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Technical University of Cluj-Napoca, sequence of summation-integral operators. We are able to achieve faster convergence for
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1. Introduction

It is obvious that all classical operators (Bernstein, Szasz and Baskakov) reproduce constant as well as linear function pos-
sess these properties i.e. L,(e;; x) = e;(x) where e;(x) = x'(i = 0,1).

In the year 2003, King [12] introduced a method so as the Bernstein operators reproduce quadratic function so that using
this method in the Bernstein operators would not reproduced the linear function. In the same year, Srivastava and Gupta [15]
introduced a general sequence of linear positive operators G, . and investigated as well as estimated the rate of convergence
of the general sequence of operators G, by means of the decomposition technique for functions of bounded variation. Later
Ispir and Yuksel [11] introduced the Bézier variant of these operators and estimated the rate of convergence for function of
bounded variation. It is observed that the Srivastava-Gupta operators reproduce only constant function. So here we modify
the Srivastava-Gupta operators so that they may be capable to reproduce constant as well as linear function.

For f € C,[0,00) = {f € C[0,00) : [f(t)] < M(1 +t)” for some M > 0, y > 0}, Srivastava and Gupta defined a sequence of
linear positive operators Gy as:

Gn,c(f? X) = nipn‘k(& C) /0% pn+c,k—1 (t; C)f(t)dt + pn.O(x§ C)f(O) (] 1)
k=1
where
k
Pralxi0) =L g

and

buct) = { 7)) <=0
YTl A+ ex)™, c=1,2,3,...

Here {¢,.(x)},; is a sequence of functions, defined on [0, b], b > 0, and satisfy the following properties: for each n € N and
k € Ng :=NuU{0},
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Pne =C7( [a b))(b > a = 0);
$nc(0) =
Pne(X) is completely monotone so that (—1)*¢® > 0 (0 < x < b);

nc

€
(i
(iii

)
i)
)
(iv) t

there exists an integer c such that

¥V (x) = —nop¥ .(x), n>max{0,—c}; x € [a,b].

It is easy to see that, when ¢ = 0 with f € C[0, o0), the operators G, reduce to the Phillips operators [14],
Guolf:) = 1> pus(x ) [P0+ e H0), 0<x <,

where Dn, k( ) =e™ (nx)
Whenc =1 w1thf € C[0, ), the operators G, reduce to summation-integral type operators, which were studied by Gup-
ta et al. [9],

Gn1 (f§ X) = nzpnk / Dni1k- 1( )dt +(1+ )7nf(0)7 0<x <o,
k=1

k-1
where p, () = (n +,§ ) ﬁ

A slightly modified form of G,; represented another summation-integral type operators, which were defied by Agrawal
and Thamar [1],

Gy (i) = n—lzpnk /pnkl (B)dt + (1+X)7f(0), 0<x< oo,

When c = —1 with a view to approximating some Lebesgue-integrable function f on the closed interval [0, 1] the operators
Gy reduce to Gupta and Maheshwari [10],

N
x

N
—_

Goa () = 1> pos(¥) / Do (OF(©E + (1 - %) "F(0), 0
k=1

where p, . (x) = <k>x’<(1 —x)""

The better error estimation for Meyer-Konig and Zeller operators was first introduced by Ozarslan and Duman [13] and
for Szasz-Mirakyan operators by Duman and Ozarslan [5]. After these many researchers have given faster convergence for
different well-known operators like Modified Baskakov operators [2,3], Meyer-Konig and Zeller operators [4], Szasz-Miraki-
an-Beta operators [6], Szasz-Mirakjan-Kantorovich operators [7], Szasz-Mirakyan operators [8]. The goal of this article is to
construct and investigate a variant of Srivastava-Gupta operators [15], which preserve the functions e, and e,. We study
approximation properties viz. Voronovskaya-kind asymptotic formula and better rate of convergence of this modified oper-
ators (3.1) (see Section 3).

Throughout the paper, we consider 0 < x < 1 and f € [0, 1] for c = —1 and for other cases c = 0,1 we consider 0 < x < co
and f € C[0, c0) for the operators Gy.

2. Auxiliary results
Now the following lemmas follow from [15], for the operators G, . mentioned by (1.1).
Lemma 2.1 [15]. Let e;(x) = X', i = 0,1,2. Then, for each x > 0 and n > 2c, we have

(i) Gnc(eo;x) = 1
(ii) Gne(er;x) =,

(ifi) Grc(eg; ) = B2,

Lemma 2.2 [15]. For each x > 0, n > 2c and ¢,(t) =t — x, we have

(1) Gn‘c(q)x;x) = ncfd

s 2. _ x(1+cx)(2n—c)+cx(1+3cx)
(i) Gre(@sX) =" 5055

(iii) Grc(@m;x) = O(n-(m+D/2]),
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3. Construction of the operators

In this section, we modify the operators (1.1) such that the linear functions are preserved. First we transform the oper-
ators defined at (1.1) in order to preserve the function e;. By defining the functions

(n—oc)x

x>0,
n

ra(x) =

we replace x by r,(x) in (1.1). So, let {r,,(x)}, [0, c0) into itself, be a sequence of continuous functions for any n € N. Then we
have the following modification of the operators G, :

Guel(fi%) = "ipn.k(fn(x); c) /Oxpmm (t; O)f (t)dt + py o (ra(x): O)f (0), 3.1
k=1

for f € C,[0,00), 7 > 0 and x > 0. Hence, in the special case r,(x) =x, n=1,2,..., reduce to original operators (1.1).
Alternatively the operators (3.1) may be written as

Gnelf;x) = /OOC W (x,t; 0)f (t)dt,

where the kernel W, (x,t;c) is defined by

Wa(x,t;¢) = nipn.k(rﬂ(x); )Prscfe1(£5€) + Pao(TaX); €)f (0).
k=1

It is clear that G, are positive and linear operators. For the case ¢ > 0,x € [0,00) and for c = —1,x € [0,1] otherwise the
function is assumed to be zero.
By simple computation we have the following Lemmas for moments.

Lemma 3.1. The operators defined at (3.1) verify the following identities

(i) Cn.c(emx) = 1,
(“) Cn.c(el§x) =X,

“ee s 2 _ 242 2
(iii) Guc(e;x) = w%"zj)"x

Lemma 3.2. For each x > 0, n > 2c and ¢,(t) =t — x, we have

() Gue(@i) =0,
(i) Gre(gp3;x) = Erdecam,
(iii) Goc(@m;x) = O(nlms /2]y,

_ Lemma 3.1 show that our operators Gnc preserve the linear functions, that is, for h(t) = at + b any real constants, we get
Gnc(h;x) = h(x).

4. Error estimations
Let f € Cg[0,00) and x > 0, then the modulus of continuity of f denoted by w(f, ) is defined to be
o(f,0) = sup  |f(t) - f(x)].
X—0<t<x+0;t[0,00)

Then we have the following results.

Theorem 4.1. For every f € Cg[0,00), x € [0,00) and for n € N, we have

Gne(f1%) —f(X)) < Co(f,0nx), n>2c, (4.1)

where
(2n — c)cx? + 2nx
n(n —2c)

5n,x =

Proof. Let f € C3[0,00) and x € [0, o0). Using linearity and monotonicity of G,., we easily obtain, for every 5 > 0 and n € N,
that
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Guelfix) - £00] < 0.0){1+ 5\ /Guclo2i |

Using Lemma 3.2(ii) and choosing § = d, the proof is completed. [

Remark 4.2. For the original Srivastava-Gupta operator G, ., we may write that, for every f € C3[0,0), x € [0,cc) and n € N,
|Gne(f;%) = f(x)] < 20(f, Van), (4.2)

where

n>2c,

_X(1 4+ ex)(2n — ¢) + cx(1 4 3cx)
Vnx = (n—c)(n—2¢) ’

and o(f, va) is the modulus of continuity of f. We claim that the error estimation in Theorem 4.1 is better than that of (4.2)
for f € C3]0,00) and x € [0, c0). Indeed, in order to get this better estimation we must show that J, x < vn,. We can obtain that

2nx + (2n — c)cx? < X(1+cx)(2n —c) + cx(1 + 3¢x)

Onx < Vnx <=

n(n - 2c) = (n—c)(n-2c)
— 2nx + (2n — c)cx? < X(14cx)(2n —c¢) + cx(1 4 3¢x)
n (n—2c)

> 5nc?x? +2nex — x? > 0 <= (5n—c)cx +2n = 0,

which hold true, thus we have d,x < Vny, Which corrects our claim.

Theorem 4.3. Let f be bounded and integrable on [0, ) and admitting second derivative at a point x € [0, o), then

limn [ Goc(f52) = F(0)] = x(1 + 0f"(x). (43)

Proof. By Taylor’s expansion of f, we have

(t—x°
2!

fO)=F@x) + (t = x)f (x) + F(x) + &(t,x)(t — x)*,

where &(t,x) - 0ast — x.
Now

~ _ 2
[Guctfi) - ] = n 2 X L2 4 B(n ),
where

E(n,x)=n /x Wa(x, t; 0)e(t, x)(t — x)*dt.
JOo

To complete the proof of the theorem it is sufficient to show that E(n,x) — 0 as n — cc.
Since &(t,x) — 0 as t — x, hence for a given ¢ > 0 there exists a 6 > 0 such that |&(t,x)| < & whenever |t — x| < é.
Next

E(n,x)gn{ Wn(x,t;c)\a(t,x)\(t—x)zdt+/ Wa(x, t;0)le(t,x)|(t —x)’dt| =1, +1,, (say).

t—x|<o (=D

Application of Lemma 3.2, leads us to
I < én / W, (x, £;0)(t — x)2dt,
Jo
and
(t _ X)Zs

I < Kn/ Wy(x,t;c) 2 dt, s>2=0(n""), where K= sup [e(t,x)|.
0

te[—x,00)

Due to arbitrariness of ¢ > 0, E(n,x) — for sufficiently large n. This completes the proof of the theorem. O
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Remark 4.4. We may note that under the same conditions of Theorem 4.3, for the original Srivastava and Gupta operator
Gnc, We have

imn[Gy.o(f: x) — f(X)] = exf'(x) +x(1 + cx)f"(x). (44)

5. Rate of convergence

Now we compute rate of convergence of the operators of G,. by means of the Lipschitz class Lip,(x), (0 <o < 1). As
usual, we say that f € Cg[0, ) belongs to Lip,,(«) if the inequality

If(6) = fFX)I <Mt —x[*, x,t€[0,00), (5.1)
holds.
Theorem 5.1. If f € Lipy, (), x € [0,00) and n > 2c, we have

_ 217 %/2
Guclf32)(0) —f ()| <M [W

Proof. Since f € Lip,(«) and x > 0, from inequality (5.1) and applying the Hélder inequality with p =2, q =52, we get the
require result. 0O

Remark 5.2. If using Lemma 2.2, for the original operator G,., then we get the following result

_ o/2
R ek

for every f € Lipy (o), x = 0 and n > 2c.

6. Stancu variant

For 1 and y positive numbers with condition 0 < # < 7y and any non negative integer n,
feCl0,00) — GIIf,

we consider Stancu type Srivastava-Gupta operators

620 =13 pustic0) [ s a0 (G )+ o) 61)

For 17 = y = 0 these operators become Srivastava-Gupta operators G (f; x) = G,.(f; x).
Now we first give the following lemma.

Lemma 6.1. Let e;(x) = xi, i = 0,1, 2. Then, for each x > 0 and n > 2c, we have

(i) G’“ (eo,x) =1,

_ n2x+n(n c)
(i) G (en: ) = s

( 7) _ mx{(n+o)x+2}+n? (n ©)(n—2¢)+2nn?x(n— 2c)
(i) Gplc”(e2:%) = (n+7)%(n—c)(n-2c)

Proof. It is easy to verify (i) by using (6.1). For the proof of others, we proceed as follows:

o o nt+ S =
]/ (e1;X) = nzpnk (x;0) /0 Pnici1(6€) <n T ,;/I) <n T ,y> ank (x;0) /(; pn+c,k—](t§ ojtde + (n Z )

_ n’x L _n’x+n(n—c)
S (tp)n-c) (n+y) (n+Pn-o)’

and
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3 nt+n\2 1
Gl (e;X) = nkz:;pn,k(x; 0) / Pricka(tiC) ( = ;’) dt = CERT: [M*Gnc(e2:X) + 1* + 20nGyc(e1;X)]

1 mx{(n+c)x + 2}
C(n+7)? [ (n—c)(n-2c)
_ mx{(n+c)x+ 2} +n*(n—c)(n — 2¢) + 2yn’x(n — 2c) .
(n+7y)*(n —c)(n - 2c)
From Lemma 6.1 we immediately have the following result.

X
+1 +2nn—c}

Lemma 6.2. For each x € [0,00), n € N, n > 2c and with ¢,(t) =t — x, we have

(l) G('?~?’)((p iX) = ”ZXH(’?*X(;(HV)?(”*C)

nc X n+y)(n—c ’

s UBYPR _ mx{(n+0)x+2}+1?(n—c)(n—2c)+2nn?x(n—2c) [n2x+n(n c)] 2
(ll) Gn_c ((PX,X) - (n+y)2(n—c)(n—24:) 2X (n+y)(n—c +Xx°.

We are led to the following asymptotic formula by using Lemma 6.2.

Theorem 6.3. Let f be bounded and integrable on [0, ) and admitting second derivative at a point x € [0, c0), then we have

imn((G)(f, %) = F(x)] = {1+ (€ = )X} (%) +x(1 + cX)f" ().
The proof follows along the lines of Theorem 4.3.

The analogous results of the Theorem 4.1 and Theorem 5.1 can easily be obtained for Stancu variant of Srivastava-Gupta
operators as the methods are similar so we omit the details.
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