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ABSTRACT 

 

With the advent of digitization these days, software evolution has taken a deep rise in the 

computing industries. Large software development projects are being developed which, in turn, 

have a massive amount of data along with the bugs written in their software repositories. These 

bug reports are to be managed using a particular bug tracking system, and a diversified group of 

developers is involved in fixing those bugs. The number of bug report generated on a regular basis 

by frequently used and accessible systems, are generally high. 

 

To triage the incoming reports manually consumes more amount of time. One aspect of bug 

triaging is to assign a particular report to the developer with the required proficiency. Automating 

the process of assigning the bug to the developer with suitable expertise can degrade the software 

evolution costs and effort. 

 

Previous works have used various machine learning algorithms in order to automate the process 

of bug assignment but have incorporated limited tools which gave ineffective results with the 

increased size of the projects. To redress this scenario, this paper employs an improved hybrid 

machine learning approach, along with the bug tossing graphs to give a graph-based model that 

can predict the results more accurately. It also gives a comparative analysis of the machine learning 

algorithms that can be applied and give a solution as to which technique performs better. 

 

The approach used will inevitably suggest developers who have the correct knowledge about 

dealing with a bug record, based on the identified component obtained from the short description 

of the bug report. The work begins with examining the impact generated by various machine 

learning features, including the attributes, classifiers, and the training history. Bug tossing graphs 

are being used along with the ranked list of developers in order to predict the accuracy of the bug 

assigned.  
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CHAPTER-1 

INTRODUCTION 

   

 

To create a bug is human, but to debug is exquisite. Maintenance of software, along with its 

evolution have high effort and cost associated with it. Some of the studies on maintaining software 

showed that the cost of maintaining large size projects vary from 50 to 90% or many times greater 

than the overall cost of the product [1,2]. If the process of fixing the bugs is efficient, then there 

can be a considerable reduction in the production cost and the effort. Thus, various bug tracking 

systems, such as Bugzilla, Mantis Bug Tracker, JIRA, FogBugz, and many more are being 

developed in order to facilitate bug fixing process. These trackers are utilized by outsized projects, 

including those of Eclipse, Mozilla, KDE, and Gnome. These systems are mainly used in open 

source initiatives, in which the participants of the group are distributed throughout the globe and 

may make a contribution in whichever way they like. These systems not only keep the record of 

the problem reported by the contributor, but also help the developers to coordinate among the peers 

whom they may see rarely, or never. 

 

1.1 OVERVIEW 

The lifecycle of Predictive Analysis involves many steps. First is having the clarity of the problem 

statement in hand and identification of the solution to the problem. Once we are clear with the 

above two points, we will be in a position to select our target variable. Second step one of the 

significant steps that is the identification of the dependent variables which will help to predict the 

target variable with the required accuracy. Accuracy to be achieved is also dependent upon the 

target variable selected. For example to predict the loan defaulters an accuracy of 90% is also 

considered as a good percentage, but if we talk about the prediction of some disease or medical 

case accuracy of 90% is not acceptable. In such cases, accuracy needs to be approaching 100%. 

Similarly, for various fields, the accuracy varies as per the stakes associated with the targeted 

variable. 
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Third steps involve data preparation, also known as pre-processing of the data set. This step is 

crucial in the successful building of the prediction model and almost takes 80% of the total time 

required to build a prediction model. Data can be gathered from various kinds of sources such as 

text documents, databases, files in different formats, images, and videos supporting all kinds of 

formatting, spreadsheets and etc. There we can be having both kind of data that is structured or 

unstructured data. After the data has been successfully gathered as per the problem statement in 

hand, next is to explore the data carefully. One should go through the data in hand and identify the 

type of data, types of variable, its range, identify if the variable is categorical or discrete in nature, 

the format of the variables, length and other such properties of the variables. Once the analyst has 

an understanding of the data in hand, he/she can go on with the next step of data validation. 

 

Data validation, data can have various problems or errors that need to be dealt with before the data 

can be used as a training and test data set [2]. Problems like missing values, outliers, incorrect 

variable type, correlated variables, redundant variables, and many more need to be taken care of. 

There are a lot of techniques to handle the above cases. There are few modeling techniques which 

are self-capable to handle the above-mentioned cases, but others require separate effort to take 

care of the above situations. Dimension reduction technique also an essential technique for the 

reduction in the number of variables that can be used for building up the model. Once the data is 

validated thoroughly that is now the data understanding the problems with the data in hand are 

identified, the analyst can start with the data cleaning process. 

 

Data cleaning step is about correcting the errors and problems identified in data exploration and 

validation steps. It is after this step, data is ready to be used to train the required prediction model. 

In this step, problems such as missing values, outliers are to be dealt with. There are no shortcuts 

that can be used in this step, each case to be dealt with separately keeping in mind the problem 

statement and type of data in hand. 

 

Text mining is the part of Knowledge Discovery in Data (KDD), aiming at extracting all the 

valuable information from the unstructured text available in the form of email, text, or a data 

repository. Text mining process identifies valuable information available in the text, convert them 

into numeral indices so as to make the text accessible to multiple algorithms. Text mining maps 
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"text with numbers" to perform further analysis and predictions. The text mining process involves 

a series of steps. Initially, the text is pre-processed for cleaning unwanted information in the text, 

then splitting the text into white spaces resulting in the token generation, and assigning a work 

class to each token. Then in the next step, attributes are generated based on the words and number 

of occurrences of the word in the document using either of the two techniques, viz. bag of words 

and vector space method. The next step involves feature selection or variable section, in which a 

subset from the pool of important features is being selected and is used for model creation. Once 

the model is created, then these numeric vectors are passed to one of the existing machine learning 

algorithms for computing the results. This step is similar to the classic data mining techniques that 

are used in a structured database. The results are then analyzed and predicted for the 

implementation in the desired field. These steps are described in detail in section 3.1. 

 

1.2 PROBLEM STATEMENT 

The Bug tracking systems accept a plethora of bug reports at a time from various users. These bugs 

are, then allotted to the developer who can resolve the bug in the area of his expertise, given a 

restricted timeline. The method of allocating a bug to a developer to get it resolved is known as 

bug assignment. This process of assigning a bug is a cumbersome process, if done manually 

because of the extensive need of labor, time and is more prone to faults. Also, for an open source 

development project, it becomes difficult to keep track of the developers with the required 

expertise. 

 

Recent bug tracking gives a privilege of adding additional comments along with the bugs in the 

bug report. This gives an edge, like a discussion forum, to the geographically separated developers 

in order to discuss the code design and implementation details. This also fills the niche for the 

project teammates, who want to give their contribution encouraging them to join in. Further, the 

add on modules during the software growth, may introduce new bugs in the software and rectifying 

those bugs daily, and manually assigning them to the developers, make the process more difficult. 

Jeong et al. in [3] explained that the time taken by an Eclipse project for assigning a bug, takes 

about forty to hundred days, varying from assigning the bug for the first time to a developer and 

then to reassign the bug if it can't be fixed by the first developer. This process of reassigning the 
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bug to another developer if the previous assignee is unable to fix it is known as "Bug Tossing". 

Studies indicate that the bugs from large size projects have been tossed at least once before getting 

resolved. This project aims at applying an improved and effective approach to automate the process 

of assigning the bug. In this, the process begins with validating a given bug as the real one, predict 

it as the new bug or the tossed one, and then look for the appropriate developer who can resolve 

the bug efficiently. 

 

1.3 MOTIVATION  

Text data has been growing dramatically recently, mostly because of the advance of technologies 

deployed on the web that would enable people to quickly generate text data. For example, every 

day, many web pages are being created. Emails are yet another kind of text data. And literature is 

also representing a large portion of text data. It is also especially imperative because of the high 

quality in the data. That is, we encode our knowledge about the word using text data represented 

by all the literature articles. A vast amount of knowledge is being represented by the text and data 

in these literature articles. 

 

Now, these text data present some challenges for people. It's tough for anyone to digest all the text 

data quickly. So there's a need for tools to help people understand text data more efficiently. Here 

is also another interesting opportunity provided by such big text data, and that is it's possible to 

leverage the amount of text data to discover interesting patterns to turn text data into actionable 

knowledge that can be useful for decision making. 

 

The software development process is emerging these days enormously. The challenges faced 

during the process varies significantly, majorly in the development cost and effort. The bugs so 

introduced during the maintenance phase of the development life cycle are assigned to the desired 

developer who can resolve the bug. Automating this process of assigning a bug to a developer can 

reduce the costs of the projects drastically. Keeping this idea into consideration, the Eclipse and 

Mozilla dataset of textual software repository are being used. On this dataset, a set of the classifier 

is being tested for performance of each of the classifier. Then, an improved approach of using the 

tossing graphs is also implemented, and the performance of the classifier is compared. The 

comparative analysis drawn for the same takes the machine learning classifier at one side and Ml 
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classifier with tossing graph on the other. The results are then represented graphically to have a 

clear picture of the efficiency of the technique used. 

 

1.4 THESIS ORGANIZATION 

The major aim of the thesis is to demonstrate the use of tossing graphs over a set of classifiers for 

automatic bug reassignment, to identify which classifier give best results and draw the comparative 

analysis for the same. 

 

This chapter gives the brief introduction and overview of the research. Chapter 2 gives the 

literature review related with the research. Chapter 3 describes the process of text mining in detail. 

It also gives overview of the classifiers used in the research. The proposed methodology and 

implementation is described in chapter 4. Chapter 5 summarizes the results obtained and 

graphically shows the observations that are drawn from the study. Chapter 6 presents the 

conclusion and the future scope of the research project. 
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CHAPTER-2 

LITERATURE REVIEW 

 

There are various studies exist for predicting the process of bug assignment using supervised and 

unsupervised ML classifiers. The existing work on automating bug assignment process basically 

focusses on the prediction accuracy of the model using basic techniques only. The summary of 

these research carried over decades is discussed below.  

 

2.1 RELATED WORK 

Various researchers have contributed to bug triaging using multiple approaches varying from 

diversified information retrieval techniques to using tossing graphs and incremental method of 

learning for the classifiers. Semi-automating the process of assigning the bug was explained by 

Cubranic and Murphy in [4] using Naïve Bayes Approach to mine the text in bug reports. They 

classified the text by extracting keywords from the title and bug report description and used Id of 

the developer in order to train the classifier. The classifier predicted multiple developers for bug 

fixing when presented with a new bug report. This model gave an accuracy of up to 30% correct 

predictions. The major drawback with their work is the use of a small dataset of approximately 

eight months, ranging from January to September, 2002. This approach was improved by Anvik 

et al. in [5] by applying a wide range of filters, during data collection itself. They initially filtered 

the data based on the title of the bug report, labeled as "invalid", "wontfix" and "worksforme". 

Later the developers were removed who are not working on the project currently, or those who 

have not fixed bugs higher than nine in number. The classifier used by them includes Naïve Bayes, 

C45, and Support Vector Machines. 

 

A varied approach was presented by Anvik and Gail [6], in their dissertation by building a 

recommender system that can automate the process of assigning the bugs. Addition to the previous 

work, he then used Nearest Neighbour, Conjunctive Rules and Expected Maximization as the 

unsupervised technique. 
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An incremental approach for assigning the bug automatically using probabilistic similarity in the 

text was proposed by Canfora et al. [7]. They tracked the reports of developers and individual 

modules that might have changed during the bug fixation process. The results by them showed 

achievement of 50% accuracy [8].  

A study on classification and prioritization of software faults was done by Podgurski et al. in [9] 

in which the employed some machine learning algorithms for classifying the bug reports. Similar 

to this, Lucca et al. in [10] used classifier for classifying maintenance request for bug classification, 

but not for bug assignment. The results showed the accuracy of up to 84% for classifying the bugs. 

A set of bug assignment techniques is being implemented by Lin et al. in [11] on the SoftPM 

proprietary project containing a collection of 2,576 bug reports. They used the ID of the module 

as a feature for training the module classifier and achieved an accuracy of 77.64%, which is 

significant compared to one where this ID is not used. 

A content analysis based approach by using the source code vocabulary was proposed by Matter 

et al. in [12] that can model the developer's expertise. The new report is assigned to a developer 

based on examining the content in the source code and then based on the extracted vocabulary 

words, and it is assigned to the desired developer. 

An incremental model-based approach by Bettenburg et al. in [13] showed that the prediction 

accuracy of the classifiers could be increased by incorporating the duplicate bug reports in the 

training dataset for the classifier. For repetitively increasing the training dataset, the folding 

method is being used that gives an accuracy of about 56%. Table 1 describes chronological 

literature on the techniques used for bug triaging along with their interpreted results. 

 

Machine Learning techniques have already been applied in order to mine the software repositories 

for detecting the debugging component and for supporting code writing in the software 

development. For example, Source version histories were mined by Zimmermann et al. in [22] for 

finding the association rules. The rules were then used in order to predict the files that change 

collectively in terms of program elements like variable and functions. The related work is 

summarized in table 2.1. 
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Table 2.1: Literature work on ML Techniques used in Bug Triaging. 
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CHAPTER-3 

TEXT MINING AND BUG TOSSING GRAPHS 

  

In this era of computing, various digital data acquisition techniques have led to the generation of 

huge amount of unorganized data. These data from software repositories can is used to assign and 

resolve the bug to a developer. The preliminaries and definitions required for implementing this 

automating work is described in detail under this module. The terms explained include the process 

of text mining, and its underlying concepts in detail with example. Then the classification 

algorithms that are used in this research are defined, which include Naïve Bayes Classifier, 

Multinomial Naïve Bayes, Bayesian network, C4.5, linear, and RBF Support vector machines. The 

basics of bug tossing graph is also explained in detail.  

 

3.1 TEXT MINING 

Text mining is a process of discovering knowledge from databases (KDD) to extract useful information 

and identifying previously unknown facts automatically. It is also used for identifying various patterns 

from different text sources. It reduces information overload by focusing on a larger unit of text and 

defining the relationship between inter-document and intra-document information. Most of this data 

contains unorganized information in the form of web pages, contact center notes and transcripts, 

surveys, scientific literature books, legal documents, emails, collaborative system repositories, etc., 

which computers cannot process directly. The major problem that arises is the expression of a concept 

with words, but no such mapping exists. So it is essential to develop techniques and algorithms to pre-

process this textual data in order to identify patterns and to extract knowledge. Text mining is the 

process of analyzing texts using machines, to find exciting regularities in the text and discover 

previously unknown facts. 

 

The process of text mining in some aspects is similar to data mining, except the fact that data 

mining cannot be applied to any unstructured information. So text data needs to be pre-processed 

to reach a structured format, on which further data mining techniques can be applied. Data mining 

tools cannot handle unstructured data, so specialized tools and powerful algorithms are required 
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for processing and analyzing the text. Text mining process includes a series of steps as summarized 

in figure 3.1. 

 

 

Fig. 3.1 Text Mining process 

 

3.1.1 COLLECTION OF DOCUMENTS 

The process starts with collecting the dataset including the set of documents on which text mining 

techniques can be applied. This dataset is collected from various resources depending upon the 
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type of data for which knowledge is to be extracted. The sources for the mining includes software 

project repositories, business documents, social media, satellite images, pdf files, website contents 

etc. 

3.1.2 TEXT PRE-PROCESSING 

Traditional databases cannot store data that is available in unstructured format as they do not 

follow the traditional row-column format. This makes the process of pre-processing a crucial step. 

Pre-processing is used to detect and remove the anomalies present in the text. The main aim is to 

get the real essence of the available text. It involves a series of steps: 

a) Text Segmentation: Textual content segmentation is the technique of identifying the 

boundaries among words, terms, or some other linguistic significant devices, consisting of 

sentences or topics. It is able to make humans read the textual content and assist computers 

in performing some artificial processing. It additionally eliminates needless or undesirable 

statistics which includes ads on the web pages, and deals with binary layout transformed 

texts, tables, figures and formulas. 

b) Tokenization: A token is an instance of phrase or term happening in a file. In tokenization, 

the input textual content is robotically divided into units known as tokens. It is executed 

with the aid of splitting the textual content on white areas and at punctuation marks that 

don't belong to abbreviations diagnosed inside the previous step. Tokenization is explained 

in table 3.1. 

Table 3.1 Tokenization Example 

 

 

c) Part-of-speech tagging: It is also called POS tagging. Part-of-speech includes nouns, 

verbs, adverbs, adjectives, pronouns and conjunctions. POS tagging is the method of 

assigning one part of speech to a phrase. They’re useful as they provide records about a 

word and its friends. 
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d) Parsing: It is used to structure the textual content the usage of parse trees. The parse tree 

to be generated gets the input from the POS taggers and form the tree on the premise of 

speech regulations. 

e) Lemmatization: Lemmatization is the mathematics system of determining a lemma for a 

given phrase. The principle goal is to identify proper reduction of words to dictionary 

headword format. This process is explain in table 3.2. It is further used to derive relative 

forms of a phrase to a familiar base. It gets rid off inflectional endings only and give results 

only of the bottom or dictionary form of a word, which is referred to as the lemma by the 

use of a vocabulary and doing morphological evaluation of phrases. This technique may 

additionally contain complex tasks including identification of context and figuring out the 

part of speech of a phrase in a sentence, so it may be a tough mission to enforce a 

lemmatizer for a new language. 

Table 3.2 Lemmatization Example 

 

 

 

3.1.3 TEXT EXTRACTION 

It is the way toward changing the information into disjunctive arrangement of features. It starts 

with set of measured data and after that makes a progression of inferred values that are proposed 

to be informative. It goes for the extraction of semantic things from the reports to give a 

representative of their content. Disjunctive vocabulary things found in a report are relegated to the 

various classes by estimating the significance of those things to the archive content. 

Text Content extraction can be implemented by using Named Entity Recognition (NER) and 

Relation Extraction. NER aims at identifying the phrases that alludes the name, place, people, 

location, dates and associations existing within a document. These elements are then recognised 

in order to match them to the predefined classes. For instance, the names of human being, will be 

categorised in one class, similar to which the financial qualities, time stamps, dates, etc. Relation 



 

13 

 

extraction includes the recognizable proof of connections among those named substances. For this, 

bag of words and support vector machine procedures can be utilized. 

3.1.4 FEATURE EXTRACTION 

It is a technique of choosing a subset of significant features for use in model creation. This stage 

principally performs expelling features which are repetitive or unimportant. The first element 

space of the information is mapped onto another new feature space. Feature Selection is the subset 

of progressively broad field of feature extraction. It is otherwise called variable selection. 

Feature Vectors:  Set of feature vectors available in the training dataset, is responsible for accuracy 

of the classifier. Keywords that form feature vectors are being extracted from software repositories 

in the form of the titles and the summaries so available. The extraction process is in such a way 

that they correspond to a specific class of bug. For instance, if the repository contain the words 

like “display”, “image”, “icon”, then it depicts that the report description is related to the design 

and layout and will correspond to that class.   

3.2 BUG CLASSIFICATION USING MACHINE LEARNING 

Classification is a directed artificial intelligence strategy for getting a general pattern from an 

informational data set. The idea behind the classification technique is to determine the category 

based on some rules that we design carefully to reflect the domain knowledge about the category 

prediction problem. The categories must be very well defined and this allows the person to clearly 

decide the category based on some clear rules.  

Bug classification technique have one to one mapping between the developer and the class to 

which bug report is being assigned. The mapping between the developers and the list of bugs they 

have resolved in the past, make it a supervised learning algorithm. 

3.3 CLASSIFICATION ALGORITHM USED IN TEXT MINING 

The set of classification algorithms that exists for text mining varies from supervised, unsupervised 

and deep learning algorithms. They are applicable in diversified domains though, thus a few of 

them are used for implementation in this project as described below: 
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a) Naïve Bayes Classifier: Naïve Bayes classifier is a model used for differentiating the 

objects “independently” based on given features. It is a probabilistic model based on the 

principles of Bayes Theorem. Here, every group of feature that is going to be classified 

have independence between them. It uses conditional probability to identify the probability 

with which a class and an instance of it is related. 

 

        

Naïve Bayes classifier is used in bug categorization as, for instance, if a word occurs in a 

description of the bug report more frequently that developer D1 resolves, than in the 

descriptions of reports that are resolved by developer D2, then the developer D1 will be 

selected by this classifier as the potential developer who could resolve any new bug report 

containing this word concurrently. 

b) Bayesian Network: Bayesian network is a model based on probabilistic features, 

representing the group of random variables. It represents their associated probabilities 

using Directed acyclic graphs (DAG) consisting of nodes and edges. Variable is 

represented using nodes of a graph, and the relation between the pair of variables is 

depicted by edges. The probability of variable given the probability of the parent is stored 

in the conditional probability table. 

b) C4.5: C4.5 is a greedy version of the decision tree supervised algorithm which builds a 

tree using the instance attribute present in the training dataset. The results are predicted 

using the directed path from the root node to the leaf using the attribute value of the new 

instance variable. The internal nodes are broken in order to maximize the information gain 

value computed for each decision to be taken at that node. The leaf nodes in the tree 

describe the final class for which there cannot be any further distinctions 

c) Multinomial Naïve Bayes: Multinomial Naive Bayes is an extended version of Naive 

Bayes machine learning algorithm that is used for mining the textual documents. It differs 

with the Naïve Bayes algorithm in the sense that, Naïve Bayes only identifies whether a 

particular word is present or not in the document. On the other hand, Multinomial Naïve 

Bayes calculates the number of words present in the document and then calculate the Tf-

IDF values for the same.  

P(class|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) = [𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|𝑐𝑙𝑎𝑠𝑠) × 𝑃(𝑐𝑙𝑎𝑠𝑠)] ÷ [𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)] 
Eq. (1) 
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d) Support Vector Machine: Support vector machines is a discriminative supervised 

machine learning algorithm that categorizes the sample to the respective classes by 

identifying a separating hyperplane. In other words, it maximizes the distance between the 

points and the hyperplane, by placing the points that are closer to the surface, far from the 

decision plane. The non-linear mapping for the input vectors so formed from one-

dimensional space to others is represented using kernels. These kernels help in forming 

decision surfaces that are non-linear without using any form of explicit notations for such 

mapping. The kernel functions that are used in SVM are of four types: Sigmoid, 

Polynomial, Linear, and Gaussian Radial Basis Function. 

 

3.2 BASICS OF TOSSING GRAPHS 

Tossing a bug is a process of “reassigning” the bug to a new developer, if the initial developer, to 

whom the bug is assigned for the very first time, is unable to solve it. Thus, the tossing is bug takes 

place from one to another, until it gets resolved by a developer. This creates a path of tossing, 

starting from the initial developer to all the developers till the final developer who finally resolves 

it. This path is termed as tossing paths, and are depicted using tossing graphs. These graphs are 

weighted directed edge graphs in which each of the developers is depicted by the node, a directed 

edge E from a developer Ni to developer Nj defines that the bug which is assigned to the developer 

Ni is being tossed and now fixed by the developer Nj. The weight assigned on each edge of the 

graph defines the probability with which the bug is tossed between these developers, taking bug 

tossing history into consideration. This can be explained using an example. Here, based on the 

tossing history of the developer, the tossing path for each developer is described in figure 3.2.  

 

Fig. 3.2 Tossing path history of the developer 
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Here, suppose a bug is tossed by a developer A to E, which is further tossed to D and then to C. 

Similarly, another bug from C is being tossed to E, then to A and D respectively. This is explained 

in table 3.3. Based on the number of tosses by each developer and the developer who actually fixed 

the bug, the tossing path for each developer can be made. The associated probabilities 

corresponding to each path of the graph is the ratio of the number of tosses made by the respective 

developer to the total number of tosses. This can be explained in figure 3.3. 

Table 3.3 Tossing probabilities of each developer 

 

 

Fig. 3.3 Tossing graph with required probabilities 

Here, the number of tosses done by A is four in number, out of which the developer C has fixed 

the bug one time. So the associated edge will be from A to C, and the associated probability with 

it is 0.25. In the similar manner, developer D has resolved the bug three out of four times, so there 

will be an associated edge from A to D. The weight of the edge will be its associated probability 

that is three out of four times, so 0.75 is the weight on the edge. In this way, the tossing edge graph 

is constructed. 
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CHAPTER-4 

PROPOSED METHODOLOGY 

 

In this work, the methodology for implementing the bug assigning process is being explained using 

the module diagram. The architecture of the dataset that is used is mapped to the classification 

model for clear understanding of the work. The dataset is explored over the classification 

algorithms and the steps are explained in detail. 

4.1 MODULE FOR BUG ASSIGNMENT  

A model approach for assigning the bug to the appropriate developer accurately and effectively 

begins with pre-processing the text data set of bug reports. 

 

Fig. 4.1 Module diagram for bug assignment 
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Figure 4.1 describes the module diagram for the process. It begins with preprocessing of the 

description present in the reports. The sparseness present in these reports are then reduced using 

the term selection methods. The hybrid classifier then learns from the refined bug report and it is 

used to accurately identify the developer. When the new bug report is given, the system predicts 

the accurate developer based on the learned classifier. 

4.2   PROPOSED APPROACH 

Input: A bug report in natural language text submitted by the reporter briefing the problem. 

Output: The component in which the bug may potentially be, and the developer or list of 

developers to whom it can be assigned to. 

When the user finds a bug, he/she reports the bug through a bug tracker used by the Software. 

Since the description of the bug submitted by the user is a natural language text, Natural Language 

Processing is used to extract useful keywords from the bug report that would provide information 

about the bug that the user has encountered. The processing involves stop-word removal and 

stemming from extracting useful keywords from the description of the bug report. These extracted 

keywords are used to identify the most probable defective component based on the dependencies 

that are previously learned. Then based on the defective Component and Tossing History of the 

developers, a list of Developers will be informed of this bug to solve. 

The list of developers should be chosen in such a way that the probability of the bug getting 

reassigned must be minimum. After fixing the bug, the bug report is annotated/labelled with the 

developer and the component related to the bug. A dependency structure is formed over time for 

supervised learning from the fixed bugs. The architecture of proposed methodology is depicted in 

figure 3.  

From the available repositories, the XML files of only three sets are used for the implementation. 

The architecture includes the report Id, description, type of product, initial component and final 

component. From this design, part of it is used to train the classifier model and the remaining is 

used for the tossing graph model. Finally on the onset of new bug reports, they are used for 

predicting the results. 
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Fig. 4.2 Architecture of the proposed approach 

Here the dataset from Eclipse and Mozilla repositories is taken, consisting of the Report ID along 

with the textual description and other attributes. This description is passed to the textual classifier 

for training the model. The tossing graph is drawn from the initial and final component describing 

the tossing history of the respective bug. This tossing graph along with trained textual classifier is 

now passed to the predictive model. The input to the model is the new set of repositories which 

give the desired rank of developers. 
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4.3     DATA SET 

Dataset is a collection of fixed bug reports gathered from a open source software bug tracker tool 

containing necessary information about the components, developers and re-assignments. This is a 

categorized, classified, and semi-structured data. A bug report, generally a natural language text, 

submitted by the user is stored in the XML format by the bug tracker tool. Information contained 

in the dataset: 

 Severity: The severity denotes how early this bug needs be fixed. 

 Assigned to: The identifier of the developer to whom the bug was assigned to. The sample 

report from the assignedto.xml is shown in figure 4.3. 

 

Fig. 4.3. Sample dataset from "assignedto.xml" 

 Product: It defines to which software application is this bug related.  

 Bug status: The status of the bug at every update. These include NEW, ASSIGNED, 

RESOLVED, VERIFIED, and REOPENED. 
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 Short Description: Contains a natural language text embedded by the user. The sample 

report from shortdesc.xml is shown in figure 4.4. 

 

 

Fig. 4.4. Sample dataset from "short desc.xml" 

 

 Resolution: Tagging the bug report for maintenance. These tags varies from FIXED, 

REMIND, INVALID, and WORKSFORME. 

 Component: The subsystem relevant to the product for the reported bug. The sample report 

from the component.xml is shown in figure 4.5. 
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With these information the dependencies between the components, developers, and reassignment 

can be formed.  First the dataset in XML format was used but it has only around 10000 reports. To 

obtain higher efficiency, dataset available in JSON format was used having around 1,60,000 

reports in a well-structured manner. 

 

Fig. 4.5.  Sample dataset from "component.xml" 

 

Training data set in JSON format compares the report-id and the update (”when”) of each report-

id in the respective files and merges the “what” content present in short description (to get the bug 

report), component (to obtain the component) and assigned to (the developer) to a single text file. 

This text file is pre-processed. The pre-processed file is converted to a feature-vector pair where 

the feature is the bug-report and the component it is present and the vector being the developer. 

The classifier learns from this feature-vector pair and predicts the accurate developer for incoming 

bug reports. Another feature-vector pair (component and developer) learned by the classifier is 

used for tossing graphs. The probability of developer solving the bug in particular component and 
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his tossing to another developer are combined and the next probable developer who can fix the bug 

is determined. 

 

Fig. 4.6. Output after parsing the JSON file 

The dataset is initially formatted to get it into a proper format. For that, the json format of the files 

are being used. The data is extracted to find the report id, component and the respective description 

in a document. The parsed output is depicted in figure 4.6. 

This file is now text pre-processed for removing the stop words. Then the stemming process is 

being done using PorterStemmer. In this stemming the text words are stemmed to their respective 

stemmed trees. For instance, ‘cutting’ is stemmed to ‘cut’, removing the suffices. The output file 

after stemming is depicted in figure 4.7. 



 

24 

 

 

Fig. 4.7. Output file after Stemming 

To input this file to a classifier, the file has to be converted into a feature vector format. The feature 

vectors form the basis for training the classifier. These feature vector pairs are depicted in figure 

4.8. These feature vectors form the basis for classification of developers. The type of bug for which 

a developer has the required expertise is seen using these feature vectors. These are the 

transformation of the contextual features into the mapped binary values. These can be used by the 

classification algorithms along with term frequency for the categorization of the text. 

Feature extraction form the crucial step in mining the text from the Eclipse repository. The number 

of terms in the description of the document, with respect to the number of terms in the entire 

repository is analyzed using term frequency-inverse document frequency. On the bass of this score, 

the numerical values are assigned to the type of term present in the document, and in the overall 

domain of the documents. This is coupled with the bug tossing graph to predict the range of 

developers that can finally resolve the bug based on their previous tossing histories. 
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Fig. 4.8. Output file for feature vector pair 

This file is then used to train the classifier and dump the result in pickle. Input from user is obtained 

to predict the accurate developer to whom the bug will be accurately fixed. Now the tossing history 

of the developer is being obtained from the dataset specifying the report id along with the number 

of developers to which the bug is being tossed. This result is depicted in figure 4.9. 

 

Fig. 4.9. Tossing history of the developers 

The accuracy of the classifier is now being predicted in two ways: (a) using the classifier alone 

and, (b) using the classifier along with tossing history.  The final results are described in the next 

section. 
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CHAPTER-5 

RESULTS AND ANALYSIS 

 

In order to perform the stated experiment, Mozilla and Eclipse datasets are being used. The 

algorithm is analyzed over both the applications. These datasets were found to be of high quality, 

thus helped in reduction of noise while training the classifiers during the experiment. The accuracy 

of the predictor depends on the rank of the developer who fixed the bug. If the developer predicted 

by the classifier gets matched to the actual developer who actually fixed the bug, then the count 

for Top 1 developer is incremented. Similarly, if the second developer from the list of prediction 

gets matched to the actual developer fixing the bug, then the count for Top 2 developer gets 

incremented. For instance, given a set of 100 bugs in the validation data set, if 20 bugs from the 

actual developer are being resolved by the first developer of the prediction list, then the accuracy 

for Top 1 turns out to be 20%. In a similar manner, if the actual developer matches the second 

developer from the prediction list for 60 of those bugs, then the accuracy for Top 2 is 60%. The 

accuracy of the classifier is the average of the accuracy from the top 1 to top 5 accuracies. 

 

To demonstrate the benefit of using a tossing graph with the classifier, the prediction accuracy is 

initially tested using the classifier alone. Table 5.1 depicts the prediction accuracy for Eclipse 

dataset when used with ML classifier only. It was found that the approach used gives an increased 

accuracy of about 8.9% to that of the previous approaches used..  

 

Table 5.1. BugiAssignmentipredictioniaccuracyiforiEclipseiusingiMLionly 

Classifier for Eclipse Accuracy 

Naïve Bayes 67.21 

Multinomial Naïve Bayes 70.58 

Bayesian Network 68.91 

C4.5 65.98 

Linear SVM 42.92 

RBF SVM 47.77 

 

The comparative analysis of the results are being shown in figure 5.1. It depicts that Naïve Bayes 

classifier and Bayesian networks outperforms the other machine learning algorithms.  



 

27 

 

 

 

Fig. 5.1. Comparative analysis of ML Classifier Accuracy for Eclipse 

Figure 5.1 shows that the prediction accuracies of classifier using the machine learning techniques 

only. It shows that Naïve Bayes give accuracy of 67.21%, MNB give 70.58%, Bayesian netwowk 

give 68.91%, C4.5 give 65.98%, but linear and RBF SVM show 42.92 and 47.77%. 

Now the datasets are tested for the results over the classifier along with the use of tossing graphs. 

The results in table 5.2 shows the improvement in the prediction accuracy prior to the results where 

these graphs are not used. Figure 5.2 depicts the comparative analysis of the results by the use of 

ML along with classifier over Eclipse dataset. 

Table 5.2. BugiAssignmentipredictioniaccuracyiforiEclipseiusingiMLianditossingigraph 

ML and Tossing for 

Eclipse Accuracy 

Naïve Bayes 75.43 

Multinomial Naïve Bayes 76.96 

Bayesian Network 74.89 

C4.5 71.37 

Linear SVM 51.03 

RBF SVM 55.93 
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Fig. 5.2. Comparative analysis of ML and Tossing Accuracy for Eclipse 

Figure 5.2 shows that the prediction accuracies of classifier using the machine learning techniques 

only. It shows that Naïve Bayes give accuracy of 75.43%, MNB give 76.96%, Bayesian network 

give 74.89%, C4.5 give 71.37%, but linear and RBF SVM show 51.03 and 55.93%. Hence MNB 

outperforms all the techniques. 

Similar work is also being performed over Mozilla dataset. The results for Mozilla dataset is shown 

in table 5.3 and the comparative analysis for the same by using only the classifier is shown in 

figure 5.3. 

Table 5.3. BugiAssignmentipredictioniaccuracyiforiMozillaiusingiMLionly 

Classifier For Mozilla Accuracy 

Naïve Bayes 65.66 

Multinomial Naïve Bayes 68.55 

Bayesian Network 62.19 

C4.5 59.18 

Linear SVM 51.17 

RBF SVM 62.49 

 

The results in the table shows that the accuracy of the classifier is comparatively low for some of 

the classifier in Eclipse as compared to those in Mozilla.  
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Figure 5.3 shows that the prediction accuracies of classifier using the machine learning techniques 

only. It shows that Naïve Bayes give accuracy of 66.66%, MNB give 68.55%, Bayesian network 

give 62.19%, C4.5 give 59.18%, but linear and RBF SVM show 51.17 and 62.49%. 

 

 

Fig. 5.3. Comparative analysis of ML Classifier Accuracy for Mozilla 

The results for Mozilla dataset after using tossing graphs are comparatively higher than those of 

the results in Eclipse. The results are shown in table 5.4.  

Table 5.4. BugiAssignmentipredictioniaccuracyiforiMozillaiusingiMLianditossingigraph 

Classifier Mozilla 

Naïve Bayes 77.87 

Multinomial Naïve Bayes 80.05 

Bayesian Network 68.54 

C4.5 68.77 

Linear SVM 50.89 

RBF SVM 61.43 

 

The improvements in the results after using tossing graphs over Mozilla dataset are depicted 

graphically in figure 5.4. Figure 5.4 shows that MNB along with the tossing graphs give best 

prediction results than the other techniques. Naïve Bayes classifier also give better results than the 

remaining set of classifiers. 
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Fig 5.4 Comparative analysis of ML and Tossing Accuracy for Mozilla 

 

The comparative analysis for the techniques used over Eclipse and Mozilla for the machine 

learning techniques using tossing graph is shown in figure 5.5. The results improved for all the 

classifier when used with tossing graphs. 

 

Fig 5.5 Comparative Analysis of ML and Tossing over Eclipse and Mozilla 

The comparative analysis shows that tossing graphs work better for the type of datasets and give 

better results than using machine learning classifiers only. 
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CHAPTER-6 

CONCLUSION AND FUTURE WORK 

 

Multinomial Naïve Bayes Classifier is one of the powerful machine learning technique used in the 

process of mining the textual data. Using this approach, the automatic assignment of bugs are being 

predicted over Mozilla and Eclipse software repositories. The model gave the results of up to 

80.05% accuracy by using the classifier along with tossing graphs. These tossing graphs provide 

a mathematical approach along with feature vectors, improving the accuracy of the classifier. The 

results so obtained are better than the previously used approaches. 

 

To demonstrate the advantages of using the tossing graphs along with the classifiers, a comparative 

analysis is also being drawn between a set of classifiers. Amongst the classifier used, the 

Multinomial Naïve Bayes gives the accuracy better than all the other classifiers. The attributes 

used in this demonstration includes the report id, bug id, component id, and the description of the 

bug. The type of bug fall under one of the six categories, including UI, Core, Text, Debug, API, 

and Doc. The prediction accuracy is the average of the accuracies from top 1 to top 5 developers. 

Finally, the bug gets assigned to the developer based on the tossing graph and learning from the 

classifier. 

 

The future task would be to use an increment learning approach for the classifier using interfold 

and intra fold updates. It also aims at giving a new incremental approach by using deep learning 

classifiers. 
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