

A Major Project-II Report

On

NLP to SQL

Translating Natural Language to Database Query Language

Submitted in Partial fulfilment of the Requirement for the Degree of

Master of Technology

in

Computer Science and Engineering

Submitted By

Amit Chaudhary

2K17/CSE/03

Under the Guidance of

Ms. Minni Jain

Assistant Professor

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahabad Daulatpur, Main Bawana Road, Delhi-110042

June 2019

2

CERTIFICATE

This is to certify that Project Report entitled” (NLP to SQL) Translating Natural Language to

Database Query Language” submitted by Amit Chaudhary (2K17/CSE/03) in partial fulfilment

of the requirement for the award of degree Master of Technology (Computer Science and

Engineering) is a record of the original work carried out by him under my supervision.

Project Guide

Ms. Minni Jain

Assistant Professor

Department of Computer Science & Engineering

Delhi Technological University

3

DECLARATION

I hereby declare that the Major Project-II work entitled” (NLP to SQL) Translating Natural

Language to Database Query Language” which is being submitted to Delhi Technological

University, in partial fulfilment of requirements for the award of the degree of Master of

Technology (Computer Science and Engineering) is a bona fide report of Major Project-II carried

out by me. I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Amit Chaudhary

2K17/CSE/03

M. Tech (Computer Science & Engineering)

Delhi Technological University

4

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my project supervisor

Ms. Minni Jain for providing the opportunity of carrying out this project and being the guiding

force behind this work. I am deeply indebted to him for the support, advice and encouragement he

provided without which the project could not have been a success.

Secondly, I am grateful to Dr. Rajni Jindal, HOD, Computer Science & Engineering Department,

DTU for her immense support. I would also like to acknowledge Delhi Technological University

library and staff for providing the right academic resources and environment for this work to be

carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends for

constantly encouraging me during the completion of work.

Amit Chaudhary

Roll No – 2K17/CSE/03

M. Tech (Computer Science & Engineering)

Delhi Technological University

5

ABSTRACT

Using Query language to fetch and visualize the data in specified format requires knowledge and

expertise about domain and technologies in which data are being stored in databases. The gap

between what information user wants which is going to satisfies the need at the desired moment

and what information is being fetched requires clear communication between database expert and

user requesting the data.

In this project I understudy the different methodologies which was proposed in the domain of

natural language to query language such as Seq2SQL, Neural Enquirer, ONLI (Ontology-based

Natural Language Interface), NaLIR (Natural Language Interface for Relational Database),

SQLNet and ln2sql put the comparison and features of databases which are being used to train

the model. Training Datasets are WikiSQL, Spider, DBpedia, Geoquery, ATIS, Overnight,

WebQuestions, Freebase917 and WikiTableQuestions.

The main challenges of data retrieval are the heterogenous form of data storage which requires

complex and different domain specific queries. In extension of this work, I propose how complex

queries can be fetched from multiple normalized database tables.

6

 CONTENTS Page Number

 Candidate’s Declaration i

 Certificate ii

 Acknowledgement iii

 Abstract iv

 Contents v

 List of Figures vi

 List of Symbols vii

 List of abbreviations vii

Chapter 1 Introduction

1.1 Introduction

1.2 Related Work

1

Chapter 2 NLP to SQL

 2.1 Seq2SQL

 2.2 Neural Enquirer

 2.3 ONLI

 2.4 NaLIR

 2.5 SQLNet

 2.6 Ln2SQL

6

Chapter 3 Comparison Tables

3.1 Comparison of Translators

3.2 Comparison of Datasets

13

Chapter 4 Proposed Translator

4.1 Proposed Architecture

4.2 Variation of Queries

16

7

Chapter 5 Implementation

5.1 Tools

5.2 Types of Queries

5.3 Database Tables

19

Chapter 6 Verification & Testing

6.1 Intro to Testing

6.2 Test NlP_to_SQL

6.3 Test Case Plan

6.4 Test case Execution

23

Chapter 7 Modern Translators 35

Chapter 8 Results 37

 Conclusion 38

 Challenges 39

 Future Work 40

 List of Publication 41

 Reference 42

 Appendices 44

8

LIST OF FIGURES

Figure No Figure Description Page No

1 Simple Architecture of NLP to SQL 2

2 Seq2SQL Architecture 7

3 Neural Enquirer with four Executors 8

4 ONLI system Architecture 9

5 Architecture of NaLIR 10

6 SQLNet Graphical representation of processing 11

7 Ln2SQL Architecture 12

8 Coverage of Spider Dataset. 14

9 Architecture of proposed translator 16

10 User interface of NLP2SQL 19

11 SQL generated 20

12 ER diagram of NLP_TO_SQL 22

13 White box testing 23

14 Black box testing 23

15 Exception handling 33

9

LIST OF TABLES

Table No Table Description Page No

Table 1 Comparison of Translators 14

Table 2 Comparison of different dataset 16

Table 3 Test case plan 25

Table 4 Result 37

10

LIST OF ABBREVIATIONS

S. No Abbreviation

1 NLP Natural Language Processing

2 SQL Structured query language

3 RNN Recurrent neural network

4 SEQ2SQL Sequel to Structured query language

5 Ln2SQL Natural language to SQL

6 ONLI Ontology-based Natural Language Interface

7 NaLIR Natural Language Interface for Relational Database

8 SQLNet SQL Network

9 AITS Administrative information technology services

10 DBpedia Database pedia

11

Chapter 1: Introduction

Due to rapid computing scenario, Information retrieval methods are being highly accustomed to

help organizations, education institutions, on demand information which is required while

communicating with users and client meeting to present them with accurate data. Despite large

amount of data can be fetched efficiently and accurately from Relational Databases whoever it

requires personnel to master the semantics to formulate the formal queries. Linguistics (Natural

Language processing) and Artificial Intelligence capabilities can form an association to understand

information in natural language and generate database query language such as NoSQL and fetch

information from selected database.

Methodologies which helps to convert natural language to database query language are Seq2SQL,

Neural Enquirer, ONLI (Ontology-based Natural Language Interface) and these models depending

upon different datasets to train their model. Datasets such as WikiSQL, Spider, DBpedia,

Geoquery, ATIS, Overnight, WebQuestions, Freebase917, WikiTableQuestions.

General solution architecture NLP to SQL is to take the text/ (speech to text) is given as input to

the model lexical analyser. Lexical analysis performs the pre-processing of input text by help of

tokenization, lemmatization/stemming and POS tagging and pass the words for semantic analysis.

After processing of semantic analyser relational mapping to database table names, column names

and condition clauses are fetched so that query generator can generate the query.

12

Figure 1. Simple Architecture of NLP to SQL

The Architecture shown in figure one can be understood in simple steps with help of lexical

analysis, semantic analysis, relational mapping and query generation.

Lexical analysis & pre-processing collects words in a sentence, it involves tokenization,

lemmatization, stemming, POS tagging.

Tokenization means breaking the text to chunks of individual words. These tokens used to find

relevant information from the sentence.

For Example

 Sentence: - find the unique names of all employee with age 24.

 Tokens: - {“find”,” unique”,” names”,” all”,” employee”,” with”,” age”,” 24”}.

13

Stemming means cutting of the suffix or prefix of words.

For Example

Lemmatization means to take care of inflectional variance, considers meaning of words

dictionaries are needed to process, the morphological linguistics makes it more complicated.

The word good is lemma for better, which got missed by stemmer.

Word Stemming Lemmatization

Beautiful, beautifully beauti beautiful

Here stemming produces beauti which have no meaning, lemmatization produces correct form of

word which is beautiful.

Both stemming, and lemmatization is part of normalization of word to bring it to the root word

Stemming is easy to design, but it also loses the meaning sometimes and the context in which word

is being said.

Form Stem

Eating eat

studying study

walking walk

morning morn

14

1.1 Related work

Many researchers have focusing on natural language to SQL conversion, which is very useful for

consumers to efficiently produce and populate information in real time.

Below are some of NlP to SQL translators developed by many researchers such as Seq2SQL,

Neural Enquirer, ONLI (Ontology-based Natural Language Interface), NaLIR (Natural Language

Interface for Relational Database), SQLNet and ln2sql put the comparison and features of

databases which are being used to train the model. Training Datasets are WikiSQL, Spider,

DBpedia, Geoquery, ATIS, Overnight, WebQuestions, Freebase917 and WikiTableQuestions.

There are other translators based on machine learning, knowledge base, parsing the tokens of

natural language and creating a logical dependency graph all of them have their unique key feature

and problem area which were addressed and tried to be optimized.

The detailed comparisons of translators and dataset are explained in chapter 2 and chapter 3. There

are many researchers focused in optimizing and trying to make the efficient system which is

reliable and can be used at real-time by the consumers which benefits their business scenario’s.

Below are some of NlP to SQL translators developed by many researchers.

1. Seq2SQL

To translate questions to analogous SQL queries, Seq2sql uses on deep neural network.

Reinforcement (RNN) learning to train the model with WikiSQL.

2. Neural Enquirer

Termed as completely neutralized, it looks for distributed representations of knowledge

base tables and queries. Executors are used to generate queries in series at different levels.

Intermediate results are in form of table annotations at multiple layers.

3. ONLI (Ontology-based Natural Language Interface)

Uses ontology model to represent the Question context and syntactic question composition.

Model used permits hypothesize expected answer type by the user with help of

classification of questions.

15

4. NaLIR (Natural Language Interface for Relational Database)

To generate parse tree from natural language NaLIR uses off-the-shelf NL parser.

Interactive Communicator is used to make the translation transparent and while translating

getting feedback from the user if it is following the desired path to get the efficient and

accurate result.

5. SQLNet

To generate query, it uses sketch-based approach. Sketch represents the syntactical

representation of SQL query. Major issue addressed by this approach is to optimize

generating where clause.

6. Ln2SQL

Ln2SQL is generated for French language, it’s a very simple model to parse the sentence

for each section of query generation such as column name extraction, where clause, table

name, order by and group by. It’s based on parsing the natural language using different

libraries. UI is created to interact with the user to get SQL query generated.

Detailed Architecture is explained in Chapter 3 NLP to SQL. There are other translators based on

machine learning, knowledge base, parsing the tokens of natural language and creating a logical

dependency graph all of them have their unique key feature and problem area which were

addressed and tried to be optimized. In past few years accuracy and efficiency has been increased

from 21% to 83%. In upcoming years, the results will be accurate and efficient as the researchers

are focusing their efforts into it.

16

Chapter 2: NLP to SQL

Many researchers have focusing on natural language to SQL conversion, which is very useful for

consumers to efficiently produce and populate information in real time.

Below are some of NlP to SQL translators developed by many researchers.

1. Seq2SQL

To translate questions to analogous SQL queries, Seq2sql uses on deep neural network.

Training of model is performed using WikiSQL dataset, which have 87726 annotated set

of questions and queries. To induce unordered parts of query rewards are used in execution

of loop query over the database. Reinforcement learning is used to train with WikiSQL as

execution environment.

Seq2SQL is composed of 3 parts:

1. Aggregation Classifier which produces the summary of column/ row selected by the

Query.

2. SELECT column pointer which finds the column names which needs to be part of

output result.

3. Where clause decoder pointer which finds the filtering conditions to get the desired

outcome.

17

 Fig 2 Seq2SQL Architecture

18

2. Neural Enquirer

Termed as completely neutralized, it looks for distributed representations of knowledge

base tables and queries. Executors are used to generate queries in series at different levels.

Intermediate results are in form of table annotations at multiple layers.

Neural Enquirer composed of Query Encoder speculate semantics of the input text, Table

Encoder drives embedding tables by encoding entries in table in form of distributed vectors

and Executor which computes with help of table and annotations. In each layer’s

annotations are stored which is used by next layer executor.

Figure 3 Neural Enquirer with four Executors

19

3. ONLI (Ontology-based Natural Language Interface)

Uses ontology model to represent the Question context and syntactic question composition.

Model used permits hypothesize expected answer type by the user with help of

classification of questions.

Figure 4 ONLI system Architecture

20

4. NaLIR (Natural Language Interface for Relational Database)

For querying relational databases, it can accept complex English language and generates

variety of SQL query which is composition of aggregation joins nesting of sub query with

other multiple where clause conditions with multiple application domains NaLIR can be

used to generate complex queries.

To generate parse tree from natural language NaLIR uses off-the-shelf NL parser.

Interactive Communicator is used to make the translation transparent and while translating

getting feedback from the user if it is following the desired path to get the efficient and

accurate result.

Figure 5. Architecture of NaLIR

21

5. SQLNet

To generate query, it uses sketch-based approach. Sketch represents the syntactical

representation of SQL query. Major issue addressed by this approach is to optimize

generating where clause. To do that it employs the sketch which provides dependency

relationship among different condition slots, so it helps in determining which condition

slots are depends on each other and which are independent. To train the model it uses

WikiSQL dataset. When order is not required it avoids sequence_to_sequence structure.

SQLNet introduced column attention and sequence-to-set. First is to capture relationship

specified in the sketch, second is to determine unordered set of conditions slots rather of

ordered condition slots.

Figure 6 SQLNet Graphical representation of processing

22

6. Ln2SQL

Ln2SQL is generated for French language, it’s a very simple model to parse the sentence

for each section of query generation such as column name extraction, where clause, table

name, order by and group by. Its based on parsing the natural language using different

libraries. UI is created to interact with the user to get sql query generated.

 Figure 7 Ln2SQL Architecture

23

Chapter 3: Comparison Tables

Comparison of Translators

Translators such as Seq2sql, Neural Enquirer, ONLI, NaLIR, SQLNet are compared based on

domains, type of datasets used to produce the result, some of them are machine learning based and

some are sequence to sequence model based. Both methodologies have own complexity and

accuracy results, few translators are tested over standard dataset which is available to compare and

analysis the performance of translators. In table 1 comparison of translators is shown with

attributes such as year of release, domains covered, dataset used, methods used to generate the

query and accuracy on standard dataset.

ONLI have better accuracy to generate the structured query with 83%.

Table 1. Comparison of Translators

Translators

Features

Seq2SQL Neural

Enquirer

ONLI NaLIR SQLNet Ln2SQL

Year of

release

2017 2017 2015 2018 2017 2015

Domains

covered

Single Single Multiple Multiple Single Database

dependent

Dataset

used

WikiSQL Simulated

table data +

Real table

data

DBpedia NA WikiSQL Thesaurus

Method

Used

Policy Based

Reinforcement

learning

RNN Neural

Network

Ontology

model

Parser and

interactive

communicator

Sketch-

based

(dependency

graph)

Parser-

based

Accuracy

on standard

dataset

60.8% 59% 83% 67% 69.8% --

24

Comparison of Datasets

Multiple datasets are used by these translators and new dataset is being formulated to tackle the

issues and cover more domains and different type of SQL queries. In table 2 comparison of

different datasets are shown with attributes such as year of release, Feature of that dataset that

makes it different from other dataset, Size and schema of the dataset. And does it have annotated

logical forms.

Spider dataset covers more area with multiple variances of SQL query coverage as shown in figure

Fig 8. Coverage of Spider Dataset.

25

Table 2. Comparison of different dataset

Dataset Year of

release

Feature Size Schema Annotated

logical form

WikiSQL 2017 Single table base 87,726 26375 True

Spider 2018 Cross- domain text 10,181 200 True

DBpedia 2016 Based on Ontology 13 B 50+ True

Geoquery 2001 Sentences with their

logical form

880 8 True

AITS 1990 Proposed as Slot

filling task.

5871 141 True*

Freebase917 2015 Each API page is

counted as different

domain

917 81 True

WebQuestions 2013 Unique Id and

annotations for each

question x

22,033 2420 False

Overnight 2015 Domain knowledge

base with grammar

26098 8 True

WikiTableQuestions 2015 Tables with varying

questions

22033 2108 False

26

Chapter 4: Proposed Translator

4.1 Proposed Architecture

After analysis of translators and dataset features, I analysed to apply reinforcement learning and

transfer learning at classification layer to improve the efficiency and to train our model we propose

to use spider dataset because it have cross-domain text-to-query which covers almost all varying

combination of query formation with multiple conditions attributes with Observer which observe

for user to visualize and communicate with the system if step taken by system needs to be retract

its mistake.

Figure 9. Architecture of proposed translator

27

Lexical analyser takes text as input and performs analysis and pre-processing using tokenization,

lemmatization, removing stop words making input clean for processing by system so that it can be

used by classifier to accurately identify cross-ponding query with the relevant tokens identified.

With help of observer will user will be able to visualize each step and correct any mistakes which

will help improvise the system to predict the correct query. Generated query then will be run on

stored database to fetch the result whose accuracy will be compared with the expert generated

query.

Query generation can be done by using spider dataset which have varying variations of SQL

queries. To generate the queries, we can use reinforcement learning on top of that at final layer

will be trained by transfer learning which will learn from already crated model and keep on

learning as new forms are being introduced, which will increase the efficiency to train the system

and reduce the time to train the model

The final generated query will be executed over database and fetch the data as per query.

The types of queries which should be generated in explained in next topic and few variations are

tested and implemented in this project as they are not based on this architecture.

28

4.2 Variations of Queries

Types of queries which should be generated by translator are.

• SELECT operation with one column multiple columns and all columns.

• SELECT distinct on columns.

• Aggregate functions such as count-select, sum-select, avg-select, min-select, max-select

• JOIN inner join natural join

• WHERE clause with one condition multiple conditions with operators such as equal

operator,

• not equal operator, greater-than operator, less-than operator, like operator, between

operator (not 100% efficient)

• ORDER BY with ASC, DESC

• GROUP BY multiple queries

• Handling of Synonyms of Table and column names

29

Chapter 5: Implementation

 In this project, I implemented basic natural language to SQL query translator with a graphical

user Interface through which user can enter the query in natural language and got the query in SQL

form.

5.1 Tools

Graphical User Interface is implemented using Tkinker library in python.

The logical of parser and SQL translator is written in python.

The basic UI is shown below which takes Query in natural language and a generate button which

executes query generation and shows the result. It also generates the output.jason file format which

will be used as payload for REST web services which will be used to fetch data from the actual

database table .

Figure 10. User interface of NLP2SQL

30

There is no need to connect to the database only SQL metadata dump file is required to get names

of all the tables which it needs to fetch. A

After query is generated successfully it shown on UI in output area as shown by figure 11.

Simple query generated to get all employee data.

Natural language: - get all emp.

SQL Query Generated: - SELECT * FROM emp;

Figure 11. SQL generated

31

5.2 Types of Queries

Types of queries which can be generated by NLP_to_SQL translator are.

• SELECT operation with one column multiple columns and all columns.

• SELECT distinct on columns.

• Aggregate functions such as count-select, sum-select, avg-select, min-select, max-select

• JOIN inner join natural join

• WHERE clause with one condition multiple conditions with operators such as equal

operator,

• not equal operator, greater-than operator, less-than operator, like operator, between

operator (not 100% efficient)

• ORDER BY with ASC, DESC

• GROUP BY multiple queries

• exception and error handling

• Detection of values

32

5.3 Database Tables

Tables being used to demonstrate the working of NLP_TO_SQL Conversion, the tables names are

shown below

Figure.12 ER diagram of NLP_TO_SQL

In this ER diagram four tables is shown

Manager with id_id, m_id

Emp (Employee) with id, name, cityid, age, score.

Project with id, p_id

City with id, CityName, pin.

33

Chapter 6: Verification & Testing

6.1 Introduction to Testing

Broadly there are two testing categories Whit Box Testing and black Box Testing

Figure 13 White box testing

Figure 14 Black box testing

34

6.2 Testing NLP_to_SQL

Testing NLP_to_SQL to test which types of queries can be generated by the system, I

created test case plan which covers multiple variation of SQL queries and combinations

which should ideally be performed by the translator to qualify as the efficient system.

Testing is done using Black box testing methodology.

6.3 Test Case Plan

To test scenarios to check what can be achieved by the system.

S. No Use Cases Test Passed

1 Retrieving Table Yes

2 Selecting columns from the Table Yes

3 Fetch data using constraints Yes

4 Using Aggregation to compute &fetch

data

Yes

5 Joining Multiple Tables Yes

6 Like operator Yes

7 Fetch Data in Sorted Order No

8 Exception & error handling Yes

9 Nested query generation No

10 Synonyms matching with table name No

Table 3. Test case plan

35

6.4 Test Case Execution

1. Retrieving Table

Natural Language: - Get all emp

SQL Generated: - SELECT * FROM emp;

Natural Language: - Fetch city

SQL Generated: - SELECT * FROM city;

36

2. Selecting columns from the Table

Natural Language: - fetch pin of city

SQL Generated: - SELECT city.pin FROM city;

Natural Language: - fetch id of city

SQL Generated: - SELECT manager.id FROM manager;

37

3. Fetch data using constraints

Natural Language: - Fetch id of manager with id less than 5

SQL Generated: -

SELECT manager.id FROM manager WHERE manager.id < '5';

Natural Language: - Fetch id of project with id equal to 5

SQL Generated: -

SELECT manager.id FROM manager WHERE manager.id < '5';

38

4. Using Aggregation to compute &fetch data

Natural Language: - Fetch sum of score all emp

SQL Generated: - SELECT SUM (emp.score) FROM emp;

Natural Language: - Fetch Count of score all emp

SQL Generated: - SELECT COUNT(emp.score) FROM emp;

39

5. Joining Multiple Tables

Natural Language: - CityName for emp

SQL Generated: - SELECT city.cityName FROM emp INNER JOIN city ON emp.cityId

= city.id;

Natural Language: - Get me cityName and score for emp with id = 2

SQL Generated: - SELECT city.cityName, emp.score FROM emp INNER JOIN city ON

emp.cityId = city.id WHERE emp.id = '2'

40

6. Like Operator

Natural Language: - Get me cityName and score for emp where name is like' %a'

SQL Generated: - SELECT city.cityName, emp.score FROM emp INNER JOIN city ON

emp.cityId = city.id WHERE emp.name = 'like %a';

Did not get accurate result as like operator was not working properly.

41

7. Fetch Data in Sorted

Natural Language: - get all names of emp order by name

SQL generated: - SELECT * FROM emp ORDER BY emp.name ASC;

Natural Language: - get all city name of city group by pin

SQL generated: - SELECT * FROM city GROUP BY city.pin;

42

8. Exception & error handling

Putting names of table which is not in our SQL dump file

Natural Language: - get all names of organization

SQL generated: - No query generated

Message given at time of computation , and message is given for every time system is not

able to handle unknown keywords.

Figure 15 Exception handling

43

9. Nested query generation

 These types of queries are not covered in the current system architecture

10. Synonyms matching with table name

 Synonyms contained in natural language of queries are not covered in the current

system architecture

44

Chapter 7: Modern Translators

As per growth in research of optimising the algorithm and techniques to improvise the NLP to SQl

translator modern translator will seems like as per my analysis of this work till now.

The modern translators should be able to overcome these challenges: -

Perceiving natural language: - The ability of system to perceive the intended meaning of question

which are ambiguous, diverse and random.

Generating/Decoding Complex Query: - Queries can be amalgamation of nested queries and

varying multiple conditions.

Reducing Irrelevant information: - Where Clause conditions on which rows are going to be

filter may or may not depend upon the previous, which needs to analyse more accurately.

Designing algorithm to incorporate heterogeneous database system which will increase the

scalability and adaptability of the system. Covering the synonyms of table column names to cover

the which might increase the accuracy.

After analysis of translators and dataset features, we decided to apply reinforcement learning and

transfer learning at classification layer to improve the efficiency and to train our model we propose

to use spider dataset because it have cross-domain text-to-query which covers almost all varying

combination of query formation with multiple conditions attributes with Observer which observe

for user to visualize and communicate with the system if step taken by system needs to be retract

its mistake.

Lexical analyser takes text as input and performs analysis and pre-processing using tokenization,

lemmatization, removing stop words making input clean for processing by system so that it can be

used by classifier to accurately identify cross-ponding query with the relevant tokens identified.

With help of observer will user will be able to visualize each step and correct any mistakes which

will help improvise the system to predict the correct query. Generated query then will be run on

stored database to fetch the result whose accuracy will be compared with the expert generated

query.

45

Types of queries which should be generated by translator are.

• SELECT operation with one column multiple columns and all columns.

• SELECT distinct on columns.

• Aggregate functions such as count-select, sum-select, avg-select, min-select, max-select

• JOIN inner join natural join

• WHERE clause with one condition multiple conditions with operators such as equal

operator,

• not equal operator, greater-than operator, less-than operator, like operator, between

operator (not 100% efficient)

• ORDER BY with ASC, DESC

• GROUP BY multiple queries

46

Chapter 8: Results

The result of NlP_to_SQL translator shows that it cans successfully generated SQL queries with

column names, from multiple tables, with single condition values and on join conditions in some

cases.

 The checklist of successfully generated queries are shown below:

S. No Use Cases Accuracy (%) Test Passed

1 Retrieving Table 100 Yes

2 Selecting columns from the

Table

80 Yes

3 Fetch data using constraints 70 Yes

4 Using Aggregation to compute

&fetch data

60 Yes

5 Joining Multiple Tables 70 Yes

6 Like operator 40 No

8 Exception & error handling 80 Yes

Table 4 Result

In terms of generating human generated query and NLP_to_SQL generated query the overall

accuracy is 62.5%.

This result can be improved in future few points were mentioned about it in Future work section

of my collusion of my thesis presnted there were few challenges encountered which I mentioned

in challenges section in upcoming section, and how we can improve the translator using modern

translator.

47

Conclusion

Performance of ONLI on standard test dataset have better performance with 83% which is best till

now among all systems compared. WikiSQL have large number of SQL queries and question set

which gives advantage while training the model, but the limitations of only one single table. Spider

table which is proposed covers cross domain a multiple table with varying combinations of queries

containing joins, having, etc. clauses. The feedback interactor improves and gives more control in

generating the accurate and efficient query.

The translator, I presented is simple to design which generates query based on natural language. It

exactly able to generate query which can fetch complete columns, selecting all the data, putting

constraints on the selected data to make data more relevant, using aggerate functions to calculate

and get overview of fetched data.

This system can also be configured to handle synonyms of table and column names, generated

multiple dependent complex queries.

48

Challenges

There are many points of improvement which can be improved, concerning the point of

functionality which will improve the accuracy and make system more efficiently.

The following points can be considered designing the efficient NLP to SQL translator: -

Perceiving natural language: - The ability of system to perceive the intended meaning of question

which are ambiguous, diverse and random.

Generating/Decoding Complex Query: - Queries can be amalgamation of nested queries and

varying multiple conditions.

Reducing Irrelevant information: - Where Clause conditions on which rows are going to be filter

may or may not depend upon the previous, which needs to analyze more accurately.

49

Future Work

The system can be enhanced by incorporating the below points:

To handle nested queries, recursive algorithm can be designed, which helps create independent

queries for condition clause to optimize the result.

 Algorithms can be optimizing by formulating multiple queries which cover the same intent of the

user semantic.

Designing algorithm to Incorporate heterogeneous database system which will increase the

scalability and adaptability of the system.

Covering the synonyms of table column names to cover the which might increase the accuracy.

Addressing the abbreviations in the system to increase the scope at which it can map to relational

database.

50

List of Publication

In area of natural language papers published

• “Role of Sentiment Lexicons in Sentiment Analysis and their Performance”

Proceedings of the 12 th INDIACom; INDIACom-2018; IEEE Conference ID: 42835

2018 5 th International Conference on “Computing for Sustainable Global Development”,

14th– 16th March 2018 Bharati Vidyapeeth Institute of Computer Applications and

Management (BVICAM), New Delhi (INDIA)

51

 References

1. P. Reis, N. Mamede, and J. Matias, "Edite - A Natural Language Interface to Databases:

a New Dimension for an Old Approach", Proceeding of the Fourth International

Conference on Information and Communication Technology in Tourism, Edinburgh,

Scotland, 1997.

2. Enikuomehin A.O, Okwufulueze D.O “An algorithm for solving natural language

query execution problems on relational databases” , Editorial Preface, 2012.

3. Benoˆıt Couderc, Ier'emy Ferrero. fr2sql: Querying databasesees en fran¸cais.

22`eme TAutomatic translation of Natural Languages, Jun 2015, Caen, Francid.

2015.

4. Amit Pagrut, Ishant Pakmode, Shambhoo Kariya, Vibhavari Kamble and Yashodhara

Haribhakta“AUTOMATED SQL QUERY GENERATOR BY UNDERSTANDING A

NATURAL LANGUAGE STATEMENT” International Journal on Natural Language

Computing (IJNLC) Vol.7, No.3, June 2018

5. P Yin, Z Lu, H Li, B Kao “Neural Enquirer: Learning to Query Tables in Natural

Language”, - 1512.00965, 2015

6. “NaLIR: An interactive natural language interface for querying relational databases”

V Jagadish, Hosagrahar, 2014/06/18 Proceedings of the ACM SIGMOD International

Conference on Management of Data.

7. Victor Zhong, Caiming Xiong, Richard Socher, “Seq2SQL: Generating Structured

Queries from Natural Language Using Reinforcement Learning”, 16 Feb 2018 ICLR

2018 Conference Blind Submission

8. “An algorithm to transform natural language into SQL queries for relational databases”

9. MA Paredes-Valverde, MÁ Rodríguez-García… “ONLI: an ontology-based system

for querying DBpedia using natural language paradigm “- Expert Systems with

Applications, 2015 – Elsevier.

52

10. learning, X Xu, C Liu, D Song “Sqlnet: Generating structured queries from natural

language without reinforcement” - 1711.04436, 2017

11. “Natural Language text to SQL query “ COEN-296 Natural language Processing.

Amey Baviskar, Akshay borse, Eric white, Umang shah, Winter Quarter 2017.

12. “An algorithm to transform natural language into SQL queries for relational databases

Garima Singh, Arun Solanki Selforganilogy 2016,3(3):100-116, 12 April 2016,

13. “Automated SQL Query Generator by Understanding a Natural language statement”

International journal on Natural Language Computing(IJNLC) Vol 7,No 3 June 2018.

14. fr2sql: Querying databases'ees en fran¸caisBenoˆıt Couderc, Ier'emy Ferrero,

TAutomatic translation of Natural languages, Jun 2015, Caen. Hal 01165914.

53

Appendices

Code for UI

54

Output Jason file

