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Abstract

The proposed work entitled “Environment Force Estimation with Stochastic Noise

and Control for Robotics” focuses on estimation of state vector and controller’s

parameters and control of a robot in the presence of noise. Also, environment force

is estimated when robot has interaction with randomly structured environment.

In the present work, two typical issues are investigated for the robotic system. The

first one deals with the noise present in the system. Noise is wiped out from the

output measurement by utilizing state-observer which in turn, feeds the estimated

state to a controller in spite of noisy state. Thus, any further randomness is

restricted and focus of the work is to design, implement and test the optimal

state-observer-based controller. It aims for trajectory control of the state of an

n-link robot to track the desired trajectory in the presence of stochastic noise. The

novel feature of the present control algorithm is based on Itô′s stochastic calculus.

It is used for the minimization of the conditional expectation of the instantaneous

tracking error energy differential with respect to the feedback matrix. This

instantaneous minimization results in an adaptive action of the controller. At the

same time, it also maintains the energy constraints in the feedback coefficients to

avoid actuator saturation. This enables to validate the real-time implementation

of state-observer-based controller by an experimental set up of “Phantom Omni

Bundle” robot manipulator. Furthermore, the sensitivity analysis of controller

gain variation and parameter variation on the error process is performed, and the

robustness of the system is assured by the bounded errors.

Another important and relevant issue is that when noise appears in the form of

environmental torque and randomness becomes a part of the closed-loop system

and makes the dynamics of the nonlinear system ‘stochastic’. Utilizing the sample

data of noisy measurement of joint position, the ‘likelihood function’ of tracking

error is computed. Minimization of this function estimates the unknown controller

gain parameters. The trajectory of stochastic environment force is also computed
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from the estimates of controller gain parameters. Subsequently, the performance

of estimation is determined using convergence analysis and imposing lower bound

on the variance of estimation errors.

In the present study, both issues are addressed for a nonlinear dynamical system

in a stochastic scenario. Controllers are designed based on estimation without

using any velocity sensor or force sensor.
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Chapter 1

Introduction

The study of nonlinear dynamics with application to robotics in real-time have

many challenges and needs continuous investigation. In this paradigm, every new

advancement is either an improvement or an improvisation of the existing one.

The subject of research investigated in this thesis is related to tracking control

problems of the robotic system in the presence of uncertainty. Uncertainty is

present in almost all the systems in measurements, process, etc., and to safeguard

the system from these noises is an expensive venture. However, if it is not taken

care of, adverse effects on the performance restrict the applications of a robot.

Beside uncertainty, some vital issues associated with the control of robotic systems

are discussed, propelling the present research to move in the direction to control

the stochastic robots.

1.1 Background and existing challenges

In time-varying tracking control, the state variables viz. joint position and velocity

should follow the desired trajectory and require controller gains to be adjusted

accordingly. Further, the parameters of robot functioning in time-varying states

require a controller to monitor the system variables and behave on a continuous

basis. This requires dynamic controller instead of a static controller that may even

become unstable under dynamic conditions which were not predicted a priori.

Thus, there is a need to develop an on-line controller, capable of providing a

correction signal to cope up with the nonlinear and time-varying dynamics of

robot and effective to guide the system to meet the given set of requirements.

State feedback controllers are designed to provide the necessary control signal to
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Figure 1.1: Structure of Model Based Control Approach

the actuators so that required torque is developed for the robot to reach from

current state to the desired state. Inverse dynamics helps in computing the

nominal torque required to provide the desired motion for which controllers are

model-based. The basic structure of a model-based controller is shown in Fig.

1.1 where it is assumed that ”complete model” is being used while designing the

model of controller. But in practice, most of the parameters used in forming the

equations of dynamic are imprecisely known. Feedback control action is required

to reject the effect of this discrepancy upon the controlled variables to bring the

actual states back to their desired values. This need to measure actual states so

that measurements are compared with the desired values and the resulting error

is fed into the controller so that it can generate the appropriate control signal.

Indeed, the control system has to behave correctly even when it is connected to a

physical system with true parameter values away from nominal.

Thus, a requirement of robust control design arises which has good tolerance to

modeling error. For this to be achieved, the controller needs to know the values

of the actual states.

Usually, an optical encoder is fixed at a motor drive of each joint to measure

the angular position of it. Velocity sensors are avoided to be used for velocity

measurements because it increases the cost, weight, and complexity to a system.

An approach to get velocity signal is taking derivative of the position signal which

is again contributing noise in the dynamics of the system. This high-frequency

signal not only potentially degrade the tracking performance of the system but
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also, result in wear problems due to undesirable alterations in the control signal.

Consequently, an uncertainty results in the relation of state variables and the

measured outputs termed as measurement noise.

Noise act as exogenous inputs to the physical system and adversely affect

the performance of the system. These are accounted by imperfect mathematical

model; driven of dynamic models by unknown disturbances that can’t be modeled;

partial and inaccurate state variables; creeping of randomness in the closed-loop

dynamics of a nonlinear process due to environment force, etc. Deterministic

modeling cannot provide sufficient means to analysis and control of the robotic

system.

A need arises to formulate the problem of the presence of noise in the dynamics into

a proper stochastic framework for controller design to tackle it. Also, an emphasis

should be considered to ensure accurate state feedback requirement to avoid noisy

states or output which may mislead the controller for doing its corrective action

and ultimately lead the system to instability at the worst.

The control signal which is fed to actuators of various joints causes the state

manipulation of the robot. Saturation of actuators, which ia a critical limiting

factor is decisive of the maximum level of a control signal.

It needs an appropriate constraint control design to consider both the magnitude

and rate of change of control signal.

Stability is a fundamental attribute of a well-designed system to retain its state

regardless of perturbations of the initial conditions and parameters of the system

caused by regular and random disturbances. It is a concept which must never

be confused with its so-called definitions, whether mathematical or empirical.

Instead, emphasis should be made on the basis of the very existence of stability.

However, for a variant class of system, the notion of stability can be presented

differently and thus, interpretation of stability concepts can be done in various

manners.

Thus task is to define and satisfy the prerequisite condition of stability before

implementing the proposed control strategy to a system.

In designing the controller, some assumptions are involved to enable simpler

and feasible computations and simulations. However, during implementations on
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hardware, such assumptions may jeopardize the performance of a system and

need to review. While implementing the developed controller on hardware, one

has to consider the range of inputs that it can bear safely without hampering its

performance, i.e. customize the features of a controller in accordance to the real

system in hand. For example, going by the specification, the maximum force and

maximum angular movement that can be applied to any joint may be 1 N and

−π/2 to π/2 radians respectively. The reference trajectory and control scheme

should be designed taking care of these specifications. Further, during hardware

implementation, a problem may arise due to lack of synchronization of sampling

time of processor and sampling time of interfaced set-up. Most of the suppliers

provide only end solutions for an exact problem. They generally not disclose the

calculations and logic behind the control solutions.

Thus, many challenges are encountered in implementing the new controller on the

hardware due to limited information available for the device. A need arises to

design a realizable controller which can be tested on a real platform along with

the care that the desired trajectory should respect the specifications set for that

particular system.

Mostly, an environmental force has been modeled as a spring-damper system

and its variants for designing the controller. However, in several applications, it is

unrealistic to represent an environment model as a fixed one. Further, when robot

interacts with the unstructured environment, its dynamic alter as the external

force not only physical perturb the system but also, introduces uncertainty in the

measurement of states. It is desirable that a robot should follow the command

trajectory.

So, seeking the solution of tracking problem while the interaction of the robot

with a random nature of the environment is an open research topic.

Many potential applications strive for the need to know the environment

interaction force. To overwhelm these issues, a suggestion is offered to estimate

the contact force between the robot and the environment.

It is evident that estimation has a vital role in a stochastic control system.

Whether it is parameter estimation or state estimation to the true value, the

problem lies in a careful choice of appropriate estimation method and ensuring

4



the performance of the estimation. This helps in ensuring the performance of

remaining procedure rely upon how well the estimated values are closer to true

value that has been replaced by the latter one for designing controller or calculation

point of view. Hence it is imperative to monitor the quality of the estimation.

Moreover, the accuracy of estimation is reliant on how well the modeling of a

dynamic system and statistical modeling of randomness is done.

This section has discussed the challenges encountered in the motion control that

strive for the solutions of stochastic control problems.

1.2 Motivation

Nonlinear dynamics is the basic characterization feature of the robot. It needs to

compensate the existing nonlinearity by transforming the dynamics by suitable

linearization techniques enable to design a simple and efficient linear control.

Practically it is not possible to have a perfect model and sensor for measurements

of the real system. Both modeling and measurements suffer from errors, and

these challenges motivate to inject robustness in the control design that ensures

to serve effectively even in the presence of uncertainties. The work has motivated

the stochastic modeling of a robotic system that can accommodate process and

measurement noise and environment noise of the system that can help in analyzing

and designing a suitable estimation based controller with the practical approach.

Further, the inspiration for this research emerges from the requirements of reliable

state or parameter estimation strategies capable for giving consistent and exact

evaluations of inaccessible states or parameters of the system for effective control

that relies only on the availability of accurate information. Thus, the primary

motivation of the research work is to frame stochastic control problem from a

theoretical and computational perspective and to utilize the tools of optimal

control theory to developed a general framework to accommodate the physical

constraints. Further, considering the unified approach of estimation and control,

the motivation of work lies to perform a new prominent analysis to find the

ultimate boundedness of both the observer and controller tracking errors.

Experimental research through observations, analysis, comparison, and conclusion
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provides an idea of a better opinion after facing problems in hardware

implementation.

This is a motivation to implement the theoretical concepts on a practical

framework where several issues during implementation like discretization,

synchronization, computational complexity, etc. get exposed. In another case,

the presence of randomness in the dynamics of the robot due to interaction

with random environment motivates to find estimates of controller parameters

and structure of environmental noise. Estimation can exploit the available noisy

sample records of measurements of robot position. The estimates should be

approved for their accuracy, consistency and unbiased, etc. by some methods.

1.3 Problem Statement

To meet the challenges and existing gaps in the control of robotics, the following

research problem is stated:

Devise a realizable state feedback control law for an uncertain, nonlinear and

dynamical robotic system such that the time varying trajectory is achieved despite

states being inaccessible or being corrupted by noise. Then, design a practicably

implementable controller which not only compensate the modelling error but also

ensures the robustness by bounding the error signals such that the system is

asymptotically stable. Also, when the robot interacts with the environment, it

must track the commanded trajectory in the presence of environmental noise,

without compromise the performance as before. This would finally help in

developing an efficient estimation to determine the stochastic environment force.

1.4 Objectives

Based on the defined motives for the research, the following objectives are set up:

• Development of a state-space stochastic model of a nonlinear time-varying

system that accommodates the noise in the state equation and output

equation.
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• Design of suitable recursive state observer capable of providing noiseless

state feedback information to the controller without using velocity sensors.

• Development of an optimal observer-based controller to satisfy the

requirements to:

(i) result in establishing asymptotic bounds for the estimation and tracking

error;

(ii) have structure practically suitable to implement on a developed model;

(iii) impose the constraint on a control signal for safe operation;

(iv) have adaptive tuning of controller gain to cope up with nonlinear

dynamics, error-prone output measurements and time-varying reference

trajectory.

• Validation of the proposed control solutions by performing real-time

experiments on available Phantom Omni Bundle robot in the lab.

• Examination of sensitivity analysis and ensuring robustness concerning

possible disturbances and uncertainty in the values of the system variables.

• Development of the model of a master-slave robotic system when the slave

interacts with the stochastic environment.

• Design of controller for slave robot utilizing the batch measurement of noisy

slave position and subsequently, computation of environmental force from

the estimates of controller gain parameters.

• Study of different methods to ensure the goodness of estimations.

1.5 Methodology of the research work

The flow of the research consists of investigating the techniques for the tracking

control of a robotic system when noise is present. Following solutions are proposed

to meet the control problem of a nonlinear, uncertain, time-varying and stochastic

dynamics of the system:

Solution I– State-observer based control is proposed where estimation and control

7



Figure 1.2: Structure of Proposed State-observer-based Control Approach

of states is unified in real-time (refer Fig.1.2).

The methodology employed to meet this solution is presented as:

• Stochastic modelling of nonlinear dynamical system

It exemplifies the stochastic form using Ito’s calculus for the development of

the stochastic model of the nonlinear system. It describes the joint dynamics

of state and observer, taking into consideration (a) desired state, (b) observer

error feedback, and (c) process noise and measurement noise, using a vector

stochastic differential equation (SDE).

• Estimation of the states-No need of velocity sensor

The estimation process is encouraged for the knowledge of required states

to cope up with noisy partial measurement by sensors for the monitoring

and control purpose. In this present work, an observer has been used as an

alternative to a velocity sensor, which not only reduces the complexity and

weight of the system but also provides an economical solution. Extended

Kalman filter (EKF) is used as state observer which considers only position

signal in order to estimate states of the system, thereby removing any

dependency on measurements of entire states.

• Real-time unified approach of estimation and control with

constraints

After the design of state observer that has an adaptive capability to

compensate for measurement errors, the results of state estimation are
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integrated into the structure of robust control design to mitigate the effects

of uncertainty and disturbances. The proposed controller has the following

features:

(i) On-line implementation

The novel feature of the control algorithm is that it is based on Itô′s

stochastic calculus for the minimization of the conditional expectation of the

instantaneous tracking error energy differential with respect to the feedback

matrix subject to energy constraints. The control action is decided on-line

at each discrete-time step on the basis of the instantaneous error, imposing

bounds on (a) input control effort and (b) output tracking error. The

proposed control scheme in this research is substantiated with real-time

experiments on a robot.

(ii) Constraint block structure

The controller has a feature of constraint in the structure which is chosen

according to the model of the system. This is done by including the

constraint in the objective function.

(iii) Energy constraint

The stringent controller action is assured by imposing the constraint on

controller error energy for shaping the transient behavior of a system in

addition to limiting controller gain input to a motor drive, thereby avoiding

saturation/damage.

• Hardware-implementation and verification

The theoretical concept of designing observer-based control with energy

constraint in the present work is supported by experimental results carried

on a robotic system available in the laboratory. These real-time experiments

provide great momentum for theoretical research in nonlinear control

systems to tackle the problem of stochastic noise.

• Sensitivity analysis and ensuring robustness

Sensitivity analysis of the proposed control system is investigated to examine

the effects of the fluctuations in (a) robot parameters and (b)controller

gain, on the combined estimation and tracking error energies. These
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calculations justify the strength of the proposed work of state observer

based controller design under the effect of uncertainty. Quantitative

analysis for the robustness measure of proposed control design is done with

the use of (a) appropriate signals and (b) system norms, which measures

the magnitudes of the involved signals, thereby indicating the possibility

of attaining asymptotic stability. Further, the robustness is ensured

by converging the errors under parametric variations and controller gain

variation, thereby indicating the possibility of attaining asymptotic stability.

Solution II– Maximum likelihood estimation of controller gain parameters

and environment noise for master-slave robotic system (refer Fig.1.3).

The methodology employed in this regard is presented as:

• Stochastic closed-loop dynamics of master-slave robotic system

Mostly, an environmental force has been modeled as a spring-damper system

and its variants, but in the present work, it is regarded as an external

disturbance or environmental noise. The environmental perturbations via

stochastic processes are approximated by assuming it as white Gaussian

noise. The model of a master-slave robotic system is developed in which slave

has to follow master trajectory while having interaction with a vibrating wall.

The closed-loop stochastic dynamics considering a master, slave, controller,

and environment force is presented which is further utilized for controller

design in constrained motion.

• Estimation of controller gain parameters and stochastic

environment force

In the proposed approach, stochastic environment force is introduced into the

dynamics of the slave robot that added formidable complexity into robotic

systems dynamics. It requires reconfiguring the available PD controller

gain parameters (K) of the master-slave robotic system by exploiting

estimation methods. Hence, maximum likelihood estimation(MLE) is used

to estimate the controller gain parameters by maximizing the conditional

probability density function (pdf) (or minimizing the negative likelihood
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Figure 1.3: Structure of Proposed MLE Based Control Approach

function) w.r.t.‘K’. The estimates are further utilized to estimates of sample

trajectory of the environmental noise process.

• Accuracy of estimation

The performance of parameter estimation has been explored through

formulation of analytical expression of convergence and CRLB. The success

of algorithm is exemplified through convergence analysis that provides low

noise to signal ratio for the parameter estimates as number of samples(N)

increases. Computation of CRLB of parameter estimation has been carried

out to show that the estimates are consistent.

1.6 Outline of the thesis

After an introductory chapter, this thesis is organized in the following manner:

Chapter 1 (this chapter) introduces the research problem, proposed solutions

and lists the contributions in the thesis.

Chapter 2 presents an overview of the related literature and the background

topics to support the concepts developed in the thesis.

Chapter 3 provides an expression for the state observer based controller

developed for the time-varying trajectory tracking control of nonlinear dynamical

system in the presence of stochastic noise.

11



Chapter 4 The proposed control algorithm works in real-time which is tested

on an experimental set-up of laboratory robot. The implementation of the state

observer based controller is done by infering the available mathematical model

and literature related to the robot.

Chapter 5 presents the sensitivity analysis of the system under the influence

of parameteric uncertainty and controller gain fluctuations. Furthermore, the

robustness of system is ensured by imposing bounds on the error energy of

developed observer and controller.

Chapter 6 This chapter has discussed the trajectory control problem of

master-slave robotic system and contributed in the MLE the controller gain

parameters for a slave robot interacting with stochastic environment. It is

followed by the derivation of the structure of environment noise from the estimates.

Further, performance analysis of estimation is carried out using different methods.

Chapter 7 Finally in the chapter, a summary of this study is presented and some

conclusions are drawn and projects future plan of action for further research.

This is followed in succession by references.

1.7 Conclusion

This chapter summarizes some of the correlated issues regarding the control of

a robotic system. These crucial issues have motivated the research to pursue

in exploring some of the control tactics of the motion control so that various

applications can exploit tracking control capability of the system with excellent

performance. Also, motivations and objectives of research have been brought

out. In this chapter, stochastic control problems of the robot have been defined.

This thesis comprises contributions to the methodology on state estimation and

controller gain parameters estimation of the stochastic models.
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Chapter 2

Literature Survey

2.1 Introduction

Chapter 1 has defined the problem and objectives of the present research work.

A brief literature survey on the defined problem is carried out on the following

issues.

(i) Control of a nonlinear and uncertain system

(ii) Stochastic dynamical systems and modeling

(iii) Estimation of state vector and parameters

(iv) State observer based control

(v) Stability of the nonlinear and uncertain system

(vi) Control of robot interacting with an environment

The survey helps to identify the methods to be considered for modeling and

identification of the systems which are uncertain and of practical interest. This

provides valuable insights into the issues related to the nonlinear, and stochastic

system followed by attempts to make in the direction of tracking control of robotic

systems. Furthermore, the need, concepts, and principles of the parameter and

state estimation are also discussed. Also, this chapter serves a concept of robust

control to preserve stability in the presence of uncertainty and noise in the system.
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2.2 Control of nonlinear and uncertain system

Tracking control [1] requires the following predefined time-varying trajectory,

Xd(t) by a system state, X(t) such that it meets optimally one or more of the

specified performance indices, i.e. accuracy, dynamic response, sensitivity to

disturbance, etc. The objective of the tracking problem is fulfilled by finding a

suitable control law for the input (u∗(t,Xd(t), X(t))) such that as t tends to infinity,

X(t)→Xd(t). Mathematically, lim
t→∞
‖X(t)−Xd(t)‖ = 0. This implies that under a

steady-state condition, the tracking error asymptotically tends to zero. When the

size of input is bounded as ‖u(t)‖ ≤ umax ,∀t ≥ 0, tracking control formulation

is treated as a constraint problem and the solution requires a design of an optimal

controller which has constrained control signal. The constraint optimal problem

has been solved by Lagrange multiplier and dynamic programming [2]. Lagrange

multipliers are additional variables which when introduced in the constrained

problem, transform it into an unconstrained minimization problem. Quite often,

tracking control problems employs performance index to minimize the energy of

the system under the given constraints [3], [4], [5].

Presence of nonlinearities in robot has inspired many solutions, and in general,

the controller of a robotic system is designed either considering it as (i) nonlinear

model (ii) linearized model. The methods proposed for transforming the nonlinear

model of the robot into a linear model are:(a) linear approximation at a small

region around an operating point, and (b) Feedback linearization [6]-[7]. In the

situation of a system moving away from the operating point particularly for real

uncertain system, where accurate tracking is required, it is found that performance

of the control system in method (a) degrade [8].

The aim of the method (b) attempts to linearize and decouple the nonlinearities

from the dynamics in such a manner that the system can be regarded as linear for

the purposes of control design. This can be compensated merely using nonlinear

dynamics with a nonlinear control signal, i.e., by adding Coriolis and centrifugal

terms as well as gravity terms to the control input which is represented by N(q, q̇)

in Fig.2.2. Due to this nonlinear state feedback(shown as an inner loop), a linear

and decoupled state model (double integrator) is obtained. The outer feedback
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Figure 2.1: Available Robust Control Solution Proposed in Literature.

loop performs in the similar manner as it stabilizes the linear system. The control

using feedback linearization used in a robot is known as Inverse dynamics control

or computed torque control (CTC). This is based on state feedback and requires

that all the terms in the manipulator dynamic model M(q), N(q, q̇) must be known

and can be computed in real-time. In order that the actual states, X(t) to track

a desired trajectory, Xd(t), control signal is defined as: u∗ = q̈ +Kpe+Kdė.

Further, for the linearized system, an appropriate controller can be synthesized

with the same procedure as applied for linear system [7]. This technique

requires the knowledge of model parameters; bears the burden of additional

computation and has the limitation in the case of discontinuous nonlinear system

[9]. Since feedback linearization relies on the exact cancellation of nonlinearities

and performs effectively with a well known rigid robot. Robust control provides

the solution to overcome the drawback of uncertainties present in the system and

guarantees a level of performance with the help of fixed controller [10]. The issue of

nonlinearity with or without uncertainty has been studied using hybrid approaches

of inverse dynamics by combining it with Lyapunov function based control [11],

nonlinear H- infinity control, neural network, variable structure control [12], and
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Figure 2.2: Feedback Linearization Control.

linear parameter-varying (LPV) control [13].

Although, adaptive control is also suited against uncertainty but is used only in

case of the system with linearly parameterizable uncertainties [14]. Nevertheless,

robust controllers are designed assuming that uncertainties are unknown but

bounded. A robust control in contrast to adaptive control obeys the static control

strategy, adaptive controller works according to variations in system parameters.

Moreover, most practical systems do exhibit time-varying response and behave

differently at different times. This is mainly due to system nonlinearities, failure

or drift of parameters, the presence of external disturbance, and environmental

changes. Subsequently, a different approach in the form of Robust control and

optimal control emerged, which developed fixed controllers with a novice form of

tolerating a limited range of variations in plant parameters to deal with dynamic

uncertainty. A detailed survey has summarized the different approaches to handle

the nonlinear tracking control of the robot [15],[16] and shown in Fig. 2.1.

Robustness is injected in the form of linear control using many versions of PD

control[17]-[31] and H-∞ control [22],[23] for nonlinear dynamics. Further, robust

nonlinear control is classified as model-based [24]-[32] and non-model based using

various approaches [34]-[37].

Robot manipulator can be interpreted as independent chains of double integrators

for which proportional-derivative (PID) controllers have an instinct tendency to
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stabilize it and solve the regulation problem [17]. These controllers act as virtual

spring-damper system suppress the oscillations as the Lagrange model of robot

enjoy the property of passivity. However, these controllers are based on a linear

approximation of nonlinear dynamics at a small region around an operating point

and face problems as discussed above. Further, applying integral control to the

system like a robot which has limited operating range, i.e., bounded in movement

suffers the problem of Integral windup. Since it is the measured value which

remains the same due to an operating limit but causes the summarized error to

grow by the presence of integral component [38].

The robot with high gear-transmission mechanisms can be modeled as linear and

decoupled rigid-body, and PD controllers are well suited for tracking control.

Dominating the practice of control for a long time, PID controllers can’t

assure satisfactory performances in tracking control problems in the presence of

uncertainties in model dynamics, and external disturbance as either accuracy or

stability has to compromise with gain adjustment [39] especially at the time of

discrete implementation [40]. In this regard, the work of Jingqing [41] not only

elegantly present the limitations of PID but also given the solution in the form of

nonlinear control by introducing error-based control law.

The perturbations may be in its physical parameters due to variations, aging or

changes in the operating conditions and termed as parametric perturbations within

the system. However, the presence of these perturbations and uncertainty in the

system are considered to be within known bounds along with known dynamical

properties in most of the reported work of controller design [37], [42]. Even for a

controller with fixed structure but having adjustable parameters is responsible for

parametric variation problem and should be checked for closed-loop stability of the

system. This issue has been resolved by interpreting the robust control problem

as an optimal control problem, where the uncertainties are manifest in the cost

function and expressed that the solution to the optimal control problem is indeed

a resolution of the issue of robustness in the system [43], [44]. Further, min-max

LQR control has been considered as a robust extension of optimal control and

applied to a nonlinear uncertain MIMO system. The robustness is incorporated

by imposing an integral quadratic constraint that represents uncertainty in the
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cost function [45]. The nonlinear optimal method in tracking control has been

devised using a formulation of (a) Hamilton Jacobi Bellman (HJB) [46], [47] and

(b) Pontryagins Maximum Principle [48]. The solution of approach (a) involves

nonlinear partial differential equation which is globally optimal but simple only for

the low dimensional system. Approach (b) is based on the calculus of variations.

The challenge of the nonlinearity and uncertainty has been taken care of the use

of a sliding mode controller; however, the application gets restricted to only such

cases, where chattering in the control signal is acceptable [49]. Further, in adaptive

control [51] and sliding mode control, the performance of a system is not predicted

quantitatively for a given robustness level. This limit the practical applications of

these controllers where it is prior to knowing the worst case motion accuracy in

an uncertain scenario.

The problem of uncertain nonlinear dynamic systems has been be tackled with the

selection of suitable control design method according to the type of uncertainty

[50]. Further, uncertainty has been considered as unknown nonlinear function

and they referred adaptive control for the system having known nonlinearity but

has constant parameter; sliding mode control for upper bounded uncertainty by

inequality and learning control for periodic uncertainty with known period and

much more strongly influenced by the type of uncertainty associated with the

system model.

Although multifarious robust control approaches have been reported to tackle

the nonlinear and uncertain systems, they have been developed from different

prospects, but the mentioned control approaches have a fundamental requirement

of exact feedback information to controller, i.e., accurate measurement of the

states. Failing to fulfill this requirement, a controller misleads for its corrective

action and ultimately drives the system towards instability.

2.3 Stochastic dynamical systems and modeling

In the presence of random noise in the measurement, the measurand vector has

distributed values rather the deterministic state function. Further, the dynamic

of states are modulated with process noise. Noise is used for modeling the
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uncertainties in the system dynamics [52]. Noise, a stochastic process has been

described as unknown inputs to represent a model of the system in the form of

stochastic differential equation(SDE). Generally, real applications have considered

white Gaussian noise (WGN) in the formulation of SDE [53]. It is quite reasonable

to consider randomness in the system to have Gaussian distribution according to

the Central Limit theorem which states that a large sum of small independent

random variables converges to the Gaussian law [54]. In this work, process

and measurement noise and environment force have been assumed to follow the

structure of Gaussian statistics. The whiteness of the environmental noise is based

on the fact that usually the environmental kicks appear randomly and independent

of each other similar to a molecule that kicks a pollen particle in a fluid leading

to the pollen particle executing Brownian motion [55], [56]. The WGN source,

dW (t) is a statistical noise with a known normal pdf having flat power spectral

density i.e. it contains equal power within any frequency band with a fixed width.

The Brownian motion has each increment independent of each other in the sense

of magnitude and direction and thus, results white noise, ω(t) i.e.
dBt

dt
= ω(t)

having covariance Qδt where, Q is a diffusion matrix of Brownian motion and

δt = Tk+1 − Tk [57].

Exploiting the benefits of enriched stability concepts of the deterministic

modelling, it can be extended for stochastic systems. Although it is considered

that the model incorporates all the information of the system, still some random

effects remain unaccounted. These can be usually represented by white noise as it

is entirely random without temporal correlation and infers that it gives a decent

model with these impacts. The stochastic model includes model uncertainty (white

noise) as a driving force in differential equations assuming the additive effect of

noise in the deterministic model. Model uncertainties may be due to imprecise

known or slowly varying parameters, approximate/unmodelled dynamics and can

be included in a model by lumping a noise term [57], [58], [59].

Suppose a model is represented as:
dy

dt
= ψ(X, θ, t). After the introduction of

noise in the system dynamics, it becomes
dy

dt
= ψ(X, θ, t) + N(t), where, N(t)

represents noise. So, the stochastic model of a system incorporated both random

and non- random forces and represented as SDE. Presence of random forcing
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function gives the solution of SDE, a random process. Further, for Gaussian

noise, the formulation of Itô SDE is

dX(t) = A(X(t), t)dt+ σν(X(t), t)dω(t) (2.1)

As in the general Itô differential, A(X(t), t)dt is the drift term, and

σν(X(t), t)dω(t) is the martingale term which has an unbounded and discontinous

white noise process. We often call σν(X(t), t) as volatility. A solution is an adapted

process that satisfies above equation in the sense that

X(T )−X(0) =

∫ T

0

A(X(t), t)dt+

∫ T

0

σν(X(t), t)dω(t) (2.2)

where, term,
∫ T
0
A(X(t), t)dt is Riemann integral and term,

∫ T
0
σν(X(t), t)dω(t)

is known as an Itô integral. Thus, model of continuous time stochastic systems

is given by Itô SDE doesn’t evaluated like ODE. Rather, solution of Itô SDE

results Markov activities in which future value rely on the past only through the

present.

The framework of Itô′s is preferred over Stratonovitch for stochastic model due to

the simplicity of Itô′s to compute expectations, the existence of stability theory

for Itô′s integral, and application of many stochastic theorems including nonlinear

filtering to this form [60]. However, a Stratonovich SDE can be transformed into

an equivalent Itô′s equation using simple formulas [61].

Consider two Itô′s processes α1 and α2 ∀(0, T ) presented in integral form as:

dα1(t) = x1(t)dt+ y1(t)dω(t)

dα2(t) = x2(t)dt+ y2(t)dω(t)

Then, d(α1(t)α2(t)) = α1(t)dα2(t) + α2(t)dα1(t) + dα1(t)dα2(t)

The product dα1(t)dα2(t) can be computed by employing Itô rules:

dt.dt = 0,

dt.dB(t) = 0,

dB(t).dB(t) = dt.
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In the proposed work, Itô′s stochastic modeling has been used for a nonlinear

dynamical system under the influence of stochastic noise. This stochastic model

is further used for an optimal controller design using state observer approach in

chapter 3. Then, control law has been formulated using Itô′s calculus for getting

the error dynamics of the system.

2.4 Estimation of state vector and parameters

A dynamical system is described by a mathematical model that involves a set of

differential equations comprise of dependent and/or independent variables termed

as states and involve constants known as parameters. The states can be measured

directly using sensors etc., but parameters are not. The process to approximate

the values of any quantity is termed as estimation and can be done for state or

parameter for both purposes.

Estimation can be done in two ways. Off-line estimation, also known as static

estimation, which is carried out using batch processing approach with observed

data. In On-line estimation, the present estimate is acquired utilizing the

information accessible so far could be refreshed when another bit of information

is received.

State estimation

States of the system refer to a set of variables of interest that describe it completely.

State of a robot, i.e., position, velocity, and orientation describe the motion of a

robot at any time instant. The observation of system state lacks perfection due

to some limitations like cost, technical feasibility, low quality, thus, introduces

the problem in obtaining desired control features [62]. The velocity signal after

derivating the position signal contains noise. Thus, to overcome the problem of

unmeasured state or noisy state an estimator/observer to reconstruct the state

from the available information has been suggested so that state observer based

control can be implemented. The work of [63], [65] has demonstrated classification

and applications of observers. Some of the popular approaches for estimating the

states of a nonlinear system are given as:
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• Extended Kalman filter(EKF): Extension of linear Kalman Filter [63], [64]

• Unscented Kalman Filter (UKF): Mix of Monte-Carlo with Kalman Filter

[66].

• Recursive prediction error (RPE): Based on the sensitivity equation [67]

• Moving horizon Estimation [68].

• Particle Filter: For nonlinear and non-Gaussian Dynamic [69]

• High Gain Observers: PI observer uses integrated estimation error for robust

estimation, Model-free observer: [70]

• Neural network observer: Model-free observer [71]

• Siding mode observer: Model-free observer [72], [73]

The comparative study of various real-time estimation methods of velocity signal

from the observations of position is summarized in [73]. The issue of using

model-based observer arises in the condition of poor knowledge of the plant

which may be overcome using by High-gain observers and sliding mode observers.

Although being model-free but suitable for a particular class of plants due to

discontinuous behavior [74]. Further, an adaptive state estimation for partially

known nonlinear dynamics has been proposed using neural networks which involves

a prediction step and an update step, similar to the EKF [75].

The procedure of EKF approximates the nonlinear dynamics around the previous

estimated state whereas, UKF uses the exact nonlinear dynamics and instead

apply an approximate transformation law for the belief mean and covariance. EKF

requires less information of the system in the controller design for the uncertain

systems [76]. Generally, the selection of estimation method depends upon the

particular application. Kalman filter is preferred as the best estimator in case

of a unimodal distribution parametrized by its mean and covariance. It has the

moderate computational burden as compared to other sampling approaches like

particle filter [77], UKF, etc.

Convergence of observer is the primary concern while designing an observer for

the nonlinear system. The issues involved in the design of the observers for the
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nonlinear system along with the possible solutions have been discussed in [78]-[79].

In this present study, EKF is the algorithm of choice for state estimation.

Extended Kalman Filter (EKF)

The commonly used filter for an unconstrained linear system that has normally

distributed state and measurement noise is Kalman filter. It is a recursive

optimal state estimator. The recursive in the sense that allows it to be

practically implemented that it reprocess the latest measurement in spite of

keeping all data in storage. EKF is a nonlinear version of the Kalman filter,

and unlike this, it is a suboptimal estimator where propagation of state vector

and the covariance matrix is done differently due to nonlinearity present in

the system. The Kalman Filter periodically predict the state variables based

on the system equations and subsequently correcting them by considering the

sensor measurements. In a nonlinear system, state equation and measurement

equations are a nonlinear function of state variables, so it is required to linearize

the process and measurement equation at the current mean estimate and compute

the Jacobian matrix. During the estimation process, the EKF algorithm linearizes

the nonlinear transformation and calculates Jacobian matrices. The various steps

in the process of the EKF algorithm are shown in Fig. 2.3.

Extended Kalman filter provides the solution of state estimation from a noisy

measurement of a nonlinear system in the recursive process, i.e. prediction of

states followed by a correction step. The prediction step projected the current state

estimation and error covariance ahead over time and known as a prior estimate,

X̂(k). The correction step of the process incorporates the latest measurement into

a priori estimate in order to correct the projected estimate and get the a-posteriori

estimate X̂(k + 1) as shown in Fig. 2.4.

Parameter estimation

It is aimed to estimate the values of parameters dependent upon noisy

observations. The maximum likelihood method is used to estimate the unknown

parameter, K that maximizes the Log-likelihood function, or that minimizes the

negative log-likelihood function [80]. The problem of parameter estimation lies
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Figure 2.3: Algorithm of Extended Kalman Filter
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Figure 2.4: Concept of Extended Kalman Filter Dynamics

in predicting the values of parameter embodied in the noisy observations, X[n]

which can be described by the probability distribution function (pdf). This pdf

has dependence on unknown parameter, K i.e. parameterized by K as its value

affect the distribution of observed data so, K can be inferred from the X[n]. This

can be shown as p(X[n]|K).

Maximum Likelihood Estimation (MLE)

A technique used to estimate an unknown quantity of interest from a sample of

measurement such that the estimate maximizes the probability density function

or equivalently likelihood function, L formed from that measurements. This refers

to that value of parameter responsible for producing the observed data most

likely to have been observed [81]. Suppose, the data belong to a probability

distribution, p([X[n]|K) with an unknown parameter, K, the MLE of K is that

maximizes the probability of observing the data most probable. Suppose, we have

a sample of measurements [q1, q2, ......qk]
T of a system that depends upon an

unkown parameter K. These measurements are considered to be independently

and identically distributed (i.i.d.). The aim is to find a MLE of K from these

measurements. We need to maximize the augment of the likelihood function w.r.t.
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K which is presented as L|K[q1, q2, ...., qk] that is equivalent to maximize the

joint pdf i.e. f [q1|K,q2|K, ....qk|K] =
∑∑∑N

k=1 f(Xk|K). It would be more

convenient to take argmax of log-likelihood function i.e.

arg max
K

logL[K|q1, q2, ...., qk]

Thus, MLE of K̂ is that value of K for which L[K|q1, q2, ..., qk] attains a

maximum.

After estimation of parameter, the requirement is to check the goodness of the

estmation of the unknown parameter. Some of the essential properties evaluate

the quality of an estimator as described below:

Unbiasness: The difference between the expected value of the estimate

and the true parameter value is called bias and estimation without bias is termed

as unbias estimation. It is well known that in statistical inference, random samples

are drawn from the population that provides an inference of that population.

An estimator computes an unknown quantity from the sample which retains the

information of that unknown quantity in the population. An estimator provides

a mean to estimate a parameter value of population using sample data. This

property satisfied for an estimate of a given parameter when the expected value

of estimator is equal to the parameter being estimated. In other words, sample

mean should be equal to unknown parameter for an estimator to be unbiased i.e.

E(K̂)− K̄ = 0 , where, K is true value and E(K̂) is expected estimated value

that is equal to mean value K̄.

Efficiency: The efficiency of estimator is measured by its variance. Estimator

with minimum variance is said to be more efficient. The variance of an estimator

is given as V ar(K̂) = E(K̂ − K̄) which is an indicator that estimated value is

more concentrated around the true value K. An estimator with lowest variance

is more efficient among two different unbiased estimators used to estimate same

parameter.

Consistency: The unbiased estimator K̂ of a parameter K is said to be

consistent estimator if var(K̂) = 0 as n→∞.

Unbiasness: The difference between the expected value of the estimate and

the true parameter value is called bias and estimation without bias is termed as
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unbias estimation. It is well known that in statistical inference, random samples

are drawn from the population that provides an inference of that population.

An estimator computes an unknown quantity from the sample which retains the

information of that unknown quantity in the population. An estimator provides

a mean to estimate a parameter value of population using sample data. This

property satisfied for an estimate of a given parameter when the expected value

of estimator is equal to the parameter being estimated. In other words, sample

mean should be equal to unknown parameter for an estimator to be unbiased i.e.

E(K̂)− K̄ = 0 , where, K is true value and E(K̂) is expected estimated value

that is equal to mean value K̄.

Accuracy: The degree of accuracy of estimation depends upon the dependency

of pdf on unknown parameter [82]. This is shown in Fig. 2.5 where (i) indicates

low influence of pdf on parameter as compared strong influence of pdf on

parameter as shown in (ii). With fixed X, pdf is equivalent to likelihood function,

L(.) and the accuracy of estimates is measured by the sharpness of the function.

Sharpness of curve is measured in term of curvature. The curvature is negative of

the second derivative of the likelihood function i.e. average curvature of average

over random vector, X is given as

J(X|K) = E
[(
∂2 lnp(X|K)

∂KT∂K

)]
This expression is known as the Fisher information matrix (FIM). Sharp curvature

in (ii) indicates, concentrated pdf and thus, an indication of accurate estimation

as compared to (i) of Fig. 2.5.

The related uncertainty of estimation is measured by its covariance w.r.t. the

pdf of measurement noise. This can be done using Cramer-Rao Lower Bound

(CRLB) which states that under certain regularity conditions, the inverse of the

FIM is a lower bound on the true covariance of the estimator i.e. This states

that the covariance of any estimator of K̂ is greater than the inverse of the FIM.

Although [83] has suggested a method to evaluate the covariance of the MLE unlike

the method of FIM. In spite of unmodelled dynamics, this approach has shown

asymptotic accuracy of estimation but lacks consistency. Suppose, K denotes a

deterministic variable that influences the outcome of a random variable, X. Then,

the representation of pdf for X depending on K is p(X|K).
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Figure 2.5: Indication of Dependence of pdf on K

Further, the unbiased estimate of K based on measurement, Z is K̂ where, Z is

drawn from p(X|Z): Z ← p(X|K). Then, according to CRLB, the covariance

of any unbiased estimate, K̂ (which is based on Z) of K, is bounded by the FIM,

J(X|K) i.e. cov(K̂|Z) = E[(K̂ −K)(K̂ −K)T ] ≥ J−1(X|K)

‘Unbiased’ refers E[(K̂−K)] = 0 and expression, cov(K̂|Z−J−1(X|K) ≥ 0

i.e. positive semidefinite, refers to ‘bounded’ estimation .

The expression for FIM is presented as:

J(K) = −E
(
δ2 log

δKδKT
p(X(.)|K)

)
A detailed account of parameter estimations has been given for the models that are

linear in the parameter vectors [84]. Instead of a finite linear model in block form,

implementation of the MLE on the non-linear time series generator of the robot

dynamics is accomplished in the present work. Though the dynamical system is

nonlinear in the states, its differential equation is linear in the parameters. The

discussion of parameter estimation in diffusion process is illustrated in [85] and

problem-related to this article is a particular case of these methods. The maximum

likelihood estimation technique combined with CRLB for efficient estimation of

parameters is shown in [56], [86] [87], [88], [90] with reference to linear and

non-linear stochastic systems. Various examples of MLE of parameters applied to

problems has been explained in the form of X(t) = S(t; θ)+W (t); t ε [0;T ] and also

to dynamic linear state model of form X(t) = A(t; θ)X(t)+W (t) but [89] does not
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focus on non-linear differential equations of the form X(t) = A(x(t); t; θ) + W (t)

which is relevant to problem mentioned in the proposed work. The disadvantage

of MLE is that it frequently requires an assumption about the structure of data.

In this thesis, an investigation of both methods of estimations as mentioned

earlier is carried out. Two separate research problems are framed by considering

state estimation and parameter estimation from the noisy observations and known

input. First, the state estimation of n-link robot manipulator is done through EKF

for the implementation of state observer based tracking control and the second

problem is to estimate the controller gain parameters via MLE for trajectory

control of a master-slave robotic system.

2.5 State-observer-based control

A comprehensive survey of robust controllers is presented in section 2.1,

contributed to the tracking control of the robot. All claimed their best to fit in

the scenario of nonlinearlity and uncertainty in the system. However, a question

arises, ”Is the feed to a controller is a clean signal”? This evokes the need

to look at the problems faced in the cases of noisy sensors, unavailability of

the velocity signal, etc. State observer based control has become an alternate

approach [100],[101] and used where the realization of carrying out measurements

is technically challenging and economically not viable. In the present study, the

primary objective is recursive optimal redesign by combining the procedure of

state estimation and robust control into a unified stabilizing controller.

An algorithm used to reconstruct the unobservable states from the output

measurements of the system. For estimation of state, it requires the information

of dynamics of plant and measurement, statistics of process and measurement

noise and initial conditions.

It is considered as a dynamical system which takes process input(u) and

output(y) as its input. The rate of change of estimate, Ẋ consists of two-term:

(i) AX̂ + L(Y − Ŷ ) with estimated state X̂ replaced with actual state X. (ii)

L(Y − Ŷ ); where L denotes observer-gain that decides the weight and distribution

of error ’e’ among states. The error, e = (Y − Ŷ ), i.e. difference of measured
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output Y and estimated output, Ŷ = CX̂, also known as predicted output by

the observer. It has the advantage that the error feedback to a controller is

based on the observer output rather than the actual state incorporating noise.

In state observer based control, the dynamics of the controller is generated by

the observer. The state of the present dynamical system is defined by position

and velocity at any given time. Velocity signal is achieved either by direct

measurement or by differentiating the measured position signal, which may add

cost, weight, and noise [102]. This degrades the performance of the system [103].

In this present work, the authors have, therefore, estimated the states using

Extended Kalman Filter (EKF). Here, position estimates (q̂) and velocity

estimates (̂̇q) are used to implement computed torque control (CTC) for the

tracking control of n-link robotic manipulator.

Developing the observer-based controller for a nonlinear system is not an easy

task due to the absence of the separation principle, and usually, the design

of an observer is coupled with the design of controller [104]. Although the

convergence of observer is the main concern while designing an observer for the

nonlinear system, still the stability of the closed-loop system is threatened due to

phenomena of finite escape time [105]. A robust linear filter has been proposed

a state-space model with real time-varying norm-bounded parameter uncertainty

and nonlinear disturbances meeting the boundedness condition [106].

Feedback control using filtered tracking error has been proposed based

on quadratic Lyapunov energy function [107]. Despite selecting a quadratic

Lyapunov function, a highly nonlinear logarithm function has been suggested

for the tracking control of n-link robot manipulator [108]. The control law

ensures bounded asymmetric Lyapunov function for the state to be bounded.

This approach prevents the state from reaching a boundary where the Lyapunov

function becomes infinite and ensures bounded tracking errors. However, there

would be a small probability of state tracking error escaping away from the

boundary in the presence of noise. The proposed algorithm takes into account

stochastic disturbances in the state evolution as well as in the measurement

process. Here, minimization of the mean square tracking error is based on observer

state estimates of noisy state measurements since exact state measurements are
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Figure 2.6: Block Diagram of State-observer-based Control

not feasible in general. In the present work, minimization of instantaneous

conditional mean square tracking error energy is considered instead of Lyapunov

criterion for control design. The results of He et al.[108] guarantee that the

trajectory tracking error remains bounded for a deterministic problem while

the results of the proposed algorithm guarantee that the mean square error is

minimized for a stochastic problem. Both nonlinearity and external disturbance

have been accommodated as a total disturbance in the nonlinear state-space

model and employed PI observer to observe the state [109]. Further, by using

linear control technique, output error has been converged to zero.

In the absence of measurement noise, recent research has been reported on the

methods of robust control, adaptive control, nonlinear-PID control, H-∞ control,

sliding mode control, DOB control etc., to meet the issues of stable tracking

control [110], [111], [112], [113], [114], [115], [116], [117]. However, in the physical

system, noise is an inherent part of measurand and need to be considered while

designing the controller [118], [119],[120], [121]. Artificial intelligent techniques

are used to develop the controllers using input-output data of the process when

a model is not available, or uncertainties are present in the system [122], [123],

[124]. He and Dong have developed a fuzzy-neural-network-based control strategy
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so that the tracking error and impedance error remain bounded [123]. They

have shown that a quadratic Lyapunov function of the tracking error, auxiliary

state, and the neural weight vector has a negative rate of increase, thereby,

guarantees asymptotic stability. When stochastic disturbances are present in

the robot state model as well as in the output measurement model, it would be

interesting to study the response of a feedback controller. The approach of He

et al. [123] can be adopted; however, the rate of change of Lyapunov function

may use Ito′s formulae for stochastic calculations. Further, the result show

bounded tracking error, but in the presence of noise, there could be sparsely

located random spikes in this error. In the proposed work, the controller takes

into account the stochastic disturbances which would smoothen out these spikes,

and this may improve the results. An adaptive fuzzy neural network learner

of state constraints of a robot has been discussed [124]. The learner requires

lesser data for learning about the uncertainties and also, it learns about the

robot-environment interaction. The effects of state constraints, i.e. inequality

constraints on tracking error are learned, and control law has been designed to

ensure stability in accordance with a Lyapunov function. In this proposed work,

the authors have developed state model in the form of stochastic differential

equation (SDE). It may be modified by considering such inequality constraints

when an error is smaller or greater than a threshold value. Chen et al. [125],[126]

have studied the uncertainties present in the system using a modified bounded

Lyapunov function known as Nussbaum function. They have also developed an

adaptive control of a multivariable system for asymptotic stability by adjusting

a single control parameter ensuring bounded tracking error [127]. However, such

methods do not explicitly intend to relieve the prones of measurement noise [128].

In the latest research, the problem of measurement uncertainty has been solved

by developing Risk-sensitive optimal control algorithms [129].

The alternative way to compensate for noise is the implementation of disturbance

observer-based(DOB) control which provides feed-forward control [130], [131] to

cancel out the uncertainty.

However, the limitation of DOB control is the requirement of sensors to measure

the disturbance that is a difficult task in practice. The presence of noise in the
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system dynamics has been embodied in the stochastic model in the framework of

Stratonovich SDE [132]. Subsequently, for tracking control, Lyapunov machinery

has been designed to process the state feedback law to assure tendency of

mean square tracking error to an arbitrarily small neighborhood of zero. In the

proposed approach, the modeling of a stochastic system is done in the framework

of Itô′s that provides effective modeling as well as helps to frame a control law

such that system can work adaptively and can be implemented on the real device.

These features including assurance of robustness in case of variation in system

variables have not found in the work of Ming et al. [132].

Design of Observer-based controller for a nonlinear system has a significant

problem of stability due to the absence of separation principle which works

only for a linear system. The main problem in observer-based control for a

nonlinear system is that stability can’t be assured even if the nature of observer

is asymptotic convergent and providing estimated states in place of actual

states. This is because the separation principle does not work for a nonlinear

system where the computation of controller gain and observer gain can be done

independently. In the proposed work, the controller design, K̃t that is a function

of observed states has taken into account the estimation error, et.

2.6 Robot interacting with randomly

structured environment

There exists a wide spectrum of controllers to tackle the potential problems

related to master-slave robotic systems [133], [134]. The problems of parameter

uncertainty, time delay, disturbance, loss of information, transparency, etc. are

the subject of present research and researchers have suggested various control

techniques to tackle some of these problems. Model prediction adaptive controller

[135], Robust µ -Synthesis controllers [136], [137], Intelligent controllers [138],

[139], [140], Nonlinear and Composite Adaptive controller [117], [141] have been

used to control such dynamical systems. Further, the Environment, Operator

and Task (EOT) adaptive controllers have been considered highlighting the

33



importance of online information for the control [142]. However, many times,

online information is not available due to various limitations and the researchers

have to cope with the uncertainty.

The interaction of environment cause to alter the dynamics of the robot and

requires a controller for trajectory tracking. The design of controllers becomes

significant when constrained motion occurs, i.e. the manipulator interacts with

its environment. Although impedance control [123], [143] and admittance control

[144], [145] have been proposed while interacting robot with the environment but

these controllers need to know the environment forces. To avoid force sensors,

either disturbance observer or force observer are recommended. However, in many

cases, determination of impedance or admittance models may be cumbersome

in case of a complex environment. Further, iterative learning control (ILC)

scheme has been employed for a robot to adapt unknown environment [146]. This

requires human learning skills which may be inconvenient as it demands repetitive

operation of a device. In the aforementioned schemes and in most of the other

cases, environmental force has been modelled as a spring-damper system and its

variants [142], [147], [148], [149],[150], [151]. Another approach is to regard it

as an external disturbance [100], and disturbance observer has been suggested

to estimate the environment forces. Cui et al. [152] has considered a random

vibration environment and proposed backstepping control for tracking control in

the presence of stochastic environment without estimating it. Environment has

been considered as dynamic uncertainty and estimate it using moving horizon

estimation [153]. The dynamic environment’s effect is more realistically modeled

with states of the robot and obstacle as random variables [129], [132]. Emphasizing

on the importance of knowing the uncertainty in the system to monitor controller

performance and estimator design, [154] has estimated the noise covariance

matrices. In the present study, the MLE method has served the purpose of both

controlling the system in the presence of noise as well as given the idea of the

structure of the sample noise trajectory.

Advance surgery requires knowing the contact forces between the slave robot and

the environment (which may be tissues) for better coordination and realizable

operation [155]. Dynamics of tissues may be helpful for successful surgery
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as it improves the control during telemanipulation in addition to simulation

development for training and conduction of automatic diagnosis. The problem

arises in allocating force sensors to a robot because of size, precision, disposable,

complexity due to connections, isolation of tissues and requirement of heavy

current and temperature for the procedure of surgery cuts and sterilization

of sensors[156]. Thus, the perception of an environment through the sensor

is not recommended. Further, in the scenario of the interaction of a robot

with an uncertain environment, the function of a controller is to generate an

actuating signal which in turn counterbalance the adverse effects of uncertainty.

The determination of the actuating signal will be easy if uncertainties are

measurable which in general not feasible, so it leads to a significant problem of

estimation of the environment. The designing of controllers seeks the evaluation

of environmental force as all robots ultimately perceive the world through limited

and improper sensors. Estimation of unknown parameters using output noisy

measurement data has been used in literature. Least square (LS) method works

on minimizing the cost function of squares of residual error [157], and it has

been proposed to estimate the time constants of a second order LTI system

from discrete output measurements [158] that is essentially a maximum likelihood

method with the assumption of measurement noises as i.i.d. Gaussian. Then

based on the second order partial derivatives of the measurement error energy

w.r.t the parameters, an iterative scheme is proposed to obtain a Newtonian

iterative algorithm for parameter estimation. The method will, however, require

modification if the system is nonlinear as it is in robotics problems. One way

to use that approach for nonlinear systems is to expand the nonlinear terms in

the dynamical system as a power series in the state variables and then apply

perturbation theory to obtain an approximate solution to the system regarding

the parameters. After that, the measurement in error energy can be minimized

by the Newton-iteration algorithm. EKF has been used to estimate q̇, variation

in physical parameter, and the environment force with noisy state measurements

[100]. EKF is suboptimal technique as it does not give the minimum mean square

state estimate error(MMSE). Although Kushner filter can provide an optimal

MMSE, it is not implementable as it is an infinite dimensional filter.
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Least square (LS) method to a linear system is applied in the work of Pan et al.

[44] whereas, in the present study, it is applied to a nonlinear system followed

by linearization. Both LS and ML methods result optimal estimates provided

that the disturbance is assumed to be WGN. Multi-variable systems parameters

estimation and control are discussed for moving average noise [120]. This is

a linear system, and both control inputs and noise are present. The moving

average disturbance has been transformed into an autoregressive disturbance

and then, the LS algorithm is proposed to identify the system parameters and

further, results are compared with the study of Liu et al. [159]. This technique

can be adapted to a nonlinear system after some modification. Designing of a

controller by considering the measured data as a joint pdf in combination with

the estimation and convergence analysis of noise is not available to the best of our

knowledge in the literature. Furthermore, no work has been reported on MLE of

the Proportional-Derivative controller’s coefficients of a robot, nor does exist any

computation of CRLB of the component vector comparing the matrix elements

of the controller’s gain parameters. The proposed work is a novel application

of MLE of nonlinear dynamics of a master-slave robotics system. Moreover, the

evaluation of the CRLB from approximate statistics of the robot angular position

and angular velocity perturbations is obtained from the correlation theory of

Gauss-Markov process [80]. In the proposed approach, stochastic environment

force is introduced into the dynamics of the slave robot that added formidable

complexity into robotic systems dynamics. In this work, MLE has been proposed

for estimation of controller gain parameters and then to back substitute these

controller estimates into the dynamics and thereby estimate the sample trajectory

of the environmental noise process. Finally, an approximate expression is derived

for the CRLB on the parameter-estimation-error -covariance matrix. This lower

bound sets a limit to the accuracy to estimate a parameter that influences a

probability density.

36



2.7 Stability of nonlinear and uncertain system

Stability of the control system is a primary requirement and must be ensured before

implementation of a controller to a system. The approach of Lyapunov is usually

applied for ensuring the stability of both linear and nonlinear system [6], [8]. This

approach requires the formation of a suitable scalar function known as Lyapunov

function and its derivative. Consider a scalar function, V (x) which is continuously

differentiable and satisfy the following conditions along the system trajectories

i.e. V (0) = 0; V (x) > 0 and V̇ (x) ≤ 0. The system is stable. Formation of

Lyapunov function for each specific problem particularly for a nonlinear system

is a challenging task, and upon the availability of this, stability can be analyzed

concerning perturbations and time variations. Stability of deterministic nonlinear

system using directly or indirectly Lyapunov machinery is widely exploited in

literature [160], [161], and further extended to address the stability of stochastic

nonlinear control system [149], [162], [163]. Further, various concept and tools

are associated with analyzing the stable behavior of the system. A concept such

as convergence of error signals are also one of the technique to judge the stable

behavior of the system without explicitly solving the dynamic equations, and

presents corresponding definitions of stability [6]. For the problem of tracking

control, the concept of stability is usually based upon convergence in the mean

square criterion.

Investigation of stability has been pursued by various methods for the nominal

system that assures the system is not going to explode in some sense. Here,

the unperturbed system means a nominal system but if the nominal system is

suffered from uncertainty, robustness has to be satisfied that demand stability

margin in some form. This assures that system maintains stable behavior even

in the presence of uncertainty of an expected range in the nominal system [164].

Robustness refers to an attribute of the dynamic system to tolerate variations in

the parts of the system without exceeding pre-defined tolerance bounds in the

vicinity of some nominal dynamic behavior [165]. In case of prior knowledge of

bounds on noise, techniques of robust control have been worked out [44], [166],

[167]. However, in the case of unbounded noise with fast fluctuations, [55] has
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suggested applying the ensemble average rate of decrease of Lyapunov error energy

function rather than a rate of decrease in the Lyapunov function.

Change in any parameter of the closed-loop system may result in a change in the

coefficients of closed-loop dynamics concerning characteristics polynomial or state

space description. The change in system behavior corresponding to variations in

the parameter can be reflected in the state transition matrix, Eigenvalues, state

variables, transfer function or step response, stability radius and some index of

performance [168]. There may not be direct relation between the changes in the

parameters and corresponding changes in the coefficients of the closed-loop system.

In spite of that, it is required to check that allowable parameter changes without

causing an inadmissible change in the dynamic system behavior. Sensitivity

analysis is done to see the effect of parameter variation on the system behavior.

Generally, uncertainty is considered to be unknown perturbations and stochastic

noise with bounds or norms of their magnitude [169]. For interpretation of stability

of the system with unknown uncertainty lies in a prescribed set, mathematical tools

like norms are used for the perturbation and error analysis along with boundness

of the signals.

The size of signals is measured with the help of norm function by considering them

as the elements of a vector space. Different norms are used to express different

forms of signals. signals are the function of time so, Lp norm (for p ∈ [1;∞])is

used. For example, peak magnitude is expressed by ∞− norm, the square root of

energy by 2− norm and action of a signal is denoted by 1− norm.

The square root of the energy of the continuous-time signal, e(t) can be represented

as L2 norm. Where, e(t) is a vector signal.

‖e‖2 =

[∫ ∞
−∞

eT (t)e(t)dt

]1/2
Similarly, peak amplitude of e(t) evaluated over all signal components and all time

is given by L∞.

‖e‖∞ = sup
t

max
i
|ei(t)| = sup

t
‖e‖∞

Two types of matrix norm for matrices X = (eij) ε Cn,m are defined as follows:
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Frobenius norm: ‖X‖F = (
∑n

i=1

∑j
i=1 |eij|2)1/2

Spectral norm (or 2-norm): ‖X‖2 = (ρ(X ∗X))1/2 = σmax(X)

where ρ denotes the spectral radius and σmax is the largest singular value.

The concept of uniform asymptotic stability is usually applied for robotics. When

it is desired robot to move at a point, the interset is to converge at that point

rather than stay nearby to it [170]. Exponential stability refers to uniform

asymptotic stability and significant in showing the robustness of the system

under perturbations. Gronwall-Bellman lemma approach has been applied for

the exponential stability of nonlinear system [171]. The real systems are prone to

uncertainty, and practical stability is significant which requires a solution of the

system lies around the equilibrium point and thus, guarantee acceptable behavior

of the system even in the presence of perturbations.

In recent years, quite many research studies related to the stability analysis

of stochastic nonlinear dynamic system have been presented. The asymptotic

stability of linear dynamical systems has been assured using a nonlinear controller

in which the system and input matrices, as well as the input, are uncertain

[172]. Despite what the uncertainties are, ultimately bounded solutions will

guaranteed every solution to enter a neighborhood of the zero states infinite time

and thereafter start within that neighborhood. Furthermore, the norm of output

tracking error will asymptotically converge to a tunable residual set whose level of

magnitude depends on a design parameter of an averaging filter as t→∞ [173].

Aside from control engineering, closed-loop stability is barely an objective, but

the optimum solution regarding the energy seems more focused on industrial

applications. The genetic-based algorithm has been proposed to minimize the

power consumption of a physical system without the stability analysis [5].

Design of robust controller considering system nonlinearity and uncertainty prefers

stability to be satisfied in the context of a stabilization region known as the

domain of attraction [174] instead investigating stability in a sufficiently small

vicinity of the equilibrium point. Robust stability means stability in the presence

of any allowable uncertainty or nonlinearity. [175] has analyzed the robustness of

nonlinear system which is linearized through state feedback using linear matrix
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inequalities for a single input and single output system. Contrast to their work,

robustness is ensured in the present work using numerical techniques for an

indirect method of Lyapunov for MIMO system on the same concept of Corless

et al. [176] that has explored robust stability of uncertain nonlinear systems

using quadratic Lyapunov functions. A new stability criterion is derived for the

stochastic nonlinear system by using the Lyapunov functional approach. Based on

this, the design procedure of observer-based controller is presented, which ensures

asymptotic stability in the mean square of the closed-loop system [177].

In this thesis, sensitivity analysis is carried out to check the error-dynamics by

varying controller gain values and parameter values.

2.8 Conclusion

In this chapter, the literature survey has been carried out on the defined problem

and associated area. The survey urges the research towards investigating such

reports and unearth the facts and major of them are as follows:

The challenge of tracking control includes the stochastic behavior of a system that

may be due to modeling and measurement error, and robustness of the system is

not fully guaranteed. Access to measurements is a prerequisite in the controller

design as it helps in to detect faults, monitor performance, or exercise control.

The situation, where it is expensive or even impossible to have measurements,

estimation is produced instead. An overview of recent developments in the

estimation methods of recursive state and batch discrete-time have been presented.

Observer-based control provides a solution for output feedback control problem

in a situation where it is not possible to imply all states directly for feedback.

This serves as the motivation to seek a general framework for the design of

observer-based control for robotic manipulators. Apart from the exhaustive

survey, the study has included the critical points when a robot has interaction

with the environment.
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Chapter 3

State-Observer-Based Controller

for Stochastic Dynamical System

3.1 Introduction

This chapter deals with a generalized linear feedback matrix controller designed

for the state of a nonlinear dynamical system to track the desired trajectory in the

presence of stochastic noise. The proposed control algorithm takes into account the

stochastic disturbances in state evolution as well as in the measurement process.

Here, minimization of the mean square tracking error is based on estimated states

of noisy state measurements. Fig. 3.1 shows that the error signals (e and ė) to the

controller in the present study depends on the estimated state, X̂t from the state

observer instead of actual state, Xt. Extended Kalman filter (EKF) is used as

state observer which using the noisy position signal, qt, provides estimated state,

X̂t. The novel feature of this control algorithm design is based on Itô′s stochastic

calculus for the minimization of an objective function. The objective function is

defined as the conditional expectation of the instantaneous tracking error energy

differential with respect to the controller gain feedback matrix subject to energy

constraints. The proposed control algorithm enables the adaptive features for

achieving tracking of a system.

The problem is formulated in a general stochastic differential equation (SDE)

format considering a specific structure of the controller being described by a

quadratic constraint on the PD controller coefficients.

In section 3.2, the state dynamics of the system is formed from a set of coupled

stochastic differential equation(SDE) of the plant. In section 3.3, measurement
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model with white Gaussian noise for the robot state is derived by another SDE

related to state observer. Extended Kalman Filter is set up with an appropriate

observer gain matrix, Lt. In section 3.4, the dynamics of state and observer

is computed for the state tracking error(kt) covariance matrix and observer

state error(et) covariance matrix using the Itô′s differential rule for Brownian

motion. The conditional expectation of differential of tracking error-covariance

(error-energy) given the previously estimated state has been derived. The trace

of this tracking error-energy is minimized with respect to the feedback controller

coefficients, Kt under the energy constraints on the Kt.

The work presented has exploited the stochastic theory to model the plant, an

objective function is framed which is minimized using optimal constraint control,

implemented a linearized feedback control effort using inverse dynamics approach.

Figure 3.1: Block Diagram of State-Observer- Based Controller Design.
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The control system has adaptively incorporated simultaneous estimation process

of states and control of the plant. Further, the robustness of the system is ensured

by the bounded error signals of the closed-loop system.

3.2 Stochastic model of dynamical system

A stochastic model is an extension of the deterministic model (expressed as

ordinary differential equations) perturbed by random noise. The stochastic model

for a nonlinear continuous-time system driven by a torque having white Gaussian

noise component is represented using the Itô′s stochastic differential equation in

this section.

Consider a system in the framework of Euler-Lagrange model with position and

velocity vector as qt and q̇t respectively. The representation of state dynamic

equations without feedback is given as:

dqt = q̇tdt,

dq̇t = F (t, qt, q̇t)dt+G(qt)dBt

So in matrix form:

d

qt
q̇t

 =

 q̇t

F (t, qt, q̇t)

dt+

 0

G(qt)

dBt


(3.1)

Where, F (t, qt, q̇t) = −M(qt)
−1N(qt, q̇t) + M(qt)

−1τ(t), G(qt) = σωM(qt)
−1

and τ(t) are the non-random components of the torque while dBt is the noise

component of the state.

Remark 1. The equation (3.1) can be derived by applying the Euler-Lagrange

dynamic formulation: L(q, q̇, t) =
1

2
q̇TM(q)q̇−V (q)+τ(t)T q and then adding noise

to the system of differential equation. Here, L(q) denotes Lagrange function, V (q)

is the gravitational potential energy. M(qt) is a positive-definite symmetric matrix

which is the function of position and N(qt, q̇t) is a function of both position and

velocity respectively.

The execution of the control process is illustrated with the help of the block

diagram shown in Fig. 3.1. It is required that the system state trajectory, Xt
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Figure 3.2: Dynamics of Errors Involved in Sytem

should follow the desired state trajectory i.e. Xdt. The non-random desired state

follows the same dynamic as the original state SDE except that neither process

noise nor feedback is present in this deterministic dynamics. The situation in

which the desired state dynamics is the same as the noiselesss state dynamics can

be represented as:

dXdt = ψ(t,Xdt)dt (3.2)

The closed loop system state, Xt combines joint angular position and velocity

and is given by Xt =

qt
q̇t

 .
The state observer estimates the states denoted by the vector X̂t and is defined

as, X̂t =

q̂t̂̇qt
.

For optimal design of observer as well as state feedback controller (based

on observer state), three types of error are considered: et,ft and kt. The

dynamics of these errors are obtained from the desired state dynamics, observer

dynamics, and actual state dynamics. The error dynamics is shown in Fig. 3.2

and utilized in the succeeding sections for the design of state observer based

control. In this system, the errors which are based on the observed state, X̂t:
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the state estimation error, et = Xt− X̂t and the state trajectory tracking error,

ft = Xdt− X̂t.

It is shown that the position measurements, qt are taken by sensor and the state

observer estimates the state X̂t = [q̂t ̂̇qt]T using EKF. These estimated states

are compared with the desired states of the predefined time-varying trajectory,

X̂dt = [q̂dt ̂̇qdt]T to get the error signal, ft as shown in Fig. 3.1.

The closed-loop dynamics of the system when the the state observer is

coupled to PD controller can be extended as

dXt = ψ(t,Xt)dt+ K̃t(Xdt− X̂t)dt+ G̃(qt)dBt

where, ψ(t,Xt) =

 q̇t

F (t, qt, q̇t)

 and G̃(qt) =

 0

G(qt)


 (3.3)

The general state dynamic equations of a nonlinear dynamical stochastic system

are shown in equation(3.1) when the torque has a white Gaussian noise component

without feedback. With feedback, equation (3.3) presents state dynamics of the

system which has considered the estimated state for the controller design. The

ability of an observer to estimate the state variables encourages its applications

in the domain of control and monitoring of dynamical systems.

3.3 Estimation of state using EKF:

State-observer

In the last section, it is clear that the admissible controls are now the functions

of the estimate X̂t and not the measured state Xt. In this section, estimation

process of the state vector of a stochastic system by EKF, using the noise-

corrupted position measurements, Z(t) is discussed. The filtering algorithm,

also called as state observer has used a driving force function same as that of

the original state variable system without noise but with a feedback given by

a linear transform ‘Lt’ of the output error between the original state variable

system and the recommended output using the observer state (extended state).

To implement the filtering algorithm, the nonlinear model of EKF based state
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Figure 3.3: Block Diagram: State Estimation using EKF

observer is employed in which evolution of the state w.r.t. time is captured by

equation (3.4). The observer is based on the measurement equation which is a

noisy version of a function of the state expressed as in equation (3.5).

d
̂̇
Xt = ψ(t, X̂t) +Lt(dZt− h(t, X̂t)dt) (3.4)

dZt = h(t,Xt)dt+ σvdVt (3.5)

where, X̂t is the vector of state estimate, ψ(t, X̂t) denotes n-dimensional vector

of nonlinear function and Lt denotes output error feedback gain for the state

observer. Also, h(t,Xt) is m-dimensional vector and Vt denotes measurement

noise respectively.

From Fig. 3.3, it is shown that EKF uses the nonlinear plant update and

measurement function to compute a prediction error, which is then multiplied

by the Kalman gain matrix, Lt derived from the linearized system and added to

the state estimate.
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3.3.1 Extended Kalman Filter

EKF is a nonlinear version of the Kalman filter as the estimation of states for a

nonlinear dynamics is done by adapting the procedure of Kalman filter used for

the linear system. It requires linearization of nonlinear dynamics of the system

around the current estimated state. Further, the propagation of state vector and

the covariance matrix is carried out differently due to nonlinearity present in the

system.

3.3.2 Recursive computation of estimation of state, X̂t

and covariance, Pt

The stochastic interpretation of the distribution of the actual state X(t) is

Gaussian with mean X̂(t) and covariance Pt and EKF based state observer is

used to compute both of them. EKF carry out computations of both X̂t and Pt

recursively as the time evolves in real-time as shown in Fig. 3.4. It is not possible

to do recursive computation only for X̂t without considering Pt. Also, X̂t, Pt

and dZt are required for the computation of X̂t+dt and Pt+dt.

It should be noted that we have considered only the measurements of the angular

position vector, qt and estimated the state i.e. q̂t and ̂̇qt. Further, the observer

gain, Lt has been designed in accordance with the standard EKF algorithm i.e.

Lt = σ−2
v PHT

t is a special case of EKF which ensures suboptimality of the

observer.

EKF Ricatti equation for observer error covariance matrix is represented as:

Pt+dt− Pt =
dP

dt
=
d

dt

Pqq Pqq̇

Pq̇q Pq̇q̇


= ψ̂′P + Pψ̂′T −LtHP +

̂̃
G
̂̃
G
T

= ψ̂′P + Pψ̂′T − σ−2
v PHTHP +

̂̃
G
̂̃
G
T

where G̃ =

0

G

 =

 0

σωM
−1(qt)


and H =

[
I2 : O2

]
for Xt =

qt
q̇t





(3.6)
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Figure 3.4: Recursive Computation of State Estimate and Covariance in EKF.

ψ(t, q, q̇) = ψ =

 q̇

F (t, qt, q̇t)


=

 q̇

M(qt)
−1(τ (t)−N(qt, q̇t))


ψ̂′ =

[
∂ψ(t, q̂, ̂̇q)

∂q

∣∣∣∣∂ψ(t, q̂, ̂̇q)
∂q̇

]

ψ̂′ =

 0 I

∂f̂

∂q

∂f̂

∂q̇





(3.7)

Thus, the state dynamics of state observer from equation (3.4) can be written in

the form as as

d

dt

q̂t̂̇qt
 =

 ̂̇qt
M−1(q̂t)(τ −N(q̂t, ̂̇qt))

+Lt(żt− q̂t) ∈ R4×2 (3.8)

Kalman observer gain for EKF:

Lt = σ−2
v PHT

t

i.e. Lt = σ−2
v

Pqq Pqq̇

Pq̇q Pq̇q̇

 I2

O2


 (3.9)
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Figure 3.5: Estimation Process by EKF
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d

dt
P = ψ̂′P + Pψ̂

′T − σ−2
v P

I2 0

0 0

P T

=

Pqq Pqq̇

Pq̇q Pq̇q̇

Pqq Pqq̇

0 0

 =

 P 2
qq PqqPqq̇

Pq̇qPqq Pq̇qPqq̇




(3.10)

The Ricatti equation (3.10) for updating covariance is solved on-line as it depends

upon the estimated state, X̂.

In this chapter, state observer has estimated the states and a unified approach

of filtering and control is developed to tackle the measurement noise along with

reducing the cost and dimension of the sensor.

In section 3.4, the control law considers two types of error, namely the observer

based tracking error, ft and the observer estimation error, et to update the

feedback coefficient matrix, Kt on a real-time basis. The proposed real-time

stochastic approach computes the observer gain, Lt by EKF and updates the

controller gain matrix, K̃t continuously based on minimization of the tracking

error energy increment that is computed using standard Itô′s formulae for the

Brownian motion. The minimization of the mean square tracking error is subjected

to an energy constraint on the feedback matrix coefficient, Kt. Such a constraint

automatically guarantee the lesser energy, in implementing feedback.

3.4 Design of state-observer-based controller

In this section, implementation of a general algorithm for combining filtering and

control of a noisy nonlinear state variable system with output measurements is

investigated. The optimal PD controller with the controller input is designed

based on the error between ”the state-observer and the desired state.” The possible

uncertainty in the driving force parameter is assumed to obtain robust bounds.

Further, feedback forcing term is incorporated into the original system by giving

a linear transformation gain, Kt of the error between the desired trajectory, Xdt

and the observed trajectory, X̂t. The dynamics of the closed-loop system when

the state- observer is coupled to the feedback PD controller (refer Fig.3.1) can be
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Figure 3.6: Process of Controller Design
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extended as:

d

qt
q̇t

 =


q̇t

F (t, qt, q̇t) +Kt(

qdt
q̇dt

−
q̂t̂̇qt

)

dt+

 0

G(qt)

dBt (3.11)

where feedback controller matrix gain is Kt = K(q̂t, ̂̇qt) ∈ R2×2.

The special case of a diagonal block structure, Kt =

K(p)
t 0

0 K
(d)
t

, reduces the

decoupling of the position and velocity error feedback components.

It is clear from equation (3.11) that the controller gain matrix has a special block

structure.

Let K̃t =

 0

Kt

 .
Thus special structure of the controller gain leads to the constraint block on K̃t

characterized by

TK̃t = 0; where T = [I2|O2]← R2×4 (3.12)

Initially, it was not assumed that controller gain K̃t has the block structure

K̃t =

 0

Kt

 . Thus, we optimize the error energy over all K. However, once

we assume that K̃t has the above block structure, then we can still optimize over

all K provided that we incorporates the constraints given in equation (3.12) using

Lagrange multiplier.

The state tracking error SDE dynamic is obtained using the SDE’s for the system

state and the EKF observer for the estimated state.

In this system, two kinds of errors are taken into account:

The state estimation error, et = Xt− X̂t and the state trajectory tracking error,

ft = Xdt−X̂t, which are based on the observed state, X̂t. Also, state estimation

error covariance matrix is denoted by E(ete
T
t ).

The dynamics of estimation error is represented by:

det = dXt− dX̂t
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From equations (3.3), (3.4) and (3.5), we get:

det = ψ(t,Xt)dt+ K̃tftdt+ G̃tdBt−ψ(t, X̂t)dt

−Lt[h(t,Xt)dt+ σvdVt− h(t, X̂t)dt]

 (3.13)

It is intended for the controller to work around an operating point for the

minimum deviation. Hence, the approximate linearization of the aforementioned

nonlinear error equation is done around X̂t.

Linearization of a function y = f(x) around a point ’a’ is

y ≈ f(a)+f ′(a)(x−a)+higher order terms. As in this case, a = X̂t and f(x) = det

f(X̂t) ≈ ψt(t, X̂t)dt+
̂̃
Ktftdt+̂̃

GtdBt − ψt(t, X̂t)dt− Lt[h(t, X̂t)dt− h(t, X̂t)dt+ σvdVt]

≈ ̂̃Ktftdt+
̂̃
GtdBt − σvLtdVt

f ′(X̂t) ≈
d

dt
[ψt(t,Xt)dt+ K̃tftdt+ G̃tdBt − ψt(t, X̂t)dt− Lt[h(t,Xt)dt

− h(t, X̂t)dt+ σvdVt]Xt=X̂t

≈ ψ̂′(t, X̂t)dt− Lt[h(t, X̂t)dt


So, truncated linearization of det around X̂t:

det ≈ f(X̂t) + f ′(X̂t)(Xt− X̂t) ≈ f(X̂t) + f ′(X̂t)et (3.14)

From the above derivation, equation (3.14 ) is approximated as:

det ≈ [(ψ̂′t−LtĤt)et + K̃tft]dt+
̂̃
GtdBt− σvLtdVt

Where, ψ̂′t = ψ′t(t, X̂t), Ĥt = h′(t, X̂t) , G̃t = Gt(qt) and
̂̃
Gt = Gt(q̂t)


(3.15)

Although the approximate error is not directly considered, it can be evaluated by

looking at term like E(ψ(Xt)) − (ψ(EXt)) =
1

2
ψ

′′
(EXt)E(Xt − EXt)

2 + O(|Xt −

EXt|)3 ≈
1

2
ψ

′′
(EXt)Pt and evaluating supξ |ψ

′′ | and |Pt| for bounding the error.

Here E stands for conditional expectation w.r.t. Xt.
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For any observable ξt , ξ̂t means E (ξt |Zs, ∀ s ≤ t) i.e. the conditional mean of

ξt at any time t, given all the measurements, Zs up to time t. It should be noted

that ψ′t(t, X̂t) =
∂ψt(t,Xt)

∂t

∣∣
X̂t

is the Jacobian matix of the map X̂ → ψ(t, X̂).

Likewise h′(t, X̂t) is the Jacobian matix of the map X → h(t,X).

The total energy of a signal is equal to the sum of the eigen values of the covaiance

matrix of the signal and the sum of the eigen values is nothing but the trace of

the matrix. Thus, the aim is to find the trace of the covariance matrix of the

error signal and minimizing it. The differential of covariance matrix is computed

around X̂t denoted as E(d(ete
T
t )|X̂t).

Using Itô′s calculus rule for SDE, the observer conditional error energy can be

computed as: d(ete
T
t ) = det.e

T
t + et.de

T
t + det.de

T
t .

E(d(ete
T
t )|X̂t) = (ψ̂′t−LtĤt)E(d(ete

T
t )|X̂t)

Tdt+ E(d(ete
T
t )|X̂t)

T (ψ̂′t−LtĤt)dt

+ K̃tftE((eTt )|X̂t)dt+ E((eTt )|X̂t)f
T
t K

T
t dt

+ (
̂̃
Gt
̂̃
G
T

t + σ2
vLtL

T
t )dt


(3.16)

Substitute:

µt = E(et|X̂t)

Pt = E(ete
T
t |X̂t)

 (3.17)

where, µt is the conditional expectation of tracking error given observer state

estimation at time t and Pt is conditional error covariance matrix.

Thus, equation (3.16) is presented as:

E[d(ete
T
t )|X̂t] =(ψ̂′t−LtĤt)Ptdt+ Pt(ψ̂

′
t−LtHT )Tdt+ K̃tftµtdt

+ µtf
T
t K̃

T
t dt+ (

̂̃
Gt
̂̃
G
T

t + σ2
vLtL

T
t )dt2


(3.18)

In the aforementioned equation, only terms having K̃t is controllable so, it is clear

that in order to minimize E[d(ete
T
t ) | X̂t], minimize the following expression to

avoid overshooting provided we are interested only in designing optimal observer,

i.e.

Minimize Tr (K̃tftµ
T
t ) = µTt K̃tft

subject to constraint to the T K̃t = 0 and energy constraint, Et = Tr(K̃tQtK̃
T
t )


(3.19)
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Where, Qt is feedback coefficient energy weighing matrix.

It is noted that the constraints given in the above equation corresponds to the

fact that in the stochastic differential equation (3.11) of system for dXt, feedback

control has been applied only to the lower variable and nothing to the upper

variable so that the feedback control has the special form

 0

K̂t

 and this is

accounted by the constraints [I2 : 0]

 0

K̂t

 = 0

It is to be noted that state tracking error, kt, is defined as:

kt = Xt−Xdt = et− ft (3.20)

For optimal tracker, kt must be made small and to meet the objective of having

good tracking, we need to minimize TrEd((ktk
T
t )|X̂t), i.e. the conditional

average tracking energy increments.

The approximate linearization of the nonlinear error equation is done around X̂t

so that controller can work with minimum deviation. Hence, the rate of increase

of tracking error is approximated as the following:

dkt ≈ dXt− dXdt

= (ψ(t,Xt)−ψ(t,Xdt))dt+ K̃t(Xdt− X̂t)dt+
̂̃
GtdBt

≈ [ψ′(t, X̂t)kt + K̃t(Xdt− X̂t)]dt+
̂̃
GtdBt

 (3.21)

The conditional expectance value of the differential of tracking error energy is

given as: E[d(ktk
T
t )|X̂t]. It depends only on the instantaneous value of the

Kt and hence, it is easy to minimize. The expectance value of the total error

energy is E(ktk
T
t ) = E

∫∫∫ t
0
E[d(ktk

T
t )|X̂t]dt depends on all the past values of

feedback coefficients, Ks, s ≤ t and hence can’t be carried out adaptively. Just

as the least mean square (LMS) algorithm overcomes past values in comparison

of recursive least-squares (RLS), the proposed algorithm overcomes past values

making it adaptively implementable. The performance may not be as good as

the optimal methods of minimizing E(ktk
T
t ) but like the suboptimal LMS or

Widrow algorithm, its performance is good enough and has lesser computational

complexity.
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Using Itô′s calculus rule in equation (3.21), the differential of tracking error energy

is expressed as:

d(ktk
T
t ) ={[ψ′(t, X̂t)kt + K̃t(Xdt− X̂t)]dt+

̂̃
GtdBt}kTt

.kt{[ψ′(t, X̂t)kt + K̃t(Xdt− X̂t)]dt+
̂̃
GtdBt}T

+ {[ψ′(t, X̂t)kt + K̃t(Xdt− X̂t)]dt+
̂̃
GtdBt}

{[ψ′(t, X̂t)kt + K̃t(Xdt− X̂t)]dt+
̂̃
GtdBt}T


(3.22)

The conditional expectation value of the differential of tracking error energy

is obtained after simplifying the aforementioned expression by the use of Itô′s

formulae as:

E(dBt) = 0;

E(etft) = 0;

(dBt.dB
T
t ) = 1

E(
̂̃
GtdBt

̂̃
G
T

t dB
T
t ) =

̂̃
Gt
̂̃
G
T

t


Thus, the resulting expression is approximated as:

E[d(ktk
T
t )|X̂t] ≈ ψ̂′t E(ktk

T
t |X̂t)dt+ E(ktk

T
t |X̂t) ψ̂′

T

t dt

− ψ̂′t νt(Xdt− X̂t)
T K̃T

t dt
2− K̃t(Xdt− X̂t)ν

T
t ψ̂

′
T

t dt
2

+ K̃t(Xdt− X̂t)(Xdt− X̂t)
T K̃T

t dt
2 +

̂̃
Gt
̂̃
G
T

t dt


(3.23)

Consider, νt = −E[kt|X̂t] ≈Xdt− X̂t = ft and E(Xt|X̂t) = X̂t.

Minimizing the trace of the tracking-error-conditional-energy- increment

thus amounts to

maximizing Tr(ψ̂′t(Xdt− X̂t)(Xdt− X̂t)
T K̃T

t ) = Tr(ψ̂′tftf
T
t K̃

T
t )

subject to TK̃t = 0 and Et = Tr(K̃tQtK̃
T
t )


(3.24)

where, Qt denotes feedback coefficient energy weighing matrix and Et refers to

energy constraint.

Note that the quadratic in K̃t term Tr(K̃T
t (Xdt − X̂t)(Xdt − X̂t)

T K̃t) is
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taken care of by absorbing it into the constraints on Et. It is evident from

expression (3.23) that the term in Tr[E(d(ktk
T
t )|X̂t)] containing K̃t (which is the

only adjustable coefficient) is given by:

− 2Tr{ψ̂′tνt(Xdt − X̂t)
T
K̃T} = −2Tr{ψ̂′tνtνtT K̃T} (3.25)

The formation of objective function, S, taking into account the constraints using

Lagrange multiplier is presented as:

S(K̃t, λ,Λ) = Tr(ψ̂′tftf
T
t K̃

T
t )−ΛTr(TK̃t)− λ(Tr(K̃tQtK̃

T
t )−Et)

(3.26)

The focus is on maximizing the objective function stated in equation (3.26), where

the block structure of the controller along with the energy constraint on controller

gain has been accounted for using Lagrange multiplier.

Standard matrix variational calculus is used for obtaining the optimum controller

gain matrix. Lagrange multiplier is used to incorporate the constraint in the

objective function. The calculations shown in (3.27) is carried out for the partial

derivative of S with respect to the Lagrange multiplier involving Λ, λ and the PD

controller K̃, and equating to zero.

The results are shown in the following calculations as

Λ ∈ R2×2 (3.27a)

δΛS = 0 =⇒ TK̃t = 0 (3.27b)

δλS = 0⇒ Tr(K̃tQtK̃
T
t ) = Et (3.27c)

Optimal selection of controller gain is presented as:

δK̃t
S = 0⇒ ψ̂′tftf

T
t − T TΛT − 2λK̃tQt = 0 (3.27d)

Thus K̃t =
1

2λ
(ψ̂′tfff

T
t − T TΛT )Q−1

t (3.27e)

It is to be noted that, Λ imposes constraints on block structure of PD gain as

shown in (3.27b) ,λ imposes error energy constraints on PD controller as shown

in (3.27c). Combination of the results of block structure constraint (3.27b) and

optimal selection of PD controller (3.27e) gives the following:

57



T (ψ̂′tftf
T
t )− TT TΛT = 0

=⇒ ΛT = (TT T )−1T (ψ̂′tftf
T
t )

So, ΛT = T (ψ̂′tftf
T
t )

Note that T = [I2 : 0] =⇒ TT T = I2


(3.27f)

The following expressions represent the procedure of determination of the

Lagrange multiplier for PD energy constraint from prescribed energy after

substituting (3.27e) into (3.27c) as:

Et =
1

4λ2
Tr{(ψ̂′tftf

T
t − T

TΛT )Q−1
t (ψ̂′tftf

T
t − T

TΛT )T} (3.28)

Further solving and rearranging the above equation, we get :

4λ2Et = (fTt ψ̂
′T
t ψ̂

′
tft)(f

T
t Q
−1
t ft)− 2Tr{ψ̂′tftfTt Q

−1
t ftf

T
t ψ̂

′T
t T

TT}

+ Tr(T TT ψ̂
′T
t ftf

T
t Q
−1
t ftf

T
t ψ̂

′T
t T

TT )

T TT =

I2 0

0 0

 is a projection.

so λ =
1

2
√
Et

(fTt Q
−1
t ft)

fTt ψ̂′T
t

0 0

0 I2

 ψ̂′tft
1

2

(3.29)

Substituting ΛT and λ from (3.27f) and (3.29) in (3.27e), the final form of controller

gain, K̃t for the given energy is presented as:

K̃t =
1

2λ
(ψ̂′tftf

T
t − T TT ψ̂′tftfTt )Q−1

t

=
1

2λ

0 0

0 I2

 ψ̂′tftfTt Q−1
t

=
√
Et(f

T
t Q
−1
t ft)

−1
2 (fTt ψ̂

′T
t Qψ̂

′ft)
−1

2Q(ψ̂′tftf
T
t )Q−1

t

(3.30)

The terms involved in equation (3.30) are represented in the form given as:

ft =

qd(t)− q̂(t)
q̇d(t)− ̂̇q(t)


Q =

O2 O2

O2 I2

 ∈ R4×4

Qt = I4 ∈ R4×4
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The primary feature of results obtained as shown in equation(3.30) is that the

order of magnitude of the controller gain K̃t is unity i.e. it is independent of the

tracking error energy since

(fTt Q
−1
t ft)

−1
2 = O(||ft||−1)

(fTt ψ̂
′
T

t Qψ̂
′
tft)

−1
2 = O(||ft||)−1

ψ̂
′

tftf
T
t = O(||ft||2)

Thus, our controller gain order of magnitude is likely to converge to a constant

value irrespective of the initial errors.

The dynamics of the system with feedback for tracking as given in equation (3.3)

is an Itô′s SDE and wriiten as

d

dt

qt
q̇t

 =

 q̇t

M(qt)
−1(τ (t)−N(qt, q̇t)

+

 0

M−1(qt)

(dBt

dt

)
+K̃t

qdt− q̂t
q̇dt− ̂̇qt


(3.31)

To implement the feedback controller, an estimate of system state, X̂t is required

which is obtainted using state observer and shown in the previous section. The

form of computed torque control (refer section 2.1) is represented as:

τ = M(q̂)(q̈d +Kd(q̇d− ̂̇q) +Kp(qd− q̂)) +N(q̂, ̂̇q) (3.32)

Where, Kp and Kd are positive definite gain matrices.

In the design process of state observer based controller, the observer gain,

Lt has been considered in accordance with the standard EKF algorithm.

Although it could be designed by minimizing an appropriate weighted linear

combination of the conditional tracking error energy and observer error energy.

More accurate controllers and observers can be designed using Bellman’s dynamic

programming approach based on minimizing the expected value of the integral of

a linear combination of the tracking error energy and the observer error energy

over a time duration [0, T ].

The next chapter provides experience and insights into applying the theory of

controller design to the realistic, practical problem of tracking control of a robot.
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3.5 Conclusion

In this chapter, a stochastic model of the nonlinear dynamical system has been

developed. The tracking control problem of the stochastic system has been

resolved with state observer based control. This has resulted in an estimation of

state from noisy position measurements. The optimal controller has been designed

and tuned online considering the energy constraint. The adaptive feature of the

control algorithm determines the gains automatically according to the current

dynamics of the system. The proposed controller converges to constant value

indicates the less complexity while employing in a practical system. The benefit

of the proposed control method is that this applies to all kinds of state observer

not necessarily EKF. Further, the general form of linear state feedback control

technique provides a solution of tracking problems of the practical nonlinear

dynamical system in the presence of noise.

The joint error dynamics of estimation error, et, and tracking error, kt derived

in this chapter is further utilized to analyze the effect of fluctuation in state

tracking and state observer error energies due to parametric uncertainties and

PD controller fluctuations. In short, analysis of sensitivity and robustness of the

controller and observer is carried out in chapter 6. The theory investigated in this

chapter derives the tools for the effective design of state estimation and stochastic

control. The operational implementation of a state-observer-based controller to an

n-link robot for tracking the desired trajectory is investigated in the next chapter

systematically.
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Chapter 4

Real-time Implementation of

State-Observer-Based Controller

to Robot

4.1 Introduction

In chapter 3, a stochastic optimal controller for the tracking control of a nonlinear

dynamical system has been designed. This chapter presents a hardware platform

for the validation of proposed state-observer based control on a robot in real-time.

Real-time implementation refers to data processing, execution of the command

derived from a software program and implementation on hardware within a given

interval. The system is first simulated using the model of a robot, and then,

the applicability of the control algorithm is verified on the experimental set up

of Phantom OmniTMBundle robot available in Industrial Automation laboratory,

MPAE Department, NSUT (formerly NSIT), Delhi.

4.2 Mathematical model of robot

Mathematical model is the representation of physical system into the differential

equations that provides essential premise for efficient controller designing followed

by the simulations of the proposed control system. Here, the model of

Phantom OmniTMBundle robot is presented to describe the relationship between

force and motion in joint space. It consists of six joints of which three are

computer-controlled revolute joints energizes by DC motors. Other three joints
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are hand-actuated passive joints. Each joint has an optical encoder for position

measurement.

The Lagrange model of n-dof robot is presented as:

M(qt)q̈+N(qt, q̇t) = τ (4.1)

Where, M(qt) is the moment of inertia n × n matrix ; N(qt, q̇t) represents n × 1

coriolis-centrifugal-gravitational-frictional component of the torque and τ is the

n× 1 matrix of input control torque.

The forward kinematics using Denavit-Hartenberg (D-H) of Phantom Omni is

given in Table 4.1.

The values of the physical parameters shown in Table 4.2 [178] are substituted

for developing the dynamical model as represented by equation (4.1). The model

considers only actuated joint 1 and joint 3 of the robot by locking actuated joint

2 at 0o. The joint 2 is locked by providing it a steady trajectory. The Simulink

model is developed for Omni robot, the terms in equation(4.1) has the following

forms:

M(q) =

M11 M31

M31 M33

 (4.2)

Also,

N(q, q̇) =
[
N1 N3

]T
(4.3)

The inertia matrix of the robot, assuming q2 = 0, is

M(q) =

(α1 +α2C2,3 +α3S2,3 +α4C3 +α5S3) 0

0 α6

 (4.4)

and N(q, q̇) =
[
N1 N3

]T
(4.5)

Table 4.1: D-H Parameters of Phantom OmniTMRobot

Joint q(rad) Joint-Distance

d(m)

Link-length

a (rad)

Twist, α(rad)

q1 0 0 −π/2

q2 0 L1 0

q3 − π/2 0 L2 0
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Table 4.2: Parameters of Phantom OmniTMRobot

Parameter Value of αi

α1 6.11× 10−3 ± 0.9× 10−3

α2 −2.89× 10−3 ± 0.43× 10−3

α3 −4.24× 10−3 ± 1.01× 10−3

α4 3.01× 10−3 ± 0.52× 10−3

α5 2.05× 10−3 ± 0.15× 10−3

α6 1.92× 10−3 ± 0.23× 10−3

α7 1.60× 10−1 ± 0.05× 10−1

α8 −8.32× 10−3 ± 2.78× 10−3

where,

N1 = −2α2q̇1q̇3S(2q3) + 2α3q̇1q̇3C(2q3) +α4q̇1q̇3C(q3)−α5q̇1q̇3S(q3)

(4.6)

N3 = 2α2q̇
2
1C(q3)S(q3)−α3q̇

2
1C(2q3)− 1

2
α4q̇

2
1C(q3)+

1

2
α5q̇

2
1S(q3) +α7S(q3) +α8C(q3)

 (4.7)

Also, Ci = cos (qi),

Si = sin (qi),

C2,i = cos (2qi),

S2,i = sin (2qi)

(4.8)

Jacobian of the robot, when q2 = 0 is as below:

J =

l2 + l3S(q3) 0

0 l2S(q3)

 (4.9)

In the above equation, l2 and l3 denotes length of first link and third link

respectively and is equal to 135 mm.
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Figure 4.1: Experimental Set up of Phantom OmniTMRobot.

4.3 Implementation of state-observer-based

controller

The objective of this work is to implement the proposed observer-based feedback

control system on a real device. Phantom OmniTMBundle robot is used with

control software, QUARC R© of “Quanser”. QUARC provides useful tools capable

of developing a Simulink model for real-time applications of the designed controller

to the real system. So, without any digital signal processing or coding, the

real-time code of Simulink-designed controllers can be run online directly on the

Windows- target. Also, the parameters can be tuned for the running Simulink

model with the facility to display the various signals and stream data to the

workspace for further applications.

The following blocks are used from the Quarc library for the Simulink model and

implementation of the proposed controller on the Phantom robot:

Phantom Block: This software solution includes a Phantom Omni block set for

MATLAB’s Simulink environment to control the Phantom haptic devices. After

getting the successful simulation of the system, the dynamic forward block of a

robot is replaced by Phantom block (shown in Fig. 4.3) of Quansar. In the block

parameter dialog box, “Default device” is selected while using the Phantom Omni
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Figure 4.2: Phantom OmniTMRobot

Bundle robot so that SenSables Phantom Test program can recognize the device.

The output type of this block is “Encoder values” of the joint sensors. As the

controller is designed to control the joint angles of a robot, input type is selected

as “Joint space”. Remaining parameters of the block are set to the default value

as set by Quansar.

Smooth Signal Generator: This block is used for providing a continuous or

discrete waveform with tunable amplitude and frequency online.

In the present Simulink model, it is used to provide a reference trajectory for each

joint and the sample time is set to be Hz.

Sampling Time Block: This block outputs the time between samples, measured

using an independent high-resolution time resource. During the experiment,

the default command set for the sampling time of Phantom Omni TMBundle

device is “qc-get-stepsize” which automatically synchronizes the device to the

workstation. The sampling time is generated automatically by the device and is

equal to the refresh rate.

Bias removal: It calculates the initial position of joint of robot setting sampling

time and stop time for the initial position to ”qc-get-stepsize”.

Second order low pass filter: This block is used to get the velocity signal from

position signal to get velocity and to remove high-frequency noise.

Initially, Geomagic Touch software is used to pair the Phantom Omni device

using LAN cable, i.e. interface IEEE-1394 FireWire (6-pin to 6-pin) port for

communication. After pairing the device with the computer system, it is calibrated

to remove any encoder error using Sensable phantom test. The calibration button

is pressed so that the joints of a robot are physically arranged at zero configuration

position as shown in Fig. 4.2. The C/C++ coding capability of Microsoft Visual
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Figure 4.3: Phantom Block of Quansar

Table 4.3: Joint Parameters of Phantom OmniTMRobot

Joint Position (rad) M(Kgm2) N(Nms/rad)

Joint 1 (q2 = −π/4, q3 = π) 0.0031 0.0089

Joint 2 (q2 = 0, q3 = π) 0.0022 0.0170

Joint 3 (q2 = 0, q3 = −π/4) 0.0009 0.0058

basic tool or Microsoft redistributable has been used for building and compiling

the code and loading it to hardware interface. After build and run command,

the results of the experiments on the developed system are displayed on the

scope of the Simulink. It is equipped with Open-Haptics toolkit that enables

implementation and testing of the designed programming environment developed

over MATLAB Simulink of controllers on the PHANToM devices easily. There is

a facility to read each joint position (in radians) on the scope. Each joint is given

control torque which in turn is the voltage to get the desired position which keeps

on changing with time. Other three joints are hand actuated passive joints.

In the succeeding section, experiments are conducting to show the efficacy of the

state observer design method and state observer- based control of a robot with

stochastic noise, proposed in Chapter 3. The instruction workbook of the robot

[179] used in this present study is provided by the manufacturer for conducting

experiments, but some points are discussed while implementing the proposed

controller on this robot.
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4.4 Implementation of proposed controller

After the successful functioning of the Simulink model of a complete system, the

model of the robot is replaced by ”Phantom” block available in the toolbox of

QUARC library so that controller can be implemented to a real device. The main

difference between the available method of tracking control as given in the manual

supplied by the manufacturer [179] and the proposed method are as follows:

(i) The velocity signal is obtained after feeding the position signal to

second order low pass filter(refer Fig.4.4) which is supposed to reject the

high-frequency noise after differentiation. Whereas in the present work,

velocity is estimated using EKF state observer.

(ii) The available PID control block has Saturation blocks to limit the unsafe

values for the proportional gains. However, no description is given about

it. In the present work, Lagrange multiplier is used to constrain the error

energy of controller to serve the same purpose.

(iii) Further, the maximum velocity of the device should not exceed by 20 rad/sec

mentioned in the manual. Keeping this in mind the reference trajectory is

designed.

(iv) The reference trajectory is chosen keeping in mind the maximum torque

which the joints can bear as specified in the manual.

(v) In the available lab manual of this robot, Kp and Kd is computed for a

fixed joint angle, friction force and mass of inertia (refer to Table 4.3).

The value of proportional gain for Joint 1 is kept Kp = 1.79Nm/rad

and Kd = 0.03Nms/rad and for Joint 3 is Kp = 0.6Nm/rad and Kd =

0.001Nms/rad that are fixed in the manual which we have to make varying or

adaptive. However, in time-varying desired trajectory, values of parameters

are changing w.r.t. joint angles so, the objective of work is to design an

adaptive controller Kp and Kd according to the time-varying trajectory.

(vi) As the joint has a bias so in the desired trajectory of joint 3, π is added, joint

2 is kept fixed by providing step signal of 1.2 as it has the bias of 5π/12.
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Figure 4.4: Controller Block

Fig. 4.2 shows the Joint 1, Joint 2 and Joint 3 of the Phantom robot and the

zero configuration position means the Joint 1 and Joint 2 are set at 0 radian and

Joint 3 at π radian respectively. The fixed sampling time in simulations (∆) is

replaced by variable sampling time of processor (taken from Quarc library block)

to synchronize the program to get the accurate results. The variable sampling

time is dependent upon the computational size of each loop/iteration.

4.5 EKF implementation

The system state vector (X) is as below:

X = [ q1, q3, q̇1, q̇3]T (4.10)

Thus, the system model in state space form can be represented as:

Ẋ = [ q̇1, q̇3, q̈1, q̈3 ]T

= ψ(t,X) +G(q)W

 (4.11)
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Ẋ =


q̇1

q̇3

[M(q)]−1(−N(q̇) + τ )

+


0

0

G(q)

 (4.12)

Where, τ is the torque vector of joint 1 and joint 3 i.e. τ =

τ1

τ2

 and also,

G(q) =

G(q1)

G(q2)


To proceed with the experimental verification of the proposed control algorithm

on hardware, first of all, modeling of the Phantom robot is done in Simulink.

The information about the dynamics of this robot is inferred from the available

literature [178] and illustrated in section 4.2.

The Simulink block of EKF observer is also developed using the model of the

robot and including process and measurement noise. Simulations testing is done

to ensure the proper estimations of states using position signal in the presence of

reasonable noises (assuming Gaussian White noise) as shown in Fig.4.3.

By defining the state vector

X̂ = [q̂1, q̂3, ̂̇q1,
̂̇q3]T (4.13)

From equations (3.6) and (3.8), extended non-linear state observer is represented

as:

˙̂
X = ψ(t, X̂) + PHTσ−2

v (ż− q̂)

Ṗ = ψ̂′P + Pψ̂
′T

+ ĝσ2
wĝ

T − PHTσ−2
v HP

 (4.14)

σν =

cov.(w) 0

0 cov.(w)


P =

Pqq Pq,q̇

Pq̇q Pq̇q̇


ĝ = g(q̂) =

 0

G(q̂)




(4.15)
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Figure 4.5: EKF Implementation

σv, σw, P and ĝ are defined above and for the present measurement linear system

ż = HX + σvdVt = [q1, q3]T

Here, H =

1 0 0 0

0 1 0 0


 (4.16)

ψ̂′ =
∂ψ

∂X̂
=



∂ψ1

∂q̂1

∂ψ1

∂q̂3

∂ψ1

∂̂̇q1 ∂ψ1

∂̂̇q3
∂ψ2

∂q̂1

∂ψ2

∂q̂3

∂ψ2

∂̂̇q1 ∂ψ2

∂̂̇q3
∂ψ3

∂q̂1

∂ψ3

∂q̂3

∂ψ3

∂̂̇q1 ∂ψ3

∂̂̇q3
∂ψ4

∂q̂1

∂ψ4

∂q̂3

∂ψ4

∂̂̇q1 ∂ψ4

∂̂̇q3


(4.17)

=

02×2 I2×2

∂F̂

∂q̂

∂F̂

∂̂̇q
 (4.18)

In Simulink block of EKF, Fourth-order Rung Kutta method is used to perform

the algorithm. The estimated values of one iteration are stored in the memory for

the further use of the next iteration for time value updation with the help of a

fast processor.
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4.6 Computed torque ontrol

The implementation of a state observer based computed torque control (CTC)

for the n-link robot has been done in this section. CTC provides linear feedback

to the non-linear robotic system as discussed in section 2.2. For a given current

position and velocity, CTC cancels out the nonlinearities and provides exactly the

torque required to overcome the inertia of the actuator.

τ = M(q)q̈d +N(qd, q̇d) (4.19)

Also, M(qt) is the moment of inertia matrix and N(qt, q̇t) represents the

coriolis-centrifugal-gravitational-frictional component of the torque.

Substitution of control law results:

M(q)q̈d = M(q)q̈ (4.20)

The property of inertia matrix implies that M(q) is positive definite in q̈d∀q̈.

State feedback is added to inertial acceleration to get the corrected acceleration

to get the tracking property. Thus, to get the linear form of (4.19), the form of

control law is :

τ = M(q)(q̈d +Kpe+Kdė) +N(qd, q̇d) (4.21)

The term with inertia matrix is termed as feedback component and rest

is feedforward component of control. Inverse dynamic block computes the

feedforward component while the computation of feedback component is done

according to the actual trajectory. Thus, the computation of control torque signal

is done at each sample period in real time.

4.7 Results and comparison

In this section, the performance of the proposed method is analyzed by conducting

Test A, and Test B. Tests are performed by applying:

(i) Test signal-I: Signal with white Gaussian measurement noise of covariance

10−7
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(ii) Test signal-II: Signal with white Gaussian measurement noise of covariance

10−5.

The results of both tests carried on joint 1 and joint3 have been illustrated in

Fig.4.6 to Fig.4.13 for joint1 and joint3. The performance is analyzed regarding

desired, estimated and actual trajectory tracking for the proposed approach.

The following observations have been recorded:

• From Fig.4.6 to Fig.4.13, it is observed that there will be spikes in the initial

process of results as seen in the zoomed section (a) but later on responses

settle down and converge and can be seen in the zoomed section (b) of every

figure.

• The experimental results as shown in Fig.4.6 to Fig.4.13 for desired

trajectory (qd), actual trajectory and estimated trajectory (q̂) for joint 1 and

joint 3 respectively validate the good performance of the proposed technique.

• Fig.4.14 and Fig.4.17 indicates the position tracking error and velocity

tracking error of joint 1 and joint3 with noises having covariance 10−7 and

10−5 respectively in the system.

• Fig.4.6-Fig.4.7 show position and Fig.4.10-Fig.4.11 show velocity tracking

of joint 1. What is surprising that although there are small ripples in the

position estimate q̂, there are no large ripples in ̂̇q. If we had used derivative

of estimated postion i.e. ˙̂q in place of estimated velocity, ̂̇q, we would have

got sharp spikes. Thus, the EKF overcomes the velocity tracking problem

successfully.

• Every joint has specific limits of motion. This can be seen in Fig.4.9(b).

During the initial process of estimation, joint 3 rotates to its lower limit and

thus encounters saturation. Also, joint 2 is made fixed to 1.2 radians and

the motion of joint 3 depends upon joint 2.

• Joint 1 has a lesser error magnitude than joint 3 (refer Fig.4.14-Fig.4.17).

This could be explained by the fact that the errors propagate from joint1 to
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Table 4.4: Experiment Results: Position Tracking RMS Error (×10−3)

Work [117] [100] Proposed Test A Proposed Test B

Noise Not Consider Not Consider cov. (10−7) cov. (10−5)

Joint-1 11.9 9.98 6.09 8.34

Joint-3 76.9 33.1 13.09 15.76

joint 3. Specifically, if the position of joint 1 is r1 and the position of joint3 is

(r1 + r3), then the respective error variances are E[||δr1||2] and E[||δr1||2] +

E[||δr3||2, assuming δr1 and δr3 are uncorrelated i.e. E(δrT
1 δr3) = 0.

The comparison of performance of proposed method and techniques employed

by [100] and [117] is shown in Table 4.4. This indicates better results in the

presence of measurement noises. Also, with the increase in the noise, as shown

in the column of Test B, RMS error is increased, but even then the performance

is better as compared to previous work [100] and [117]. The reason is that the

Kushner filter is optimal but the EKF is suboptimal so many authors try to

implement the EKF closer to optimal by replacing the Kalman gain σ−2
v PtH

T

by a gain matrix Lt, designed to minimize the mean square observer error.
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Figure 4.6: Position Tracking of Joint 1 with Measurement Noise of Covariance

10−7 at Different Time Slots.

Figure 4.7: Position Tracking of Joint 1 with Measurement Noise of Covariance

10−5 at Different Time Slots.
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Figure 4.8: Position Tracking of Joint3 with Measurement Noise of covariance

10−7 at Different Time Slots.

Figure 4.9: Position Tracking of Joint 3 with Measurement Noise of Covariance

10−5 at Different Time Slots.
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Figure 4.10: Velocity Tracking of Joint 1 with Measurement Noise of Covariance

10−7 at Different Time Slots.

Figure 4.11: Velocity Tracking of Joint 1 with Measurement Noise of Covariance

10−5 at Different Time Slots.
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Figure 4.12: Velocity tracking of joint 3 with Measurement Noise of Covariance

10−7 at Different Time Slots.

Figure 4.13: Velocity Tracking of Joint 3 with Measurement Noise of Covariance

10−5 at Different Time Slots.
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Figure 4.14: Position Error of Joints with Measurement Noise of Covariance 10−7.

Figure 4.15: Position Error of Joints with Measurement Noise of Covariance 10−5.
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Figure 4.16: Velocity Error of Joints with Measurement Noise of Covariance 10−7.

Figure 4.17: Velocity Error of Joints with Measurement Noise of Covariance 10−5.
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4.8 Conclusion

The proposed algorithm has successfully been implemented for a generalized

controller of a robot based on observer derived state error feedback.

State-observer-based control has utilized only the position measurement from

the encoder and relives the system from using velocity sensor or traditional way

of differentiation of position signal to get the velocity. Hence, with the use of

observer, estimated position and velocity signals without measurement noise have

effectively improved the performance of the feedback control system to track

the desired trajectory in real-time. Further, the developed optimal controller

subjected to energy constraint has restricted the actuator saturation.

The proposed control algorithm with adaptive features has been successfully

used for tracking of the robotic manipulator in this chapter. The experimental

results conducted using the Phantom OmniTM Bundle robot manipulator has

demonstrated and validated the potential application of the proposed control

algorithm on a real system.

Experimental results have indicated excellent tracking as compared to standard

PD or P-controllers used in literature. Further, efforts have been seeking to

minimize a linear combination of the tracking error energy and the observer

error energy simultaneously by choosing the PD controller gain, Kt and the

observer gain, Lt appropriately. The prime feature of this work is that the

real-time feedback coefficients have been designed for very general nonlinear

systems described by a stochastic differential equation and later on specialized

to robot dynamics and control problems.

This chapter has implemented on-line observer and qualify the robust controller

through experimentation done on the real device. Further, recommendations are

made to expand the theoretical results in a direction to a specific measure of the

robustness of controller and establishing a relation between model accuracy along

with variation in the system variables with the dynamics of the system in the next

chapter.

80



Chapter 5

Sensitivity Analysis and

Robustness

5.1 Introduction

Sensitivity analysis is done to study the system’s behavior corresponding to

fluctuations in some variables or parameters of the system which are supposed

to ultimately affect the performance of the system. The impact of fluctuations

in parameters can be reflected in the state transition matrix, Eigenvalues, state

variables and ultimately stability and performance of the system. This analysis

helps to test the robustness of a system in the presence of uncertainty. The aim of

the robustness property for the controller in the presence of uncertain dynamic is

to render the system insensitive to parameter fluctuations that may be caused due

to disturbances, e.g. joint interactions, measurement noises, and noises affecting

the system itself. A dynamic system is robust if it tolerates fluctuations in the

parts of the system without exceeding predefined tolerance bounds in the vicinity

of some nominal dynamic behavior.

In this chapter, sensitivity analysis of state observer based control designed for a

nonlinear dynamical system having uncertainties in the system parameter, θ and

controller parameter, Kt is investigated. Extended the results of section 3.4, the

joint error dynamics of estimation error, e(t) and tracking error, k(t) is utilized

in section 5.2. The analysis is based on linearizing the dynamics of the system

satisfied by errors with respect to the parameter, and controller gain fluctuations

in section 5.3. Finally, the variation of the energies both in state estimation error

and tracking error with respect to the fluctuations in the system parameters and
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the feedback coefficients are investigated in section 5.4.

Robustness of the system ensures that one can meet tracking and stability

objectives through the design of controller provided the changes occur within the

plant remain within certain bounds. As long as uncertainties stay within bounds,

there will be a guarantee of stable control of the system. This results to investigate

the conditions that guarantee bound on mean square error energies of the system.

With the use of the formulae of variation of parameters and norms as candidates,

the general inequalities are derived that impose an upper bound on the tracking

error and observer error in a mean square sense. This investigation checks the

property of robustness for the proposed stochastic control design as presented in

section 5.5.

5.2 System dynamics with parametric

uncertainty

From section 3.3, consider the closed-loop dynamics of the system that takes into

account the observer model. To examine the sensitivity, assume this model is

influenced by parametric uncertainty and controller adjustment. So, in the state

model, the fixed parameter, θ appearing in the drift term is replaced with an

unknown parameter, θ0 as shown in equation (5.1).

Xt =

qt
q̇t


dXt = ψ(t,Xt, θ0)dt+ K̃t(Xdt−Xt)dt+ G̃tdBt

 (5.1)

Recalling in a SDE, the coefficient of dt is called the drift coefficient while the

coefficient of dB(t) is called the diffusion coefficient.

The observer model is the same as the state model but without the state noise

term and it uses a given parameter θ in place of the unknown parameter θ0

appearing in the drift term of the state model. It also uses an output error

feedback via an observer gain Lt which is assumed not to fluctuate.

dX̂t = ψ(t, X̂t, θ)dt+Lt(dZt−HX̂tdt) (5.2)

82



The measurement model is

dZt = HXtdt+ σvdVt (5.3)

Where dZt is the measurement from the plant and H is the state observation

matrix given as H = [I2 : 0]. This form of matrix H accounts to measure qt

and not q̇t.

The controller gain K̃t has the special block form as:

K̃t =

 0

Kt

 (5.4)

The derived state Xdt follows the same dynamics as the actual state Xt but

without the state noise term and controller.

dXdt = ψ(t,Xdt, θ0)dt (5.5)

5.3 Error dynamics, ξt

Consider the different types of errors (refer Section 3.2) involved in the closed loop

nonlinear dynamical system defined as:

Observer error, et = Xt− X̂t

Tracking error using observer state as true state , ft = Xdt− X̂t

and tracking error, kt = et− ft = Xt−Xdt


After linearizing with respect to the parameter fluctuation, δθ, the

approximate dynamics of the state observer error and the tracking error process

are represented as:

det = ψ̂′tetdt+ K̃tktdt+
̂̃
GtdBt−Lt(Hetdt+ σvdVt)

dkt = −ψ̂′tktdt− K̃tkt− ψ̂θtδθ−
̂̃
GtdBt

 (5.6)

The above equations can be arranged in the following form as:

d

et
kt

 =

ψ̂′t −LtH K̃t

0 −ψ̂′ − K̃t

et
kt

dt+
 ̂̃
Gt −σvLt
− ̂̃Gt 0

d
Bt

Vt

−
 0

ψ̂θt

 δθ
(5.7)
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Putting ξt =

et
kt

 (5.8)

where, ξt is complete model of error process taking in to account of state

estimation error and tracking error and the drift matrix, At for the stochastic

differential equation of error process is defined as:

At =

ψ̂′t−LtH K̃t

0 −ψ̂′t− K̃t

 (5.9)

5.4 Sensitivity analysis

In this section, sensitivity analysis is carried out to check the effect on

error-dynamics by varying the values of controller gain and parameter. The steps

involved in carrying out the analysis is outline in the flow diagram as shown in

Fig. 5.1.

In the following derivation, it is inferred that the fluctuations in the feedback gain

K̃t by δK̃t will affect the drift matrix At to fluctuate by δAt and subsequently

lead to fluctuate the state transition matrix φ(t, τ ) by δφ(t, τ ).

The fluctuations of controller gain matrix K̃t is expressed as:

K̃t + δK̃t =

 0

Kt + δKt

 =

 0

Kt

+

 0

δKt


so, δK̃t =

 0

δKt

 (5.10)

The fluctuations in controller gain matrix, δK̃t will result in the fluctuations of

drift matrix , δAt which is shown as:

At =⇒ At + δAt

δAt =

0 δK̃t

0 −δK̃t

 =


0 0

0 δKt

0 0

0 −δKt




(5.11)
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Figure 5.1: Flow Diagram of Sensitivity Analysis.
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In the prceeding numerical analysis, we can infer that sensitivity relies upon

fluctuations in the parameters as well as on the controller gain which in term

depends upon the drift matrix as discussed in equation (5.11).

The complete evolution of the error process taken into account controller gain

fluctuations and parametric fluctuations can be expressed as:

dξt = (At + δAt)ξtdt+ G̃td

Bt

Vt

− ψ̃θtδθ
where G̃t =

 Ĝt −σvLt
−Ĝt 0

 and ψ̃θt =

 0

ψ̂θt




(5.12)

As seen in equation (5.12), δAt form a component of the drift coefficient and

since δAt is defined in terms of δKt (as shown in equation 5.11), δKt form a

component of the drift coefficient. At is the drift matrix since Atξt is the drift

coefficient and δAt is therefore, the drift matrix fluctuations.

The property of state transition matrix is applied i.e. it satisfy the system

differential equation, we have,
∂φ̂(t, τ )

∂t
= Atφ̂(t, τ ), t ≥ τ ; and φ̂(τ, τ ) = I.

The effect of controller gain fluctuations on the state transition matrix fluctuations

is represented as:

φ̂(t, τ ) = φ(t, τ |Kt)

δφ̂(t, τ ) =
∂φ(t, τ |Kt)

∂V ec(Kt)
δV ec(Kt)

∂δφ̂

∂t
(t, τ ) = δAtφ̂(t, τ ) +Atδφ̂(t, τ )

δφ̂(t, τ ) =

t∫∫∫
τ

φ̂(t, τ ′)δAτ ′φ̂(τ ′, τ )dτ ′


(5.13)

Essentially, after forming the differentiation of the state equations for the error, ξt

with respect to the feedback parameters and solving for the resulting differentiated

change in the state transition matrix would enable to calculate the effect of

fluctuations in feedback coefficients on the tracking and observer state error which

is shown below.

The error evolution is expressed in terms of state transition matrix fluctuation (or

equivalently controller-gain fluctuation) and the parameter fluctuation, δθ, and
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presented as:

ξt =

t∫
0

(φ(t, τ ) + δφ(t, τ ))

G̃τd

Bτ

Vτ

+ ψ̃θτδθ

dτ (5.14)

Remark

As δKt = δK is constant in time over a sufficiently long time interval, then from

equation (5.11), it is evident that δAt = δA is also constant in time. This can be

justified with the help of following discussion:

After a long time, when steady state is reached, it is expected that the desired

state, Xdt converge to a constant DC value plus some minor oscillations about

the equilibrium. Likewise, the actual state, Xt should also converge to a constant

DC value plus small oscillations. Thus, the feedback force, Kt(Xdt −Xt) must

be nearly constant which imply that the gain, Kt should converge to a constant

value. For the sake of simplicity, let us consider an observer given as:

Ẋt = AXt +K(Xdt−Xt) +Lt(Yt−HX̂t) (5.15)

The above equation is considered at equilibrium in the absence of noise.

Thus, if Xt → X∞ becomes a constant vector then the above equation can be

shown as

AX∞ +K(Xd∞ − X̂∞) = 0 (5.16)

If the observer is good, the X̂∞ ≈ X∞ and then,

AX∞ +K∞(Xd∞ − X̂∞) + Lt(H(X∞ − X̂∞)) = 0 (5.17)

consider, e∞ = X∞ − X̂∞

f∞ = Xd∞ − X̂∞


The following is obtained:

AX∞ +K∞(f∞) + Lt(e∞) = 0 (5.18)

If e∞, X∞ and f∞ are random vectors, then K becomes the value at which

E[ || AX∞ +Kf∞ + LtHe∞||2 ] is a minimum. (5.19)

Minimizing this with respect to K gives

E [( AX∞ +Kf∞ + LtHe∞).fT∞] = 0

So, A E(X∞f
T
∞) + LtH E(e∞f

T
∞) +K∞ E(f∞.f

T
∞) = 0

or K∞ = −[A E(X∞f
T
∞) + LtH E(e∞f

T
∞)] (E(f∞f

T
∞))−1

 (5.20)
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From the above equation, it is to be noted that K is constant after a sufficient

long time.

5.5 Ensuring Robustness-boundness of

mean-square error

As it can be infered from the above subsection that the parameter vector, θ

fluctuates by δθ and so the resulting change in the dynamics of ξt receives

contributions from both δK̃ and δθ. Taking both of these into account, the

state dynamics of error is derived in equation (5.14). It can be further solve as:

ξt =

t∫∫∫
0

φ(t, τ )G̃τd

Bτ

Vτ

+

t∫∫∫
0

δφ(t, τ )G̃τd

Bτ

Vτ

+

 t∫∫∫
0

φ(t, τ )ψ̃θτdτ

 δθ
(5.21)

The dynamics of mean square tracking error and observer error is presented as:

E{‖ξt‖2} = Tr{E
t∫∫∫
0

(φ(t, τ )G̃τG̃
T
τ (φT (t, τ ) + δφ(t, τ )) + δφT (t, τ ))dτ}+

δθT

 t∫∫∫
0

φ(t, τ )ψ̃θτdτ

T  t∫∫∫
0

φ(t, τ )ψ̃θτdτ

 δθ
= X1(t) +X2(t) +X3(t) +X4(t)

(5.22)

The mean square error process, E{‖ξT‖2} is expressed in term of the parametric

fluctuation, δθ and controller fluctuation, δKt (which manifest itself in the form

of state transition matrix fluctuation) and neglecting O(δK ⊗ δθ)).

88



From equation (5.22), the values of X1(t),X2(t),X3(t),X4(t) are given as:

X1(t) = Tr


t∫∫∫
0

φ(t, τ )G̃τG̃
T
τ φ

T (t, τ )dτ

 ;

X2(t) = 2 Tr


t∫∫∫
0

δφ(t, τ )G̃τG̃
T
τ φ

T (t, τ )dτ

 ;

X3(t) = Tr


t∫∫∫
0

δφ(t, τ )G̃τG̃
T
τ δφ

T (t, τ )dτ

 ;

X4(t) = δθT

 t∫∫∫
0

φ(t, τ )ψ̃θτdτ

T  t∫∫∫
0

φ(t, τ )ψ̃θτdτ

 δθ.

(5.23)

It is to be noted that term X1(t) has only noise fluctuations, X2(t),X3(t) terms

have contributed to drift matrix fluctuations and term X4(t) reflects fluctuations

in parameters.

The system is robust if it is possible to determine the bounds on the system

uncertainties, which guarantees robust control of the system as long as the

uncertainties stay within these bounds. An upper bound can be imposed on

the mean square tracking and observer errors by putting the upper bound on the

various terms given in equation (5.23) as follows:

The objective of robustness of system is ensured in terms of the size of error energy

signals. A quantitative treatment of the performance of control systems requires

the introduction of appropriate norms, which give measurements of the sizes of

the signals considered.

Let the largest real part of the Eigen values of At be bounded by −α0 < 0.

Consider supτ ‖G̃τ‖ = g0 <∞ and size of matrixAt i.e. of ψ(t, τ ) to be (d×

d), then

‖ φ(t, τ ) ‖ ≤e−α0(t−τ),
[
φ(t, τ ) ≈ e(t−τ)A

]
thus, ‖X1(t) ‖ ≤d2

∫∫∫
e−2α0(t−τ) ‖ G̃τ ‖2 dτ

≤d2

(
sup
τ
‖ G̃ ‖2

)(
1− e−2α0t

2α0

)
lim
t→∞

X1 ≤
d2g2

0

2α0


(5.24)
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Likewise, the limiting values for X2,X3 and X4 are evaluated as:

X2 = 2Tr


∫∫∫

0<τ<τ ′<t

Φ(t, τ ′)δAΦ(τ ′, τ )G̃τG̃τΦ
T (t, τ )dτ ′dτ

 ,
lim
t→∞
|X2| ≤

‖δA‖2d3g2
0

α2
0


(5.25)

X3 = Tr


∫∫∫

0<τ<τ ′,τ ′′<<t

φ(t, τ ′|δA(τ ′, τ )G̃τG̃
T
τ φ

T (τ ′′, τ )δAφT (t, τ ′′)dτ ′dτ ′′dτ )


lim
t→∞

X3 ≤
‖δA‖2g2

0

α3
0


(5.26)

lim
t→∞

X4 ≤
‖δθ‖2

α2
0

ψ2
0d

2; where ψ0 = sup
τ
‖ψ̃θτ‖ (5.27)

Thus, the upper bound on the tracking and observer error energy is presented as:

lim
t→∞

E‖ξ2‖ ≤ d2g0

2α0

+ d3g2
0

‖δA‖2

α2
0

+
‖δA‖2g3

0

α2
0

+
‖δθ‖2ψ2

0d
2

α2
0

(5.28)

further, using the property of norm,

‖ δAt ‖2≤ 2 ‖ δKt ‖2
F (5.29)

From equations (5.24) to (5.27), it is shown that the term, lim
t→∞

X1 gives the

limiting tracking error and observer error energies in the absence of parameter

and feedback coefficients uncertainties while the sum of different terms i.e.

X2 + X3 + X4 express the limiting tracking error and observer error energies

in the presence of parameter and feedback coefficients uncertainties. Further,

X2,X3 depend on δφ which in turn depends on δK while X4 depends on δθ,

so the upper bounds on X2 +X3 +X4 depends on ‖ δK ‖ and ‖ δθ ‖, which

therefore, determines the sensitivity and robustness of the tracking error energy

w.r.t. parameter and feedback coefficients fluctuations.

Limiting mean square fluctuation in the tracking error depends upon parameter

fluctuation as well as fluctuations in drift matrix. The limiting mean square

fluctuations in observer error and tracking error are upper bounded by a noise

contribution which depends upon square of maximum eigen value of drift matrix,

A i.e. λ1 plus fluctuation in energy of drift matrix plus energy of parameter as

shown in equation (5.28).
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Figure 5.2: Analysis of Robustness.
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5.6 Conclusion

An interpretation on the effect of fluctuations in parameter and controller gain

on the error dynamics of observer based feedback system has been presented

through sensitivity analysis. The study infers that these fluctuations affect state

transition matrix of the system and an expression of deviation in this matrix

is derived. The derivation of general inequality giving an upper bound on the

mean-square tracking error and observer error is presented. The robustness of

the proposed control solution is ensured by tracking of a stochastic system to a

sufficiently smooth reference signal with an error norm smaller than a prescribed

value. Finally, we have obtained explicit upper bounds on the tracking and

state estimation error energies as quadratic functions of the feedback coefficient.

These upper bounds are expressed as quadratic functions of the parameter and

controller gain as well as the state noise and observer noise gain fluctuations. The

system matrices M(q),N(q, q̇) as well as the controller gain Kt and observer

gain Lt determine the sensitivity of the mean square errors to the parameter and

controller gain fluctuations while the state noise and observer gain obtained from

the matrices Gt, Lt, determine the noise contributions to the mean square error

upper bounds as analyzed in this chapter. These formulae involve the process

noise and measurement noise covariance and lend novelty to this paper.

92



Chapter 6

Estimation of Controller-gain and

Stochastic Environment Force of

Master-slave Robotic System

6.1 Introduction

This chapter addresses the design of controller-gain parameters, K̂ of slave robot

in a master-slave robotic system when a slave is interacting with a stochastic

environment. The slave robot aims to follow the time-varying trajectory of the

master robot in a situation when the environment is modelled as a zero-mean white

Gaussian random process. This randomness is introduced into slave dynamics,

adding formidable complexity to the dynamics of a robotic system. The stochastic

dynamics of the system is modelled in section 6.3. Further, for a known master

torque, τmo, the joint positions of master and noisy slave is measured to compute

the joint probability distribution function (pdf) of angle error over a given time

duration as a function of the unknown parameters ‘K’. Maximizing the conditional

pdf of the slave error angles vector, p(δqs[.]|K) over a duration of time w.r.t.

K is equivalent to minimizing the negative likelihood function L((δqs[.]|K)

w.r.t. K to obtain the Maximum likelihood estimation (MLE) of controller-gain

parameters as presented in section 6.4. Further to back substitute these controller

estimates, K̂ into the dynamics and thereby estimate the sample trajectory

of the environmental noise process, (W [n])Nn=0. The validation of estimation

performance is carried out (a) through simulations done on a 2-link master-slave
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Figure 6.1: Controller Design of Slave Robot for Master-Slave Trajectory Tracking

Without Environment Interaction.

robotic system in section 6.5 and (b) analytically in section 6.6. Convergence

analysis of error in the estimates is performed, and subsequently, an expression of

the Cramer Rao Lower Bound (CRLB) is derived to measure the accuracy of the

estimation.

6.2 Graphical representation of robot tracking

Consider the situation when slave robot has to follow the master trajectory in the

absence of environmental force as shown in Fig. 6.1. The master robot controls

the slave robot by inverse dynamics computation. The slave dynamics do not

influence the master dynamics as no feedback from the slave is given to master.

For a known master torque, τmo, the inverse dynamics computation block takes

the master angles, qm(t) and angular velocities q̇m(t), as its other two variables

and generates a torque, τI that is used as input to the slave so that the states

of slave track the states of master i.e. qs(t) = qm(t) and q̇s(t) = q̇m(t). The

torque control law is computed using the angular acceleration of master, q̈m plus

an error torque, e(t) obtained by passing the position and velocity error through

a PD controller. This error feedback guarantees that if the slave robot lags the

master robot either in position or in velocity, then the acceleration input to the
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Figure 6.2: Block Diagram for Estimation Process of PD controller Gain

Parameters and Environment Force for Master-slave System.
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inverse dynamics block increases thus, causing the torque applied to the slave

to increase so that its position and velocity approach more closely the master

position and velocity respectively. In response to the deviation from the desired

trajectory, the controller gainsKp andKd are tuned that are required to minimize

the position and velocity tracking error.

Assuming zero environmental torque, the PD feedback coefficients are designed

based on optimal control theory to minimize the error energy between the Master

and Slave angles for a known master torque. This system is then handed over to

the user who does not know the exact values of the PD control gain parameters but

wishes to use the system to determine the torque generated by a rapidly vibrating

environment considered as environmental uncertainty. This is done by causing the

slave robot to act on the environment. In this situation, measurement of angles

of master and slave for a given master torque, τmo and random environmental

torque (τE) is taken. The process illustrating the proposed design of the PD

controller’s parameters and environment noise estimation is shown in the block

diagram of Fig. 6.2 and explained in the following sections. The error feedback

from slave to master is not given; hence, the slave motion does not influence the

master dynamics in this model. However, the slave dynamics is determined by (a)

the environmental torque, τE(t), (b) the Master process, qm(t) and (c) the PD

controller coefficients Kp, Kd which affect the error process, e(t) that gets fed

into the slave torque i.e. τs = τI + τE as shown in the Fig. 6.2.

In the presence of environmental noise, it is proposed to reconfigure the available

PD controller gain parameters of the master-slave robotic system by exploiting

estimation methods. Here, Maximum likelihood technique is used for estimation

of controller gain parameters and then to back substitute these controller estimates

into the dynamics and thereby estimate the sample trajectory of the environmental

noise process as discussed in section 6.4. The process of MLE utilizes the slave

dynamics which is influenced by master dynamics and environment interaction

and presented in the next section.
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6.3 Master-slave dynamics

The dynamic equations of both two link master and slave robot are identical except

for the input torques. The master equation is represented as:

Mm(qm)q̈m +Nm(qm, q̇m) = τmo(t) (6.1)

Where, Mm represents the moment of inertia matrix, Nm combines the effects of

damping-coriolis-centrifugal-gravitation force and τmo(t) is torque. The master

equation (6.1) can be rearranged as

q̈m = ψ1(qm, q̇m) +ψ2(qm)τmo(t) (6.2a)

ψ1(qm, q̇m) = −Mm(qm)−1Nm(qm, q̇m) (6.2b)

and

ψ2(qm) = Mm(qm)−1 (6.2c)

For a given torque process in discrete time τmo[n] = τmo[n∆] (∆ being the

discretization step size), the master robot angular position can be simulated as

(qm[n+ 1]− 2qm[n] + qm[n− 1])/∆2

= ψ1(qm[n], (qm[n]− qm[n− 1])/∆) +ψ2(qm[n]).τmo[n+ 1]


(6.3)

The torque from error dynamics is represented as:

e(t) = Kp(qm− qs) +Kd(q̇m− q̇s) (6.4)

In the presence of environment torque, τE, the total torque applied to the slave

robot is τs = τE + τI , where, τI is the torque computed from inverse dynamics.

Also. τI is represented as

τI(t) = F (qI, q̇I, q̈I)

Where, qI = qm;

q̇I = q̇m;

q̈I = q̈m + e(t)


(6.5)
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Figure 6.3: Master-slave Dynamics.
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The slave equations are represented as:

Ms(qs)q̈s +Ns(qs, q̇s) = τs

F (qs, q̇s, q̈s) = τs = τE + τI

τs = τE + F (qm, q̇m, q̈m + e(t))

=τE + τmo +M(qm)e(t)


(6.6)

or equivalently the dynamics of slave robot interacting with environment is

q̈s = −Ms(qs)
−1Ns(qs, q̇s) +Ms(qs)

−1Mm(qm)e(t) +Ms(qs)
−1(τE + τmo)

= ψ1(qs, q̇s) +L(t, qm, qs)e(t) +ψ2(qs)(τE + τmo)

where, L(t, qm, qs) = Ms(qs)
−1Mm(qm)


(6.7)

In Fig. 6.3, the block diagram describes the contribution of master dynamics,

noise component and controller gain parameters in the closed-loop dynamics of

slave robot.

Suppose τE is small, i.e. τE(t) = εW (t), where W (t) is a standard

2-dimensional zero mean White Gaussian random process and ε is a perturbation

parameter attached to the noise term in the slave dynamics to keep track of terms

having different order of smallness in the dynamics. This amounts to assuming

that the noise term is of first order of smallness and enables to expand the solution

in the powers of ε. Thus the solution of the dynamical system to any degree of

smallness (i.e. power of ε) can be achieved by this process. At the end of the

calculation, we may let ε = 1. This appears when the slave robot hits a randomly

vibrating wall. Then, from (6.7), the stochastic difference equation representing

the discretized dynamical model of slave can be expressed as:

(qs[n+ 2]− 2qs[n+ 1] + qs[n])/∆2 = ψ1(qs[n], (qs[n+ 1]− qs[n])/∆)

+L(n, qm[n], qs[n])e[n] +ψ2(qs[n])(εW [n+ 2]/
√

∆ + τmo[n+ 2])


(6.8)

where, L[n, qm, qs] = L[n∆, qm, qs] and W [n] is an independent and

identically distributed (i.i.d.) N(0, σ2
wI2) sequence.

The factor of
1√
∆

is attached to W[n+2] is based on the fact that if B(t) is

standard Brownian motion, then
dB(t)

dt
is standard White Gaussian noise and in
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discrete time, can be approximated by
B(t+ ∆)−B(t)

∆
which is a Gaussian

random variable having zero mean and variance
1

∆
.

Equation (6.8) can be arranged as

qs[n+ 2] = 2qs[n+ 1]− qs[n] + ∆2ψ1(qs[n], (qs[n+ 1]− qs[n])/∆)

+ ∆2L(n, qm[n]qs[n]).(Kp(qm[n]− qs[n])

+ (Kd/∆)(qm[n+ 1]− qm[n]− qs[n+ 1] + qs[n])

+ψ2(qs[n].(ε∆3/2W [n+ 2] + ∆2τmo[n+ 2])


(6.9)

The aforementioned equation represents the sample data of slave position upto

time (N + 2) which is utilized to get the estimation of controller gain parameters

and environment force in the following sections.

6.4 Estimation of controller’s gain parameters

with stochastic environment force

6.4.1 Controller design

It is assumed that designing of controller parameters i.e. Kp and Kd is done so

that {
∑∑∑N−1

n=0 ||qm[n]− qs[n]||2} is a minimum in the presence of noise. Direct

minimization of {
∑∑∑N−1

n=0 ||qm[n]− qs[n]||2} w.r.t. Kp and Kd is equivalent to

a Maximum Likelihood problem since the noise has been considered to be White

Gaussian. This design can be achieved by using stochastic optimal control methods

like Bellman’s stochastic dynamic programming method.

Having designed Kp and Kd, noise is introduced through the environment in the

slave dynamics and the robot is handed over to a user who does not know values of

gain parameters and the environment. This user takes measurements of noisy slave

position δqs[n] = qs[n]−qm[n] over a finite time duration. Noisy slave position

means difference of master and slave position with noise or noise present in slave

dynamics as Kp and Kd have already taken care of tracking error. Using MLE,

he estimates the unknown controller’s gain parameters and after that estimates to
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determine the environmental noise.

The aim is to design Kp and Kd (2× 2) matrices so that

E{
N−1∑∑∑
n=0

||qm[n]− qs[n]||2} is minimum; (6.10)

where qs[n]− qm[n] ≈ δqs[n] is of O(ε).

The slave dynamics given in equation (6.9) is linearized about q
(0)
s [n] = qm[n].

This is presented as:

As f(x) = f(a) + f ′(a)(x − a) + higher order terms. Assuming a = 0, f(a) = 0

and neglecting higher order terms.

δqs[n+ 2] =

2δqs[n+ 1]− δqs[n] + ∆2Ψ1,1[n]δqs[n] + ∆2Ψ1,2[n](δqs[n+ 1]− δqs[n])/∆

+ ∆2L[n] (Kpδqs[n] +Kd/∆(δqs[n+ 1]− δqs[n]))

+ ∆2Ψ2,1[n](δqs[n]⊗ τmo[n+ 2]) + ∆3/2Ψ2[n]W [n+ 2]


(6.11)

where,

ψ1[n] = ψ1(qs[n], q̇s[n])

ψ2[n] = ψ1(qs[n], q̇s[n])

Where ψ1,1[n] =
∂ψ1(qs[n], ∂q̇s[n])

(∂qs[n])

Where ψ2,1[n] =
∂ψ1(qs[n], ∂q̇s[n])

(∂q̇s[n])

also, q̇s[n] =
qs[n]− qs[n− 1]

∆

similary,

ψ2,1[n] =
∂ψ2(qs[n], ∂q̇s[n])

(∂qs[n])

ψ2,2[n] =
∂ψ2(qs[n])

(∂q̇s[n])
= 0



(6.12)

qm[n] = θm[n∆] is obtained by sampling the continuous time master trajectory.

qs[n] = qs[n∆] is obtained by sampling the continuous time slave trajectory.

Also, L[n] = L(n, qm[n], qs[n]) = I2.

Elementary linear algebra techniques involving Kronecker product in equation
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(6.11) is applied and after linearizing, the approximated linear time-varying

stochastic difference equation is represented as:

δqs[n+ 2] = [2I2 + ∆Ψ1,2[n]−∆Kd] δqs[n+ 1]

− [I2−∆2Ψ1,1[n] + ∆Ψ1,2[n]− (∆2Kp−∆Kd)

−∆Ψ2,1[n](I2⊗ τmo[n+ 2])]δqs[n]

+ ∆3/2Ψ2[n]W [n+ 2]


(6.13)

The partial derivative in the aforementioned equation take place w.r.t. each

element of q[n] thus, kronecker operation is performed. The terms involving in

equation (6.13) can be defined as:

∆Kd = αd ∈ R2×2,

∆2Kp−∆Kd = βd ∈ R2×2

A[n] = 2I2 + ∆Ψ1,2[n]

B[n] = −I2 + ∆2Ψ1,1[n]−∆Ψ1,2[n] + ∆Ψ2,1[n](τmo[n+ 2]⊗ I2)

C[n] = ∆3/2Ψ2[n]


(6.14)

Equation (6.13) can be rearranged as

δqs[n+ 2] = [A[n]−αd]I2δqs[n+ 1] + [B[n]− βd]I2δqs[n] +C[n]W [n+ 2]

(6.15)

This equation is now in the right form required for applying the ML method to

estimate αd and βd or equivalently Kp and Kd.

As {δqs[n]} follows 2nd order difference equation with white noise driving

term, the pdf of {δqs[n]} parameterized by αd and βd can be calculated by the

following process based on second order Markov model [Laurence Smith 2006].

p(δqs[n+ 2]|δqs[n+ 1], δqs[n]) = 1/2π|C[n]|exp{−1/2(δqs[n+ 2]

− (A[n]−αd)δqs[n+ 1]− (B[n]− βd)δqs[n]|T

(C[n]C[n]T )−1(δqs[n+ 2]− (A[n]−αd)δqs[n+ 1]− (B[n]− βd)δqs[n])}


(6.16)

The above expression represents a time series model which contains controller

parameters, αd and βd as static variable, known as parameter, which parametrizes
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Figure 6.4: Process of Estimation of Controller Gain Parameters for Tracking

Control.
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the joint law of the random variables (here, q and q̇) involved in the dynamics of

the model. A log- likelihood function is formed which is equivalent to pdf function

as given above. The technique of maximum likelihood choose the set of values

of the model parameters that maximizes the likelihood function. After forming

log-likelihood of equation (6.16) and substituting the terms as follows:

χ[n+ 2] =δqs[n+ 2]−A[n]δqs[n+ 1]−B[n]δqs[n]

P [n] =(C[n]C[n]T )−1

 (6.17)

The log-likelihood function is represented as:

L =

N∑∑∑
n=0

(χ[n+ 2] + αdδqs[n+ 1] + βdδqs[n])P [n](
χ[n+ 2] + α̂dδqs[n+ 1] + β̂dδqs[n]

)T
 (6.18)

Thus, the Maximum Likelihood estimates of αd and βd based on the

measurements of {δqs[n] : 0 ≤ n ≤ N} are given by setting the 0 ≤ n ≤ N

w.r.t. αd and βd to zero.

∂L
∂αd

=

N∑∑∑
n=0

P [n]
(
χ[n+ 2] + α̂dδqs[n+ 1] + β̂dδqs[n]

)
δqs[n+ 1]T = 0

∂L
∂βd

=

N∑∑∑
n=0

P [n]
(
χ[n+ 2] + α̂dδqs[n+ 1] + β̂dδqs[n]

)
δqs[n]T = 0


(6.19)

Further simplification gives the following expressions:

N∑∑∑
n=0

(
P [n]χ[n+ 2]δqs[n+ 1]T

)
+

N∑∑∑
n=0

(
P [n]α̂dδqs[n+ 1]δqs[n+ 1]T

)
N∑∑∑
n=0

(
P [n] + β̂dδqs[n]δqs[n+ 1]T

)
= 0


(6.20)

N∑∑∑
n=0

(
P [n]χ[n+ 2]δqs[n]T

)
+

N∑∑∑
n=0

(
P [n]α̂dδqs[n+ 1]δqs[n]T

)
N∑∑∑
n=0

(
P [n] + β̂dδqs[n]δqs[n]T

)
= 0


(6.21)
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Elementary properties of the kronecker tensor product is applied in equations

(6.20) and (6.21), especially V ec(A × B) = (BT ⊗ A)V ec(X) so that the

resulting expression can be arranged in the form as shown in equation (6.23).

The property is used by substituting B = δqs[n+ 1]δqs[n+ 1]T ; A = P [n];

X = α̂d in the second term and B = δqs[n]δqs[n+ 1]T ; A = P [n], X = β̂d

in the third term of equation (6.20).

V ec{
∑∑∑
n

P [n]χ[n+ 2]δqs[n+ 1]T}+

(
N∑∑∑
n=0

(δqs[n+ 1]δqs[n+ 1]T )⊗ P [n])V ec(α̂d)

)

+

(
N∑∑∑
n=0

(δqs[n+ 1]δqs[n]T )⊗ P [n])V ec(β̂d)

)
= 0

(6.22)

Similar, the property is used by substituting B = δqs[n]δqs[n]T ; A = P [n];

X = α̂d in the second term and B = δqs[n]δqs[n]T ; A = P [n], X = β̂d of

equation (6.23).

V ec{
∑∑∑
n

P [n]χ[n+ 2]δqs[n]T}+

(
N∑∑∑
n=0

(δqs[n]δqs[n+ 1]T ⊗ P [n])V ec(α̂d)

)

+

(
N∑∑∑
n=0

(δqs[n]δqs[n]T ⊗ P [n])V ec(β̂d)

)
= 0


(6.23)

Equations (6.22) and (6.23) form a set of eight simultaneous linear equations for

the unknown parameter vector

 V ec(αd)
V ec(βd)

 ∈ R8.

These can be expressed as following and can be inverted immediately.

 ∑∑∑N
n=0 δqs[n+ 1]δqs[n+ 1]T ⊗ P [n]

∑∑∑N
n=0 δqs[n+ 1]δqs[n]T ⊗ P [n]∑∑∑N

n=0 δqs[n]δqs[n+ 1]T ⊗ P [n]
∑∑∑N

n=0 δqs[n]δqs[n]T ⊗ P [n]

 V ec(α̂d)
V ec(β̂d)


= −

 V ec(∑∑∑N
n=0P [n]ξ[n+ 2]δqs[n+ 1]T )

V ec(
∑∑∑N

n=0P [n]ξ[n+ 2]δqs[n]T )




(6.24)

Equation (6.24) can be solved for the 4×1 vectors i.e. V ec(α̂d) and V ec(β̂d)

K =

V ec(α̂d)
V ec(β̂d)

 or equivalently for the 8× 1 vector. (6.25)
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The ML estimate of K is based upon samples upto time (N+2). The complete

process of MLE of controller gain parameters for slave robot interacting with

stochastic environment is summerized in Fig. 6.4.

In the next subsection, the procedure of back substituting these controller

estimates into the dynamics leads to estimation of the sample trajectory of the

environmental noise process.

6.4.2 Environment noise estimation

The general nonlinear dynamical model of Slave is presented in equation (6.9).

qs[n+ 2] = 2qs[n+ 1]− qs[n] + ∆2ψ1(qs[n], (qs[n+ 1]− qs[n])/∆)

+ ∆2L(n, qm[n]qs[n]).(Kp(qm[n]− qs[n])

+ (Kd/∆)(qm[n+ 1]− qm[n]− qs[n+ 1] + qs[n])

+ψ2(θs[n].(ε∆3/2W [n+ 2] + ∆2τmo[n+ 2])


The terms in the aforemention expression can be defined as:

ξ[n+ 2] = qs[n+ 2]− 2qs[n+ 1] + qs[n]−∆2Ψ1(qs[n]qs[n+ 1)− qs[n]/∆

−∆2Ψ2(qs[n]τmo[n+ 2])

X[n] = −∆2L[n, qm[n], qs[n]](δq[n]T ⊗ I2)

Y [n] = ε∆3/2ψ2(qs[n])

K = (Kp(qm[n]− qs[n]) + (Kd/∆)(qm[n+ 1]− qm[n]− qs[n+ 1] + qs[n])


(6.26)

Thus, the equation (6.26) can be be written in the linear form as:

ξ[n+ 2] = X[n]K + Y [n]W [n+ 2] (6.27)

Recall that L[n, qm[n], qs[n]] = Ms(qs[n])−1Mm(qm[n]);

δq[n] =

 δqs[n]

δq̇s[n]


δqs[n] = qs[n]− qm[n] and δq̇s[n] = q̇s[n]− q̇m[n]


Substitute L[n, qs[n]] = I2 since qs ≈ qm and Mm ≈ Ms, The aim is to

minimize noise i.e. W [n+ 2] w.r.t. K, thus,

K̂[N ] = argminK

N∑∑∑
n=0

||Y −1[n](ξ[n+ 2]−X[n]K)||2 (6.28)
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If K is unknown and environment is considered as white-Gaussian noise (WGN),

then the MLE of K based on data qs(.) collected upto sample, N is least square

and is given by

− 2

N∑∑∑
n=0

Y −1[n](ξ[n+ 2]−X[n]K̂)X[n] = 0

−
(

N∑∑∑
n=0

(Y [n]Y T [n])−1ξ[n+ 2]X[n]

)
+

(
N∑∑∑
n=0

(Y [n]Y T [n])−1X[n]XT [n]K̂

)
= 0(

N∑∑∑
n=0

XT [n]
(
(Y [n]Y T [n])−1X[n]

))
K̂ =

(
N∑∑∑
n=0

XT [n]((Y [n]Y T [n])−1ξ[n+ 2]

)


The estimates of K is

K̂ =

(
N∑
n=0

XT [n](Y [n]Y T [n])−1X[n]

)−1( N∑
n=0

X[n](Y [n]Y T [n])−1ξ[n+ 2]

)
(6.29)

After substituting the value of ξ[n+ 2] from equation (6.27), the aforemention

equation (6.29) can be represented as:

K̂ = K +H[N ]−1

N∑∑∑
n=0

F [n]W [n+ 2]

Where, H[N ] =

N∑∑∑
n=0

X[n]T (Y [n]Y [n]T )−1X[n]

F [n] = X[n]T (Y [n]Y [n]T )−1Y [n]


(6.30)

The noise estimates is obtained by substituting the estimates of K i.e. K̂ in

place of K in equation (6.27)

Ŵ [n+ 2] = Y [n]−1(ξ[n+ 2]−X[n]K̂)

= Y [n]−1(X[n]K + Y [n]W [n+ 2]−X[n]K̂)

Ŵ [n+ 2]−W [n+ 2] = Y [n]−1X[n](K − K̂)

 (6.31)

Up to O(||δq||2) in numerator and denominator, (W [n] = O(||δq||)), Then from

(6.30),

K̂[N ]−K = P−1Q

where, P = H[n]

and Q =

N∑∑∑
n=0

F [n]W [n+ 2]


(6.32)
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Figure 6.5: Process of Computation of Environmental Noise.
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Further substituting the values of terms involved in (6.32) from (6.26) and (6.30),

the aforementioned equation is written as:

K̂[N ]−K =λ(
N∑
n=0

(δq[n]⊗ I2)R[n]−1(δq[n]T ⊗ I2))−1

(
N∑
n=0

(δq[n]⊗ I2)R[n]−1ψ2[n]W [n+ 2])

where λ = −ε∆−1/2,

R[n] = Ψ2(qm[n])Ψ2(qm[n])T = Ψ2[n]Ψ2[n]T

Ψ2[n] = Ψ2(qm[n])



(6.33)

From equation (6.31), the following expressions are expressed as:

H[n] ∝
N∑∑∑
0

(δq[n]⊗ I2)R[n]−1(δq[n]T ⊗ I2) and linearization around qm[n];

(6.34)

Also

N∑∑∑
0

F [n]W [n+ 2] ∝
N∑∑∑
0

(δq[n]⊗ I2)R[n]−1ψ2[n]W [n+ 2] (6.35)

Specifically, the expression for the approximate value of K̂[n]−K (refer equations

(6.33)-(6.34)) is evaluated as a ratio of two quadratic functions of a Gaussian

process, i.e. K̂[n] − K = P−1Q, where, Q ∈ 8 × 1 is a quadratic function

of δq[n]. We show that Q has zero mean and P has non-zero mean and this

justifies the present approach that E{K̂[n]−K} is small. Numerator in equation

(6.33) has mean zero since δq[n] is uncorrelated with W [n+2] and denominator

has non-zero mean since E[δq[n]δq[n]T ] 6= 0. Hence K̂[N ] − K is small in

probability.

6.5 Validation of proposed algorithm

This section presents the effectiveness of the proposed control scheme. Identical

master and slave robot have been considered for this purpose. Before the

interaction of slave robot with environment noise, PD gain parameters matrices

Kd and Kd were tuned for tracking control of slave with respect to master
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Figure 6.6: Trajectories of Joint 1 and Joint 3 of the Master-Slave System.

trajectory such that qs[n] ≈ qm[n]. These parameters are given below:

Kp =

 1.69 0

0 0.6


and Kd =

 0.3 0

0 0.01

 .


(6.36)

Then, random environmental noise with 0.01 covariance is introduced in the

dynamics of the slave. The deviation δqs[n] of the slave angles due to this noise

is measured and using this deviation, the estimation of Kp and Kd using MLE

(refer section 6.4) is

K̂p

 1.71 0

0 0.59


and K̂d =

 0.31 0

0 0.0091

 .


(6.37)

This PD controller’s gain parameters are employed to reduce the tracking error

between master and slave in the presence of environmental noise and tracking

plots are shown for joint 1 and joint 3 of slave robot in Fig.6.5. Further,

with the estimated controller gain parameter, K̂p and K̂d, the noise trajectory

of environment is computed for joint 1 and joint 3 of slave robot as shown

in Fig.6.6. Error plot of this trajectory illustrates that error converges with

the proposed technique. Fig.6.7 illustrates that estimated environment force
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Figure 6.7: Estimation Performance of Environmental Noise of Joint 1 and Joint

3 of Slave Robot.

Figure 6.8: Time Histories of Estimation Error of Environmental Noise.
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(Ŵ [n])Nn=0 accurately tracks the actual environment random force, (W [n])Nn=0.

6.6 Statistics of error dynamics, δq[n]:

In this section, the dynamics of error is represented as state model which is further

used for performance analysis done in section 6.7. Define :

δqs[n] = qs[n]− qm[n]

δq̇s[n] = q̇s[n]− q̇m[n]

State vector, δq[n] =

 δqs[n]

δq̇s[n]




(6.38)

By considering the linearized model, we express the state equations for δq[n] as

a linear first-order difference equation with the white Gaussian input that readily

verifies the Gaussianity of δq[n]. The state equations satisfied by δq[n] are

δqs[n+ 2]− 2δqs[n+ 1] + δqs[n]

= ∆2(Ψ1,1[n]δqs[n] + Ψ1,2[n]δq̇s[n])−∆2((δqs[n]T , δq̇s[n]T )⊗ I2)K

+ ε∆3/2Ψ2[n]W [n+ 2]


(6.39)

The difference equations are expressed as:

δqs[n+ 1] = δqs[n] + ∆δq̇s[n] (6.40)

Following equations are used to get (6.41).

δq̈s[n+ 1] =
δqs[n+ 1]− 2qs[n+ 1] + δqs[n]

∆2

δq̈s[n+ 1] =
δq̇s[n+ 1]− δq̇s[n]

∆


δq̇s[n+ 1] = δq̇s[n] + ∆(Ψ1,1[n]δqs[n] + Ψ1,2[n]δq̇s[n])

−∆((δqs[n]T , δq̇s[n]T )⊗ I2)K + ε
√

∆Ψ2[n]W [n+ 2]


(6.41)

The property, (ηT ⊗ I)V ec(B) = Bη is used to get equation (6.41). Writing K for

the 2× 4 matrix formed from K = [Kp|Kd], where Kp and Kd are 2× 2 matrices.
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We thus have

δq̇s[n+ 1] = δq̇s[n] + ∆(Ψ1,1[n]δqs[n] + Ψ1,2[n]δq̇s[n])

−∆.Kpδqs[n]−∆.Kd.δq̇s[n] + ε
√

∆Ψ2[n]W [n+ 2]


(6.42)

From equations (6.39) and (6.42), the state model is represented as:δqs[n+ 1]

δq̇s[n+ 1]

 =

 I2 ∆I2

(δΨ1,1[n]−∆Kp) (I + ∆.Ψ1,2[n]−∆Kd)

δqs
δq̇s


+
[
ε
√

∆
] O

Ψ2[n]

W [n+ 2]


(6.43)

Substituting:

A[n,K] =

 I2 ∆I2

(δΨ1,1[n]−∆Kp) (I + ∆.Ψ1,2[n]−∆Kd)


and G[n] = ε

√
∆

 O

Ψ2[n]




(6.44)

Equation (6.43) can be expressed as:

δq[n+ 1] = A[n,k]δq[n] +G[n]W [n+ 2] (6.45)

Further, it is shown that

Let E[δq[n]δq[n]T ] = Rq[n]

Then, Rq[n+ 1] = A[n,k]Rq[n]AT [n,k] +G[n]G[n]T

Also, E[δq[n]W [m]T ] = 0

 (6.46)

E[δq[n]W [m]T ] = A[n,k]E[δq[n]W [m]T ], n ≥m− 1

E[δq[m− 1]W [m]T ] = E[δq[n+ 1]W [n+ 2]T ]

E[δq[n+ 1]W [n+ 2]T ] = A[n,k]E[δq[n]W [n+ 2]T ] +G[n] = G[n]


(6.47)

Note that, δq is a Gaussian vector sequence and its correlation is determined from

the above equations.
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6.7 Performance measure of estimation

The following sections examine to ensure the satisfactory performance of MLE by

three ways:

(i) Unbiasness of estimation

(ii) Convergence analysis

(iii) Cramer Rao Lower Bound (CRLB) of estimation

6.7.1 Unbias estimation

The property of good unbiased estimate is analysed by showing that the mean

value of a difference between the estimated and true value of the parameter is

nearly zero.

In this section, an analytic justification is presented to support the unbiased

estimates done in the previous section for controller gain parameters. From the

equation (6.34) and (6.35) of estimation, it is noted that the proposed maximum

likelihood estimator of K, i.e. K̂ is based on slave linearization and expressed

in the form K + P−1Q where, Q is a bilinear vector function of {δqs[n]}

and {W [n]} and P is a quadratic function {δqs[n]}. Here, {δqs[n]} is the

master-slave angular error. In view of the linearized dynamics, P and Q are both

quadratic functions of the environmental torque noise W [n]. The mean value of

Q turns out to be zero because of the system causality. The mean value of P

is non-zero, and hence if approximation of E(K̂ −K) by (EP−1)(EQ) is done,

result is zero. This justifies the PD controller gain estimator of the proposed work

is nearly unbiased.

6.7.2 Convergence analysis

Convergence analysis of the parameter estimates is performed by obtaining

approximate expressions for the mean square parameters estimation error based

on N data samples and the accuracy of environmental noise estimate is justified

due to low signal to noise ratio (SNR).
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In this section, it is approximating E‖K̂[n]−K‖2] by E‖(P−1)‖2E(‖Q‖2) and

prove that this is small using the fact that Q is a sum of independent random

variables. We then substitute the estimated value K̂[N ] of K into the nonlinear

slave dynamics in place of K, and solve for W [n] in terms of {q[n]}Nn=0 and

K̂[n]. The result is {W [n]}Nn=0, an estimate of the environmental torque process.

Then show that Ŵ [n]−W [n] is a bilinear function of δqs[n] and {K̂[n]−K}

and is therefore of second order of smallness i.e of O(||W ||2). This justifies our

an accurate estimate of the environmental torque Ŵ [n] from which the structure

of the environment has been determined. Thus, ‖K̂ −K‖2 = ||EP−1||2||EQ||2

can be regarded as a ”matrix ratio” of two quadratic functions of W [n]. In

section 6.4, the ML parameter estimates based on the exact non-linear dynamics

is presented. However, for computation of the performance of these estimates,

it is required to linearize the dynamics otherwise the evaluation of the angular

correlation becomes impossible. The aim is to determine the limiting mean

square deviation lim
n 7−→∞

E{‖δqs[n]‖2}, δqs[n] = qs[n] − qm[n] of the slave

position which require linearization of the non-linear slave dynamics in discrete

time about the master position. The linearized equation has time dependent

matrix coefficients and a driving white noise term coming from the environmental

torque which provides evaluation of correlation E{δqs[n]δqs[n]T}. Aiming that

the master has a limiting angular position, a linear algebraic equation for the

limiting error-correlation- matrix as a function of the feedback parameters, Kp

and Kd is derived.

The limiting noise to signal ratio is represented as
E[‖δqs(∞)‖2]

‖qm(∞)‖2
.

Approximate formula for the PD-parameter error K̂[n] − K and

the noise estimation error Ŵ [n] − W [n] in terms of W [n] and

δq[n] = (qs[n] − qm[n]), q̇s[n] − q̇m[n]) is obtained. A recursive algorithm

is derived for calculating the correlation E[δq[n]δq[n]T ] and E[δq[n]W [mT ]

using linearized version of the dynamical model and this enables us to perform

the above calculations.
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From equation (6.31), the noise estimate error-energy is given by

Ŵ [n+ 2]−W [n+ 2] = Y [n]−1X[n](K − K̂[N ])

≈ ε−1∆−3/2Ψ2[n]−1(−∆2)(δq[n]T ⊗ I2)(K − K̂[N ])

= −ε−1
√

∆Ψ2[n]−1(δq[n]T ⊗ I2)(K − K̂[N ])

 (6.48)

The approximate expression for the absolute error |Ŵ [n] −W [n]| is obtained

as a bilinear function of δq[n] and {K̂[n]−K} showing that this is small in

probability.

This analysis is based on substituting K̂ in place of K in equation (6.31) and

Ŵ [n+ 2] in place of W [n] in the same and substituting the resulting equation

from (6.27).

Since in equation (6.48),
(
Ŵ [n+ 2]−W [n+ 2]

)
is proportional to the tensor

product of two small quantities δq[n] and
(
K − K̂[N ]

)
so,(

Ŵ [n+ 2]−W [n+ 2]
)

is very small in probability. Thus, an environmental

noise estimate is highly accurate as also demonstrated in the simulations.

Remark : The random variables {δq[n] ⊗W [n + 2]}, n = 0,1,2, ....... are

uncorrelated owing to the whiteness of W (.) and hence the variance of the

numerator in (6.48) grows with N as O(N). Equivalently, the mean modulus of

the numerator is of O(
√
N). On the other hand, since E(δq[n]δq[n]T ) 6= 0,

the mean modulus of the denominator in (6.48) grows as O(N). Hence, the mean

modulus of (??) decreases with increasing N as
O(
√
N)

O(N)
= O(

1√
(N)

).

6.7.3 Cramer Rao Lower Bound (CRLB) of estimation

In this section, an approximate expression is derived for the CRLB on the

parameter estimation error-covariance matrix. The Cramer-Rao lower bound

imposes a bound on an estimate of a parameter based on a given measurement

and evaluates the performance of unbias maximum-likelihood estimate on its

variance. This lower bound sets a limit to the accuracy to estimate a parameter

that influences a probability density. The diagonal entries of the CRLB determine

the minimum possible variance/mean square estimation error ‖ E(K − K̂[N ]) ‖2

of each component of K[N].
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Evaluation of the CRLB for any unbiased estimator of the estimation problem

under consideration requires to use the linearized model. Concrete approximations

of the CRLB which give its order of magnitude are derived by assuming that

the master angular position has stabilized as a constant value. In this case, the

linearized slave dynamics is a linear time invariant state variable system of the

form:

δq[n+ 1] = A[k]δq[n] +GW [n+ 2],

where, δq = [δqs, δq̇s]
T

 (6.49)

This is computed as a linear combination of the master-slave error angular

position-velocity correlation matrix. The diagonal entries of the CRLB

determine the minimum possible variance i.e. mean square estimation error

E‖ K − K̂[N ] ‖2 of each component of K[N ]. The angular position-velocity

correlation matrix, Cq[n] approximately satisfies a linear difference equation of

slave dynamics and by solving this equation recursively, Fisher information matrix

and hence, the CRLB is obtained. The state variable equation (6.49) is easily

solved by using the state transition matrix in discrete time and an expression for

the error angular position-velocity correlation matrix Cq[n] = {δq[n].δq[n]T} is

immediately obtained. For stability, we assume that all the eigen values of A[k]

have magnitude smaller than unity and then, using the spectral norm, a bound

on ||Cq[n]|| in term of the maximum magnitude eigenvalue of A[k] is derived.

This enable us to derive the order of magnitude of the CRLB and hence of the

parameter variance estimate. Further, it is shown that the CRLB→ 0 as N→∞

implying that efficient parameter estimates are consistent.

Consider the expression for Fisher inverse matrix (i.e. the CRLB) is obtained in

the special case when the robot vibrates noisly around a fixed point. Computation

of Fisher information matrix is presented as:

J(K) = −E
(
δ2 log

δKδKT
p(q(.)|K)

)
(6.50a)

= E
N∑∑∑
n=0

(
X[n]T (Y [n]Y [n]T )−1X[n]

)
(Refer equation (6.27) (6.50b)

≈ ε−2∆−3∆4

N∑∑∑
n=0

E(δq[n]⊗ I2)R[n]−1(δq[n]T ⊗ I2) (6.50c)
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= ε−2∆

N∑∑∑
n=0

E

δq[n] 0

0T δq[n]

(R[n]−1)11 (R[n]−1)12

(R[n]−1)21 (R[n]−1)22

δq[n]T 0

0T δq[n]T


(6.50d)

= ε−2∆

N∑∑∑
n=0

 (R[n]−1)11E{δq[n]δq[n]T} (R[n]−1)12E{δq[n]δq[n]T}

(R[n]−1)21E{δq[n]δq[n]T} (R[n]−1)22E{δq[n]δq[n]T}


(6.50e)

= ε−2∆

N∑∑∑
n=0

(R[n]−1⊗Cq[n]);

where, Cq[n] = E{δq[n]δq[n]T}

 (6.50f)

The final expression for CRLB of K is given as:

J(K)−1 =
ε2

∆

(
N∑∑∑
n=0

R[n]−1⊗Cq[n])−1

)
(6.51)

The diagonal entries of J(K)−1 ∈ R2×2 give a lower bound for the variance of

the corresponding entry of K̂[N ].

For evaluating the CRLB, J(K)−1, we require Cq[n], the calculations of which

is done as following.

Remark: If we assume that the master angle vector qm[n] has stabilised

around some nominal value say q∗m, then Ψ1,1[n] and Ψ1,2[n] are nearly constant

matrix namely Ψ1,1(q∗m, o) and Ψ1,2(q∗m, o) and so is ψ2[n] = ψ2(q∗m).

Then A[n,k] = A[k] is a constant matrix and so is G[n] = G say.

In that case we have δq[n+ 1] = A[k]δq[n] +Gω[n+ 2], the solution to which

is (assuming δq[0] = 0, δq[n] =
∑∑∑n−1

k=0 A[k]n−k−lGW [k+ 2])

Then, Rq[n] = E[δq[n]δq[n]T ] =
∑∑∑n−1

k=0 A[k]n−k−l|GGT (A[k]T )n−k−l| and

this can be used to get approximate expression for the CRLB. Thus,

G ≈ ε
√

∆

 0

ψ2


GGT = ε2∆

0 0

0 ψ2ψ
T
2

 = ε2∆

0 0

0 R




(6.52)
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Let A[k] =
∑∑∑4

α=1 λαϑαϑ
T
α be the spectral representation of A[k], then

Rq[n] = ε2∆

n−1∑∑∑
k=0

4∑∑∑
α,β=1

(λαλβ)n−k−1ϑαϑ
T
α

(0 0

0 R

ϑβϑTβ
= ε2∆

4∑∑∑
α,β=1

(
1− (λαλβ)n

1− λαλβ
)ϑαϑ

T
α

0 0

0 R

ϑβϑTβ
As n→∞, it can be reduced as

= ε2∆

4∑∑∑
α,β=1

(
1

1− λαλβ
)ϑαϑ

T
α

0 0

0 R

ϑβϑTβ
Assuming |λα| < 1 ∀ α so from (6.51)

CRLB = J−1 ≈ 1

∆2N
R−1⊗

4∑∑∑
α,β=1

(
1

1− λαλβ
)ϑαϑ

T
α

0 0

0 R

ϑβϑTβ


(6.53)

Cq[n] = ε2∆

n−1∑∑∑
k=0

A[k]n−k−1

0 0

0 R

AT [k]n−k−1 (6.54)

and CRLB(K) =
1

∆2
[

N∑∑∑
n=0

R−1⊗
n−1∑∑∑
k=0

(A[k]n−k−1

0 0

0 R

AT [k]n−k−1)]−1

(6.55)

In equation (6.55), for a stable linearized system, eigen values of A[k] will all be

smaller than unity in magnitude and hence the inner sum will be upper bounded

by a finite positive definite matrix say P as n→∞ and subsequently asN →∞,

the CRLB(K) will converge to zero as

CRLB(K) ≈ 1

N∆2
(R−1⊗ P )−1 =

1

N∆2
(R⊗ P−1)

The significance of obtaining the CRLB for controller-gain parameters estimates

is that, since the estimates K̂ is substituted in the equation (6.33) to get an

estimate of the environment noise process, these uncertainty in K̂ will reflect as

an error in the noise estimate, (Ŵ −W ). Thus, the minimum variance in the

noise estimate E‖Ŵ −W‖2 taken over all estimates of K will be lower bounded

by a quantity proportional to the CRLB for K.
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6.8 Conclusion

This chapter has presented an algorithm of estimating controller gain

parameters and environment force using Maximum likelihood techniques based

on measurement of the slave position process over a given time range. The

performance of parameter estimation has been explored through formulation of

an analytical expression of convergence. The success of algorithm is exemplified

by providing a low noise to signal ratio for the parameter estimates as number of

samples (N) increases. Further, computation of CRLB of parameter estimation has

been carried out that indicates as samples tends to infinity, its variance approaches

zero which means that our parameter estimates are consistent. Also, comparison

of CRLB with variance of MLE supports that estimates are asymptotically

efficient. The expression for the parameter and noise estimation errors show via

intuitive arguments that these are small in probability and decrease with increasing

data length. The simulation results show the effectiveness of the estimation

and encourages the contribution of the present work to recast the approach of

conventional control in tracking of master-slave robotics system.
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Chapter 7

Conclusions and Further Scope of

Work

7.1 Introduction

The research work present in this thesis is based on the objectives mentioned in

chapter 1. The respective chapter 3, 4, 5 and 6 meet the defined objectives, explain

the research work carried out and present the contributions. The summary of main

contributions and further scope of work related to the objectives are presented in

the following sections.

7.2 Contributions of work

The contributions of this work are summarized into two parts:

(i) Major contribution (ii) Minor contribution

Under major contributions following innovations are presented:

• Formation of joint error dynamics of estimation error and tracking error

using Itô′s formulae which provides a feasible on-line implementation of

control action based on the instantaneous error to the nonlinear and

uncertain system.

• Validated by real-time experiments of the proposed control solution based

on instantaneous observer output. The performance of the proposed control

scheme and its robustness are explored in multiple operating scenarios.

• Developed sensitivity model to examine the robustness of the controller and
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observer to check the effects of fluctuation in error-energies of state tracking

and state observer due to parametric uncertainties and PD controller

fluctuations.

• Design of controller for tracking in the presence of noise in the closed loop

dynamics of a robot by using maximum likelihood estimation of a robot from

a sample of noisy position measurements. The present control algorithm is

used when a robot interacts with the fluctuating environment, particularly,

in the case where online information is not available.

• Computation of sample trajectory of random environment noise from the

estimation of controller parameters, without the need of any force sensor or

disturbance observer.

Under minor contributions following work has been carried out:

• Developed Itô′s stochastic framework in which joint dynamics of state

evolution and observer is described using a vector stochastic differential

equation (SDE).

• Formulation of an optimal control law while designing of a state observer and

tracker which accommodates the gain matrix quadrature energy constraint

and guarantees bounded errors.

• Designed a state-observer-based control algorithm in which EKF is used to

observe the state vector. The proposed algorithm is applicable to all kinds

of state-observer, not limited to EKF and eliminates the need for a velocity

sensor.

• Evaluation of the estimation performance by conducting different analytical

tests.
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7.3 Conclusions

The research work has focused on investigating the trajectory control problems

of an n-link robot in the presence of uncertainty. The uncertainty in the system

dynamics has been introduced due to the presence of process noise, measurement

noise, and the interaction of a robot with the random-structured environment.

The research has proposed control solutions in different situations. A dynamical

state-observer and tracker which work in real-time have been designed successfully

to mitigate the effects of process noise and measurement noise from the system.

Further, the present approach has been validated by implementing a sequence

of PD-controller recursively subject to energy constraints on a real device. The

main thrust of the present technique is to emphasize that tracking performance

is satisfactory while keeping all the variables in the system under control which

indicates robust behaviour.

Thus, the work has contributed to the development of a unique control scheme

with features of both robust and on-line control.

The work has also accomplished the objective to track a system dynamically in

the presence of environmental noise. In this scenario, estimation of controller gain

parameters has been computed using maximum likelihood estimation. In this

context, it is worth mentioning that it is assumed that the state observer and

tracker have already been designed and the challenge is to cope with the effects of

environmental uncertainty.

The work has two manifold approaches: In the first one, the work is focused on

improving the tracking capabilities of a robot by accounting for the unstructured

uncertainty usually encountered in a real industrial application. Additionally,

one of the main objectives is to surpass theoretical developments to validate

the proposed control strategies through real-time experiments. The design of

the proposed state observer based control is to achieve tracking control with the

features of robustness and adaptation. The work has presented both theoretical

developments and application-based validation, related to a nonlinear dynamical

system with noise.

The attempt is made to devise an optimal PD controller which not only tackles
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the problem of nonlinearity and uncertainty but also maintains its original simple

structure. The present study has exploited the mathematical formulae and tools to

develop new ideas for applying in the control of stochastic, nonlinear, time-varying,

constraint optimal problem.

Another approach is to focus on developing an efficient estimation for the

computation of controller gain parameters to determine the stochastic environment

force, based on a batch of noisy observations. This is done in the situation when

a robot is interacting with a randomly structured environment. Moreover, the

performance of estimation is to be verified analytically and through simulations

carried out on a master-slave robotic system.

It would be interesting to make a comparison between these two situations

and corresponding approaches. Whereas in the first approach, the controller is

designed by minimizing the instantaneous square of error energy, the second deals

with the design of the controller using MLE from the handful of observations of

joint positions. The two problems are distinct, but there is a specific relationship

between them. If we have to design a controller adaptively at the slave end of the

robotic system, apply the first approach directly. Further, if we have to determine

the parameter at the master end (teleoperation), we have to use the method of

maximum likelihood estimation.

In the present study, through the development of theoretical concepts, the

applications of online and off-line estimation have been implementing on real

problems successfully.

7.4 Suggestions for further work

The process and technology is a dynamic and innovative thought phenomenon.

Presently, the systems are designed to incorporate intelligence which can account

for data uncertainty in the modeling and control. Thus, the present work opens

up the following areas for the future:

• In this research, we have assumed that process noise and measurement noise

is not related to each other. So, in stochastic sense, cov.(νTωT ) = 0. The

general state equation and measurement dynamics for an observer used is in
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Figure 7.1: Suggested Disturbance-observer for Master-slave System.

the present work is

dXt = f(xt, t)dt+ g(Xt, t)dB(t)

dZt = h(xt, t)dt+ dV (t)


It would be a different approach to work in filtering theory with a correlated

process and measurement noise being applied to the robotic system.

• In the present study, EKF has been employed as a state observer. However,

the approach of state observer based control is not only limited to this

observer but can be applied to any type of observer. EKF can be employed

with the assumption of Gaussian nature of noise with zero mean and

covariance one. However, when there is no knowledge of pdf of noise, the

design and implementation of other options of an observer is an open area

of research.

• The controller is designed by linearizing the dynamics and applying it to the

robot system to study the performance of state-observer-based control. The
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approach used is the linear optimal control method unified with estimation

by an observer. Nonlinear control techniques, viz. sliding mode, intelligent

control in combination with observer can be developed in future.

• The problems of parameter uncertainty, time delay, disturbance, loss of

information have not been considered while designing the controllers for the

master-slave robotic system. The work considering the mentioned problems

can be done for the purpose of robust controller design.

• The study carried out in Chapter 6 assumed that optimal tracker and the

optimal controller has already been designed and it led to a situation when

the robot started encountering random structured environment. In such a

situation, controller gain parameters have been estimated by using a block

processing approach, MLE. The further extension of work may be carried out

by treating environment force as a disturbance. This disturbance can now be

estimated utilizing appropriate design of DOB by assuming disturbance (τ̂E)

as one of the states. The difference of actual and computed disturbance may

be assumed as WGN. Further, state estimation in a noisy environment may

be done by EKF, as shown in Fig. 7.1. Thereafter, trajectory tracking can

be achieved by the optimal design of the controller considering estimated

states as has been found in Chapter 3. The validation of the suggested

control scheme through experimentation is a proposal for future research.
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