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ABSTRACT 

 

 

Using Query language to fetch and visualize the data in specified format requires knowledge and 

expertise about domain and technologies in which data are being stored in databases. The gap 

between what information user wants which is going to satisfies the need at the desired moment 

and what information is being fetched requires clear communication between database expert and 

user requesting the data.  

In this project I understudy the different methodologies which was proposed in the domain of 

natural language to query language such as Seq2SQL, Neural Enquirer, ONLI (Ontology-based 

Natural Language Interface), NaLIR (Natural Language Interface for Relational Database), 

SQLNet and ln2sql put the comparison and features of databases which are being used to train 

the model. Training Datasets are WikiSQL, Spider, DBpedia, Geoquery, ATIS, Overnight, 

WebQuestions, Freebase917 and WikiTableQuestions. 

The main challenges of data retrieval are the heterogenous form of data storage which requires 

complex and different domain specific queries. In extension of this work, I propose how complex 

queries can be fetched from multiple normalized database tables. 
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Chapter 1: Introduction 

 

 

Due to rapid computing scenario, Information retrieval methods are being highly accustomed to 

help organizations, education institutions, on demand information which is required while 

communicating with users and client meeting to present them with accurate data. Despite large 

amount of data can be fetched efficiently and accurately from Relational Databases whoever it 

requires personnel to master the semantics to formulate the formal queries. Linguistics (Natural 

Language processing) and Artificial Intelligence capabilities can form an association to understand 

information in natural language and generate database query language such as NoSQL and fetch 

information from selected database.  

Methodologies which helps to convert natural language to database query language are Seq2SQL, 

Neural Enquirer, ONLI (Ontology-based Natural Language Interface) and these models depending 

upon different datasets to train their model. Datasets such as WikiSQL, Spider, DBpedia, 

Geoquery, ATIS, Overnight, WebQuestions, Freebase917, WikiTableQuestions. 

General solution architecture NLP to SQL is to take the text/ (speech to text) is given as input to 

the model lexical analyser. Lexical analysis performs the pre-processing of input text by help of 

tokenization, lemmatization/stemming and POS tagging and pass the words for semantic analysis. 

After processing of semantic analyser relational mapping to database table names, column names 

and condition clauses are fetched so that query generator can generate the query. 
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Figure 1. Simple Architecture of NLP to SQL  

 

The Architecture shown in figure one can be understood in simple steps with help of lexical 

analysis, semantic analysis, relational mapping and query generation. 

Lexical analysis & pre-processing collects words in a sentence, it involves tokenization, 

lemmatization, stemming, POS tagging. 

Tokenization means breaking the text to chunks of individual words. These tokens used to find 

relevant information from the sentence. 

For Example 

 Sentence: - find the unique names of all employee with age 24. 

 Tokens: - {“find”,” unique”,” names”,” all”,” employee”,” with”,” age”,” 24”}. 
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Stemming means cutting of the suffix or prefix of words. 

For Example  

 

 

 

 

 

 

Lemmatization means to take care of inflectional variance, considers meaning of words 

dictionaries are needed to process, the morphological linguistics makes it more complicated. 

The word good is lemma for better, which got missed by stemmer. 

Word  Stemming Lemmatization 

Beautiful, beautifully beauti beautiful 

 

Here stemming produces beauti which have no meaning, lemmatization produces correct form of 

word which is beautiful. 

Both stemming, and lemmatization is part of normalization of word to bring it to the root word  

Stemming is easy to design, but it also loses the meaning sometimes and the context in which word 

is being said. 

 

 

 

 

 

 

 

 

 

 

Form Stem 

Eating  eat 

studying study 

walking walk 

morning morn 
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1.1 Related work 

 

Many researchers have focusing on natural language to SQL conversion, which is very useful for 

consumers to efficiently produce and populate information in real time.  

Below are some of NlP to SQL translators developed by many researchers such as Seq2SQL, 

Neural Enquirer, ONLI (Ontology-based Natural Language Interface), NaLIR (Natural Language 

Interface for Relational Database), SQLNet and ln2sql put the comparison and features of 

databases which are being used to train the model. Training Datasets are WikiSQL, Spider, 

DBpedia, Geoquery, ATIS, Overnight, WebQuestions, Freebase917 and WikiTableQuestions.  

There are other translators based on machine learning, knowledge base, parsing the tokens of 

natural language and creating a logical dependency graph all of them have their unique key feature 

and problem area which were addressed and tried to be optimized. 

The detailed comparisons of translators and dataset are explained in chapter 2 and chapter 3. There 

are many researchers focused in optimizing and trying to make the efficient system which is 

reliable and can be used at real-time by the consumers which benefits their business scenario’s. 

Below are some of NlP to SQL translators developed by many researchers. 

1. Seq2SQL  

To translate questions to analogous SQL queries, Seq2sql uses on deep neural network. 

Reinforcement (RNN) learning to train the model with WikiSQL. 

 

2. Neural Enquirer 

Termed as completely neutralized, it looks for distributed representations of knowledge 

base tables and queries. Executors are used to generate queries in series at different levels. 

Intermediate results are in form of table annotations at multiple layers.  

 

3. ONLI (Ontology-based Natural Language Interface) 

Uses ontology model to represent the Question context and syntactic question composition. 

Model used permits hypothesize expected answer type by the user with help of 

classification of questions.  
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4. NaLIR (Natural Language Interface for Relational Database) 

To generate parse tree from natural language NaLIR uses off-the-shelf NL parser. 

Interactive Communicator is used to make the translation transparent and while translating 

getting feedback from the user if it is following the desired path to get the efficient and 

accurate result. 

 

5. SQLNet 

To generate query, it uses sketch-based approach. Sketch represents the syntactical 

representation of SQL query.  Major issue addressed by this approach is to optimize 

generating where clause.  

 

6. Ln2SQL 

Ln2SQL is generated for French language, it’s a very simple model to parse the sentence 

for each section of query generation such as column name extraction, where clause, table 

name, order by and group by. It’s based on parsing the natural language using different 

libraries. UI is created to interact with the user to get SQL query generated. 

 

Detailed Architecture is explained in Chapter 3 NLP to SQL. There are other translators based on 

machine learning, knowledge base, parsing the tokens of natural language and creating a logical 

dependency graph all of them have their unique key feature and problem area which were 

addressed and tried to be optimized. In past few years accuracy and efficiency has been increased 

from 21% to 83%. In upcoming years, the results will be accurate and efficient as the researchers 

are focusing their efforts into it.  
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Chapter 2: NLP to SQL 

 

Many researchers have focusing on natural language to SQL conversion, which is very useful for 

consumers to efficiently produce and populate information in real time.  

Below are some of NlP to SQL translators developed by many researchers.  

1. Seq2SQL  

To translate questions to analogous SQL queries, Seq2sql uses on deep neural network. 

Training of model is performed using WikiSQL dataset, which have 87726 annotated set 

of questions and queries. To induce unordered parts of query rewards are used in execution 

of loop query over the database. Reinforcement learning is used to train with WikiSQL as 

execution environment. 

 

Seq2SQL is composed of 3 parts:  

 

1. Aggregation Classifier which produces the summary of column/ row selected by the 

Query. 

2. SELECT column pointer which finds the column names which needs to be part of 

output result. 

3. Where clause decoder pointer which finds the filtering conditions to get the desired 

outcome.  
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                   Fig 2 Seq2SQL Architecture 
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2. Neural Enquirer 

Termed as completely neutralized, it looks for distributed representations of knowledge 

base tables and queries. Executors are used to generate queries in series at different levels. 

Intermediate results are in form of table annotations at multiple layers.  

 

Neural Enquirer composed of Query Encoder speculate semantics of the input text, Table 

Encoder drives embedding tables by encoding entries in table in form of distributed vectors 

and Executor which computes with help of table and annotations. In each layer’s 

annotations are stored which is used by next layer executor. 

 

 

Figure 3 Neural Enquirer with four Executors 
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3. ONLI (Ontology-based Natural Language Interface) 

Uses ontology model to represent the Question context and syntactic question composition. 

Model used permits hypothesize expected answer type by the user with help of 

classification of questions.  

 

 

Figure 4 ONLI system Architecture 
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4. NaLIR (Natural Language Interface for Relational Database) 

For querying relational databases, it can accept complex English language and generates 

variety of SQL query which is composition of aggregation joins nesting of sub query with 

other multiple where clause conditions with multiple application domains NaLIR can be 

used to generate complex queries.   

To generate parse tree from natural language NaLIR uses off-the-shelf NL parser. 

Interactive Communicator is used to make the translation transparent and while translating 

getting feedback from the user if it is following the desired path to get the efficient and 

accurate result. 

 

Figure 5. Architecture of NaLIR 
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5. SQLNet 

To generate query, it uses sketch-based approach. Sketch represents the syntactical 

representation of SQL query.  Major issue addressed by this approach is to optimize 

generating where clause. To do that it employs the sketch which provides dependency 

relationship among different condition slots, so it helps in determining which condition 

slots are depends on each other and which are independent. To train the model it uses 

WikiSQL dataset. When order is not required it avoids sequence_to_sequence structure. 

 

SQLNet introduced column attention and sequence-to-set. First is to capture relationship 

specified in the sketch, second is to determine unordered set of conditions slots rather of 

ordered condition slots.  

 

 

Figure 6 SQLNet Graphical representation of processing  
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6. Ln2SQL 

 

Ln2SQL is generated for French language, it’s a very simple model to parse the sentence 

for each section of query generation such as column name extraction, where clause, table 

name, order by and group by. Its based on parsing the natural language using different 

libraries. UI is created to interact with the user to get sql query generated. 

     

  Figure 7 Ln2SQL Architecture 
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Chapter 3: Comparison Tables 

Comparison of Translators  

Translators such as Seq2sql, Neural Enquirer, ONLI, NaLIR, SQLNet are compared based on 

domains, type of datasets used to produce the result, some of them are machine learning based and 

some are sequence to sequence model based. Both methodologies have own complexity and 

accuracy results, few translators are tested over standard dataset which is available to compare and 

analysis the performance of translators. In table 1 comparison of translators is shown with 

attributes such as year of release, domains covered, dataset used, methods used to generate the 

query and accuracy on standard dataset. 

ONLI have better accuracy to generate the structured query with 83%. 

Table 1. Comparison of Translators  

Translators  

Features 

Seq2SQL Neural 

Enquirer 

ONLI NaLIR SQLNet Ln2SQL 

Year of 

release  

2017 2017 2015 2018 2017 2015 

Domains 

covered  

Single Single Multiple Multiple Single Database 

dependent 

Dataset 

used 

WikiSQL Simulated 

table data + 

Real table 

data 

DBpedia NA WikiSQL Thesaurus  

Method 

Used 

Policy Based 

Reinforcement 

learning 

RNN Neural 

Network 

Ontology 

model 

Parser and 

interactive 

communicator 

Sketch-

based 

(dependency 

graph) 

Parser-

based 

Accuracy 

on standard 

dataset 

60.8% 59% 83% 67% 69.8% -- 
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Comparison of Datasets 

Multiple datasets are used by these translators and new dataset is being formulated to tackle the 

issues and cover more domains and different type of SQL queries. In table 2 comparison of 

different datasets are shown with attributes such as year of release, Feature of that dataset that 

makes it different from other dataset, Size and schema of the dataset. And does it have annotated 

logical forms.   

Spider dataset covers more area with multiple variances of SQL query coverage as shown in figure  

 

Fig 8. Coverage of Spider Dataset. 
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Table 2. Comparison of different dataset 

Dataset  Year of 

release 

Feature Size  Schema Annotated 

logical form 

WikiSQL 2017 Single table base 87,726 26375 True 

Spider 2018 Cross- domain text  10,181 200 True 

DBpedia 2016 Based on Ontology 13 B 50+ True 

Geoquery 2001 Sentences with their 

logical form  

880 8 True 

AITS 1990 Proposed as Slot 

filling task. 

5871 141 True* 

Freebase917 2015 Each API page is 

counted as different 

domain 

917 81 True 

WebQuestions 2013 Unique Id and 

annotations for each 

question x 

22,033 2420 False 

Overnight 2015 Domain knowledge 

base with grammar 

26098 8 True 

WikiTableQuestions 2015 Tables with varying 

questions   

22033 2108 False 
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Chapter 4: Proposed Translator 

 

4.1 Proposed Architecture 

After analysis of translators and dataset features, I analysed to apply reinforcement learning and 

transfer learning at classification layer to improve the efficiency and to train our model we propose 

to  use spider dataset because it have cross-domain text-to-query which covers almost all varying 

combination of query formation with multiple conditions attributes with Observer which observe 

for user to visualize and communicate with the system if step taken by system needs to be retract 

its mistake.  

 

 

 

Figure 9. Architecture of proposed translator  
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Lexical analyser takes text as input and performs analysis and pre-processing using tokenization, 

lemmatization, removing stop words making input clean for processing by system so that it can be 

used by classifier to accurately identify cross-ponding query with the relevant tokens identified. 

With help of observer will user will be able to visualize each step and correct any mistakes which 

will help improvise the system to predict the correct query. Generated query then will be run on 

stored database to fetch the result whose accuracy will be compared with the expert generated 

query. 

Query generation can be done by using spider dataset which have varying variations of SQL 

queries. To generate the queries, we can use reinforcement learning on top of that at final layer 

will be trained by transfer learning which will learn from already crated model and keep on 

learning as new forms are being introduced, which will increase the efficiency to train the system 

and reduce the time to train the model  

The final generated query will be executed over database and fetch the data as per query.  

The types of queries which should be generated in explained in next topic and few variations are 

tested and implemented in this project as they are not based on this architecture. 
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4.2 Variations of Queries 

Types of queries which should be generated by translator are. 

• SELECT operation with one column multiple columns and all columns. 

• SELECT distinct on columns. 

• Aggregate functions such as count-select, sum-select, avg-select, min-select, max-select 

• JOIN inner join natural join 

• WHERE clause with one condition multiple conditions with operators such as equal 

operator, 

• not equal operator, greater-than operator, less-than operator, like operator, between 

operator (not 100% efficient) 

• ORDER BY with ASC, DESC 

• GROUP BY multiple queries 

• Handling of Synonyms of Table and column names  
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Chapter 5: Implementation 

 

  In this project, I implemented basic natural language to SQL query translator with a graphical 

user Interface through which user can enter the query in natural language and got the query in SQL 

form. 

 

5.1 Tools  

Graphical User Interface is implemented using Tkinker library in python. 

The logical of parser and SQL translator is written in python. 

The basic UI is shown below which takes Query in natural language and a generate button which 

executes query generation and shows the result. It also generates the output.jason file format which 

will be used as payload for REST web services which will be used to fetch data from the actual 

database table  . 

 

 

 

Figure 10. User interface of NLP2SQL 
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There is no need to connect to the database only SQL metadata dump file is required to get names 

of all the tables which it needs to fetch. A 

After query is generated successfully it shown on UI in output area as shown by figure 11. 

Simple query generated to get all employee data. 

Natural language: - get all emp. 

SQL Query Generated: - SELECT * FROM emp; 

 

 

Figure 11. SQL generated  
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5.2 Types of Queries 

Types of queries which can be generated by NLP_to_SQL translator are. 

• SELECT operation with one column multiple columns and all columns. 

• SELECT distinct on columns. 

• Aggregate functions such as count-select, sum-select, avg-select, min-select, max-select 

• JOIN inner join natural join 

• WHERE clause with one condition multiple conditions with operators such as equal 

operator, 

• not equal operator, greater-than operator, less-than operator, like operator, between 

operator (not 100% efficient) 

• ORDER BY with ASC, DESC 

• GROUP BY multiple queries 

• exception and error handling 

• Detection of values  
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5.3 Database Tables  

Tables being used to demonstrate the working of NLP_TO_SQL Conversion, the tables names are 

shown below  

 

Figure.12 ER diagram of NLP_TO_SQL 

 

In this ER diagram four tables is shown 

Manager with id_id, m_id 

Emp (Employee) with id, name, cityid, age, score. 

Project with id, p_id 

City with id, CityName, pin. 
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Chapter 6: Verification & Testing 

 

6.1 Introduction to Testing  

Broadly there are two testing categories Whit Box Testing and black Box Testing 

 

 

Figure 13 White box testing 

 

Figure 14 Black box testing 
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6.2 Testing NLP_to_SQL 

 

Testing NLP_to_SQL to test which types of queries can be generated by the system, I 

created test case plan which covers multiple variation of SQL queries and combinations 

which should ideally be performed by the translator to qualify as the efficient system. 

Testing is done using Black box testing methodology.  

 

 

6.3 Test Case Plan  

To test scenarios to check what can be achieved by the system.  

 

S. No Use Cases Test Passed 

1 Retrieving Table Yes 

2 Selecting columns from the Table Yes 

3 Fetch data using constraints  Yes 

4 Using Aggregation to compute &fetch 

data 

Yes 

5 Joining Multiple Tables Yes 

6 Like operator  Yes 

7 Fetch Data in Sorted Order No 

8 Exception & error handling Yes 

9 Nested query generation  No 

10 Synonyms matching with table name No 

Table 3. Test case plan 
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6.4 Test Case Execution  

1. Retrieving Table 

 

Natural Language: - Get all emp  

SQL Generated: - SELECT * FROM emp; 

 

 

Natural Language: - Fetch city 

SQL Generated: - SELECT * FROM city; 
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2. Selecting columns from the Table 

Natural Language: - fetch pin of city 

SQL Generated: - SELECT city.pin FROM city; 

 

 

 

Natural Language: - fetch id of city 

SQL Generated: - SELECT manager.id FROM manager; 
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3. Fetch data using constraints 

 

Natural Language: - Fetch id of manager with id less than 5 

SQL Generated: -  

SELECT manager.id FROM manager WHERE manager.id < '5'; 

 

Natural Language: - Fetch id of project with id equal to 5 

SQL Generated: -  

SELECT manager.id FROM manager WHERE manager.id < '5'; 

 

 

 



 

38 
 

4. Using Aggregation to compute &fetch data 

 

Natural Language: - Fetch sum of score all emp 

SQL Generated: - SELECT SUM (emp.score) FROM emp; 

 

 

Natural Language: - Fetch Count of score all emp 

SQL Generated: - SELECT COUNT(emp.score) FROM emp; 
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5. Joining Multiple Tables 

 

Natural Language: - CityName for emp 

SQL Generated: - SELECT city.cityName FROM emp INNER JOIN city ON emp.cityId 

= city.id; 

 

          

Natural Language: - Get me cityName and score for emp with id = 2 

SQL Generated: - SELECT city.cityName, emp.score FROM emp INNER JOIN city ON 

emp.cityId = city.id WHERE emp.id = '2' 
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6. Like Operator 

 

Natural Language: - Get me cityName and score for emp where name is like' %a' 

SQL Generated: - SELECT city.cityName, emp.score FROM emp INNER JOIN city ON 

emp.cityId = city.id WHERE emp.name = 'like %a'; 

 

 

 

Did not get accurate result as like operator was not working properly. 
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7. Fetch Data in Sorted   

 

Natural Language: - get all names of emp order by name 

SQL generated: - SELECT * FROM emp ORDER BY emp.name ASC; 

 

 

Natural Language: - get all city name of city group by pin 

SQL generated: - SELECT * FROM city GROUP BY city.pin; 
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8. Exception & error handling 

 

Putting names of table which is not in our SQL dump file 

 

Natural Language: - get all names of organization  

SQL generated: - No query generated  

 

Message given at time of computation , and message is given for every time system is not 

able to handle unknown keywords. 

 

Figure 15 Exception handling 
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9. Nested query generation 

       These types of queries are not covered in the current system architecture  

 

10.  Synonyms matching with table name 

 

        Synonyms contained in natural language of queries are not covered in the current 

system architecture 
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Chapter 7: Modern Translators 

 

As per growth in research of optimising the algorithm and techniques to improvise the NLP to SQl 

translator modern translator will seems like as per my analysis of this work till now. 

The modern translators should be able to overcome these challenges: - 

Perceiving natural language: - The ability of system to perceive the intended meaning of question 

which are ambiguous, diverse and random. 

Generating/Decoding Complex Query: - Queries can be amalgamation of nested queries and 

varying multiple conditions. 

Reducing Irrelevant information: - Where Clause conditions on which rows are going to be 

filter may or may not depend upon the previous, which needs to analyse more accurately. 

Designing algorithm to incorporate heterogeneous database system which will increase the 

scalability and adaptability of the system. Covering the synonyms of table column names to cover 

the which might increase the accuracy. 

After analysis of translators and dataset features, we decided to apply reinforcement learning and 

transfer learning at classification layer to improve the efficiency and to train our model we propose 

to  use spider dataset because it have cross-domain text-to-query which covers almost all varying 

combination of query formation with multiple conditions attributes with Observer which observe 

for user to visualize and communicate with the system if step taken by system needs to be retract 

its mistake.  

Lexical analyser takes text as input and performs analysis and pre-processing using tokenization, 

lemmatization, removing stop words making input clean for processing by system so that it can be 

used by classifier to accurately identify cross-ponding query with the relevant tokens identified. 

With help of observer will user will be able to visualize each step and correct any mistakes which 

will help improvise the system to predict the correct query. Generated query then will be run on 

stored database to fetch the result whose accuracy will be compared with the expert generated 

query. 
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Types of queries which should be generated by translator are. 

• SELECT operation with one column multiple columns and all columns. 

• SELECT distinct on columns. 

• Aggregate functions such as count-select, sum-select, avg-select, min-select, max-select 

• JOIN inner join natural join 

• WHERE clause with one condition multiple conditions with operators such as equal 

operator, 

• not equal operator, greater-than operator, less-than operator, like operator, between 

operator (not 100% efficient) 

• ORDER BY with ASC, DESC 

• GROUP BY multiple queries 
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Chapter 8: Results 

 

The result of NlP_to_SQL translator shows that it cans successfully generated SQL queries with 

column names, from multiple tables, with single condition values and on join conditions in some 

cases.  

 The checklist of successfully generated queries are shown below: 

S. No Use Cases Accuracy (%) Test Passed 

1 Retrieving Table 100 Yes 

2 Selecting columns from the 

Table 

80 Yes 

3 Fetch data using constraints  70 Yes 

4 Using Aggregation to compute 

&fetch data 

60 Yes 

5 Joining Multiple Tables 70 Yes 

6 Like operator  40 No 

8 Exception & error handling 80 Yes 

Table 4 Result 

In terms of generating human generated query and NLP_to_SQL generated query the overall 

accuracy is 62.5%. 

This result can be improved in future few points were mentioned about it in Future work section 

of my collusion of my thesis presnted  there were few challenges encountered which I mentioned 

in challenges section in upcoming section, and how we can improve the translator using modern 

translator. 
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Conclusion 

 

Performance of ONLI on standard test dataset have better performance with 83% which is best till 

now among all systems compared. WikiSQL have large number of SQL queries and question set 

which gives advantage while training the model, but the limitations of only one single table. Spider 

table which is proposed covers cross domain a multiple table with varying combinations of queries 

containing joins, having, etc. clauses. The feedback interactor improves and gives more control in 

generating the accurate and efficient query.  

The translator, I presented is simple to design which generates query based on natural language. It 

exactly able to generate query which can fetch complete columns, selecting all the data, putting 

constraints on the selected data to make data more relevant, using aggerate functions to calculate 

and get overview of fetched data.  

This system can also be configured to handle synonyms of table and column names, generated 

multiple dependent complex queries.   
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Challenges 

 

There are many points of improvement which can be improved, concerning the point of 

functionality which will improve the accuracy and make system more efficiently. 

The following points can be considered designing the efficient NLP to SQL translator: - 

Perceiving natural language: - The ability of system to perceive the intended meaning of question 

which are ambiguous, diverse and random. 

Generating/Decoding Complex Query: - Queries can be amalgamation of nested queries and 

varying multiple conditions. 

Reducing Irrelevant information: - Where Clause conditions on which rows are going to be filter 

may or may not depend upon the previous, which needs to analyze more accurately. 
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Future Work 

 

 

The system can be enhanced by incorporating the below points: 

To handle nested queries, recursive algorithm can be designed, which helps create independent 

queries for condition clause to optimize the result. 

 Algorithms can be optimizing by formulating multiple queries which cover the same intent of the 

user semantic.  

Designing algorithm to Incorporate heterogeneous database system which will increase the 

scalability and adaptability of the system. 

Covering the synonyms of table column names to cover the which might increase the accuracy. 

Addressing the abbreviations in the system to increase the scope at which it can map to relational 

database.  
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List of Publication 

 

 

In area of natural language papers published 

• “Role of Sentiment Lexicons in Sentiment Analysis and their Performance” 

Proceedings of the 12 th INDIACom; INDIACom-2018; IEEE Conference ID: 42835 

2018 5 th International Conference on “Computing for Sustainable Global Development”, 

14th– 16th March 2018 Bharati Vidyapeeth Institute of Computer Applications and 

Management (BVICAM), New Delhi (INDIA) 
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Appendices 
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