      Assuming that the position and velocity of the i
th
 particle in our case are 

expressed as Xi=(ki,αi) and Vi=(Vki,Vai), respectively, the general procedure of MOORGB 

is summarized as follows; 

. 

Step 1. Manually delineate TCI from the original US image. 

Step 2. Use the bilateral filter to do the speckle reduction for TCI. 

Step 3. Enhance the filtered TCI by histogram equalization to improve the contrast. 

Step 4. Improve the homogenity by performing pyramid mean shift filtering . 

Step 5. Uniformly initialize the particle swarm within the search space, and let the iteration count  q= 

0and so on. 
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Step 6. Let q=q+1; traverse all np particles: in the q
th

 traversal, RGB is performed with the position 

(i.e., Xi=(ki,αi)  of each particle; then evaluate the segmentation result with the objective function FO 

and obtain pi and pg by comparing values of for updating each particle (including position and velocity) 

for next iteration. 

Step 7. Iteratively repeat Step 6 until convergence (i.e., pg remains stable for 4 generations) or q =N (N 

= 200 in this paper). 

Step 8. After finishing the iteration, the position of the glob-ally best particle (i.e., pg ) is, namely, the 

optimal setting of and ; then get the final segmentation result by performing RGB with the optimal 

setting. 

Step 9. Turn the segmentation result into a binary image; then get the final tumor contour by 

conducting morphological opening and closing. 

 

2.7. Experimental Methods.  

 

 

We developed the proposed method with the C++ language using OpenCV 2.4.3 and VisualStudio 

2010 and run it on a computer with 3.40 GHz CPU and 12.0 GB RAM. To validate our method, 

experiments have been conducted. Our work is approved by Human Subject Ethics Committee of 

South China University of Tech-nology. In the dataset, 100 clinical breast US images and 18 clinical 

musculoskeletal US images with the subjects’ consent forms were provided by the Cancer Center of 

Sun Yat-sen University and were taken from an HDI 5000 SonoCT System (Philips Medical Systems) 

with an L12-5 50 mm Broadband Linear Array at the imaging frequency of 7.1 MHz. The “true” tumor 

regions of these US images were manually delineated by an experienced radiologist who has worked 

on US imaging and diagnosis for more than ten years. T he contour delineated by only one doctor is 

not absolutely accurate because different doctors may give different “real contours,” which is indeed a 

problem in the research. Nevertheless, the rich diagnosis experience of the doctor has fitted the edge of 

every tumor as accurately as possible. This dataset consists of 50 breast US images with benign 

tumors, 50 breast US images with malignant tumors, and 18 musculoskeletal US images with cysts 

(including 10 ganglion cysts, 4 keratinizing cysts, and 4 popliteal cysts). 
 

To demonstrate the advantages of the proposed method, besides PAORGB, we also compared the 

method with the other two well-known segmentation methods (i.e, DRLSE and MSGC [29]). DRLSE 

method, an advanced level set evolution approach in recent years, is applied to an edge-based active 

contour model for image segmentation. It is an edge-based segmentation method that needs to set 

initial contour manually. The initial contour profoundly affects the final segmentation result. MSGC is 

a novel graph-cut method whose energy function combines region- and edge-based information to 

segment US images. It also needs to crop tumor centered ROI. Among the three comparative methods, 

DRLSE is an edge-based method, PAORGB is a region-based method, and MSGC is a compound 

method. To make a comparison of computational efficiency, the methods PAORGB and MOORGB 
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were programmed in the same software system. As such, the four methods were run with the same 

hardware configuration. The ROI is all the same for the four segmentation methods. 

                                                                                       Cr(i) 

 

                                                                                                   Cs(i) 

 

 

 

 

 

                            Figure 7: An illustration of computation principle for ARE. 

 

To quantitatively measure the experiment results, four criteria (i.e., averaged radial error (ARE), 
true positive vol-ume fraction (TPVF), false positive volume fraction (FPVF), and false negative 

volume fraction (FNVF)) were adopted in this study. The ARE is used for the evaluation of 
segmentation performance by measuring the average radial error of a segmented contour with respect 

to the real contour which is delineated by an expert radiologist. As shown in Figure 7, it is defined as 

                     

                         ARE(n) = 
 

 
∑

           

          

   
   *100%, 

 

Where n is the number of radial rays and set to 180 in our experiments while C0 represents the center of 

the “true” tumor region which is delineated by the radiologist and      denotes the location where the 

contour of the segmented tumor region crosses the th ray, while       the location where the contour of 

the “true” tumor region crosses the i
th

 ray. 

In addition, TPVF, FPVF, and FNVF were also used in the evaluation of the performance of 

segmentation methods. TPVF means true positive volume fraction, indicating the total fraction of 

tissue in the “true” tumor region with which the segmented region overlaps. FPVF means false positive 

volume fraction, denoting the amount of tissue falsely identified by the segmentation method as a 

fraction of the total amount of tissue in the “true” tumor region. FNVF means false negative volume 

fraction, denoting the fraction of tissue defined in the “true” tumor region that is missed by the 

segmentation method. In our study, the “true” tumor region is delineated by the radiologist. Figure 8 

shows the areas corresponding to TPVF, FPVF, and FNVF. Accordingly, smaller ARE, FPVF, and 

FNVF and larger TPVF indicate better segmentation performance. TPVF, FPVF, and FNVF are 

defined by 

 

 

                                                    

                                                     TPVF = 
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                                                     FPVF = 
          

  
 

 

 

                                                     FNVF = 
          

  
 

 

where Am is the area of the “true” tumor region delineated by the radiologist and An is the area of the 

tumor region obtained by the segmentation algorithm. 

                                       Am                                                      An  

 

 

                                FNVF                           TPVF 
                                                                                              FPVF 

 

.  

 

 

Figure 8: The areas corresponding to TPVF, FPVF, and FNVF, respectively. indicates the “true” 

contour delineated by the radiologist and denotes the contour obtained by the segmentation algorithm. 

 Table 1: Quantitative segmentation results of 50 breast US images with benign tumors.  
     

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%) 

Our method 11.09 ±12.47 85.60±13.71 4.51±20.18 14.40±13.71 

PAORGB [26] 16.47±21.41 81.64±29.94 10.52±29.40 18.36±29.94 

DRLSE [46] 11.37±13.04 93.60 ±16.87 14.42±24.33 6.40 ±16.87 

MSGC [24] 15.76±13.18 75.34±16.25 2.51 ±14.60 24.66±16.24 

 Table 2: Quantitative segmentation results of 50 breast US images with malignant tumors.  
     

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%) 

Our method 10.41 ±13.62 84.91±16.39 4.43±19.01 15.09±16.39 

PAORGB 19.12±27.63 74.98±27.49 10.16±37.09 25.02±27.49 

DRLSE 15.84±15.34 95.31 ±19.75 24.05±20.68 4.69 ±19.75 

MSGC 15.52±22.66 74.12±15.12 2.93 ±13.17 25.88±15.12 
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 CHAPTER 3 

 

3. Experimental Results and Discussion 
 

 

3.1. Qualitative Analysis.  

In this paper, we present the seg-mentation results for five tumors. Five US images with the 

segmentation results are shown in Figures 9–13. The quantitative segmentation results on US images 

are shown in Tables 1, 2, 3, and 4. Figures 9(a), 10(a), 11(a), 12(a), and 13(a) show original B-mode 

US images for two benign tumors, two malignant tumors, and one musculoskeletal cyst, respectively. 

After preprocessing the original images, the segmentation results using the MOORGB are illustrated in 

Figures 9(b), 10(b), 11(b), 12(b), and 13(b), those using the PAORGB in Figures 9(d), 10(d), 11(d), 

12(d), and 13(d), those using the DRLSE in Figures 9(e), 10(e), 11(e), 12(e), and 13(e), and those using 

the MSGC in Figures 9(f), 10(f), 11(f), 12(f), and 13(f). 
 

In Figures 9–13, we can see that our method achieved the best segmentation results compared with the 

other three methods, and the contour generated by our method is quite close to the real contour 

delineated by the radiologist. Undersegmentation happens in Figures 9(d) and 10(d), but not in Figures 

9(b) and 10(b); and oversegmentation hap-pens in Figures 12(d) and 13(d), but not in Figures 12(b) and 

13(b). Comparing with the PAORGB, the MOORGB improves the segmentation results obviously, 

avoiding the undersegmentation and oversegmentation more effectively. Regional uniformity has been 

significantly improved, and the edge has been smoother. The reason is that the within-class variance 

and average gradient are introduced into the objective function of MOORGB by combining region- and 

edge-based information. The segmentation results of the MSGC are better than those of the PAORGB 

and DRLSE, since MSGC is also a compound method (region energy and boundary energy are both 

included in its energy function) and many preprocessing techniques are adopted. As shown in Figures 

9(e), 10(e), 11(e), 12(e), and 13(e), the DRLSE can only roughly detect the tumor contour, and the 

detected contours are irregular. The reason is that it depends on edge-based information and is sensitive 

to speckle noise and sharp edge; hence it captures sharp edge easily and leads to boundary leakage and 

undersegmentation. 

 

 

. 
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(a)                                       (b)                                               (c) 

 

 

 

(d)                                                 (e)                                            (f) 

Figure 9: Segmentation results for the first benign breast tumor. (a) A breast US image with a benign tumor (the contour is 

delineated by the radiologist). (b) The result of MOORGB. (c) The final result of MOORGB. (d) The result of PAORGB. 

(e) The result of DRLSE. (f) The result of MSGC. 

 
 
 

 

Table 3: Quantitative segmentation results of 18 musculoskeletal US images with cysts. 

 

 

 

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%) 

Our method 10.85±17.14 85.61±7.75 4.52±34.22 14.30±7.80 

PAORGB 20.90±39.66 82.12±29.33 18.00±35.97 17.80±29.40 

DRLSE 8.60 ±12.06 91.90 ±21.61 10.90±10.72 8.04 ±21.66 

MSGC 14.43±27.30 80.50±17.33 3.9 ±43.41 19.35±29.65 

 

 

Table 4: Overall quantitative segmentation results of 118 US images. 
 
 

Methods ARE (%) TPVF (%) FPVF (%) FNVF (%) 

Averaged computing 

time (s)      

Our method 10.77 ±17.22 85.34±16.69 4.48±34.26 14.67±16.67 50.54 

PAORGB 18.27±37.03 78.89±30.24 10.51±35.74 21.10±30.23 719.78 

DRLSE 12.84±16.82 94.07 ±18.51 17.97±28.03 5.92 ±23.78 5.93 

MSGC 15.46±26.27 75.61±17.74 2.9 ±42.41 24.37±24.63 0.123 
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3.2. Quantitative Analysis.  

Table 4 shows the quantitative comparisons of different segmentation approaches on the whole 

dataset. Similarly, we show the quantitative segmen-tation results of the benign tumors, malignant 

tumors, and cysts in Tables 1, 2, and 3, respectively. 
 

Comparing Tables 1 and 3 with Table 2, it is shown that all four segmentation methods perform better 

on benign tumors and musculoskeletal cysts than on malignant tumors on the whole, indicating that the 

boundaries of benign tumors and musculoskeletal cysts are more significant than those of malignant 

tumors. The shape of the benign tumor is more regular and similar to circle or ellipse. T he shape of the 

malignant tumor is irregular and usually lobulated with burrs in the contour. T he segmentation result 

of the malignant tumor is worse than benign tumors because the contour of malignant tumor is less 

regular and less homogenous than that of benign tumor. 
 

From Table 4, it is seen that our method achieved the low-est ARE (10.77%). Due to the 

undersegmentation, the DRLSE got the highest TPVF (94.07%) and FPVF (17.97%), indicating the 

high ratio of false segmentation. The MSGC got the lowest FPVF (2.9%), which indicates the low ratio 

of false segmen-tation, and is the fastest method (0.123 s) among the four methods. However it got the 

lowest TPVF (75.61%), showing oversegmentation in a way. Comparing with the original PAORGB 

(as shown in Table 4), our method improves the segmentation result obviously, achieving higher TPVF 

and lower ARE, FPVF, and FNVF. Although MOORGB could not achieve the best performance in all 

evaluation indices, it got the best overall performance. Comparing with DRLSE, 

 

 

 

 

 

 

 

(a)                                                   (b)                                                           (c) 

 

 
 

 

 

 

 

 

 

 

                                (d)                                                    (e)          \\\\\\\                                      (f) 

Figure 10: Segmentation results for the second benign breast tumor. (a) A breast US image with a benign tumor (the contour 
is delineated by the radiologist). (b) The result of MOORGB. (c) The final result of MOORGB. (d) The result of PAORGB. 
(e) The result of DRLSE. (f) The result of MSGC 
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                        (a)                                      (b)                                            (c) 

 

 

 
 

 

 

 

 

                       (d)                                              (e)                                             (f) 

 

Figure 11: Segmentation results for the first malignant breast tumor. (a) A breast US image with a malignant tumor (the 

contour is delineated by the radiologist). (b) The result of MOORGB. (c) The final result of MOORGB. (d) The result of 

PAORGB. (e) The result of DRLSE. (f) The result of MSGC. 

 

 

our method was 6.45% lower than it in TPVF but 8.75% better than it in FPVF, obtaining better overall 

performance. Comparing with MSGC, our method was 1.58% higher than it in FPVF but 9.93% better 

than it in TPVF, obtaining better overall performance and avoiding oversegmentation in a way. As 

shown in Table 4, our method is faster than the PAORGB. It is because the convergence condition in 

our method is that “ remains stable for 4 generations,” rather than that “the updating of is below 1 and 

that of is below 0.00001 for all the particles in an experiment” in the PAORGB [31]. 
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                             (d) (e) (f) 

 

Figure 12: Segmentation results for the second malignant breast tumor. (a) A breast US image with a malignant tumor (the 

contour is delineated by the radiologist). (b) The result of MOORGB. (c) The final result of MOORGB. (d) The result of 

PAORGB. (e) The result of DRLSE. (f) The result of MSGC. 

 

 

 

 

 

 

(a)                                    (b)                                                          (c) 

 

 

 

 

 

 

                                (d) (e) (f) 

 

Figure 13: Segmentation results for the keratinizing cyst. (a) A musculoskeletal US image with a cyst (the contour is 

delineated by the radiologist). (b) The result of MOORGB. (c) The final result of MOORGB. (d) The result of PAORGB. 

(e) The result of DRLSE. (f) The result of MSGC. 
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3.3. The Influence of the Weight 

Our method synthesizes three optimization objective functions (between-class varience VB, within-

class varience VW  ,and average gradient GA ).thus the weight of three objective parts(i.e,a,b and c) are 

introduced. Figure 14 shows the comparison of experimental results with different weight values. 

From Figures 14(a), 14(b), and 14(c) and Table 5, we can see that when the weight values of the three 

objective functions are almost the same, three optimization objectives play nearly equal roles in the 

optimization process, making the algorithm not only region-based but also edge-based. When one of 

the three weight values is overlarge, it would not be able to reflect the three optimization results 

evenly, hence leading to oversegmentation or undersegmentation. As shown in Fig-ures 14(k), 14(l), 

and 14(m), if one of the three weight values equals one, the proposed method degenerated into a 

single objective optimization algorithm, and the optimization goal is only one role, which cannot 

avoid oversegmentation and undersegmentation effectively. Through analyzing the influ-ence of 

different weight values of objective functions and our repeated experiments, we can set the system 

parameters as a =b = 0.3, c = 0.4. The final objective function is described as (16) which can make 

segmentation system work well. 

 

Table 5: Quantitative segmentation results of 15 US images with different weight values. 
 
 

Methods    ARE (%) TPVF (%) FPVF (%) FNVF (%) 

=0.4, =0.3,  =0.3 10.67 85.61 4.52 14.70 

=0.3, =0.4,  =0.3 10.71 85.60 4.51 14.69 

=0.3, =0.3,  =0.4 10.69 85.60 4.52 14.69 

=0.6, =0.2,  =0.2 10.47 85.51 4.49 14.91 

=0.2, =0.6,  =0.2 10.59 85.52 4.50 14.73 

=0.2, =0.2,  =0.6 10.74 85.64 4.80 14.75 

=0.8, =0.2,  =0.2 11.12 84.97 5.44 15.39 

=0.2, =0.8,  =0.2 11.25 85.03 5.78 15.41 

=0.2, =0.2,  =0.8 11.23 84.77 5.61 15.28 

= 1, =0, =0  12.92 83.39 6.78 16.07 

= 0, =1, =0  69.84 98.86 154.72 0.46 

= 0, =0, =1  8.97 87.79 10.49 17.93 
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                                                                        (a) The original image 
 

 

 

 

 

 

 

 

                (b) a= 0.4,b = 0.3, c= 0.3 (c) a= 0.3,b = 0.4, c= 0.4 (d) a= 0.3, b= 0.3, c= 0.4 
 

 

 

 

 

 

 

 

                (e) a= 0.6, b= 0.2, c= 0.2 (f) a= 0.2,b = 0.6, c= 0.2 (g) a= 0.2,b = 0.2,c = 0.6 
 

 

 

 

 

 

 

 

                (h) a= 0.8,b = 0.1, = 0.1 (i) a= 0.1, b= 0.8, c= 0.1 (j) a= 0.1, b= 0.1, c= 0.8 
 

 

 

 

 

 

 

 

                 (k) a= 1, b= 0, = 0 (l) a= 0,b = 1, c= 0 (m) a= 0, b= 0,c = 1 

 

                                                           Figure 14: The segmentation results with different weights ( a, b , c). 
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CHAPTER 4 

 

CONCLUSION 

 

In this paper, we propose a novel segmentation scheme for US images based on the RGB and 

PSO methods. In this scheme, the PSO is used to optimally set the two significant parameters 

in the RGB for determining the segmentation result automatically. To combine region-based 

and edge-based information, we consider the optimization as a mul-tiobjective problem. First, 

because of the low contrast and speckle noises of US images, the ROI image is f iltered by a 

bilateral filter and contrast-enhanced by histogram equalization and then pyramid mean shift 

is executed on the enhanced image to improve homogeneity. A novel objective function 

consisting of three parts corresponding to region-based and edge-based information is 

adopted by PSO. The between-class variance denotes the difference between the reference 

region and its adjacent regions. The within-class variance denotes the difference within the 

reference region, and the undersegmentation problem can be well overcome by minimizing it. 

Between-class variance and within-class variance reflect the regional information. The 

average gradi-ent denotes the average energy of the edge of the reference region and 

maximizing it can force the contour of the reference region to approach the real contour of 

the tumor. Average gradient reflects the edge-based information of the image. Three 

optimization objectives play important roles in the optimization process, making the 

algorithm achieve the corresponding segmentation effect, not only region-based but also 

edge-based. With the optimization of PSO, RGB is performed to segment the ROI image. 

Finally, the segmented image is processed by morphological opening and closing to ref ine 

the tumor contour. To validate our method, experiments have been conducted on 118 clinical 

US images, including breast US images and musculoskeletal US images. The segmentation 

results of our method have been compared with the corresponding results obtained by three 

existing approaches, and four metrics have been used to measure the segmentation 

performance. The experimental results show that our method could successfully segment US 

images and achieved the best segmentation results compared with the other three methods, 

MSGC, PAORGB, and DRLSE. The contour generated by our method was closer to the real 

contour delineated by the radiologist. The MOORGB obtained the lowest ARE and better 

overall performance in TPVF, FPVF, and FNVF, avoiding the undersegmentation and 

oversegmentation more effectively. 
 

However, the step to obtain TCI (as shown in Figure 2) requires user’s participation 

which may result in significant influence on the following segmentation. To obtain accept-
able segmentation results, the operator should be well expe-rienced in examining US images 

and identifying suspicious lesions in clinical practices. Moreover, the TCI should be 
carefully delineated to achieve the full lesion region with partial surrounding tissues, and the 

interested lesion region must be located in the central part. Consequently, how to 
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automatically extract TCI from the BUS image is one of our future studies. In addition, the 

computation time is still far away from real-time applications. Accordingly, making efforts 
to reduce the computation time by adopting parallel processing techniques is also part of our 

future work. Besides, adopting our segmentation method in real CAD systems to validate the 
whole performance will be included in our future work. 
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