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1. Introduction

We denote C"[a, b,k =0,1,2,... the set of all real-valued functions, which are defined and k-times continuously differ-
entiable on the interval (to be closed, half-open and open) [a, b](b > 0) of the real axis and f® (x) = O(x*), (o is a positive inte-
ger) as X — oo.

In [1], Baskakov introduced the sequence of positive linear operators {L,},n € N, L, : C°[a,00) — C°[0,R],R > 0, which is
defined as follows:

00 _ k
o= e () (1)

k=0 n

and is generated by a sequence of functions {¢,}, ¢, : C — C, possess the following properties:

(i) ¢, is analytic on the interval [0, R];

(i) ¢,(0) =1;

(iii) (-1)*¢®(x) > 0if k=10,1,2,... and x € [0,R], i.e., ¢, is completely monotone on [0, R];
(iv) there exists a positive integer m(n), not depending on k, such that

¢ (x) = —ngy,) (X){1 + o ()}, x €[0.R and k=1,2,...

where o, (x) converges to zero uniformly in k and x on [0, R] when n — oc;
(v) limy_ oy = 1.

It may be shown, by means of some suitable substitutions:
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¢n(x):(1_x)ﬂ7 Xe [0~1]7 C:_17
Pa(X) =e7™, x€[0,00), ¢=0,
$n(x) = (1+2)F, x€[0,00), >0,
that the operators (1.1) generalize some well-known operators.

From now on we always denote corresponding intervals by I, i.e., I = [0, c0) in the case when ¢ > 0 and I = [0, 1] in the
case when ¢ = —1. With these notations, we can defined the nth general exponential-type operators M, by:

k (—x)k

M7 =Sl (). where puo0 = ol ) (12)
for x € I and n > max{0, —c}. It is easy to see that M, (f,x) are Bernstein [2], Szasz-Mirakian [12] and Baskakov [1] operators
for c= —1, c =0 and c > 0, respectively.

The discrete values f(¥) in (1.2) are replaced by an integral over the weighted function. This concept has been given by
Durrmeyer [5], where, he has introduced integral modification of Bernstein operators. In the similar manner, integral mod-
ification of other two classical operators (Szdsz-Mirakian and Baskakov) have been given by Mazhar & Totik [10], Kasana
et al. [9], Sahai & Prasad [11], and Heilmann [6]'.

Definition 1.1. Let ce Nu{0}u{-1},n€ N,n > c, and

1_{ [0,1] in case c=—1,
"~ 1[0,00) incasec > 0.

For f : I — R the nth Durrmeyer operators for above mentioned three operators is defined as:

k!

® (k) (k) ®
Vi = -0 3o o [ P Derde—m-0) 3 bt [ pradofode, xel, (13)

whenever the right-hand side makes sense. The weight functions p, ,(x) are given as:

n k n-k
if e= -1, pn,k(x):{<k>x (A=, k<n,

0, k> n;
ifc=0,  pulx) = Ge™
. n+k-—1
if ¢>0, pn,k(x):< K )#

Very recently similar type of mixed Szdsz-Mirakian-Beta operators were studied by Gupta and Noor [8] and Deo et al. [3]
have given an other modification of Bernstein operators.

The main motivation of this paper is to obtain a direct result as well as Voronovskaya type asymptotic formula in a unified
form, via Derriennic [4] type modified Baskakov-type operators, which generalize some well-known exponential operators
(Bernstein, Szasz-Mirakian and Baskakov) in simultaneous approximation. In the last section of this paper we have given
central moments in the recurrence relations form for the various mixed summation-integral type operators.

2. Auxiliary results

In this section, we give some preliminary results which will be used in the sequel:

Lemma 2.1. [4,7]. Let r,m € NU {0} = {0,1,2,...}, then for n > cr, we get

:ur,n.m (X) = {Tl - C(r + 1)} an+cr.lc(x) /I pn—cr‘k+r(t)(t - X)mdt7 X e I»

then the recurrence relation holds:

{n - C(r +m+ 2)}l’tr.n.m+1 (X) = ¢2 (X){:u;'.n.m (X) + 2rni“mmm—] (X)} + (r +m+ 1)(1 + ZCX)Hr_n_m (X), (21)
where ¢(x) = \/x(1 + cx) and n > c(r + m + 2). Consequently,

1)(142
'ur'"‘O(x) = ]!:ur.n.l (X) = % and

2= P X)+(r+ D) (r+2) (1+2cx)?
M2 (X) = ==t 3y

Forall x € I, ., ,,(x) = O(n~(™+D/2) where [o] denotes the integral part of o.

! When ¢ = —1; 3 stand for 3}~ and when ¢ > 0; 3 stand for 3"52,.
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Proof. We first prove (2.1) by using q&z(x)p’"‘,((x) = (k — nx)p,,(x). Now by definition of u,, . (x), we get
¢2 (X)[:ulr,nm (X) + mlur,n.m—l (X)]
®
= {n - C(r + 1)} Z ¢2 (X)p;Hcr‘k(X) /I pn—cr,k+r(t)(t - X)mdt

= {n - C(r + 1)} ianrchc(x) /{I< - (Tl + Cr)x}pn—cr,k+r(t)(t - x)mdt
={n—c(r+1)} ZX:anrcr,k(x) / {(k+1) = (n—cnt} = (1 +2cx) + (0= cr)(t = X)]py_er e (£) (¢ = X)"dE
= {Tl - C(T + 1)} ipnﬂr.k(x) /I ¢2(t)p;1—cr,k+r(t)(t - X)mdt - T'(] + zcx)nur,n.m (X) + (n - Cr)ﬂr.n,mﬂ (X)

= {n - C(T + 1)} f:prwcr.k(x) /{(1 + ZCX)(t — X) + C(t - X)z + X(l + Cx)}p;—cr.kﬂ(t)(t - X)mdt
I
=11+ 2CX) i (X) + (N = )y g (X).

Integrating by part the first term on the right-hand side leads to the required result (2.1).
The proofs of the other consequences easily follow by the definition of ., ,,(x) and (2.1). This completes the proof of the
lemma. O

Lemma 2.2. Forr € Nu {0} ={0,1,2,...}, we have

(r) - drf(t)
(Vn f)(X) = (n - C).B(rh T') an+cr,k(x) /’ pn—cr,k+r(t)Tdtv Xec 17 (12)
where I = [0,1] and B(n,r) = % < 1, forr < n(see [4,7]), in the case when c = —1 and [ = [0, ) and f(n,r) = H};(} nj’cz.ﬁ]),

in the case when ¢ = 0.

Proof. On differentiating (1.3) r-times with respect to x and applying Leibnitz’s theorem, we get
® 1 r —x k  (k+1) X . r r 1 r—i _t k+i o (k+i) t
(V;r)f)(X)Z(n*C)Z( )( k)'¢n ( )/ Z()( ) (k )':/)n () f(t)df
: 1= \1 (k+1)!

(1) (- k E}k+r) . dr _t k+r g(”)t
gy, EHE dxr{( e ()}f(t)dt.

On integrating r-times by parts, the right hand side of the above expression, we obtain the required result by analogous man-
ner of Lemma IL.6 of [4] [O.

3. Main results

Theorem 3.1. If f)(t),r > 0 is bounded and integrable in I and admits (r + 2)th derivative at a point x € I, and f(t) = O(t*) as
t — oo for some o > O, then we get

{ n—cr+1)
(n—c)p(n,r)

limn

X—00

(Vif)(x) - f (x)} = (r+1)(1 4 2c0)f "V (x) + P> (R)f 72 (x).
Proof. Using Taylor’s formula, we have
(t—x? (t—x)?

FOE) = fO0) = (€ = 0f V) + =202 () + =5 L), 3.1)

tlw = ) LTI (O APTIR - G0 s

(t=x
2

=0 ifx=t.
i.e, {(u) — 0asu — 0and { is bounded as well as integrable in I. Now applying (3.1) to this and using Lemma (2.1), we obtain
®
e (VD) (®) = fO %) = {n = ¢(r + 1)} 3 Prsera®) fy Pr_crieer (OF O (£)dE = FO (X)
® "
= {n - C(r + 1)} an+cr,k(x) .]lpn—cr,k#(t){f(r)(t) _f(r) (X)}dt = .ur‘n‘lf(rﬂ)(x) + #[Tnlf(r+2> (X) + RH,Y(X)v
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where

Rar) = (= r+ 1)} S Purs®) [ P a0~ 070(E. 0

We shall show that nR;,;(x) — 0 as n — cc. Let ¢ > 0 and A > 0 be arbitrary there exists a § > 0, such that

. pn—cr,k+r(t -

|C(u)| <& when Jul <5, x <A
Now
MRy (%) = Q1 (X) + Qn.r,z (%)
where
n{n—cr+1)} &
Qnr. X)=——FF—" nacr, X
) AR k<>/‘H‘@

and

Qan( ) wzpnurk /

[t=x|>5

From Lemma (2.1) and (3.2), we obtain

pn crk+r(t )

x)2¢(t,x)dt

x)2¢(t,x)dt.

§ _ )
‘Qn.r.] (X)| < M an+cr,k (X) j“px\@ pn—cr.k+r(t)(t - x)Z dt

< ep’(x) as n— oo

Finally, we estimate Q,,,(x), using the assumption of theorem,

Qn.r.Z(X) = (n{n C2(T+1 } an+crk /
o(”{” —crt by > Puerk(® /t

<n{n —c(r+1)} & Z /
pn+crk

Il
o

S|=

o

Thus, from (3.3) and (3.4), we have

e¢” (x).

Since ¢ is arbitrary, therefore
lim nR,,(x) = 0.
n—oo

d(3
lim 1R, ()| <

This completes the proof. O

|t—x|>d

) in view of Lemma (2.1).

s pn—cr.l<+r(t)

. pn—cr,k+r(t)

|t—=x|>0

n{n—c(r+1)
O< { 25 }an+crl< / Dn- crk+r (

1

Theorem 3.2. Let 1 € C[0,c) and [0, /] C [0, o) and let co(fT+V;

n—cr+1)
(n—c)p(n,r)

(r+1)(1

~
fa(F)| n—

(Vif) =0

where the norm is sup-norm over [0, 2],

+2¢k)
c(r+2)]

R

0

>

o

i=0

63

pncr.lﬁr(t)txdt)

o o
( ) ) (t— x)’x“’) dt)
i

o

1

e
iz0 \ 1

5

4 )(t —x)"3x ) dt)

(3.2)

(3.3)

;.) be the modulus of continuity of f+V then forr = 0,1,2,.

Hf’“ | +Cn,r <\/—+ )cu(f’H C(n,1)),

n=22{c?2r* +6r+3) +cn} + 22{2c(r* +3r+ 1)+ n} + (1”2 + 3r+ 2)

and

1

L e ()Y s
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Proof. Applying the Taylor formula:

f(r)(t) _f(r)(x) _ ([’ r+1 / {(f r+l r+l }dy

o (VIF) 0017100 = (1= e+ DY Y Pk [ Paaier 0767 0]

Sl 1) Pl /pn (D[ —0f D /{(f'“ —f) ()} dy) .

Since,

Ucr+1)( ) f(r+1 ( )‘ < (1 + |ygx‘>w(f(r+1);5).

Hence, by Schwartz’s inequality

n—cr+1)

r+ [Hn; r+
ey o 1yt P (x \+(\\/—umz\+ Z)w(fl ).

Further, choosing 6 = C(n,r) and using Lemma 2.1, we get the required result. O

(VIR (x) - fO(x)] <

4. Examples

Suppose S, (X), Vak(x) and by (x) are Szasz-Mirakian, Baskakov and Beta basis functions, respectively, which are defined
as:

and  byy(X) = g —X

B(v+1,n) (1+X)n+v+] N

n+k—1> &

k)T

To approximate integrable functions on the intervals [0, cc), we are giving here some recurrence relations of some mixed
summation-integrable type operators.
Szdsz-Mirakian-Baskakov type operators:

(Gaf ) n—lzsnk /Vnkt)f(t)dt.

k
Sn.k(x) = (n’f!) efnx7 Vn.k(x) = <

If Gum(X) = Gu((t —x)™, x), then we have the recurrence relation:
(=1 =1 = 2) 1 (X) = Xl (%) + [(M + 1) (1 4 2X) +T(1 4+ X)] 1y (X) + MX(2 + X) 4 (X),

and
(G;r)f) (X) = 'V(n, r) ZOC: Sn,k(x) /Oc Vn—r‘k+r(t)f(r)(t) dtv
k=0 0

where

ynr) = —nr('(lnirzf)!l)! .

Baskakov-Szdsz-Mirakian type operators:

0

—nY v [ st (e

k=0
If Hym(x) = Hy((t — x)™, %), then we have the recurrence relation:
My i1 (%) = X1 A4 X) (%) + (M + 1) 4 714 Xy (X) + MX2 + Xy (X),

and
HOR) ) = 71,1) S Vi) [ suwaterm o
k=0 0

where
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Baskakov-Beta type operators:

(K x zvnk 0 [ b0

If Kym(x) = Ky ((t —x)™, x), then we have the recurrence relation:
(=M =1 = D)1 (X) = XU+ X) [l () + 2L gy (O] + [(M+ 7+ 11 +2%) = X]fly 1 (X)

and

KN =000 Y Vo) [ b (OF 01
k=0 .

where
m+r—-1n-r—-1)
((n—1))*

y(n,1) =

Theorem 4.1. If f is integrable in [0,00) and bounded at a point x € [0,00). If f+2) exists at a fixed point x € [0, c0), and
f(x) = O(x*) as x — oo for some o > 0, then we have

(i) lim n{

n—oo

DV x) — FO ()| = (1 — r+1) r+2)
TS G H(x) —f (X)] {1 =)+ X2+ (%) + X2 +0)f T2 ().

(ii) limn

fim |- (OO = £ = (14 7140700+ 32 40",

(i) limn { (K HX) = fO )] = {(1+1) +x(1+2r) D x) +2x(1 +f 2 (x).

L
y(n,1)

Theorem 4.2. Let f+1) ¢ C[0,00) and [0, /] C [0, c0) and let w(f+V; ) be the modulus of continuity of f*+V then forr = 0,1,2,...

L (G,(pf) —f® < M

y(n,1) 0] (n—r-2)

where § = 2>(n+ 12 + 51 +6) + 2(2n 4 2r2 + 81 + 6) + (> 4+ 3r + 2) and
1

(i P+ € (VAT + D) oV Cn, 1),

C(n,r) = (T
HW(HEWF) - clo.j S W If™ D)+ C(n,r) (\/ﬁJr g)w(f“*”; C(n,r)),

where n =121+ 2) +1+ {1 +r(1 + 1)}* +ni(2 + 2) and C(n,r) = 1/n2.
o {(1+1)+ A1 +2r)
0.7 h (n-r-1)

where n =222 + 4r + n+ 1)22 +2(2r2 + 5r + 2 + n)A+ (r* + 3r + 2) and C(n,1) = T m-r—2y Where the norm is
sup-norm over [0, /].

——— (KVf) -
)

LI e (vir + D)ot icn)),

Remark 4.3. The similar manner we may obtain direct results and Voronovskaya type asymptotic formulae for other mixed
summation-integrable type operators like Beta-Szasz-Mirakian, Szasz-Mirakian-Beta, Beta-Baskakov.
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