

 M
.T

ec
h

 (In
fo

rm
a

tio
n

 S
y

stem
s) V

a
tsa

la
 P

a
n

w
a

r 2
0

1
9

DECEPTION DETECTION ON LIES, REVIEWS AND

TRIALS

Major-II project

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

INFORMATION SYSTEMS

Submitted by:

Vatsala Panwar

(2K17/ISY/15)

Under the supervision of

Dr. KAPIL SHARMA

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formely Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2019

DELHI TECHNOLOGICAL UNIVERSITY

(Formely Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Vatsala Panwar, Roll No. 2K17/ISY/15, student of M.Tech. (Information Systems)

hereby declare that the project Dissertation titled “Deception detection on lies, reviews

and trials” which is submitted by me to the Department of Information Technology,

Delhi Technological University, Delhi (formerly Delhi College of Engineering) in partial

fulfillment of the requirements for the award of the degree of Master of Technology, is

original and not copied from any source without proper citation. This work has not

previously formed the basis of award of any Degree, Diploma Associateship, Fellowship

or other similar title or recognition.

Place: New Delhi

Date:

(VATSALA PANWAR)

ii

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

(Formely Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project Dissertation titled “Deception Detection on lies, reviews

and trials”, which is submitted by Vatsala Panwar, Roll No. 2K17/ISY/15, Department

of Information Technology, Delhi Technological University, Delhi (formerly Delhi

College of Engineering) in partial fulfillment of the requirements for the award of the

degree of Master of Technology, is a record of the project work carried out by the

student under my supervision.

To the best of my knowledge this work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

Place: New Delhi (DR. KAPIL SHARMA)

Date: SUPERVISOR

Professor

Department of Information Technology

Delhi Technological University

(Formely Delhi College of Engineering)

Bawana Road, Delhi-110042

iii

ACKNOWLEDGEMENT

The realization of this project involved a lot of guidance and help from many people and

I am really grateful to them for their support. My grateful thanks are extended to Delhi

Technological University for providing me the platform and assistance to carry on this

work. I would also like to acknowledge the Information Technology department for

providing me with useful and constructive resources.

I am grateful and fortunate to get inspiration as well as valuable suggestions from my

family, who are my biggest support and my seniors who facilitated me to complete this

project by giving their on-the-point tips.

 VATSALA PANWAR

iv

ABSTRACT

Since past few years, deceptive contents such as fake reviews posted on online shopping

sites, also identified as opinion spam, or deceptive contents in any form either verbal or

textual have become a nuisance because of exponential advancement in information

technology and communication and hence the ease of creation/distribution of any kind of

information.

 Fake reviews affect the consumers‟ decision making abilities and the reputation of stores

across all the platforms. Also, the need for tackling and identifying deceptive contents

from the day-to-day life using the headway in computation and technology is also being

understood. The problem of opinion spamming was discovered not long ago, even then it

began to be a promising research front because of the ever-growing abundance of

computer generated data, formally, text based computer mediated communication (TB-

CMC). Since it has become fairly easy to write and/or propagate any deceptive contents

with just a click, so the algorithms tackling such problems need to out-perform them to

eradicate them or at least stop them as quickly as they are generated.

The lack of efficient ideas and algorithms, along with the technology to implement them

pose a huge hurdle in the way of automating the task of deception detection, since human

v

experts can‟t be relied for it anymore, due to various factors such as lack of time,

efficiency, knowledge, manpower, great amount of data generated, ever changing forms

of deceptive data etc.

 In this project, we have developed linguistic, syntactic and semantic models to detect

fake/deceptive contents especially fake reviews, lies and deceptive speeches. We

experimented using different methods of feature extraction for different categories of

features and combined and evaluated them on various classification models of machine

learning. The evaluation was done on open domain deception data, product reviews data

and real life trial data to further identify the features and classification techniques that

suit the domain and purpose of the experiment.

We observed that the greatest results were achieved on real-life trial data while the

lowest results were obtained on open-domain deception data. The reason for that might

be the lack of domain/target, pseudo lies vs. deception in real situations and large dataset.

The features that performed well in general for the task of deception detection were n-

grams, word embeddings, POS features, and TF-IDF features. The results were

motivating and signify scope of further research in this direction.

vi

CONTENTS

Candidate's Declaration ii

Certificate iii

Acknowledgement iv

Abstract v

Contents vii

List of Figures ix

List of Tables x

List of symbols, abbreviations xi

CHAPTER 1 INTRODUCTION 1

1.1 General 1

1.2 Problem Statement 3

1.3 Organization of Thesis 5

CHAPTER 2 RELATED WORK 7

2.1 Literature Review on Fake Contents Detection 7

2.2 Literature Review on General Deception 13

2.3 Summarization 16

CHAPTER 3 MODELS AND APPROACH 19

3.1 NLP Techniques for Text Classification 19

3.2 Semantic Features 26

3.2.1 Word Embeddings as Features 26

3.2.2 Empath Tool for Text Analysis 29

3.3 Lexical and Syntactic Features 33

vii

CHAPTER 4 EXPERIMENT RESULTS AND EVALUATION 36

4.1 Datasets 36

4.1.1 Dataset 1 Open Domain Deception Dataset 36

4.1.2 Dataset 2 Real Life Trial Dataset 37

4.1.3 Dataset 3 Amazon Product Reviews Dataset 37

4.2 Experiments on Open Domain Deception Data 38

4.3 Experiments on Real Life Trial Data 45

4.4 Experiments on Product Reviews Data 49

4.5 Summary 55

CHAPTER 5 CONCLUSIONS AND FUTURE SCOPE 58

5.1 Conclusion 58

5.2 Future Work 59

References 61

viii

LIST OF FIGURES

Figure No. Description Page No.

Figure 3.1 Classification process in machine learning. 21

Figure 4.1 Features extracted by count vectorizer and TF-IDF

vectorizer, respectively.

39

Figure 4.2

Most informative words/features in lie and truth class. 40

Figure 4.3 Top weightage words present in the generated topics. 41

Figure 4.4 Structure of word embedding through keras. 42

Figure 4.5 Result of using Gensim model to calculate „similar‟ words

from text for given words.

42

Figure 4.6 Categories and their count generated through Empath. 44

Figure 4.7 Features included in count and TF-IDF vectors. 46

Figure 4.8 Result of feature union (count and TF-IDF vectors) on

SGD classifier.

46

Figure 4.9 Result of POS features. 47

Figure 4.10 Result of word embeddings. 47

Figure 4.11 Most informative features/words in binary classification. 50

Figure 4.12 Distribution of ratings in fake and real categories. 51

Figure 4.13 Average number of punctuation symbols in fake and real

class.

52

Figure 4.14 Top words in topics generated by LDA. 52

Figure 4.15 Result of word embeddings through keras on product

reviews.

53

LIST OF TABLES

Table No. Description Page No.

Table 4.1 Description of the datasets used

in experimentation.

38

Table 4.2 Results obtained with

experimentation on dataset1.

44

Table 4.3 Results obtained during

experimentation on dataset2.

48

Table 4.4 Results obtained with

experiments on dataset 3.

54

x

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE

SVM Support vector machine

SGD Stochastic gradient descent

NB Naïve bayes

Etc. Et cetera

KNN K nearest neighbor

AUC Area under ROC curve

CNN Convoluted neural network

RNN Recurrent neural network

PCFG Probabilistic context free grammar

MLP Multi layered perceptron

ROC-AUC Receiver operating characteristic curve

 vs. Versus

POS Parts of speech

NLP Natural language processing

Fig. Figure

Avg. Average

w.r.t With respect to

ML Machine learning

xi

1

CHAPTER 1

 INTRODUCTION

1.1. GENERAL

Since past few years, the amount of online content has increased significantly

with people and machines generating and sharing data on a tremendous scale.

These contents mostly played a major role in influencing opinions and minds

of the unsuspecting people. These deceptive contents produced for various

reasons such as gaining popularity, pushing a particular propaganda, gaining

money or other financial profit, defaming an institution or person, can seep

into varied forms of communication or platforms like social networks, online

shopping, emails or any other sources of alleged mis-information.

This mis-information can be in any form such as fake news, fake opinions or

reviews, or just any other information containing deceptive contents. In earlier

days, human interaction or print media acted as a medium for spread and

propagation of false information, hoaxes and rumors. This resulted in slow

diffusion and hence less impact and damage but due to the evolution of the

World Wide Web and information technologies, it has become fairly easy to

let an information spread to the masses. As indicated by a report by the

Jumpshot Tech Blog1 that just 20% of internet traffic directed to reputable

websites, while 50% of it went to fake news websites through Facebook links

[1].

2

The consequences of deceptive information, either directly or indirectly can be

very damaging and dangerous. Information pieces containing deceptive

contents with malicious purposes are a great threat to mankind with people

using it for phishing, scamming, fraud, cyber bullying, cyber terrorism, social,

economic or commercial propagandas against individuals or organizations etc.

Since every dimension of technology is being used in its depth to create and

propagate information which might not be true, hence the same powers of

technology must be used to segregate true information from the vast ocean of

data that contains fabricated contents in huge amounts.

 Since last few years the content, propagation, origin and commercialization of

information pieces have been taken control majorly by Social media giants [2].

Buyers are increasingly using online reviews as a major source of information

for deciding the brand and products to buy. Eventually, these potential

customers are a target area for brands and companies that want to influence

their minds to increase their sales or downsize their rivals‟ business. Users

give their feedback to share their experience, in form of reviews about a

company. Customers‟ reviews can hugely impact their businesses either

positively or negatively. Similarly online reviews also hold this power with an

additional advantage of anonymity or genuine verification that isn‟t

guaranteed. Eventually it becomes a way of manipulating customers‟ decisions

and remarks about a specific business by spiking the reviews with false

positive or negative reviews. Companies sometimes force their own

employees to write positive reviews about the organization or buy spammers,

generally called opinion spammers in this case, whose job is to write

fabricated reviews either targeting a company or praising their own business

services and products.

There have been multiple news items stating that people are brought in by

associations to uplift their own reputation. According to BBC news, Samsung

reportedly paid students to write fake reviews criticizing its rival company

HTC and praising Samsung products [3]. In another report by New York

Times [4], an electronic company gives customers offer of $2 per star of rating

3

that they give to its products on Amazon. As indicated by ABC news [5],

Accounts of 50 Google users were discovered that were hired by companies to

write repetitive positive reviews about them. Some of these actually influence

the minds of potential customers. For Example, according to a report, 72% of

these buyers are ready to believe the reputation of any company with positive

reviews, without any second thoughts while online reviews are considered as

good as offline recommendations by 88 % of customers [6].

1.2. PROBLEM STATEMENT

In this project, we had tried to understand the wide area of deception detection

of text data and it impact, scope and complexity and propose a solution that

can automatically detect deceptive contents using artificial intelligence, or

machine learning in general. We take into account 3 types of deceptive texts,

namely, fake reviews, lies and truths obtained from people with open domain

and trial data containing verbal cues or transcripts.

Fake reviews are a real challenge because of the damage it can do to a

business or its consumers. It is a form of cheating in indirect way because a

would be customer never gets to know the real feedback of a product or

service and if such reviews are huge in number then they can easily modify the

buying patterns or decisions of consumers, without them even realizing that

they are being fooled to buy or not buy a certain product. For businesses it is

equally damaging since it can lead to deep impact on its reputation and

financial losses. Posting fake reviews and other contents is illegal and people

or business involved in it could face legal action for it, besides their business

reputation getting a setback. The other form of opinion spam is fake news

since it contains fabricated contents and opinions of someone who wants to

push forward certain propaganda or gain financial benefits etc. Fake contents

are everywhere, be it, cyber fraud, spamming, phishing, email scams, and any

form of cyber crimes or non cyber crimes. Criminals mostly make use of

deceptive language to con and dupe people or simply to dis-inform them to

4

achieve their mischievous plans but all this needs to be tackled effectively and

strongly.

While it is easier to understand the motive and impact of publishing fake contents,

the mindset and propaganda behind it is equally difficult to identify and evaluate.

Likewise, it is difficult to completely examine the damages done due to spreading

of false contents. The reason for this is difficulty and convoluted nature of

propagation dynamics of such false news, reviews and information in general.

The biggest hurdle in the solution to this problem is its complexity and

ambiguity in the patterns of the deceptive text. Natural language processing in

itself is a hugely complex task that is not fully understood by humans, as to

how the human brain thinks. Moreover in deception detection, principles of

philosophy and psychology also get added to it. Human experts are also not

successful in identifying false contents given the prerequisite knowledge it

takes. Hence all these factors put a major stake on making use of technology

and combining human efforts, expertise, knowledge and technological

advances in use to generate a robust, accurate, simple and effective solution to

the problem of deception detection.

Many researchers describe deception as follows: deception is a conscious

intentional effort to manipulate, hide and fabricate information in any way, by

verbal or nonverbal means with the purpose of instilling in another person a

belief that the producer of said information himself considers to be untrue. In

the terms of language literature, deception is similar to lying or misleading

behavior.

However in terms of providing fake information, be it fake news or fake

reviews, there is an underlying uncertainty in whether the producer or

communicator himself is in the knowledge that the material may contain fake

information. There is a possibility that the sharing of such non-credible

information may not be a deliberate attempt to misguide anyone. In

researchers‟ terminology it may be termed as satire or humor. The information

pieces that contain varying amount of false information with deliberate

5

attempt to mis-inform the masses for a certain intention to be fulfilled are

generally termed as hoaxes or propagandas.

In this project, we focused on the linguistic styles, writing style, often called

stylometric features, semantic features and syntactic features in text contents

of the dataset to extract features that uniquely identify or indicate cues that are

common to deceptive behavior. We also tried to include features that indicate

the behavior, background or patterns of the producer other than the main text

to be classified as fake or real, so that any kind of relationship between them

could also be identified. Here we consider the definition of anything to be

identified as „fake‟, to be- information that contains any amount of false

contents, created or distributed for the purpose of misleading anyone.

Hence, the problem of deception detection could generally be defined as a

binary text classification problem which could be symbolized as a function

f(x, m) , that could be defined as taking an input text sample „x‟, which is the

main text in which deception is to be found. Other input to the function could

be combined under variable „m‟, which signifies the metadata information

accompanying the main text and which could possibly contain deception cues.

This deception function gives as output either 0 or 1, where we defined 1 as

being a TRUE information piece i.e. containing no deception at all and 0 as

being a FAKE information piece i.e. deceptive text.

 () {

 (1.1)

For deception detection in text where metadata is not present or applicable,

only the main text is used as the input to the above said function. The main

text and the metadata both are in textual form.

1.3. ORGANIZATION OF THESIS

6

 The outline of the dissertation is as follows.

Chapter 2 briefly discusses the previous research and work done related to the

field of deception detection to give a quick overview of the literature background

for this research solution. Chapter 3 describes the methodology and approach

used in the proposed solution, including the features generated and the models

used. Chapter 4 depicts the actual parameters of the experimentation done,

highlighting all the details of the implemented solution. Finally, chapter 5

discusses used the results obtained due to the experiments done , its conclusions

and scope present in the improvement of the proposed solution in the future

research directions in this field.

7

CHAPTER 2

RELATED WORK

This chapter discusses the previous works linked to deception detection, and

the diverse mechanisms used for this purpose. The chapter is grouped as

follows. Section 2.1 highlights research done for detecting fake contents.

Section 2.2 discusses the background research done previously with the aim of

deception detection. Section 2.3 summarized and discussed the drawbacks and

improvements required in the past solution to these problems.

2.1 LITERATURE REVIEW ON FAKE CONTENTS DETECTION

The need for steering their research towards the problem of opinion spam and

the detection of fake reviews were initially identified and discussed by Jindal

et al. [7]. They collected and examined 10 million reviews from Amazon to

identify fake reviews and considered them to be divided into reviews that are

totally fake, reviews that repeatedly target only a single brand and those

reviews that just advertise some products i.e. no reviews. For identifying the

later 2 categories of „fake‟ reviews they employed ML classifiers such as

Logistic Regression and Naive Bayes yielding 98.7% accuracy. They

extracted 36 features making use of contents of review, reviewer behavior, and

metadata information describing product and sales. For determining totally

untruthful reviews they labeled all the duplicate and somewhat duplicate

reviews as fake and rest of the reviews in the dataset as truth and used logistic

8

regression, decision trees, naïve bayes and support vector machine (SVM) as

classifiers for this model obtaining 78% accuracy using all features. They even

claimed to discover some information regarding the presence of fake reviews.

Some of them are as follows: - High sales statistics of products indicate that

they are likely to receive less number of spam reviews, reviews on individual

products do not receive much feedback, individual genuine reviewers are less

likely to write a large number of reviews; the top reviews and reviewers are

most likely to be spam etc.

Most algorithms aimed at detecting opinion spam are divided into 2 main

directions. Some models try to extract features from the review itself while

other set of models try to gain deception cues from the reviewer behavior.

Models based on contents of reviews-

Most of the solutions proposed in the past using contents of the review to

identify whether it is true or not, make use of lexical features, syntactic

features, semantic features and similarity features that depict the deception

cues in the writing style of the reviews. Lexical and syntactic features are a

part of stylometric features.

The most common features used under lexical features are bag of words

approach. This defines the database as a collection of words found in all the

documents in the dataset and then converts each of those documents according

to the approach chosen and the vocabulary formed. The various approaches

used to convert each document to a numerical vector are mostly count

vectorizer, hash vectorizer, term frequency vectorizer (TF) and term

frequency- inverse document frequency vectorizer (TF-IDF). These take into

account the count of words in vocabulary, result of hash function on words in

the documents, the frequency of „terms‟ in document and the frequency of

„terms‟ normalized by number of documents in dataset, respectively.

Similarly the TF vectorizer on n-grams of documents were used by Ott et al.

[8].They collected a “gold standard” data set which consisted of false reviews

9

of hotels from crowd sourcing service of Amazon Mechanical Turk and true

reviews from website of Trip Adviser. They trained their model using SVM

classifier achieving an accuracy of 84%, while separating the opinions into

positive and negative opinions based on their sentiment analysis yielded 86%

accuracy. However the accuracy of a human expert to identify fake reviews

was 65%.

Mukherjee et al. [9] shed the light upon the real world effectiveness of the

model proposed by Ott et al. [8] as the dataset used by them consisted of

pseudo fake reviews generated by crowd sourced spammers that may not be

similar to the scenario of real world fake reviews. So they decided to train and

test their model on the dataset from Yelp website. They also tested the model

used by Ott et al on their Yelp data and obtained 67.8%, hence concluding that

these methods were not as efficient when tested on real world data. In a later

research, Mukherjee et al. [10] observed that Yelp spammers also seem to

over-do writing fake reviews by trying too hard for them to appear genuine.

Hence not exactly match those fake reviews written by paid online reviewers.

Semantic features are used to identify the semantic similarity among reviews

and hence duplicity of reviews. Lau et al. [11] developed a model to classify

reviews using un-supervised learning due to unavailability of labeled dataset.

Their approach was build on semantic similarity between reviews due to the

belief that spammers tend to reuse their words because they don‟t want to

invest much time and creativity in writing reviews. They collected their data

from Amazon and manually labeled them using cosine similarity and human

annotations. They proposed a high concept association model, used text

mining and applied SVM and Semantic language model (SLM) attaining AUC

score of 0.557and 0.998, respectively.

The researchers using syntactic models used to identify fake reviews/contents

generally made use of Part of Speech (POS) features, Linguistic Inquiry Word

Count (LIWC), n-grams etc. LIWC software was developed to determine

psychological and emotional characteristics in text of verbal speech and uses

10

an inbuilt dictionary to classify the text into different categories to which its

words belong to, such as „money‟ belongs to „businesses‟. These categories

contain negative emotion, positive emotion, optimism, verb etc. while POS

tagging maps a word to its value according to its meaning and position in the

text. For example: sentence is, “Nothing happens to humans once they die.”

The POS tagged sentence is, “Nothing/NN; happens/VBZ; to/TO;

humans/NNS; once/IN; they/PRP; die/VBP”. Where the categories are: NN=

singular noun, VBZ= 3rd
 person verb, singular present, TO=to go, NNS=plural

noun, IN= preposition/subordinating conjunction, VBP= verb, singular

present, PRP=personal pronoun.

The language style and content similarity based models using stylometric

features were explored by Shojaee et al. [12]. They used the reviews‟ dataset

gathered by Ott et al. [8] and used the extracted features on SVM and Naïve

Bayes (NB) classifiers and obtained 84% accuracy. A model consisting of

POS features, bigrams and LIWC features were also used by Ott et al. [8].

They trained it using a naive Bayes and SVM classifiers along with 5 fold

cross validation technique, obtaining 89% accuracy with LIWC and bi-grams

features.

Model based on Reviewer pattern-

Many researchers take into account the effectiveness of including spammers‟

behavior and patterns to identify opinion spam because generally the

spammers share same set of characteristics that help to identify them and

eventually their fake reviews. The various features extracted for this outcome

include the number of reviews by a person for same brand or category,

targeting a particular brand or business, the difference of a review‟s ratings

from average ratings of the product, use of specific type of language or

sentiments etc.

Mukherjee et al. [13] implemented a model to detect spammers based on the

different behavioral patterns that genuine and fake reviewers possess. They

used unsupervised Bayesian inference framework in their model and used

11

posterior density analysis to analyze features in the dataset. Their model also

outperformed some of the supervised learning based models. Lim et al. [14]

collected data from Amazon to develop a model that included several

behavioral characteristics of the spammers such as; they tend to target specific

products/brand, giving deviating ratings, attempting to review products early-

on to change genuine reviewers‟ opinions. They combined models for each

spammer characteristic into a single spam review detection model and it

outperformed the baseline models.

Feng et al. [15] used the ratings anomaly, burstiness and deviation as features

for detecting fake reviews on a subset of the gold standard dataset. They

obtained an accuracy of 72.5 % by detecting reviews that were fake by

observing them during a specific time window. Similarly, Fei et al. [16]

proposed a technique that was based on the reviewer burstiness i.e. the short

time window during which a product suddenly gets bombarded with reviews.

They developed a reviewer network based on their different time windows and

used statistical methods and data analysis on it to detect fake reviews and

obtained 77.6% accuracy.

Most of the researchers didn‟t include reviewers that wrote only single or very

few reviews as that wouldn‟t have contributed to the model development.

Unlike, Xie et al. [17] who decided to focus on these type of single reviews

because they found that most of the reviewers write only single reviews and

hence these reviews decide the accuracy of the model. They believed that a

sudden increase in number of singleton reviews and sudden change in ratings

of store or brand then it may indicate the work of spammers. Their model

resulted in accuracy of 75.86%.

Fake news detection is a similar field aimed at identifying fake news which

contains fabricated lies for the purpose of deliberately deceiving people by

spreading non –truthful information. Though there are several types of

contents when describing fake news like propaganda, humor/satire etc. but

many researchers stick to the idea of „serious fabrications‟ for defining „fake

12

news‟. Like fake reviews, fake news has also gained momentum since the past

few years. Fake news are fabricated and spread with just a click and in few

moments it already does the damages, sometimes irreparable. Hence it is

equally important to tackle fake news problem by using the same

technological advances that are used to create and disseminate it.

Rosas et al. [1] observed that there is a shortage of datasets that cover most of

the domains of news as well as fit into the generally accepted definition of

fake news. Hence they created two datasets through crowd-sourcing and web

scrapping that pass all the criteria of a well structured and informative dataset.

They build their classifier model using features like n-grams, LIWC features

for punctuation counts and psycholinguistic categories, readability metrics and

syntactic features. They achieved accuracies of 78% and 70% for web data

and crowd sourced data, respectively. Granik et al. [18] used NLP techniques

for identifying fake news. They used buzzfeed data and trained a naïve bayes

classifier on it and obtained 74% accuracy. Shlok gilda [19] used a dataset

accessed from Signal Media and open sources and applied NLP methods on it

to extract features such as TF-IDF on n-grams and PCFG. They fed these

features and their combination into a number of classifiers and achieved

highest accuracy of 77.2% with SGD classifier using TF-IDF and bi-grams as

features.

Singhania et al.[20] developed deep learning solution for fake news

identification. They implemented a three level hierarchical attention network

(3HAN) working on each structure level of texts i.e. word level, sentence level

and headlines level and converted them to vectors in a hierarchical manner and

giving different weightage to them based on their importance. They used a

large real-world data set consisting of news articles from fact checking

websites and achieved accuracy of 96.77% on it. Yang et al. [21] also resorted

to deep learning to solve the fake news problem. They proposed a CNN for

text and image classification that extracts out features based on text like,

word/sentence count, punctuation counts etc. and latent features hidden in the

13

images along with the texts. They obtained precision, recall and f1-score of

nearly 92% with their model.

2.2.LITERATURE REVIEW ON GENERAL DECEPTION

Ever since the everyday information sharing in both online and offline

mediums turned highly injected with deceptive contents, the need for

automatically identifying and combating deception and its originators

elevated. Therefore recently many researchers have started to focus their work

on the general aim of deception detection that identifies anything and

everything fake rather than just trying to create algorithms for solving

problems in each sub-field of it.

Similarly, Rosas et al. [22] tried to explore the field of deception detection by

creating their own dataset that contained lies, truths, education, country and

other such demographic information. The dataset consisted of lies and truths

that were freely collected through crowd sourcing services of Amazon

mechanical Turk. These lies and truths were not based on some targeted topic,

but were instead open domain. They also tried to study the relation between

lies and truths that people speak with respect to their demographic

information. They also performed age and gender detection on the data. The

features they used were n-grams, syntactic complexity, readability metrics,

shallow and deep syntactic features like POS, PCFG trees and semantic

features like LIWC lexicons. They observed that age and gender are related to

the language style that people adopt when they fabricate lies. The highest

results that they obtained for deception, age and gender detection were 69.5%

using POS, 62.26% using readability metrics and 63.04% using unigrams and

semantic features, respectively.

Conroy et al. [23] surveyed the recent state-of-the-art Methods used for

deception detection. Acknowledging the damage fake information can do due

to the overload of information that lacks strict/certain credibility, structure,

14

form and medium, are circulated by its content generators. They discussed

various methods that can be used for examining the credibility or veracity

using 2 types of approaches i.e. linguistic cue approaches that take into

account the data representation, deep syntax and semantic analysis and

network analysis approaches that consider importance of linked data and

behavior of network users. They observed that a hybrid approach combining

these two systems would do a good job in identifying fake contents.

Ott et al.[8] observed that since people are increasingly reviewing and

searching products and services online, hence there is definite need to tackle

opinion spam or as they call it- deceptive opinion spam which is completely

imaginative and with a deliberate attempt to deceive potential consumers.

They used the gold-standard opinion spam dataset and applied 3 approaches

based on the theories from psychology and computational linguistics to the

task of text categorization, psycholinguistic deception detection and genre

identification. They obtained accuracies of 73% with POS features, 76.8%

with LIWC features and 89.8% with LIWC and bi-grams for each of the task

mentioned above, respectively. They contributed that deceptive contents are

linked to imaginative writing while truthful contents are linked to informative

writing. They noted that for deception detection it is important to consider the

context and purpose for deception, rather than trying to construct a universal

set of deception cues.

Almela et al.[24] studied the nature of deceptive language in written

communication in the Spanish language. They collected a dataset from 100

participants based on three topics and asked people to prepare a written speech

on each topic with their true and false opinions on each of these. They build a

classifier model on Support Vector Machines (SVM) using features from

LIWC 2001 and obtained 73.4 % accuracy when they used all the categories‟

dimensions as features. Using bag-of words they obtained 64.8% accuracy for

all the topics combined. Since usually research in this field focused only on

deception in English language, hence their research is a step forward in the

direction of research concentrating on other languages.

15

 Fette et al. [25] studied deception detection in the form of phishing where

people deceive users into believing that their interaction is with some

„reliable‟ entity who then carry on their malicious activities. This type of user-

targeted deception is increasing these days and hence needs a concrete

solution. They used a combination of the ham corpora and the phishing dataset

to obtain a final dataset containing roughly 6950 non-phishing emails and 860

phishing emails. Some of the features that they used were-Number of URLs,

presence of JavaScript, number of domains, tf-idf vectors etc. and achieved

accuracy of over 96% while only mis-classifying 0.1% of the legitimate

emails.

Ruiter et al. [26] collected their own dataset containing labeled deceptive texts

from 700 game scenarios of mafia, in which players don both a deceptive or

truthful role and then exchange messages related to it. They used handpicked

linguistic features like word count, sentence length etc. and word vectors such

obtained from fast text and glove and input combinations of these features to a

logistic regression classifier achieving an average precision of 0.39 and an

AUROC of 0.68 on 5000+ word documents. Krishnamurthy et al. [27]

implemented multimodal deception detection techniques using neural

networks. The used the dataset [29] containing real life videos for deception

detection, from which features were extracted for different purposes. Features

for Visual deception detection were extracted using 3D CNN that identified

facial expressions , frame width , height etc. they used word2vec to extract

word embedding vectors and then fed them into 3D CNN to extract textual

deception features based on the transcripts of the videos. For audio feature

detection they used OpenSMILE tool to extract high dimensional features and

then converted them to 300 dimensions using neural networks. For obtaining

micro-expression features they used already found 39 facial expression

features by Rosas[29] for this purpose. They used all of these features in MLP

classifier and obtained 0.9799 as the ROC-AUC score and 96.14% accuracy.

Jaiswal et al. [28] also used the real life trail data [29] for the purpose of multi-

modal deception detection. They extracted visual and verbal cues for this

16

purpose including facial features like eyebrow raises, blinking of eyes etc.

obtained using OpenFace tool and acoustic patterns such as Prosody features,

Energy features etc. using OpenSmile. For text classification they extracted

lexical features and input the fusion of these features to SVM model and

obtained an accuracy of 78.9%.

Rosas et al. [29] collected a dataset consisting of real life trail data of

testimony videos from public courts and labeled them as false or true using 3

parameters- exoneration, non-guilty verdict and guilty verdict. They used non-

verbal and verbal modes of data to construct a system for automatic deception

detection using multimodal data. They extracted verbal features such as LIWC

and n-grams and non verbal features indicating patterns of facial features and

hand gestures. They were able to achieve an accuracy of 75.2% using all

features combined on decision tree classifier and 76.03% accuracy suing facial

features on random forest classifier. They observed that their system was able

to outperform human experts for this purpose.

2.3. SUMMARIZATION

Opinion spamming has lately been a topic of research that requires immediate

and efficient solution due to development of social media and other such

forums that allow people to post or share their opinions without their identity

and intentions being verified.

The issue of opinion spamming can be solved either by using reviews as

features or extracting features from reviewers. One method of detecting fake

reviews is to identify linguistic and style related patterns in the reviews that

are written by spammers. Natural language processing offers methods to

identify such cues through bag of words approach, n-grams, LIWC features

and so on. These methods don‟t depend on spammers‟ behavioral

characteristics and hence is more flexible because it needs only the review text

to classify it as real or fake.

17

Spammers‟ behavioral features can be sentiments, total reviews posted, IP

address location, review deviation and their ratings etc. Behavior based

models may not be fully efficient for detecting fake reviews that come from

individual spammers that may not have a fixed behavioral pattern in the

reviews that they write.

However, sometimes spammers‟ behavior and identity patterns also help to

identify fake reviews along with the text that they write. Hence a hybrid of

both reviews and their reviewers can be used to detect fake reviews, to address

this issue as the need arises.

Fake news detection has become a tough task to solve automatically due to the

escalated volume of information that is shared each second without any

guarantee of credibility and truthfulness. Malicious sources are spreading fake

news for causing damage to reputation, gaining financial benefits, click bait,

fame, spreading propaganda and other such devastating intents.

Hence researchers these days are equally motivated to find an automatic

solution for combating fake news. Some of these try to create knowledge

bases that can act as fact checking sources while others try to include hybrid

approach that also includes human expertise. Some of the features used are

those that identify the linguistic patterns hidden in the news articles like word

count, sentence count, punctuation count etc. apart from lexical and syntactic

features like POS tags, PCFG trees, n-grams etc. Some of them use semantic

features like LIWC categories, word embeddings etc. Other common methods

employed for this purpose are deep learning implemented through neural

networks like CNN, RNN etc.

Deception detection has lately gained popularity among researchers due to the

ever increasing deceptive data that is present in the public domain in different

forms. Many researchers have tried to use linguistic features for this purpose

that try to extract out patterns from the language style of deceivers. Some of

18

the features for this purpose were n-grams, POS features, LIWC lexicons,

statistical features etc.

Other type of features for deception detection were semantic similarity

features that try to find numerical representation of word vectors based on

their similarity in a multidimensional vector space and hence extracting hidden

deception cues in language structure, context and style of deceivers. Some of

the researchers also extract readability metrics as features for finding semantic

and syntactic complexity in the data samples.

Other types of features for deception detection in data types other than just

textual data are facial expressions, body gestures, acoustic patterns, audio

patterns, prosodic features etc. some of the researchers also make use of deep

learning using CNN, RNN etc. for identifying deceptive contents and

deceivers‟ profile, their behavior patterns, motivations, purpose and target

behind deception.

19

CHAPTER 3

MODELS AND APPROACH

In the past few years, deception detection has become an emerging area of

research due to hugely increasing number of cases recently that highlight the

need to tackle this issue using technological advancements, since technology

is also increasingly being used as a tool for creating hard-to-identify deception

techniques. This chapter explores the approach used by us and its

corresponding model that we applied for the purpose of deception detection.

Section 3.1 discusses the natural language processing methods for text

classification. Section 3.2 discusses the semantic features used in the model

and Section 3.3 outlines the lexical and syntactic features used in the model to

detect deception.

3.1. NLP TECHNIQUES FOR TEXT CLASSIFICATION

We have used supervised machine learning models along with NLP techniques

to detect fake reviews and other such deceptive contents in text pieces.

Supervised machine learning has a predefined training dataset which has a

label or outcome that we want our model to learn and based on that attached a

label each to the unseen text samples in the test dataset.

The features that we use as a part of natural language processing convert the

text samples into a fixed size numerical vectors that are then fed into the ML

classifier algorithms for the purpose of text classification.

20

Majority of the data to be experimented upon exists in the text form, which is

in hugely unorganized form; hence it is necessary to be able to extract relevant

information from it without changing its imbibed meaning. This is where NLP

is beneficial as it consists of methodical processes to extract and derive

information from the text by understanding and analyzing it.

The dataset to be used can be either collected from the web source through

web crawling or a predefined dataset which suits the classification task can be

used. After separating the label, the dataset is divided into the training and

testing data. Features are extracted or engineered from the text in the dataset to

help predict the label as either fake or real. The learned model is tested using

the test set of the dataset or other types of validation techniques can be used

for training and testing split of the data.

The process of text classification contains following basic steps:

1. Dataset Preparation: this step involves loading the dataset into the system

and performing pre-processing tasks on it so that it is fit for any analysis to be

done on it. This dataset is then split into training and testing datasets.

2. Feature Extraction: the preprocessed dataset is then used to extract

meaningful features from it or engineer/mine features that aren‟t directly

present in the dataset and hence need to be hand coded.

3. Model Training: This is the last step in the classification process in which a

classifier model is trained using the feature vectors converted training dataset

along with its labels and then tested on the test dataset.

4. Performance improvement: using different methods for enhancing the

efficiency of text classifiers such as parameter tuning, combining features etc.

21

Fig. 3.1: Classification process in machine learning.

Pre-processing of the dataset -

Most dataset contain extra information which is not relevant to the

classification process and may even pose a hindrance is correct classification

if feature vectors also include such noisy and unrequited information. Any part

of raw data which is irrelevant to the context of the program/function and the

needed results can be declared as „noise‟. For example – industry/organization

particular words, punctuations, social media entities (hash tags, mentions),

URLs or links, language stop words (function words of a language like in, of,

the, am, is etc.), punctuation removal, tokenization, sentence segmentation,

lower/upper casing, and rare/common words removal, spelling correction. The

dataset preparation step removes every „noisy‟ term found in the text which in

turn removes the irrelevant information that is present in the original/unfiltered

data thus helping in reducing the amount of actual data that is used as input to

the system.

Stop words are those words commonly used in sentences to define its structure

and do not hold any special meaning beyond that. Generally considered stop

words in the literature of a language are conjunctions, prepositions, articles,

and some pronouns. The resulting noise free data is then tokenized i.e. text is

22

separated into tokens which can be words, phrases or sentences. The tokens

can be converted into some standard form relative to a language model, after

tokenizing the data. This can be done through stemming or lemmatization.

Stemming involves converting words or tokens into their standard format by

removing the suffices so that the word classes are decreased in number.

Lemmatization is similar to stemming but is generally more efficient than the

latter since it transforms the word to its root word, instead of removing the

suffix by using vocabulary and doing morphological analysis to obtain the root

word. For example, words- “Singing,” “sang” and “sung” will be converted to

the word “sing”. Stemming/lemmatization further decrease the size of the

dataset and make algorithms more efficient. The most commonly used

stemming algorithm is porter stemmer because of the results it gives through

its accuracy and hence we have also used it.

The difficulty in text processing and classification is to extract meaningful

features from the data, while reducing the dimensionality and also not losing

its inheriting meaning. We implemented following methods to convert the text

columns into numerical feature vectors:

Count vectors- Count Vector is a matrix formation of the data corpus in which

every row is representative of a document from the dataset, every column

depicts a term from the corpus i.e. the vocabulary prepared by taking each

word occurring in the document, and each cell illustrates the frequency count

of a specific term in a specific document/text. We have used Count Vectorizer

class from scikit-learn module to implement the encoding of text documents

into feature vectors.

Term frequency-inverse document frequency (TF-IDF) vectors- the TF-IDF

value symbolizes the significance of a term in the document and relative to the

entire corpus. TF-IDF score is made up of following 2 terms:

Term Frequency (TF) – it calculates the normalized term frequency in a

document.

23

TF (t,j) =

 (3.1)

Inverse Document Frequency (IDF) - it calculates the logarithm of, the total

number of documents in the entire corpus divided by the number of documents

where the specific term is present. Its main feature is that it counteracts or

weighs down the frequency of the term meanwhile making it up for the rarely

occurring terms.

IDF (t) = (

 „ ‟
) (3.2)

 The final TF-IDF score, S (t,j) of a term is the product of its corresponding TF

value and IDF value.

 () () () (3.3)

TF-IDF Vectors can be generated at word level tf-idf scores where each word

is taken into account , or n-gram level tf-idf scores where combination of n

words together act as a „term‟ in the vocabulary , or character level tf-idf

scores where combination of n characters together is treated a „term‟.

TfidfVectorizer and TfidfTransformer from scikit-learn class are used for

implementing the TF-IDF vectors/features.

For example, if there is a document with 400 words and 1000 such documents

and if we want the TF-IDF score for the word “apple” which exists in the

document 8 times then TF = 8/400 = 0.02. And if it appears in all the

documents 370 times then IDF (apple) = loge (1000/370) = 0.994. Then TF-

IDF (apple) = 0.02 × 0.994 = 0.01988.

Hash vectors- it calculates the value of a one way hash function of words to

convert them to integers. No vocabulary is required and an arbitrary-long fixed

24

length vectors are possible, hence it is efficient and space saving. The

HashingVectorizer class implements this approach that can be used to

consistently hash words and hence encode documents/texts as needed.

N-gram is a contiguous sequence of length „n‟ composed of terms from the

text documents. It could be a made of bytes, characters, words, numerical etc.

Unigrams are the terms of length=1, and if it is calculated on word level, then

they are just the unique words in the documents. Similarly there are bi-grams;

consisting of length=2, tri-grams; consisting of length=3 and so on. For

example, the word level n-grams for the following sentence are:

“Ram and Shyam cycle together in the park.”

Uni-grams are- Ram, and, Shyam, cycle, together, in, the, park.

Bi-grams are- Ram and, and Shyam, Shyam cycle, cycle together, together in,

in the, the park.

Tri-grams are- Ram and Shyam, and Shyam cycle, Shyam cycle together,

cycle together in, together in the, in the park.

The unigrams are actually just the individual words that appear in the dataset

and hence are similar to the “bag of words” technique used to convert the text

documents into numerical features. The bag of words system doesn‟t take into

consideration the order of the text samples in the dataset, unlike any other

higher order n-gram model, hence unigrams do not consist as much

information as its higher order counterparts. The n-gram model is a primitive

and efficient model for classification of text and also its categorization. N-

grams are based on the basic principle of capturing the language

structure/order. The higher the value of n, the longer the n-grams and more the

context of the documents are present in the features. Optimum length of n

really depends on the application; small n may not be able to catch the

context/differences, while larger n may become less general and a little too

specific for classification. Moreover it is immune to typographical errors and

uneven distributions of the words since it considers only the structure of the

phrases/words.

25

In this project, we had used the word and character-based n-gram model to

signify the context of the samples in the corpus and generate numerical

features for text classification. The n-grams thus extracted are converted into

numerical feature vectors by means of count vectorizer, TF-IDF vectorizer and

hash vectorizer. These n-grams are also used in combination with other

features like POS tagged features, engineered features etc.

Classification-

Generally the ratio of training data to validation/test data is 4:1 i.e. the test

data is 20% while the training data is 80%. Suppose there are „m‟ documents

in the training set and „n‟ documents in the training set and if the number of

features in the feature matrix are restricted to „k‟, then the resulting feature

matrix for training set will be

T=[

] (3.4)

The resulting feature matrix for test dataset will be

S=[

] (3.5)

The corresponding values in the feature matrix will vary depending on the

scheme that is applied to convert the text documents into feature vectors and if

the terms don‟t exists at all in the vocabulary obtained then its corresponding

value in the matrix would be null or 0.

For combining many features together or to include several information

columns as features, the feature matrix from different schemes can be

combined to obtain a single feature matrix, each for the training and testing

data and then fed into the classifier.

26

The ultimate step in the classification process is to train the classifier through

the features extracted in the preceding step. These features represent the texts

in the corpus and in a way their individual characteristics and the class that

they belong to and hence making the classifier learn that which features are

prevalent in which class and hence signify its presence.

We used many different classifiers for the purpose of deception detection

through text classification, which are, naïve bayes classifier, passive

aggressive classifier, random forest classifier, MLP (multi-layered perceptron)

classifier, Stochastic Gradient Descent, Support Vector Machines (SVM), Ada

boost classifier, K-Nearest Neighbor (KNN), linear classifier (Logistic

Regression), gradient boosting classifier and voting ensemble classifier.

3.2. SEMANTIC FEATURES

3.2.1. WORD EMBEDDINGS AS FEATURES

Word Embedding is the representation of text through the form of numerical

vectors. It is based on the idea that „similar‟ words will have a lesser distance

between their vectors and hence words which are semantically similar can be

found and used as features. There may be various numerical representations

for the same text based on the method that is used to convert it into numbers.

Since most deep learning architectures and various machine learning

algorithms are unable to process strings of plain text in their raw form, hence

they need numbers as inputs to build any application for the purpose of natural

language processing. A Word Embedding model usually tries to map a

word/term to a vector using a dictionary which is either pre-trained or trained

on the original text corpus.

27

For example, a sentence is – “Ram and Shyam cycle together in the park.” If

suppose the dictionary lists all the unique words in this sentence, then it would

look like – [„Ram‟, „and‟, „Shyam‟, „cycle‟, „together ‟, „in‟, „the‟, „park‟].

If the vector representation of this sentence is done using one-hot encoder,

where 1 signifies presence and 0 signifies absence, then the corresponding

vector for the word „cycle‟ in this sentence is- [0,0,0,1,0,0,0,0].

Word Embedding is a type of dense features in low dimensional fixed-size

vector space. Hence it develops better features for most of NLP problem. The

different types of word embeddings can generally be classified into 2

categories- Prediction based embedding and Frequency based embedding.

There are generally 3 types of vectorization methods that are used in

frequency based embedding, namely, Co-Occurrence Vector, TF-IDF Vector

and Count Vector. Out of these, we make use of only count vectors and TF-

IDF vectors. The prediction based embeddings are generally of 2 types,

namely, skip gram model and continuous bag-of-words model (CBOW).

CBOW model- it is a shallow neural network which maps words to target

words and learns weights that acts as vector representation. When provided a

context, it tries to predict the probability of a word. The context can be just a

word or collection of words. The matrix corresponding to a sentence is fed

into a shallow neural network with 3 layers, an input layer, a hidden layer and

an output layer which performs a softmax function used to sum the obtained

probabilities to 1. Advantages of CBOW are -Since it uses probabilities, it

generally performs better and also it uses way less memory compared to other

such sophisticated means of word embeddings. Disadvantages of CBOW are -

It computes the average of the contexts related to a word and uses it as the

final input context, which may not always be helpful and sometimes it requires

very large amount of time for training.

Skip gram model- Skip-gram model is also based on a shallow neural network

same as CBOW but the difference is just in its architecture, which is same up

to the hidden layer. It is actually the opposite of CBOW because given a word

28

it predicts the contexts. However the target words/variables are different for

the skip gram model which contains two outputs. The vector representation is

the weights‟ vector between the input and hidden layer. The objective function

is also same as used in the CBOW model.

Advantages of Skip-Gram Model are- it has 2 encoded target variables for a

single word and hence can use a larger context i.e. two semantics for one word

and also when used along with negative sub-sampling, it generally performs

better than other methods for the same purpose.

Word embeddings can be used for a lot of functions related to the contextual

similarity between terms. Such as :- Finding the word different than every

other word in the text; Finding the amount of semantic similarity between two

words; Developing equations depicting the semantic conclusions in the

sentences; using the model for translation and other tasks of natural language

processing and Finding probability of a text using the developed model. Word

embedding models require a lot of text for it to perform better and learn using

a lot of vocabulary, so we can use the word vectors developed and pre-trained

by Wiki, Google etc. or we can train it on our training data.

In 2013, Tomas Mikolov et al. popularized Word Embedding which became

the state-of-the-art for applications based on NLP. He developed and released

the Word2Vec toolkit. Other types of word embeddings include the GloVe

released by Stanford, the fastText (extension of Word2Vec) released by

Facebook and Wordnet introduced by George A. Miller. All of these are

databases offering many languages that depict the lexical and semantic

relations between the words and its grammatical characteristics. Using Gensim

tool of NLTK these are popularly used as pre-trained models for word

embeddings, also called universal embeddings. This is a form of transfer

learning because the learning obtained in some different environment is

applied on related problems.

However since the word embedding models released by these researchers and

companies are trained on general data based on Google news etc. These may

not always be suitable for representing domain specific texts or those that do

29

not match with the pre-trained model completely, or for other reasons such as

not being freely available and time and space complexity which can be an

issue with limited resources. Hence, word embeddings can be developed to

suit the application and trained on the problem specific data to get better

results.

In this project, we have used embedding layer which is a part of the keras

package to develop word embeddings trained on the problem specific data. It

requires the corpus to be pre-processed and encoded to integers using one-hot

encoder and mapped to word vectors before feeding it into the model. The

feature vectors/embedding layer are of fixed dimensions and initially contain

random real numbers. This can sometimes be slow, while requiring large data,

but will result in embeddings targeted for the specific problem and hence

performing better.

The Embedding layer is the first hidden layer of the neural network. It takes 3

arguments, namely, „input_dim‟- size of the vocabulary of the data i.e. the

number of different integers used for encoding; „output_dim‟- the size of the

vector space for the embedded words; „input_length‟- size/length of input

sequences/documents. We have used a dense layer after the Embedding layer

hence flattened the 2D vector output of the latter to a 1D vector using the

Flatten layer. Then the model is fitted on the training data and uses binary

cross entropy loss function along with Adam (stochastic gradient descent) as

the optimizer. After this the model is evaluated on the test dataset to see its

performance and accuracy.

3.2.2. EMPATH TOOL FOR TEXT ANAYSIS

Word embeddings were used for the purpose of calculating the word similarity

between terms and hence using the semantic similarity as features. Similarly,

for making use of the semantic features as input to classifier model, we had

used Empath for generating semantic categories for words similar to

Linguistic Inquiry Word Count (LIWC) tool. LIWC(latest update LIWC2015)

30

is a software tool developed to categorize psychological, emotional parts of

speech, cognitive analysis and semantic characteristics in text using a built-in

dictionary available for a specific language and providing a percentage of total

words in the text that belong to those categories, for example, „money‟

belongs to category „business‟. A word can be part of different categories at

the same time. But since it is not freely available and also not appropriate if

there is lack of resources, we used its similar text analysis tool, called

Empath[30], released by Stanford in 2016 and authored by Ethan Fast, which

is lightweight and easy to use, install and also freely available.

 Empath is an automatic tool for analyzing text across several categories based

on its semantic meaning using 200 built-in and human validated categories

that are highly correlated to those in LIWC but much more than them and also

updated categories as it is mined on latest data from the web, existing

knowledge bases and fiction literature. Some of the categories it analyzes on

are: social media, hipster, violence, swimming and many more. It can be used

to generate user defined categories based on the input seed words or validate

new categories. These categories can be based on any of the following

models-fiction, NYtimes and reddit. It makes use of deep learning, skip-gram

model, word embeddings and crowd sourcing. By default it returns the raw

counts of occurrences of categories but it can also be normalized over all the

words in the document. Empath is available as a web service at [31], to

analyze text and categories it holds while we used it as an open source python

library available at [32].

In our project, we made use of Empath‟s analyze function to generate

categories for each of our documents and then hand coded these categories as

feature matrix each for the training data and test data separately. Then we fed

them into classifier for prediction of the classes. We also combined these

features with TF scores on the documents and then fed them into classifier for

deception detection. We had also generated hand coded categories of lies and

truths based on the frequency or popularity of their occurrence and the actual

„true‟ or „false‟ label that the documents held and then used them in a formula

31

to predict the label of unseen document based on the probability of it being

deceptive or not.

The total dictionary representing count of occurrences of the categories for

each text sample in the training dataset which is classified as a lie, can be

denoted by,

 ∑
 (3.6)

Similarly, the total dictionary representing count of occurrences of the

categories for each text sample in the training data which belongs to the

category „truth‟, can be denoted by,

 ∑
 (3.7)

Where „R‟ and „S‟ are the dictionaries returned by the analyzer function of

Empath for the input text sample. They can be seen as vectors or matrix where

each position describes the category and its corresponding value describes the

count of occurrences of that category present in the text. The variables „x‟ and

„a‟ are the counts of text samples (or their corresponding categories‟

dictionaries returned by Empath) in the dataset that correspond to lie and truth

category, respectively.

The final dictionaries corresponding to lie class and truth class are „L‟ and „T‟,

respectively. They contain the categories and their occurrence count summed

over each dictionary belonging to lie class and truth class.

These final dictionaries are then converted into feature vectors form where the

values are the counts corresponding to the categories. Hence these represent

the weightage each category holds in lie class and truth class, respectively.

These dictionaries are then used to calculate the final weightage of a category

in the formula for predicting the class label or a text with respect to lie or truth

32

class, by dividing the count (value) of that category in lie or truth dictionary

by the sum of values of that category in both truth and lie dictionary.

 (3.8)

Where „W‟ is the dictionary representing the final weights of a category w.r.t

the lie class and „o‟ is the variable representing the category for which the

weight or value is calculated. The value of „o‟ ranges from 1 to k where „k‟ is

the total number of categories returned by Empath. The weights wr.t truth

class can be obtained by subtracting 1 from Wo.

This dictionary containing the weights of categories is used in the final

formula to compute the probability of a text belonging to lie class or truth

class. We then take each data sample from the test dataset and obtain its

corresponding Empath categories and their values or occurrences. These

values are then multiplied to their corresponding weights obtained earlier. The

resulting values obtained after that are summed to calculate a final value „Pl‟

and „Pt‟, which represent the probability of a text sample being true or false.

Pl = ∑
 (3.9)

Pt= ∑ ()
 (3.10)

Where „Z‟ is the dictionary of categories and their values obtained from

Empath when a text sample is input to it. The class of the text sample is

labelled as being „truth‟ if Pt > Pl. Otherwise the class is labelled as „lie‟. The

accuracy of the method employed above is then calculated as usual by

checking the actual label against the predicted or assigned label. The purpose

of using text analysis tool for deception detection is to understand the

language characteristics, structure and emotions used by liars, which had often

been proved to be an efficient feature for classifying anything fake.

33

3.3. LEXICAL AND SYNTACTIC FEATURES

Fake texts have a common characteristic that they are consciously created with

the intention of deception and hence carry the linguistic style that liars commonly

have in order to pass of their lies as truths. Hence it is efficient to extract features

for detecting fake content through linguistic patterns that exhibit the different

writing styles. Linguistic features can be extracted from different levels of

document organizations such as characters, sentences, words and documents texts

itself. The common linguistic features used generally are:

 Lexical features- these include the word level and character level features,

such as, characters per word, total words, unique words, frequency of large

words, word count, word density etc.

 Syntactic features- these include the phrase or text level features, such as

punctuation and parts of- speech (POS) tagging, frequency of function words

and phrases like - bag-of-words, n-grams etc., topic modeling etc.

Moreover, many other features can be constructed explicitly to capture the

deceptive cues in writing patterns and styles to differentiate fake content from the

real one, such as lying detection features.

For making use of lexical features we extracted numerical features such as:

Total number of words in the document-word count; average length of the words

used in the documents- Word Density; total number of punctuation symbols in the

documents- Punctuation Count; total number of characters in the documents-

Character Count; total number of uppercase words used in the documents-

uppercase; and many more such engineered features based on the information

present in the dataset, either through the main texts or the metadata. We had used

combination of these features in different ways, sometimes along with textual

data and sometimes along with other such numerical features to generate feature

union of these cues and then fed into a classifier model.

34

We had used pipeline and feature union functions from the Feature Extraction and

feature Selection library of python to combine various linguistic features and form

a classifier model that identifies deceptive cues for the purpose of detecting unreal

contents. Sometimes we have to process the data in such ways as to remove

information that may not be relevant to the idea of classification. Hence, we used

some basic processing on the text such as removing punctuation, rare words

removal, common words removal and then tokenizing it and performing

stemming or lemmatization along with count vectorization and tf-idf transformer

to generate features. We had also combined various textual information given in

the metadata along with the main text to be classified, and then converted them

into numerical features , or combined with engineered features to generate a

resulting single features that carries the characteristic information deemed helpful

in predicting the class of the documents.

For the purpose of extracting syntactic features we used the bag-of-words and the

n-gram techniques along with the count vectorizer, TF-IDF vectorizer and the TF

scores of documents as features. The TF score of a text is calculated as part of the

total TF-IDF score and depicts the normalized frequency of a term in the

document. We had used the above vectorization method along with the n-gram

approach. If the vectorization is done on word level n-grams then combination of

n words together act as 1 feature while if it is done for character level then

combination of n characters together act as a feature. Example, if the sentence is

“words hold meaning.” Then character level n-grams, where n=4, are:[„word‟,

„ords‟, „rdsh‟ , „dsho‟, „shol‟, „hold‟, „oldm‟ and so on..]. Parts of speech tagging,

often called POS tagging is a form of syntactic features that depict the

grammatical structure of documents or more precisely, the parts of text are tagged

with the grammatical category that they belong to. The POS function checks each

document and returns the category that each word/term belongs to, in a language

structure.

Example, nouns have following subcategories-„NN‟, „NNS‟, „NNP‟, „NNPS‟;

Adverbs are-„RB‟, „RBR‟, „RBS‟, „WRB‟; Adjectives are-„JJ‟, „JJR‟, „JJS‟; verbs

are-„VB‟, „VBD‟, „VBG‟, „VBN‟, „VBP‟, „VBZ‟ and pronouns are-„PRP‟,

„PRP$‟, „WP‟, „WP$‟ . The frequency count of categories present in POS tagged

documents can be used as features. The POS tagged documents are then

35

engineered into features to make them suitable to be fed into a classifier model.

We had also combined the POS features along with the lexical features like TF

vectorizer, word density etc. to obtain a single feature vector that combines these

cues.

Topic modeling is another method to classify documents based on the topics or

keywords that they have that belong to certain categories. TF-IDF vectorizers can

also be seen as a way of generating topics from the documents. Here topics mean

the words that represent the documents. These topic distributions over documents

can be useful to generate distinguishing features in the corpus.

 We had used LDA (Latent Dirichlet Allocation) and LSA (Latent Semantic

Analysis) for this purpose. LDA is used to generate topic modeling features for

fixed number of topics or classes that the documents contain. It is based on the

theory that each topic is made up of some keywords and each document is made

up of topics based on the probability of their occurrence. It calculates 2 matrix

one for document-topic distribution and another for topic word distribution. It

iterates through each word for each document and updates its topic- word

probability using a product of 2 probabilities each from both the matrices and

converges when a steady state is achieved.

LSA is also an unsupervised learning algorithm like LDA, which is used

generally for dimensionality reduction or selecting the best features to represent a

document. It is used to convert documents into features based on the topics or

groups of text that they possess. The first step in it is to convert documents into

their corresponding TF-IDF vectors and then select the better features out of them

using the SVD implementation of LSA. In it the words that are similar and within

a topic can be given same weight and hence no need to include every single word

in the vocabulary and increase the size of vectors, with no improvement in feature

quality.

36

CHAPTER 4

EXPERIMENT RESULTS AND EVALUATION

We explain in this chapter the experiments that we carried out by the

implementation of our proposed approach and the evaluation of the results

obtained thereafter. We have outlined in this chapter the purpose and results of

using the different features, their combination along with other types of features

and predictions from different features. We examine the effectiveness of using

various categories of features such as semantic features, linguistic features etc.

We also evaluate the structure of datasets used along with the nature of data and

its impact on the overall classification process. We tried to conclude the results

obtained using various models used for deception detection and their role in

driving the classification process.

4.1. DATASETS

4.1.1. DATASET 1 OPEN-DOMAIN DECEPTION DATASET

This dataset was released on August 27, 2015 by Ver´onica P´erez-Rosas and

Rada Mihalcea, researchers from University of Michigan [22]. This is a crowd

sourced deception dataset containing short one sentence truths and lies

collected from 512 users or workers from Amazon Mechanical Turk. They

provided 7 lies and 7 truths each by every user. These lies and truths are open

37

domain i.e. they don‟t belong to any specific category or topic but are just

plain lies and truth. The dataset also consists of user's demographic

information, such as education level, country of origin, age and gender. Hence

it can be used to study the effect of this demographic information on the type

of lies and truth that people generally tell. Verification was manually done by

the paper authors to avoid spam. The dataset consists of 7168 sentences from

512 unique contributors. The dataset consists of total 3584 truths and 3584

lies.

4.1.2. DATASET 2 REAL LIFE TRIAL DATASET

This dataset was released on June 15, 2016 by Veronica Perez-Rosas,

Mohamed Abouelenien, Rada Mihalcea, Mihai Burzo, researchers from

University of Michigan [29]. It is a real-life multimodal dataset containing

truthful and deceptive testimonies during the court proceedings, which are

transcript and annotated manually by the researchers. The dataset consists of

total 121 short videos, their transcriptions and facial and body language

gesture annotations for the purpose of deception detection, taking into account

the verbal and non-verbal cues related to deceptive behavior. It contains 60

truthful texts and 61 are deceptive/false written speeches. This dataset can be

used for the purpose of studying human behavior and patterns during false

speech through multiple modes of deceptive communication and detecting

such fake information and cues that identify it. However we have used only

the text transcripts for the purpose of deception detection.

4.1.3. DATASET 3 AMAZON PRODUCT REVIEWS DATASET

 This is a recent dataset of Amazon product reviews provided by kaggle [33].

The reviews are labeled as fake or real corresponding to _label1_ and _label2_

respectively in the dataset. The dataset contains Amazon product reviews

across different product categories like kindle, books, electronics etc. along

38

with other metadata information like product category, rating, product ID, user

ID, product title, verified purchase, review title etc. The corpus contains a total

of of 21,000 text reviews, which are equally distributed across fake and real

reviews and product categories. The dataset can be used to identify fake

reviews using the reviews itself and the background information available like

ratings, sentiments etc. that showcase a certain reviewer behavior/pattern.

Table 4.1: Description of the datasets used in experimentation.

4.2. EXPERIMENTS ON OPEN-DOMAIN DECEPTION DATA

We had used Dataset 1, which contains equal amount of lies and truths obtained

through crowd sourcing services. First we parsed the dataset that contained a lot

of special characters/noise using pandas library. The successfully parsed data was

then converted into feature vector using count vectorizer, TF-IDF vectorizer and

hash vectorizer. Those resulting feature vectors were then fed into classifier such

as multinomial naïve bayes, SVM, stochastic gradient descent, passive aggressive

classifier etc.

Dataset Data contained Content Purpose

Dataset 1 Lies and truths 3584 lies and 3584

truths

Lie detection

Dataset 2 Trail testimonies 60 truthful and 61

false testimonies

Deception detection

Dataset 3 Product reviews 21000 reviews

equally divided

among fake and real

reviews

Fake information/

reviews detection

39

Fig 4.1 Features extracted by count vectorizer and TF-IDF vectorizer, respectively.

We had also used feature union function from feature extraction and feature

selection modules to combine more than one feature and classifiers in a

pipeline. One set of pipeline included count vectorizer and TF-IDF vectorizer

while another set of pipeline made use of chi square function for selecting best

features from the count feature vectors and feeding them into classifier

yielding 53.26% accuracy. We also included in another pipeline, a snowball

stemmer to perform stemming on texts before vectorizing them using count

vectors and then modifying them using TF-IDF transformer to obtain final

feature vectors which resulted in 54.24% accuracy with Naive bayes classifier.

We made use of n-grams as features and vectroized those using count

vectorizer, TF-IDF vectorizer and TF scores. We extracted unigrams, bi-

grams, tri-grams and quad-grams as features. However not much difference

was seen in the accuracy of the classifiers when using quad-grams. The result

of using TF-IDF features with n-grams on MLP classifier was 51.61%

accuracy while using TF-IDF features alone on KNN classifier it obtained

51.42% accuracy.

We also extracted the features/terms that included the most weightage among

all the terms for each of the lie and truth class to determine what terms are

commonly used in the lies and truth and what effect they have on classifying a

text as lie or truth respectively. We found that the lies often contain the terms

related to politics, money, luxury or strength while truthful texts contain more

realistic terms that often convey happiness or normal life in general without

making an extremely strong statement that doesn‟t match with a common

40

known fact. This holds true in coherence with the previous studies that dictate

that liars tend to over exaggerate their emotions along with using less concrete

language in order to pass off their opinion as truthful. However truthful texts

contain normal language with details and focus on concrete concepts and not

just function words.

Fig 4.2 Most informative words/features in lie and truth class.

Next we extracted numerical features from the text samples. These engineered

features were used as an additional effort to gain insight into the hidden

feature space present in the Meta information present in the dataset. The

numerical features engineered for this purpose are:

 Word count in each text, depicted by column-„word_count‟

 Average word length in each text, depicted by column-„avg_word‟

 Character count in each text, depicted by column-„char_count‟

 Punctuation count in each text, depicted by column-

„punctuation_count‟

 Word density in each text, depicted by column-„word_density‟

These numerical features were used in combination with text and then

converted into features together or converted into features separately and then

41

combined as one single feature vector to be fed into the system which resulted

in accuracy of around 54.68%. We had also used these features individually as

an input to the classifier, based on the understanding through research that the

word count, punctuation count, word density etc. reveal deceptive behaviour

because liars tend to make their text too long in order to convince their point

of view as a fact but tend to use less vocabulary and often repeat their words

that aren‟t too long in length either. We had also used the main text as feature

along with other information present in the dataset like country, education etc.

We used LDA for gathering features based on the topics and keywords used in

the main text. The top words used in the topics were also displayed to identify

the topics that people lie or tell the truth about since the dataset was open

domain and hence lacking any well defined features. However the features

based on this function didn‟t prove to be much helpful in increasing the

accuracy of the model which settled at 53.66% with SGD classifier. We had

also used LSA‟s implementation i.e. SVD for generating features to be fed

into the classifier. This function selects better features and discards the one

that don‟t hold enough wightage in the classification process, hence improving

the accuracy and conserving the time and space resources.

Fig. 4.3 Top weightage words present in the generated topics.

We used white space tokenizer followed by porter stemmer for processing the

data and then vectorizer that to obtain numerical feature vectors. We

performed punctuation symbols‟ removal, frequent words removal, stemming

and lemmatization as part of processing the data and hence improving the data

in order to obtain better results after vectorization.

42

We had used word embeddings as way for converting our text data into

numerical features according to their semantic meanings and similarities

between words and phrases. The word embeddings were implemented using

keras library of the python. The text samples were tokenized, then encoded

and padded. The class labels were separately encoded using label encoder and

one-hot encoder. The keras model was built using a sequential layer, an

embedding layer followed by a flatten layer and a dense layer that

implemented the sigmoid function as the activation function. The keras model

was then compiled using „binary cross entropy‟ as the loss function and

„adam‟ as the optimizer. The results obtained by using word embeddings as

features were really good compared to other features. We has also used the

Gensim model for understanding how word embeddings work and the features

that they offer by converting words into vectors depicting their meaning or

context in a multidimensional space.

Fig. 4.4 Structure of word embedding through keras.

Fig 4.5 Result of using Gensim model to calculate „similar‟ words from text

for given words.

43

We used the k-fold cross validation on the classification done using n-grams

as features. We used voting ensemble of classifier for combining the best

classifier models that we developed and this turned out to yield good results

with 60.48% accuracy. We also used Ada boosting classifiers and gradient

boosting classifiers as a form of ensemble of classifier and hence combining

various classification results.

We had used POS tagged texts as features in order to include the sentence and

language structure of the data samples as features since this is an efficient way

to understand the linguistic style of deceptive communication and hence find

cues for identifying it. The POS features were combined along with n-grams

obtained and modifies using TF scores to obtain a single combined feature.

We also combined these features along with the engineered features to obtain

another hybrid feature space as a final feature column to be fed into the model.

We had used Empath‟s analyze function to generate semantic categories for

words in the data sample. These categories and their count acted as features or

numerical representation of the corresponding texts. We hand coded all these

categories and their corresponding counts as feature vectors and then

combined them to produce feature vectors for training and testing data

separately. These features were used in a classifier model for classifying the

data and obtained 54.63% accuracy when fed to Naive bayes classifier. We

also combined these feature vectors along with the TF scores of the text to

obtain final vectors for feeding into the classifier. We also had hardcoded

some lie/deception categories by studying the common categories found in

„lie‟ samples and then used a threshold presence of these to classify a text as

either lie or truth. This yielded accuracy of around 53.33%. We had used the

formula (3.9) and (3.10) to calculate probability of occurrence of lie or truth

and then classified the text sample as same and obtained accuracy of 57.96%

accuracy.

44

Fig. 4.6 Categories and their count generated through Empath.

Table 4.2 Results obtained with experimentation on dataset1.

Features Classifier Results (accuracy)

Count vectors Naive bayes 52.63%

TF-IDF vectors Naive bayes 56.63%

Hash vectors Naive bayes 54.84%

Hash vectors Passive

aggressive

53.36%

Hash vectors SGD 55.75%

Count+TFIDF +ngrams SGD 54.24%

Text+country+ngrams SGD 61.62%

Char count+word

count+word density

SGD 53.45%

Text+word+char

count+avgerage length

SVM 56.61%

Stemming Naive bayes 58.88%

Preprocessing+lemmatization Naive bayes 61.66%

Word embeddings - Trainingdata=84.34%;test

data=58.46%

LSA SGD 53.35%

45

k-fold+count+ngrams SVM 56.66%

POS+char+word count+TF SGD 59.96%

TF vectors Random forest 60.78%

TF vectors Logistic

regression

59.32%

TF vectors Ada boost 59.12%

TF vectors Gradient boost 59.71%

POS+TF+ngrams SVM 57.168%

Empath+TF+ngrams Naive bayes 62.61%

4.3. EXPERIMENTS ON REAL-LIFE TRIAL DATA

This dataset contained each of the 60 truthful testimonies and 61 false

testimonies recorded from the courts, transcript into textual format for the

purpose of deception detection through verbal cues. We collected all the

truthful text and the false texts into a pandas data frame along with their

correct label.

The data samples were modified into their numerical counterparts using count

vectorizer, TF-IDF vectorizer and TF scores to generate feature vectors. These

feature vectors were also combined with n-grams obtained on word level and

character level of documents. The features obtained were fed into a number of

classifier including multinomial naive bayes, SVM, random forest, KNN and

stochastic gradient classifiers. The results obtained on these features were

highly motivating. We obtained 84.61% accuracy when used TF-IDF vectors

in SVM model while resulted in 69.2% accuracy with KNN classifier.

Table 4.2 (continued)

46

Fig. 4.7 Features included in count and TF-IDF vectors.

We also used feature engineering to extract feature vectors using hidden

numerical features in the linguistic model of the texts. The feature columns

that were added were:

 Word count of each document

 Word density present in each document

 Punctuation count of each document

 Character count of each document

 However the results obtained using these numerical features didn‟t prove to

be effective in classifying deception and yielded only 46.0% accuracy while

the precision was 77.27%. These features were also combined with hash

vector obtained on the text but didn‟t help in increasing the results.

Fig. 4.8 Result of feature union (count and TF-IDF vectors) on SGD classifier.

We used POS tagged text samples as features to understand the linguistic style

and semantic constructs of deceptive speeches in order to obtain cues that

47

effectively identify deception. These features were combined along with n-

grams and TF-IDF vectors of text to obtain a final single feature column

which was input into the classifier algorithm and yielded 84.63% accuracy

when fed to SVM classifier.

Fig 4.9 Result of POS features.

We used stemming, lemmatization, punctuation, common and rare words

removal as part of the processing step done on the dataset to yield better

results and then transformed those using TF scores in the TF-IDF vectorizer

and obtained feature vectors to feed into the classifier whose parameters were

fine tuned for better accuracy using the GridSearchCV function.

We used word embeddings that were learned using the dataset and then

implemented using the keras library. The keras model included a sequential

layer, an embedding layer and a flatten layer before using a final dense layer

to build the classifier model. The embedding layer included the input size of

the input vectors of the tokenized, then encoded and padded text samples, their

vocabulary size and the output vectors‟ dimension for each word embedding

that is learnt. The model is then compiled by specifying the activation function

and loss function along with the optimizer that refines them. The model was

evaluated on both the parts of data to examine how well it has learned the

embeddings and how can it perform on unseen data.

Fig. 4.10 Result of word embeddings.

48

The k-fold cross validation technique was used along with n-grams and bag of

word approach to get better accuracy. The results obtained on them yielded

66.15% accuracy when fed into SVM. We also used this validation technique

on the voting ensemble of classifiers that combines predictions from various

classifier models. We obtained 65.42% accuracy with this model. We used

Ada boost and Gradient boosting classifier to use ensemble of classifier but

obtained only 59.04% and 61.18% accuracy when fed with bag-of-words and

n-grams as features, respectively. We also applied the shuffle split function of

cross validation method.

We used truncated SVD as an implementation of the LSA or LSI (latent

semantic indexing) for filtering out the features that hold more information for

the classification process and using them as an input to the model. It takes TF-

IDF features and selects the most informative out of these, from each vector

and returns them as the final feature vector.

Table 4.3 Results obtained during experimentation on dataset2.

Features Classifier Results (accuracy)

Count vectors Naive bayes 92.91%

TF-IDF vectors Naive bayes 92.91%

TF-IDF+ ngrams Naive bayes 87.55%

TF-IDF+char level ngrams Naive bayes 77.32%

POS features SVM 69.23%

Preprocessing+lemmatization SVM 69.23%

Word embeddings - Trainingdata=100%

;test data= 54.8%

TF-IDF vectors Random forest 76.91%

TF-IDF vectors Logistic regression 92.32%

LSA MLP 84.65%

Count+TFIDF+ngrams SGD 92.34%

Stemming+count vector Naive bayes 84.6%

LDA SGD 54.8%

49

4.4.EXPERIMENTS ON PRODUCT REVIEWS DATA

We loaded all the 21000 reviews into the pandas data frame object from the

pandas library. The LABEL column contained the annotated labels

corresponding to the class to which the reviews belonged. We encoded them

in readable form by changing them to their correct meaning i.e. „_label1_‟ was

modified to „FAKE‟ and „_label2_‟ was modified to „REAL‟ and storing them

in a separate column.

 The review text column was first used to extract features by vectorizing them

into numerical vectors with the help of count vectorizer, TF-IDF vectorizer,

hash vectorizer and TF score values as feature vectors. These features were

also combined with n-grams on character level and word level structure of the

documents. The n-grams thus obtained were modified using these vectorizers

to obtain final feature vectors that were fed into the classifier model. Some of

the classifiers that were used throughout the experimentation to test different

models were multinomial naive bayes, passive aggressive classifier, SVM,

random forest classifier, logistic regression/linear classifier, K nearest

neighbour classifier, stochastic gradient classifier etc. the result of TF-IDF

vectors with passive aggressive and SGD classifier obtained accuracy of

59.7% and 65.8% , respectively. While count vectors with SVM classifier

obtained 62.7% accuracy. Logistic regression classifier when fed TF vector

yielded 65.6% accuracy.

We used stemming in combination with TF-IDF transformer and count

vectorizer to generate features. We also implemented a pipeline of bag-of-

words approach to generate features in combination with the n-gram model

along with chi square function to select the best features from the features

generated so that the most informative features are only used to train the

classifier and hence improving the results. When fed into SVM model these

features generated accuracy of 64.8%. We also displayed the features/terms

with the most weightage in the TF-IDF scheme of vectorization. This helps in

studying the terms or topics that are used most frequently by the

50

reviewers/spammers to post fake reviews and hence identifying the hidden

linguistic cues that signify deceptive behaviour.

Fig. 4.11 Most informative features/words in binary classification.

K-fold cross validation method was used by us to demonstrate the learning

accuracy of the models developed using n-grams and count vectors as features,

yielding accuracy of 66.46% when fed into SVM. This validation technique

was also employed to evaluate the results of the voting ensemble of the best

performing models among the models developed for the purpose of identifying

fake reviews. Ensemble of classifiers were also implemented using Gradient

boosting and Ada boost classifiers that run various epochs of the same

classifiers in order to minimize the loss and maximize the accuracies

henceforth obtained. The function shuffle split cross validation was also

implemented to evaluate the effect of learning on the data that doesn‟t hold

any unexplained benefit of unarranged data and its position, rather than the

model for which it is trained and should produce results for.

Numerical features were engineered from the available main text and metadata

in the dataset. These features were obtained from lexical structure of the

reviews and its related information. The features extracted and included in

new separate columns were:

 Number of punctuation characters in a review

 Number of capital letters count in review

 Number of total words present in a review

51

 Average word length of a review

 Average length of a review itself

 Sentiment present in the reviews

These features were extracted to find out hidden inferences and deception cues

that are not directly visible or present in the dataset itself. These features were

used separately as standalone features for the input to the model or combined

among themselves and review text of the data samples. The n-grams on

reviews and corresponding bag-of-word features were combined with the

extracted features to include as many as relevant information in the final

feature set as possible for the purpose of increasing the accuracy of the

classifier.

The other information present in the dataset apart from the main review text

was used to extract features like, product category, verified purchase, ratings

etc. these information columns were combined along with the review text to

add more information to the features, other than just the review to be

classified. These feature contained information representing the reviewer

behaviour and background information apart from just the content of the

reviews and hence are more informative for the classifier model.

Fig. 4.12 Distribution of ratings in fake and real categories.

52

Fig. 4.13 Average number of punctuation symbols in fake and real class.

POS tagged reviews were used to examine the semantic and linguistic

structure of the documents. The features extracted for it was also used in

combination with the TF scores and n-grams features of the text, resulting i

accuracy of 62.4% when fed into SVM classifier. These features were used

separately as input to the classifier model to study the effect of each in

classifying the reviews correctly and identifying their corresponding labels.

We also used LDA to generate topics present in the reviews and hence

classifying them using those features. These topic modelling features were

also used along with the bag-of-words and n-grams as features to obtain a

single combined feature as input to the model. SVD was also used to extract

the most crucial features from the TF-IDF feature vectors and generate a better

set of features to be fed into the model.

Fig 4.14 Top words in topics generated by LDA.

The reviews and related data present in the dataset were also processed to

improve the tokens generated and maintaining the context while removing the

not so important information present in the features. The common and rare

53

words were removed, punctuation characters were removed, and stemming

and lemmatization were performed to study the effect of these procedures on

the process and results of the classification.

Word embeddings were used to learn the numerical representation of the text

using the keras model. These embeddings were used as a feature in the

classification process. The sequential keras model for learning the word

embeddings was made up of the embedding layer and the dense layer, which

included a flatten layer in between for the right conversion of the vector

dimensions between the input and output vectors. The embedding layer

contained all the required parameters for the input and output. The model was

later compiled and then evaluated on the training and testing data to see its

performance in learning and implementing the word embeddings.

Fig 4.15 Result of word embeddings through keras on product reviews.

Empath was used to extract the hidden semantic features present in the

language style of the reviews and its contents. The categories and their

occurrence counts returned for text samples were combined to generate

hardcoded numerical feature vectors for training and testing data separately.

These feature vectors were input to the classifier model to obtain classification

results. When used as a standalone feature fed into SVM they obtained

54.92% accuracy. We also combined these feature matrices with n-grams of

reviews and TF scores on them to generate final feature vectors for the

classification process.

54

Table 4.4 Results obtained with experiments on dataset 3.

Features Classifier Results (accuracy)

Count vector Naive bayes 64.25 %

TF-IDF vector Naive bayes 65.97%

Hash vector Passive aggressive 61.7%

Hash vector Naive bayes 65.3%

Hash vector SGD 64.6%

Count+ TFIDF +ngram SGD 62.4%

Stemmed count +TFIDF Naive bayes 66.8%

Punctuation + capital char count+

average length

Naive bayes 54.8%

POS features SVM 66.26%

Processing+ lemmatization Naive bayes 66.25%

Word embeddings - Train size=100%

Test size=59.8%

Text+ratings+ngrams SVM 64.4%

Text+ product category+ngram SGD 63.8%

Text +verified purchase+ TFIDF SVM 82.1%

LSA SGD 65.3%

LDA+ TF vector NB 58.7%

TF vector Random forest 63.4%

TF vector KNN 56.9%

Empath + ngram+ TF vector SVM 66.57%

Text +sentiment + ngrams SVM 84.4%

Text+ product category+ Ratings+

verified purchase

SVM 82.3%

TF vector Gradient boost 60.1%

TF vector Ada boost 59.8%

Combination of above models Voting classifier 67.8%

55

4.5.SUMMARY

We had used all the 3 datasets for the purpose of deception detection and

studying its techniques when applied to different scenarios and quality and

type of data. First we parsed the datasets using the pandas library. The general

NLP techniques applied on the datasets included conversion of data into

feature vectors using count vectroizer, TF-IDF vectorizer and hash vectorizer

and also TF scores as values in some of the vectors. These features were also

combined with n-grams of the text. Those resulting feature vectors were then

fed into classifiers such as multinomial naïve bayes, SVM, stochastic gradient

descent, passive aggressive classifier, logistic regression, k nearest neighbour,

random forest classifiers, ensemble of classifiers that included voting

ensemble, gradient boosting and ada boost classifier etc. these models also

employed the k-fold cross validation technique for obtaining better results on

the data by increasing its learning rate.

Feature extraction and feature selection modules were used for the purpose of

combining features together or selecting some of the best features among them

which also helps in dimensionality reduction. These were also done using

SVD and LSA which in a way extract the main/important points from the text

and generate features from them. Numerical or hidden features from the text

samples were extracted as part of feature engineering. Some of these were: the

word count, character count, word density etc. We had also used the main text

along with other information present in the dataset as features that include

additional relevant information that is helpful in the classification process. We

also performed processing on the data to obtain better and important tokens as

features such as, frequent words removal, stemming, lemmatization etc.

Word embeddings were used to convert text into features based on their

language structure and similarities between words/sentences. These were

implemented using keras library of the python. The text samples were

56

tokenized and encoded and fed into the embedding layer as input vectors. The

sequential model of keras also included a flatten layer and a dense layer that

contains the activation function for producing the output vectors i.e. the

learned embeddings. The model was then compiled and evaluated on the data.

The classification results obtained by using word embeddings as features were

really promising and better than other features.

POS tags corresponding to the tokens in the texts were used as features to take

into account the linguistic style of deceptive texts. These features were

combined along with bag-of-words and n-grams model to generate feature

vectors.

Empath library and its functions were used to generate semantic categories

present in the text of the data. These categories and their count were converted

into hand-coded feature matrices combining each of the function results.

These features were input to the model for classifying the text. We also used

bag-of-words approach along with n-grams to combine with these hardcoded

features to generate single final feature vectors for classification.

We analyzed that the open-domain deception data mostly didn‟t yield good

results for classification because of the major reason that it was freely

collected without any specific topic or target and hence lacked the structure

that should be present for learning classification correctly. Since it contained

lies and truths from across all domains and depth of imagination because they

were crowd sourced and hence could be considered as pseudo lies instead of

deceptive language that would be found in real situations, it made an already

tough job of deception detection, even tougher.

The product reviews dataset and the trial transcripts dataset were favourable

for the purpose of deception detection because they contained actual deceptive

behaviour of people in real situations. Hence they contained in a sense true

57

deceptive cues hidden in them. They contained supporting information along

with the main text that further helped in providing additional information for

the purpose of classification. Due to all these factors the accuracies obtained

by classification models on these dataset were quite good and promising for

further research scope in these topics.

58

CHAPTER 5

CONCLUSIONS AND FUTURE SCOPE

5.1.CONCLUSION

In recent years, fake and deceptive contents have become increasingly difficult

to segregate and identify in the scenario of easy and fast creation and sharing

of such misinformation. Fake reviews are affecting businesses and potential

customers both. Deceptive contents are present in day to day communications

and online platforms alike. Hence it has become the need of the hour to make

use of technology to defeat the purpose of malicious users who create and

disseminate such false contents for deception of the unsuspecting people. As

indicated in [8], deception detection is a very tough task especially without the

presence of adequate information in relevant formats in the form of datasets.

We have applied NLP techniques for this purpose such as bag-of-words and

also made use of n-grams as features. The n-grams extract the contextual

meaning of the texts and hence act as better features to obtain deceptive cues

hidden in the language structure. The n-grams that we extracted from the main

text were also used in combination with the other feature sets that resulted in

performance improvement, such as, numerical features engineered from the

dataset, POS etc.

We also used semantic features for identifying the semantic structure of the

deceptive language used by the users/people. The features extracted for it

were: word embeddings to represent textual data into corresponding numerical

feature vectors based on their semantic similarity and representation in the

59

multidimensional vector space. The categories to which words belong based

on their semantic and lexical meanings were generated by using empath. It

returned categories and their counts present in a text piece in the form of a

python dictionary, which we converted into matrix form and generated feature

vectors corresponding to each data samples and hence trained the classifier on

them. These features performed well because they took into account the

language style in deceptive texts.

Linguistic cues associated with deception were identified using lexical and

syntactic features that depict the same. The features extracted for this included

numerical and binary features that were developed from the information

present in the dataset like-Word count of documents, word density of

documents etc. POS tagged documents were also used as features for

examining the efficiency of grammatical structure of texts as features in the

classification process.

Various techniques for improving the classifier model were also employed

such as LSA, LDA, k-fold cross validation, shuffle split CV, grid search CV

etc. Different classifiers were also combined together to increase the

efficiency or by combining the features extracted from different schemes.

Dimensionality reduction and best k features were also selected for improving

the results along with preprocessing the data and tuning the parameters.

However there is still scope in improving the classification model by

improving the quantity and quality of the data that is more inclusive of the

relevant information for the purpose of deception detection. The features

extracted from it would then include better deception cues which would result

in increased accuracy of classification model.

5.2. FUTURE WORK

The classification model that we developed for deception detection made use

of everything from preprocessing methods to different types of feature

60

extraction methods that carve out the linguistic, semantic features and so on.

We employed word embeddings and semantic and lexical category generator

along with examining the syntactic structure of documents. Feature

engineering methods were used to dig out other hidden features in the dataset

and feature union, feature selection and feature extraction methods were also

used to improve and hybrid already known features for gaining some accuracy

on the classifiers.

Since real world data that have all the necessary information and correct labels

are hard to find, hence unsupervised and semi-supervised methods for

classifying deceptive content are also suitable for this task. However they

generally do not match the results of supervised learning but they can

definitely be given a try and combined with supervised classification models

to obtain a hybrid approach that takes the best of both worlds. The dataset

might be improved by including other types of data than just text, such as

images, videos etc. however these require a lot of computational effort and

resources.

Other features that might turn out to be useful can be features that use data

analytics and return statistical numbers/information or features that explore the

reviewer behavior and language style of users more precisely like use of

strong language, writing patterns with more usage of some category of words

etc. other than these, models that make use of neural networks like RNN, CNN

etc. can also be used by taking into account higher dimensional processing and

methods of deep learning. Some kind of a fact checking system based on

knowledge sources can also be used in cases where there is clear distinction

between facts and imaginative writing.

61

REFERENCES

[1].V. P. Rosas, B. Kleinberg, A. Lefevre and R. Mihalcea, “Automatic Detection of

Fake News”, Proceedings of the 27th International Conference on Computational

Linguistics, August 2018.

[2].Á. Figueiraa, L. Oliveirab “The current state of fake news: challenges and

opportunities”, CENTERIS International Conference on Project MANagement /

HCist, 2017, Spain.

[3].BBC News (2019), “Samsung probed in Taiwan over 'fake web reviews'”, April

16, 2013 [BBC News]. Available at: https://www.bbc.com/news/technology-

22166606

[4].The New York Times (2019), “For $2 a Star, an Online Retailer Gets 5-Star

Product Reviews” Jan 26, 2012 [The New York Times]. Available at:

https://www.nytimes.com/2012/01/27/technology/for-2-a-star-a-retailer-gets-5-

star-reviews.html?_r=2&ref=business

[5].7NEWS. (2019). “Woman Paid To Post Five-Star Google Feedback”, September

15, 2012 [ABC7 News]. Available at:

http://www.thedenverchannel.com/news/woman-paid-to-post-five-star-google-

feedback

[6].M. Anderson (2019). “88% of Consumers Trust Online Reviews As Much As

Personal Recommendations”, July 7, 2014. Available at:

http://searchengineland.com/88-consumers-trust-online-reviews-much-personal-

recommendations-195803

[7].N. Jindal, & B. Liu, “Opinion Spam and Analysis”. In Proceedings of the 2008

International Conference on Web Search and Data Mining (pp. 219–230).

February, 2008. New York, NY, USA: ACM.

[8].M. Ott, Y. Choi, C. Cardie, & J.T. Hancock, “Finding Deceptive Opinion Spam

by Any Stretch of the Imagination”. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics: Human Language

Technologies - Volume 1 (pp. 309–319). June, 2011. Stroudsburg, PA, USA:

Association for Computational Linguistics.

[9].A. Mukherjee, V. Venkataraman, B. Liu, & N. Glance, “Fake Review Detection:

Classification and Analysis of Real and Pseudo Reviews”. UIC-CS-03-2013.

Technical Report.

[10].A. Mukherjee, V. Venkataraman, B. Liu, & N. Glance, “What yelp fake review

filter might be doing”. In Proceedings of the International Conference on

Weblogs and Social Media. January, 2013.

[11].R. Y. Lau, S. Y. Liao, R. C. W. Kwok, K. Xu, Y. Xia, Y. Li, “Text mining and

probabilistic language modeling for online review spam detecting”. ACM Trans

Manage Inf Syst 2(4) (pp: 1–30). March, 2012.

http://www.bbc.co.uk/news/technology-22166606
https://www.bbc.com/news/technology-22166606
https://www.bbc.com/news/technology-22166606
http://www.nytimes.com/2012/01/27/technology/for-2-a-star-a-retailer-gets-5-star-reviews.html?_r=2&ref=business
http://www.nytimes.com/2012/01/27/technology/for-2-a-star-a-retailer-gets-5-star-reviews.html?_r=2&ref=business
https://www.nytimes.com/2012/01/27/technology/for-2-a-star-a-retailer-gets-5-star-reviews.html?_r=2&ref=business
https://www.nytimes.com/2012/01/27/technology/for-2-a-star-a-retailer-gets-5-star-reviews.html?_r=2&ref=business
http://www.thedenverchannel.com/news/woman-paid-to-post-five-star-google-feedback
http://www.thedenverchannel.com/news/woman-paid-to-post-five-star-google-feedback
http://searchengineland.com/88-consumers-trust-online-reviews-much-personal-recommendations-195803
http://searchengineland.com/88-consumers-trust-online-reviews-much-personal-recommendations-195803

62

[12].S. Shojaee, M. A. A. Murad, A. B. Azman, N. M. Sharef, & S. Nadali,

“Detecting deceptive reviews using lexical and syntactic features”. In Intelligent

Systems Design and Applications (ISDA), 2013 13th International Conference on

(pp. 53-58). December 2013 IEEE.

[13].A. Mukherjee, A. Kumar, B. Liu, J. Wang, M. Hsu, M. Castellanos, & R.

Ghosh, “ Spotting opinion spammers using behavioral footprints.” In Proceedings

of the 19th ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 632-640). August, 2013. ACM.

[14].E. P. Lim, V. A. Nguyen, N. Jindal, B. Liu, & H. W. Lauw , “Detecting product

review spammers using rating behaviors”. In Proceedings of the 19th ACM

international conference on Information and knowledge management (pp. 939-

948). October, 2010. ACM.

[15].S. Feng, L. Xing, A. Gogar, & Y. Choi , “Distributional Footprints of Deceptive

Product Reviews”. ICWSM, 12, 98-105. January, 2012.

[16]. G. Fei, A.Mukherjee, B. Liu, M. Hsu, M. Castellanos, & R. Ghosh(2013).

“Exploiting Burstiness in Reviews for Review Spammer Detection”. ICWSM,

13, 175-184. January, 2013.

[17]. S. Xie, G. Wang, S. Lin, & P. S. Yu, “Review spam detection via time series

pattern discovery”. In Proceedings of the 21st International Conference on World

Wide Web (pp. 635-636). April, 2012. ACM.

[18].M. Granik and V. Mesyura, “Fake News Detection Using Naive Bayes

Classifier”, 2017 IEEE First Ukraine Conference on Electrical and Computer

Engineering (UKRCON)

[19].S. Gilda, “Evaluating machine learning algorithms for fake news detection”,

2017 IEEE 15th Student Conference on Research and Development (SCOReD).

December, 2017.

[20].S. Singhania, N. Fernandez, and S. Rao, “3HAN: A Deep Neural Network for

Fake News Detection”, International Conference on Neural Information

Processing, November 2017.

[21]. Y.Yang, L.Zheng, J.Zhang, Q.Cui, X.Zhang, Z.Li, and P. S. Yu, “Convolutional

Neural Networks for Fake News Detection”, Published in ArXiv 2018. June,

2018.

[22].V.P´.Rosas and R.Mihalcea,“Experiments in Open Domain Deception

Detection”, Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, September 2015, (p.1120–112), Association for

Computational Linguistics. Dataset available at:

http://web.eecs.umich.edu/~mihalcea/downloads.html

[23].N. J. Conroy, V. L. Rubin, and Y.Chen, “Automatic Deception Detection:

Methods for Finding Fake News”, Proceedings of the Association for Information

Science and Technology banner, February 2016, Association for Information

Science and Technology.

[24]. Á. Almela, R. V. García, P.Cantos,“Seeing through deception: A computational

approach to deceit detection in written communication”, Proceedings of the

https://aclweb.org/anthology/volumes/proceedings-of-the-2015-conference-on-empirical-methods-in-natural-language-processing/
https://aclweb.org/anthology/volumes/proceedings-of-the-2015-conference-on-empirical-methods-in-natural-language-processing/
http://web.eecs.umich.edu/~mihalcea/downloads.html
https://aclweb.org/anthology/volumes/proceedings-of-the-workshop-on-computational-approaches-to-deception-detection/

63

Workshop on Computational Approaches to Deception Detection, April 2012,

(pp.15-22), Association for Computational Linguistics.

[25].I.Fette, N.Sadeh and A.Tomasic, “Learning to Detect Phishing Emails”,

Proceedings of the 16th international conference on World Wide Web, (pp.649-

656), May, 2007.ACM.

[26].B. d. Ruiter, G. Kachergis, “The Mafiascum Dataset: A Large Text Corpus for

Deception Detection”, Published in ArXiv, December, 2018, Computation and

Language, arXiv:1811.07851v2

[27].G. Krishnamurthy, N. Majumder, S. Poria, and E. Cambria, “A Deep Learning

Approach for Multimodal Deception Detection”, 19th International Conference

on Computational Linguistics and Intelligent Text Processing (CICLing), March,

2018.

[28].M.Jaiswal ; S.Tabibu ; R.Bajpai, “The Truth and Nothing But the Truth:

Multimodal Analysis for Deception Detection”, 2016 IEEE 16th International

Conference on Data Mining Workshops (ICDMW), December, 2016.

[29].V. P. Rosas, M. Abouelenien, R. Mihalcea and M. Burzo, “Deception Detection

using Real-life Trial Data”, Proceedings of the 2015 ACM on International

Conference on Multimodal Interaction, (pp.59-66), November, 2015. Dataset

available at: http://web.eecs.umich.edu/~mihalcea/downloads.html

[30].E.Fast, B.Chen, M.S.Bernstein,“Empath: Understanding Topic Signals in Large-

Scale Text”,Proceedings of the 2016 CHI Conference on Human Factors in

Computing Systems, (pp. 4647-4657), May, 2016.

[31].Stanford (2019), “Empath”. Available at: http://empath.stanford.edu/

[32].Ethan Fast (2019) “Empath-client”, April 22, 2017. Available at:

https://github.com/Ejhfast/empath-client

[33].Kaggle (2019) “Amazon reviews”, 29 January, 2019. Available at:

https://www.kaggle.com/lievgarcia/amazon-reviews/metadata

https://aclweb.org/anthology/volumes/proceedings-of-the-workshop-on-computational-approaches-to-deception-detection/
https://arxiv.org/search/cs?searchtype=author&query=de+Ruiter%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Kachergis%2C+G
https://arxiv.org/abs/1811.07851v2
https://ieeexplore.ieee.org/author/37086007506
https://ieeexplore.ieee.org/author/37086009104
https://ieeexplore.ieee.org/author/37085609695
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7836069
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7836069
http://empath.stanford.edu/
https://github.com/Ejhfast/empath-client
https://www.kaggle.com/lievgarcia/amazon-reviews/metadata

64

