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Abstract

The paper deals with generalized positive linear operators based on Polya—Eggenberger distribution (PED) as well as
inverse Polya—Eggenberger distribution (IPED). Initially, we give the moments using Stirling numbers of second kind and

then establish direct results for proposed operators.
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1 Introduction

In the year 1968, Stancu Stancu (1968) introduced a new
class of positive linear operators based on Pélya—Eggen-
berger distribution (PED) and associated with a real-valued
function on [0,1] as:

n [k,—] 1 — [n—k,—0o] k
o =Y (D)5 (5).

k=0

where o is a non-negative parameter which may depend
only on the natural number n and " =t — h)
(t—2h) - (t —n — 1h), 0% =1 represents the facto-
rial power of ¢ with increment A.

Later on, Stancu Stancu (1970) introduced a generalized
form of the Baskakov operators based on inverse Pdolya—
Eggenberger distribution (IPED) for a real-valued function
bounded on [0, ), given by

< Minakshi Dhamija
minakshidhamijall@gmail.com

Naokant Deo
naokantdeo@dce.ac.in; dr_naokant_deo@yahoo.com

Department of Applied Mathematics, Delhi Technological
University, Formerly Delhi College of Engineering, Bawana
Road, Delhi 110042, India

Department of Mathematics, Shaheed Rajguru College of
Applied Sciences for Women, University of Delhi,
Vasundhara Enclave, Delhi 110096, India

Published online: 25 January 2018

S _ [n,—a] ,.[k,—0] k
Oy =S (T T Lk
Vn (f’x) - ( k (1_~_x)[n+k,—:x]f n) (2)

k=0

Now we consider new positive linear operators LE,“), for
each f, real-valued function bounded on interval I, as:

k
LY (f:x) = Z%ﬁ(@f(;), xeln=12.., (3)
k

where o = o(n) — 0 when n — oo, p and k are nonnega-
tive integers and for 1 = —1,0, we have

P 4+ 1k
oy = tp (1o

' n+p+i+1k k

[T (e + o) [T28 7" (1 4 o+ i)
[T (1 4+ T4 T+ i)
n+p <n+p+i+1k>

Cn+p+i+tlk k

x[k,—a](l +;Lx)[n+p+ik7—x]

) [n+p+7+1k,—a]’

(1+2+41x

using the notation 77 — ro. = (m — r)a. Operator (3) is the
generalized form of above two operators (1) and (2) and
associated with PED and IPED (Eggenberger and Pdlya
1923).

Kantorovich form of Stancu operators (1) had been
given by Razi (1989) and he studied its convergence
properties and degree of approximation. Ispir et al. (2015)
also discussed the Kantorovich form of operators (1) and
they estimated the rate of convergence for absolutely
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continuous functions having a derivative coinciding a.e.
with a function of bounded variation. Recently, Miclaus
(2014) established some approximation results for the
Stancu operators (1) and its Durrmeyer type integral
modification was studied by Gupta and Rassias (2014) and
obtained some direct results which include an asymptotic
formula, local and global approximation results for these
operators in terms of modulus of continuity.

Very recently, Durrmeyer type modification of gener-
alized Baskakov operators (2) associated with IPED was
introduced by Dhamija and Deo (2016) and studied the
moments with the help of Vandermonde convolution for-
mula and then gave approximation properties of these
operators which include uniform convergence and degree
of approximation. Deo et al. (2016) also investigated
approximation properties of Kantorovich variant of oper-
ators (2) and they established uniform convergence,
asymptotic formula and degree of approximation. Various
Durrmeyer type modifications and then their local
approximation along with some other approximation
behaviour have been discussed by many authors, e.g. Deo
(2012), Jung et al. (2014) and Gupta and Agarwal (2014).

The main object of this paper is to find moments of
proposed operators up to order 4, with the help of Stirling
numbers of the second kind (see Miclaus 2012c¢); however,
we will use only moments till order 2 to estimate the rate of
convergence of operators (3) via local approximation and
rest moments are an open gate for future research to obtain
other approximation properties of same operators as well as
for their different modifications.

Throughout this paper, we consider interval I = [0, c0)
for A=0and I =0,1] for A = —1.

2 Special Cases

It is easy to understand that the special cases of opera-
tors (3) are as follows:

ey

For /. = —1; we have

(i) Whena#0#p

n+p +p
g => ("))
2
[T (x4 i) TTE " (1 — x + i) 7 (k)
1507 (1 + i)

This leads
operators.
When o # 0,p = 0 we get alternate form of
operators (1) as:

to Schurer type Stancu

(i)

72, €\ Springer

n .

(iii)

@iv)

For A =
()

@

(ii)

(iii)

T e+ i) 1 (1 —x+ ioc)f(k)

T (1 + i) n)’

Particular case: when o= 1/n,p =0, we
obtain Lupas and Lupas (1987) operators
as:

LY (f;x)

n—

ﬁl (1xn+i)f<§>.

i

:?Z(Z'))'Z (Z) ﬁ(nx+i)

" k=0 i=0

When o =0,p #0, we have Bernstein—
Schurer operators (Schurer 1962) as:

L) =S ( :”)x"u *)f(é)

k=0

When o=0,p=0 we obtain original
Bernstein operators (Bernstein 1912) as:

Lo =3 (- (2),

k=0

0, we obtain the following operators:

When o # 0 # p, we have Stancu—Schurer
operators as:

= (ntptk—1
g => (")

k=0
[T (i) [T (1 + i) 7 <k>

[T (14 x+ i)

n

When o #0,p =0, we obtain alternate
form of operators (2) as:

LO(f: ) :i <n+l;— 1)

k=0
[T (x+ i) T (1 + i) f<k>
[T (bx i) 7 \n/
When o« =0,p#0, we get Baskakov—
Schurer operators as:

Ly)(f;x):i<n+p+k—l>x_"

k=0 k

(1 +x)" Py (E) ,

n
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(iv) When o =0,p =0, we obtain classical
Baskakov operators (Baskakov 1957) as:

o -2 ) ()

k=0

3 Preliminary Results

In 1730, Stirling (1730) introduced an important concept of
numbers, useful in various branches of mathematics like
number theory, calculus of Bernstein polynomials, etc.,
known as Stirling numbers of first kind and afterwards
Stirling numbers of second kind. Let R be the set of real
numbers and N, a collection of natural numbers with
No = N U{0}. For x € R and i,j € N, let S(j, i) denote
the Stirling numbers of second kind, then

= Z S(j’ i)(x)z

with alternate form

j—1
= Zs(faj - i)(x)jfi’ (4)
i=0
such that
i—1
(), = [[x—n)
n=0

is falling factorial. Also, these numbers have the following
properties:

1, ifj=i=0;j=iorj>1,i=1
0, ifj>0,i=0

SG.i) = e
0, if j<i

iSG—1,i)+SG—1,i—1), ifji>1.

(5)

These Stirling numbers of second kind are very useful in
calculating the moments of linear positive operators,
especially for higher order moments. Miclaug (2012a, b)
obtained higher order moments for Bernstein type opera-
tors using these numbers. In what follows, we shall find the

moments of LE,“) given by (3)with the help of same. Let us
recall the monomials e;(x) =x/,j € Ny be the test
functions.

Lemma 1 For the monomial t/,
t,x € I, we have

LY ZS(IJ

where j € N, and

; =i
"+P1[1 i+(2+1),—0]’

where
P (n+p)(‘/71)a A=—1
Pnip = (i) :
(n+p)V ", 1=0
0, =TI 0 =), () =1 and )" =

H;:Ol (y+1), (y)(o) =1 are, respectively, the falling fac-
torial and rising factorial with y € R and n € N.

Proof For 4 = —1, we have
n+p
k/
L) =Y wii(x)
" k=0 n/
n+p

?\1—‘

- o

wf ZS(J]*I i
G

i=0

~

1
— [so/—z>(n+p>
ntp <n+p7j+l>x[’ i or](x+( ) )[k —j+i, a](l 7x)[n+/)—k<—z]
i k—j+i 1[119<1+(] ) (n+p—j+i,—o]
l] 1 lj—i,—o 1+ o [n+p—j+i,—a]
S l n+pl‘X ( (] ))n+ j+i,—
p V(1 (j = i)
1 yli—i—=a]

j-1
*;;*ﬂ//")("*’p), i

And for A = 0, we have

1
=— S(i.j — i)(k);_;

W k=0 i=0 !

L&) & n+p+k—1
== S(.Jj— I)Z(k)‘,;f

w i=0 k=0 k

y K= (x+ (j — i) [k*j+i~*1]1[j—i‘—oc](1 + (- l-)a)[nﬂrfjﬂ,*a]_
(1 +x)[n+p+k,—x]

1 & = ntptk—1

== "18(,j —i)(n+p)¥™ < )
VS [swi-amen s ([0t

) )n+p—j+i,—a]_

))[kﬁrr —a =i, x(1+(]

w4 (-
X (1 +x)[n+p+k o)

14t xli=i—a

ZS(]]—I)(}’Z‘FPY 1[1 i+1,—d]

By combining both cases (A= —1and0), we get the
required result. O

Lemma 2 For the generalized positive linear opera-
tors, (3) holds

n—+ *
Lﬁ“)(l;x) =1, le“)(t;x) - ( np> (1 —ma) 7

+p 1

L& (2 x) = n —

w (15%) ( n? )(1_,1a)(1—,1+1<x)

" [(n—&-p—l—i—i-l)x(x—i—a)
1 -2+ la

+x(1+/lx)},
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L) (3

(n+p+2i+1)(n+p+222+1)(x + o) (x + 2)
(1 =32+ 2a)(1 — 57+ 3x)

3n+p+2i+1)(x+a)

+ — + 11,
(1-32+2x)
and
@4y (ntp)x
L = )

y (m+p+22+1)(n+p+222+1)(n+p+32A+1)(x + o) (x + 20) (x + 32)

(1 =37+ 2x) (1 =52+ 30) (1 = 77+ 4x)
+6(n+p+2/1+1)(n+p+22/1+1)(x+o<)(x+21)
(1=3242x)(1 =54+ 3x)

Tn+p+22+1)(x+a)
(1-32+22)

+ 1.

Proof From the definition of operators (3), we can obtain

the moment for j = 0, i. e., Lﬁl“)(l;x) =1.

Also by the application of Lemma 1 forj = 1,2, 3,4 and
taking into account the relation (5), we can follow the
values of remaining moments. O

Further, to obtain the central moments of generalized
positive operators (3), we use the following result:

Lemma 3 (Gonska et al. 2006) Let V be any linear
operators then

V((t — x)j;x) = V(tj;x) — Ji ({)xj_iV((t — X)i;x)a

i—0 \!

and in the case when V(t/;x) = x/, forj = 0, 1, then we get

v((: —x)3;x) =V(Fix) - - 3xV((t —x)z;x),

and

V((t —x)4;x) =V(*x) —x* — 4xV<(t —x)3;x)
—|—6x2V((t —x)z;x).

Lemma 4 The generalized linear positive operators (3)

satisfy
(p+ ni+ 1o)x

L(“>(t—x x) = (1—A+10€) ,

(6)

22, Q) Springer

_ n+p
n(1—2a)(1— 4+ 1a)
nx

{(1 — Ja)(1 —moc)n+p
, L (O
(m+p+i+1)x(x+ o)
n(1 —Zmac)
x(1 + Jx)
L

LY (([ _ x)3;x> _(ntpaxix+a)

2

2(1 — Ja)x?

3(n+p+2i+1)

3(n+pt it x }
n%)

n(l1-32+22) (1 ,M)( 20+
(n+p)x {i_ <px+/u+loc>
n(lfmoc) n?
3 x(1+ )
N
DY) PO U ) ,
n(l—7+ 1)
(8)
o 4\ _(n+ )x(x + o)
L,U((t X) ’x)inz(lpfiifla)

N (n+p+22+1)(n+p+22i+1)(n+p+322+1)(x+ 2x)(x + 32)

(1 =37+ 20) (1 — 54+ 39) (1 — 7/ + 4a)
+2(3—2mc)(n-',—p-',—2/1+ 1)(n+p+227+1)(x+20)
n2(1 =37+ 2a) (1 — 57+ 30)

6(n+p+ai+1)x? }

(7—12nx)(n+p+27+1)

w2 (1 =37+ 22) (1= 7901 - 20+ 1))
(n+p)x 1 —4nx 5 (px+ A+ 1\ 6x3(1 + Jx)
R )[ *8"( n+p) )n(l—m)]
_Amn+p)
+3x* 3 - n( s 10() .

9)
Proof The combined use of Lemma 2 and 3 will follow
the proof. O

Lemma 5 For positive linear operators (3), there holds
LY (0] < 171,
where

171 = supif )]

Proof From operators (3) and the fact that |L,(f‘)(1 x)| =1,
we have
00 x 0 " k
=2 < vl
pa k=0 n
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4 Direct Results

Let Cg(I) be the space of all the real-valued continuous and
bounded functions f on the interval I, endowed with the
norm | f]|.

For f € Cg(I), the Peetre’s K—functional is defined by

Kx(f;0) := inf {[If —gll +dllg"[I}, 6 >0,
geCy(0)

where C3(I) = {g € Cs(I): g',g" € Cg(I)}. By DeVore
and Lorentz (1993, p.177. Theorem 2.4), there exists an
absolute constant C > 0 such that

Ka(f:0) < Con (f; \/5) (10)

where m; (f ; \/5) is the second-order modulus of conti-
nuity defined by
w2<f; \/5) = sup sup|f(x+2h) —2f(x + h) + f(x)].

0<h<y/3 x€l

Also the first-order modulus of smoothness(or simply
modulus of continuity) is given by

o{VE) = s supite 1) —rGol
0<h<Vo YEl
Theorem 1 For f € Cg(I), we have

Do) )| < oof ¢ PEE ARG D2
LY (F50) = f()] < <f7n(1_(/1+1)a)>

Y,
—|—CCL)2 faf )

where C is a positive constant and

px +nx(7 + 1)a}2

Ui () = LY ((t - x)z;x) + {n(l — (A + 1)a)

Proof First, we consider auxiliary operators

l:n(“)(f;x) _ Lf,“)(f;x) +f(x) —f(n :p. 1= ()T—i— l)oc).

(11)

In view of first and second formula in Lemma 2, we

observed that for all x € I, operators ﬁn(“)(f ;x) are linear
such that

LAn(GC)(l;x) =1 and lA,nm(t;x) =x,
i. e., preserve linear functions. Therefore

P2

L, (t—x;x)=0. (12)

Let g € C3(I) and t,x € I then Taylor’s theorem implies

we can write

) (g0) = 8() = &/ (L (0 = 0)3x) + LY

Hence, we have

V@M—AM<W(

n+p

#(=m) np ”
+/X ( n 1— (At D ”)g ()du.

Since U; (t— u)g"(u)du’ < (r— X)ZHgNH and

% n+p X ”
— d
/x ( n 1—(A+1)a u)g (1) du

n+p X 2
< _ //.
{ n 1— (At 1) x} el

Therefore, (13) implies that

L) (g:x) — g(x)]

< {LE,’)((Z —x)%ix) + {ﬂ (m) —}} "l
< {Ll(lw) (=) {m}z}
lg"ll-

; 2
Take W) = 1 () {5 )
Therefore

+

|7 (g:x) — g(x)| < W @)llg" (14)

Again using definition of auxiliary operators and note
Lemma 5, we have

LA ((f - g);x)| < 3IIf — gl

Thus, we get

2, @) Springer
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D((f - g)ix)| + lglx) — f(%)]
) (g:x) — g(x)|

n+p X
( " 1—(z+1)a> _f(x)‘
<4lf gl + v @)g" I+

)

=

i

L (f52) — £ ()]

=~

+ + A

Taking infimum on both the sides over g € C3(1),

@),
LY (%) = £(x)] <4K> (f; ‘”4”)

px+nx(A+1)a
ol R)
Hence by (10), we get

@),
LY (F5x) = £(x)] < Con f;w;’}'()

px+nx(A+1)a
*‘”(f’nu Yy 1>a>)'

O
We consider the following Lipschitz-type space
(see Ozarslan and Duman 2010)
Lipy (B) :=
_ y—x"
fE CB(I) : lf(y) _f(x)| < Miﬁ/z?xvy € (OVOO) ’
(x+)
where M is a positive constant and 0<f§ < 1.
Theorem 2 For all xel and
f € Lipyy(B), 0<p € (0,1], we get
B/2
(@)
L& (72x) — 1] < M<¢—”> 7 (15)
X

where ¢\ (x) = LY ((t - x)2;x).
Proof Assume that § = 1. Then, for f € Lip;,(1), we have

L0 = £(x)] < Y 0l (k) )
k=0

S o @l (K i

M)

Applying Cauchy—Schwarz inequality for sum and \/1_ <

k
;er

22, Q) Springer

ﬁ along with (3) as well as linearity of LY (f;x) , we have

2 1/2
L0 (f3) — )] < %zw;@z@{ (t-) }

Therefore, the result is true for f = 1.
Now, we prove the required result for 0<pf<1.
Consider f € Lip;,(B)

00 y k
5055~ 0] < 3 ool (2) -~ <
k=0
% s =
M;wn,k X W

Using Holder’s inequality for sum with p =2/f,q =
2/(2 — B) and inequality \/ﬁ < \/L;’ we have

O
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