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Abstract In the present paper, we studymodified Szász–Durrmeyer positive linear operators
involving Charlier polynomials, one of the discrete orthogonal polynomials which are gen-
eralization of Szász Durrmeyer operators. Also, King type modification of these operators is
given. We obtain uniform convergence of our operators with the help of Korovkin theorem,
asymptotic formula and the order of approximation by using classical modulus of continuity.
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1 Introduction

In the year 1950, for f ∈ C [0,∞), Szász [11] introduced the well-known Szász operators
on half axis as:

Sn ( f ; x) =
∞∑

k=0

e−nx (nx)k

k! f

(
k

n

)
, x ∈ [0,∞) . (1.1)

Jakimovski and Leviatan [6] introduced a Favard–Szász type operators by using Appell
polynomials. Later, Ciupa [1] studied the following Durrmeyer type integral modification of
these operators:

Pn ( f ; x) = nλ+k+1

�(λ + k + 1)

e−nx

g(1)

∞∑

k=0

pk(nx)
∫ ∞

0
e−nt tλ+k f (t)dt, x ∈ [0,∞), (1.2)

B Minakshi Dhamija
minakshidhamija11@gmail.com

Naokant Deo
naokantdeo@dce.ac.in

1 Department of Applied Mathematics, Delhi Technological University (Formerly Delhi College of
Engineering), Bawana Road, Delhi 110042, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13370-017-0537-1&domain=pdf


N. Deo, M. Dhamija

where pk(x) ≥ 0 is Appell polynomial defined as:

g(u)eux =
∞∑

k=0

pk(x)u
k

and g(z) =∑∞
n=0 anz

n is an analytic function in the disk |z| < R(R > 1) and g(1) �= 0.
Ismail [5] defined the generating function of Poisson–Charlier polynomials Ck(u; a) by

∞∑

k=0

Ck(u; a)
tk

k! = et
(
1 − t

a

)u

, |t | < a, (1.3)

where

Ck(u; a) =
k∑

r=0

(
k
r

)
(−u)r

(
1

a

)r

and (α)k is the Pochhammer’s symbol given as:

(α)0 = 1, (α)k = �(α + k)

�(α)
= α(α + 1)...(α + k − 1), k = 1, 2, ....

These Poisson–Charlier polynomials are positive for a > 0 and u ≤ a.
Recently, Varma and Taşdelen [15] introduced positive linear operators involving Charlier

polynomials, one of the discrete orthogonal polynomials which were generalization of Szász
operators:

Ln ( f ; x, a) = e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (−(a − 1)nx; a)

k! f

(
k

n

)
, a > 1, (1.4)

and they derive some direct results concerning uniform convergence and degree of approxi-
mation by using classical modulus of continuity.

Motivated from [1,15], for f ∈ C [0,∞), we consider Durrmeyer type Charlier–Szász
positive linear operators

Vn ( f ; x, a) := e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (−(a − 1)nx; a)

k!
nλ+k+1

�(λ + k + 1)

×
∫ ∞

0
e−nt tλ+k f (t)dt, (1.5)

where a > 1, λ ≥ 0, x ∈ [0,∞) and � is gamma function. As a → ∞ and λ = 0, we
obtain again Szász–Durrmeyer operators introduced by Mazhar and Totik [8]. Work done
by various researchers for Durrmeyer operators as well as operators associated with some
polynomial can be seen in [2,3,9,10,12–14,16].

The aim of this paper is to present the above Durrmeyer variant i.e. operators (1.5) along-
with its King type modification, studying in each case uniform convergence, asymptotic
formula and degree of approximation by using modulus of continuity. In the last section we
give only the definition and moments of king type modification of operators (1.4) and we let
an open gate for further research.
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2 Auxiliary results and degree of approximation

In this section, first we give some basic definitions and lemmas. With the help of well-known
Korovkin theorem, we state our main theorem and then calculate the rate of convergence by
classical modulus of continuity, second modulus of continuity and Peetre’s K-functional.

Definition 2.1 For δ > 0 and f ∈ C̃[0,∞), the modulus of continuity ω( f ; δ) of the
function f is defined by

ω ( f ; δ) := sup
x,y∈[0,∞)

|x−y|≤δ

| f (x) − f (y)| , (2.1)

where C̃[0,∞) is the space of uniformly continuous functions on [0,∞). Then, for any
δ > 0 and each x ∈ [0,∞), it is well known that one can write

| f (x) − f (y)| � ω ( f ; δ)

( |x − y|
δ

+ 1

)
. (2.2)

Definition 2.2 For f ∈ C̃B [0,∞), the second modulus of continuity of ‘ f ’ is defined by

ω2 ( f ; δ) := sup
0<t≤δ

‖ f (x + 2t) − 2 f (x + t) + f (x)‖C̃B
, (2.3)

where C̃B [0,∞) is the class of real valued bounded and uniformly continuous functions
defined on [0,∞) and ‖ f ‖

C̃B
= supx∈[0,∞) | f (x)| .

Definition 2.3 Peetre’s K-functional for the function f ∈ C̃B [0,∞) is defined by

K ( f ; δ) := inf
g∈C̃2

B [0,∞)

{
‖ f − g‖C̃B

+ δ‖g‖C̃2
B

}
, (2.4)

where

C̃2
B [0,∞) =

{
g ∈ C̃B [0,∞) : g′, g′′ ∈ C̃B [0,∞)

}

and norm ‖g‖C̃2
B

:= ‖g‖C̃B
+∥∥g′∥∥

C̃B
+∥∥g′′∥∥

C̃B
. From the above definitions, we can conclude

the following inequality:

K ( f ; δ) ≤ M
{
ω2

(
f ;√

δ
)

+ min (1, δ) ‖ f ‖
C̃B

}
, ∀δ > 0 (2.5)

The constant M does not depend upon f and δ.

Let us define the class H as follows:

H :=
{
f : x ∈ [0,∞) ,

f (x)

1 + x2
is convergent as x → ∞

}
.

Lemma 2.4 [15] The operators given by (1.4) satisfy the following equalities:

Ln (1; x, a) = 1,

Ln (t; x, a) = x + 1

n
,

Ln
(
t2; x, a) = x2 + x

n

(
3 + 1

a − 1

)
+ 2

n2
,

where x ≥ 0.
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Lemma 2.5 The operators Vn satisfy the following equalities

Vn (1; x, a) = 1, (2.6)

Vn (t; x, a) = x + (λ + 2)

n
, (2.7)

Vn
(
t2; x, a) = x2 + x

n

{
1

a − 1
+ 2 (λ + 3)

}
+ 1

n2
{
λ2 + 5λ + 7

}
. (2.8)

Proof We can easily obtain above three assertions with the help of Charlier polynomials
(1.3). �
Remark 2.6 For Vn ( f ; x, a) operators, verify that

Vn (t − x; x, a) = (λ + 2)

n

and

Vn
(
(t − x)2; x, a) = x

n

(
2a − 1

a − 1

)
+ 1

n2
(λ2 + 5λ + 7).

Proof Using Lemma 2.5 and linearity of operators Vn ( f ; x, a), it is easy to prove the above
result. �
Lemma 2.7 [4] Let g ∈ C2 [0, b] and for n ≥ 1, {Ln (g; x)} be a sequence of positive
linear operators with the property Ln (1; x) = 1. Then

|Ln (g; x) − g (x)| ≤ ∥∥g′∥∥
√
Ln
(
(t − x)2; x)+ 1

2

∥∥g′′∥∥ Ln
(
(t − x)2; x) . (2.9)

Lemma 2.8 [17] For f ∈ C[a, b] and h ∈ (0, b−a
2 ), let fh be the second order Steklov

function attached to the function f . Then we have the following inequalities:

‖ fh − f ‖ ≤ 3

4
ω2 ( f ; h) , (2.10)

∥∥ f ′′
h

∥∥ ≤ 3

2h2
ω2 ( f ; h) . (2.11)

Theorem 2.9 Let f ∈ C[0,∞)
⋂

H, then we have

lim
n→∞ Vn ( f ; x, a) = f (x)

uniformly on each compact subset of [0,∞).

Proof By using Lemma 2.5, we have

lim
n→∞ Vn

(
t i ; x, a

)
= xi , i = 0, 1, 2

uniformly on each compact subset of [0,∞).
Hence, by applying well known Korovkin theorem, we obtain the desired results. �
We establish the asymptotic behavior of operators (1.5) by giving a Voronovskaja type the-
orem.

123



Charlier–Szász–Durrmeyer type positive linear operators

Theorem 2.10 Let f be a bounded and integrable function on [0,∞). If there exists first
and second derivative of the function f at a fixed point x ∈ [0,∞), then

lim
n→∞ n (Vn ( f ; x, a) − f (x)) = (λ + 2) f ′ (x) + 1

2
x

(
2a − 1

a − 1

)
f ′′(x).

Proof Using Taylor’s expansion formula of function f , it follows

f (t) = f (x) + (t − x) f ′(x) + 1

2! (t − x)2 f ′′(x) + ε(t, x)(t − x)2,

where ε(t, x) := ε(t − x) is a bounded function and limt→xε(t, x) = 0. Taking into account
the linearity of modified Szász Durrmeyer operators and then apply the operators Vn on both
sides of above equation, we get

Vn ( f ; x, a) − f (x) = Vn (t − x; x, a) f ′(x) + 1

2
Vn
(
(t − x)2; x, a) f ′′(x)

+Vn
(
ε(t, x) · (t − x)2; x, a) .

Therefore using Remark 2.6, we get

lim
n→∞ n (Vn ( f ; x, a) − f (x)) = (λ + 2) f ′ (x) + 1

2
x

(
2a − 1

a − 1

)
f ′′(x)

+ lim
n→∞ n

(
Vn
(
ε(t, x) · (t − x)2; x, a)) . (2.12)

We estimate the last term on the right hand side of the above equality, applying the
Cauchy–Schwarz inequality, such that

Vn
(
ε(t, x) · (t − x)2; x, a) ≤

√
Vn
(
ε2(t, x); x, a)

√
Vn
(
(t − x)4; x, a) . (2.13)

Because ε2(x, x) = 0 and ε2(·, x) ∈ C[0,∞)
⋂

H , using the convergence from Theo-
rem 2.9, we get

lim
n→∞ Vn

(
ε2(t, x); x, a) = ε2(x, x) = 0. (2.14)

Therefore, from (2.13) and (2.14) yields

lim
n→∞ n

(
Vn
(
ε(t, x) · (e1 − x)2; x, a)) = 0

and using (2.12) we obtain the asymptotic behavior of operators (1.5). �

Now, we find the rate of convergence by following theorems:

Theorem 2.11 Let f ∈ C̃[0,∞)
⋂

H, then the operators Vn satisfy:

|Vn ( f ; x, a) − f (x)| ≤ 2ω
(
f ;√γn (x)

)
,

where

γn(x) = Vn
(
(t − x)2; x, a) = x

n

(
2a − 1

a − 1

)
+ 1

n2
(λ2 + 5λ + 7). (2.15)
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Proof By using Lemma 2.5 and property of modulus of continuity, we have

|Vn ( f ; x, a) − f (x)| ≤ e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (− (a − 1) nx; a)

k!

× nλ+k+1

� (λ + k + 1)

∞∫

0

e−nt tλ+k | f (t) − f (x)| dt

≤
{
1 + 1

δ
e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (− (a − 1) nx; a)

k!

× nλ+k+1

� (λ + k + 1)

∞∫

0

e−nt tλ+k |t − x | dt
⎫
⎬

⎭ω ( f ; δ) .

Now applying Cauchy–Schwarz inequality for the integral, we get

|Vn ( f ; x, a) − f (x)| ≤
⎧
⎨

⎩1 + 1

δ
e−1

(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (− (a − 1) nx; a)

k!

× nλ+k+1

� (λ + k + 1)

⎛

⎝
∞∫

0

e−nt tλ+kdt

⎞

⎠
1/2⎛

⎝
∞∫

0

e−nt tλ+k (t − x)2dt

⎞

⎠
1/2
⎫
⎪⎬

⎪⎭
ω ( f ; δ) .

Once again using Cauchy–Schwarz inequality for sum, we obtain

|Vn ( f ; x, a) − f (x)| ≤
{
1 + 1

δ

(
e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (− (a − 1) nx; a)

k!

× nλ+k+1

� (λ + k + 1)

∞∫

0

e−nt tλ+kdt

)1/2

×
(
e−1
(
1 − 1

a

)(a−1)nx ∞∑

k=0

Ck (− (a − 1) nx; a)

k!

× nλ+k+1

� (λ + k + 1)

∞∫

0

e−nt tλ+k(t − x)2dt

)1/2}
ω ( f ; δ)

=
{
1 + 1

δ
(Vn (1; x, a))1/2

(
Vn
(
(t − x)2; x, a))1/2

}
ω ( f ; δ) .

Choose δ = √
γn (x) and using Lemma 2.5, we have

|Vn ( f ; x, a) − f (x)| ≤ 2ω
(
f ;√γn (x)

)
,

which is the desired result. �

Theorem 2.12 If f ∈ C̃2
B [0,∞) then we have

|Vn ( f ; x, a) − f (x)| ≤ 1

n
μ (x) ‖ f ‖C̃2

B
,
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where

μ (x) = 2a − 1

2 (a − 1)
x + 1

2

(
λ2 + 7λ + 11

)
.

Proof By Taylor’s formula

f (t) = f (x) + f ′ (x) (t − x) + f ′′ (η)
(t − x)2

2
, η ∈ (x, t) .

The linearity property of the operators Vn and (2.6) gives that

Vn ( f ; x, a) − f (x) = f ′ (x) Vn ((t − x) ; x, a) + f ′′ (η)

2
Vn
(
(t − x)2; x, a) .

Using Lemma 2.5 in above result, we have

|Vn ( f ; x, a) − f (x)| ≤
(

λ + 2

n

)∥∥ f ′∥∥
C̃B

+ 1

2

[
x

n

(
2a − 1

a − 1

)
+ 1

n2
(
λ2 + 5λ + 7

)] ∥∥ f ′′∥∥
C̃B

≤ 1

n

[
1

2

(
2a − 1

a − 1

)
x + (λ2 + 6λ + 9

)] ‖ f ‖C̃2
B

= 1

n
μ (x) ‖ f ‖C̃2

B
,

which is required result. �
Theorem 2.13 Let f ∈ C̃B [0,∞), then

|Vn ( f ; x, a) − f (x)| ≤ 2M
(
ω2 ( f, h) + min

(
1, h2

)) ‖ f ‖C̃B
,

where

h :=
√

μ (x)

2n
.

Proof Let g ∈ C̃2
B [0,∞) then by using Theorem 2.12, we have

|Vn ( f ; x, a) − f (x)| ≤ |Vn ( f − g; x, a)|
+ |Vn (g; x, a) − g (x)| + |g (x) − f (x)|

≤ 2

[
‖ f − g‖C̃B

+ 1

2n

{
1

2

(
2a − 1

a − 1

)
x

+ (λ2 + 6λ + 9
)} ‖g‖C̃2

B

]
.

Since L.H.S of above inequality does not depend upon g, so by choosing h :=
√

μ(x)
2n , we

get

|Vn ( f ; x, a) − f (x)| ≤ 2K
(
f, h2

)
.

Now, using the relation between Peetre’s K-functional and second modulus of continuity, we
get desired result. �
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3 King type modification

In this section, we discuss better convergence rates by King type operators. King [7] studied
an interesting class of Bernstein operators which preserves e0 and e2. For f ∈ C [0, 1]

(Bn f ) (x) =
n∑

k=0

(
n
k

)
rkn (x) (1 − rn(x))

n−k f

(
k

n

)
, x ∈ [0, 1] ,

where {rn (x)} is a sequence of continuous functions on [0, 1] with 0 � rn (x) � 1. For
rn(x) = x, n ∈ N; operators Bn become classical Bernstein operators.

Using this King’s idea, now we assume that {sn} be a sequence of continuous functions
on [0,∞) such that after replacing sn (x) by x in Vn( f ; x, a), we get modified Durrmeyer
type Charlier–Szász positive linear operators:

V̂n ( f ; x, a) := e−1
(
1 − 1

a

)(a−1)nsn(x) ∞∑

k=0

Ck (−(a − 1)nsn (x) ; a)

k!
nλ+k+1

� (λ + k + 1)

×
∫ ∞

0
e−nt tλ+k f (t)dt, (3.1)

where sn (x) = nx−λ−2
n , a > 1 and x ≥ 0.

Next, we give basic lemmas for moments which are helpful to present main theorems on
the same line as in case of operators (1.5).

Lemma 3.1 The operators V̂n ( f ; x, a) satisfy following equalities:

V̂n (1; x, a) = 1,

V̂n (t; x, a) = x,

V̂n
(
t2; x, a) = x2 + x

n

(
2a − 1

a − 1

)
− 1

n2

{
(4a − 3) λ + (a + 1)

a − 1

}
.

Proof It is very easy to prove above equalities by using Lemma 2.5. �
Remark 3.2 For V̂n ( f ; x, a) operators, verify that

V̂n
(
(t − x)2; x, a) = x

n

(
2a − 1

a − 1

)
− 1

n2

{
(4a − 3) λ + (a + 1)

a − 1

}
.

Proof Using Lemma 3.1 and linearity of operators V̂n ( f ; x, a) , it is easy to prove the above
result. �
Theorem 3.3 Let f ∈ C[0,∞)

⋂
H, then

lim
n→∞ V̂n ( f ; x, a) = f (x),

uniformly on each compact subset of [0,∞).

Proof By using Lemma 3.1, we have

lim
n→∞ V̂n

(
t i ; x, a

)
= xi , i = 0, 1, 2

uniformly on each compact subset of [0,∞).
Hence, by applying Korovkin theorem, we get the desired result. �
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Theorem 3.4 Let f be a bounded and integrable function on [0,∞) having first and second
derivative of the function f at a fixed point x ∈ [0,∞), then

lim
n→∞ n

(
V̂n ( f ; x, a) − f (x)

)
= 1

2
x

(
2a − 1

a − 1

)
f ′′(x).

Theorem 3.5 Let f ∈ C̃[0,∞)
⋂

H, then the operators V̂n satisfy:
∣∣∣V̂n ( f ; x, a) − f (x)

∣∣∣ ≤ 2ω
(
f ;√αn (x)

)
,

where

αn(x) = x

n

(
2a − 1

a − 1

)
− 1

n2

{
(4a − 3) λ + (a + 1)

a − 1

}
. (3.2)

Theorem 3.6 If f ∈ C̃2
B [0,∞) then we have
∣∣∣V̂n ( f ; x, a) − f (x)

∣∣∣ ≤ 1

n
β (x) ‖ f ‖C̃2

B
,

where

β (x) = 2a − 1

2 (a − 1)
x + 1

2

{
(4a − 3) λ + (a + 1)

a − 1

}
.

Theorem 3.7 Let f ∈ C̃B [0,∞), then
∣∣∣V̂n ( f ; x, a) − f (x)

∣∣∣ ≤ 2M
(
ω2 ( f, h) + min

(
1, h2

)) ‖ f ‖C̃B
,

where

h :=
√

β (x)

2n
.

Remark 3.8 Now we claim that the error estimation obtained in (3.2) is better than (2.15)
for f ∈ C̃[0,∞)

⋂
H , a > 1, λ ≥ 0, x ∈ [0,∞), and n ∈ N . To prove this claim we must

show that αn(x) ≤ γn(x).
Now

αn(x) ≤ γn(x) ⇔ x

n

(
2a − 1

a − 1

)
− 1

n2

{
(4a − 3) λ + (a + 1)

a − 1

}

≤ x

n

(
2a − 1

a − 1

)
+ 1

n2
(λ2 + 5λ + 7)

⇔ λ2 +
(
9a − 8

a − 1

)
λ + 8a − 6

a − 1
≥ 0,

which is true as λ ≥ 0, a > 1.

Remark 3.9 Now we define a King type modification of Ln operators and give basic lemma
for this operator:

L̂n ( f ; x, a) = e−1
(
1 − 1

a

)(a−1)nrn(x) ∞∑

k=0

Ck (− (a − 1) nrn (x); a)

k! f

(
k

n

)
,

where rn (x) = nx−1
n , a > 1 and x ≥ 0.
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Lemma 3.10 The operators L̂n ( f ; x, a) satisfy following equalities:

L̂n (1; x, a) = 1,

L̂n (t; x, a) = x,

L̂n
(
t2; x, a) = x2 + x

n

(
a

a − 1

)
− 1

n2

{
1

a − 1

}
.

Acknowledgements Theauthors are extremely thankful to the referee for valuable comments and suggestions,
leading to a better presentation of the paper.

References

1. Ciupa, A.: On the approximation by Favard–Szász type operators. Rev. Anal. Nuḿer. Théor. Approx. 25,
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