
 An Improved Machine Learning Approach to Text Mining for

Automatic Bug Assignment

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT

FOR THE AWARD OF DEGREE

 OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By

Bhawna Jain

2K17/SWE/18

Under the supervision of

DR. RUCHIKA MALHOTRA

Associate Professor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Bawana Road,

Delhi-110042

JUNE, 2019

i

Department of Computer Science and Engineering

CANDIDATE’S DECLARATION

I, Bhawna Jain, 2K17/SWE/18, student of Master of Technology in Software Engineering, hereby

declare that the Major Project-II Dissertation titled “An Improved Machine Learning Approach

to Text Mining for Automatic Bug Assignment” which is submitted by me to the Department

of Computer Science and Engineering, Delhi Technological University, Delhi in partial fulfilment

of the requirement for the award of the degree of Master of Technology (Software Engineering),

is original and not copied from any source without proper citation. This work has not been

previously formed the basis for the award of any Degree, Diploma, Associateship, Fellowship or

other similar title or recognition.

Bhawna Jain

2K17/SWE/18

Place: Delhi

Date:

Department of Computer Science and Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ii

CERTIFICATE

I hereby certify that the project Dissertation titled “An Improved Machine Learning

Approach to Text Mining for Automatic Bug Assignment” which is submitted by Bhawna

Jain (2K17/SWE/18), Department of Computer Science and Engineering, Delhi Technological

University, Delhi in partial fulfilment of the requirement for the award of the Degree of Master

of Technology in Software Engineering in the Department of Computer Science &

Engineering, is a record of the project work carried out by the student under my supervision. To

the best of my knowledge, this work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere.

Place: Delhi

Date:

DR. RUCHIKA MALHOTRA

(Project Supervisor)

Associate Professor

Discipline of Software Engineering

CSE Department

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad, Daulatpur, Bawana Road, Delhi- 110042

Department of Computer Science and Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

iii

ACKNOWLEDGEMENT

First of all I would like to thank the almighty, who has always guided me to work on the right path

of the life. My greater thanks are to my parents who bestowed ability and strength in me to

complete this work.

I owe a profound gratitude to my project guide Dr. Ruchika Malhotra who has been a constant

source of inspiration to me throughout the period of this project. It was her competent guidance,

constant encouragement and critical evaluation that helped me to develop a new insight into my

project. Her calm, collected and professionally exemplary style of handling situations not steered

me through every problem, but also helped me to grow as a matured person.

I am also thankful to her for trusting my capabilities to develop this project under her guidance.

 BHAWNA JAIN

 M.Tech (SWE)-4th Sem

 2K17/SWE/18

Date:

iv

ABSTRACT

With the advent of digitization these days, software evolution has taken a deep rise in the

computing industries. Large software development projects are being developed which, in turn,

have a massive amount of data along with the bugs written in their software repositories. These

bug reports are to be managed using a particular bug tracking system, and a diversified group of

developers is involved in fixing those bugs. The number of bug report generated on a regular basis

by frequently used and accessible systems, are generally high.

To triage the incoming reports manually consumes more amount of time. One aspect of bug

triaging is to assign a particular report to the developer with the required proficiency. Automating

the process of assigning the bug to the developer with suitable expertise can degrade the software

evolution costs and effort.

Previous works have used various machine learning algorithms in order to automate the process

of bug assignment but have incorporated limited tools which gave ineffective results with the

increased size of the projects. To redress this scenario, this paper employs an improved hybrid

machine learning approach, along with the bug tossing graphs to give a graph-based model that

can predict the results more accurately. It also gives a comparative analysis of the machine learning

algorithms that can be applied and give a solution as to which technique performs better.

The approach used will inevitably suggest developers who have the correct knowledge about

dealing with a bug record, based on the identified component obtained from the short description

of the bug report. The work begins with examining the impact generated by various machine

learning features, including the attributes, classifiers, and the training history. Bug tossing graphs

are being used along with the ranked list of developers in order to predict the accuracy of the bug

assigned.

v

TABLE OF CONTENTS

Content Page No.

Candidate’s Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables viii

List of Abbreviations ix

CHAPTER 1: INTRODUCTION 1-5

1.1 Overview 1

1.2 Problem Statement 3

1.3 Motivation 4

1.4 Thesis Organization 5

CHAPTER 2: LITERATURE REVIEW 6-8

2.1 Related Work 6

CHAPTER 3: TEXT MINING AND BUG TOSSING GRAPHS 9-16

3.1 Text Mining 9

3.1.1 Collection of documents 10

3.1.2 Text Pre-processing 11

3.1.3 Text Extraction 12

3.1.4 Feature Extraction 13

3.2 Bug Classification using machine Learning 13

3.3 Classification Algorithms used in text mining 13

vi

3.4 Basics of Tossing Graphs 15

CHAPTER 4: PROPOSED METHODOLOGY 17-25

4.1 Module for Bug Assignment 17

4.2 Proposed Approach 18

4.3 Data Set 20

CHAPTER 5: IMPLEMENTATION AND RESULTS 26-30

CHAPTER 7: CONCLUSION AND FUTURE WORK 31

REFERENCES 32-34

vii

LIST OF FIGURES

S.NO.

FIGURE

NO.

FIGURE NAME

PAGE

NO.

1. Fig 3.1 Text Mining Process 10

2. Fig 3.2 Tossing path history of the developer 15

3. Fig 3.3 Tossing graph with required probability 16

4. Fig 4.1 Module diagram for bug assignment 17

5. Fig 4.2 Architecture of the proposed approach 19

6. Fig 4.3 Sample dataset from "assignedto.xml" 20

7. Fig 4.4 Sample dataset from "short desc.xml" 21

8. Fig 4.5 Sample dataset from "component.xml" 22

9. Fig 4.6 Output after parsing the JSON file 23

10. Fig 4.7 Output file after Stemming 24

11. Fig 4.8 Output file for feature vector pair 25

12. Fig 4.9 Tossing history of the developers 25

13. Fig 5.1 Comparative analysis of ML Classifier Accuracy for Eclipse 27

14. Fig 5.2 Comparative analysis of ML and Tossing Accuracy for Eclipse 28

15. Fig 5.3 Comparative analysis of ML Classifier Accuracy for Mozilla 29

16. Fig 5.4 Comparative analysis of ML and Tossing Accuracy for Mozilla

30

17. Fig 5.5 Comparative Analysis of ML and Tossing over Eclipse and

Mozilla

30

viii

LIST OF TABLES

S.NO.

TABLE

NO.

TABLE NAME

PAGE

NO.

1 Table 2.1 Literature work on ML Techniques used in Bug Triaging. 8

2 Table 3.1 Tokenization example 11

3 Table 3.2 Lemmatization example 12

4 Table 3.3 Tossing probabilities of each developer 16

5 Table 5.1 BugiAssignmentipredictioniaccuracyiforiEclipseiusingiMLi

only

26

6 Table 5.2

BugiAssignmentipredictioniaccuracyiforiEclipseiusingiMLi

anditossingigraph

27

7 Table 5.3 BugiAssignmentipredictioniaccuracyiforiMozillaiusingiMLi

only

28

8 Table 5.4 BugiAssignmentipredictioniaccuracyiforiMozillaiusingiMLi

anditossingigraph

29

ix

ABBREVIATIONS

ML Machine Learning

MNB Multinomial Naïve Bayes

SVM Support Vector Machine

KDD Knowledge Discovery in Data

NER Named Entity Recognition

RBF Radial Basis Function

1

CHAPTER-1

INTRODUCTION

To create a bug is human, but to debug is exquisite. Maintenance of software, along with its

evolution have high effort and cost associated with it. Some of the studies on maintaining software

showed that the cost of maintaining large size projects vary from 50 to 90% or many times greater

than the overall cost of the product [1,2]. If the process of fixing the bugs is efficient, then there

can be a considerable reduction in the production cost and the effort. Thus, various bug tracking

systems, such as Bugzilla, Mantis Bug Tracker, JIRA, FogBugz, and many more are being

developed in order to facilitate bug fixing process. These trackers are utilized by outsized projects,

including those of Eclipse, Mozilla, KDE, and Gnome. These systems are mainly used in open

source initiatives, in which the participants of the group are distributed throughout the globe and

may make a contribution in whichever way they like. These systems not only keep the record of

the problem reported by the contributor, but also help the developers to coordinate among the peers

whom they may see rarely, or never.

1.1 OVERVIEW

The lifecycle of Predictive Analysis involves many steps. First is having the clarity of the problem

statement in hand and identification of the solution to the problem. Once we are clear with the

above two points, we will be in a position to select our target variable. Second step one of the

significant steps that is the identification of the dependent variables which will help to predict the

target variable with the required accuracy. Accuracy to be achieved is also dependent upon the

target variable selected. For example to predict the loan defaulters an accuracy of 90% is also

considered as a good percentage, but if we talk about the prediction of some disease or medical

case accuracy of 90% is not acceptable. In such cases, accuracy needs to be approaching 100%.

Similarly, for various fields, the accuracy varies as per the stakes associated with the targeted

variable.

2

Third steps involve data preparation, also known as pre-processing of the data set. This step is

crucial in the successful building of the prediction model and almost takes 80% of the total time

required to build a prediction model. Data can be gathered from various kinds of sources such as

text documents, databases, files in different formats, images, and videos supporting all kinds of

formatting, spreadsheets and etc. There we can be having both kind of data that is structured or

unstructured data. After the data has been successfully gathered as per the problem statement in

hand, next is to explore the data carefully. One should go through the data in hand and identify the

type of data, types of variable, its range, identify if the variable is categorical or discrete in nature,

the format of the variables, length and other such properties of the variables. Once the analyst has

an understanding of the data in hand, he/she can go on with the next step of data validation.

Data validation, data can have various problems or errors that need to be dealt with before the data

can be used as a training and test data set [2]. Problems like missing values, outliers, incorrect

variable type, correlated variables, redundant variables, and many more need to be taken care of.

There are a lot of techniques to handle the above cases. There are few modeling techniques which

are self-capable to handle the above-mentioned cases, but others require separate effort to take

care of the above situations. Dimension reduction technique also an essential technique for the

reduction in the number of variables that can be used for building up the model. Once the data is

validated thoroughly that is now the data understanding the problems with the data in hand are

identified, the analyst can start with the data cleaning process.

Data cleaning step is about correcting the errors and problems identified in data exploration and

validation steps. It is after this step, data is ready to be used to train the required prediction model.

In this step, problems such as missing values, outliers are to be dealt with. There are no shortcuts

that can be used in this step, each case to be dealt with separately keeping in mind the problem

statement and type of data in hand.

Text mining is the part of Knowledge Discovery in Data (KDD), aiming at extracting all the

valuable information from the unstructured text available in the form of email, text, or a data

repository. Text mining process identifies valuable information available in the text, convert them

into numeral indices so as to make the text accessible to multiple algorithms. Text mining maps

3

"text with numbers" to perform further analysis and predictions. The text mining process involves

a series of steps. Initially, the text is pre-processed for cleaning unwanted information in the text,

then splitting the text into white spaces resulting in the token generation, and assigning a work

class to each token. Then in the next step, attributes are generated based on the words and number

of occurrences of the word in the document using either of the two techniques, viz. bag of words

and vector space method. The next step involves feature selection or variable section, in which a

subset from the pool of important features is being selected and is used for model creation. Once

the model is created, then these numeric vectors are passed to one of the existing machine learning

algorithms for computing the results. This step is similar to the classic data mining techniques that

are used in a structured database. The results are then analyzed and predicted for the

implementation in the desired field. These steps are described in detail in section 3.1.

1.2 PROBLEM STATEMENT

The Bug tracking systems accept a plethora of bug reports at a time from various users. These bugs

are, then allotted to the developer who can resolve the bug in the area of his expertise, given a

restricted timeline. The method of allocating a bug to a developer to get it resolved is known as

bug assignment. This process of assigning a bug is a cumbersome process, if done manually

because of the extensive need of labor, time and is more prone to faults. Also, for an open source

development project, it becomes difficult to keep track of the developers with the required

expertise.

Recent bug tracking gives a privilege of adding additional comments along with the bugs in the

bug report. This gives an edge, like a discussion forum, to the geographically separated developers

in order to discuss the code design and implementation details. This also fills the niche for the

project teammates, who want to give their contribution encouraging them to join in. Further, the

add on modules during the software growth, may introduce new bugs in the software and rectifying

those bugs daily, and manually assigning them to the developers, make the process more difficult.

Jeong et al. in [3] explained that the time taken by an Eclipse project for assigning a bug, takes

about forty to hundred days, varying from assigning the bug for the first time to a developer and

then to reassign the bug if it can't be fixed by the first developer. This process of reassigning the

4

bug to another developer if the previous assignee is unable to fix it is known as "Bug Tossing".

Studies indicate that the bugs from large size projects have been tossed at least once before getting

resolved. This project aims at applying an improved and effective approach to automate the process

of assigning the bug. In this, the process begins with validating a given bug as the real one, predict

it as the new bug or the tossed one, and then look for the appropriate developer who can resolve

the bug efficiently.

1.3 MOTIVATION

Text data has been growing dramatically recently, mostly because of the advance of technologies

deployed on the web that would enable people to quickly generate text data. For example, every

day, many web pages are being created. Emails are yet another kind of text data. And literature is

also representing a large portion of text data. It is also especially imperative because of the high

quality in the data. That is, we encode our knowledge about the word using text data represented

by all the literature articles. A vast amount of knowledge is being represented by the text and data

in these literature articles.

Now, these text data present some challenges for people. It's tough for anyone to digest all the text

data quickly. So there's a need for tools to help people understand text data more efficiently. Here

is also another interesting opportunity provided by such big text data, and that is it's possible to

leverage the amount of text data to discover interesting patterns to turn text data into actionable

knowledge that can be useful for decision making.

The software development process is emerging these days enormously. The challenges faced

during the process varies significantly, majorly in the development cost and effort. The bugs so

introduced during the maintenance phase of the development life cycle are assigned to the desired

developer who can resolve the bug. Automating this process of assigning a bug to a developer can

reduce the costs of the projects drastically. Keeping this idea into consideration, the Eclipse and

Mozilla dataset of textual software repository are being used. On this dataset, a set of the classifier

is being tested for performance of each of the classifier. Then, an improved approach of using the

tossing graphs is also implemented, and the performance of the classifier is compared. The

comparative analysis drawn for the same takes the machine learning classifier at one side and Ml

5

classifier with tossing graph on the other. The results are then represented graphically to have a

clear picture of the efficiency of the technique used.

1.4 THESIS ORGANIZATION

The major aim of the thesis is to demonstrate the use of tossing graphs over a set of classifiers for

automatic bug reassignment, to identify which classifier give best results and draw the comparative

analysis for the same.

This chapter gives the brief introduction and overview of the research. Chapter 2 gives the

literature review related with the research. Chapter 3 describes the process of text mining in detail.

It also gives overview of the classifiers used in the research. The proposed methodology and

implementation is described in chapter 4. Chapter 5 summarizes the results obtained and

graphically shows the observations that are drawn from the study. Chapter 6 presents the

conclusion and the future scope of the research project.

6

CHAPTER-2

LITERATURE REVIEW

There are various studies exist for predicting the process of bug assignment using supervised and

unsupervised ML classifiers. The existing work on automating bug assignment process basically

focusses on the prediction accuracy of the model using basic techniques only. The summary of

these research carried over decades is discussed below.

2.1 RELATED WORK

Various researchers have contributed to bug triaging using multiple approaches varying from

diversified information retrieval techniques to using tossing graphs and incremental method of

learning for the classifiers. Semi-automating the process of assigning the bug was explained by

Cubranic and Murphy in [4] using Naïve Bayes Approach to mine the text in bug reports. They

classified the text by extracting keywords from the title and bug report description and used Id of

the developer in order to train the classifier. The classifier predicted multiple developers for bug

fixing when presented with a new bug report. This model gave an accuracy of up to 30% correct

predictions. The major drawback with their work is the use of a small dataset of approximately

eight months, ranging from January to September, 2002. This approach was improved by Anvik

et al. in [5] by applying a wide range of filters, during data collection itself. They initially filtered

the data based on the title of the bug report, labeled as "invalid", "wontfix" and "worksforme".

Later the developers were removed who are not working on the project currently, or those who

have not fixed bugs higher than nine in number. The classifier used by them includes Naïve Bayes,

C45, and Support Vector Machines.

A varied approach was presented by Anvik and Gail [6], in their dissertation by building a

recommender system that can automate the process of assigning the bugs. Addition to the previous

work, he then used Nearest Neighbour, Conjunctive Rules and Expected Maximization as the

unsupervised technique.

7

An incremental approach for assigning the bug automatically using probabilistic similarity in the

text was proposed by Canfora et al. [7]. They tracked the reports of developers and individual

modules that might have changed during the bug fixation process. The results by them showed

achievement of 50% accuracy [8].

A study on classification and prioritization of software faults was done by Podgurski et al. in [9]

in which the employed some machine learning algorithms for classifying the bug reports. Similar

to this, Lucca et al. in [10] used classifier for classifying maintenance request for bug classification,

but not for bug assignment. The results showed the accuracy of up to 84% for classifying the bugs.

A set of bug assignment techniques is being implemented by Lin et al. in [11] on the SoftPM

proprietary project containing a collection of 2,576 bug reports. They used the ID of the module

as a feature for training the module classifier and achieved an accuracy of 77.64%, which is

significant compared to one where this ID is not used.

A content analysis based approach by using the source code vocabulary was proposed by Matter

et al. in [12] that can model the developer's expertise. The new report is assigned to a developer

based on examining the content in the source code and then based on the extracted vocabulary

words, and it is assigned to the desired developer.

An incremental model-based approach by Bettenburg et al. in [13] showed that the prediction

accuracy of the classifiers could be increased by incorporating the duplicate bug reports in the

training dataset for the classifier. For repetitively increasing the training dataset, the folding

method is being used that gives an accuracy of about 56%. Table 1 describes chronological

literature on the techniques used for bug triaging along with their interpreted results.

Machine Learning techniques have already been applied in order to mine the software repositories

for detecting the debugging component and for supporting code writing in the software

development. For example, Source version histories were mined by Zimmermann et al. in [22] for

finding the association rules. The rules were then used in order to predict the files that change

collectively in terms of program elements like variable and functions. The related work is

summarized in table 2.1.

8

Table 2.1: Literature work on ML Techniques used in Bug Triaging.

9

CHAPTER-3

TEXT MINING AND BUG TOSSING GRAPHS

In this era of computing, various digital data acquisition techniques have led to the generation of

huge amount of unorganized data. These data from software repositories can is used to assign and

resolve the bug to a developer. The preliminaries and definitions required for implementing this

automating work is described in detail under this module. The terms explained include the process

of text mining, and its underlying concepts in detail with example. Then the classification

algorithms that are used in this research are defined, which include Naïve Bayes Classifier,

Multinomial Naïve Bayes, Bayesian network, C4.5, linear, and RBF Support vector machines. The

basics of bug tossing graph is also explained in detail.

3.1 TEXT MINING

Text mining is a process of discovering knowledge from databases (KDD) to extract useful information

and identifying previously unknown facts automatically. It is also used for identifying various patterns

from different text sources. It reduces information overload by focusing on a larger unit of text and

defining the relationship between inter-document and intra-document information. Most of this data

contains unorganized information in the form of web pages, contact center notes and transcripts,

surveys, scientific literature books, legal documents, emails, collaborative system repositories, etc.,

which computers cannot process directly. The major problem that arises is the expression of a concept

with words, but no such mapping exists. So it is essential to develop techniques and algorithms to pre-

process this textual data in order to identify patterns and to extract knowledge. Text mining is the

process of analyzing texts using machines, to find exciting regularities in the text and discover

previously unknown facts.

The process of text mining in some aspects is similar to data mining, except the fact that data

mining cannot be applied to any unstructured information. So text data needs to be pre-processed

to reach a structured format, on which further data mining techniques can be applied. Data mining

tools cannot handle unstructured data, so specialized tools and powerful algorithms are required

10

for processing and analyzing the text. Text mining process includes a series of steps as summarized

in figure 3.1.

Fig. 3.1 Text Mining process

3.1.1 COLLECTION OF DOCUMENTS

The process starts with collecting the dataset including the set of documents on which text mining

techniques can be applied. This dataset is collected from various resources depending upon the

11

type of data for which knowledge is to be extracted. The sources for the mining includes software

project repositories, business documents, social media, satellite images, pdf files, website contents

etc.

3.1.2 TEXT PRE-PROCESSING

Traditional databases cannot store data that is available in unstructured format as they do not

follow the traditional row-column format. This makes the process of pre-processing a crucial step.

Pre-processing is used to detect and remove the anomalies present in the text. The main aim is to

get the real essence of the available text. It involves a series of steps:

a) Text Segmentation: Textual content segmentation is the technique of identifying the

boundaries among words, terms, or some other linguistic significant devices, consisting of

sentences or topics. It is able to make humans read the textual content and assist computers

in performing some artificial processing. It additionally eliminates needless or undesirable

statistics which includes ads on the web pages, and deals with binary layout transformed

texts, tables, figures and formulas.

b) Tokenization: A token is an instance of phrase or term happening in a file. In tokenization,

the input textual content is robotically divided into units known as tokens. It is executed

with the aid of splitting the textual content on white areas and at punctuation marks that

don't belong to abbreviations diagnosed inside the previous step. Tokenization is explained

in table 3.1.

Table 3.1 Tokenization Example

c) Part-of-speech tagging: It is also called POS tagging. Part-of-speech includes nouns,

verbs, adverbs, adjectives, pronouns and conjunctions. POS tagging is the method of

assigning one part of speech to a phrase. They’re useful as they provide records about a

word and its friends.

12

d) Parsing: It is used to structure the textual content the usage of parse trees. The parse tree

to be generated gets the input from the POS taggers and form the tree on the premise of

speech regulations.

e) Lemmatization: Lemmatization is the mathematics system of determining a lemma for a

given phrase. The principle goal is to identify proper reduction of words to dictionary

headword format. This process is explain in table 3.2. It is further used to derive relative

forms of a phrase to a familiar base. It gets rid off inflectional endings only and give results

only of the bottom or dictionary form of a word, which is referred to as the lemma by the

use of a vocabulary and doing morphological evaluation of phrases. This technique may

additionally contain complex tasks including identification of context and figuring out the

part of speech of a phrase in a sentence, so it may be a tough mission to enforce a

lemmatizer for a new language.

Table 3.2 Lemmatization Example

3.1.3 TEXT EXTRACTION

It is the way toward changing the information into disjunctive arrangement of features. It starts

with set of measured data and after that makes a progression of inferred values that are proposed

to be informative. It goes for the extraction of semantic things from the reports to give a

representative of their content. Disjunctive vocabulary things found in a report are relegated to the

various classes by estimating the significance of those things to the archive content.

Text Content extraction can be implemented by using Named Entity Recognition (NER) and

Relation Extraction. NER aims at identifying the phrases that alludes the name, place, people,

location, dates and associations existing within a document. These elements are then recognised

in order to match them to the predefined classes. For instance, the names of human being, will be

categorised in one class, similar to which the financial qualities, time stamps, dates, etc. Relation

13

extraction includes the recognizable proof of connections among those named substances. For this,

bag of words and support vector machine procedures can be utilized.

3.1.4 FEATURE EXTRACTION

It is a technique of choosing a subset of significant features for use in model creation. This stage

principally performs expelling features which are repetitive or unimportant. The first element

space of the information is mapped onto another new feature space. Feature Selection is the subset

of progressively broad field of feature extraction. It is otherwise called variable selection.

Feature Vectors: Set of feature vectors available in the training dataset, is responsible for accuracy

of the classifier. Keywords that form feature vectors are being extracted from software repositories

in the form of the titles and the summaries so available. The extraction process is in such a way

that they correspond to a specific class of bug. For instance, if the repository contain the words

like “display”, “image”, “icon”, then it depicts that the report description is related to the design

and layout and will correspond to that class.

3.2 BUG CLASSIFICATION USING MACHINE LEARNING

Classification is a directed artificial intelligence strategy for getting a general pattern from an

informational data set. The idea behind the classification technique is to determine the category

based on some rules that we design carefully to reflect the domain knowledge about the category

prediction problem. The categories must be very well defined and this allows the person to clearly

decide the category based on some clear rules.

Bug classification technique have one to one mapping between the developer and the class to

which bug report is being assigned. The mapping between the developers and the list of bugs they

have resolved in the past, make it a supervised learning algorithm.

3.3 CLASSIFICATION ALGORITHM USED IN TEXT MINING

The set of classification algorithms that exists for text mining varies from supervised, unsupervised

and deep learning algorithms. They are applicable in diversified domains though, thus a few of

them are used for implementation in this project as described below:

14

a) Naïve Bayes Classifier: Naïve Bayes classifier is a model used for differentiating the

objects “independently” based on given features. It is a probabilistic model based on the

principles of Bayes Theorem. Here, every group of feature that is going to be classified

have independence between them. It uses conditional probability to identify the probability

with which a class and an instance of it is related.

Naïve Bayes classifier is used in bug categorization as, for instance, if a word occurs in a

description of the bug report more frequently that developer D1 resolves, than in the

descriptions of reports that are resolved by developer D2, then the developer D1 will be

selected by this classifier as the potential developer who could resolve any new bug report

containing this word concurrently.

b) Bayesian Network: Bayesian network is a model based on probabilistic features,

representing the group of random variables. It represents their associated probabilities

using Directed acyclic graphs (DAG) consisting of nodes and edges. Variable is

represented using nodes of a graph, and the relation between the pair of variables is

depicted by edges. The probability of variable given the probability of the parent is stored

in the conditional probability table.

b) C4.5: C4.5 is a greedy version of the decision tree supervised algorithm which builds a

tree using the instance attribute present in the training dataset. The results are predicted

using the directed path from the root node to the leaf using the attribute value of the new

instance variable. The internal nodes are broken in order to maximize the information gain

value computed for each decision to be taken at that node. The leaf nodes in the tree

describe the final class for which there cannot be any further distinctions

c) Multinomial Naïve Bayes: Multinomial Naive Bayes is an extended version of Naive

Bayes machine learning algorithm that is used for mining the textual documents. It differs

with the Naïve Bayes algorithm in the sense that, Naïve Bayes only identifies whether a

particular word is present or not in the document. On the other hand, Multinomial Naïve

Bayes calculates the number of words present in the document and then calculate the Tf-

IDF values for the same.

P(class|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) = [𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|𝑐𝑙𝑎𝑠𝑠) × 𝑃(𝑐𝑙𝑎𝑠𝑠)] ÷ [𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)]
Eq. (1)

15

d) Support Vector Machine: Support vector machines is a discriminative supervised

machine learning algorithm that categorizes the sample to the respective classes by

identifying a separating hyperplane. In other words, it maximizes the distance between the

points and the hyperplane, by placing the points that are closer to the surface, far from the

decision plane. The non-linear mapping for the input vectors so formed from one-

dimensional space to others is represented using kernels. These kernels help in forming

decision surfaces that are non-linear without using any form of explicit notations for such

mapping. The kernel functions that are used in SVM are of four types: Sigmoid,

Polynomial, Linear, and Gaussian Radial Basis Function.

3.2 BASICS OF TOSSING GRAPHS

Tossing a bug is a process of “reassigning” the bug to a new developer, if the initial developer, to

whom the bug is assigned for the very first time, is unable to solve it. Thus, the tossing is bug takes

place from one to another, until it gets resolved by a developer. This creates a path of tossing,

starting from the initial developer to all the developers till the final developer who finally resolves

it. This path is termed as tossing paths, and are depicted using tossing graphs. These graphs are

weighted directed edge graphs in which each of the developers is depicted by the node, a directed

edge E from a developer Ni to developer Nj defines that the bug which is assigned to the developer

Ni is being tossed and now fixed by the developer Nj. The weight assigned on each edge of the

graph defines the probability with which the bug is tossed between these developers, taking bug

tossing history into consideration. This can be explained using an example. Here, based on the

tossing history of the developer, the tossing path for each developer is described in figure 3.2.

Fig. 3.2 Tossing path history of the developer

16

Here, suppose a bug is tossed by a developer A to E, which is further tossed to D and then to C.

Similarly, another bug from C is being tossed to E, then to A and D respectively. This is explained

in table 3.3. Based on the number of tosses by each developer and the developer who actually fixed

the bug, the tossing path for each developer can be made. The associated probabilities

corresponding to each path of the graph is the ratio of the number of tosses made by the respective

developer to the total number of tosses. This can be explained in figure 3.3.

Table 3.3 Tossing probabilities of each developer

Fig. 3.3 Tossing graph with required probabilities

Here, the number of tosses done by A is four in number, out of which the developer C has fixed

the bug one time. So the associated edge will be from A to C, and the associated probability with

it is 0.25. In the similar manner, developer D has resolved the bug three out of four times, so there

will be an associated edge from A to D. The weight of the edge will be its associated probability

that is three out of four times, so 0.75 is the weight on the edge. In this way, the tossing edge graph

is constructed.

17

CHAPTER-4

PROPOSED METHODOLOGY

In this work, the methodology for implementing the bug assigning process is being explained using

the module diagram. The architecture of the dataset that is used is mapped to the classification

model for clear understanding of the work. The dataset is explored over the classification

algorithms and the steps are explained in detail.

4.1 MODULE FOR BUG ASSIGNMENT

A model approach for assigning the bug to the appropriate developer accurately and effectively

begins with pre-processing the text data set of bug reports.

Fig. 4.1 Module diagram for bug assignment

18

Figure 4.1 describes the module diagram for the process. It begins with preprocessing of the

description present in the reports. The sparseness present in these reports are then reduced using

the term selection methods. The hybrid classifier then learns from the refined bug report and it is

used to accurately identify the developer. When the new bug report is given, the system predicts

the accurate developer based on the learned classifier.

4.2 PROPOSED APPROACH

Input: A bug report in natural language text submitted by the reporter briefing the problem.

Output: The component in which the bug may potentially be, and the developer or list of

developers to whom it can be assigned to.

When the user finds a bug, he/she reports the bug through a bug tracker used by the Software.

Since the description of the bug submitted by the user is a natural language text, Natural Language

Processing is used to extract useful keywords from the bug report that would provide information

about the bug that the user has encountered. The processing involves stop-word removal and

stemming from extracting useful keywords from the description of the bug report. These extracted

keywords are used to identify the most probable defective component based on the dependencies

that are previously learned. Then based on the defective Component and Tossing History of the

developers, a list of Developers will be informed of this bug to solve.

The list of developers should be chosen in such a way that the probability of the bug getting

reassigned must be minimum. After fixing the bug, the bug report is annotated/labelled with the

developer and the component related to the bug. A dependency structure is formed over time for

supervised learning from the fixed bugs. The architecture of proposed methodology is depicted in

figure 3.

From the available repositories, the XML files of only three sets are used for the implementation.

The architecture includes the report Id, description, type of product, initial component and final

component. From this design, part of it is used to train the classifier model and the remaining is

used for the tossing graph model. Finally on the onset of new bug reports, they are used for

predicting the results.

19

Fig. 4.2 Architecture of the proposed approach

Here the dataset from Eclipse and Mozilla repositories is taken, consisting of the Report ID along

with the textual description and other attributes. This description is passed to the textual classifier

for training the model. The tossing graph is drawn from the initial and final component describing

the tossing history of the respective bug. This tossing graph along with trained textual classifier is

now passed to the predictive model. The input to the model is the new set of repositories which

give the desired rank of developers.

20

4.3 DATA SET

Dataset is a collection of fixed bug reports gathered from a open source software bug tracker tool

containing necessary information about the components, developers and re-assignments. This is a

categorized, classified, and semi-structured data. A bug report, generally a natural language text,

submitted by the user is stored in the XML format by the bug tracker tool. Information contained

in the dataset:

 Severity: The severity denotes how early this bug needs be fixed.

 Assigned to: The identifier of the developer to whom the bug was assigned to. The sample

report from the assignedto.xml is shown in figure 4.3.

Fig. 4.3. Sample dataset from "assignedto.xml"

 Product: It defines to which software application is this bug related.

 Bug status: The status of the bug at every update. These include NEW, ASSIGNED,

RESOLVED, VERIFIED, and REOPENED.

21

 Short Description: Contains a natural language text embedded by the user. The sample

report from shortdesc.xml is shown in figure 4.4.

Fig. 4.4. Sample dataset from "short desc.xml"

 Resolution: Tagging the bug report for maintenance. These tags varies from FIXED,

REMIND, INVALID, and WORKSFORME.

 Component: The subsystem relevant to the product for the reported bug. The sample report

from the component.xml is shown in figure 4.5.

22

With these information the dependencies between the components, developers, and reassignment

can be formed. First the dataset in XML format was used but it has only around 10000 reports. To

obtain higher efficiency, dataset available in JSON format was used having around 1,60,000

reports in a well-structured manner.

Fig. 4.5. Sample dataset from "component.xml"

Training data set in JSON format compares the report-id and the update (”when”) of each report-

id in the respective files and merges the “what” content present in short description (to get the bug

report), component (to obtain the component) and assigned to (the developer) to a single text file.

This text file is pre-processed. The pre-processed file is converted to a feature-vector pair where

the feature is the bug-report and the component it is present and the vector being the developer.

The classifier learns from this feature-vector pair and predicts the accurate developer for incoming

bug reports. Another feature-vector pair (component and developer) learned by the classifier is

used for tossing graphs. The probability of developer solving the bug in particular component and

23

his tossing to another developer are combined and the next probable developer who can fix the bug

is determined.

Fig. 4.6. Output after parsing the JSON file

The dataset is initially formatted to get it into a proper format. For that, the json format of the files

are being used. The data is extracted to find the report id, component and the respective description

in a document. The parsed output is depicted in figure 4.6.

This file is now text pre-processed for removing the stop words. Then the stemming process is

being done using PorterStemmer. In this stemming the text words are stemmed to their respective

stemmed trees. For instance, ‘cutting’ is stemmed to ‘cut’, removing the suffices. The output file

after stemming is depicted in figure 4.7.

24

Fig. 4.7. Output file after Stemming

To input this file to a classifier, the file has to be converted into a feature vector format. The feature

vectors form the basis for training the classifier. These feature vector pairs are depicted in figure

4.8. These feature vectors form the basis for classification of developers. The type of bug for which

a developer has the required expertise is seen using these feature vectors. These are the

transformation of the contextual features into the mapped binary values. These can be used by the

classification algorithms along with term frequency for the categorization of the text.

Feature extraction form the crucial step in mining the text from the Eclipse repository. The number

of terms in the description of the document, with respect to the number of terms in the entire

repository is analyzed using term frequency-inverse document frequency. On the bass of this score,

the numerical values are assigned to the type of term present in the document, and in the overall

domain of the documents. This is coupled with the bug tossing graph to predict the range of

developers that can finally resolve the bug based on their previous tossing histories.

25

Fig. 4.8. Output file for feature vector pair

This file is then used to train the classifier and dump the result in pickle. Input from user is obtained

to predict the accurate developer to whom the bug will be accurately fixed. Now the tossing history

of the developer is being obtained from the dataset specifying the report id along with the number

of developers to which the bug is being tossed. This result is depicted in figure 4.9.

Fig. 4.9. Tossing history of the developers

The accuracy of the classifier is now being predicted in two ways: (a) using the classifier alone

and, (b) using the classifier along with tossing history. The final results are described in the next

section.

26

CHAPTER-5

RESULTS AND ANALYSIS

In order to perform the stated experiment, Mozilla and Eclipse datasets are being used. The

algorithm is analyzed over both the applications. These datasets were found to be of high quality,

thus helped in reduction of noise while training the classifiers during the experiment. The accuracy

of the predictor depends on the rank of the developer who fixed the bug. If the developer predicted

by the classifier gets matched to the actual developer who actually fixed the bug, then the count

for Top 1 developer is incremented. Similarly, if the second developer from the list of prediction

gets matched to the actual developer fixing the bug, then the count for Top 2 developer gets

incremented. For instance, given a set of 100 bugs in the validation data set, if 20 bugs from the

actual developer are being resolved by the first developer of the prediction list, then the accuracy

for Top 1 turns out to be 20%. In a similar manner, if the actual developer matches the second

developer from the prediction list for 60 of those bugs, then the accuracy for Top 2 is 60%. The

accuracy of the classifier is the average of the accuracy from the top 1 to top 5 accuracies.

To demonstrate the benefit of using a tossing graph with the classifier, the prediction accuracy is

initially tested using the classifier alone. Table 5.1 depicts the prediction accuracy for Eclipse

dataset when used with ML classifier only. It was found that the approach used gives an increased

accuracy of about 8.9% to that of the previous approaches used..

Table 5.1. BugiAssignmentipredictioniaccuracyiforiEclipseiusingiMLionly

Classifier for Eclipse Accuracy

Naïve Bayes 67.21

Multinomial Naïve Bayes 70.58

Bayesian Network 68.91

C4.5 65.98

Linear SVM 42.92

RBF SVM 47.77

The comparative analysis of the results are being shown in figure 5.1. It depicts that Naïve Bayes

classifier and Bayesian networks outperforms the other machine learning algorithms.

27

Fig. 5.1. Comparative analysis of ML Classifier Accuracy for Eclipse

Figure 5.1 shows that the prediction accuracies of classifier using the machine learning techniques

only. It shows that Naïve Bayes give accuracy of 67.21%, MNB give 70.58%, Bayesian netwowk

give 68.91%, C4.5 give 65.98%, but linear and RBF SVM show 42.92 and 47.77%.

Now the datasets are tested for the results over the classifier along with the use of tossing graphs.

The results in table 5.2 shows the improvement in the prediction accuracy prior to the results where

these graphs are not used. Figure 5.2 depicts the comparative analysis of the results by the use of

ML along with classifier over Eclipse dataset.

Table 5.2. BugiAssignmentipredictioniaccuracyiforiEclipseiusingiMLianditossingigraph

ML and Tossing for

Eclipse Accuracy

Naïve Bayes 75.43

Multinomial Naïve Bayes 76.96

Bayesian Network 74.89

C4.5 71.37

Linear SVM 51.03

RBF SVM 55.93

0 10 20 30 40 50 60 70 80

Naïve Bayes

Multinomial Naïve Bayes

Bayesian Network

C4.5

Linear SVM

RBF SVM

Prediction Accuracy

28

Fig. 5.2. Comparative analysis of ML and Tossing Accuracy for Eclipse

Figure 5.2 shows that the prediction accuracies of classifier using the machine learning techniques

only. It shows that Naïve Bayes give accuracy of 75.43%, MNB give 76.96%, Bayesian network

give 74.89%, C4.5 give 71.37%, but linear and RBF SVM show 51.03 and 55.93%. Hence MNB

outperforms all the techniques.

Similar work is also being performed over Mozilla dataset. The results for Mozilla dataset is shown

in table 5.3 and the comparative analysis for the same by using only the classifier is shown in

figure 5.3.

Table 5.3. BugiAssignmentipredictioniaccuracyiforiMozillaiusingiMLionly

Classifier For Mozilla Accuracy

Naïve Bayes 65.66

Multinomial Naïve Bayes 68.55

Bayesian Network 62.19

C4.5 59.18

Linear SVM 51.17

RBF SVM 62.49

The results in the table shows that the accuracy of the classifier is comparatively low for some of

the classifier in Eclipse as compared to those in Mozilla.

75.43

76.96

74.89

71.37

51.03

55.93

0 10 20 30 40 50 60 70 80 90

NAÏVE BAYES

MULTINOMIAL NAÏVE BAYES

BAYESIAN NETWORK

C4.5

LINEAR SVM

RBF SVM

Prediction Accuracy

29

Figure 5.3 shows that the prediction accuracies of classifier using the machine learning techniques

only. It shows that Naïve Bayes give accuracy of 66.66%, MNB give 68.55%, Bayesian network

give 62.19%, C4.5 give 59.18%, but linear and RBF SVM show 51.17 and 62.49%.

Fig. 5.3. Comparative analysis of ML Classifier Accuracy for Mozilla

The results for Mozilla dataset after using tossing graphs are comparatively higher than those of

the results in Eclipse. The results are shown in table 5.4.

Table 5.4. BugiAssignmentipredictioniaccuracyiforiMozillaiusingiMLianditossingigraph

Classifier Mozilla

Naïve Bayes 77.87

Multinomial Naïve Bayes 80.05

Bayesian Network 68.54

C4.5 68.77

Linear SVM 50.89

RBF SVM 61.43

The improvements in the results after using tossing graphs over Mozilla dataset are depicted

graphically in figure 5.4. Figure 5.4 shows that MNB along with the tossing graphs give best

prediction results than the other techniques. Naïve Bayes classifier also give better results than the

remaining set of classifiers.

0

10

20

30

40

50

60

70

80

Naïve Bayes Multinomial
Naïve Bayes

Bayesian
Network

C4.5 Linear SVM RBF SVM

Prediction Accuracy

30

Fig 5.4 Comparative analysis of ML and Tossing Accuracy for Mozilla

The comparative analysis for the techniques used over Eclipse and Mozilla for the machine

learning techniques using tossing graph is shown in figure 5.5. The results improved for all the

classifier when used with tossing graphs.

Fig 5.5 Comparative Analysis of ML and Tossing over Eclipse and Mozilla

The comparative analysis shows that tossing graphs work better for the type of datasets and give

better results than using machine learning classifiers only.

77.87 80.05

68.54 68.77

50.89

61.43

Naïve Bayes Multinomial
Naïve Bayes

Bayesian
Network

C4.5 Linear SVM RBF SVM

Prediction Accuracy

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7

Mozilla Eclipse

31

CHAPTER-6

CONCLUSION AND FUTURE WORK

Multinomial Naïve Bayes Classifier is one of the powerful machine learning technique used in the

process of mining the textual data. Using this approach, the automatic assignment of bugs are being

predicted over Mozilla and Eclipse software repositories. The model gave the results of up to

80.05% accuracy by using the classifier along with tossing graphs. These tossing graphs provide

a mathematical approach along with feature vectors, improving the accuracy of the classifier. The

results so obtained are better than the previously used approaches.

To demonstrate the advantages of using the tossing graphs along with the classifiers, a comparative

analysis is also being drawn between a set of classifiers. Amongst the classifier used, the

Multinomial Naïve Bayes gives the accuracy better than all the other classifiers. The attributes

used in this demonstration includes the report id, bug id, component id, and the description of the

bug. The type of bug fall under one of the six categories, including UI, Core, Text, Debug, API,

and Doc. The prediction accuracy is the average of the accuracies from top 1 to top 5 developers.

Finally, the bug gets assigned to the developer based on the tossing graph and learning from the

classifier.

The future task would be to use an increment learning approach for the classifier using interfold

and intra fold updates. It also aims at giving a new incremental approach by using deep learning

classifiers.

32

 REFERENCES

[1] R. Seacord, D. Plakosh and G. Lewis, “Modernizing legacy systems: software technologies,

engineering processes, and business practices”, Addison-Wesley Professional, 2003.

[2] I. Sommerville, “Software Engineering (7th Edition)”, Pearson Addison Wesley, UK, 2004.

[3] Jeong, Gaeul, S. Kim and T. Zimmermann, "Improving bug triage with bug tossing graphs",

In Proceedings of the 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering, pp. 111-120,

ACM, 2009.

[4] G. Murphy and D. Cubranic, "Automatic bug triage using text categorization", In Proceedings

of the Sixteenth International Conference on Software Engineering & Knowledge Engineering,

2004.

[5] J. Anvik, L. Hiew and G. Murphy, "Who should fix this bug?", In Proceedings of the 28th

international conference on Software engineering, pp. 361-370, ACM, 2006.

[6] J. Anvik and G. Murphy, "Reducing the effort of bug report triage: Recommenders for

development-oriented decisions", ACM Transactions on Software Engineering and

Methodology (TOSEM) 20, vol. 3, 2011.

[7] G. Canfora and L. Cerulo, "Supporting change request assignment in open source

development", In Proceedings of the 2006 ACM symposium on Applied computing, pp. 1767-

1772, ACM, 2006.

[8] G. Canfora and L. Cerulo, "How software repositories can help in resolving a new change

request", STEP 2005, 2005.

[9] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and B. Wang, "Automated

support for classifying software failure reports", In Proceedings of 25th International

Conference on Software Engineering, pp. 465-475, IEEE, 2003.

[10] D. Lucca, A. Giuseppe, M. Penta and S. Gradara, "An approach to classify software

maintenance requests", In Proceedings of the International Conference on Software

Maintenance”, pp. 93-102, IEEE, 2002.

33

[11] Z. Lin, F. Shu, Y. Yang, C. Hu and Q. Wang, "An empirical study on bug assignment

automation using Chinese bug data", In 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, pp. 451-455, IEEE, 2009.

[12] M. Dominique, A. Kuhn and O. Nierstrasz, "Assigning bug reports using a vocabulary-based

expertise model of developers", In 2009 6th IEEE international working conference on mining

software repositories, pp. 131-140, IEEE, 2009.

[13] B. Nicolas, R. Premraj, T. Zimmermann and S. Kim, "Duplicate bug reports considered

harmful… really?", In 2008 IEEE International Conference on Software Maintenance, pp.

337-345, IEEE, 2008.

[14] P. Bhattacharya and I. Neamtiu, "Fine-grained incremental learning and multi-feature tossing

graphs to improve bug triaging", In 2010 IEEE International Conference on Software

Maintenance, pp. 1-10, IEEE, 2010.

[15] A. Tamrawi, T. Nguyen, J. Al-Kofahi and T. Nguyen, "Fuzzy set-based automatic bug triaging

(NIER track)", In Proceedings of the 33rd International Conference on Software Engineering,

pp. 884-887, ACM, 2011.

[16] J. Xuan, H. Jiang, Z. Ren and W. Zou, "Developer prioritization in bug repositories", In 2012

34th International Conference on Software Engineering (ICSE), pp. 25-35, IEEE, 2012.

[17] R. Shokripour, J. Anvik, Z. Kasirun and S. Zamani, "Why so complicated? simple term

filtering and weighting for location-based bug report assignment recommendation", In 2013

10th Working Conference on Mining Software Repositories (MSR), pp. 2-11, IEEE, 2013.

[18] S. Wang, W. Zhang and Q. Wang, "FixerCache: Unsupervised caching active developers for

diverse bug triage", In Proceedings of the 8th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, pp. 25, ACM, 2014.

[19] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo and X. Wu, "Towards effective bug triage

with software data reduction techniques", IEEE transactions on knowledge and data

engineering 27, vol. 1, pp. 264-280, 2014.

[20] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh and P. Runeson, "Automated bug

assignment: Ensemble-based machine learning in large scale industrial contexts", Empirical

Software Engineering 21, vol. 4, pp. 1533-1578, 2016.

34

[21] Badashian, A. Sajedi, A. Hindle and E. Stroulia, "Crowdsourced bug triaging", In 2015 IEEE

International Conference on Software Maintenance and Evolution (ICSME), pp. 506-510,

IEEE, 2015.

[22] T. Zimmermann, A. Zeller, P. Weissgerber and S. Diehl, "Mining version histories to guide

software changes", IEEE Transactions on Software Engineering 31, vol. 6, pp. 429-445, 2005.

[23] S. Mani, A. Sankaran and R. Aralikatte, "Deeptriage: Exploring the effectiveness of deep

learning for bug triaging", In Proceedings of the ACM India Joint International Conference

on Data Science and Management of Data, pp. 171-179, ACM, 2019.

