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ABSTRACT 

 

Intrinsically Disordered Regions (IDRs) are the regions in proteins that do not posses well 

organized two dimensional or three dimensional structures at their physiological conditions. 

These regions exist extravagantly in each domain and concerned with wide range of protein 

functions. Perceiving this far reaching presence of these regions in proteins, prodded the 

improvement of computational strategies to discover more of them. Every current procedure can 

be arranged into techniques depending on evolutionary profiles produced from multiple sequence 

alignment and those depending on sequence information. The techniques dependent on 

evolutionary sequence profiles are progressively more precise than single sequence methods due 

to the fact that the evolutionary sequence profiles contain significant information relating to the 

absence or presence of preserved residues due to their respective functional and structural roles. 

However, the tedious count of sequence profiles restricts the wide pertinence of profile 

dependent methods. Hence, study was proposed to hypothesize a strategy to reduce the 

performance gap between sequence dependent methods and profile dependent methods. Here we 

showed a model with enhanced accuracy utilizing an ensemble of embedding, convolutional and 

bi-directional LSTM layers with for predicting disordered regions in proteins in contrast to 

already existing state of art techniques. Successful prediction will help research community for 

both the onset of diseases and restorative treatment in context to intrinsically disordered regions 

or proteins. 
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CHAPTER 1 

INTRODUCTION 

 

Intrinsically Disordered Regions (IDRs) are the regions in proteins that do not posses well 

organized two dimensional or three dimensional structures under physiological conditions. These 

regions exit extravagantly in each domain [1] - [2] and concerned with numerous protein 

functions [3] - [4]. They are involved in chemical reactions, they recognize nucleic acids, 

proteins, influence molecular interactions between bound partners. These properties of 

disordered regions have been well explored by the researchers to delineate the potential of 

disordered regions in molecular interactions [5]. It has been observed that these disordered 

regions are accessory for biological activities carried out by most of the structured proteins [6]. 

Studies have been conducted revealing the importance of mobile flexibility and structural 

instability in natural proteins, that they are more intrinsically disordered than the protein with the 

random sequence [7].  

 

Multiple reports exist pointing towards the implications of disordered regions to various diseases 

including neurodegenerative diseases and cancer [6]. Recent studies demonstrate the significant 

role of disorder prediction in identification of disease as well as in epidemiological examinations 

due to strong connection between disorder regions and various human disease [8]. These 

disorder regions serve as potential targets and undergo disordered-to-order transitions in the 

binding regions and ultimately prompt considerable research in drug discovery process [7]. 

Moreover, health care has likewise been connected to disorder prediction in identifying risk and 

studying the progression of diseases in patients [9]. Recognizing their widespread presence in 

proteins prompt the development of quick and accurate computational approaches for their 

prediction.  

 

Number of experimental techniques are available to determine the Intrinsically Disordered 

Proteins (IDPs) or Intrinsically Disordered Regions such as x-ray crystallography experiments, 

where the missing electron density locales indicates the presence of disordered regions. On the 



 

other way, spectroscopic techniques (NMR) [44] - [45] with more advanced resolution and 

sensitivity reveal dynamics of sizeable disordered regions/proteins in solution and structural 

propensities.. Because of high cost of identifying disordered regions experimentally, it is 

essential to compute probable regions/proteins before conducting experimental studies [10].  

 

It has been estimated that around 60 or more computational techniques have been developed so 

far [12] - [13] , many of these techniques utilize protein sequences [15] and information derived 

from them such as statistical potentials (FoldIndex) [18], physio-chemical properties (IUpred) 

[16], propensities (Globplot) [17] for analysis on protein. Based on the studies conducted it has 

been shown that these methods outperformed by sequence machine learning approaches  [19] - 

[20] (CSpritz [23], DisEMBL [22], PONDR series  [21] ). However, these single-sequence 

methods are considered to be less accurate than sequence profile based machine-learning 

techniques obtained from multiple sequence alignment [25]. This is on the grounds that sequence 

profiles, for the most part made by programs, for example, PSI-Blast [25] and HHBlits [27], 

contain significant data relating to the absence or presence of preserved residues due to their 

functional and structural roles. Instances of ongoing techniques dependent on profiles are 

SPINE- D [85],  SPOT-Disorder [34] and AUCpred  [28]. 

 

However, due to cheaper sequencing techniques, protein sequences in libraries have been 

increased exponentially and obtaining evolutionary profiles for these sequences are 

computationally intensive. As a result, genome wide scale analysis using profile-based 

techniques are difficult and time consuming. Furthermore, in real-world applications, the large 

number of amino acid chains, greater than 90 percent, do not correspond to a large sequence 

cluster [35]. In other words, due to lack of evolutionary information the quality of sequence 

profiles for large number of proteins is poor. As this is the case, sequence dependent methods 

may be more reliable and accurate than profile dependent methods as revealed from the 

determination of secondary structure  and solvent accessible surface area [36] computationally 

using single sequence based method. Thus, it is highly advisable to have a highly precise 

sequence based method as the intrinsic disorder regions can also be displayed by protein 

sequences alone [37]. Hence, improving already existing sequence dependent techniques also 



 

addresses the fundamental question of how far we can push the accuracy limit considering only 

sequence information irrespective of evolutionary profiles. 

 

Improvements in already existing single sequence based techniques are possible as most of these 

rely on algorithms such as [40] simple neural network, support vector machine, recurrent Neural 

Network. On the other hand, advanced learning algorithms have been utilized in profile based 

predictors in order to improve disorder prediction. Such as deep long short-term memory 

(LSTM) bidirectional RNN, deep convolutional neural fields and combined LSTM and 

convolutional networks [30] - [33].  

 

Present study was encouraged by recent progress in employing ensemble of Long Short Term 

Memory (LSTM) and Convolutional Neural Networks (CNN) [40]. Such an ensemble not only 

enhance robustness of performance but also removes noise that prediction more reliable. As 

LSTM Networks have already been known to provide high accuracies in disorder prediction, 

their amalgamation with Convolutional Neural Network can increase the effectiveness of 

disorder prediction. Hence we showed a model with enhanced accuracy utilizing an ensemble of 

embedding and convolutional and bi-directional LSTM layer for making predictions on 

disordered regions in proteins in contrast to already existing state of art methods.  

 

 

 

 

 

 

 

 



 

 

CHAPTER 2 

REVIEW OF LITERATURE 

 

2.1 OVERVIEW OF DISORDERED PROTEINS 

In eukaryotic genome numerous number of gene sequences encode whole proteins or portions of 

them that do not posses well-organized three-dimensional or two dimensional structures under 

physiological conditions  [1] - [2]. These disordered regions are highly conserved with respect to 

their sequence and composition between species and, opposite to the traditional view, protein 

functions are highly dependent on stable three-dimensional structure, however disordered 

regions have significant role in crucial functional areas of proteins [3] - [4]. 

 

The presence of disordered regions of significant size (>50 amino acids) is prevalent in 

functional protein for instance [43], disordered regions in polypeptide hormone3 [45] have been 

known for many years. These disordered regions are liable for wide range of functions such as 

they are involved in cell signal transduction, transcriptional regulation and translational [46] - 

[47] The occurrence of these regions can be determined by X-ray crystallography experiments, 

where the missing electron density locales indicates the presence of disordered regions. On the 

other way, spectroscopic techniques (NMR) [44] - [45] with more advanced resolution and 

sensitivity reveal dynamics of sizeable disordered regions/proteins in solution and structural 

propensities. 

 

2.1.1 Will the domain be unfolded or folded? 

It remains a key for foreseeing the structures of globular proteins considering only sequence 

information, with the exception in certain circumstance where the structures of high homology 

sequences are defined. However, recognizing sequences which are going to be intrinsically 

disordered specifically, unable to spontaneously fold into well defined structures is nearly direct.  

 



 

2.1.1.1 Sequence Characteristics of disordered regions 

A probable disordered region mainly consists of amino-acid compositional bias, low complexity 

in sequence, lesser content of bulky hydrophobic residues which would generally be present in 

the core of proteins (Phe, Trp, Ile, Val and Tyr) and higher content of charged and polar residues 

mainly (Ser, Glu, Lys, Pro, Gln, Ser and, on occasion, Ala and Gly) [48] - [49]. 

 

Various computer programs are currently accessible that allows identification of disordered 

proteins or regions for instance FoldIndex [18], DisEMBL [22], PONDR [21], GLOBPLOT 

[17]. Investigations on complete genomes sequence information demonstrate that IDPs/IDRs are 

exceedingly common, and along with the complex nature of an organism the extent of disordered 

regions in proteins also increase exceptionally [52] - [55]. Database investigation shows that 

proteins related to diseases or engaged with eukaryotic cell signal transduction process possess 

greater tendency to undergo disordered transitions [50] - [51]. In excess of proteins have been 

shown tentatively to be either totally or mostly disordered (DisProt  an experimentally annotated 

Database of Protein disorder) [56].  

 

2.1.1.2 Experimental techniques for characterization 

The most widely inspected experimental technique for determining disordered regions is Nuclear 

Magnetic Resonance (NMR) spectroscopy. However, alternative techniques for instance 

Fluorescence Spectroscopy, Hydrodynamic Measurements, Raman Spectroscopy, Vibrational 

CD Spectroscopy, Circular Dichorism are capable of providing additional information in context 

to disordered regions[57] - [58]. 

 

2.1.1.3 General attributes of disordered regions 

Structural continuum for proteins, from proteins with firmly collapsed single domain, to proteins 

with multi-domain that may contain adaptable or unstructured regions, to yet compact but 

unstructured molten globules and, at long last, to exceedingly extended, heterogeneous 

disordered regions. This continuum has been translated in a group of three (ordered, molten 

globule and coil) or group of four in spite of the fact that there are diverse range of different 

structure types within every subdivision. In general, proteins characterized as intrinsically 



 

disordered lack adequate hydrophobic core to spontaneously fold in well organized three 

dimensional structure. When all is  

said in done, proteins with characteristically disordered regions can't cover adequate 

hydrophobic center to overlay immediately into the very sorted three-dimensional conformations 

that portray the proteins available within the Protein Data Bank.  

 

2.1.2 Functions of disordered regions 

New instances of functionality and involvement of intrinsically disordered regions in proteins are 

continuously been emerging. Some of these function include the cell signal transduction, 

regulation of translational process, regulation of transcription, protein phosphorylation, storing 

small molecules, regulation during assemblage of enormous multi-protein complexes for 

instance in bacterium flagellum or in assembly of ribosomes subunits. A recent review features 

the presence of disordered regions that are responsible for functions similar to that of chaperones 

[67]. This review also demonstrates that the disordered regions behave like recognizable 

elements and bind to mis-folded RNA and protein molecules and further support in unfolding 

and slackening of kinetically unfavorable intermediates. Large number of IDPs experience 

disordered to ordered transition and turn into a stable conformation upon recognizing and 

interacting with their target molecules in other words, they experience couple folding and 

binding process [66]. One of best known example is of activation domain in (CREB) [72] - [73]. 

The Kinase- Inducible transcriptional activation Domain (KID) is disordered, as a detached 

peptide as well as in full-length protein, however on recognition and interaction with the target 

molecule, it folds upon and ultimately leads to a formation of orthogonal helices. The intrinsic 

disordered regions in this domain can be anticipated from its sequence, that undergoes 

disordered to ordered transition [68].  

 

Also, the presence of amphipathic elements that are anticipated to be disordered may give pieces 

of information with regard to the functional regions within the protein [69]. However, couple 

folding and binding may include only a couple of residues, as in KID of CREB or whole protein 

domain. In DNA- Fragmentation factor, the N-terminal domain (116 residues) though disordered 



 

in solution, yet creases to acquire a stable ordered globular conformation upon interacting with 

DFF40 [75] - [78] . 

 

 

Fig 1: Couple folding and binding 

 

2.1.3 Roles of disordered regions 

 

2.1.3.1 Recognition Elements- Nucleic acid- protein recognition 

DNA-binding proteins appear to possess advanced techniques for managing the kinetic and 

thermodynamic difficulties of recognizing and interacting with specific DNA sequences, a 

considerable lot of them are partially folded or unfolded [70]. Induced couple folding plays an 

exceptional role in sequence-specific binding of proteins to DNA molecules, proposed over 10 

years back by Spolar and Record, based on the enormous heat changes upon formation of DNA-

protein complexes [71]. RNA-binding proteins additionally have disordered regions, and they are 

essentially organized in the complex as that in free state. 5S ribosomal RNA appears to bind to 

L5 ribosomal protein and form a complex by induced fit mechanism.  

 

2.1.3.2 Regulation through degradation 

The overall precariousness of the IDPs/IDRs that are associated with translation, transcription 

and cell signaling may further promote cell control through proteolytic cleavage and 

deterioration. For instance- Ubiquitin-proteasome complex system may possess a key role in 



 

activation of transcription through targeted deterioration of transcriptional-activation domains 

[79]. The stabilization of β-catenin and regulation of cadherin are also directed through targeted 

degradation. The entire cadherin cytoplasmic terminal domain is disordered and contains 

uncovered Pest-Sequence motifs. Pest motifs signal for degradation mediated through ubiquitin-

proteasome system, but become inaccessible upon binding of cadherin to β-catenin. 

 

The linker sequences should be extended and flexible, and have a moderately high stability in 

order to function correctly.  The low hydrophobic residues content may be critical for function f 

linker sequences. In the cell mis-folded proteins are focused to undergo targeted degradation, and 

it is believed that, targeted degradation is mainly concerned with recognition of hydrophobic 

solvated residues by ubiquitin-proteasome complex system [80]. Linker sequences should be 

impervious to proteolysis, yet should essentially be unfolded. It is plausible that absence of 

hydrophobic amino acids in linker sequences is identified with characteristically unstructured 

fragment for moderately high stability. Besides, tentatively, it has been discovered that poly-

glutamine residue repeats are impervious to deterioration by eukaryotic ubiquitin- proteasomes 

complex system. The specific amino-acid residues content in linker sequences additionally 

controls them to undergo folding in order to form structures that may associate non-specially 

with other proteins.  

 

2.1.4 The natural „cost‟ of disordered regions  

Disordered regions are accessory for protein functions such as in case of transcriptional 

activators, cell signaling molecules and regulatory proteins. In any case, this function does not 

come without 'cost'. That disease related chromosomal translocations occur in disordered 

regions. For instance, translocation in the N-terminal unstructured regions of CBP/p300 or in 

linker between KIX and bromo- domains are related to human leukemia [84]. This translocation 

causes the segment causes the segments of CBP/p300 to get attached with MLL or MOZ regions 

(monocytic zinc-finger leukemia protein) or MLL are related with human leukemia [81]. These 

translocations lead to folded domains and in this way cause the proteins to have deviant 

functions [82]. On the other hand, translocation or truncations in genes that encode completely 

organized domains, would more likely prompt the generation of mis-folded proteins, which 



 

would be quickly destructed by cellular machinery and would along these lines not form any 

diseased phenotype [83].  

 

2.1.5 Suggestions and future headings 

Clearly, characterizations of functional disordered proteins are in recent stages of its success, 

therefore much work still be done in context to their characterization. Computational techniques 

to cover protein chains, and even the whole genome, for IDPs will without a doubt reveal a lot 

more proteins that have a place within this class. Corollary advancement in functional genomics 

propel our knowledge in context to functional properties of IDRs. The role of lower complexity 

in sequences is just at the recent stages to be addressed. Likewise, protein function that is reliable 

on the level of polypeptide mobility is as yet hazy. Our idea of function of proteins should 

subsequently advance our understanding from a static picture to an exceedingly powerful one, in 

that a few conformations which are reliable with different aspects of functions are represented. 

 

2.2 COMPUTATIONAL METHOBS FOR IDPs PREDICTION 

As the first computational prediction was made by Romero in 1997, during the previous 20 

years, numerous predictors have been developed for distinguishing IDPs/IDRs [86] - [88]. 

Depending on various techniques, these strategies mainly sectioned into classes, such as 

physicochemical techniques, machine-learning techniques, template or homology techniques and 

meta strategy. These classes are summarized below: Physicochemical technique is dependent on 

chemical and physical properties of protein sequences, and machine learning techniques 

develops classification algorithms dependent on learning algorithms, homology or template 

based techniques depends on looking through known structures of proteins, meta technique 

incorporates the yields of various predictors. In any case, these four classifications are not 

carefully unique, predictors in any class may likewise utilize the procedures from different 

classes, for instance, a few of physical and chemical properties utilized by physicochemical 

techniques are also utilized as features to build the machine learning predictors as well as meta 

predictors. 

 

2.2.1 Physicochemical-based techniques  



 

These techniques predict IDPs/IDRs dependent on the chemical and physical properties, that   

influence binding and folding in proteins straightforwardly [90] . These chemical and physical 

properties incorporate the affinities of explicit residues, net charge, hydrophobicity, contact 

angle and so on. For instance, Uversky use the blend of low hydrophobicity and  high overall 

charge to recognize IDPs [91]. Afterward, in view of this guideline, FoldIndex [18] is intended to 

recognize IDRs based on pre-characterized sliding window. However, a parameter P is utilized 

by GlobPlot  [17] to foresee IDRs. The fundamental theory is that the probability of amino acid 

to be disordered can be described as P ¼ RC-SS, RC speak to specific residue propensity to exist 

in „random coil‟ and SS to exist in „secondary structure‟. The fundamental calculation trailing 

GlobPlot [17] is a summation function of P, that is straightforward and quick. Physicochemical-

based strategies are proficient with low computational expense. Moreover, their anticipated 

outcomes are easy to be deciphered [92]. Subsequently, extra valuable data given to the scientists 

who are keen on examining the disordered regions. These physical and chemical properties 

likewise utilized as features in machine learning techniques as well as in meta techniques.  

 

2.2.2 Template/Homology based techniques  

These techniques predict IDRs by utilizing proteins of known structures. These techniques first 

attempt to look known structures of homologous protein sequences (template), and after that 

examine the query and foresee the IDRs. For instance, in GSmetaDisorder3D and PrDOS [98], 

because of their diverse structure principles are utilized as component as opposed to independent 

predictors. The advantage of techniques is that the anticipated outcomes are easy to decipher. Be 

that as it may, although similar homologous sequences to target protein have various reliabilities, 

but at times, homologous proteins can't be identified [93]. 

 

2.2.3 Meta techniques  

As examined above, for various computational predictors, they have their very own points of 

interest. In this way, a few meta techniques have been developed to consolidate different 

predictors into single model to further enhance prediction accuracy [95]. As indicated by various 

combination methodologies, these further can be separated into two classifications, that is the 

direct combination and the machine learning combination. Direct combination Straight joins the 



 

consequences of various techniques by a weighted casting a ballot technique, for example, 

PrDOS [98] , CSpritz [23], and MobiDB-light [97]. PrDOS [98] is a combination of two 

predictors, first is a SVM dependent, prepared with PSSMs and another is homology/template 

dependent predictor. The output depends on averaging the outcomes of both the predictors. 

Machine learning based combination contrasted with direct combination, machine learning 

combination utilizes the prediction consequences of different predictors as features to develop 

final model dependent on machine learning algorithm, for instance metaPrDOS, DISOPRED3, 

MD [94]. MetaPrDOS utilizes the outcomes of seven predictors to build a two-staged meta-

predictor. The initial stage is to gather outcomes from seven predictors. The subsequent stage is 

to incorporate the gathered outcomes, and decide the probability of every residue to be 

disordered using a model planted on SVM [89]. MD is dependent on NN algorithm obtaining 

information from two sources. The principal source of information is the outcomes gathered 

from four predictors and secondary information is obtained from protein sequence properties. 

DISOPRED3 is based on DISOPRED2, a specific predictor of long disordered regions and 

closest neighbor, consists of two layer where the main layer contains three predictors comprising 

DISOPRED2, and the subsequent is a NN layer coordinating the outcomes of main layer. By 

joining various techniques, meta-predictors are known accomplish the cutting edge performance. 

however, because of their high computational cost, their applications have been restricted to 

limited number of proteins [96].  

 

2.2.4 Machine-learning techniques  

To defeat the inconveniences of others techniques, (physicochemical, template methods) 

techniques dependent on machine learning algorithms have been developed. Contrasted to other 

techniques, these techniques utilize negative and positive sets to recognize disorder regions, and 

also consolidate different features. As the most essential part of any in machine learning 

algorithm is feature extraction, in case of disordered feature extraction, it can be sectioned into 

the three classes. The main class is the sequence properties, for example, the amino acid residue 

propensity, composition, flexibility, hydrophobicity, low complexity. The subsequent class is the 

evolutionary relationship of profiles obtained from multiple sequence alignment. The last class is 

the structural data, for example, secondary structure, solvent accessibility, torsion angle. These 

techniques can be further subdivided into classification model or sequence labeling model.  



 

 

2.2.4.1 Classification models  

Traditional models were able to handle feature vectors of fixed length. Classification models are 

learnt in a directed way utilizing both the negative and positive datasets, and after that foresee 

the unseen data sample based on the trained model. Recognizing whether an amino acid is 

disordered or ordered is a problem of binary classification. The key to these techniques is the 

means by which proteins are changed into vectors of fixed length. Be that as it may, it is not a 

simple to convert them into fixed length vectors, since the proteins are of various lengths. In 

such a manner, sliding window method of fixed length incorporates amino acid residue 

information by taking into account its adjacent residues. A few algorithms to build such 

predictors, for example, Random Forest, Neural Network (NN), Support Vector Machine (SVM) 

[89]. PONDR [21] is one such primary predictor dependent on Neural Networks for various 

types of IDRs, comprising SDR (7–21), MDR (22–44), LDR (at least 45) and all lengths of 

IDRs.  

 

2.2.4.2 Sequence labeling models  

These are based on supervised learning by utilizing both the negative and positive datasets, 

where input to a model is a protein sequence, and final outcome is labeled sequences of 

disordered or ordered residues. Models based on algorithms as Conditional Random Field 

(CRF), Recurrent Neural Network (RNN), Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM), have been developed. One such example to this is SPOT-disorder 

[34], which is a deep-bidirectional model comprises a RNN layer (feed-forward) followed by 

two LSTM layers. It demonstrates that it has accomplished great performance for anticipating 

both LDRs and SDRs. This is because, LSTM eliminates long term dependencies problem, and 

the bidirectional network can catch the information from both forward and reverse directions. 

The performance of labeling methods is additionally improved on merging with deep learning 

methods. The reason is that LSTM and RNN can consequently perceive relevant data of the 

residues, and catch both the local and global logical data of proteins. 

 

PREDICTOR CATEGORY CLASSIFIER FEATURES YEAR AUC 



 

GlobPlot P _ 

Amino acid propensity 

difference 2003 NA 

IUPred P _ Amino acid composition 2005 0.66 

FoldIndex P _ 

Net charge and 

hydrophobicity 2005 NA 

DisEMBL C NN Protein Sequence 2003 NA 

PONDR VL3 C NN 

Residue frequency, 

flexibility and sequence 

composition 2001 0.69 

Spritz C SVM 

PSSM and secondary 

structure predictions 2006 NA 

SPINE-D  C NN 

Residue and window 

level information from 

different parameters 2012 0.82 

SLIDER C LR 

Physicochemical 

properties, complexity of 

sequence and amino acid 

composition 2014 NA 

DisPredict C SVM 

Amino acids, physical-

chemical properties, ASS 2015 NA 

DISpro  L RNN 

PSSM, solvent 

accessibility, secondary 

structure  2005 NA 

Espritz L BRNN Sequence or add PSSM 2012 0.855 

AUCpreD L CNN CRF 

Residue-related features 

include identity, 

physical-chemical 

propensities 2016 0.88 

SPOT-

Disorder L LSTM RNN 

SSM, Shannon entropy, 

physical-chemical 

properties, structural 

properties 2016 0.903 

PrDOS M _ 

Combination of a SVM 

predictor and a homolgy 

predictor 2007 0.907 

MD  M _ 

Combination of 

DISOPRED2, 

PROFbval, IUPred and a 

few sequence properties 2009 0.849 

PONDR-FIT  M _ 

Combination of PONDR, 

PONDR VL3, IUPred, 

TopIDP  and FoldIndex 2010 0.818 

MetaDisorder M _ 

FloatCons: combination 

of 13 predictors  2012 0.753 

DISOPRED3 M _ Combination of 2015 NA 



 

DISOPRED2, LDRs and 

a nearest neighbor 

predictor 

MobiDB-lite  M _ 

Combination of two 

variants of IUpred, and 

three variants of ESpritz, 

DisEMBL and GlobPlot  2017 NA 

   

P- Physio-chemical 

Method 

  

   

C- Classification Models 

  

   

L- Labeling Models 

  

   

M- Meta Methods 

   

Table 1: Summary of some of IDPs/IDRs predictors  

 

2.3 MACHINE LEARNING 

At its very root, machine learning can be understood as programming of computers in order to 

optimize performance criteria with the help of example dataset and past experiences.  This is 

extremely useful in cases where there exists no direct computer program to solve a given 

problem. Another scenario where machine learning comes in handy is when either the human 

expertise does not exist or when it is not explainable, one example of this is the conversion of 

acoustic speech signals into ASCII text for recognition of spoken speech, the task can be 

performed without any difficulty, but the explanation of how it is done is way more complicated. 

The same word is uttered by different individuals differently because of the variation in their 

age, gender, and/or accent. This conundrum is solved with the help of machine learning by using 

an approach within which we collect a large number of samples of utterances from varied people 

and learn to form these into words. Machine Learning can also have applied to cases where the 

problem under consideration changes with time or particular environment. The basic aim is to 

have robust multi-purpose systems that acclimatize to their circumstances, rather than systems 

which require different set of codes for different circumstances. An example here would be the 

routing packets over a computer network wherein the path that maintains the highest quality of 

service between the source and the destination changes with the change in network traffic. A 

machine learning routing program would acclimatize to the best path by monitoring the network 

traffic. Let‟s take a look at yet another example, machine learning can be used for creation of an 



 

intelligent user interface wherein it adapts to the biometrics of the user, that is, his or her accent, 

handwriting, working habits, and so on. Many more such examples can be observed in everyday 

life in all sorts of domains, and commercial systems are available for recognizing speech and 

handwriting. Another commercial application can be observed in how online retail companies 

learn their customer‟s behavior by analyzing their past sales data in order to provide the 

customers a more customized experience and financial service providers use the customer‟s 

transaction history in order to predict the credit risks. For biotechnologists, machine learning has 

become an integral part of the bioinformatics studies. Since high throughput mechanisms are 

generating an enormous amount of data the storage and knowledge extraction from which 

requires the use of computers. Machine learning also finds application in the field of medicine 

for the purpose of medical diagnosis. Other future computer applications may include but are not 

limited to: self-driven cars which adapt to different roads and environmental conditions, phones 

that can translate to and from a foreign language in real-time, or robots that can adopt to new 

environments, for example, the surface of a yet unexplored planet.  

 

With the modern technologies, numerous amount of information can be stored, processed and 

accessed from almost anywhere over a computer network. Majority of equipment these days 

acquire data digitally and reliably. Let us take a look at an example of a supermarket chain with 

thousands of products whose outlets are spread across the country and caters to the needs of 

millions of customers. They record each and every transaction at the point of sale, including 

details like, date, goods bought, total amount, the customer identification number, time, and so 

forth. This is an enormous amount of data which is practically of no use until it is analyzed and 

turned into useful information that can be used to understand a customer and make his future 

shopping experience much more customized. Simply put we have no idea about an individual‟s 

preferences, for example, the audience which would be interested in buying a particular product 

or which author books would interest a person who is deeply interested in Hemingway, if we 

knew this, then we would have simple written a code and everything would have been sorted. 

But since we don‟t, all we can rely is on the collected data and how well are able to analyze it to 

get the answers for the above mentioned and similar questions. And this has turned out to be 

really helpful because all though the details of underlying processes like consumer behavior, 

cannot be explained, but we know with certainty that it is not entirely random. When a person 



 

goes to a supermarket the shopping list is not entirely random, when he/she buys a soft drink or a 

beer there is usually chips accompanying it in the shopping list, ice-creams are common in 

summers whereas spices for butter chicken are common in winters. There is usually a pattern in 

the data, and using this pattern although we may not be able to determine the entire process with 

certainty but we surely can determine a useful and good approximation, patterns, or regularities. 

And the approximation may not be dead accurate but can still help explain majority of data. The 

key assumption here is that the future or at least the near future is not very different from the 

past. This is where the roots of machine learning lie. Data mining is when the principles of 

machine learning are applying to much larger datasets or databases. The name mining is derived 

from the analogy that when we extract a large amount of earth or raw material from mine and 

process it into smaller much more precious processed materials, similarly when we talk about 

data mining we are actually talking about using a numerous amount of information which is 

being collected and refined to have a more simplistic model with practical application.    

     

 In order to solve a problem on computer, one requires an algorithm. Algorithm is an orderly 

consortium of instructions that needs to be executed in order to convert input into output. The 

very first algorithm taught in earlier classes and with which students are well acquainted is that 

of sorting, wherein the input is a set of numbers and the outcome is a well ordered list of 

numbers. For performing sorting over a set of numbers there exist a number of different 

algorithms and our job is to find the one that requires least number of steps, memory or both or 

in other words the one which is the most efficient. But for problems like predicting consumer 

behavior we cannot design a standard consortium of instructions or an algorithm. Another 

example could be that of sorting the email into spam emails. Here the input is an email and the 

output is a yes/no answer, that is, whether the email is spam or not. But we have no way to 

obtain the output from the input because what is spam for a given person at a given time may not 

be spam for another individual or the same individual at another time. But what we can practice 

here is to collect a large amount of data with knowledge of which is spam and which is not. And 

from this sample we can make our machine “learn” what constitutes a spam. In other words, the 

computer itself devises an algorithm to perform the given task. In recent times biological 

sciences have made progress and high-throughput data collection technologies have been 

developed, simultaneously there has been development in computing, digital storage, and 



 

communication and information technologies, which has transformed life sciences into a data-

rich science from data-poor branch. This advancement has led to transition of life sciences from 

hypothesis-driven approach to a data driven approach, that is we now have many answers to the 

same problem at any given time and we seek hypothesis that perfectly explains all of them rather 

than having one answer for one problem approach. This has led to the emergence of the field of 

bioinformatics, wherein we store, retrieve, analyze and assist in understanding the plethora of 

data acquired on daily basis. The same thing that led to its emergence is also the main hurdle to 

bioinformatics, biological information has to be extracted from the in-house and publicly stored 

data. 

 

Machine learning plays key role in computational predictions in proteomics [37], metabolomics 

[38], genomics [36], sensitivity to compounds [38]. These applications delineated inside the 

standard machine learning work process, that incorporates five phases: data collection, data pre‐

processing and preparation, feature extraction, training and model building, model performance 

evaluation. 

 

 

Fig 2: A typical machine learning workflow  

Superficially speaking machine learning sectioned into unsupervised and supervised learning. In 

supervised learning we begin with a dataset that contains couplets of the input and the desired 

outcome, and the job is to develop a model that would precisely predict the desired outcome for 

future samples for which do not have the output values. The task is referred to as a classification 



 

task when the outcome is defined as finite set of discrete values and when it takes up continuous 

values it is referred to as a regression task.  

 

In stark contrast with the supervised learning is the unsupervised learning. In this we begin with 

a dataset of training data that is supplied to the machine without any labels or without the output. 

The machine clusters or partitions the training examples into subsets, so that the examples within 

a cluster shows high degree of similarity or proximity. When a future case is presented to the 

machine the machine tries to classify it into one of the clusters.  

 

Consider a typical example of life sciences [39], to foresee the viability of malignant cancerous 

cell line in response to a drug. Since, supervised machine learning directs to develop a model 

from given training sets to determine the future output. In this particular case, the input feature 

would include chemical composition of a drug, concentration of drug, cell line somatic sequence. 

These input features along with viability of cells in known cases (output label) utilized to train a 

model based on different algorithm for instance random forest, support vector machine to learn a 

functional relational between the input and the output labels, such that it could precisely predict 

the viability for unseen samples. As opposed to this is, unsupervised learning that intend to form 

clusters of sample by discovering patterns from them. some of common examples of 

unsupervised learning applied to biological data include clustering, outlier detection, PCA 

(Principle Component Analysis).  

 

The final input labels, obtained from raw information describe the model, and their decision is 

exceptionally problem-specific. Inferring most useful features is crucial for model prediction 

accuracy, however, this task requires domain knowledge and can be labor-intensive. This is 

particularly difficult in cases where the data is of high dimensionality such that even 

computational strategies unable to assess exceptionally large number of possible couplets for 

feature extraction. A noteworthy ongoing development for automating this task by learning a 

reasonable portrayal of information with deep neural networks [40]. Briefly, neural networks get 

the raw information at input layers for feature selection and progressively transform them by 

combining outputs from previous layers in a data-driven way.  Deep learning is recently a 

standout amongst the most other learning algorithms and has been appeared to exceptionally well 



 

in speech and image recognition [41], natural language processing and most currently, in 

computational biology.  

 

2.3.1 Artificial Neural Networks 

Neural networks also known as artificial neural networks, have been worked upon since it was 

recognized that the human brain computes in a way, totally distant to that of a conventional 

digital computer. Human brain could be understood like a complex, non-linear and a parallel 

processing machine. The structural components of the brain are known as neurons and the brain 

has the capability to organize them in order to execute various computations for instance motor 

control, perception, pattern recognition, and so on. And what is surprising is the fact that the 

human brain performs these computations a lot faster than any conventional digital computer in 

available today. When we take birth, the brain is well structured and possess the ability to make 

its own rules through experience, which builds up over time. Majority of brain development 

takes place in the neonatal stage, but the development continues well beyond this stage.  

 

When it comes to the neurons it‟s important to understand that they possess plasticity during 

development, that is, they adapt to the surrounding environment. Similarly, in the neural 

networks consisting of artificial neurons plasticity is important for information processing. 

Neural network can be understood as software on a machine or a digital computer that is 

designed to work in a similar way as that of human brain to carry out a certain function. Neural 

networks make use of colossal interconnection of simple computing cells often termed as 

neurons or processing units. Simon Haykin in his book Neural Networks: A comprehensive 

Foundation defines neural networks as “A neural network is massively parallel distributed 

processor made up of simple processing units, which has a natural propensity for storing 

experiential knowledge and making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.  

 



 

Desired design objective is attained through orderly modification of the network‟s synaptic 

weights with the help of a learning algorithm. It is well established that neurons die and regrow 

to form new connections in synapse junctions inside the human body the same can be done with 

the neural networks as well.  

 

Artificial neural network, at first influenced by brain‟s neural system, comprises interconnected 

layers of neurons. The depth is related to quantity of hidden layers in a network whereas greatest 

quantity of neurons in any layer of a network corresponds to width of the network. Since, it 

became conceivable to build network with numerous hidden layers, these are also referred to as 

“deep networks”. 

 

The below figure depicts the standard arrangement, where the input layer gets the information, 

while passing through multiple hidden layers it gets changed in a non-linear manner to yield a 

final output at output layer. All the previous layer neurons are associated to every neuron in 

preceding layer. To ascertain its output, every neuron uses a non-linear activation function and 

calculates a weighted summation of all the inputs. ReLU (Rectified Linear Unit) is well known 

activation function used in neural networks. This function goes positive signal while keeping a 

threshold of zero to negative signals. This function permits quicker learning contrasted with 

other activation functions such as tanh unit or sigmoid function.  

 

The input information describes the model representation and the loads or weights are free 

parameters between any two neurons. Data samples at input and output layers are to optimize the 

weights and minimize the error function which estimates the fit between sample‟s true value and 

output of the model. This minimization is difficult to achieve as because of non convex and high 

dimensional data representation.  

 

It took quite a few years before the backward propagation algorithm (via chain rule for 

derivatives) was used to calculate an error function, this ultimately empowers effective neural 

networks training utilizing stochastic gradient descent. While training a network, the sample‟s 

true label is compared with the anticipated label, to compute error function for current model 

loads. Then the computed error is reversed propagated along the network and the weights are 



 

updated accordingly. Gradient steepest-descent is basically used to optimize this error function. 

With the each progression, the present weight vector is moved in the direction of gradient 

steepest descent by learning rate η that is the vector length [31]. Since, learning of deep networks 

remnants a functioning area of research, programming packages have been available and can be 

utilized without knowledge of mathematical information involved. 

 

For explicit applications, different designs of completely interconnected networks have been 

developed that vary in the manner in which the neurons are arranged. These incorporate 

recurrent neural network for sequential information convolutional neural network are broadly 

utilized in image processing, Boltzmann machines and auto-encoders for unsupervised learning. 

The specific objective of the problem and data will decide the design and different parameters of 

the network.  

 

 

 

Fig 3: A typical Artificial Neural Network 

 

2.3.2 Convolutional Neural Networks 

A convolutional neural system is another category deep neural networks and widely used in for 

image processing.  of profound neural systems, most regularly connected to examining visual 

symbolism.  



 

 

Greatly influenced by biological processes, this category of deep networks resembles animal 

visual cortex in terms of organization and connection pattern of synaptic units (neurons) in a 

network. One advantage of CNN, they require comparatively lesser pre-processing of data in 

contrast to other algorithms. They are widely used in natural processing language, image 

classification, video and image recognition, medical analysis. 

  

CNNs resemble standard neural networks with respect to their architecture that is, comprises 

multiple hidden layers in between input and output layers. Hidden layers in CNNs are referred as 

progression of convolutional layers such as fully connected layer, pooling layer, normalization 

layer, as their output and input are enacted by last convolution and ReLU function (commonly 

used activation function in CNNs).   

  

A CNN design is framed by a heap of particular layers that change the input information to 

output information using a differentiable function. A couple different kinds of layers are 

commonly utilized in CNNs. These are additionally explained below.  

 

The convolutional layer is the core component of CNN. Here, the parameters are learnable 

kernels of filters, having a small receptive field, that reach out through the full volume of input 

space.  Each kernel convolved over height and width of input space and produce a 2D activation 

map by computing a dot product between input and kernel‟s entries. This allow network to learn 

these kernels that actuate on recognizing some particular sort of feature at any spatial position in 

the input. The full output space can be formed by stacking activation maps of all the kernels 

along the depth of convolutional layer. Therefore, each entry of output space can be seen as 

output of a neuron present in a small receptive field in input space and offers same parameters to 

that of neurons other neurons of same activation map.  

 

When managing high-dimensional sources of information, for example, pictures, it is illogical to 

associate neurons to all neurons in the past volume as design of a network does not consider the 

spatial structure of the information. Convolutional systems exploit spatially relationship by 

implementing a sparse connectivity between neurons of adjoining layers: every neuron is 



 

associated with just a little area of the input space. The degree of this connectivity is a hyper-

parameter that is receptive field of network unit. The associations are nearby in space yet 

dependably reach out along the whole depth of the input space Such a design guarantees, that the 

learnt kernels produce the most grounded reaction to a spatially nearby input design. 

 

 

The idea behind the pooling layer is down-sampling of input data non-linearly. This pooling can 

be performed with number of different non-linear function, however max-pooling most 

frequently used in CNNs. It segments the input space into of non-overlapping rectangles and 

yield a maximum output from every sub section.  Since, accurate position of feature is less 

significant with respective to the others, this forms the basic idea of adding a pooling layer in 

ConvNets. It dynamically lessens the spatial size, therefore diminish the quantity of parameters, 

number of computations, and subsequently avoid over-fitting. It is entirely expected to 

occasionally embed a pooling layer between progressive convolutional layers in a CNN 

architecture. The pooling task gives another type of interpretation invariance. 

 

ReLU layer set zero to negative values and adequately expel them from activation map. It also 

expands the nonlinearity of a function and network without influencing the receptive fields of the 

convolution layer. 

 

At last, after a few convolutional and max pooling layers, the abnormal state thinking in the 

neural system is done through completely associated layers. Neurons in a completely associated 

layer have associations with all initiations in the past layer, as found in standard (non-

convolutional) fake neural systems. Their actuations would thus be able to be processed as a 

relative change, with grid duplication pursued by a predisposition balance (vector expansion of 

an educated or fixed inclination term) 

 

At last, fully connected layer after a few pooling and convolutional layers. As found in the 

standard artificial neural network, the all the past layer activations are associated with all the 

neurons of full connected layer and output can be computed with matrix multiplication followed 

by bias offset.  



 

 

The loss layer determines variation between the true and anticipated labels, typically the last 

layer of in any network. Depending on the task to be done suitable loss function can be used.  

 

 

Fig 4: Working of convolutional neural network 

 

2.3.3 Recurrent Neural Networks 

People don't start their intuition from scratch consistently. Traditional neural networks unable to 

do this, and it appears to be their major disadvantage. For instance, suppose one needs to 

determine the sort of act occurring at every point in a motion picture. It's difficult for a 

traditional neural network to utilize its thinking about past act in the motion picture to advise 

upcoming act.  

 

However, Recurrent Neural Networks (RNN) overcome this disadvantage of traditional 

networks. Since, these networks consist of loops which enable the data to endure for longer time. 

These networks work on the principle of keeping the output of a layer and providing this back to 

guide in anticipating the output. The input layer is framed as a feed-forward network. Every 

neuron in these network behaves like a memory cell where the information while passing 

through one neuron onto the next, remembers some information which are then utilized in 

performing calculations. In other words, neural network deals with front propagation and 

remembers some information it requires for later use.  



 

 

In the below outline, piece of neural network, AA, some input information xt and produce an 

output ht, where a loop facilitates the information to be passed through the network from one 

stage then onto the next stage. with one stage of the network then onto the next. These loops 

cause recurrent neural network to be quite puzzling. For unknown reasons, they aren‟t too unique 

in relation to an ordinary neural network. A recurrent network can be seen as a combination of 

large number single network each passing an information to a successor.  

 

The chain-like resemblance of these networks uncovers that they are identified for sequential 

data (genome and protein sequences) and lists. These are the networks to use such information 

with an ease.  

 

Over the most recent couple of years, they have been successful applied in various applications 

such as in image processing, translation, language modeling, speech recognition, so on.  

 

 

 

Fig 5: Recurrent neural networks with loops  

 

Fundamental to these successes is the utilization of "LSTMs (Long Short Term Memory)" 

unique recurrent network, that works for varies tasks, a whole lot superior to the standard 



 

version. Practically all energizing outcomes dependent on recurrent networks are accomplished 

with them.  

 

2.3.3.1 Long-Term Dependencies  

One of the interests of RNNs is the possibility that they may most likely associate previous 

information to the current task, for instance, past video frame may comprehend regarding the 

current frame. In some cases, we just depend on recent data to perform the current task. In such 

situations, the gap between the relevant data and the point where it is required is little, RNNs 

able to figure out how to utilize the past data.  

 

However, there are additional situations where it is feasible for the gap between the reliable data 

and the point where it is required turn out to be extremely huge. Unfortunately, as that gap 

becomes large enough, recurrent neural networks become unable to figure out how to connect 

this data. 

 

 In theory, recurrent neural networks are completely fit for taking care of such long term 

dependencies issues. In practice recurrent neural network don‟t appear to have the option to learn 

them. LSTMs don't have this issue. 

 

2.3.3.2 LSTM Networks  

Long Short Term Memory networks [33] – typically referred to as "LSTMs" – an exceptional 

kind of RNN, fit for taking care of long-short term dependency conditions. They were originally 

proposed by Schmidhuber and Hochreiter. Many people promote and refine their work using 

LSTMs. They work enormously well for various different applications, and are recently being 

utilized more often. These networks are intended to circumvent long-term dependency problems. 

These networks have ability to retain information for longer period of time, is their default 

behavior not something they force to learn.  

 

All RNNs have chains of repeating modules of NNs. In standard recurrent neural networks, the 

repeating modules have a straightforward architecture, for example a tanh layer.  



 

 

Whereas, LSTMs additionally have chain like architecture. These modules in LSTM in spite of 

consisting single layer, they contains four or more layers, connecting in an extraordinary manner.  

 

Fig 6: Repeating modules of RNN containing single tanh layer 

 

 

Fig 7: Repeating modules of LSTM containing four interacting layers 

 

As depicted in a figure, four interacting layers consists of a ray which represents a vector transfer 

that point from output of one node to input of others. Point wise operations such as summation, 



 

deletion represented through circle. Learned neural layers are represented by boxes. Lines 

blending mean concatenation. Lines merging out represent data replications and replicates 

proceeding in opposite directions.  

 

The core of LSTMs is the state of the cell that is the horizontal segment at the top of the network. 

Similar to conveyor belt, cell state runs the whole chain with limited interactions. The data flows 

through this segment without any transformation. However, LSTMs have the potential to 

transform this data by adding a new data or eliminating a part of it. This can be done through 

different structure known as gate of LSTM networks.  

 

The sigmoid gate decides the amount of data to pass through depending on its output, which 

ranges from zero to one, where zero signifies “no data pass through” and one signifies “whole 

data pass through”.  

 

A LSTM consists of three such gates in order to secure cell state. Process through LSTM 

interacting layer as follow: 

 

The sigmoid function decides the data to be discarded from the cell state in the initial phase of a 

LSTMs. This is done by forget layer of sigmoid gate by considering h1 and x2t, and outputs 

some value for every data in previous cell state. Now, depending upon the output values decide 

the data to remember.  

 

In the subsequent phase, LSTMs has to add the new data in the cell state, can be done in two 

steps. Initial step is carried out by input layer in sigmoid gate where the data values are updated. 

In the second step, vector of updated data values, C 2 are added to the cell state by tanh layer. 

Further consolidate these step in the cell state to make a final update. finally, old cell states are 

updated to new one cell state following some calculations. Now, the updated cell state will 

decide the final output. In this, sigmoid gate decides the output data. Then cell state through tanh 

layer and multiply with the output of sigmoid gate, to yield a final output.   



 

 

2.3.3.3 Variations of LSTM Network 

Above explained LSTM is quite ordinary. Be that as it may, not all LSTMs are equivalent to the 

above mentioned. Indeed, it appears pretty much like every paper including LSTMs utilizes 

slightly distinct versions. The distinctions are minor, yet it is worth mentioning a few of them.  

 

A most prominent LSTM variation, presented by Schmidhuber and Gers, including "peephole 

connections.". Another variety is to utilize coupled input and forget gates. Rather than 

independently choosing what data to forget and what new data to add, this variant make such 

choices altogether.  

 

Gated Recurrent Unit (GRU) is the more progressively variant from LSTMs, presented by Cho.  

It consolidates input and forget gates into a particular "update gate." It likewise blends the hidden 

layers and cell, and rolls out a few different improvements. The subsequent model is less 

difficult than typical LSTM models, and has been becoming progressively well known. These 

are just a couple of the most prominent LSTM variations. Heaps of others, similar to Depth 

Gated RNNs by Yao are available. There are likewise totally extraordinary ways for dealing with 

long term dependencies similar to Clockwork RNNs by Koutnik.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

MATERIALS AND METHODOLGY 

 

3.1 DATA CURATION 

In this study we intended to use an ensemble of long short term memory and convolutional 

networks to predict DRs. For this we required experimentally validated disordered protein 

sequences. These sequences were collected and from manually curated and annotated databases 

such as DisProt 7 [56] (v0.5 release 11-05-2017) and MobiDB  [11] (release 24 October 2017). 

 

3.1.1 DisProt is a database comprising of experimentally validated and annotated information of 

disordered regions manually gathered from literature. Statistics includes 803 proteins and 2167 

regions. Each evidence is recognized by at least one experiment. DisProt disorder region (DR) is 

unambiguously distinguished by literature, the first and the last residue of the DR, and the 



 

experimental method utilized in the paper. DisProt can be annotated with functions and another 

ontology has been made to portray disorder-specific viewpoints. This has following structure, 

Molecular function of disorder region, the kind of basic structural transition of disorder region, 

the type of associating or interacting partners. 

   

Fig 8: DisProt- Database of Protein Disorder 

3.1.2 MobiDB was intended to brought together asset for annotations of protein disorders and 

its functions. The database covers diverse issue perspectives. MobiDB highlights three 

quality levels of annotation from high to low quality (pyramid). Various sources present an 

unmistakable tradeoff among quality and coverage, for example, manually curated (annotations 

from external databases), indirect (Derived/determined data from experimental information, for 

example PDB structures and additionally chemical shifts), predicted (Predicted annotations). 

 



 

 

Fig Screenshot of MobiDB 

All sequences and annotation data are also available for download. Manually curated consensus 

sequences were retrieved from the database. It gives output in CSV/JSON file containing protein 

name, protein sequence, start and end region, disordered region sequence. So, the dataset of 9604 

unique disordered region sequence were extracted from the databases. 

 

3.2 DATA PREPARATION 

3.2.1 Pre-processing 

As all the data was available, it is imperative to get consistency in the length of the sequences so 

that our model could extract features considering patterns in the sequences but not the 

differences in the length of the sequences. Therefore, we chose to set some threshold value. The 

python code for reading and preparing the training data is given in Appendix I. 

 

3.3 BUILDING A MODEL 



 

 

Fig 10: Proposed model for prediction of disordered regions 

 

Above given figure delineates the proposed model for prediction of disorder regions in protein 

sequences. Keras Library was utilized for structure and preparing our model. This library is a 

high-level NNs API, scripted in python equipped for running over Theano, TensorFlow or 

CNTK. TensorFlow is open source math programming library used in learning applications. It 

was developed with an attention on empowering quick experimentation. It is vital for doing great 

research because it provides a platform for going directly from thought a to desired outcome with 

the least conceivable delays. Keras offers simple and quick prototyping (through ease of use, 

extensibility and modularity). Supports both CNNs and RNNs, just as blends of the two. Runs 

consistently on CPU and GPU. Our model was implemented in Tensorflow v1.4,51 allowing us 

to accelerate training up to 20 times faster.  

 

3.4 DEVELOPING A MODEL 

3.4.1 Weight vectors using embedding layer 

As mentioned by Heffernan, utilizing an alternate matrix representation, for example, the 

BLOSUM62 or physical-chemical properties of every residue do not give considerable variations 

in performance as they can be effectively represented on one- hot vector therefore, can be learnt 



 

as linear transformations by the network. In embedding, each residue is encoded as unique 

integer and defined as a vector in a continuous vector space. This layer necessitates that each 

residue is initialized to arbitrary weights and get familiar with an embedding for each residue. 

The weight initialization step usually carried out by Tokenizer API available in keras library. 

Finally, layer has optimized weights that are learned so the final output is a two dimensional 

vector with an embedding for every residue of input sequences in training set. Therefore, 

categorical features such as amino acid sequences are encoded numerically in a matrix of 23 X 

23 using embedding layer. The weight matrix representation is given in appendix III.  

 

3.4.2 Feature extraction using layers 

Next step was to extract feature from sequences using CNN layer. The one-dimensional (1D) 

convolution layers applied in our models utilize a filter depth of 40 at a kernel size of 64. Then 

we used a bidirectional LSTM layer 512 neurons for global feature extraction along the 

sequence. Then finally a time distributed dense layer of 552 neurons which makes use of softmax 

function to concatenate the outcomes from LSTM to produce the final output. 

 

 



 

Fig 11: Feature extraction using CNN layer 

3.5 TRAINING A MODEL 

Fig 12: Training a model 

The objective of training a model is to discover parameters, that is weights in a network which 

limits the error function. This error function estimates the fit between sample‟s true label (the 

real observation) and the model prediction output. The widely recognized error function in case 

of classification problems is categorical cross‐entropy and in case of regression, it is mean 

squared function. It is difficult to minimize this function L(w) because of high‐dimensional and 

non‐convex nature.  

 

3.5.1 Deciding the quantity of neurons in a network 

The ideal quantities of neurons and hidden layers in the network are problem‐specific and ought 

to be optimized. A regular approach is to enlarge the quantity of neurons and layers without 

over-fitting the information. Larger number of neurons and layers increase the quantity of 

representable functions, and experimental evidences demonstrates that it makes initialization of 

weights less sensitive for finding a local optimum. Here we utilized different quantities of 

neurons blends in all layers, and found 552 neurons for Dense layer and 512 neurons for LSTM 

as ideal. The weights in the model were optimized utilizing Adam optimizer, in order to 

minimize categorical cross-entropy function, using default parameters. 

 

3.5.2 Partitioning information into Training and Validation datasets  

Learning models should be build, learn and validate on autonomous data sets to abstain from 



 

over-fitting. This makes sure that the model will generalize to new data. For appropriate training 

apportioning data into training, testing and validation datasets, and is the typical step for any 

machine learning system. The training set is utilized by the models to learn various parameters, 

that are later assessed on validation set. The model with minimized mean-squared error function 

or highest prediction accuracy, is chosen and further assessed the performance of model on the 

test set to evaluate the correlation with different techniques. We used 80% of the data for training 

our model and 20% for its validation.   

 

3.5.3 Batch Size and Learning Rate Estimate  

The batch size and training rate of stochastic tendency ought to be picked up correctly, since they 

directly influence validation accuracy and rate of training of any model. Various learning rates 

have been generally explored, for instance, 0.001, 0.01 or 0.1, where 0.01 (on a logarithmic 

scale) is the suggested model training rate. For most applications, batch size 128 and learning 

rate 0.01 are the most sensible and generally used as default. However, accelerate the training 

process by increasing the size of a batch or it can essentially be reduced to diminish memory use 

in cases where the learning of complex models is carried out on GPUs with limited memory. The 

perfect batch size and training rate are related; smaller learning rates require greater batch sizes 

consistently. In our work we have utilized a default learning rate 0.01 and batch size 50.  

 

3.5.4 Avoid Over-Fitting  

Neural Networks based models are challenging to train, data over-fitting is a vital test. Over-

fitting comes about as a result of an excessively intricate model relative, making it difficult to the 

range of the training set, and would consequently have the option to be lessened by decreasing 

the model disperse quality, suchlike the quantity of hidden layers and neurons in a network, or 

by extending the proportion of training set by the method of data extension. We have played it 

safe for abstaining from over fitting: We applied a dropout rate of 0.2 in LSTM layer, softmax 

activation and L2 regularization penalty of 0.001 in dense layer.  

Floyd hub cloud computing was used to train our model for 50 epochs having 32GB RAM, Intel 

Xeon 8 Cores CPU and11GB NVIDIA Tesla K80 GPU. The python code for training the model 

is given in appendix II.   



 

 

 

CHAPTER 4 

RESULTS 

 

4.1 DATA PREPARATION 

These sequences data were retrieved from manually curated and annotated databases such as 

DisProt7 and MobiDB, release October 2017. The sample of the retrieved data can be found in 

the table below. 

 

In brief, 9604 manually curated consensus protein sequences were retrieved and then pre-

processed to bring about the consistency in the length of sequences so that our model could 

extract features considering patterns in the sequences but not the difference in the length of the 

sequences. Therefore, we chose to set a threshold value of range of length of protein sequence to 

be 150-550 amino acid residues. So, the final dataset consists of 7008 protein chains which were 

then arbitrarily part into a training set of 5606 chains (80%) and a validation set of 1401 chains 

(20%). All these sequences have similarity in sequences of less than 25% as indicated by 

BlastClust. 

 

Disprot_id End Name Method Start Sequence 

Protein

_type pmid 

DP00733 391 

 

XRAY 385 LHLCSGT Native 15713488 

DP00450 536 

 

XRAY 532 KDKCG Native 11005854 

DP00962 719 

AF1 domain, 

Amino 

Terminal 

Domain 

(NTD) NMR 710 

SEVHPSRL

QT 

Native 

19214187 

DP00962 750 

AF1 domain, 

Amino 

Terminal NMR 720 

TDNLLPMS

PEEFDEVS

RIVGSVEF

Native 

19214187 



 

Domain 

(NTD) 

DSMMNTV 

DP01091 81 

 

XRAY 60 

AEHQTAG

RGRHGRG

WAATARA

Q 

Native 

20169168 

DP01091 172 

 

XRAY 159 

VTQAPEEV

DPDATS 

Native 

20169168 

DP01099 10 

 

XRAY 1 

MASPPPFH

SQ 

Native 

12923182 

DP01099 350 

 

XRAY 339 

GQASETPH

PRPS 

Native 

12923182 

DP00981 173 

C-terminal 

extension PNMR 165 EKPSSAPSS 

Native 

1397302 

DP00324 102 

 

XRAY 92 

REDSQRPG

AHL 

Native 

11917013 

DP00142 209 

 

NMR 192 

RAQIGGPE

AGKSEQSG

AK 

Native 

7649277 

DP00142 209 

 

FCD 192 

RAQIGGPE

AGKSEQSG

AK 

Native 

10727931 

DP00142 209 

 

NCD 192 

RAQIGGPE

AGKSEQSG

AK 

Native 

10727931 

DP00023 199 

 

XRAY 191 

TAFMEKV

LG 

Native 

9525918 

DP00023 328 

 

XRAY 289 

PAKAEAG

AEAGGGA

GPGAEDEA

GRGAVGD

PELGDPPA

APQ 

Native 

9525918 

DP00324 7 

 

XRAY 1 MSKSESP Native 11917013 

DP00733 326 VPg XRAY 321 LVKEVT Native 15713488 

DP00733 353 VPg XRAY 346 CSKLPKSL Native 15713488 

DP00324 196 

 

XRAY 182 

SKQEMAS

ASSSQRGR 

Native 

11917013 

DP00322 31 

 

XRAY 14 

SALPDPAG

APSRRQSR

QR 

Native 

15525646 

DP00733 378 

 

XRAY 372 LLEEVSP Native 15713488 

DP00324 102 

 

XRAY 92 

REDSQRPG

AHL 

Native 

11917013 

DP00324 196 

 

XRAY 182 SKQEMAS Native 11917013 



 

ASSSQRGR 

DP00964 20 

 

XRAY 1 

MSKREETG

LATSAGLI

RYMD 

Native 

14661030 

DP00962 750 

AF1 domain, 

Amino 

Terminal 

Domain 

(NTD) NMR 720 

TDNLLPMS

PEEFDEVS

RIVGSVEF

DSMMNTV 

Native 

19214187 

DP00607 41 

 

SDSPAGE 1 

MWTLGRR

AVAGLLAS

PSPAQAQT

LTRVPRPA

ELAPLCGR

RG Native 17468497 

Table 2: Sample of data retrieved from databases 

 

4.2 BUILDING A MODEL 

Our model utilizes an ensemble of embedding layer, convolutional layer and bidirectional LSTM 

layer. The description of each of these architectures embedding, convolutional, bidirectional 

LSTM and time distributed dense layer are represented in a figure13.  

The embedding layer has optimized weights for every amino acid residue that are learned and the 

final output is represented in a two dimensional weight vector matrix of 23 X 23 vector. The one 

dimensional convolution layer connected in our model uses a window size of 40 amino acid 

residues for extracting 64 features along the length of sequences. Bidirectional LSTM layer 

consists of a one cell memory state in each direction concatenating together to give an output of 

2X NLSTM size. Here, we utilized different quantities of neurons blends in all layers, and found 

552 neurons for Dense layer and 512 neurons for LSTM as ideal. Since, over-fitting is vital test 

in case of training a neural network because of its non-linear and non-convex nature consisting 

various parameters. We have played it safe for abstaining from over fitting. We have applied a 

dropout rate of 0.2 in LSTM layer and L2 regularization penalty of 0.001 in dense layer. We 

have used ReLU activation function for Conv1D layer and softmax for time distributed dense 

layer. The weights in the model were optimized utilizing Adam optimizer, in order to minimize 

categorical cross-entropy function, using default parameters. 

 



 

 

 

Figure 13 Final model consists of embedding, conv1D, LSTM and Time Distributed Dense 

layers. 

 

4.3 PERFORMANCE EVALUTION 

 

As our output is a singular node whose value has been compressed to „N‟ for amino acid residues 

of structured regions whereas, „D‟ for disordered regions. It is significant to consider skew- 

independent metrics for analyzing the performance of our model considering innately skewed 

distributions in datasets. The simplest metric is accuracy (it is no. of instances correctly predicted 

divided by total number of prediction made). Below figures depicts the accuracy and validation 

curves for training and validation sets. 



 

   

 

 

 

Figure 14: Training accuracy and Training loss curves 

 



 

 

Figure 15: Q3 accuracy for training set  

 

4.4 VALIDATION 

 

 Figure 16: Validation accuracy and validation loss curves 



 

 

 

Figure 17: Accuracy curves for training and validation sets 

 

Training Accuracy 0.9467 

Training Loss 0.1385 

Validation Accuracy 0.9370 

Validation Loss 0.1706 

Q3 Training Accuracy 0.9079 

Q3 Validation Accuracy 0.8904 

Table 3: Performance evaluation table on datasets  

 

The results of model on datasets are presented on table 3. The datasets have substantially different 

ratios of ordered to disordered residues. This is largely due to different numbers of fully 

disordered proteins included in each set. Thus, it is not surprising that the performance varies 

across different datasets. Except for a few methods, the majority has a similar trend: the medium 

size around 30 residues has the best discrimination between unstructured and structured regions. 

This model is comparable to a few methods in short IDRs but are more accurate than all 

sequence methods in long-disordered regions. After training for 50 epochs we found that the 



 

training accuracy of our model for predicting disordered regions was around 94.67%, while in 

validation accuracy was around 93.70. This is the highest accuracy attained for prediction model 

in context to disordered regions prediction. Q3 accuracy is a 3 state per residue accuracy measures 

the percentage of correctly predicted residues in all the three classes and is given by Q3= 100. 

Sum Ci/ N where, Ci is the number of correctly predicted residues in a class and N is the number 

of residues. So, Q3 accuracy for training set 0.9079 and for validation 0.8904 were observed. As 

training accuracy was somewhat similar to validation accuracy we can state that out model was 

not over-fitted. Loss of 0.1385 and 0.1706 were observed in training and validation sets respectively.  

After training for 50 epochs we found that the training accuracy of our model for predicting 

disordered regions was around 94.67%, while in validation accuracy was around 93.70. This is 

the highest accuracy attained for prediction model in context to disordered regions prediction. Q3 

accuracy is a 3 state per residue accuracy measures the percentage of correctly predicted residues 

in all the three classes and is given by Q3= 100. Sum Ci/ N where, Ci is the number of correctly 

predicted residues in a class and N is the number of residues. So, Q3 accuracy for training set 

0.9079 and for validation 0.8904 were observed. As training accuracy was somewhat similar to 

validation accuracy we can state that out model was not over-fitted. Loss of 0.1385 and 0.1706 

were observed in training and validation sets respectively.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

CHAPTER 5 

DISCUSSION 

 

The intrinsically disordered regions are comprehensively being implied to various physiological 

processes and disease, and also complement the functions of structured proteins. These regions 

can be determined by multiple experimental techniques. Because of high cost and time for 

identifying disordered regions experimentally, researchers depend on computational strategies in 

order to predict probable IDRs/IDPs before conducting subsequent validation through 

experimental studies. Although many advancements have been made in recent years for on 

prediction of long and short intrinsically disordered regions, but there is still a significant scope 

for algorithmic improvement. 

 

It has been observed that the neural networks are exceptionally the most effective class of 

machine and pertinent in taking care of pretty much every sort of issue beginning from 

classification, clustering, regression, natural language processing, sequence prediction, structure 

prediction and so forth. The fundamental way of learning a neural network is by altering input 

loads of each neuron. CNNs are a class of ANNs which are utilized for feature extraction or 

selection. They are generally utilized in picture image recognition for discovering extraordinary 

features from pictures. They can additionally be used in extraction of features or perceive 

specific patterns from sequences which are exceptionally hard to be considered manually. 1D 



 

Convolutional Network can be utilizing for choosing features from a 1D information for example 

a text sequence. RNNs are another class of ANNs which are effective in gaining from a sequence 

information. They fundamentally utilize their interior state (memory) to process input sequence 

which enable them to recollect some past information which is useful in managing sequence 

data. RNNs are used sequence classification and sequence prediction. But RNNs are tend to have 

a problem of vanishing gradient where it tends to forget instance from very initial states. For 

overcoming this problem researcher have come up with an up gradation in RNNs i.e. LSTMs. 

LSTMs tackle the vanishing gradient by adding another memory unit which takes accounts of all 

necessary states and stores them. 

 

For developing an improved algorithm for prediction of intrinsic disorder regions considering 

only amino acid sequence information. We have demonstrated that utilizing the ensemble of 

embedding, convolutional and LSTM layers enables the technique to improve over other 

techniques in terms of their capability to isolate disordered regions from structured regions in 

amino acid chains. We trained this ensemble network on experimentally validated and disordered 

region sequences (7008) from DisProt and MobiDB and implementation was carried on Floyd 

hub cloud computing example having 32GB RAM, 11GB NVIDIA Tesla K80 GPU and Intel 

Xeon 8 Cores CPU for 50 epochs. The final model achieved an accuracy of 94.67%, which is 

considered to be the highest accuracy achieved so far, in context to disordered region prediction 

in proteins. Moreover, this model permits quick genome-scale prediction that is too tedious for 

profile-based methods. So, we finally demonstrated that this sequence based model is more 

precise that already existing sequence and profile based methods, for few homologous 

sequences.  

 

Present study mainly focusses on identifying disordered region prediction by employing 

ensemble of embedding, convolutional and LSTM layers.  However, subsequent work on 

determining the function of these regions can further help research community in the field. 

 

 

 



 

 

 

 

 

 

 

 

APPENDICES 

 

APPENDIX I  

The python code for reading and preparing training data.  

dataset = [] 

for item in data: 

    dataset.append(item['sequence']) 

 

length_list=[len(seq) for seq in dataset] 

 

filtre_data= [] 

 

for item in data: 

    if len(item['sequence'])>150 and len(item['sequence']) < 550: 

        filtre_data.append(item) 

 

with open('datset.pkl','wb') as dataset: 

    pickle.dump(filtre_data,dataset) 

 



 

import matplotlib.pyplot as plt 

 

# An "interface" to matplotlib.axes.Axes.hist() method 

n, bins, patches = plt.hist(x=length_list, bins='auto', color='#0504aa', 

                            alpha=0.7, rwidth=0.85) 

 

plt.boxplot(x=length_list) 

 

import numpy as np 

 

seq_len = np.array(length_list) 

 

#====================================================================

==================================== 

def diorder_seq(length,list_indeces): 

    seq = [] 

    for i in range(length): 

        seq.append('N') 

    for items in list_indeces: 

        try: 

            for i in range(items[0], items[1]+1): 

                seq[i]='D' 

        except: 

            for i in range(items[0], items[1]): 

                seq[i]='D' 

    return ''.join(seq) 

#====================================================================

======================================# 

with open('final_dataset.pkl','rb') as D: 

    data = pickle.load(D) 

 



 

sequence_data = [] 

for items in data: 

    seq_data=[items['sequence']] 

    temp_l = items['mobidb_consensus']['disorder']['db'][0]['regions'] 

    seq_data.append(diorder_seq(len(items['sequence']),temp_l)) 

    sequence_data.append(seq_data) 

     

     

with open('formated_1_dataset.pkl','wb') as data_set: 

    pickle.dump(sequence_data,data_set) 

APPENDIX II 

The python code for training a model. 

 

# -*- coding: utf-8 -*- 

 

# -*- coding: utf-8 -*- 

 

# -*- coding: utf-8 -*- 

 

# -*- coding: utf-8 -*- 

 

# -*- coding: utf-8 -*- 

 

import pickle 

from sklearn.model_selection import train_test_split 

import keras 

 

from keras.models import Model, Input,Sequential 

from keras.layers import LSTM, Embedding, Dense, TimeDistributed, Bidirectional,concatenate 

from keras.metrics import categorical_accuracy 



 

from keras.layers.convolutional import Convolution1D 

from keras import backend as K 

import tensorflow as tf 

from keras.preprocessing import text, sequence 

from keras.preprocessing.text import Tokenizer 

from keras.utils import to_categorical, plot_model 

from keras.layers.core import Flatten, Reshape 

 

#tf.keras.backend.clear_session() 

 

#====================================================================

========= 

#processing protein sequences 

with open ('formated_1_dataset.pkl','rb') as data: 

    data_set=pickle.load(data) 

records = [] 

str_data =[] 

for i in data_set: 

    records.append(i[0]) 

    str_data.append(i[1]) 

 

 

 

     

characters=set() 

for record in records: 

    for char in record: 

        characters.add(char) 

print(characters) 

print(len(characters)) 

count = -1 



 

AA_list = list(characters) 

aa_index = {char:AA_list.index(char) for char in AA_list} 

 

# The first indices are reserved 

aa_index = {k:(v+2) for k,v in aa_index.items()}  

aa_index["<PAD>"] = 0 

aa_index["<START>"] = 1 

reverse_aa_index = dict([(value, key) for (key, value) in aa_index.items()]) 

def aa_review(text): 

    return [aa_index.get(i,'?') for i in text] 

 

 

seq_data = [aa_review(record) for record in records] 

 

records = 0 

#==================================================================== 

#==================================================================== 

#processing str data 

# 

=====================================================================

======== 

# records = list(SeqIO.parse("proten_len_200_250_secstr.fasta", "fasta")) 

# characters=set() 

# recorda=0 

tokenizer_decoder = Tokenizer(char_level=True) 

tokenizer_decoder.fit_on_texts(str_data) 

target_data = tokenizer_decoder.texts_to_sequences(str_data) 

target_data = sequence.pad_sequences(target_data, maxlen=552, padding='post') 

str_data = to_categorical(target_data) 

 

# target_seqs=0 



 

 

# records = 0 

#==================================================================== 

#==================================================================== 

train_data, test_data, train_label, test_label = train_test_split(seq_data, str_data, test_size = 0.2, 

random_state = 0) 

seq_data = 0 

str_data=0 

def decode_aa_review(t): 

    return ' '.join([reverse_aa_index.get(i,'?') for i in text]) 

maxlen = 552 

train_data = keras.preprocessing.sequence.pad_sequences(train_data, 

                                                        value=aa_index["<PAD>"], 

                                                        padding='post', 

                                                        maxlen=maxlen) 

 

test_data = keras.preprocessing.sequence.pad_sequences(test_data, 

                                                       value=aa_index["<PAD>"], 

                                                       padding='post', 

                                                       maxlen=maxlen) 

embedding_dim=64 

#model = keras.Sequential([ 

#  layers.Embedding(25, embedding_dim, input_length=maxlen), 

#  #layers.GlobalAveragePooling1D(), 

#  layers.CuDNNGRU(512), 

#  layers.Dense(1024, activation='relu'), 

#  layers.Dropout(0.2), 

#  layers.Dense(252, activation='softmax') 

#]) 

 

input = Input(shape=(maxlen,)) 



 

 

x = Embedding(input_dim=23, output_dim=23, input_length=maxlen)(input) 

x = Convolution1D(filters=64,kernel_size=40, 

                         padding='same', activation='relu', name='conv1')(x) 

x = Bidirectional(LSTM(units=256, return_sequences=True, recurrent_dropout=0.2))(x) 

#conca_output = concatenate([conv, x]) 

y = TimeDistributed(Dense(3, activation="softmax"))(x) 

model = Model(input, y) 

model.summary() 

plot_model(model,show_shapes=True, to_file = 'model_3.png') 

#model.compile(optimizer='adam', 

#              loss='categorical_crossentropy', 

#              metrics=['mae', 'acc']) 

 

def q3_acc(y_true, y_pred): 

    y = tf.argmax(y_true, axis=-1) 

    y_ = tf.argmax(y_pred, axis=-1) 

    mask = tf.greater(y, 0) 

    return K.cast(K.equal(tf.boolean_mask(y, mask), tf.boolean_mask(y_, mask)), K.floatx()) 

 

model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy", 

q3_acc]) 

 

 

history = model.fit(train_data, train_label, batch_size=128, epochs=50,  

          validation_data=(test_data, test_label ), verbose=1) 

model.save('model_3 embeding.h5') 

 

import matplotlib.pyplot as plt 

 

acc = history.history['acc'] 



 

val_acc = history.history['val_acc'] 

 

epochs = range(1, len(acc) + 1) 

 

plt.plot(epochs, acc, 'bo', label='Training acc') 

plt.plot(epochs, val_acc, 'b', label='Validation acc') 

plt.title('Training and validation accuracy') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend(loc='lower right') 

fig = plt.figure(figsize=(64,36)) 

 

 

plt.show() 

plt.savefig('graph.png') 

 

e = model.layers[1] 

weights = e.get_weights()[0] 

print(weights.shape) # shape: (vocab_size, embedding_dim) 

 

 

out_v = open('vecs.tsv', 'w') 

out_m = open('meta.tsv', 'w') 

for word_num in range(23): 

  word = reverse_aa_index[word_num] 

  embeddings = weights[word_num] 

  out_m.write(word + "\n") 

  out_v.write('\t'.join([str(x) for x in embeddings]) + "\n") 

out_v.close() 

out_m.close() 

 



 

 

 

 

 

 

 

 

 

 

APPENDIX III 

Weight matrix representation for each amino acid.  
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