

NAMED ENTITY RECOGNITION USING INDEPENDENTLY RECURRENT

NEURAL NETWORKS

A project report

Submitted as a Part of Major Project-2

Master of Technology in Information Systems

BY

MANI WADHWA

2K17/ISY/09

Under the Guidance of:

Ms. Ritu Agarwal

(Assistant Professor- Information Technology)

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

May-2019

//upload.wikimedia.org/wikipedia/en/b/b5/DTU,_Delhi_official_logo.png

DECLARATION

I, Mani Wadhwa, Roll No. 2K17/ISY/09 of M.Tech. Information Systems, hereby declare that

the project Dissertation titled “Named Entity Recognition using Independently Recurrent Neural

Networks” which is submitted by me to the Department of Information technology, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of the

degree of Master of Technology, is original and not copied from any source without proper

citation. This work has not previously formed the basis for the award of any Degree, Diploma

Associateship, Fellowship or other similar title or recognition.

Mani Wadhwa

2K17/ISY/09

i

CERTIFICATE

I hereby certify that the Major project report-2 titled “Named Entity Recognition using

Independently Recurrent Neural Networks” which is submitted by Mani Wadhwa, 2K17/ISY/09

in partial fulfillment of the requirement for the award of degree of Master of Technology, is a

record of the project work carried out by the students under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any degree or Diploma to this

University or elsewhere.

Ms. Ritu Agarwal

Assistant Professor

Project Guide

Department of Information Technology

Delhi Technological University

ii

ACKNOWLEDGEMENT

I am very thankful to Ms. Ritu Agarwal (Assistant Professor, Department of Information

Technology) and all the faculty members of the Department of Information Technology of DTU.

They all provided us with immense support and guidance for the project.

I would also like to express my gratitude to the university for providing us with the laboratories,

infrastructure, testing facilities and environment which allowed us to work without any

obstructions.

I would also like to appreciate the support provided to us by our lab assistants, seniors and our

peer group who aided us with all the knowledge they had regarding various topics.

 Mani Wadhwa

 Roll No. 2K17/ISY/09

iii

ABSTRACT

The task of Named Entity Recognition is one the Natural Language Processing applications. The

popular models to address the problem of understanding sequential data are LSTM and GRU.

These models not only improve upon the long term dependencies but provide a good

understanding of the context to predict tokens and their tags. However, gradient vanishing over

deeper and longer layers has been an issue with these state-of-the-art models as well. Hence,

IndRNN, which has recently been proposed as an alternative for sequential data processing has

been introduced in our approach. Its application on NER has still not been discovered. This

thesis work deals with the effectiveness of independently recurrent neural network on the task of

Named Entity Recognition. IndRNN provides independence within the layers which helps

improve the understanding of the functioning of the neural network. Also, each RNN is

connected to each RNN from another layer which provides the correlation between text that we

need.

iv

CONTENTS

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Contents v

List of Figures vi

Chapter 1. Introduction 1

Chapter 2. Related Work 3

Chapter 3. Recurrent Neural Network and its

variants

 3.1. RNN

 3.2. LSTM

 3.3. Bi-LSTM

 3.4. GRU

 3.5. IndRNN

5

5

7

10

10

13

Chapter 4. Proposed Work 16

Chapter 5. Results 19

Chapter 6. Conclusion 27

Chapter 7. References 28

LIST OF FIGURES

S.No. Name of the figure Page No.

1. NER approaches bifurcation 2

2. Demonstrating difference between RNN and normal feed-

forward network
5

3. Many forms of RNN 6

4. The repeating module in a standard RNN contains a single

layer.
8

5. Bi-directional LSTM network 10

6. Basic IndRNN architecture 15

7. Residual IndRNN architecture 16

8. Flowchart demonstrating proposed approach 18

vi

1

CHAPTER 1. INTRODUCTION

Named Entity Recognition (NER) refers to the extraction and classification of named

entities into various predefined classes such as name of the individual, organization,

places, dates etc. NER is particularly useful for when we wish to identify text related to

certain entity. Some of its use cases include classifying the news content, searching and

tagging the articles for keywords, assigning certain tasks to individuals according to place

and time e.g. delivery of couriers. Short messages which are posted on social media poses

a challenge in recognizing named entities as their language is informal and the data is

most of the times noisy. Tweets, present on social media site, Twitter, are being used in

this work. Tweets provide the information which is more up-to-date and freely

expressible as compared to news articles. However, tweet classification for NER is a

challenging task because of some reasons. One of them is the variety of named entities

(places, movies, individuals, organizations etc.) which are updated often and hence lack

the capability of being a source for good training data. Another shortcoming of tweets is

the word limit of 140 characters on Twitter. This poses a challenge in determining type of

an entity in lack of sufficient context. Hence various approaches have been proposed in

this field. These can be divided into three categories as shown in Fig.1. First approach is

classical one, for which NLTK package is available in python and can be used. It is a rule

based approach. Next are machine learning approaches. These are also of two types:

Classification based and Conditional Random Field (CRF) based. Classification approach

treats the problem of NER as a multi-class classification problem. Different classification

algorithms can be applied considering entities as labels. This method does not take into

account the context of a sentence where entity occurs. CRF is a machine learning model.

It is a statistics based model which can be used to label sequential data into various

categories. CRF models can get the information in the form of features from previous and

current labels, but not the upcoming or forward ones. CRF models are not very efficient

for NER because of this shortcoming as well as feature engineering that has to be done

prior. Finally, let‟s introduce the deep learning approaches (state-of-the-art) for NER.

Since NER is an application of Natural Language Processing (NLP), we are dealing with

2

sequential data and require context knowledge. For such an application, Recurrent Neural

Networks (RNNs) are best suited. RNNs are further improvised to form Long Short Term

Memory (LSTM) and Gated Recurrent Unit (GRU). Bidirectional LSTM has been used

extensively for NER. This is a two way LSTM where forward and backward context is

taken into account. Another alternative to LSTM is Gated Recurrent Unit (GRU). This is

relatively new but is more efficient than LSTM for certain tasks.

Fig.1. NER approaches bifurcation

Applications of NER

Nowadays, a variety of articles dealing with diverse range of topics are being published every

day. So, keeping track of each article and the subject that it deals with becomes quite imperative.

NER can actually be used to scan the complete article and find the major people, places and

organizations. When we know the important and frequent tags within an article, it helps to

categorize the article and eventually help us with better content organization and discovery. After

the tags have been derived using NER, searching also becomes easier in a huge amount of

content, dissolved down to certain important tags. One of the most effective usages of NER is

automating the recommendation process. Recommendation systems play an important role in

today‟s world, whether it is in entertainment, education, news or products. NER makes sure that

the viewer is being recommended the product or show with similar tags. It is also highly useful

in customer support systems. For example, name of the product and place where the complaint is

lodged may help redirect it to the right service center. Publications and journals hold thousands

of research papers. There can be many similar papers with slight modification and hence to

NER Approaches

Classical

approach

Machine Learning Deep learning

Classification-based CRF-based RNN-based

3

determine such papers, NER can be used. Clustering the papers on the basis of entities and

finding the relevant information is a task that can be solved using NER.

CHAPTER 2. RELATED WORK

The method of segmentation of tweets has been used for NER. In this work, tweets are

segmented into meaningful segments, where the preservation of semantics and context are being

done. NER can be done after this step using two ways, Random walk and Part Of Speech (POS)

tagger. Random walk method relies on co-occurence of named entities multiple times. Keeping

this observation, a segment graph is built. An edge signifies that two entities co-occur in tweets.

Jaccard coefficient has been used to calculate the weight of the edges. Finally the random-walk

model is applied to this formed segment graph. This method however is not very effective as the

length of tweets are small and co-occurrence rarely happens. Second method is POS tagger

which uses noun phrases as entities instead of individual words. So this noun phrase has a greater

probability to appear in different tweets. So, POS tags of a noun phrase determines their

likelihood.[1] Tweets are available in various languages. Hence, different techniques have been

used for different languages. One of the works in vietnamese suggested applying a preprocessing

operation of normalisation. This process handles spelling mistakes and noisy data like emotion

symbols. Then word segmentation takes place over clean data. POS tagging is then performed

over it[2] Another method of segmentation involves dividing the tweets into fragments with the

help of 2-gram algorithm. These fragments are then classified into universal context ones and

confined context ones. Then the POS tagger is used to identify named entities. Each tag is used

to identify words being present in tweets. All such words are used to identify the named

entities.[3] Most of the methods employed for NER are supervised learning methods. In such

methods, large amount of data is required for training an efficient classifier. One of the popular

techniques for NER is CRF, which again is a supervised learning method. These methods are

very well suited for well formed sentences, but twitter is a social networking site and sentences

are somewhat more natural. To overcome such limitations, a semi-supervised method has been

proposed, which is an extension of CRF. In this work, CRF is combined with a semi-supervised

method which relies on co-occurrence coefficient of words which are surrounded by proper

noun. Since lack of context information has been a challenge in the case of tweets, cosine

4

similarity has been used to cluster tweets which belong to some similar group.[4] Bi-directional

LSTM has been used in this work. It takes into account the forward and backward information

and hence proves to an efficient approach for NER. Experiments have been done in this approach

with preprocessing part. Word embeddings have been used alone. Then along with neighbour

word embeddings and finally with POS Tag.[5] The classifier for NER has been improved upon

in this work. NER is performed on a set of labeled data. It inculcates a combination of active

learning and self learning methods. Then finally the CRF model is applied in this approach as

well.[6] The dataset file is trained with CRF model of machine learning. CRF can be

implemented using CRFsuite in python. Some natural language features such as part of speech,

words before and following it, capitalisation were also considered while training in this work.[7]

NER approaches have a drawback of high dependency over hand crafted features as well as

domain knowledge. So, to overcome such shortcoming, methods have been proposed which do

not rely on hand crafted features. The technique can be used for both image and text.[8]

Convolution Neural Network (CNN) has been used along with LSTM to improve the efficiency

in the task of NER. First of all, every word is vectorised. The process of vectorisation is done by

concatenating word embeddings along with the character-level features that are being extracted

by CNN. Then finally the vector is fed to LSTM which is combined with CRF that does the task

of assignment.[9]

CHAPTER 3.RECURRENT NEURAL NETWORKS AND ITS VARIANTS

Recurrent Neural Networks are one of the most powerful neural networks to deal with the

sequential data. They have got the internal memory which helps them remember facts from past.

This is utterly important for NLP tasks. This is because when we try to learn or generate words

or a sentence, we take our previous knowledge into account rather than starting afresh everytime.

This is the case with RNNs, they take previous context into account. RNNs were actually

introduced earlier as other machine learning algorithms. But their effectiveness have now

reached its peak with a lot of computation power and resources available. Because of its internal

memory, it is able to precisely predict what is about to follow based on its previously read

context. That is why they are the preferable kind of algorithm for sequential data like speech,

5

text, audio, video etc. because they are able to form a level of understanding which other

algorithms fail to form.

CHAPTER 3.1. RECURRENT NEURAL NETWORK

Before we explain the working of RNNs, it is important to know the feed-forward networks. In

feed-forward networks, the movement of information only takes place in one direction, starting

from input layer, moving through hidden layers and towards the output layer. The information

once passed is not being touched by same node again. Since feed-forward networks have no

memory of their own, they are not good at predicting what is going to follow. Only the current

input is considered. Except training, feed forward networks remember nothing. In RNN,

information goes through a loop. Hence, while predicting, RNNs makes use of information read

so far as well as current information. Fig.2. demonstrates the difference between feed-forward

and recurrent neural networks.

Fig.2. Demonstrating difference between RNN and normal feed-forward network[10]

Usually RNNs have short-term memory. This limitation is solved by LSTM and GRU which will

be discussed later. So, for example if we have a word „hello‟, a normal feed-forward network, on

reaching „l‟ will forget about „h‟ and hence it becomes impossible for it to predict the next letter

or word. On the other hand, an RNN is able to remember that much and hence is useful for

predicting in the case of sequential data. It does this with the help of its internal memory. It first

produces the output, stores the output and feeds it back into the network. It has the ability to add

Recurrent Neural Network
Feed-forward Neural Network

6

the immediate seen text into present text. Therefore, precisely said RNN has two inputs, present

and past seen recently. This is an important property as a context always contains the information

of what is going to follow, this is the main reason why RNN can do things that other algorithms

cannot. A feed forward network assigns weights to the inputs in order to produce the output. But

RNN assigns weights to previous and current input. Also feed forward network network can map

each input to single output, whereas RNN has the capability to map inputs to outputs in many

ways i.e. one to many, many to many, many to one.

Fig.3. Many forms of RNN

Following are the sequence of equations for a RNN.

Given a sequence of input x= (, , ………) ,now the updation of the hidden state is

given by:

 (3.1.1)

one to one one to many many to one many to many

7

where is a nonlinear function which can be a sigmoid function. Also, there is an output

produced which may or may not be used for further computation, which is y = (, ,

………), which could be of variable length as well.

The update that happens in RNN hidden sate in eq.3.1.1. is practically implemented as:

 (3.1.2)

where g is a bounded function which can be tangent function of sigmoid function

Issues with RNN:

Exploding Gradient and Vanishing Gradient

The problem of exploding gradient occurs when an algorithm assigns high value to weights

during training. This causes the RNN to become unstable for learning from training data. At an

extreme case, values can become so large that it could either overflow or give NaN values. This

occurs essentially because of the reason that there is an exponential growth if we multiply

gradients by values greater than 1. Vanishing gradient has exactly the opposite case. The

algorithm assigns very low values to weights and hence the gradient becomes very small that it

tends to vanish. At an extreme case, the model might stop training as there is no further updating

of weights visible because of the vanishing gradient. This happens when the gradient becomes

less than 1 and keeps on decreasing further.

To solve these issues LSTM and GRU were being introduced. These two have been used

practically in many applications.

CHAPTER 3.2.LSTM (LONG SHORT TERM MEMORY)

One of the major advantages of RNN is that they can relate previous information to the present

one, such as previous context in sentence might be able to recognize what word is going to

follow. RNNs are supposed to do exactly this. But there is a catch in this. When there is a

condition of predicting the word on the basis of just read context, then RNNs can easily be

8

 applied. On the contrary, when there is a huge gap between the context and the word to be

predicted, the RNNs loses its effectiveness. For example, if we have a sentence such as Jack

went to the office. There were clouds in the sky and so on… and later we have to predict

„he/she‟. Then, RNN is unable to predict in the case of such long gap between context and

prediction. Long-term dependency is the problem with RNN. To overcome this shortcoming,

LSTMs were introduced[11] To remember things for a long period of time is a functionality of

LSTM, it is not something it has to work hard to achieve. All RNNs have a series of repeating

neural networks where each neural network is a simple structure, like a tanh layer.

Fig.4. The repeating module in a standard RNN contains a single layer.

LSTMs also have a series of neural networks, but it differs in the structure of the single neural

network that it has a complicated structure. It has four interacting layers in each repeating

module.

LSTMs have the ability to add or remove previous information to pass to next layers, by a

structure called „gates‟. Gates are a medium which optionally let the previous information flow.

It usually has two components, sigmoid neural network layer and a pointwise multiplication

operator. The role of sigmoid functions is to decide which information to pass by generating the

value between 0 and 1. A „0‟ value means let nothing pass and a „1‟ value lets everything pass of

a certain component. The core of LSTM comprises of cell state and it various gates. The cell

state is the component that acts as a highway and carries the information down to the sequences

of neural networks. This is actually the „memory component‟ of the network. The state of t

A A
tanh

Xt-1 Xt Xt+1

ht-1 ht Ht+1

1

9

he cell determines the information being carried. As it moves, information gets added or is being

removed to the state of the cell with the help of gates. These gates decide the part of information

that is to be kept and removed.

Formally, the formulas to update an LSTM unit at time „t‟ are:

it = σ(Wiht-1 + Uixt + bi) (3.2.1)

ft = σ(Wfht-1 + Ufxt + bf) (3.2.2)

c t = tanh(Wcht-1 + Ucxt + bc) (3.2.3)

ct = ft ⊙ ct-1 + it ⊙ c t (3.2.4)

ot = σ(Woht-1 + Uoxt + bo) (3.2.5)

ht = ot ⊙ tanh(ct) (3.2.6)

where,

xt: input vector (at time t)

σ: sigmoid-function

⊙: element-wise product

ht: stateful hidden state vector (at time t)

b*: bias vectors

U*: weight matrices of different gates of input xt

W*: weight matrices for hidden state ht

10

Chapter 3.3. Bi-LSTM

Since we have observed, that LSTM performs well when the dependencies are in the forward

direction. However, for the sequence labeling tasks, which require knowledge of both past and

future context, LSTMs might not give good results. Hence, bidirectional LSTM network for

NER has been introduced[12]. In vanilla LSTM, the information is only being retrieved from

past but in bi-LSTM the information not only comes from backward direction, but also from

forward direction. Then these two states are combined to form the final output[13]. Some

modifications can also be done to the model by setting the state to 0 while we begin a new

sentence and at the end of it.

Figure 5: Bi-directional LSTM network[14]

Chapter 3.4. GRU (Gated Recurrent Unit)[15]

The architecture of GRU is defined by given equations:

 (3.4.1)

 (3.4.2)

 ̃ (3.4.3)

 O B-MISC O

forward

backward

EU rejects German call

B-ORG

11

 ̃ (3.4.4)

 and are the vectors which corresponds to update gate and reset gate. For the current time t,

 represents the current state vector. Both of these gates have sigmoid activation function, σ(.).

 as well as take the value between 0 and 1. ̃ is the candidate state, and processed with tanh

function. is the input vector. , , are the recurrent weights and , , are the feed-

forward weight of connections. The biases which are , , have also been added.

The similarities between GRU and LSTM are pretty noticeable in the equations itself. The

addition when the update occurs from t to t+1 is a feature which is common in both LSTM and

GRU. This was not found in RNN, the contents of a particular unit is updated with the present

computations. On the other hand, the contents are added on top of current content in the case of

LSTM and GRU.

Because of this additive nature of LSTM and GRU, it is easy for them to remember some

important feature based on the value being passed by update gate and forget gate. Such feature is

not overwritten by present content. Also, the errors can be back-propagated without the issue of

vanishing gradient.

However, they have differences as well. The exposure difference is present in LSTM and GRU,

LSTM has a controlled exposure of the content passing through. The usage of memory by other

units is handled by output gate. On the other hand, GRU exposes all of its contents without

keeping any control over it. Dissimilarity lies in the positioning of the input gate or reset gate.

The new memory content is produced by LSTM, it does not have a separate hold on the previous

content generated. LSTM adds the memory content independent of the forget gate. But in the

case of GRU previous activations are being considered. It does have a control over the

activations as in the case of LSTM.

So, it is not very clear as to which one is better that the other. However, they do show different

results based on the task in hand. For our research, GRU has proven to given better results.

12

To solve the problem of vanishing gradient which prevails in a vanilla RNN, GRU has two gates,

update gate and reset gate. The information that has to be passed is to be decided by these two

gates. The advantage of these gates is that their training can be done to remember information for

a long time.

The update gate equation is given by:

 (3.4.1)

When which is input is given in the network, it is multiplied by the weight vector. Same is the

case with hidden layer vectors which holds all the information from t-1 units. Both the

multiplication results are being added together and activation function of sigmoid is being

applied, so that the output comes between 0 and 1. The functionality of the update gate is to

determine the amount of past information that need to be passed to the future. One of the

advantages of this is the ability of update gate to pass all the information through, without

removing anything and hence eliminate the problem of vanishing gradient.

As for the reset gate, it does the opposite of update gate, it decides upon which part of the

information to forget. The formula is given by:

 (3.4.2)

The formula is quite similar to that of the update gate. The difference lies in the weight factor

and the use of the reset gate. So, finally the equation which is used to calculate the memory

content is given by:

 ̃ (3.4.3)

Now after the multiplication part of weights and inputs, we will come to the element wise

product in the second term. That will determine the content to be removed. Then the sum up

operation takes place and finally tanh is applied over it.

At the last step, the information which has to be passed down, is being given by f

13

ollowing equation:

 ̃ (3.4.4)

These terms determine what has to be kept and what to be discarded.

CHAPTER 3.5. INDEPENDENTLY RECURRENT NEURAL NETWORK

RNNs and its variations have been used extensively in sequential data. RNNs have a famous

vanishing and exploding gradient problems. LSTM and GRU have tried their bit to get away

from the problem, but the usage of activation functions like sigmoid and tanh result in decay of

gradient with increased number of layers. Hence, a deep neural network is difficult to train which

has number of layers. Moreover, the entangled RNNs make the task of understanding the

network even more difficult. Hence, IndRNN is being proposed[16] where neurons which are

present on the same layer are independent of each other, but across layers they are connected.

IndRNN has been shown to prevent the gradient problem, allows long-term dependencies to be

learnt. Multiple such IndRNN can also be combined together to to form more deeper layers as

compared to vanilla RNN.

In the proposed work, a new variant of RNN, which is IndRNN is given, the inputs are being

handled using Hadamard product. This has its own advantages over traditional RNNs:-

To address the problem of vanishing and exploding gradients, the gradient backpropagation

through time can be regulated.

To process long sequences and preserve long term dependency, long term memory can be kept

with IndRNN. The proposed IndRNN can process over 5000 steps while LSTM process 1000

steps.

A non-saturated function like relu can also be used with IndRNN, which was not possible in

vanilla RNN. IndRNN can be trained robustly using this activation function.

Depth of the layers can be increased with stacking many IndRNN layers over one another.

14

Interpretation of IndRNN neurons‟ behavior is easier as neurons are independent of each other in

each layer.

The equation to define IndRNN is:

 ⊙ (3.5.1)

u is the weight vector and ⊙ is the Hadamard product.. Since we already know that multiple

Ind_RNN layers can be stacked on the top of each other, while being independent on its

corresponding layer. So, for the nth neuron, the hidden state can be derived using:

 () (3.5.2)

Where wn and un are the nth row of the input weight and recurrent weight. Information to each

neuron is supplied from iput and its own hidden state at the previous time stamp. Spatial-

temporal independence is present in the case of IndRNN. RNN is actually a multilayer

perceptrons. So, IndRNN provides an altogether a new perspective on RNN. Although neurons

are independent of each other, they still correlates with each other by communication among

layers. So in the case of IndRNN each neuron processes the outputs of all previous layer neurons.

IndRNN- deeper and longer architectures

The basic architecture of IndRNN has been shown in the figure. „weight‟ and „recurrent+relu‟

denotes the input processing and recurrent process at every step with activation function of relu.

By doing the stacking operation, a deep network can be constructed. As compared to LSTM

architecture, it solves the problem of gradient vanishing over layers with time. batch

normalization denoted as „BN‟ can also be implemented before and after the activation function.

Since the weight layer is the one that processes the input, it is only viable to extend it

over layers in order to form deeper layers. The structure of IndRNN is quite simple and hence

can be fitted in various architectures. In addition to stacking IndRNNs for input processing, they

can also be stacked in the form of residual connections. Fig also shows the same mechanism. At

each time stamp, identity mapping is used to propagate gradient to other layers. Also since it

solves the problem of vanishing and exploding gradient , gradient can also be easily propagated

over different time steps. This makes the network longer and deeper, which can also be trained

15

end to end.

Fig. 6. Basic IndRNN architecture[16]

Weight Weight

BN BN

Recurrent + ReLU Recurrent + ReLU

BN BN

16

Fig.7. Residual IndRNN architecture[16]

CHAPTER 4.THE PROPOSED WORK

Problem denotation:

The problem of Named Entity Recognition has long been solved with various traditional

methods like rule based ones and one which has gained the most popularity which is machine

learning based CRF. The greatest challenge for this task is to find the features that can represent

data well. Here the role of deep learning comes in. Our approach also makes use of deep learning

model with the help of IndRNN which make us get better results for NER task. RNN has

previously been used to process sequential data, but the problems of vanishing and exploding

gradient have always prevailed. Also the problem of long term dependencies could be solved by

IndRNN. Previously, LSTM and GRU has been employed to get away with the problems, but the

activation functions of sigmoid and tangent still lead to decay when many layers are concerned.

Therefore, a good deep learning network depends on a variety of factors. Also in the case of

BN

Recurrent +ReLU

Weight

BN

Recurrent +ReLU

Weight

BN

Recurrent +ReLU

Weight

BN

Recurrent +ReLU

Weight

17

LSTM and GRU, the neurons are pretty entangled together and difficult to interpret. Therefore,

for the task of NER, IndRNN has been proposed. Multiple IndRNN can also be stacked together

to given even deeper layers of training and eventually better results.

We present a novel approach of incorporating IndRNN for NER to deal with the problems being

faced by RNN, LSTM and GRU.

The steps are as follows:

1. First of all, data cleaning takes place which includes preprocessing the data for removing

irrelevant symbols and replacing tokens to remove Out Of Vocabulary words.

2. Preparation of dictionary takes place from the current vocabulary.

3. A bi-directional LSTM model is being applied on the data, and the results for various tags

are being evaluated, in terms of precision, F1 score and recall.

4. The LSTM cell is then replaced with IndRNN cell in the model, in the following way:

4.1. A forward cell, incorporated with IndRNN is being formed. To prevent over-fitting,

dropout wrapper has been applied over the cell.

4.2. A backward cell, again incorporated with IndRNN is being formed. Dropout is

applied on this cell as well.

4.3. Both the cells formed are then encapsulated into a single bidirectional RNN unit.

4.4. A dense layer is formed on the top of it, whose output can further directly be used in

the loss function.

4.5. To finally compute the predictions, softmax activation function is applied to the last

layer.

5. The parameters tuning is being done to get the best performance.

18

Fig.8. Flowchart demonstrating proposed approach

Tweets’ text/token pairs

Cleaning of data

Conversion to word embeddings Weights

IndRNN IndRNN IndRNN IndRNN

IndRNN IndRNN IndRNN IndRNN

Output

layer
Output

layer
Output

layer

Output

layer

Computing predictions

Transformation of indices to

tokens and tags

Compute loss

Optimisation

Forward

cell

Backward

cell

19

CHAPTER 5. RESULTS

Data set Used:

WNUT 2016

This dataset focuses on NLP which is applied to noisy user-generated data. This data can be

found in social media, clinical records, web forums, essays, online reviews[17]

Evaluation metrics:

Precision= true positive/(true positive + false positive) *100

Recall= true positive/ (true positive +false negative) *100

F1 score= 2*precision*recall/(precision + recall)

Training data Evaluation

Precision of training data

0

10

20

30

40

50

60

70

80

90

1 2 3 4

precision of train_data

20

Recall of training data

F1 score of Training data

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

recall of train_data

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

F1 of train_data

21

Validation data evaluation

Precision

Recall of validation data

0

10

20

30

40

50

60

1 2 3 4

precision of val_data

0

5

10

15

20

25

30

35

40

1 2 3 4

recall of val_data

22

F1 of validation data

Comparison of LSTM and Ind_RNN for NER

Precision

0

5

10

15

20

25

30

35

40

45

1 2 3 4

F1 of val_data

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

lstm_train_precision

Ind_rnn_train_precision

23

Recall

F1 score

0

20

40

60

80

100

120

LSTM_train_recall

Ind_rnn_train_recall

0

20

40

60

80

100

120

LSTM_train_F1

Ind_rnn_train_F1

24

Validation set comparison

Precision

Recall

0

10

20

30

40

50

60

70

80

Val_lstm_precison

val_ind_rnn_precision

0

10

20

30

40

50

60

val_lstm_recall

val_ind_rnn_recall

25

F1-score

Test set comparison

Precision

0

10

20

30

40

50

60

val_lstm_F1

val_ind_rnn_F1

0

10

20

30

40

50

60

70

80

Test_lstm_precision

Test_ind_rnn_precisio
n

26

Recall

F1-score

0

10

20

30

40

50

60

Test_lstm_recall

Test_ind_rnn_recall

0

10

20

30

40

50

60

70

Test_lstm_F1

Test_ind_rnn_F1

29

Final Results:

Technique used Precision Recall F1score

Bi-LSTM 46.89 37.42 41.62

Proposed 47.46 38.74 42.66

CHAPTER 6. CONCLUSION

This thesis work concludes with the fact that IndRNN can provide an improvement for NER task

over state-of-the-art Bi-LSTM model. The experiments have been done on Twitter dataset and

comparable result shave been derived. The evaluation metrics used are precision, recall and F1

score. NER is a sequential text processing task. Hence, LSTM and GRU have been used for it.

But with one other alternative present, we are able to prove that IndRNN can be effectively

applied for NER task which not only solves the problem of gradient vanishing over layers, but

also provides an independence of RNN within a layer. The connection between text and context

is being maintained by each RNN being connected to every other RNN in another layer. The

experimental results have been shown for all, training dataset, validation dataset as well as test

dataset.

30

CHAPTER 7. REFERENCES

[1] C. Li, A. Sun, J. Weng, and Q. He, “Tweet Segmentation and Its Application

to Named Entity Recognition,” vol. 27, no. 2, pp. 558–570, 2015.

[2] V. H. Nguyen, H. T. N. B, and V. Snasel, “Named Entity Recognition in

Vietnamese Tweets,” vol. 1, pp. 205–215, 2015.

[3] M. S. Powar, “Named Entity Recognition and Tweet Sentiment Derived

From Tweet Segmentation using Hadoop .,” pp. 194–198, 2017.

[4] V. C. Tran, D. Hwang, and J. J. Jung, “Semi-supervised Approach Based on

Co-occurrence Coefficient for Named Entity Recognition on Twitter,” pp.

141–146, 2015.

[5] V. Rachman, S. Savitri, F. Augustianti, and R. Mahendra, “Named Entity

Recognition on Indonesian Twitter,” 2017.

[6] V. C. Tran, N. T. Nguyen, H. Fujita, D. T. Hoang, and D. Hwang, “A

combination of active learning and self-learning for named entity recognition

on Twitter using conditional random Þelds,” Knowledge-Based Syst., 2017.

[7] M. S. Salleh, S. A. Asmai, H. Basiron, and S. Ahmad, “A Malay Named

Entity Recognition Using Conditional Random Fields,” vol. 0, no. 5th

International Conference on Information and Communication Technology

(ICoIC7), pp. 1–6, 2017.

[8] D. Esteves, R. Peres, and J. Lehmann, Named Entity Recognition in Twitter

Using Images and Text, vol. 3. Springer International Publishing, 2018.

[9] M. Khalifa and K. Shaalan, “Character Convolutions for Arabic Named

Entity Recognition with Long Short-Term Memory Networks,” Comput.

30

Speech Lang., 2019.

[10] “Recurrent Neural Networks and LSTM.” [Online]. Available:

https://towardsdatascience.com/recurrent-neural-networks-and-lstm-

4b601dd822a5.

[11] R. Cascade-correlation and N. S. Chunking, “LONG SHORT TERM

MEMORY,” vol. 9, no. 8, pp. 1–32, 1997.

[12] U. of T. Alex Graves , Abdel-rahman Mohamed and Geoffrey Hinton

Department of Computer Science, “SPEECH RECOGNITION WITH DEEP

RECURRENT NEURAL NETWORKS,” no. 6, pp. 6645–6649, 2013.

[13] X. Ma and E. Hovy, “End-to-end Sequence Labeling via Bi-directional

LSTM-CNNs-CRF,” pp. 1064–1074, 2016.

[14] V. Raaj, “Named Entity Recognition using Bi-directional Long Short-Term

Memory (Bi-LSTM).” [Online]. Available:

https://medium.com/@vivanraaj/named-entity-recognition-using-bi-

directional-long-short-term-memory-bi-lstm-ab54bbf7cc76.

[15] B. Van Merri and C. S. Fellow, “Learning Phrase Representations using

RNN Encoder – Decoder for Statistical Machine Translation,” pp. 1724–

1734, 2014.

[16] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently Recurrent Neural

Network (IndRNN): Building A Longer and Deeper RNN,” pp. 5457–5466,

2018.

[17] “2016 The 2nd Workshop on Noisy User-generated Text (W-NUT),” 2016.

[Online]. Available: http://noisy-text.github.io/2016/index.html.

30

