CHAPTER 1

INTRODUCTION

1.1  GENERAL

The demand for energy has increased due to industrialization,
urbanization and population growth. In order to meet the demand for energy,
Renewable Energy Sources (RES) are exploited because of its advantages such
as developed economic growth and sustainability etc. The generation of power
from such source of energy was observed to be 21.43% as on 28" Feb 2019.
However, it can rise exponentially so to meet the energy demand of the future.
Further, the advancement in solar photovoltaic (PV) technology which includes
the improved efficiency of solar cells, maintenance of minority carriers
lifetime, minimization of optical losses and reduced cost of energy generation
over last decades has attracted solar PV technology usage for generation of
power. In addition, the motive behind the growing deployment of solar PV
technology is diminishing the cost of photovoltaic systems given by the
government of various countries. For Indian climatic conditions, the theoretical
solar power has reached to around 5,000 trillion kWh/year and the daily
average solar energy varied from 4-7 kWh/m?/day where about 300 days in a
year are sunny and clear. Also, the sunshine hours observed is around
1,500-2,000 hours per year which is more than the current total energy
consumption. Hence, the conversion of solar energy into electricity for solar
photovoltaic systems can effectively be harnessed for power generation in

India [1-2].



The large-scale penetration of solar PV technology in the smart energy
management system has become a challenging task. The variation in power
output of solar PV system can lead to the unstable operation of the system. The
fluctuations in the output subsequently lower the capacity of PV generation.
Damage may arise in the stability of the utility grid and the power quality
because of the imbalance between the demand and supply. Many factors are
involved that affect the power generation such as climatic variations, solar
insolation, ambient temperature, solar panel temperature and topographical
position [3]. So, defining the output with the single model is a tedious task;
therefore, in this thesis, the output is modelled based on sky-conditions namely
clear sky, hazy sky, partially foggy/cloudy sky and fully foggy/cloudy sky-
conditions, as such factors make a significant impact on the solar photovoltaic
system power output. Simulations have been carried out for varied climatic
conditions thereof, such as warm and humid, hot and dry, cold and cloudy,

moderate and composite climate zone across India.

1.2 CURRENT SCENARIO OF RENEWABLE ENERGY SOURCES
IN INDIA

In 2018, the highest growth rate of energy resource has met by
renewable energy, which meets the quarters of the world’s energy demand. The
continuous growth in energy demand, depleting fossil fuels and emerging
economy makes mandatory to enhance the existing potential of renewable
energy for Indian power sector.

In India, as of 2005, government-funded and subsidized solar electricity
production is not less than approximately 6.4 MW per year which as compared

to other developing countries is more. India is ranked number one in terms of



solar electricity production per watt installed, with an solar insolation of

1,700-1,900 kWh/kWp. In 2010, 25.1 MW, of power was added and

approximately 468.30 MW, was added in year 2011.

As on 28" February 2019, India has achieved a total grid-interactive

capacity of 76,887.47 MW, through renewable energy generation. It consists of

the Wind Power capacity of 35,326.10 MW,, Solar Power capacity of

27,099.78 MW,, Bio Power (Biomass, Bagasse cogeneration and Waste-to-

power) capacity of 9,918.54 MW, and Small Hydro Power capacity of

4,543.05 MW,. Target and achievement for the year 2018-19 and cumulative

achievements as on 28" February 2019 are presented in Table 1.1 [4].

Table 1.1 Target and cumulative achievements of grid-interactive renewable power

FY 2018-19 .
Cumulative
Sector Achievement Achievements as on
Target (Apr - Feb 2019) 28.02.2019
MW, MW
( P) (MWp) ( p)
Solar Power 11,000.00 4,634.39 27,099.78
Wind Power 4,000.00 1,031.15 35,326.10
Small Hydro Power 250.00 46.65 4,543.05
Bio Power
(Biomass, Bagasse 352.00 416.63 9,918.54
cogeneration and
Waste-to-power)
Total 15,602.00 6,128.82 76,887.47




Renewable energy resources are being utilized by many for generation
of power. Table 1.2 shows the target and cumulative achievements of off-

grid/captive power renewable energy system source wise.

Table 1.2 Target and cumulative achievements of off-grid/captive power

FY 2018-19 Cumulative
Sector Target Achievement Achlgge(;gezngigas on
(Apr - Feb 2019) N
(MW,) (MW,) (MW,)
Waste to Energy 18.00 6.58 178.73
Biomass Gassifiers 1.00 0.00 163.37
SPV Systems 200.00 171.70 843.11
Total 219.00 178.28 1185.21

An increase in 6.3% power generation was noticed where Wind Power
contributes 46.99%, Solar Power contributes 33.71%, Small Hydro Power

contributes 6.04% and Bio Power contributes a total of 13.26% only as shown

in Fig. 1.1.
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Fig. 1.1 India’s RES installed capacity




As on 28"™ February 2019, the total installed power capacity from
different sources reaches 350 GW, approximately; in which, contribution from
other sources are Coal Power shows a major contribution with 54.57%, Large
Hydro Power of 12.97%, Renewable Energy Sources shows contribution of
21.43%, Gas with 7.12%, Oil shows contribution of only 0.18%, Lignite
contributing to 1.79% and Nuclear contributing to 1.94% as shown in Fig. 1.2.

Lignite
Oil  1.79%

Gas 0.18% Nuclear
7.12% . 1.94%

RES
21.43% Coal
54.57%
Large Hydro
12.97%

Fig. 1.2 Total installed power capacity in India as on 28" Feb 2019

In the present scenario, the total installed power capacity has reached
approximately 3,50,162 MW, as on 28" February 2019 where the Coal Power
shows the major contribution of installed power capacity of 1,91,093 MW,
Renewable Energy Source with installed power capacity of 74,082 MW,, Gas
with contribution of 24,937 MW,, Large Hydro Power contributing with
capacity of 45,399 MW,, Lignite contributing with capacity of 6,260 MW,
Nuclear with installed power capacity of 6,780 MW, and Oil which shows
contribution of installed power capacity of 638 MW, only as shown in

Table 1.3 [5].



Table 1.3 Total installed power capacity as on 28" Feb 2019

Source Total Installed Power Capacity Percentage Share
(MW,) (%)

RES 74,082 21.43%

Coal 1,91,093 54.57%

Gas 24,937 7.12%

Large Hydro 45,399 12.97%

Nuclear 6,780 1.94%

Lignite 6,260 1.79%

Oil 638 0.18%

Total 3,50,162 100%

Further, the Indian Govt. took initiatives for promoting RES electricity
generation. Among these one such scheme is the Electricity Act 2003 [6-7]
where the requirement of a license for stand-alone generation and distribution
system in rural areas has been removed. Furthermore, National Rural
Electrification Policy, 2005 and National Rural Electrification Policy, 2006
have been brought up for speeding up the process of rural electrification. The
New Tariff Policy makes it mandate for purchasing a minimum percentage of

energy from such sources [8-14].

1.3 INITIATIVES OF GOVERNMENT OF INDIA IN RESPECT OF
RENEWABLE ENERGY

Recently, in 2016, the formation of International Solar Alliance (ISA),
headquartered at National Institute of Solar Energy (NISE), Ministry of New

and Renewable Energy (MNRE), in India has emerged as one of the leading
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destinations for solar energy-based research and applications. More than 121
countries have participated and joined together in International Solar Alliance
for exploiting the solar energy potential and thereby reducing fossil fuels
dependency.

The Govt. of India has played an important role for promoting the
adoption of RES by providing attractive schemes and incentives namely
Generation Based Incentives (GBIs), viability gap funding, concessional
finance, capital interest subsidies and fiscal incentives etc. Further, the
Jawaharlal Nehru National Solar Mission (JNNSM) was launched with a target
of achieving 175 GW, of grid-interactive solar power by end of year 2022.
Major initiatives were taken from the Government of India such as solar roof-
top projects, solar parks, solar photovoltaic power plants, solar defence
schemes and solar pumps etc. [15].

Further, an effort has been made for the expansion of the monitoring
stations on high potential locations for solar PV applications. A total of 45
Indian  Meteorological Department (IMD) stations undertook the
measurements, but most of such locations are located either at airports or at
metropolitan cities etc. Therefore, the Indian Govt. has planned for expansion
of the monitoring station by installing an additional 51 Solar Radiation
Resource Assessment (SRRA) stations for producing the best quality radiation
data. These stations are expected to be located in areas of high potential
producing the best quality data throughout the country. This project further
envisages the addition of 60 meteorological stations across India and will
subsequently augment the existing network of monitoring stations as shown in

Fig. 1.3.


https://en.wikipedia.org/wiki/Fossil_fuel

Fig. 1.3 Solar radiation resource assessment stations across India

1.4  SOLAR ENERGY POTENTIAL AND ITS UTILIZATION

There is always an increase in the demand of energy specifically
electricity due to the growing population of the world. One of the major
contributions in the greenhouse gas emission arises from the burning of fossil

fuels which contributes to electricity production. So, there arises a need for
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clean form of energy i.e. renewable energy which can contribute to the energy
demand worldwide. Solar energy appears to be one of the most predictable and
foreseeable forms of renewable energy which has no greenhouse gas emissions
and also its natural flow is intense.

The utilization of solar energy resource for the generation of electricity
especially with the solar PV technology is gaining attention and plays a major
role in the global solar energy production. Since year 2000, industry based on
solar PV technology has grown by around 45% per year on an average. So,
after every 2-3 years, the installed global solar capacity has been doubling.
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Fig. 1.4 Solar PV global capacity in GW

Most of the places on earth receives sufficient amount of sunlight to
make solar photovoltaic technology a technically viable option when coupled
with other forms of energy storage such as batteries or the thermal storage. Fig.
1.4 presents the solar PV global capacity from year 2005 to 2018 [16].

The effective utilization of solar energy and other renewable energy
resources are considered based on the availability and capacity of source,

coherency between source and a user, low cost of energy conversion and



transmission and lastly, the steady performance of a source along with
ecological issues. These features along with other local conditions like
location, climate and longitude have made a remarkable impact in determining
the possibilities of applying solar energy and other renewable-based methods

for energy conversion.
15 CLIMATE ZONES IN INDIA

The climatic condition of India ranges from severely cold zone with
high altitude locations to extremely hot conditions. India’s climatic conditions
favour five different climate zones. The defined criteria for assigning location
to such climate zones depend on weather condition that prevails for a period of
six months or more. Based on this condition, Bansal and Minke [17] presented
the climate zone by evaluating the averaged mean monthly radiation data from
233 different meteorological sites/locations and made it possible to define five

distinct climatic zones across the entire country as shown in Table 1.4.

Table 1.4 Geographical features of Indian stations with distinct climate zone

Climate Latitudinal |Longitudinal| Ambient | Relative No. of
Z0ne Station extent extent temp. humidity | clear sky
CN) (’E) (C) (%) days
New Delhi This condition exists when six
Composite . ’ 28.61 77.2 months or more do not occur in any
Delhi - .
of the below-mentioned categories.
Hotand | Jodhpur, 26.28 73.02 >30 <55 >20
Dry Rajasthan
Warm and | Chennai,
Humid Tamil Nadu 13.08 80.27 >30 >55 <20
Moderate |- 1né 18.52 7385 | 25-30 <75 <20
Maharashtra
Coldand | Shillong,
Cloudy Meghalaya 25.56 91.88 <25 >55 <20
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1.6 MODELLING FOR SOLAR ENERGY ESTIMATION AND
FORECASTING

The availability of meteorological data plays a vital role in most of the
research-based applications. Because of non-availability of measured solar
radiation data, the utilities are facing problem in the financial evaluation of the
projects. For simulating the dynamic behaviour of solar energy systems, an
accurate measurement of solar radiation data plays an important role. Further,
the intelligent modelling techniques for forecasting solar energy play a
significant role in the designing and the development of solar energy
technologies. Wide-scale information regarding the availability of total solar
radiation at the site is needed for analysis of solar energy systems.

Many sensitive measuring systems have been installed at the
meteorological sites for measuring the solar radiation data and for monitoring
day to day recording. But it’s unfortunate that in most part of the India, the
availability of weather data is scarce, so it is of prime importance and a great
need to develop methodologies for weather data forecasting based on more

readily available meteorological data.
1.7 PROBLEM FORMULATION

The measurement and estimation of solar energy data is a difficult task
and such data are rarely available even for those stations where measurement
has already been done. Further, the PV power forecasting is an important
element for smart energy management system for the integration of
photovoltaic into low voltage grids. In the present scenario, the utilities are
developing the smart grid application across the world and the PV power

forecasting is one of the key tools for a new paradigm. The forecasting of solar
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energy during clear sky can be done simply with the help of mathematical and
regression models; however, forecasting under the influence of hazy sky,
cloudy and foggy sky conditions do not provide accurate results using these
models.

In this research, an attempt has been made to establish an intelligent
models for forecasting global solar energy based on sky-conditions i.e. sunny
sky (type-a), hazy sky (type-b), partially foggy/cloudy sky (type-c) and fully
foggy/cloudy sky (type-d) conditions and for distinct climate zones across
India covering widely changing climatic conditions thereof, such as warm and
humid, hot and dry, cold and cloudy, moderate and composite climate zone
respectively. Simulations have been carried out based on meteorological
parameters which correlates global solar energy with other available
parameters namely dew-point, ambient temperature, sunshine hours, relative
humidity, atmospheric pressure, dew point and wind speed. Further, the
comparisons of the proposed model have been done with developed empirical
models using multiple regression analysis with aid of statistical validation tests.

The obtained results are simulated for solar PV system.
1.8 ORGANIZATION OF THE THESIS

This thesis comprises eight chapters; the details of which are listed
below:
Chapter 1:  This chapter covers a brief introduction about the current
scenario of renewable energy status in India, initiatives being taken by the
Government, solar energy potential and its utilization and lastly, climate zones
across India. The scope of the work includes modelling techniques for solar

energy estimation and forecasting.
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Chapter 2: A brief literature review on mathematical and regression models
for solar energy estimation is given in this chapter. Further, a comprehensive
literature review on intelligent modelling techniques has been carried out and
recent research on short-term PV power forecasting is also presented. Based on
the detailed literature review, research gaps have been identified and presented

towards the end of the chapter.

Chapter 3:  In this chapter, sunshine-based models and empirical models
have been developed for estimating global solar energy for five meteorological
stations across India. An exercise has been carried out for selecting the most
suitable model based on principal component analysis. Eight statistical
indicators have been used for measuring the performance of the proposed
models. Further to check for accuracy of the proposed model, a comparison

has been carried out with well-established models discussed in the literature.

Chapter 4:  This chapter presented a model employing fuzzy logic approach
for forecasting global solar energy with aid of meteorological parameters based
on sky-conditions such as sunny sky (type-a), hazy sky (type-b), partially
foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions.
Simulations have been performed for distinct climatic conditions and the
performance evaluation has been done by using statistical error-tests. Further,
the comparison of the model has been made with the empirical model. The
obtained results are implemented for short-term PV power forecasting in solar

PV systems.

Chapter 5:  This chapter presents the variant of Artificial Neural Network
(ANN) architecture i.e. Cascade-Forward Neural Network (CFNN), Feed-
Forward Neural Network (FFNN), ElIman Neural Network (ENN), Generalized
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Regression Neural Network (GRNN), Layered Recurrent Neural Network
(LRNN), Linear Neural Network (LNN) and Radial Basis Function Neural
Network (RBFNN) for modelling the system to forecast global solar energy
using meteorological parameters under composite climatic conditions.
Simulations have been carried out by selecting the most suitable model using
evaluation indexes and further applied for different sky-conditions covering
widely changing climatic conditions across India. Further, the proposed models
based on sky-conditions are compared with fuzzy logic based model. The
obtained results are simulated for PV power forecasting under composite

climatic conditions.

Chapter 6:  In this chapter, a model underlying principle of Adaptive
Neural-Fuzzy Inference System (ANFIS) have been presented for forecasting
global solar energy based on sky-conditions with aid of meteorological
parameters and simulation have been carried out for five meteorological
stations across India. Further, the developed model has been implemented for

solar photovoltaic systems.

Chapter 7:  This chapter includes short-term solar energy forecasting in
solar PV applications. Intelligent modelling techniques have been employed
and obtained results reveal that the systems may be implemented for a broad

series of applications.

Chapter 8:  This chapter provides a summary of conclusions which has
been carried out based on the analysis of intelligent modelling techniques and
its implementation for solar photovoltaic applications. Some suggestions are

also presented for scope of future work in the thesis.
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CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, a brief literature survey of the previous work done has
been carried out, which includes mathematical models for estimating solar
energy, empirical models for estimating solar energy, fuzzy logic approach for
forecasting solar energy, solar energy assessment with aid of artificial neural
network and hybrid intelligent models for solar energy forecasting. Due to
limited space few recent research papers have been discussed in this chapter.
Based on the literature survey, the research gaps are analyzed and problems are
formulated accordingly.

22 MATHEMATICAL MODELS FOR ESTIMATING SOLAR
ENERGY

Model based on solar radiation ranges from mathematical models to
hybrid intelligent models. In the past, many mathematical models namely
Reference Evaluation of Solar Transmittance (REST), Modified Hottel’s, Code
for Physical Computation of Radiation, 2 bands (CPCR2), Reference
Evaluation of Solar Transmittance, 2 bands (REST2) etc. were developed for
estimation of global solar energy under cloudless-skies.

Rizwan et al. [18] proposed the REST2 and CPCR2 model for
estimating solar energy. Further, in this research REST2 model uses the two-
band scheme as used in CPCR2 model, which is an important parameter for

estimation of solar energy. It has been concluded from this research that the
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REST2 model performs better as compared to other well-established models
under cloudless sky for Indian climatic conditions.

Gueymard [19] presented REST2 and CPCR2 model in the estimation
of cloudless-sky illuminance, photo-synthetically active radiation and
broadband irradiance. In this research, it has been observed that the REST2
model appears to perform better than the CPCR2 model for estimating
illuminance, photo-synthetically active radiation and broadband irradiance.

Gueymard [20-21] proposed the performance of broadband direct
irradiance model. In this work, two models i.e. the transmittance models and
the bulk models were established for providing modelling of the broadband
transmittances. It has been concluded from this research that the transmittance
model performs better than the bulk models with aid of Linke’s turbidity

coefficient.

23 ESTIMATING SOLAR ENERGY USING REGRESSION
MODELLING

The mathematical models available in the literature are found
inaccurate, primarily due to extreme simplicity of parameterization; therefore,
empirical models based on multiple regression analysis are presented for
estimating global solar energy.

Angstrom [22] presented the first attempt for estimating global solar
radiation, well-established empirical relation between sunshine hours and
global solar radiation under clear sky conditions. Further, Page [23] and
Prescott [24] suggested replacing clear day solar radiation with extraterrestrial

solar radiation.
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Kirmani et al. [25] proposed model for estimating solar energy which is
based on Angstrom’s model. In this work, empirical models were established
based on multiple regression analysis with aid of meteorological parameters
namely ambient temperature, sunshine hour, wind speed, relative humidity and
rainfall. The performance of the model has been evaluated using statistical
indicators. It has been concluded from this research that the correlations based
on five meteorological parameters gave the best correlations.

Cenk et al. [26] proposed 105 literature models based on regression
modelling for estimation of global solar energy in the Turkey region and the
performance have been evaluated based on statistical validation tests. It has
been concluded from this research that the cubic models are suitable from
January-June period whereas quadratic models are suitable from July-
December period.

Most of the previous researches available in the literature have been
carried out for Middle East countries; however, very few models are available
that discussed about estimating solar energy for Indian climatic conditions.

Khalil and Aly [27] proposed empirical models for estimating global
solar energy using meteorological parameters such as sunshine hours, relative
humidity and ambient temperature for Saudi Arabia region with aid of
statistical error-tests. It has been concluded from this research that during
summer, maximum value of solar energy can be obtained while this value
diminishes during autumn and winter.

Awan et al. [28] proposed analysis of solar energy data and solar
photovoltaic systems output across the Kingdom of Saudi Arabia. In this work,

the pattern of solar resource and the solar photovoltaic system has been
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compared with the country load profile. It has been observed in this research
that during summer, Tabuk station performs best for the solar PV power plant
as the stress can be reduced by companies during the season of the high load by
cutting off the peak load in afternoon during summer season.

Teke and Yildirim [29] proposed linear, quadratic and cubic models for
estimating solar energy for Eastern Mediterranean Region (EMR) with aid of
meteorological data in the Turkish state metrological services. Further,
comparison between monthly models and general models has been performed
by using statistical error-tests. It has been observed in this research, that the use
of cubic general model has been recommended for EMR.

Liu et al. [30] investigated the performance of different site-dependent
models based on 15 solar radiation stations in the Tibetan Plateau and its
surrounding regions. A large variation in the coefficients has been observed in
this research among different site-dependent models over the Tibetan Plateau,
due to the great spatial difference in elevation and the climate characteristics. It
has been concluded from this research that the sunshine-based models have
better performance than temperature-based models for estimating solar energy.

Ihaddadene et al. [31] proposed six empirical models namely (i)
Hargreaves and Samani model, (ii) Chen model, (iii) Bristow and Campbell
model, (iv) Li 1 model, (v) Li 2 model and (vi) Okonkwo model for estimating
global solar energy from ambient temperature for the city of Djelfa (Algeria). It
has been observed from this research, after performing the statistical analysis,
that the Li 2 model perform best and has been verified for Biskra and Ghardaia.

Bahel et al. [32] proposed model based on Angstrom correlation for

estimation of global solar energy. In this work, the correlations defined
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between global solar energy and sunshine hours provide favourable estimates.
Further, the proposed model has been compared with Rietveld’s model and
results obtained give better estimates than other correlations.

Abdalla [33] proposed model for measurements of global solar energy
with sunshine hours, relative humidity, maximum temperature, sea level
pressure and vapour pressure. It has been observed in this research that the
proposed model provides an excellent agreement between the measured and
estimated data and recommended to be used for the city of Bahrain.

Akinoglu and Ecevit [34] presented a quadratic model for estimating
monthly average global solar radiation. In this work, the developed correlations
have been compared with Rietveld, Benson et al., Ogelman et al. and recent
formulation by Gopinathan model. It has been concluded from this research
that the quadratic model provides better performance in terms of global
applicability and should be preferred for estimation of global solar radiation
when the data related to bright sunshine hours are available.

In all of the above discussed models, estimation of global solar energy
have been done using meteorological parameters; however, no recent finding is
reported that uses dew-point along with other known available meteorological
parameters like atmospheric pressure, amount of rainfall, ambient temperature,
sunshine hours, relative humidity, wind speed and cloudiness index for
estimating global solar energy and for widely changing climatic conditions i.e.
warm and humid, hot and dry, cold and cloudy, moderate and composite
climate conditions. Hence, a clear scope exists for developing model which can
measure the impact of additional meteorological parameters on global solar

energy and for distinct climate zones across India.
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24 FUZZY LOGIC APPROACH FOR SOLAR ENERGY
FORECASTING

The regression models developed so far for assessing solar energy were
available for clear sky-conditions; however, such models are unsuitable for
estimating global solar energy during cloudy sky conditions. Presence of
moisture, dust, clouds and aerosols in the lower atmospheric region causes
uncertainty in the atmosphere. The reduction in extraterrestrial solar radiation
occurs due to the external atmosphere which varies from 30% in a clear sky
condition to 100% in a cloudy/foggy sky condition. For Indian climatic
conditions where about 50-100 days are cloudy, accurately estimating global
solar energy based on multiple regression analysis is a tedious task. Therefore,
intelligent modelling techniques have been introduced for forecasting global
solar energy.

The fuzzy logic models are introduced wherein probabilistic approaches
do not give a realistic description of the phenomenon. Most of the previous
researches investigated the fuzzy logic model for forecasting solar energy and
its application in the field of the renewable energy system.

Sen [35] proposed a fuzzy logic based model using duration of sunshine
hours for estimation of global solar energy. In this work, fuzzy logic modelling
has been employed for solar energy forecasting using duration of sunshine
hours. Further, the fuzzy logic algorithm has been used which has the ability to
explain knowledge in a human-like manner in the form of rules with aid of
linguistic variables only.

Suganthi et al. [36] presented an application of fuzzy logic modelling

for renewable energy systems such as wind, solar, bio-energy, hybrid systems
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and micro-grid. In this research, fuzzy logic based models has been widely
used for site assessment, for solar PV system installation, optimization and
Maximum Power Point Tracking (MPPT) algorithm for solar photovoltaic
systems.

Saez et al. [37] proposed Energy Management System (EMS) technique
in determining the generation units dispatch which is optimizer-based requiring
the estimation of solar energy resources and loads. In this research, system
based on forecasting techniques includes a representation of the uncertainties
connected with solar energy resources and loads generating fuzzy models
incorporating uncertainty representation of future predictions.

Recently, Perveen et al. [38] proposed a model based on fuzzy logic
modelling in forecasting solar energy with aid of different meteorological
parameters based on sky-conditions for distinct climate zones across India. It
has been observed in this research that with the inclusion of dew point as a
meteorological parameter the accuracy of the proposed model has significantly

increased.
2.5 SOLAR ENERGY ASSESSMENT USING ANN

For complex systems with large data sets, maintaining accuracy using
fuzzy logic modelling would be a tedious task. Therefore, Artificial Neural
Network (ANN) based models are introduced, employing artificial intelligence
techniques which can subsequently perform the structure simulation. The ANN
model is ideal for modelling a non-linear, dynamic and complex system.

Kaushika et al. [39] proposed ANN model based on using diffuse,
global and Direct Normal Irradiance (DNI). In this research, the algorithm

includes diffuse, global and DNI estimation in a clear/sunny sky-conditions.
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Further, the clearness index which corresponds to diffuse, direct and global
solar energy are thereby mapped with weather data namely sunshine hour,
rainfall and relative humidity in the analysis of ANN. It has been concluded
from this research, that the proposed ANN model provides excellent
compatibility.

Yadav and Chandel [40] proposed an ANN-based model for estimation
of solar energy. It has been concluded from this research, that the ANN-based
models provides more accuracy than the conventional methods after
performing the review of artificial neural network based modelling techniques
for identifying methods available for estimating global solar energy.

Chang et al. [41] proposed Radial Basis Function Neural Network
(RBFNN) model for short-term photovoltaic (PV) power forecasting wherein
24 hour of input data at 10-min resolution have been considered for training the
proposed neural network. Further, the proposed RBFNN model has been
compared with other ANN-based models. It has been concluded from this
research that the RBFNN model is more accurate than other models.

Jamil and Zeeshan [42] proposed ANN application for forecasting wind
speed in Guijarat, India. Further, in this work, ANN model has been used to
forecast wind speed with aid of data measured to train and test the given
information. It has been concluded from this research that the ANN modelling
techniques are better than the conventional forecasting methods.

Khosravi et al. [43] proposed three model of machine learning
algorithms which has been implemented to predict wind direction, wind speed
and wind turbine power. In this work, Support Vector Regression-Radial Basis

Function (SVR-RBF) represents the first model, Multi-Layered Feed-Forward
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Neural Network (MLFFNN) data training with distinct training algorithms
represents the second model, and Adaptive Neural-Fuzzy Inference System-
Particle Swarm Optimization (ANFIS-PSO) represents the third model. In this,
a large data set of wind speed and direction are measured in duration of 5, 10,
30-min and 1-hour intervals efficiently used for estimating wind speed for
Bushehr. It has been concluded from this research that the SVR-RBF model

outperforms MLFFNN and ANFIS-PSO models.
2.6  ANFIS-BASED MODEL FOR SOLAR ENERGY FORECASTING

Detailed literature review reveals that for estimation of complex
functions, an accurate analysis of a number of neurons and hidden layers with
aid of ANN is a difficult task as they are large in number. Also, large training
time is involved in such a neural network, which subsequently slows down the
response of the system. Existing neural network model does the summation
operation, however, it does not perform the operation based on the product of
weighted inputs. Therefore, hybrid intelligent models are introduced for
forecasting solar energy which is a fusion of artificial neural network and fuzzy
logic approach for forecasting global solar energy. Many researchers have
investigated the integrated features of Adaptive Neural-Fuzzy Inference
System (ANFIS) in forecasting global solar energy and its application in wind
power forecasting.

Kumar and Kalavathi [44] proposed ANN and ANFIS based model for
predicting the PV generation. In this research, the proposed model is validated
and compared with the data set of the photovoltaic power generating station. A
proposed model is developed and simulated in MATLAB for evaluating the

performance of the system.
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Walia et al. [45] proposed the basic architecture underlying the
principle of ANFIS which is implemented within the adaptive networks
framework. In this research, with input and output data, the proposed
architecture of ANFIS construct mapping based on human knowledge and
hybrid learning algorithm. The result of simulation shows that the ANFIS
based model has been used for modelling nonlinear functions.

Jang [46] have presented an ANN application for forecasting wind
speed in architecture underlying the principle of ANFIS which is implemented
within the framework of adaptive networks. It has been concluded from this
research, that the proposed ANFIS model can construct an input-output
mapping based on stipulated data pairs.

Zheng et al. [47] proposed a double stage hierarchical ANFIS approach
for short-term wind power estimation in China. In this research, the ANFIS
approach has two stages wherein the first ANFIS stage makes use of Numerical
Weather Prediction (NWP) for forecasting wind speed at the region and the
second stage models the relation between wind speed and power. Further, the
influence of input data on prediction accuracy has been analyzed by dividing
the input data sets into five subsets. It has been concluded from this research
that the ANFIS approach resulted in significant forecasting accuracy
enhancements.

A hybrid methodology for short-term power forecasting has been
proposed using ANFIS by Liu et al. [48]. In this research, individual
forecasting models are presented such as back-propagation neural network,

least squares support vector machines and radial basis function neural network.
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It has been concluded from this research that the proposed hybrid methodology
based on ANFIS provides a significant improvement in accuracy.

2.7 IMPLEMENTATION OF SOLAR ENERGY FORECASTING IN
SOLAR PV SYSTEMS

In the present scenario, the market for renewable energy is huge and
most of the green technologies are in operation by making use of solar energy
either directly or indirectly. Solar PV technology has showed a significant
growth around the world as many projects are in pipeline which shares the
production of electricity. Solar PV technology generate electricity directly as
they make use of photovoltaic effect and directly convert the sun’s energy into
electricity. The electricity is then transferred to the grid as Alternating Current
(AC) and with the required value of voltage.

In this research, Multi-crystalline solar PV modules and Heterojunction
with Intrinsic Thin (HIT) layer solar PV modules have been employed for
short-term PV power forecasting operated at Maximum Power Point Tracking
(MPPT) conditions under composite climatic conditions. The solar PV power
forecasting is an important element for smart grid approach which helps in
optimization of the smart energy management system and has the ability to
integrate the renewable power generation in an efficient manner. Since the
power generating from solar energy resource is fluctuating and non-linear in
nature, it becomes very difficult to estimate power output with mathematical
models; therefore, intelligent approaches based on fuzzy logic, ANN and
ANFIS based models have been presented for power forecasting of solar PV

system employing multi-crystalline and HIT solar PV modules.
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Last few years have seen tremendous growth in the field of renewable
power generation especially in the field of solar energy which employs PV
system comprising a number of solar cells. Its advantages include minimization
of greenhouse gas emissions and simple scalability while disadvantage is that
the power output diminishes due to dust, clouds and other obstructions in the
atmosphere. Therefore, intelligent modelling techniques have been introduced
to accurately forecast the power generation in solar PV system based on sky-
conditions.

Mosa et al. [49] proposed an efficient Maximum Power Point Tracking
(MPPT) of solar photovoltaic systems using Model Predictive Control (MPC)
methodology which is applied to a DC to DC converter. In this research, MPC
controller has been combined with Incremental Conductance (INC) method
improving the speed of the controller that track incident solar energy and the
result obtained in this research shows an increased photovoltaic system overall
efficiency.

Mehrabankhomartash et al. [50] presented the optimal battery system in
a solar photovoltaic power plant which is installed in building situated in Iran.
In this research, the sizing of battery lies on financial evaluation considering
the damage costs which arises because of outages which abuilding is facing in
photovoltaic system life spam. In this research, the sizing of battery has been
explained by the Monte-Carlo simulation method and this research confirms
the advantage of the proposed approach with the conventional ones.

Chen et al. [51] presented an advanced statistical method for solar
power forecasting based on artificial intelligence techniques which used power

measurements and meteorological forecasts of solar irradiance, relative
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humidity and temperature as input. The developed model is helpful in
operational planning for transmission system operator and for PV power
system operators trading in electricity market.

Mahmoudi et al. [52] proposed an MPPT method which is based on the
theory of Finite Control Set-Model Predictive Control (FCS-MPC) for solar PV
systems. In this research, the photovoltaic current and power data is measured
from former steps to estimate power for the next step which corresponds to
power converter switching configurations. It has been concluded in this
research that the proposed method performs better than Perturb and Observe
(P&O) method.

Shi et al. [53] proposed method for forecasting PV system power output
which is based on Support Vector Machine (SVM) and weather classification
for different sky conditions. In this research, a day-ahead photovoltaic power
output forecasting model has been used which is based on actual power and
weather forecasting data as well as SVM principle. It has been concluded from
this research that the model appears to be effective and promising for grid-
connected solar PV systems.

Abushaiba et al. [54] proposed an MPPT method for solar PV
applications. In this research, the concept of Model predictive Control (MPC)
has been used where this method treats the solar PV module as the plant and
uses the behaviour of the module for maximum power point tracking
conditions.

Yang et al. [55] proposed PV power forecasting in Energy management
System (EMS) for distributed energy resources. In this research, weather-based

hybrid method has been presented for one day ahead PV power forecasting. It
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comprises classification, training and the forecasting stages. The Self-
Organizing Map (SOM) and Learning Vector Quantization (LVQ) networks
have been used in the classification stage which is used to classify photovoltaic
power; Support Vector Regression (SVR) has been used in the training stage to
train the input and output data for temperature, probability of precipitation, and
solar energy. Lastly, the fuzzy inference method has been used in the
forecasting stage to select a trained model for accurately forecasting solar
energy. It has been concluded from this research that the proposed model
provides better accuracy than the SVR and traditional ANN methods.
Riffonneau et al. [56] proposed a power management mechanism for
grid-interacted PV systems so to help photovoltaic generation to grid by
proposing peak shaving service in a lower cost. In this research, simulations
and real condition applications have been carried out wherein peak shaving has
been observed with minimal cost, but the grid power fluctuations have been

minimized with photovoltaic penetration to the grid.
2.8 KNOWLEDGE GAP ANALYSIS

This section summarizes the research gaps analyzed from the literature
survey discussed in the previous sections.

Empirical model for estimating global solar energy:

After carrying out a detailed literature survey on modelling techniques,
it has been identified that most of the empirical models available in the
literature for forecasting global solar energy were based on using
meteorological parameters like duration of sunshine hours, ambient
temperature, wind speed and others; however, very few literature have

elucidated about using atmospheric pressure, amount of rainfall and cloudiness
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index in addition to other known available meteorological parameters. Further,
most of the models have been developed for Middle East countries; however,
solar energy forecasting for Indian climatic conditions have been less reported
in the literature.

Therefore, sunshine-based models with linear and non-linear
correlations and empirical models have been established to estimate solar
energy for Indian climatic conditions. Meteorological parameters include
sunshine hours, global solar energy, ambient temperature, relative humidity,
wind speed, atmospheric pressure, amount of rainfall and cloudiness index for
distinct climate zone across India. The results obtained have been evaluated
based on statistical indicators like Mean Percentage Error (MPE), Mean Bias
Error (MBE), Root Mean Square Error (RMSE), t-stat method, Sum of the
Square of the Relative Error (SSRE), Relative Standard Error (RSE),
Correlation Coefficient (r) and Coefficient of Determination (R?). It has been
concluded based on the results obtained by statistical analysis, that the
meteorological parameters considered do have a strong influence on estimating

global solar energy.
Intelligent models for forecasting solar energy:

Based on the exhaustive literature review on the intelligent modelling
techniques, it has been observed that the forecasting of solar energy during
clear sky can be done simply with the help of mathematical and regression
models; however, forecasting under the influence of cloudy sky conditions do
not provide accurate results using these mathematical models.

Therefore, in the present research, an attempt has been made to develop

intelligent models employing fuzzy logic approach, ANN and ANFIS
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modelling for forecasting global solar energy based on variation in sky-
conditions defined as clear sky (type-a), hazy sky (type-b), partially
foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions and
for distinct climate zones i.e. warm and humid, hot and dry, cold and cloudy,
composite and moderate climate zone. Further, the comparisons of the
proposed intelligent models have been carried out with empirical models using
statistical error-tests. The result obtained by employing ANFIS-based model

provides more accuracy than the ANN and fuzzy logic based model.
Solar energy forecasting applications for solar PV system:

Short term solar energy forecasting models such as hourly, weekly are
available in the literature but 10 minutes ahead solar energy forecasting less
reported in the literature using intelligent methodologies such as fuzzy logic,
ANN and ANFIS [57]. This chapter deals with the short-term solar energy
forecasting in a solar PV system. In the present scenario, the bidding of power
has been done on 10 minutes basis by many distribution companies. Keeping in
mind aforesaid, 10 minutes ahead forecasting has been done and presented.
Therefore, an intelligent approach have been developed and applied for short
term solar energy forecasting problem in solar PV system under composite

climatic conditions.
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CHAPTER 3

EMPIRICAL MODELS FOR ESTIMATING
SOLAR ENERGY

3.1 INTRODUCTION

Based on the literature review in the previous chapter, it is observed
that for the development of solar devices, it is essential to develop model that
can estimate solar energy based on more readily available data with reasonable
accuracy. In this chapter, sunshine-based models with linear and non-linear
correlations have been established to estimate solar energy for different
climatic conditions. Further, empirical models have been established using
multiple regression analysis that correlates global solar energy with other
meteorological parameters namely relative humidity, sunshine hours, wind
speed, atmospheric pressure, rainfall and cloudiness index to estimate global
solar energy and applied for distinct climate zone across India. Simulations
have been carried out using statistical error-tests. Further, principal component
analysis has been performed to select the most suitable model based on the
closeness parameter. Lastly, the comparison has been made with the well-

established models available in the literature.

This chapter is based on the following published papers:

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Development of empirical models for
forecasting global solar energy,” Proceedings of 2™ IEEE International Conference
on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2018),
October 22-24, 2018, Delhi Technological University, Delhi, India.

2. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Correlations for forecasting global
solar radiation using meteorological parameters,” Proceedings of IEEE 41° National
Systems Conference (NSC) 2017 on Super-Intelligent Machines and Man,
December 1-3, pp. 49-57, 2017, Dayalbagh Educational Institute, Agra, India.
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3.2 METEOROLOGICAL DATA

In this chapter, the long-term measured, 15 years averaged data have
been obtained from National Institute of Solar Energy (NISE) and Indian
Meteorological Department (IMD). The input parameters include sunshine
duration, ambient temperature, wind speed, relative humidity, atmospheric
pressure, amount of rainfall and cloudiness index whereas global solar energy
is the output parameter and obtained for five meteorological sites with distinct
climatic conditions across India and are presented in Table 3.1 - Table 3.5 [58].

3.3 EMPIRICAL CORRELATIONS FOR ESTIMATING SOLAR
ENERGY

This chapter deals with establishing correlations using multiple
regression analysis for estimating global solar energy with aid of
meteorological parameters for five distinct climate zones across India. The

estimated value of global solar energy Hq can be obtained on multiplication of

the estimated clearness index (%) by H,, where Hq represents the measured

global solar energy and H, represents an extraterrestrial solar radiation which
can be calculated using standard geometric procedures and are later presented
through Eq. (3.11) — Eqg. (3.14). In equation with one parameter, the linear
regression analysis can be obtained by Eqg. (3.1) as:

y =a + bx, (3.1)

Since there is increase in the number of parameters so the equation with
multiple regression analysis can be obtained from Eq. (3.2) as:

y=a+bx;+ cXp+ dxz+ exs + fXs +...+ nXy, (3.2)
where a,b,c,d,ef.....n are the regression coefficients; and X, Xi, Xz, X3, Xs,

Xs.....Xn represents the correlated parameters.
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Table 3.1 Meteorological data for warm and humid climate zone

Clearness Relative Ambient Relati At heri Cloudiness

Months In:ex Sunshine Temrge:(::ure Huen?icli\i/tey Rainfall Wilzd ?ﬁ eed szzSure; ’ Index
@ @ e M | e e TR (s

Jan 0.50 0.79 25.46 71.32 0.03 8.22 1012.84 0.44
Feb 0.54 0.84 26.61 76.29 0.09 9.06 1009.74 0.34
Mar 0.55 0.76 27.84 73.75 0.00 6.98 1008.99 0.32
Apr 0.52 0.76 30.53 71.26 0.00 8.78 1019.08 0.35
May 0.49 0.70 3171 67.14 9.46 7.49 1033.84 0.40
Jun 0.46 0.58 30.73 64.04 0.57 8.48 1013.19 0.51
Jul 0.40 0.49 30.53 62.25 0.51 10.04 1014.78 0.79
Aug 0.41 0.38 29.07 71.30 1.55 8.85 1003.74 0.64
Sep 0.44 0.51 29.10 79.09 2.13 8.41 1014.47 0.53
Oct 0.43 0.56 27.75 80.06 1.39 6.25 1009.47 0.52
Nov 0.42 0.51 25.64 83.73 141 11.58 1011.95 0.59
Dec 0.41 0.63 26.09 78.13 0.31 9.49 1012.08 0.58
Avg. 0.46 0.63 28.42 73.20 145 8.64 1013.68 0.50
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Table 3.2 Meteorological data for hot and dry climate zone

Clearness Relative Ammbi Relati A heri Cloudiness

Months Index Sunshine Temr;ell’zrt]ltjre Hjn?itcll\i/:y Rainfall Wilzd ?ﬁ eed tFr’]:Z?s)ufer ¢ Index
@ | @ | e Mt | e | e TR ()

Jan 0.60 0.87 18.09 45.33 6.37 0.06 991.99 0.26
Feb 0.60 0.87 19.87 41.86 6.12 0.00 987.13 0.25
Mar 0.57 0.77 26.12 30.91 7.74 0.03 1009.11 0.29
Apr 0.52 0.78 32.91 23.98 5.70 0.02 979.69 0.35
May 0.53 0.77 34.88 35.82 8.65 0.05 978.01 0.30
Jun 0.47 0.66 33.52 45.91 14.04 0.10 974.44 0.50
Jul 0.38 0.60 31.52 60.78 14.00 0.27 974.42 0.60
Aug 0.43 0.63 31.44 62.33 5.99 0.97 976.47 0.51
Sep 0.56 0.80 29.70 59.59 6.75 0.15 980.46 0.24
Oct 0.58 0.86 28.46 42.03 4.38 0.00 993.23 0.25
Nov 0.61 0.87 22.08 42.01 3.30 0.00 988.79 0.21
Dec 0.57 0.82 18.64 48.58 3.21 0.00 991.78 0.30
Avg. 0.54 0.78 27.27 44.93 7.19 0.14 985.46 0.34
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Table 3.3 Meteorological data for composite climate zone

Clearness Relative Ambient Relati At heri Cloudiness

Months Index Sunshine Temrge:(::ure Huen?icli\i/tey Rainfall Wilzd ?ﬁ eed szzSure; ’ Index
@ | @ TR R e | e T @
Jan 0.39 0.75 14.11 65.48 5.15 0.17 990.03 0.39
Feb 0.38 0.72 18.64 59.49 7.71 0.43 986.33 0.38
Mar 0.55 0.74 22.73 53.30 7.34 0.02 983.27 0.25
Apr 0.56 0.72 30.03 36.19 8.42 0.08 979.30 0.22
May 0.49 0.62 34.14 34.30 9.52 0.03 976.22 0.22
Jun 0.41 0.72 33.40 52.56 10.59 0.28 972.74 0.27
Jul 0.39 0.66 30.48 70.64 10.40 0.31 984.73 0.28
Aug 0.40 0.51 29.14 79.36 9.57 0.82 974.82 0.31
Sep 0.34 0.32 29.73 69.28 9.43 0.43 979.55 0.40
Oct 0.55 0.42 26.18 64.52 6.34 0.00 983.97 0.29
Nov 0.54 0.52 20.92 49.80 6.53 0.00 986.67 0.37
Dec 0.50 0.85 16.00 65.68 5.93 0.00 991.57 0.46
Avg. 0.46 0.63 25.46 58.38 8.08 0.21 082.43 0.32
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Table 3.4 Meteorological data for moderate climate zone

Clearness Relative Ambient Relati At heri Cloudiness

Months Index Sunshine Temr;ell’zrt]ure Hjn?icll\i/:y Rainfall Wilzd ?ﬁ eed Fr’]:(;zsufer ¢ Index
(%) (2) () (%) (mm) (Fm/h) (hPa) ()

Jan 0.54 0.74 19.78 59.88 1.49 0.00 982.92 0.31
Feb 0.53 0.90 23.18 48.82 5.34 0.00 947.97 0.23
Mar 0.55 0.83 26.28 41.28 3.23 0.00 948.68 0.31
Apr 0.53 0.80 29.19 44.47 6.07 0.00 945.63 0.28
May 0.53 0.84 29.14 55.21 11.76 0.02 944.35 0.34
Jun 0.37 0.35 25.89 76.92 10.48 0.19 942.76 0.67
Jul 0.30 0.31 23.91 86.03 7.93 0.28 954.91 0.79
Aug 0.35 0.31 23.30 85.24 7.73 0.09 943.78 0.81
Sep 0.45 0.46 24.07 84.23 4.68 0.17 945.02 0.57
Oct 0.56 0.68 24.24 75.96 2.27 2.31 947.39 0.37
Nov 0.64 0.80 22.40 71.97 2.00 0.02 950.14 0.33
Dec 0.70 0.85 19.27 63.01 2.41 0.00 962.04 0.23
Avg. 0.50 0.66 24.22 66.09 5.45 0.26 948.42 0.44
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Table 3.5 Meteorological data for cold and cloudy climate zone

Clearness Relative Ambi Relati A heri Cloudiness

Months Index Sunshine Temrge:(::ltjre Huen?itcli\i/tey Rainfall Wilzd ?ﬁ eed tli’]:’zzi)ureg ’ Index
@ | @ | e Mt | e | e T ()
Jan 0.52 0.67 9.95 75.58 3.61 0.22 840.99 0.34
Feb 0.51 0.56 10.24 71.84 3.80 0.68 838.66 0.42
Mar 0.54 0.61 15.54 59.65 5.65 1.87 838.72 0.41
Apr 0.45 0.30 18.26 63.53 7.63 5.61 839.83 0.47
May 0.38 0.37 20.69 80.29 4.29 3.53 838.13 0.60
Jun 0.33 0.26 21.04 85.50 3.63 15.68 834.75 0.70
Jul 0.33 0.20 21.21 87.52 3.15 14.15 835.36 0.80
Aug 0.31 0.17 20.64 89.23 1.23 12.92 836.08 0.77
Sep 0.34 0.23 20.00 85.92 0.87 7.53 838.44 0.73
Oct 0.43 0.52 18.39 80.74 2.29 1.53 842.01 0.48
Nov 0.54 0.66 15.27 75.60 2.65 0.33 843.31 0.43
Dec 0.60 0.73 11.89 74.40 0.84 0.01 841.67 0.22
Avg. 0.44 0.44 16.93 77.48 3.30 5.34 839.00 0.53
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3.4  SUNSHINE-BASED MODELS FOR ESTIMATING SOLAR
ENERGY

In estimation models, the most widely used method for estimating
global solar energy is Angstrom - Prescott model which is based on the
correlation of the ratio of global solar energy to extraterrestrial solar radiation
with ratio of relative sunshine hours. In this chapter, sunshine-based models
with linear and non-linear correlations have been established and the

performance is evaluated based on statistical error-tests.
Model 1: Linear model

Source — Angstrom-Prescott model [22][24]

-=a+h() (3.3)

Hy
Model 2: Quadratic model

Source — Akinoglu and Ecevit model [34]

o= a+b) + e (3.4)

Hy
Model 3: Cubic model

Source — Bahel et al. model [32]

o= ath() + e+ d)? (3:5)

Hy
Model 4: Linear logarithmic model

Source — Newland model [59]

H _ S S
C=a+h() +clog() (3.6)
Model 5: Logarithmic model

Source — Ampratwum and Dorvlo model [60]
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H

_ S
o a+b Iog(g) (3.7

Model 6: Linear exponential model

Source — Bakirci model [61]

H—a+ b(si) +c exp(Si) (3.8)

Hy
Model 7: Exponential model

Source — Almorox et al. model [62]

Z-a+b exp(si) (3.9)

Hy

Model 8: Exponent model

Source — Bakirci model [61]

cEat) (3.10)
In Eq. (3.3) - Eq. (3.10) as shown above, a, b, c and d are the regression

coefficients. The daily extraterrestrial solar radiation H, can be expressed by

Eq. (3.11) - Eq. (3.14) in the following manner as [63]:

Ho=22 *5600 Gsc (1 + 0.033 cos 362%) * (cosd) c0s8 Cos wy Z;UOS sin d)) (3.11)
8 =23.45 sin[2%2 (14, +284)] (3.12)
s = €05 (-tand tand) (3.13)

S is calculated using Cooper’s formula which is expressed as:-
S, = = cos™(-tan¢ tand) (3.14)
where G is the solar constant and equals 1367 W/m?, & represents the solar

declination angle, ¢ is the latitudinal extent of the site, ws represents the mean

sunrise hour angle and ngay represents the number of days which is equal to 1
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for 1% January and 365 for 31% December. S represents the bright sunshine

hours and S, represents the maximum daily hours of bright sunshine.
3.5 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a technique which is used for
identification of a smaller number of uncorrelated variables known as principle
components from a larger set of data. It is a tool used in predictive models and
exploratory data analysis. The technique has been widely used to emphasize
variation and capture strong patterns in a data set. It is a simple non-parametric
technique for extracting information from complex and confusing data sets.
Principle component analysis has been used to eliminate the number of
variables or when there are too many predictors compared to number of
observations or to avoid non-collinearity.

For choosing the model with best correlation, the principal component
analysis has been performed. For better analysis, parameters such as
correlation of coefficient (r) and coefficient of determination (R?) are chosen as
the closeness parameter. Steps for performing principal component analysis are
as follows:

(a) Standardization

(b) Computation of correlation matrix

(c) Compute the eigenvectors and eigenvalues of the correlation matrix

(d) Feature vector

(e) Recast the data along the principal component axis

Consider for example warm and humid climate zone with models based
on four variables correlation represented by Eqg. (3.90) - Eqg. (3.97). The

principal component analysis have been performed on these equations based on
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closeness parameters i.e. correlation coefficient (r) and coefficient of
determination (R?), the following graph has been obtained after applying PCA

on above equations and shown below in Fig. 3.1.

Biplot (axes F1 and F2: 96.38 %)
5 MPE MBE

3.90

A s o \T
0 + + } 1
RSE © r
SSRE 4

RMSE 1 ®394

F2 (24.19 %)
-
2

F1(72.19 %)

Fig. 3.1 Principal component analysis for Eq. (3.90) — Eq. (3.97)

In Fig. 3.1 as shown above, Eq. (3.94) lies in the fourth quadrant
satisfying the condition and provides better analysis with (r) and (R?) chosen as

closeness parameter.
3.6 STATISTICAL PERFORMANCE EVALUATIONS

For model evaluation, different statistical evaluation indexes namely
Mean Percentage Error (MPE), Relative Standard Error (RSE), Mean Bias
Error (MBE), t-statistics (t-stat) method, Root Mean Square Error (RMSE),
correlation coefficient (r) and the coefficient of determination (R?) are the

frequently used methods for comparison [64-75].
3.6.1 Mean Percentage Error (MPE)

It is the percentage deviation in estimated data of solar radiation from

measured data of solar radiation which is given by Eq. (3.15) as shown below:

MPE =3, = (3.15)
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where E is the absolute error and expressed as E = (%) +100, n is the

number of observation, ¢; and m; are the iy calculated and measured values,

respectively.
3.6.2 Mean Bias Error (MBE)

It gives information associated with long-term performance of the
correlations on performing the comparison of the deviation between the
measured and estimated values and ‘zero’ is its ideal value. It is expressed by
Eq. (3.16) as shown below:

MBE = =37, (c; - m;) (3.16)
where n is the number of observations, c; and m; are the iy, calculated and

measured values, respectively.
3.6.3 Sum of the Square of Relative Error (SSRE)

It gives the positive result of the sum of the square of relative deviation

and it’s value is ‘zero’. It is expressed by Eq. (3.17) as shown below:

SSRE = Y7, ((ﬂf) (3.17)

m;
where n is the number of observations, c¢; and m; are the iy, calculated and

measured values, respectively.
3.6.4 Relative Standard Error (RSE)

It gives the degree of accuracy of estimation of correlations and can be

expressed by Eq. (3.18) shown below as:

RSE = /“% (3.18)

where n is the number of observation.
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3.6.5 Root Mean Square Error (RMSE)

It is expressed by Eqg. (3.19) as shown below:

RMSE = \[ﬁ Y (e — my)? (3.19)

where n is the number of observations, c; and m; are the iy, calculated and
measured values, respectively. The value of root mean square error is positive

where it’s ideal value is ‘zero’.
3.6.6 t-stat (t-statistic) Method

In order to check for estimation of equation whether it is statistically
significant, or not from the measured data, in a defined confidence level, the

t-statistic can be expressed by Eqg. (3.20) as:

(n—1)MBE? ]

t-stat = [RMSEZ — MBE?

(3.20)
where n is the number of observations.

3.6.7 Coefficient of Determination (R?)

The coefficient of determination is used to test the linear relationship
between the measured and the estimated data. It can be defined by Eq. (3.21) as

shown below:

RZ = Z?:l(ci_ca)(mi_ma) (3 21)
[z (ci—ca) 1R 1 (mi=ma)?]

where n is the number of observation, c, is the average calculated values, m, is
the average measured values, c; is the i™ calculated values and m; is the i

measured values.
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3.7 RESULTS AND DISCUSSIONS
3.7.1 Sunshine-based Models for Estimating Global Solar Energy

In the first part of this chapter, models based on sunshine duration with
linear, quadratic, cubic, linear logarithmic, logarithmic, linear exponential,
exponential and exponent correlations have been established using multiple
regression analysis. The regression coefficients a, b, ¢ and d are obtained for
eight models i.e. models 1-8 as shown in Eq. (3.3) - Eq. (3.10) of the sunshine-
based models with aid of measured data and presented in Table 3.6 - Table 3.8
respectively for five meteorological sites representing different climatic
conditions across India. MATLAB curve fitting tool has been used for
obtaining the regression coefficients. From Table 3.6 - Table 3.8, the following

can be briefly summarized:
(@) Warm and humid climate zone

It has been observed that for this climate zone, the dependencies are
stronger for cubic term with correlation of coefficient (r = 0.80) obtained
between the clearness index and relative sunshine duration.

The coefficient of determination is observed to be (R*> = 0.65) which
means 65% of the clearness index can be accounted using relative sunshine
duration.

The values of the estimated global solar energy using derived
correlations are compared with the measured values as shown in Fig. 3.2 (a).

Further, the relation between the clearness index and relative sunshine

duration is obtained by Eq. (3.24) as:

9 = 0.426 - 0.232(2) + 0.505()” - 0.086()° (3.24)

Hp
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Table 3.6 Sunshine-based models for warm and humid & hot and dry climate zone across India

MPE

MBE

RMSE

. Eq. : 2
Stations Model No. Equations (%) (%) (%) r R

Linear 3.22 % =0.259 +0.321(2) 1.52 0.00 0.05 0.77 0.62
Quadratic 3.23 % =0.289 + 0.252(51) + 0.041(51)2 1.79 0.00 0.05 0.78 0.63
Cubic 3.24 % =0.426 - 0.232(:") +0.505(3)% - 0.086(3)° 1.79 0.00 0.04 0.80 0.65

. Linear Hg _ s S - -
Chennai Logarithmic 3.25 o =0.134+ 0.434(50) +0.011 Iog(sa) 10.35 0.05 0.10 0.74 0.57

(Warm and m p
Humid) Logarithmic 3.26 H—g =0.533 + 0.153 Iog(s—) 15.60 0.04 0.08 0.62 0.42
Linear Hyg _ s S

Exponential 3.27 o= 0243+ 0.230(50) +0.037 exp(sa) 1.97 0.00 0.04 0.78 0.63
Exponential 3.28 :—g =0.113+0.184 exp(si) 2.58 0.00 0.05 0.77 0.61
Exponent 3.29 % =0.556(:)"** 5.79 0.01 0.06 0.71 0.53
Linear 330 | 2=0375+0214(5) -0.55 -0.01 0.05 0.51 0.33
Quadratic 3.31 % =0.586 - 0.414(:") +0.439(>) -0.44 -0.01 0.04 0.60 0.41
Cubic 3.32 % =-0.46+0.032(5) - 0.693(>)° + 0.769(51)3 1.18 0.00 0.04 0.50 0.40

Linear Hg _ Sy s ) )
Jodhpur Logarithmic 3.33 o =-0.196 + 0.801(50) 0.396 Iog(so) 7.37 0.05 0.13 0.53 0.35
(Hotand Dry) | ogarithmic 334 | 2£=0570+0.125 log(Y) 4.10 0.01 0.05 0.66 0.47

H H
E'”ear . 335 | 2=0.114-0673() +0.309 exp(s) -1.51 0.02 0.05 0.60 0.41
Xponential ° o o

Exponential 3.36 % =0.297 +0.111 exp(si) -0.89 -0.01 0.05 0.52 0.34
Exponent 3.37 % = 0.569()"* -1.81 -0.02 0.05 0.49 0.30
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Table 3.7 Sunshine-based models for composite and moderate climate zone across India

MPE

MBE

RMSE

. Eq. : 2

Stations Model No. Equations (%) (%) (%) r R
Linear 3.38 % =0.367 +0.205() 1.24 0.00 0.04 0.59 0.40
Quadratic 3.39 % =0.470-0.117(:) +0.238(3)? 1.04 0.00 0.04 0.66 0.47
Cubic 3.40 % =0.504 - 0.241(5) +0.231(3)* +0.067(5)° 1.44 0.00 0.04 0.66 0.46
Linear Hg _ CAN s _ -

Delhi Logarithmic 341 | ;2=0033+ 0.522(;) - 0.142 log ;) 19.43 0.09 0.12 0.54 0.40

(Composite) |} yyarithmic 342 | 20543 +0.098 log(%) 1062 | 003 0.07 0.52 0.40
Linear Hy _ . S S
Exponential 343 | ;2=0208 0.282(;) +0.245 exp() 1.74 0.00 0.04 0.65 0.46
Exponential 3.44 :—g =0.261 +0.124 exp(%) 1.61 0.00 0.04 0.61 0.40
Exponent 345 | 22=0543(2)"* 231 0.00 0.05 0.54 0.40
Linear 3.46 % =0.156 + 0.281(3) 3.10 0.01 0.04 0.73 0.57
Quadratic 3.47 % =0.392 +0.036(:) +0.172(>)° 3.65 0.01 0.04 0.71 0.53

. H
Cubic 348 | L= 0.82—0.62(55—0) + 0'52(57)2 - o.e(_j_u)3 2.46 0.01 0.04 0.70 0.53
Linear Hg _ A S
PUne Logarithmic 349 | 72=0.093 +0.506(;) - 0.097 log(;) 5.19 0.00 0.08 0.70 0.52

(Moderate) || ogarithmic 350 | 2£=0567+ 0.193 log() 17.69 0.06 0.08 0.65 0.45
Linear 351 | 22=0.230+0.006(L) + 0.133 exp() 3.19 0.01 0.04 0.72 0.56
Exponential Ho So So
Exponential 3.52 % =0.119 + 0.194 exp() 3.15 0.01 0.04 0.72 0.54
Exponent 353 | 22=0590(2)*“ 3.16 0.01 0.04 0.72 0.54
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Table 3.8 Sunshine-based models for cold and cloudy climate zone across India

MPE

MBE

RMSE

. Eq. : 2
Stations Model No. Equations (%) (%) (%) r R
Hg _ s
Linear 354 | .= 0239+0586(3) 1.09 001 | 007 0.70 0.51
Quadratic 355 | 22=0301+0.187(2) - 0.4(2)’ 3.33 0.00 0.06 0.72 0.55
Hy So So
Cubic 356 | —2=0.369-0.250(%) +1.059()?- 0.601(%)? 3.15 0.00 0.06 0.70 0.52
H, So So So
Linear Hg _ s s }
shillong Logarithmic 357 | 32=0.160+ 0.458(;") +0.049 log () 0.11 0.02 0.12 0.64 0.45
(Cold and cloudy) u
Logarithmic 3.58 | -2=0.546 +0.145 log(5) 18.88 0.06 0.10 0.64 0.44
Linear Hg_ s s
Exponential 359 | 71=0.160 +0.104(:) +0.132 exp(y) 4.36 0.00 0.09 0.70 0.53
Exponential 3.60 % =0.061 +0.229 exp(5) 3.52 0.00 0.07 0.68 0.50
Exponent 3.61 % = 0573(2)*** 3.76 0.00 0.07 0.70 0.52
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(b) Hot and dry climate zone

It has been observed that for this climate zone, the dependencies are
stronger for the logarithmic term with correlation of coefficient (r = 0.66)
obtained between the clearness index and relative sunshine duration.

The coefficient of determination is observed to be (R? = 0.47) which
means 47% of the clearness index can be accounted using relative sunshine
duration.

The values of the estimated global solar energy using derived
correlations are compared with the measured values as shown in Fig. 3.2 (b).

Further, the relation between the clearness index and relative sunshine

duration is shown by Eqg. (3.34) as:

2 = 0,570 +0.125 log() (3.34)

Ho
(© Composite climate zone

It has been observed that for this climate zone, the dependencies are
stronger for the quadratic term with correlation of coefficient r = 0.66 obtained
between the clearness index and relative sunshine duration.

The coefficient of determination is observed to be R* = 0.47 which
means 47% of the clearness index can be accounted using relative sunshine
duration.

The values of the global solar energy estimated using derived
correlations are compared with the measured values as shown in Fig. 3.2 (c).

Further, the relation between the clearness index and relative sunshine

duration is shown by Eq. (3.39) as:

%9 = 0.470 - 0.117() +0.238(>)? (3.39)

Ho
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(@ Moderate climate zone

It has been observed that for this climate zone, the dependencies are
stronger for the linear term with correlation of coefficient r = 0.73 obtained
between the clearness index and relative sunshine duration.

The coefficient of determination is observed to be R? = 0.57 which
means 57% of the clearness index can be accounted using relative sunshine
duration.

The values of the estimated global solar energy using derived
correlations are compared with the measured values as shown in Fig. 3.2 (d).

Further, the relation between the clearness index and relative sunshine

duration is shown by Eqg. (3.46) as:

"0 2 0.156 + 0.281(>) (3.46)

e Cold and cloudy climate zone

It has been observed that for this climate zone, the dependencies are
stronger for the quadratic term with correlation of coefficient r = 0.72 obtained
between the clearness index and relative sunshine duration.

The coefficient of determination is observed to be R* = 0.55 which
means 55% of the clearness index can be accounted using relative sunshine
hours.

The values of the estimated global solar energy using derived
correlations are compared with the measured values as shown in Fig. 3.2 (e).

Further, the relation between the clearness index and relative sunshine

duration is shown by Eqg. (3.55) as:

20 20,301 +0.187(3) - 0.4()? (3.55)

Ho
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For each of the climate zone, all the developed models have distinct
values of determination coefficients where the largest difference between the
determination coefficients of the best and worst fit model obtained is 0.23 for
warm and humid climate (Chennai), 0.17 for hot and dry climate (Jodhpur),
0.07 for composite (Delhi), 0.12 for moderate (Pune) and 0.11 for cold and
cloudy climate (Shillong) zone.

It has been observed that the best fit is obtained for composite climate
zone with the smallest difference between the best and worst determination
coefficients of 0.07 as shown by the computed data presented in Table 3.7.
Similarly, the weakest fit is obtained for warm and humid climate zone with the
largest difference between the best and worst determination coefficients of 0.23

as shown by the computed data presented in Table 3.6 respectively.
3.7.2 Empirical Models for Solar Energy Estimation

In the second part of this chapter, empirical models have been
established using multiple regression analysis of different parameters namely
global solar energy, sunshine hours, atmospheric pressure, wind speed, rainfall,
ambient temperature, relative humidity and cloudiness index for different
meteorological sites in India representing widely changing climatic conditions
thereof, such as warm and humid (Chennai), hot and dry (Jodhpur), cold and
cloudy (Shillong), moderate (Pune) and composite (Delhi) climatic conditions.
The performance of the models has been evaluated based on statistical error-
tests i.e. MPE, MBE, SSRE, RSE, RMSE, t-stat, r and R? and are illustrated in

Table 3.9 - Table 3.33.
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Table 3.9 Empirical models based on one and two variables correlation along with statistical errors for warm and humid climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - R2
No. | ) | o) | ) | o) | o6 | T
3.62 % =0.379 +0.004(2) 061 | 000 | 073 | 012 | 0.05 | 2331 | 0.35 | 0.8
3.63 % = -5.495 + 0.006(72) 551 | 0.02 | 11.23 | 0.30 | 0.14 | 39.13 | 0.21 | 0.07
Models 3.64 % = 0.656 - 0.352(*%) -0.04 | 0.00 | 035 | 0.08 | 003 | 638 | 0.71 | 054
based on H" g
one 3.65 |-£=0532-0.036(5") 1.35 | 0.00 | 1.25 | 0.15 | 0.05 | 77.04 | 0.16 | 0.05
variable H° >
correlation | 3.66 | -2=0.636 - 0.002(%" 0.78 | 0.00 | 0.84 | 013 | 0.05 | 26.33 | 0.36 | 0.17
3.67 :—g =0.259 + 0.321(Si) 152 | 0.00 | 0.96 | 015 | 0.05 | 450 | 0.77 | 0.62
3.68 | 2=0540-0.002(2x) 138 | 0.00 | 1.20 | 0.4 | 0.05 | 46.17 | 0.17 | 0.05
3.69 % =0.281+0.217(2) + 0.002(2) 029 | 0.00 | 0.61 | 009 | 004 | 832 | 062 | 043
3.70 % =-3.532+ 0.225(52) + 0.004(‘;—m) 058 | 0.00 | 0.82 | 012 | 0.04 | 965 | 0.57 | 0.38
Models ° 2 0
basedon | 3.71 % =0.551 +0.107(3) - 0.265(;%) 151 | 0.00 | 034 | 008 | 004 | 567 | 089 | 0.79
tWO [ o g
variables | 3.72 % =0.363 +0.220(5") - 0.011(3™) 061 | 000 | 0.83 | 012 | 0.04 | 29.88 | 051 | 0.33
correlation Ho
3.73 | £=0436+ 0.195(:") - 0.001(3™) 045 | 000 | 072 | 011 | 0.04 | 17.19 | 055 | 0.38
3.74 | 2220368+ 0.230(:") - 0.002(5 ) 0.48 | 0.00 | 0.66 | 011 | 0.04 | 2482 | 054 | 0.36

Ho
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Table 3.10 Empirical models based on three variables correlation along with statistical errors for warm and humid climate zone

Models EA. | Equations MPE | MBE | SSRE | RSE |RMSE | . ; R?
No. (%) | (%) | (%) | (%) | (%)
3.75 % =0.683 + 0.063(550) + 0.0001(‘1’3—*:) - 0.332(’;—? 295 | 001 | 081 | 013 | 0.04 | 3.06 | 090 | 0.80
3.76 % =-1.813+ 0.282(530) - 0.001(%) + 0.002(%) 224 | 000 | 1.07 | 015 | 0.05 | 453 | 0.77 | 0.63
3.77 % =-3.163 + 0.283(510) + 0.0001(%) + 0.003(%") 219 | 000 | 1.12 | 0.15 | 004 | 382 | 0.81 | 0.66
3.78 % =-2.854 + 0.277(510) + 0.006(7;—’:) + 0.003(%) 213 | 0.00 | 095 | 0.14 | 005 | 444 | 079 | 0.65
3.79 :—g =0.435+ 0.054(;—0) + 0.006(%) - 0.336(5—:) 1.35 | 000 | 0.62 | 011 | 0.03 | 246 | 090 | 0.82
Models 3.80 :—g =0.184 + 0.272(;—0) + 0.006(%) - 0.001(%) 267 | 0.00 | 1.68 | 0.18 | 0.05 | 431 | 0.79 | 0.64
ba&;]ed on | 3.81 % =0.131+ 0.286(520) + o.ooe(TT—T) - 0.006(%) 268 | 0.00 | 154 | 0.18 | 0.05 | 447 | 0.79 | 0.64
v;ri;et()eles 3.82 % =0.120 + 0.273(550) + 0.006(%") - 0.008(%) 409 | 0.01 | 308 | 024 | 0.07 | 6.67 | 0.70 | 0.56
correlation 3.83 % =0.671 + 0.055(520) - 0.001(%) - 0.342(’;—:) 1.34 | 0.00 | 056 | 011 | 0.03 | 256 | 0.90 | 081
3.84 % =0.433 + 0.274(510) - 0.002(%) - 0.001(VVVV—SS':) 2.60 | 000 | 169 | 018 | 0.05 | 3.86 | 0.81 | 0.66
3.85 % =-1.836 + 0.295(510) - 0.012(%) + 0.002(’;’,—*:) 219 | 0.00 | 1.06 | 0.15 | 0.05 | 460 | 0.78 | 0.64
3.86 % =0.592 + 0.066(510) - 0.003(%) - 0.340(2—:) 1.32 | 000 | 055 | 0.1 | 0.03 | 2.47 | 0.90 | 0.82
3.87 % =0.362 + 0.3(510) - 0.001(%) - 0.008(%) 2.62 | 000 | 1.49 | 017 | 005 | 457 | 0.77 | 0.63
3.88 % =0.284 + 0.29(510) + 0.0001(%) - 0.011(VVVV—S;:) 239 | 000 | 141 | 017 | 004 | 371 | 0.82 | 0.67
3.89 % =0.573 + o.oeo(sio) + o.oos(VVVV—SS':) - o.341(’;—z) 141 | 0.00 | 067 | 012 | 0.03 | 247 | 090 | 082
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Table 3.11 Empirical models based on four variables correlation along with statistical errors for warm and humid climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. @ | @) | @) | @) | oo | TR
3.90 % = 0.467 + 0.054(=-) + 0.004(z2) + 0.003(:>=) - 0.329(7%) 1.31 | 0.00 | 061 | 011 | 0.03 | 2.36 | 091 | 0.83
o o o 0 g
3.91 % =0.236 + 0.276(51) +0.004(2) - 0.001(%) - 0.008(2) 029 | -001 | 1.64 | 0.18 | 005 | 416 | 0.79 | 0.66
3.92 % =-1.644 +0.285(>) - 0.001(5 ) - 0.007(5) +0.002(%2) 239 | 000 | 1.03 | 015 | 005 | 438 | 079 | 0.65
Models 9 = 1528 +0.268(2) - 0.001(%™) - 0.001(**) + 0.002("
based on 393 | Z=-1 268(3) - 0. (R—Ha) -0. (W—SO) : (P—a) 1.97 | 000 | 090 | 014 | 0.04 | 361 | 0.82 | 0.69
four
variables
correlation | 394 % =0.530 +0.048(;") +0.004(2) - 0.001(3) - 0.330() 0.48 | 0.00 | 054 | 011 | 0.04 | 250 | 091 | 0.82
%9 = 0.204 +0.256(%) + 0.006(™=) - 0.001(%m) +
395 |Ho So To RHo 2.38 | 000 | 147 | 017 | 0.04 | 362 | 0.82 | 0.69
0.0001 (%m)
WS,
3.96 % =0.620 +0.055(z) - 0.001(%=) +0.003(5>) - 0.338(>%) 1.29 | 0.00 | 054 | 011 | 0.03 | 2.40 | 091 | 0.82
o o o 0 g
3.97 % =0.448 + 0.273(51) -0.002(3) - o.ooz(VVVV—Ssm) - 0.005(5™) 221 | 000 | 1.21 | 016 | 0.04 | 355 | 0.83 | 0.69

()
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Table 3.12 Empirical models based on five variables correlation along with statistical errors for warm and humid climate zone

MPE

MBE

SSRE

RSE

RMSE

Eqg. ;
Models Equations - 2
No. | @) | 06 | 06 | o) | o) | BT R
Hy _ s T _ 0001 (R Py
sog | 7 044+ 0074() +0.004() - 0.001() + 001G) 089 | 000 | 030 | 008 | 003 | 213 | 0.92 | 086
032
g_ m m m
3.99 0.163 +0.070() +0.005(2) +0.001(5) +0.001G2) - | (99 | g00 | 034 | 0.00 | 003 | 227 | 092 | 084
032
g
Hy _ s T Ry WS,
2100 | 7o~ 32+ 025(;) +0.007(E) +0.0001(5") + 00001G) | g g5 | 000 | 075 | 043 | 004 | 340 | 084 | 071
+0.003(2z)
PO
A __ £h T WS REy
Models | 5,00 | s = 2+ 0275(5) + 0.005() +0.0001(C) -0.008(2) + | 165 | g00 | 063 | 012 | 004 | 327 | 084 | 073
based on o,ooz(i_m)
five - 2
- g_ Tm Wsm Pm
variables | 0.548+0.066(7) +0.003(32) +0.003(3) +0.0001G2) - | 195 | 000 | 034 | 0.00 | 003 | 223 | 092 | 04
correlation Hy
0.307(H)
Hg_ T RHy, WS,y
3.103 0.508 +0.05() +0.003(32) +0.003(2) + 0.0001GE=) | 4o | 00 | 054 | 011 | 003 | 242 | 091 | 0.83
-0.333(”d)
Hy
Hy _ s T _ 0.001(R WSy
aq04 | 7 = 0-28+0.25(0) +0.005() - 0.001(Cx) +0.0001( ) 206 | 000 | 111 | 015 | 004 | 334 | 084 | 0.72
0.004(%5m)
RF,
Hg_ T RHyy, REp,
3.105 0.564 +0.059(7) +0.003(2) - 0.001() - 0.001GE2) - | 115 | g0 | 043 | 020 | 003 | 221 | 092 | 0.5

0.323(:d)
g
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Table 3.13 Empirical models based on six and seven variables correlation along with statistical errors for warm and humid climate zone

Models Eq. Equations MPE | MBE | SSRE | RSE | RMSE t-stat r R?

No. (%) | () | (%) | (%) | (%)

%9 - 0823+ 0.261(3) +0.005(22) - 0.001(F2) - 0.001(f2)
H, T, RH, WS

3106 | g ° ° ° | 153 | 000 | 057 | 011 | 004 | 313 | 0.86 | 0.74
- 0.003(2%) +0.001(22)

”g =0.627 +0.076(= ) +0. 004 (Lm =) +0. 0001(R”m) +
3.107 0.86 | 0.00 | 028 | 0.08 | 0.03 | 209 | 093 | 0.86
Models 0.0001(%) +0.0001(22) - 0.296(22)
based on ° ° 9
Six
variables
correlation ”g =0.938 +0.073(= ) +0. 002(Tm) +0. 003(W5m) +0. 001("m)
3.108 . Y 0.86 | 0.00 | 028 | 0.08 | 0.03 | 207 | 093 | 0.86
+ 0.0001(P—m) - 0.304(3%)
o g
2 = 0,558 +0.054(> ) +0.002(2) +0.0001(5)+
3.109 110 | 0.00 | 0.43 | 010 | 003 | 216 | 0.92 | 0.85
0003(%) +0.0001(3) - 0.325(34)
0 o g
Models
based on ”g =0.945 +0.072(= ) +0. 003(Tm) +0. oom(”’m) +

seven | 3.110 ws., - ., . 193 | 000 | 056 | 011 | 0.04 | 255 | 0.93 | 0.87
variables 0-003(W—50) +0.001(57) +0.0001(32) - 0.300(;2)

correlation
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From Table 3.9 - Table 3.13, the following can be briefly summarized:
@ Warm and humid climate zone

Correlation based on seven variables has been observed to be the most
suitable model on the basis of closeness parameters with correlation of
coefficient (r = 0.93) obtained between the clearness index and relative sunshine
duration, wind speed, ambient temperature, relative humidity, atmospheric
pressure, amount of rainfall, cloudiness index.

The coefficient of determination has been observed to be (R* = 0.87)
which mean 87% of the clearness index can be accounted by sunshine hours,
ambient temperature, relative humidity, wind speed, amount of rainfall,
atmospheric pressure and cloudiness index.

The relation between the parameters namely clearness index, relative
sunshine duration, ambient temperature, relative humidity, wind speed, amount
of rainfall, atmospheric pressure and cloudiness index is given by Eg. (3.110)

expressed as:

B9 = 0.945 + 0.072() + 0.003(2) + 0.0001 (Rfm) +
Hy So To RH,

0.003(:2) + 0.001(222) + 0.0001(2) - 0.300(22) (3.110)
o o g

WS,

Further, the estimated data values of global solar energy using the derived
correlation have been compared with the measured data values as shown in

Fig. 3.3(a).
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Table 3.14 Empirical models based on one and two variables correlation along with statistical errors for hot and dry climate zone

Models Ed. | gquations MPE | MBE | SSRE | RSE | RMSE| ; R?
No. (%) | (%) | () | (%) | (%)
3.111 % =0.379 +0.004(2) 061 | 000 | 073 | 012 | 0.05 | 2331 | 0.35 | 0.18
3.112 % = -5.495 + 0.006(?2) 551 | 0.02 | 11.23 | 0.30 | 0.14 | 39.13 | 0.21 | 0.07
Models | 3.113 % = 0.656 - 0.352(*%) -0.04 | 000 | 035 | 0.08 | 003 | 638 | 0.71 | 054
based on H" g
one 3.114 | -£=0.532-0.036(52) 1.35 | 0.00 | 1.25 | 0.15 | 0.05 | 77.04 | 0.16 | 0.05
variable HO >
correlation | 3.115 | -£=0.636 - 0.002(7™ 0.78 | 0.00 | 0.84 | 013 | 0.05 | 26.33 | 0.36 | 0.17
3.116 | 22 =0.540 - 0.002(2) 138 | 000 | 1.20 | 014 | 0.05 | 46.17 | 0.17 | 0.05
3.117 Z—g =0.375+ 0.214(52) 055 | -0.01 | 0.85 | 0.12 | 0.05 | 867 | 051 | 0.33
3.118 % =0.281+0.217(2) + 0.002(2) 029 | 000 | 061 | 0.09 | 004 | 832 | 0.62 | 0.43
3.119 % =-3532+ 0.225(55) + 0.004(‘;—m) 058 | 0.00 | 0.82 | 012 | 0.04 | 9.65 | 0.57 | 0.38
Models ° 2 0
based on | 3.120 % =0.587 +0.069(3") - 0.307(5%) -0.08 | 0.00 | 034 | 008 | 003 | 567 | 0.70 | 055
tWO [ o g
variables | 3.121 % =0.363 +0.220(z") - 0.011(3™) 061 | 000 | 083 | 012 | 0.04 | 29.88 | 0.51 | 0.33
correlation -
Hg _ s RH,
3122 | -2=0.436+ 0.195(:) - 0.001(-™) 045 | 0.00 | 072 | 011 | 0.04 | 17.19 | 055 | 0.38
3.123 % =0.368 +0.230(3") - 0.002(5 ) 048 | 000 | 066 | 011 | 0.04 | 24.82 | 054 | 0.36
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Table 3.15 Empirical models based on three variables correlation along with statistical errors for hot and dry climate zone

Models Ed. | Equations MPE | MBE | SSRE | RSE |RMSE| . . ; R?
No. (%) | (%) | (%) | (%) | (%)

3.124 ﬁ =-1.797 + 0.055(1) + o.ooz(P—m) - 0.306(ﬂ) -0.12 | 0.00 | 0.33 | 0.08 | 003 | 464 | 0.77 | 0.61

3.125 —g =-3.093 +0.192(> ) 0. 001("*”) +0. 004(R”m 0.42 | 000 | 070 | 011 | 004 | 876 | 0.60 | 0.1

3.126 —g =-3.428 +0.231(> ) -0. ooz(WSm) +0.004(2 =) -0.35 | -0.01 | 0.68 | 011 | 0.04 | 829 | 0.60 | 0.40

3.127 Z—j: -2.941 + 0.206(—) + 0.003(—m) + 0.003(—m) 024 | 0.00 | 059 | 0.10 | 0.04 | 7.31 | 0.65 | 0.46

3.128 ”g =0.541 +0.073(= ) +0. 001(Tm) 0. 293(”d) -0.14 | 0.00 | 030 | 0.08 | 003 | 485 | 0.77 | 0.62

Models | 2129 ”g =0.363 + 0.204(> ) +0. 001(Tm) 0. 001(R”m) 0.25 | 000 | 059 | 010 | 0.04 | 743 | 0.65 | 0.46
based on | 3,130 H—g = 0.289 +0.208(2 ) +0. ooz(Tm) 0. 012(”m) 0.27 | 0.00 | 060 | 010 | 0.04 | 820 | 0.63 | 0.44
v;?i;esles 3.131 H—g =0.312+0.218(> ) +0. 001(Tm) 0. ooz(WSm) 0.19 | 0.00 | 048 | 010 | 004 | 7.80 | 0.64 | 0.45
correlation 3.132 ”g =0.630 + 0.056(= ) -0. 001(R”m) 0. 306(”d) -0.18 | 0.00 | 029 | 0.07 | 003 | 549 | 0.75 | 0.60
3.133 ”g =0.459 + 0.196(=- ) 0. 001(R”m) 0. ooz(WS ) 029 | 0.00 | 053 | 0.10 | 0.04 | 16.05 | 0.58 | 0.40

3.134 % =-3.445 + 0.219(—) - 0.009(%) + 0.004("—"1) 057 | 000 | 082 | 0.11 | 0.04 | 959 | 057 | 0.38

3.135 ”9 =0.606 + 0. 051( ) 0. 014(RFm) 0. 315(“d) -0.11 | 0.00 | 032 | 0.08 | 0.03 | 568 | 0.75 | 0.59

3.136 ”g =0.442+0.192(> ) 0. 001(R"m) +0. ooz(”’m) 0.43 | 0.00 | 0.70 | 0.11 | 0.04 | 17.04 | 056 | 0.38

3.137 ”9 =0.374 +0.226(= ) -o. ooz(RFm) 0. 005(W5m) 0.45 | 0.00 | 0.63 | 0.08 | 0.04 | 24.68 | 055 | 0.37

3.138 ”g = 0591 +0.070(x ) -o0. 001(W5m) 0. 310(”d) -0.10 | 0.00 | 032 | 0.08 | 003 | 562 | 0.75 | 0.59
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Table 3.16 Empirical models based on four variables correlation along with statistical errors for hot and dry climate zone

Eq. . MPE | MBE | SSRE | RSE | RMSE
Models Equations _ 2
No. | ) | 06 | o | o) | @ | TR
3.139 | ~£=0543+0.067(L) + 0.001(22) +0.0001(%z) - 0.305(%4) -013 | 000 | 030 | 008 | 003 | 476 | 077 | 0.62
Ho So To WS, Hy
3.140 | 22=0.362+0.201(2)+ 0.01(%2) - 0.001(Rf) - 0.004(30x 024 | 000 | 058 | 010 | 0.04 | 729 | 065 | 047
Hy So T, RH, RF,
3141 | 22=-2223+0.195(2) - 0.001(X%=) + 0.0001(32) + 0.003(2z) | 042 | -001 | 074 | 011 | 004 | 915 | 058 | 038
H, S, RH, RF, P,
%9 = 2.967 +0.195(2) - 0.001(X=) + 0.0001(%3m) +
Models | 3142 | Ho So RHo WSo 710 | 002 | 369 | 017 | 006 | 7.67 | 060 | 0.40
based on 0.003(%)
four 2
variables H s r - "
correlation | 3.143 | —£=0.684 +0.060( ") - 0.002(%) - 0.001(™) - 0.305(;) 019 | 000 | 028 | 006 | 003 | 452 | 078 | 0.63
o o o o g
3.144 | 22 =0.466 +0.207(2) - 0.002(Zz) - 0.001 (%) - 0,001 (%iz) 015 | 000 | 046 | 009 | 004 | 581 | 066 | 048
Hop So To RH, WS,
3.145 | -2 =0.637+0.057(Z) - 0.001 (%) - 0.001(*5z) - 0.304(%) 020 | 000 | 027 | 007 | 003 | 531 | 076 | 0.61
Hyp So RH, wS, Hg
3.146 | -2 = 0.464 +0.194(2) -0.001(%m) - 0.002(*2x) + 0.003(%im) 026 | 000 | 051 | 010 | 004 | 158 | 059 | 0.41
H, So RH, wS, RF,

()
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Table 3.17 Empirical models based on five variables correlation along with statistical errors for hot and dry climate zone

Eq. : MPE MBE SSRE RSE RMSE
Model Equat . 2
odels | o, | Fauations 6 | o | @ | o | e || T | R
%o = 11,289 +0.042() +0.001(%) - 0.013(2) + 0.002(2) -
3147 | So To REo Fo 020 | 000 | 028 | 007 | 003 | 422 | 079 | 0.65
0.291(H—d)
g:-12+0049() 0001(m) 0.001(%™ m)+0002(m)
3.148 . 021 | 000 | 028 | 007 | 003 | 411 | 080 | 0.65
0.296(;)
g
%9 = 216 +0.18(%) +0.0001(%2) - 0.001(%m) - 0.002(%5m) +
3.149 | Ho So To RHo WSo 010 | -001 | 048 | 009 | 004 | 633 | 069 | 049
0.003(22)
Hg _ s T, ws RF,
-9 =.2.269 +0.207() + 0.002(*) - 0.002(%2m) - 0.009 (%%
Models 3.150 | Ho . ) ) Gy () 013 | 000 | 044 | 009 | 004 | 655 | 068 | 0.49
based on +0.003(;2)
five - °
variables —2=-1.78 +0.051(: ) +0. 001(Tm) +0. 0001(W5m) +0. ooz(”m)
correlation | 3.151 Y 019 | 000 | 029 | 007 | 003 | 424 | 079 | 0.64
0.299(;)
”9—0712+0057() oooz(Tm) 0001(R“m)+00001(W5m)
3.152 Y 021 | 000 | 027 | 007 | 003 | 444 | 078 | 0.64
-0.310(:)
g
”9—0469+0203() oooz(Tm) 0001(R“m) oooz(WSm)
3.153 r 013 | 000 | 044 | 009 | 004 | 683 | 067 | 049
0.003(RFm)
Hg—0677+0085() oooz(Tm) 0001(R“m) 0011(”"1 -
3.154 N 019 | 000 | 028 | 008 | 003 | 446 | 078 | 0.64
0.301(;)
g
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Table 3.18 Empirical models based on six and seven variables correlation along with statistical errors for hot and dry climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. | 0 | 06 | 06 | @) | |7 | R
%9 = 2364 +0.194(2) + 0.0001(%) - 0.001 (Btm) -
Ho So T, RH,
3.155 s o K 010 | 000 | 043 | 009 | 004 | 59 | 0.70 | 0.52
0.002(*5=) - 0.005(%52) + 0.003(2)
WS, RF, Py
%9 = 1,087 +0.036(2) - 0.001(%2) - 0.001(Rm) -
3.156 | ™ > v o -0.22 | 0.00 | 027 | 007 | 003 | 407 | 080 | 0.66
Models 0.011(%=) + 0.002(%2) - 0.299(%2)
based on ° ° 9
Six
variables
correlation 2 = 1,510+ 0.038(2) +0.001(22) + 0.0001(22x) -
3157 | e e ’ -0.21 | 0.00 | 028 | 007 | 003 | 417 | 079 | 0.65
0.013(%%) + 0.002(2) - 0.302(%)
o o g
29 = 0.734 +0.043(2) - 0.003(%=) - 0.001(3%m) +
H, So T, RH,
3158 |0 - ’ -0.22 | 0.00 | 027 | 007 | 003 | 439 | 079 | 0.65
0.0001(*=m) - 0.011(%) - 0.316(=%)
wS, RF, Hy
Models 9 = 1.087 + 0.034(2) - 0.002(%) - 0.001(Rm)
b d —= =-]. + 0. =) -0. m) _ . —m) _
asee on SeVeN | 3159 | o o " o 036 | 001 | 028 | 008 | 003 | 3.77 | 0.79 | 0.64
variables 0.001(*22) - 0.011(32) +0.002(22) - 0.305(%2)
correlation ° ° o g
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From Table 3.14 - Table 3.18, the following can be briefly summarized:
(b) Hot and dry climate zone

Correlation based on seven variables has been observed to be the most
suitable model on the basis of closeness parameters with correlation of
coefficient (r = 0.79) obtained between the clearness index and relative
sunshine duration, wind speed, ambient temperature, relative humidity,
atmospheric pressure, amount of rainfall, cloudiness index.

The coefficient of determination has been observed to be (R? = 0.64)
which mean 64% of the clearness index can be accounted by sunshine hours,
ambient temperature, relative humidity, wind speed, amount of rainfall,
atmospheric pressure and cloudiness index.

The relation between the parameters namely clearness index, relative
sunshine duration, ambient temperature, relative humidity, wind speed, amount
of rainfall, atmospheric pressure and cloudiness index is given by Eq. (3.159)

expressed as:

Hyg _ s T RH,
= -1.087 + 0.034(2) - 0.002(™) - 0.001(;™) -

o

WSm RFq Pm H
0.001( ) - 0.011(; ™) +0.002(%) - 0.305(H—Z) (3.159)

Further, the estimated data values of global solar energy using the derived
correlation have been compared with the measured data values as shown in

Fig. 3.3().
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Table 3.19 Empirical models based on one and two variables correlation along with statistical errors for composite climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - R2
No. | o) | 0 | 0o | e | oo | ] T
3.160 % =0.360 +0.003(2) 1.67 | 0.00 | 058 | 0.13 | 0.05 | 31.70 | 0.30 | 0.13
3.161 % = 1.501 - 0.001(*) 1.98 | 000 | 0.73 | 0.14 | 0.06 | 31.48 | 0.26 | 0.09
Models | 3.162 % =0.670 - 0.405(>%) 0.67 | 000 | 023 | 008 | 0.03 | 428 | 0.78 | 0.62
based on H" g
one 3.163 | - =0.491-0.053(52) 1.67 | 0.00 | 0.60 | 0.13 | 0.05 | 24.80 | 0.39 | 0.21
variable HO >
correlation | 3.164 | -£= 0.692 - 0.003(%™ 1.43 | 0.00 | 047 | 012 | 0.05 | 1442 | 046 | 0.25
3.165 | =2 =0.487 +0.001(4x) 1.80 | 000 | 0.63 | 013 | 0.06 | 38.18 | 027 | 0.11
3.166 ’;—g = 0.367 +0.205(3) 1.24 | 0.00 | 046 | 0.08 | 0.04 | 7.86 | 059 | 0.40
3.167 % = 25.4855 + 0.307(:) + 0.23(:2) 0.48 | 0.76 | 0.00 | 036 | 0.10 | 0.04 | 020 | 0.62
3.168 % =1.580 + 0.18(55) - 0.001(‘;—m) 090 | 0.00 | 0.30 | 0.09 | 0.04 | 7.10 | 0.63 | 0.43
Models ° 2 0
based on | 3.169 % =0.4597 + 0.625(55) + 0.055(%) 049 | 059 | 000 | 019 | 0.07 | 003 | 0.63 | 081
tWO [ o g
variables | 3.170 % =0.397 + 0.176(5) - 0.028(%™) 0.87 | 0.00 | 029 | 0.09 | 004 | 7.77 | 0.62 | 0.43
correlation HO
3171 | -2=0483+ 0.155(51) - 0.001(%) 0.88 | 0.00 | 0.29 | 0.09 | 004 | 7.67 | 0.63 | 0.44
3172 | 22=0301 + 0.177() +0.001(3) 0.84 | 000 | 026 | 0.09 | 004 | 7.65 | 0.60 | 0.45

Ho
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Table 3.20 Empirical models based on three variables correlation along with statistical errors for composite climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models No. Equations %) %) %) %) (%) t-stat r R?
3.173 % =0.527 + 0.131(510) + 0.0001(‘1’3—*:) - 0.278(’;—:) 0.58 | 000 | 0.18 | 0.08 | 0.03 | 476 | 0.76 | 0.59
3.174 % =0.590 + 0.153(510) - 0.001(‘;—*:) + 0.001(%) 0.84 | 000 | 027 | 0.09 | 0.04 | 635 | 0.67 | 0.48
3.175 ﬁ =1615+ 0.172(1) + 0.001(%) - 0.001(P—m) 080 | 0.00 | 026 | 0.09 | 0.04 | 6.42 | 0.66 | 0.47
3176 | £=2312+0. 177( ) 0.002 (% m) 0.002(%= m) 0.86 | 0.00 | 028 | 0.09 | 0.04 | 621 | 0.67 | 0.47
3.177 ”g =0.589 + 0. 138( ) 0. 004(Tm) 0. 301(”d) 056 | 0.00 | 0.18 | 0.07 | 0.03 | 421 | 0.77 | 061
Models | 3-178 ”g =0.584 + 0. 157( ) 0. 004(Tm) 0. 002(R”m) 081 | 0.00 | 026 | 0.09 | 004 | 6.03 | 0.69 | 0.50
bashed on- 13179 ”g =0.449 +0.174( ) +o. 003(Tm) 0. 027(RFm) 0.83 | 000 | 027 | 0.09 | 0.04 | 650 | 0.66 | 0.47
v;ri;et()eles 3.180 H—g =0.432+0. 131( ) 0. 002(Tm) 0. 001(W5m) -332 | -0.02 | 056 | 0.12 | 0.06 | 11.07 | 057 | 0.39
correlation 173 181 2= 0,547 +0.116(2) - 0.001(2) - 0.263(2) 078 | 000 | 0.19 | 008 | 004 | 640 | 0.72 | 056
3.182 —g =0.485+0. 148( ) 0. 001(R”m) +0. 001(W5m) 078 | 0.00 | 025 | 0.09 | 004 | 662 | 0.67 | 048
3.183 H—g = 1.672+0.172(> ) - 0. 023(”'”) 0. 001("m) 0.82 | 000 | 027 | 0.09 | 0.04 | 6.44 | 0.67 | 047
3.184 H—” = 0.498 + 0. 131( ) 0. 020(”'”) 0. 258(“d) 057 | 0.00 | 0.18 | 0.08 | 003 | 509 | 0.74 | 0.58
3.185 H—g = 0.476 + 0. 150( ) 0. 001(RFm) 0. 024(R“m) 082 | 0.00 | 027 | 0.09 | 004 | 7.14 | 0.65 | 0.46
3.186 H—g = 0.398 + 0. 168( ) +0. 001(RFm) 0. 024(W5m) 077 | 0.00 | 025 | 0.09 | 004 | 696 | 0.65 | 047
3.187 H—g = 0.492 + 0. 114( ) +0. 001(W5m) 0. 262(”‘1) -1.70 | -0.01 | 0.37 | 0.09 | 0.04 | 555 | 0.71 | 0.54

o
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Table 3.21 Empirical models based on four variables correlation along with statistical errors for composite climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. | ) | @) | ) | 0o | @ | TR
3.188 % =0.586 +0.136(:) - 0.004(:%) +0.0001(5>x) - 0.284(%%) 051 | 0.00 | 016 | 007 | 0.03 | 433 | 0.78 | 0.62
o o o 0 g
3.189 g =0.593 +0.159(= ) - 0. oos(Tm) 0. 002(%) 0. 031(”'" 0.76 | 000 | 025 | 0.09 | 004 | 572 | 071 | 055
3.190 —g =-0.038 +0.159(> ) - 0. 001(R”m) 0. oz3(”m) +0.001 (& m) 0.78 | 0.00 | 026 | 009 | 004 | 6.00 | 0.69 | 0.50
Hg RH, WS,
Models =0.725+0. 148( ) 0.001(Z™ m) +0.001(5 = m) +
b 3.191 0.74 | 000 | 024 | 008 | 004 |571 | 070 | 051
ased on 0. 0001( )
four
iabl
c\é?:ﬁatfjn 3192 | 22=0723 +0.121(2) - 0.006(%) - 0.001(2) - 0.282(}%) 052 | 000 | 017 | 007 | 003 | 396 | 080 | 0.65
3.193 ”g =0.611 +0. 160( ) 0. oos(Tm) 0. ooz(R”m) +0. 0001(wsm) 312 | 001 | 050 | 010 | 004 | 584 | 071 | 052
3.104 | 22=0.549 +0.113() - 0.001(2)+ 0.001(2x) - 0.249(%) 065 | 000 | 017 | 007 | 003 | 461 | 077 | 0.62
o o o 0 g
3.195 ”g =0.479+0. 144( ) 0. 001(R”m) +0. ool(Wsm) 0. oze(RFm) 054 | 000 | 024 | 009 | 004 | 669 | 0.68 | 0.49
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Table 3.22 Empirical models based on five variables correlation along with statistical errors for composite climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. | 00 | ) | 06 | @) | o | T | R
%9 21421 + 0.141(2) - 0.005(2) - 0.014(%) + 0.0001 (22) -
3.196 6’027 (Hd) So fo Rfo Fo 0.50 | 0.00 | 0.16 | 0.07 | 0.03 | 3.89 | 0.81 | 0.66
”9—0733+0127() 0006(’”) 0001(R”m)+00001(m)
3.197 287 (Hd) 0.49 | 000 | 016 | 0.07 | 0.03 | 379 | 0.81 | 0.67
—2=05+0.16(: ) - 0.004(E =) 0001(R”m)+00001(W5m)+
3.198 00001 (P) 04 |-001 | 026 | 009 | 004 | 467 | 072 | 0.55
Hg_ T, ws RF,
Model 2.546 +0.176(<) - 0.003(2z) + 0.0001(Xx) - 0.026(2x
0% 13109 (5) - 0003() () -002Ge) | 160 | 000 | 022 | 008 | 00s | 530 | 072 | 0sa
based on - 0.002(%)
ﬁV& ”9—1558+0144() 0.004(32) +0.0001(37>2) - 0.001(22) -
variabies | 3200 | Ho 049 | 000 | 016 | 007 | 003 | 394 | 080 | 0.65
correlation 0.294(’:;1)
g
%9 = 0.74 +0.127(2) - 0.007(%=) - 0.001(%=) + 0.0001 (%) -
3.201 gozes(ﬂd) %o o o o 047 (000 | 015 | 013 | 003 |38 | 081 | 0.67
”9—061+0155() 0005(Tm) oooz(RHm)+00001(WSm)
3.202 . (RFm) 0.69 | 0.00 | 022 | 008 | 004 | 524 | 073 | 055
”9—0743+0122() ooo7(Tm) 0001(R“m) 0027(RFm)
3.203 049 | 0.00 | 016 | 0.07 | 003 | 381 | 0.81 | 0.67

0.269(:")
g
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Table 3.23 Empirical models based on six and seven variables correlation along with statistical errors for composite climate zone

Models Eq. Equations MPE | MBE | SSRE | RSE | RMSE tstat r R?

No. (%) | () | (%) | (%) | (%)

Hg _ S T RHp,
H—i =1.370 + 0.155(5—0) - 0-004(?0) - O-OOZ(R—H) +

3.204 WS RFy, P
0.0001(;772) - 0.030(52) - 0.001(%2)

0.65 0.00 0.21 0.08 0.04 4.80 0.75 0.58

H
T =0.735+0.12(3) - 0.006(;7) - 0.001(x) - 0.030(; )

Ho

. . 0.46 | 000 | 015 | 0.07 | 0.03 | 364 | 0.82 | 0.69
+0.0001(2) - 0.274(:¢)
o g

Models 3.205
based on
SiX

variables 20 = 1,920 +0.140(2) - 0.005(C) + 0.0001 (%) -

correlation Ho
3.206 045 | 0.00 | 015 | 0.07 | 003 | 372 | 0.82 | 0.68
0.022(%) - 0.001(2) - 0.283(%4)
RF, P, Hg

39 = 1171+ 0.123(2) - 0.007(%2) - 0.001(Rm) +
Ho So To RH,
3.207 s - ; 045 | 0.00 | 015 | 007 | 003 | 3.68 | 0.82 | 0.68
0.0001(*5m) - 0,029(3%x) - 0.261(%2)
wS, RF, Hy

Models H s - -
based on seven o= 1,008 +0.123(7) - 0.006(;) - 0.001(Fj) +
) 3.208 s " . Y 042 | 000 | 0.14 | 007 | 003 | 348 | 0.83 | 0.71
variables 0.0001(*22) - 0.028(222) + 0.0001(22) - 0.264(2%)
0 0 o g

correlation
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From Table 3.19 - Table 3.23, the following can be briefly summarized:
(©) Composite climate zone

Correlation based on seven variables has been observed to be the most
suitable model on the basis of closeness parameters with correlation of
coefficient (r = 0.83) obtained between the clearness index and relative
sunshine duration, wind speed, ambient temperature, relative humidity,
atmospheric pressure, amount of rainfall, cloudiness index.

The coefficient of determination has been observed to be R? = 0.71
which mean 71% of the clearness index can be accounted by sunshine hours,
ambient temperature, relative humidity, wind speed, amount of rainfall,
atmospheric pressure and cloudiness index.

The relation between the parameters namely clearness index, relative
sunshine duration, ambient temperature, relative humidity, wind speed, amount
of rainfall, atmospheric pressure and cloudiness index is given by Eq. (3.208)

expressed as:

Hg _ s Tin RHp,
722 1,008 + 0.123() - 0.006(2) - 0.001(22) +
WS,

0.0001(27) - 0.028(22) +0.0001(22) - 0.264(22) (3.208)
o o g

Further, the estimated data values of global solar energy using the
derived correlation have been compared with the measured data values as

shown in Fig. 3.3(c).
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Table 3.24 Empirical models based on one and two variables correlation along with statistical errors for moderate climate zone

Models Ed. | gquations MPE | MBE | SSRE | RSE |RMSE| ; R?
No. (%) | (%) | (%) | (%) | (%)
3.209 % = 0.469 +0.001(2) 1.90 | -0.02 | 3.25 | 0.24 | 0.09 | 47.45 | 0.23 | 0.07
3.210 % = -1.954 +0.003(2) 9.04 | 000 | 727 | 032 | 011 | 273.9 | 0.19 | 0.05
Models | 3.211 % =0.591 - 0.324(%) 146 | -0.02 | 285 | 0.22 | 0.08 | 27.28 | 0.47 | 0.30
based on H" g
one 3.212 | -£=0.487+0.034(5™) 227 | -0.02 | 359 | 025 | 0.09 | 51.46 | 0.14 | 0.03
variable HO >
correlation | 3.213 | -£=0.611- 0.002(7~ 207 | -0.02 | 342 | 025 | 0.09 | 37.80 | 0.25 | 0.09
3.214 :—g = 0.479 +0.005(;) 1.97 | -0.02 | 327 | 025 | 0.09 | 5151 | 0.21 | 0.06
3.215 Z—g =0.156 + 0.281(55) 310 | 0.01 | 075 | 012 | 0.04 | 697 | 071 | 053
3.216 % =0.160 + 0.268(=-) + 0.005(2) -0.15 | -0.03 | 229 | 019 | 0.08 | 313 | 053 | 0.35
3.217 % =-0.011+0.292(3) +0.0001(2) -0.07 | -0.03 | 243 | 019 | 0.08 | 9.80 | 056 | 0.36
Models ° 2 0
based on | 3.218 % = 0.426 +0.159(3) - 0.178(3%) -029 | -0.03 | 217 | 0.18 | 0.07 | 19.8 | 058 | 0.41
tWO [ o g
variables | 3.219 % =0.267 +0.282(2) - 0.003(32) 0.06 | -0.02 | 274 | 020 | 0.08 | 165 | 050 | 0.32
correlation HO - -
3.220 | —%=0.369 +0.249(2) - 0.001 (™) -0.01 | -0.02 | 243 | 019 | 0.08 | 136 | 053 | 0.36
3.221 % =0.273 +0.277(z) + 0.003(7>=) -0.07 | -0.03 | 241 | 019 | 008 | 159 | 052 | 0.34
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Table 3.25 Empirical models based on three variables correlation along with statistical errors for moderate climate zone

Models Ed. | Equations MPE | MBE | SSRE | RSE |RMSE| . . ; R?
No. (%) | (%) | (%) | (%) | (%)

3.222 % =0.439 + 0.222(510) + 0.0001(‘1’3—*:) - O.358(Z—:) 1.03 | 0.00 | 0.42 | 0.08 | 0.03 | 3.04 | 0.87 | 0.75

3.223 % =-0.435 + 0.377(510) - 0.002(‘;—*:) + 0.001(%) 1.26 | 0.00 | 052 | 0.09 | 0.03 | 443 | 0.77 | 061

3.224 % = 0.276 + 0.422(510) + 0.004(%) + 0.0001(2—?) 117 | 000 | 061 | 010 | 0.04 | 491 | 0.75 | 0.59

3.225 % =-0.731 + 0.407(510) + 0.002(%) + 0.001(2—7:) 099 | 000 | 042 | 009 | 0.03 | 419 | 079 | 064

3.226 :—g = 0.467 + 0.214(1) + 0.001(T—m) - 0.340(ﬁ) 0.61 | 0.00 | 0.24 | 0.07 0.03 | 301 | 087 | 0.76

Models | 3227 ”g =0.211 +0.369(: ) +0. 003(Tm) 0. 001(R”m) 0.37 | 0.00 | 0.88 | 0.10 | 0.04 | 3.65 | 0.75 | 0.64
bashed on 13228 ’;g =0.180 + 0. 375( ) +0. 003(Tm) 0. 010(”’”) 428 | 001 | 212 | 014 | 0.04 | 552 | 0.74 | 0.59
v;ri;eties 3.229 H—g =0.158 +0.397(= ) +0. 003(Tm) 0. 004(W5m) 1.02 | 0.00 | 043 | 0.09 | 0.03 | 423 | 079 | 0.63
correlation "5 >39 72 = 0.561 + 0.194(2) - 0.001 () - 0.288(2%) 0.64 | 000 | 032 | 008 | 003 | 367 | 082 | 0.69
3.231 —g =0.390 + 0.375(= ) -o. ooz(’”’m) +0. 002(W5m) 1.31 | 0.00 | 055 | 0.09 | 0.03 | 446 | 0.76 | 0.61

3.232 H—g =-0.836 + 0.427(> ) +0. ooz(RFm) +0. 001("m) 0.71 | 0.00 | 0.27 | 0.08 | 0.03 | 477 | 0.76 | 0.60

3.233 —9 =0.502 +0.216(:- ) +0. 001(RFm) 0. 353(“d) 0.41 | 0.00 | 0.14 | 0.06 | 0.03 | 3.01 | 0.87 | 0.76

3.234 —9 =0.395 +0.3( ) +0. 380(RF’") 0. ooz(’”’m) 0.49 | 0.00 | 0.31 | 0.08 | 004 | 418 | 0.77 | 061

3.235 —9 =0.219 + 0. 415( ) +0. 004(RFm) +0. 004(W5m) 0.73 | 0.00 | 0.29 | 0.08 0.03 | 478 | 0.76 | 0.60

3.236 ”i 0.502 +0.203(:- ) +0. 004(W5m) 0. 358(”d) 0.67 | 0.00 | 031 | 0.07 | 003 | 3.07 | 086 | 0.75

71




Table 3.26 Empirical models based on four variables correlation along with statistical errors for moderate climate zone

Models EA. | Equations MPE | MBE | SSRE | RSE | RMSE | ; R?
No. (%) | (%) | (%) | (%) | (%)

3.237 % =0.457 +0.2(3) +0.001(:2) + 0.004(VVVV—SS':) - 0.343(’;—? 058 | 0.00 | 024 | 0.07 | 0.03 | 290 | 0.87 | 0.77

3.238 % =0.353+0.37(5) -0.001(3) - 0.001(%:=) +0.004(3™) 0.58 | 000 | 022 | 0.07 | 0.03 | 367 | 0.82 | 0.69

3.239 Z—z:-0.697+0.381(sio)—0.002(%)+0.020(%)+0.001(’;—':) 061 | 0.00 | 024 | 008 | 003 | 414 | 0.79 | 0.65

20 = 0,125 +0.370() - 0.002(2) +0.002(22) +

Models | 3 549 | fo 125 | 000 | 052 | 009 | 003 | 429 | 077 | 062
P
based on 0,0001(P—m)
four 2
variables Hg _ s T RHy, Hg
correlation | 3241 H—0_0.544+0.181(S—a)+o.001(T—a)-0.001(R—H0)-o.335(H—g) 057 | 0.00 | 023 | 007 | 003 | 271 | 0.89 | 0.79
3.242 %:0.253+0.36(Si)+o.002(§—m)-o.001(%)+o.003(”VVV—S;:) 0.94 | 0.00 | 040 | 0.08 | 003 | 379 | 081 | 0.67
3.243 %20.586+0.168(§)—0.001(%)+0.003(‘:'A//—SS'”)—0.252(Z—d) -1.7 | -0.02 | 051 | 0.09 | 004 | 286 | 0.86 | 0.75
o o o 0 g

3.244 :—j:o.385+0.374(510)-o.ooz(%)+o.003(?v—§:)+0.022(%) 0.49 | 0.00 | 030 | 0.08 | 0.03 | 409 | 0.78 | 0.62
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Table 3.27 Empirical models based on five variables correlation along with statistical errors for moderate climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. | 06 | @) | 00 | o) | e | | " | R
% =0.390 +0.222(3) - 0.001(z%) + 0.001 (%) + 0.0001 (%) -
3.245 0”339(Hd) ° ° ° ° 035 | 000 | 012 | 0.06 | 002 | 274 | 0.89 | 0.79
7 Ny
20 = 0,541+ 0.176() +0.001(22) - 0.001(2) +0.0001 (%) -
3.246 0“339(Hd) ° ° ° ° 054 | 000 | 0.22 | 0.06 | 002 | 261 | 0.88 | 0.80
T Ny
20 = 1,03 +0.35(2) +0.004() - 0.001(2) +0.002(22m) +
3.247 | °° (22) ° ° ° ° 0.95 | 0.00 | 0.41 | 0.09 | 003 | 339 | 0.84 | 0.71
0.001 (&
PO
Hg _ s T, ws RF,
£ =-05+0.3(2) +0.0001(2) + 0.004(>=m) + 0.002(% ™)
Models | 3 opg | o~ T g = K 062 | 000 | 023 | 007 | 003 | 382 | 0.81 | 0.68
based on +0,001(P_m)
five 2
variables % = 1.083 + 0.199(550) + o.ooz(%) + o.oos(“wj—ssr:) - 0.001(‘:—':) -
correlation | 3-249 0.342(1) 0.08 | 0.00 | 0.23 | 0.07 | 003 | 280 | 0.88 | 0.78
Hg
% =0.498 +0.165(2-) + 0.002(22) - 0.001(3) + 0.003(->=)
3.250 "0343(Hd) ° ° ° ° 0.32 | 000 | 030 | 0.07 | 003 | 255 | 0.87 | 0.77
TN
% =0.368 + 0.36(:") - 0.001(3) - 0.001(%) +0.003(5 ")
3.251 | ° o(2) ° ° ° ° 375 | 002 | 061 | 0.10 | 0.05 | 533 | 0.80 | 0.67
+0.006 (Xim
RF,
% =0.589 +0.185(=) - 0.001(32) - 0.001(%) +0.002(7™) -
3.252 | ° ° ° ° ° 034 | 000 | 012 | 005 | 002 | 257 | 090 | 0.81

0.333(34)
g
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Table 3.28 Empirical models based on six and seven variables correlation along with statistical errors for moderate climate zone

Models Eq. Equations MPE | MBE | SSRE | RSE | RMSE tstat r R?

No. (%) | () | (%) | (%) | (%)

%9 = 1188 +0.359(2) - 0.001(%2) - 0.001(Rtm) +
Ho So T, RH,

3.253 ws i . 0.53 | 0.00 | 021 | 0.07 | 003 | 346 | 084 | 071
0.003(5>) + 0.005(%) + 0.002(22)

Hg _

0.258 +0.183(5) + 0.0001(:2) - 0.001(5=) +

Hyp
3.254 031 | 0.00 | 011 | 005 | 0.02 | 247 | 090 | 0.82
bMO‘:'je's 0.003(2) +0.0001(22) - 0.336(32)
ased on

SiX

variables % 209+021(2 ) +0.0001(;) +0.004(3>x) +0.002(7)

correlation | 3 555 . . 033 | 000 | 012 | 005 | 002 | 264 | 0.89 | 0.80
¥ 0.0001(P—m) - 0.340(%)
o g

20 = 0545+017(2 ) +0.0001() - 0.001(5z) +

3.256 0.32 | 0.00 | 012 | 0.05 | 0.02 | 246 | 090 | 0.82
0.003(>>) +0.003(7) - 0.339(3<)
0 o g
Models H - -
based on seven Hg—0447+017( 2) +0.0001 (2 m) 0.001(Z™ m) +
) 3.257 s . . Y 0.25 | 0.02 | 478 | 0.05 | 0.05 | 480 | 090 | 081
variables 0.003(22) +0.004(22) +0.0001(22) - 0.340(%2)
0 0 o g

correlation
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From Table 3.24 - Table 3.28, the following can be briefly summarized:
(d)  Moderate climate zone

Correlation based on seven variables has been observed to be the most
suitable model on the basis of closeness parameters with correlation of
coefficient (r = 0.90) obtained between the clearness index and relative
sunshine duration, wind speed, ambient temperature, relative humidity,
atmospheric pressure, amount of rainfall, cloudiness index.

The coefficient of determination has been observed to be R? = 0.81
which mean 81% of the clearness index can be accounted by sunshine hours,
ambient temperature, relative humidity, wind speed, amount of rainfall,
atmospheric pressure and cloudiness index.

The relation between the parameters namely clearness index, relative
sunshine duration, ambient temperature, relative humidity, wind speed,
amount of rainfall, atmospheric pressure and cloudiness index is given by

Eq. (3.257) expressed as:

89 = 0.447 + 0.27(2) + 0.0001(Z2) - 0.001 (™) +
Hy So To RH,

0.003(2) + 0.004(=22) + 0.0001(22) - 0.340(22) (3.257)
o o g

WS,

Further, the estimated data values of global solar energy using the
derived correlation have been compared with the measured data values as

shown in Fig. 3.3(d).
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Table 3.29 Empirical models based on one and two variables correlation along with statistical errors for cold and cloudy climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - R2
No. | o | ) | @) | o | o) | T
3.258 % =-0.121 +0.032() 6.77 | 0.00 | 3.08 | 030 | 0.09 | 17.23 | 0.41 | 0.21
3.259 % =4.069 + 0.005(72) 9.77 | 000 | 637 | 041 | 010 | 52.24 | 0.19 | 0.06
Models | 3.260 % =0.729 - 0.563(>%) 475 | 000 | 244 | 025 | 007 | 843 | 0.70 | 0.77
based on H" g
one 3.261 | -%=0.453-0.007(52) 833 | 000 | 483 | 035 | 0.10 | 32.65 | 0.30 | 0.13
variable HO °
correlation | 3.262 | -£=1.059 - 0.008(%:™ 5.86 | 0.00 | 276 | 028 | 0.08 | 7.89 | 0.58 | 0.36
3.263 :—g =0.396 +0.013(;) 878 | 000 | 559 | 0.39 | 0.10 |[110.60| 0.22 | 0.09
3.264 Z—g =0.239 + 0.586(55) 1.09 | -0.01 | 1.73 | 0.20 | 0.07 | 1252 | 0.67 | 0.49
3.265 % =0.097 + 0.364(52) + 0.009(TT—m) 259 | 0.00 | 0.94 | 016 | 006 | 596 | 0.72 | 0.55
3.266 % =-2.025 + 0.375(52) + 0.003(’;—7") 347 | 0.00 | 147 | 018 | 0.07 | 598 | 069 | 0.51
Models ° 2 0
based on | 3.267 % =0.480 +0.245(>) - 0.296(3%) 200 | 000 | 076 | 015 | 0.05 | 441 | 0.78 | 0.62
tWO [ o g
variables | 3.268 % =0.257 +0.372(z) + 0.001(5™) 329 | 000 | 1.34 | 018 | 007 | 6.05 | 070 | 0.52
correlation HO
3.269 | -2=0.404 + 0.339(51) - 0.002(%) 069 | -001 | 1.09 | 017 | 006 | 560 | 0.73 | 0.56
3270 | 2220230+ 0.376(:") + 0.005(>=) 251 | 000 | 096 | 016 | 0.06 | 557 | 0.72 | 0.55

Ho
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Table 3.30 Empirical models based on three variables correlation along with statistical errors for cold and cloudy climate zone

Models Ed. | Equations MPE | MBE | SSRE | RSE | RMSE | ; R?
No. (%) | (%) | (%) | (%) | (%)

3.271 % =-1.645 + 0.246(510) + 0.003(‘1’3—*:) - o.287(z—:) 1.92 | 000 | 071 | 014 | 0.05 | 421 | 0.79 | 0.64

3.272 % =-0.429 + 0.336(550) - 0.002(‘1’3—*:) + 0.001(%) 237 | 000 |08 | 015 | 0.06 | 485 | 0.75 | 0.59

3.273 % =-1.734 + 0.375(510) + 0.005(%) + o.ooz(Z—T:) 252 | 000 | 092 | 016 | 006 | 523 | 0.74 | 0.57

3.274 % =-3.537 + 0.366(510) + 0.008(TT—’:) + 0.004(%") 250 | 000 | 089 | 016 | 006 | 526 | 0.74 | 0.57

3.275 :—g =0412 + 0.253(55—0) + 0.003(%) - 0.270(5—:) 184 | 000 | 0.66 | 0.13 | 0.05 | 425 | 0.79 | 0.64

Models 3.276 :—g =0.459 + 0.342(;—0) + 0.001(%) - 0.002(%) 233 | 000 | 081 | 015 | 006 | 495 | 0.75 | 0.59
based on | 3277 % =0.122 + 0.363(550) + 0.008(TT—T:) + 0.001(%) 247 | 000 | 091 | 016 | 006 | 540 | 0.73 | 057
v;?i;esles 3.278 % =0.103 + 0.363(550) + 0.007(7;—75) + 0.004(%) 224 | 000 | 076 | 015 | 0.06 | 519 | 0.74 | 0.58
correlation 3.279 % =0.605 + 0.221(520) - 0.002(%) - 0.226(’;—:) 1.87 | 0.00 | 0.66 | 0.14 | 0.05 | 411 | 0.79 | 0.65
3.280 % =0.430 + 0.338(510) - 0.002(%) + o.ooz(VVVV—S;:) 229 | 000 | 082 | 015 | 006 | 480 | 0.76 | 0.61

3.281 % =-2.620 + 0.371(510) + o.oom(%) + 0.003(’;’,—':) 322 | 000 | 131 | 017 | 006 | 561 | 0.68 | 0.54

3.282 % =0.465 + 0.248(510) + 0.001(%) - 0.279(2—:) 190 | 0.00 | 0.72 | 0.14 | 0.05 | 422 | 0.79 | 0.64

3.283 % =0.445 + 0.336(510) - 0.002(%) + 0.002(%) 236 | 000 | 093 | 016 | 0.06 | 488 | 0.75 | 0.59

3.284 % =0.228 + 0.374(510) + 0.005(%) + o.ooz(VVVV—SS*:) 250 | 000 | 093 | 016 | 0.06 | 521 | 0.74 | 0.57

3.285 % =0.459 + 0.263(510) + o.oo4(VVVV—SS':) - 0.280(';—:) 2.85 | 000 | 074 | 015 | 0.06 | 402 | 0.79 | 0.64
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Table 3.31 Empirical models based on four variables correlation along with statistical errors for cold and cloudy climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. | @ | @) | 0 | @) | o || " | R
3.286 % =0.390 + 0.247(=) + 0.004(:2) +0.004(:>=) - 0.263(7%) 223 | 000 | 062 | 014 | 005 | 400 | 0.80 | 0.66
o o o 0 g
3.287 % =0.492 + 0.342(51) - 0.001(7;—*") - 0.002(%) + 0.001(%) 221 | 000 | 083 | 015 | 006 | 465 | 0.77 | 0.61
3.288 % =-0.688 + 0.337(51) -0.002(3) +0.001(5) +0.001(*%) | 2.96 | 0.00 | 091 | 016 | 0.06 | 466 | 0.77 | 0.61
b'r;::jec')sn 3.289 Z—g = -0.473 +0340() - 0.002(5) +0.003(;7=) +0.001(22) | 220 | 0.00 | 0.77 | 015 | 006 | 449 | 077 | 0.62
four
variables Hy s - R -
correlation | 3290 | 2 = 0.682+0.239(7) - 0.002(3) - 0.002(x) - 0.258(;%) 207 | 000 |061 | 014 | 005 | 393 | 0.81 | 0.67
3.291 % =0.429 +0.343() +0.001(2) - 0.002(5) +0.002(7=) | 212 | 0.00 | 071 | 015 | 0.06 | 458 | 0.77 | 0.61
3.292 % =0.587 + 0.221(51) -0.002(3) + 0.003(VVVV—SSm) -0.263(34) 1.75 | 000 | 062 | 014 | 005 | 3.82 | 0.81 | 0.67
o o o 0 g
3.293 % =0.420 + 0.341(51) - o.ooz(%) + o.oos(VVVV—Ssm) + o.ooz(%) 221 | 000 | 084 | 015 | 006 | 462 | 0.77 | 0.61

()
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Table 3.32 Empirical models based on five variables correlation along with statistical errors for cold and cloudy climate zone

Eqg.

MPE

MBE

SSRE

RSE

RMSE

Models Equations - 2
No. | ) | 06 | o0 | 06 | o || T | R
%9 = 259 +0.252(2) + 0.002(z) +0.0001(%%z) + 0.004(2x)
3.294 | Ho So To RFo Fo -143 |-0.01 | 086 | 014 | 006 | 356 | 0.81 | 0.67
-0.268(H—“)
—g--0394+0244() 0004(m) 0.002(3~ m)+0001( m)
3.295 . 585 | 0.02 | 1.30 | 0.13 | 0.06 | 427 | 081 | 0.67
0.256(,;)
g
%9 2 0.19 + 0.34(2) - 0.001(%) - 0.002(38m) + 0.003(%5m) +
3296 | Ho So To RH, WSo 577 | 001 | 121 | 018 | 007 | 488 | 0.78 | 0.62
0.0001(7)
g—-275+036 +0.006(:2) + 0.005(322) +0.0001(52
Models | 3 597 . ) G G Gd | 25 | 001 | 130 | 018 | 008 | 446 | 076 | 05
based on +0,003(Pm)
five - 2
variables —2=-1.861 +0.248(: ) +0. ooz(Tm) +0. 004(W5m) +0. oos(”m)
correlation | 3-298 _0256(,:) 1.72 | 000 | 057 | 013 | 005 | 375 | 0.81 | 0.68
”9—0651+0234() 0001(Tm) oooz(R“m)+ooos(Wsm)
3.299 Y 161 | 0.00 | 054 | 013 | 005 | 367 | 0.82 | 0.68
0.256( a)
Hg
29 = 0.46 +0.34(2) +0.0001(%) - 0.002(Rm) + 0.002(*5m) +
3300 | Ho So To RH, WSo 1.94 [ 000 | 072 | 014 | 005 | 437 | 078 | 0.63
0.001 (8%m)
RF,
”9—o7+024() 0003(Tm) oooz(R“m)+00001(RFm)
3.301 1.65 | 0.00 | 057 | 013 | 005 | 369 | 0.82 | 0.68

0.253(:d)
g
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Table 3.33 Empirical models based on six and seven variables correlation along with statistical errors for cold and cloudy climate zone

Models Eq. Equations MPE | MBE | SSRE | RSE | RMSE tstat r R?

No. (%) | () | (%) | (%) | (%)

H
H—i =-0.495 + 0.35(510) - 0.003(%) - o.ooz(%) +

3.302 s o ; 199 | 000 | 071 | 014 | 005 | 424 | 079 | 0.64
0.003(W—50)+ 0.001(R—FO) + 0.001(5)
%9 = 0718+ 0.246(2) - 0.004(%=) - 0.002(Rm) +
3.303 | " So K Ko 162 | 000 | 056 | 013 | 005 | 357 | 083 | 0.69
Models 0.0001(*) + 0.0001(%) + 0.002(*)
based on RFo Po Hy
SiX
variables Hg _

lati —2=-2.175 +0.246() + 0.002() +0.004(7 ) +
correlation | 3304 |0 ’ " o 350 | 001 | 070 | 0.21 | 005 | 413 | 082 | 0.69
00001(—"‘) + 0003(_m) - 0'257( d)

RF, Py Hg

89 - 0.675 +0.219(2) - 0.002(E=) - 0.002(3m) +
H, S, T, RH,
3305 | o . o ° 019 | -0.01 | 058 | 013 | 005 | 350 | 0.82 | 0.69
0.002(*%) + 0,001 (%) - 0.255(%2)
(1] o g

Models H s T -
based on seven —£=-0.547 +0.241(;") - 0.004(37) - 0.002(7;™) +
) 3.306 | ° ¢ - ° o 150 | 0.00 | 050 | 0.12 | 005 | 342 | 084 | 0.71
variables 0.003(22) +0.0001(2%) +0.001(22) - 0.256(%¢)
0 0 o g

correlation
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From Table 3.29 - Table 3.33, the following can be briefly summarized:
()  Cold and cloudy climate zone

Correlation based on seven variables has been observed to be the most
suitable model on the basis of closeness parameters with correlation of
coefficient (r = 0.84) obtained between the clearness index and relative
sunshine duration, wind speed, ambient temperature, relative humidity,
atmospheric pressure, amount of rainfall, cloudiness index.

The coefficient of determination has been observed to be (R? = 0.71)
which mean 71% of the clearness index can be accounted by sunshine hours,
ambient temperature, relative humidity, wind speed, amount of rainfall,
atmospheric pressure and cloudiness index.

The relation between the parameters namely clearness index, relative
sunshine duration, ambient temperature, relative humidity, wind speed,
amount of rainfall, atmospheric pressure and cloudiness index is given by

Eq. (3.306) expressed as:

Hyg _ s T RH,
= -0.547 +0.241(7) - 0.004(") - 0.002(™) +

o

0.003(- ™) + 0.0001(> ™) + 0.001(-2) - 0.256(%) (3.306)
o o g

WS,

Further, the estimated data values of global solar energy using the
derived correlation have been compared with the measured data values as
shown in Fig. 3.3(e).

The developed models have been further processed based on principal
component analysis to obtain the correlation with highest correlation
coefficients using one, two, three, four, five and six variables correlation and
the performance of the models have been evaluated based on statistical

error-tests and are illustrated in Table 3.34 - Table 3.36.
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Table 3.34 Empirical correlations alongwith statistical errors for warm and humid & hot and dry climate zone across India

MPE MBE RMSE

Climate Zone |Eq. No. | Models/Equations (%) (%) (%) r R?
367 | -2£=0.259 +0. 321(= ) 1.52 0.00 0.05 0.77 0.62
3.71 % =0.551 + 0.107(5—) - 0.265(%) 1.51 0.00 0.04 0.89 0.79
o [ g
3.75 % =0.683 + 0.063(51) +0.0001(32) - 0.332(7%) 2.95 0.01 0.04 0.89 0.80
o o o 9
Chennai 3.94 ﬁ =0.530 + 0. 048(1) +0. 004(T—m) -0. 001(%) - 0.330(”—d) 0.48 0.00 0.04 0.91 0.82
(V\r/]arm gl)nd 3103 | —£=0.508 +0. 05(z ) +0. 003 (L =) +0. 003(R”m) +0. 0001(W5m) 0. 333(”d) 1.40 0.00 0.03 0.91 0.83
umi
%9 - 0.938+0. 073(= ) +0. 002(m Z)+0. 003(W5m) +0.001(52 m) +0. 0001( ) -
3.108 0.86 0.00 0.03 0.93 0.86
0 304(
”g =0. 945 +0.072(> ) +0. 003(Tm) +0. 0001(R”m) + 0. 003(W5m) +0. 001("m)
3.110 . . 1.93 0.00 0.04 0.93 0.87
+ 0.0001(;) 0.300(;)
3.113 @ =0.656 - 0.352(ﬂ) -0.04 0.00 0.03 0.71 0.54
3.120 ”g =0.587 +0.069(:- ) -0. 307(”d) -0.08 0.00 0.03 0.70 0.55
3.128 ”g =0.541 +0.073(= ) +0. 001(Tm) 0. 293(”d) -0.14 0.00 0.03 0.77 0.62
3.139 ”" =0.543 +0.067(:- ) +0. 001(Tm) +0. 0001(W5m) 0. 305(”d) -0.13 0.00 0.03 0.77 0.62
Jodhpur
(Hot an% dry) | 3.151 ”g =-1.78 +0.051( ) +0. 001(Tm) +0. 0001(W5m) +0. ooz( ™) - 0. 299(’“) -0.19 0.00 0.03 0.79 0.64
”g =-1.087 +0.036(: ) 0. 001(Tm) 0. 001(R“m) 0. on(”m) +0. ooz(”m)
3.156 Y -0.22 0.00 0.03 0.80 0.66
o 299( d)
”g =-1.087 +0.034(: ) 0. ooz(Tm) 0. om(”’m) 0. 001(Wsm) 0. 011(RFm) +
3.159 -0.36 -0.01 0.03 0.79 0.64

0.002(‘;;:) 0.305(::)
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Table 3.35 Empirical correlations along with statistical errors for composite and moderate climate zone across India

MPE MBE RMSE

Climate Zone | Eq.No. | Models/Equations (%) (%) %) r R?
3.162 % =0.670 - 0.405(’;—:) 0.67 0.00 0.03 0.78 0.62
3.169 % = 0.4597 + 0.625(1) + o.o55(ﬂ) 0.49 0.59 0.07 0.63 0.81
3.177 ”g =0.589 + 0. 138( ) - 0.004 (1 m) 0. 301(”d) 0.56 0.00 0.03 0.77 0.61
Delhi 3.192 ”g =0.723+0.121(= ) -0.006 (% m) 0. 001(R”m) 0. 282(””’) 0.52 0.00 0.03 0.80 0.65
(Composite) 3.201 H—g =0.74+0.127(2) - 0.007(%) - 0.001 (%) +0.0001(522) - 0.268(;) 047 | 000 | 003 | 081 | 067
3.205 ”g = 0.73+0.120( )-0. 006(Tm) 0. 001(R”m) 0. o30(”m)+o 0001(”m) 0. 274(”d) 0.46 0.00 0.03 0.82 0.69

”g =1.008 +0.123(> ) -0. 006(Tm) 0. 001(R”m) +0. 0001(W5m) 0. ozs(RFm) +
3.208 80001 (Pm) 0,264 (Hd) 0.42 0.00 0.03 0.83 0.71
3215 | 22=0.156+0. 281( ) 3.10 0.01 0.04 0.71 0.53
3.218 ”" =0.426 + 0. 159( ) 0. 178(”d) -0.29 -0.03 0.07 0.58 0.41
3.222 ”9 =0.439 +0.222(= ) +0. 0001("m) 0. 358(“d) 1.03 0.00 0.03 0.87 0.75
Pune 3.243 ”g =0.586 + 0.168(> ) -o0. 001(R”m) +0. 003(W5m) 0. 252(’“) -1.71 | -0.02 0.04 0.86 0.75
(Moderate) 3.252 o = 0589 +0.185(5) - 0.001(%) - 0.001(%2) + 0.002(2%) - 0.33(2%) 034 | 000 | 002 | 090 | 081
3255 | L= 0.9+o.21(5—)+o.0001(TT—m)+o.004(VVVV—SS*'1)+0.002(%)+o.0001(§’,—m)-o.34(%) 033 | 0.00 0.02 0.89 0.80

Hg —

= 0447 +0.17( ) +0. 0001(Tm) 0. om(”’m) +0. oo3(WSm) +0. 004(RFm) +

3.257 | Ho o 0.25 0.02 0.05 0.90 0.81

0.0001(%) - 0.34(%2)
P, Hg
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Table 3.36 Empirical correlations along with statistical errors for cold and cloudy climate zone across India

MPE

MBE

RMSE

. . 2
Climate Zone | Eq. No. | Models/Equations (%) (%) (%) r R
3.260 % =0.729 - 0.563(%) 4.75 0.00 0.07 0.70 0.77
o g
3.269 % = 0.404 +0.339(3) - 0.002(5~ 0.69 -0.01 0.06 0.73 0.56
3.279 % = 0.605 +0.221(3) - 0.002(5~) - 0.226(>%) 1.87 0.00 0.05 0.79 0.65
o o o g
Shillong u
(Cold and 3.286 | -2=0390+ 0.247(:) + 0.004(2) + 0.004(5>=) - 0.263(32) 2.23 0.00 0.05 0.80 0.66
cloudy) ° ° ° ° .
3299 | 22=0.651+0.234() - 0.001(Zz) - 0.002(%) + 0.003(%z) - 0.256(%) 1.61 0.00 0.05 0.82 0.68
Hp So To RH, WS, Hy
%9 = 0718 + 0.246(2) - 0.004(%) - 0.002(%=) +0.0001 (™) +0.0001(22) +
3303 | fo So To ° o o 1.62 0.00 0.05 0.83 0.69
0.002(3%)
g
29 = 0547 +0.241(2) - 0.004(2) - 0.002(%m) + 0.003(*2x) + 0.0001(Rim) +
3.306 |” So To RHlo S0 Rfo 1.50 0.00 0.05 0.84 0.71

0.001(‘;—1:) - 0.256(:—:)
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It has been concluded from Table 3.34 - 3.36 that the correlations

based on seven variables provides accurate model with highest values of (r)

and (R?) for each of the climate zones across the entire country. Further, the

graphical representation has been shown in Fig. 3.3 for distinct climate zone.
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Fig. 3.3 Graphical representation of measured and estimated global solar energy for

empirical models (a) Chennai (b) Jodhpur (c) Delhi (d) Pune and (e) Shillong

It has been observed from Fig. 3.3 that for composite climate zone, an

excellent match has been noticed between the measured and estimated data.

3.8

COMPARISON OF PROPOSED MODEL WITH OTHER
MODELS

The proposed model is further compared with other well-established

models available in the literature and is presented in Table 3.37.
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Table 3.37 Comparison with other well-established models

- MP
Models Eq. No. | Equations/Models (%)E I\(/:,/BO)E R(I\:I/OS)E
”9 =0.945 +0.072(= ) +0. oos(Tm) +0. 0001(RHm) +0. oos(WSm) +0. 001(”'“) +
3.110 . o 1.93 0.00 0.04
0.0001(;:) o.3oo(H:)
Hg s T, RH, WS, RF, P,
-2 =.1.087 + 0.034(2) - 0.002(%) - 0.001(2%m) - 0.001(%3m) - 0.011(252) + 0.002(22) -
3169 | fo G ) ) G G &) -0.36 -0.01 0.03
0.305(H—g)
Hg s T, RH. WS, RF, P,
29 =1.008 + 0.123(%) - 0.006(2) - 0.001(2%m) + 0.0001 (%) - 0.028(%) + 0.0001(22) -
Proposed Model 3.208 | fo (So) (TO) (R”a) (WSO) (RFO) (”o) 0.42 0.00 0.03
0.264(%<)
g
29 =0.447 + 0.17(2) +0.0001(%2) - 0.001 (%) + 0.003(%2) + 0.004(2z) + 0.0001 (%) -
3267 |fo ) ) ) G ) ) 0.25 0.02 0.05
0.340(H—g)
Hg _ s T, RH, ws, RF, P,
29 = .0.547 + 0.241(2) - 0.004(%) - 0.002(2) + 0.003(%2) + 0.0001 (%) + 0.001 (2
3.306 | fo u ) ) ) G ) ) 1.50 0.00 0.05
-0.256(—")
Angstrom- Prescott Model | 3.307 H“’ =0.0801 + 0. 709( ) 96.06 15.62 16.54
Rietveld Model 3.308 | 22=0.18+0.62(> ) 35.71 4.80 5.21
Page Model 3.309 ”" =0.23+0. 48( ) 25.90 3.32 3.52
Akdnoglu and Ecevit 3310 | 22=0.145+0.845(5) - 0.28(5)’ 3247 | 415 | 436
Bahel Model 3311 | 22=0.16+0.87(> ) - 0.16(2) + 0.34(2)* 5324 | -6.51 7.69
Newland Model 3312 |22 2=034-04(5) + 017 log(3) 88.87 | 1672 | 1854
Abdalla Model 3.313 ”9 =0.5289 + 0.459(=- ) +0. 004073(Tm) 0. 006481(R”m) -93.19 | -14.40 | 15.40
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The results of statistical error-tests reveal that the proposed model is
accurate as compared to other models with mean percentage error of 1.93%
for warm and humid climate (Chennai), 0.36% for hot and dry climate
(Jodhpur), 0.42% for composite climate (Delhi), 0.25% for moderate
climate (Pune) and 1.50% for cold and cloudy climate zone (Shillong). The
obtained results indicate a good agreement between the measured and

estimated data in comparison to other well-established models.
3.9 CONCLUSION

In the present work, 40 sunshine-based models with linear and non-
linear correlations have been established using sunshine hour as a
meteorological parameter for five meteorological stations that represents
distinct climate zone across India. It has been concluded from the obtained
results that the weakest fit is achieved for warm and humid climate zone with
the largest difference between the best and worst determination coefficients
and the best fit is obtained for composite climatic zone with the smallest
difference between the best and worst determination coefficients.

Further, in this work, 245 empirical models have been established
correlating global solar energy with other parameters namely sunshine hours,
relative humidity, ambient temperature, wind speed, atmospheric pressure,
amount of rainfall and cloudiness index using multiple regression analysis for
five weather stations across India. The regression and correlation coefficients
for each model has been calculated and presented. The developed models have
been further processed based on principal component analysis to obtain the
correlation with highest correlation coefficients. The performance of the

models has been evaluated using statistical error-tests. It has been concluded
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from the statistical analysis that the correlations which incorporate seven
variables has emerged to be accurate and shows a good agreement between
measured and estimated data making it useful for estimating solar energy in
each climate zones across the country. Further, the proposed model have been
compared with well-established model available in the literature and the
results of statistical error-tests reveal that the models presented are accurate
and have reasonable estimation errors. It has been concluded from statistical
analysis that the meteorological parameters considered made a strong
influence on estimating global solar energy. Also, the geographical parameters
tend to effect global solar energy and have a strong influence on it. Therefore,
in this research, the models being proposed could be successfully used for
estimating global solar energy in distinct climate zone across India and

elsewhere with similar climatic conditions.
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CHAPTER 4

FUZZY LOGIC APPROACH FOR ASSESSING
SOLAR ENERGY

4.1 INTRODUCTION

This chapter presents a model employing fuzzy logic approach to
forecast global solar energy based on sky-conditions namely sunny sky (type-a),
hazy sky (type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy
sky (type-d) conditions. Meteorological parameters include dew-point along
with other available parameters namely duration of sunshine hours, wind speed,
global solar energy, relative humidity and ambient temperature. Simulations
have been carried out for distinct climate zone across India such as composite
(Delhi), warm and humid (Chennai), hot and dry (Jodhpur), cold and cloudy
(Shillong) and moderate (Pune) climate zone. Also, the comparison of the
proposed model has been made with the empirical models using statistical
indicators for each of the climate zones across the country. Further, the
developed model has been implemented for solar photovoltaic system under

composite climatic conditions.

This chapter is based on the following published papers:

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Intelligent model for solar energy
forecasting and its implementation for solar photovoltaic applications,” Journal of
Renewable and Sustainable Energy, AIP, Vol. 10, No. 6, Article ID. 063702, pp.
1-23, 2018. ISSN No. 1941-7012, Impact factor: 1.337, SCI Expanded.

2. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Fuzzy logic modelling and its solar
thermal applications,” Proceedings of 2" IEEE International Conference on Power
Electronics, Intelligent Control and Energy Systems (ICPEICES-2018), October
22-24, 2018, Delhi Technological University, Delhi, India.
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42 SOLAR ENERGY FORECASTING AND ITS NECESSITY

Solar energy is one of the most important parameter for solar energy
based research and applications but the measuring equipment’s are unavailable
in most of the meteorological sites because of the high cost of instruments and
limited spatial coverage. Therefore, forecasting global solar energy is essential
for these stations where measurements have not been done with aid of
meteorological parameters.

Most of the grid-interactive solar PV plants are built using photovoltaic
technology. However, because of variation in sky-conditions, the system output
is stochastic and non-deterministic. Therefore, accurately forecasting global
solar energy is essential in different sky-condition as the power output of the
solar system has been greatly influenced by the presence of environmental
factors such as dust, moisture, cloud and atmospheric temperature differences.
Most of the previous researches provided a forecasting tool for estimating PV
power output with reasonable accuracy. Some of them were based on Markov
chain, Auto Regressive (AR) and Auto Regressive Moving Average (ARMA).
However, such non-deterministic model shows inaccuracy and relatively
observed with large errors because they are based on probability estimation.
Moreover, global solar energy forecasting using these models is a tedious task
as it depends on the mathematical formulation. These drawbacks can be
overcome by using intelligent models for forecasting global solar energy. In
many previous researches, intelligent modelling techniques have been discussed
such as fuzzy logic modelling which is applied to meteorology [76]. Many deals
with meteorological estimations such as atmospheric circulation pattern by

fuzzy c-mean, micro-grid planning on fuzzy interval modes, fuzzy classification
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of clouds [77-85]. Many models based on fuzzy logic techniques have been
proposed using meteorological parameters namely ambient temperature and
cloudiness index for forecasting global solar energy [86-87]. Most of the models
discussed in the literature were confined to clear sky-conditions; however, very
few literature is available that discussed about modelling based on different sky
conditions such as sunny/clear, hazy, foggy and cloudy sky-conditions for
estimating global solar energy by using fuzzy logic based model.

This chapter aims to develop model based on sky-conditions using
intelligent modelling techniques to forecast global solar energy which is
classified as sunny and clear sky (type-a), hazy sky (type-b), partially
foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions by
using meteorological parameters for five weather stations representing different
climatic conditions across India. The performance of the model has been
measured with aid of statistical error-tests. Further, the results obtained by
employing fuzzy logic modelling have been used for 210 W, Heterojunction
with Intrinsic Thick (HIT) layer solar photovoltaic (PV) modules in forecasting
power of the solar PV system at Maximum Power Point Tracking (MPPT)
conditions. Lastly, comparative analysis has been made with regression models

to verify for the accuracy and supremacy of the proposed model.
43 METEOROLOGICAL DATA
4.3.1 Compilation and Normalization/Scaling of Data

In this chapter, the recorded hourly averaged data (2006-2016) have
been obtained from Indian Meteorological Department (IMD), National Institute
of Solar Energy (NISE) and in collaboration with National Institute of Wind
Energy (NIWE) and are presented in Table 4.1 - Table 4.5 [88].
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Table 4.1 Measured and scaled data for composite climate zone

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point
Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)

Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 7.854 0.665 15.406 0.342 63.990 0.461 16.061 0.452 3.200 0.308 7.585 0.520
February 7.936 0.594 30.206 0.610 59.940 0.448 21.551 0.667 3.835 0.420 9.067 0.379
March 7.338 0.715 37.413 0.478 40.996 0.497 26.793 0.439 3.982 0.359 11.481 0.686
April 9.220 0.718 40.810 0.671 21.083 0.510 34.213 0.551 4.187 0.469 10.837 0.396
May 8.848 0.645 36.325 0.590 34.658 0.433 35.076 0.591 4.276 0.406 15.296 0.598
June 7.604 0.577 32.239 0.630 47.960 0.552 34.916 0.477 4.111 0.433 21.934 0.550
July 4.740 0.375 24.584 0.529 78.492 0.531 30.317 0.508 2.995 0.504 25.920 0.623
August 5.934 0.524 28.998 0.554 81.261 0.427 29.801 0.532 3.552 0.500 26.092 0.571
September 6.683 0.550 34.356 0.655 61.926 0.323 31.235 0.631 3.080 0.394 22.766 0.408
October 9.329 0.713 31.284 0.651 43.948 0.342 29.867 0.548 3.156 0.441 15.409 0.387
November 7.197 0.547 25.436 0.601 40.824 0.259 24.263 0.708 2.932 0.398 8.881 0.375
December 5.807 0.597 23.105 0.719 61.105 0.417 19.211 0.588 2.784 0.384 10.089 0.411
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Table 4.2 Measured and scaled data for warm and humid climate zone

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point
Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)

Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 8.939 0.701 36.723 0.627 66.306 0.459 27.605 0.653 4.429 0.417 16.658 0.657
February 9.745 0.768 42.053 0.542 68.185 0.571 28.801 0.535 4.581 0.487 21.796 0.724
March 9.048 0.660 42.904 0.785 68.902 0.483 29.660 0.717 5.552 0.468 23.517 0.615
April 9.370 0.610 45.108 0.420 70.923 0.546 31.212 0.734 7.452 0.479 25.548 0.683
May 8.826 0.626 38.886 0.704 58.133 0.568 32.210 0.686 6.152 0.573 20.613 0.701
June 7.607 0.642 31.346 0.536 50.155 0.542 31.505 0.609 5.207 0.427 15.379 0.510
July 6.768 0.554 34.562 0.563 64.267 0.552 31.148 0.515 5.402 0.429 22.659 0.718
August 5.235 0.535 33.742 0.632 61.215 0.453 31.504 0.593 5.326 0.571 16.880 0.640
September 6.160 0.582 32.469 0.592 68.075 0.443 30.529 0.612 4.587 0.535 21.678 0.705
October 6.942 0.598 35.381 0.661 61.848 0.413 30.606 0.665 4.148 0.456 18.109 0.616
November 6.778 0.607 34.611 0.623 67.610 0.502 28.215 0.729 4.937 0.453 17.324 0.646
December 7.295 0.624 29.994 0.677 74.825 0.501 26.883 0.721 5.676 0.209 17.882 0.646
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Table 4.3 Measured and scaled data for hot and dry climate zone

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point
Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)

Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 9.226 0.683 29.401 0.706 52.680 0.396 21.874 0.542 2.961 0.409 11.113 0.516
February 9.714 0.694 25.876 0.580 43.371 0.321 23.289 0.400 3.675 0.407 10.492 0.275
March 9.120 0.649 41.565 0.657 43.781 0.420 29.297 0.561 3.811 0.461 14.227 0.508
April 9.867 0.114 45.527 0.663 39.967 0.463 33.304 0.389 4.512 0.422 10.266 0.455
May 11.207 0.720 44.668 0.664 54.048 0.448 36.172 0.448 6.640 0.451 21.585 0.656
June 8.937 0.682 42.398 0.630 66.533 0.553 35.373 0.416 6.937 0.395 28.830 0.550
July 8.039 0.645 34.383 0.554 51.791 0.510 31.722 0.649 5.319 0.562 22.048 0.564
August 8.097 0.675 29.267 0.593 38.743 0.413 29.120 0.572 4.350 0.469 16.688 0.540
September | 9.727 0.669 43.056 0.640 74.121 0.662 31.146 0.430 4.634 0.496 24.035 0.652
October 9.790 0.794 38.689 0.732 61.764 0.482 30.185 0.575 3.458 0.440 21.277 0.594
November | 9.323 0.774 34.811 0.595 33.593 0.321 26.310 0.508 2.606 0.404 2.727 0.367
December | 8.503 0.352 33.146 0.542 36.781 0.432 23.842 0.605 2.838 0.405 7.274 0.523
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Table 4.4 Measured and scaled data for cold and cloudy climate zone

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point
Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)

Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 7.463 0.633 25.668 0.662 60.397 0.425 18.845 0.593 2.783 0.519 10.361 0.674
February 6.488 0.567 31.894 0.658 54.030 0.500 22.126 0.473 3.233 0.394 12.160 0.423
March 7.216 0.635 34.109 0.638 50.563 0.399 25.340 0.503 3.685 0.517 13.693 0.508
April 3.790 0.317 32.930 0.598 66.778 0.506 25.771 0.505 4.086 0.361 18.787 0.512
May 4.842 0.483 33.664 0.523 74.971 0.547 27.203 0.537 4.348 0.362 22.311 0.533
June 4.180 0.492 31.453 0.665 79.623 0.290 28.139 0.723 6.208 0.533 24.263 0.607
July 3.245 0.403 14.122 0.469 82.342 0.572 27.193 0.422 3.195 0.303 23.839 0.668
August 2.505 0.439 22.089 0.556 84.819 0.520 27.043 0.573 3.981 0.451 24.304 0.610
September |  3.287 0.394 19.580 0.527 82.378 0.522 27.148 0.432 2.719 0.380 23.795 0.650
October 5.871 0.557 22.366 0.461 71.681 0.498 26.310 0.446 2.015 0.337 20.755 0.538
November | 7.057 0.632 19.460 0.468 63.465 0.507 23.759 0.433 1.783 0.274 16.345 0.497
December 7.600 0.630 20.430 0.560 61.230 0.560 21.350 0.500 2.560 0.450 17.250 0.520
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Table 4.5 Measured and scaled data for moderate climate zone

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point
Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)

Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 9.497 0.529 21.431 0.454 43.378 0.376 22.907 0.558 2.424 0.332 9.007 0.394
February 10.214 0.730 19.437 0.607 40.726 0.493 27.010 0.560 2.833 0.450 11.500 0.494
March 9.900 0.695 27.621 0.456 38.978 0.523 29.078 0.489 2.980 0.434 13.768 0.483
April 9.970 0.650 25.986 0.624 39.984 0.405 30.728 0.511 3.143 0.401 16.281 0.462
May 10.832 0.720 22.087 0.590 48.620 0.596 30.473 0.498 4.316 0.498 18.937 0.546
June 5.070 0.502 18.694 0.540 68.874 0.564 26.741 0.516 4.247 0.475 20.564 0.545
July 4.271 0.283 16.304 0.514 80.475 0.527 24.557 0.448 4.170 0.386 20.928 0.396
August 4.003 0.437 17.319 0.576 77.787 0.459 24.703 0.537 4.768 0.429 20.549 0.585
September | 5.567 0.530 17.249 0.461 73.359 0.538 25.010 0.407 3.790 0.419 19.761 0.498
October 7.668 0.590 10.901 0.467 65.409 0.459 24.631 0.608 2.248 0.364 18.086 0.510
November | 8.460 0.607 13.812 0.442 53.745 0.620 21.823 0.458 2.143 0.466 11.449 0.301
December 8.739 0.698 25.561 0.479 43.514 0.514 24.589 0.615 2.699 0.306 10.854 0.403
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The data has been obtained at meteorological location/sites for
parameters like global solar energy, sunshine hours, ambient temperature, wind
speed, dew-point and relative humidity. The normalization/scaling of the input
parameters has been done for avoiding convergence issues which are defined in
0.1 - 0.9 range and expressed by Eq. (4.1) for five meteorological sites across

India.

Ly= [(((Bmex = XYy 1)) + K] (4.0)

(L ax — Lml )

where

L = measured data

Ls = scaled data

Lmax = highest value of relevant set of data
Lmin = lowest value of relevant set of data
Xmax = maximum limit of normalized range

Xmin= minimum limit of normalized range
4.3.2 Classification of Sky-Conditions
The models based on sky-conditions can be classified as follows [87]:
(@) Clear/sunny sky (type-a)

If the sunshine hour is equivalent to or greater than 9 hour, and diffuse

solar energy is lower than or equivalent to 25% of global solar energy.
(b) Hazy sky (type-b)

If the sunshine hour is between 7-9 hour and diffuse solar energy is

lower than 50% or greater than 25% of global solar energy.
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(c) Partially foggy/cloudy sky (type-c)

If the sunshine hour is between 5-7 hour and the diffuse solar energy is

lower than 75% or greater than 50% of global solar energy.

d) Fully foggy/cloudy sky (type-d)
If the sunshine hour is lower than 5 hour and the diffuse solar energy is
greater than 75% of global solar energy.

44  DEVELOPMENT OF FUZZY LOGIC BASED MODEL FOR
FORECASTING SOLAR ENERGY

The fuzzy logic based model has been employed for forecasting global
solar energy with aid of meteorological parameters in different sky conditions
and for distinct climate zones across India. The model has been developed with
input parameters namely sunshine duration, relative humidity, wind speed,
ambient temperature, dew point, latitude, longitude and altitude for forecasting
global solar energy and shown below in Fig. 4.1. The results obtained are then

defuzzified to get the forecasted output.

Sunshine Duration >
Ambient Temperature >
Relative Humidity >
Solar
Wind Speed > Forecasting
Model | Global Solar
_ R g Energy
Dew Point > (Mamdani)
Latitude >
Longitude >
Altitude >

Fig. 4.1 Fuzzy logic based model for forecasting global solar energy
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441 Fuzzy Sets

The theory of fuzzy logic has been introduced by Prof. Lotfi Zadeh in
1965 at University of California. Since, then it has been successfully
implemented in many engineering applications. The concept of fuzzy logic lies
in truth values between 0 and 1 i.e. between completely true and completely
false. In conditions where mathematical models do not give practical
descriptions of the models, approach based on fuzzy logic is being used for
many applications.

Let A and B be two sets of universal set Y. The union between two sets
is denoted by AUB and represents all the elements in the universe belonging to
set A, set B or both sets A and B. The intersection of two sets is denoted by
ANB and represents all the elements in the universe belonging to both set as A
and B. Here, characteristic function p, of a subset of universal set Y lies in the
two element sets {0,1} and p, (Y) = 1, if YeP otherwise it’s value is zero. The
value of the fuzzy set P lies in the interval {0,1}. Now, U, is defined as the
membership function and , () is the grade of membership function of yeY in
P.

Consider fuzzy subsets A and B with membership function as pa and
Us. The union and intersection can be defined as follows:

Union: pave (Y) = max [Ha (Y), Hs (Y)]

Intersection: pang (Y) = min [ua (YY), us (Y)]
4.4.2 Fuzzy Inference System

A fuzzy inference system defines a mechanism for evaluating fuzzy
system for calculating output from input data sets and is represented by input

and output linguistic variables along with fuzzy IF-THEN rule base defined by
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rule editor and rule viewer as shown in Fig. 4.2. It consists of fuzzification,

fuzzy rules evaluation and defuzzification.

FIS Editor
_ Membership
Rule Editor function Editor
Fuzzy
Inference
System
Rule Viewer Surface Viewer

Fig. 4.2 Block diagram of fuzzy inference system

4.4.3 Fuzzy Membership Function

The model based on fuzzy logic approach for forecasting global solar
energy has been established and simulated in MATLAB where the developed
model comprises set of rules being made for qualitative descriptions. In the
proposed model based on fuzzy logic approach, three variables are defined
namely low, medium and high. The assignment of the membership function is
the key task. In this, five membership functions are described with fuzzy terms
namely Very Low (VL), Low-Medium/Low (LM/L), Medium-High/Medium
(MH/M), High-High/High (HH/H) and Very High (VH) which lies in 0.1 - 0.9
range and fuzzy inference system defined a set of rules for forecasting global
solar energy. Fig. 4.3 - Fig. 4.4 presents the fuzzy membership function for

parameters namely wind speed and sunshine duration respectively.
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Fig. 4.3 Fuzzy membership functions for wind speed
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Fig. 4.4 Fuzzy membership functions for sunshine duration

4.4.4 Fuzzy Rules

The MATLAB fuzzy logic toolbox has been used for implementing the
defined fuzzy rules which are fired in fuzzy systems with aid of fuzzy
inference system.

The design of fuzzy system refers to the development of mechanisms
for fuzzy information processing and decision making capability within a

digital platform and soft computing environment.
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The fuzzy inference algorithm implements IF-THEN rules or
statements which are used to formulate the condition statement comprising
fuzzy logic. A fuzzy rule base has IF-THEN components where the IF part is
denoted as an antecedent and the THEN part is denoted as a consequent. The
basic structure of fuzzy IF-THEN rule is expressed as:

IF <antecedent> THEN <consequent>

Here, a set of multiple-antecedent fuzzy rules have been defined for
forecasting global solar energy where the input includes sunshine duration,
wind speed, ambient temperature, relative humidity, dew-point and the output
is global solar energy as shown in Table 4.6.

Further, the fuzzy rule base simulated in MATLAB for the month of
January for warm and humid climate zone (Chennai) have been shown in Fig.
4.5. Similar analysis has been carried out for remaining period i.e. from
February to December and for other climate zones i.e. hot and dry (Jodhpur),
cold and cloudy (Shillong), moderate (Pune) and composite (Delhi) climate

zone respectively.

1. If (sunshing is VH) and (maxws iz VH) and (airtemp iz HH} and (rh iz MH) and (dp iz VH) then (ghiis M} (1}

2. If (sunshing iz H} and (maxws is MH) and (airtemp iz HH) and (rh is MH} and (dp is VH} then (ghiis H) (1}

30 (sunshme iz VL) and (maxws iz LM} and (airtemp is HH} and (rh iz MH) and (dp Ls‘-.FH;then (gh| is WH) (1)
i i i i and (rhi IS HH} i

&. If (sunshine iz M) and (maxws iz HH) and (airtemp iz HH) and (rh is LM} and {dp iz HH) then (ghiis H} (1}

7. If (sunzhine iz H) and (maxw's iz MH) and (airtemp iz HH) and (rh iz LM} and (dp iz HH) then (ghiis H) (1)

&. If (zun=zhine i M} and (maxws iz HH) and (airtemp i= HH) and (rh iz LM} and (dp iz MH) then (ghi is WVH) (1)
9. If (sunshine is H} and (maxws is LM} and (airtemp iz HH) and (rh iz LM} and (dp iz LM} then (ghi iz H}) (1)
10. If (zunshine is WH) and (maxws iz LM} and (airtemp iz MH} and (rh iz VL) and (dp iz WL} then (ghi iz WVH} (1)
11. If (zunshine iz L) and (maxws is MH) and (airtemp iz MH) and (rh iz LK) and (dp iz LM) then {ghiis VH) (1)
12. If (zunshine iz M} and (maxws iz LM) and {airtemp is MH) and {rh iz LK) and (dp is LW} then (ghiis H) {1}
13. [f (sunshine is H} and (maxws is LM} and (airtemp iz MH} and (rh iz LM) and (dp is LM) then (ghiis M) (1)
14, If (zunshine is WH) and (maxws iz LM} and (airtemp iz MH} and (rh iz VL) and (dp iz VL) then (ghi iz H} (1}
15. If (zunshine iz VH) and (maxws iz LM) and (airtemp iz MH) and (rh is VL) and (dp i VL) then (ghi iz H} (1)
16. If (sunshme iz H) and (maxws iz VL) and (alrtemp iz VL) anu:l (rh iz MH) anu:l (dp iz WL} then (gh| i= M) 1)

AT _1C im L1 im BHILY 2l im 1111 im BHILY im LI AL Pim J1 FA

Fig. 4.5 Fuzzy rule base simulated in MATLAB
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Table 4.6 Fuzzy rule base defined for the month of January for warm and humid climate zone

Inputs Output
’\:?]' ;foi?zs Sunshine Wind Ambient Relative Dew GSI(;)IZ?I
hours Speed Temperature Humidity Point Energy
1 VH VH HH MH VH M
2 H MH HH MH VH H
3 VL LM HH MH VH VH
4 L LM MH HH VH H
5 H MH HH LM HH H
6 M HH HH LM HH H
7 H MH HH LM HH H
8 M HH HH LM MH VH
9 H LM HH LM LH H
10 VH LM MH VL VL VH
11 L MH MH LM LH VH
12 M LM MH LM LH H
13 H LM MH LM LH M
14 H LM MH LM LH M
15 VH LM MH VL VL H
16 H VL VL MH VL M
17 H MH HH MH HH H
18 H LM HH LM HH H
19 VH MH HH MH VH M
20 VH MH HH VH VH L
21 H LM VH MH VH M
22 M MH HH VH VH VL
23 H HH MH VH VH L
24 H VH HH HH VH M
25 H MH HH MH VH H
26 VH LM HH MH VH H
27 VH LM MH MH HH H
28 VH VL HH MH HH H
29 VH LM VH MH VH H
30 VH LM VH MH VH H
31 VH LM VH MH VH H
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445 Fuzzy Editor Viewer

The fuzzy editor viewer in MATLAB has been used for viewing output.

Further, Fig. 4.6 shows output corresponding to 5" rule in an editor viewer of

MATLAB.
sunshine = 0.64 maxws =05 airtemp = 0.76 rh=0238 dp=075 ghi=075
1 ] I 2 I =) =N I E L ]
2 | ) N I =) I | I E N
3 [ | [N | I BN =N I ] LA
a7~ 1] L | NN I - I ] SN
5 | ) N I N = | I ()
6 [=F ] ] [ N =] | N
7| ) L ] I ) = | I N
8 | | N I N = | L | LA
9 | ) L | I ) = | L | SN
10 | ] RN | [~ | [ | I | [
i 1] L ] [~ | = | L 1] LA
=N L | N = | L | SN
13 | ] [EEN | [~ | = | [ | L ]
14| -] L | [~ | [ | I | IZEN
15 | - L | L0 [ | L | N
16 | ) L | [ | =N L | L]
17| ) LA ] I ) [ = ] I [
13 =] SN I ™ = | | IZEN
19 | ] L ] I ) =N I ] L ]
20 | ] LA ] I ) I ] I ] ENE
21| — L | I | =N I ki L ]
2~ ] L ] I ) I ] I ] N
23 | ) N [~ | I ] I E ]
24 | ] I ] I -] I - I ] L ]
25 | ) L ] I ) =N I ] SN
2 | ] L | I [ =N I ] SN
27 | ] [N | L7011 = I L]

Fig. 4.6 Fuzzy editor viewer corresponding to 5" rule in MATLAB

45  RESULTS AND DISCUSSIONS

In this chapter, models based on sky-conditions such as clear sky (type-
a), hazy sky (type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy
sky (type-d) employing fuzzy logic approach has been developed and presented
for forecasting global solar energy with aid of meteorological parameters namely
dew-point along with other known available parameters namely wind speed,

duration of sunshine hours, global solar energy, ambient temperature and relative
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humidity. A comparative analysis has been carried out between the measured
and the forecasted data for five meteorological sites which represents different
climatic conditions such as warm and humid, hot and dry, cold and cloudy,
composite and moderate climate zone based on statistical indicators as shown in

Table 4.7 from which, the following can be briefly summarized:-
45.1 Clear/Sunny Sky (Type-a)

The fuzzy logic based model has been employed for forecasting global
solar energy, wherein for this sky-condition, the minimum value of mean
percentage error is observed to be 1.23% and obtained for hot and dry climatic
conditions (Jodhpur) as shown by the calculated data presented in Table 4.7.

The minimum error has been obtained for this climate climate zone
beacause Jodhpur climatic conditions are hot and dry with relative humidity
varying from 33 - 74% as shown by the measured data presented in Table 4.3,
which is generally low, because of low water surface bodies and vegetation.

For this sky condition, the sky is generally clear with a large amount of
solar insolation at day time since the surrounded atmospheric region gets heated
up very fast. It has been also observed that the average sunshine hour is
approximately 12.36 hrs, which is comparatively high as compared to other
meteorological sites as shown by the computed data presented in Table 4.7. At
night time also, there is a clear sky, therefore, the heat absorbed by the surface at
day time gets dissipated in upper atmospheric region fast. Hence, at night time,
the ambient temperature is low which makes the atmospheric surface much
cooler.

Jodhpur is well famous as the ‘Sun City’ for clear/sunny sky-conditions

prevailing throughout the year.
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Table 4.7 Fuzzy logic based model for forecasting global solar energy for distinct climate zone

H

Climate Sky Conditions (MJ/ng) Sunshine hours MPE MBE
Zone (hrs) (%) (%)
Measured Fuzzy
Clear/Sunny Sky 29.96 30.20 9.30 1.94 0.24
New Delhi Hazy Sky 29.71 29.76 8.09 0.22 0.05
(Composite) Partially Foggy/Cloudy Sky 23.93 23.88 6.30 1.96 -0.05
Fully Foggy/Cloudy Sky 23.13 22.54 0.30 -2.56 -0.59
Clear/Sunny Sky 38.60 36.80 10.28 -4.32 -1.80
Chennai Hazy Sky 32.98 36.49 8.58 6.82 0.07
(Warm and Humid) |partially Foggy/Cloudy Sky 37.93 37.50 6.61 -0.80 -0.43
Fully Foggy/Cloudy Sky 34.79 35.73 2.26 5.79 0.94
Clear/Sunny Sky 38.63 37.81 12.36 -1.23 -0.82
Jodhpur Hazy Sky 36.93 36.35 8.67 1.39 -0.57
(Hotand Dry)  |Partially Foggy/Cloudy Sky 35.35 31.72 6.63 -7.90 -3.63
Fully Foggy/Cloudy Sky 36.56 38.58 2.84 4.39 2.02
Clear/Sunny Sky 31.30 30.12 9.546 -2.74 -1.18
Shillong Hazy Sky 24.48 25.45 7.256 5.77 0.97
(Cold and Cloudy) |partially Foggy/Cloudy Sky 26.25 26.25 4.443 9.05 -0.002
Fully Foggy/Cloudy Sky 32.68 32.41 1.200 0.36 -0.30
Clear/Sunny Sky 20.25 20.61 10.12 4.75 0.28
Pune Hazy Sky 19.70 19.68 8.46 0.89 0.26
(Moderate) Partially Foggy/Cloudy Sky 18.89 18.94 6.08 1.78 0.04
Fully Foggy/Cloudy Sky 16.42 16.01 2.85 -0.89 -0.41
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4.5.2 Hazy Sky (Type-b)

For this sky-condition, by employing fuzzy logic based model, the
minimum value of mean percentage error is observed to be 0.22% and has been
obtained for composite climatic conditions (Delhi) as shown by the computed
data presented in Table 4.7. This is due to the reason that relative humidity is
high which varies 35 - 61% in dry periods and 64 - 81% in wet periods as shown
by the measured data presented in Table 4.1. It has been also observed that
during monsoon the solar insolation intensity is low and during summer the solar
intensity is high as the average sunshine hour measured is 8.09 hrs, as shown by
the computed data presented in Table 4.7, which when compared to Jodhpur
station is comparatively lesser.

For this sky condition, the sky is generally dull and overcast in monsoon

and becomes hazy during summer.
4.5.3 Partially Foggy/Cloudy sky (Type-c)

For this sky-condition, by employing fuzzy logic based model, the
minimum value of mean percentage error is observed to be 0.80% and has been
obtained for warm and humid climatic conditions (Chennai) as shown by the
computed data presented in Table 4.7. The reason behind is that diffuse solar
energy is high due to cloud cover and because of presence of clouds the heat
dissipation from the earth’s surface to the sky during the night is least. Hence,
during summer, the sky is partially cloudy as variation in ambient temperature is
from 30-35°C during the day and 25-30°C during the night. The variation in
maximum ambient temperature is from 25-30°C in day time and 20-25°C in

night time during the winter season. It has been observed for this climate zone
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that the relative humidity varies from 58-74% in a year, which is generally high
as shown by the measured data presented in Table 4.2 and the averaged

sunshine hours are 6.61 hrs only.
4.5.4 Fully Foggy/Cloudy Sky (Type-d)

For this sky-condition, by employing fuzzy logic based model, the
minimum value of mean percentage error is observed to be 0.36% and has been
obtained for cold and cloudy climatic conditions (Shillong) as shown by the
computed data presented in Table 4.7.

This is due to the reason that during winter, the solar insolation is quite
low due to the presence of diffuse solar energy which makes winters extremely
cold. The summers are comparatively quite pleasant as the variation in
maximum air temperature lies between 25 - 30°C during day time and 17 - 27°C
during night time whereas the winters are comparatively chilly.

It has been also observed from the measured data presented in Table 4.4,
that the variation in relative humidity is from 50 - 85% which is generally high.
For this climate zone, the sky is generally cloudy and overcast throughout the
year except for short summer where the daily measured bright sunshine hour
availability is 1.20 hrs only as shown by the data presented in Table 4.7.

Further, the graphical analysis of comparison of the measured and
forecasted data by employing fuzzy logic based for different sky-conditions and
for distinct climate zone across India has been shown in Fig. 4.7 - Fig. 4.11
respectively.

For composite climate zone (Delhi), as shown in Fig. 4.7(b), the hazy
sky model perform better than other models as the forecasted data is almost

same as that of the measured data.
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Fig. 4.7 Graphical analysis of the measured and forecasted H, for composite climatic conditions
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Fig. 4.9 Graphical analysis of the measured and forecasted Hq for hot and dry climatic conditions
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For hot and dry climate zone (Jodhpur), as shown in Fig. 4.9(a),
sunny/clear sky model perform better than other models as the forecasted data is
almost same as that of the measured data.

Similarly, for warm and humid climatic zone (Chennai), as shown in
Fig. 4.8(c), partially foggy/cloudy sky model perform better than other models
as the forecasted data is almost same as that of the measured data.

Also, for cold and cloudy climate zone (Shillong), as shown in Fig.
4.10(d), fully foggy/cloudy sky model perform better than other models as the

forecasted data is almost same as that of the measured data.

46  APPLICATION OF SOLAR ENERGY FORECASTING IN
SOLAR PV SYSTEM

The power generation in solar PV system is dependent on certain factors
namely cell temperature, solar irradiance and the topographical position. In this
chapter, HIT solar PV module of 210 W, power output is selected whose
performance specifications are listed in Table A.2 of Appendix A and operated
at MPPT conditions. Since, the power generation has been greatly affected by
solar irradiance and ambient temperature, therefore, such parameters are taken
into consideration. The data which includes solar irradiance, cell temperature
and PV power has been obtained and arranged within 1 hour. During the
summer season, the availability of sunshine hours is from morning 6:00 A.M. to
18:00 P.M. in the evening, the data are collected on daily basis with the
availability of solar irradiance. Similarly, during winter season, the variation is
from morning 8:00 A.M. to evening 17:00 P.M. Fuzzy logic methodology has
been employed for forecasting power output in solar PV system. The fuzzy

inference system includes input parameter like solar irradiance, ambient
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temperature and weather descriptions, follows fuzzification, rule evaluation and
lastly, results has been defuzzified for PV power forecasting.

Based on Standard Test Condition (STC) conditions, and influenced by
parameters namely solar irradiance and cell temperature, the solar PV power

generation can be expressed by using Eq. (4.2) — Eq. (4.3) as:

G
Ppy = [PPV,STC * Tgo # [1—y* (T - 25)]] * Npys * Npyp (4.2)
G
and T] = Tm + ﬁ * (NOCT - 20) (43)

where Ppy,stc represents the rated power output of solar PV system of single
array at Maximum Power Point (MPP), Ppy is the solar PV array power output
at MPP, Gr is solar irradiance at STC in W/m?, Npys represents the series PV
arrays, y is temperature parameter at Maximum Power Point (MPP), Npyp
represents the parallel PV arrays, T is ambient temperature in °C, T; is the
temperature of the solar panel in °C and Nocr is a constant.

The solar PV power output can be forecasted by using fuzzy logic based

model as shown below in Fig. 4.12.

Cell Temperature

A 4

Solar Forecasting
Model
(Mamdani)

Solar PV Power

v

Solar Irradiance

Y

Fig. 4.12 Fuzzy logic based model for PV power forecasting

In this, 210 W, HIT solar PV modules have been chosen and operated at
MPPT conditions. The input parameters include solar irradiance, cell
temperature and sky information obtained from NISE and power is the output
parameter. The forecasted PV power has been obtained by employing fuzzy

logic methodology and is illustrated in Table 4.8 for composite climate zone.
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Table 4.8 Forecasted power in solar PV system under composite climatic conditions

Power
Month X;; (IASC) I rri(éliz\;ce Temp(J:eerlllture W) '\(/IOZI)E
(W/m°) (0 Measured Forecasted

January 81.47 0.42 361.15 28.14 20.80 19.79 -0.0064
February 82.03 0.61 461.52 35.69 30.15 30.02 0.0060
March 83.64 0.62 548.24 40.12 31.56 31.25 0.0100
April 79.62 0.60 575.12 42.53 30.23 32.56 0.1500
May 77.35 0.59 559.67 46.22 31.05 35.19 0.1938
June 76.92 0.55 537.17 45.24 26.20 26.00 0.0166
July 76.66 0.05 537.81 48.28 24.45 25.72 0.0023
August 76.90 0.47 428.80 53.27 22.33 22.59 0.0308
September 77.78 0.50 437.51 51.62 23.80 23.99 0.0378
October 78.74 0.63 466.57 53.21 29.92 29.40 -0.0090
November 78.48 0.44 369.82 45.08 20.85 20.65 -0.0173
December 80.66 0.47 370.84 43.36 25.53 32.57 0.2827
Average 79.19 0.50 471.18 44.40 26.41 27.48 0.0581
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The result obtained in Table 4.8 reveals that the mean percentage error
obtained for solar PV system averaged month-wise is 0.0581% by using fuzzy
logic based model which is observed within the permissible error limit.

Further, it is to be noted that for the winter season (January), the mean
percentage error is 0.0064%; for the rainy season (May), the mean percentage
error obtained is 0.1938% which is comparatively large because of the large
uncertainties associated with the data and mean percentage error for summer
season (June) is 0.0166%.

4.7 FUZZY LOGIC APPROACH FOR SHORT-TERM PV POWER
FORECASTING

Further, the variation in sky-condition has influenced the forecasting
pattern of solar energy. Sunny/clear sky (type-a), hazy sky (type-b), partially
foggy/cloudy sky (type-c) and fully foggy/cloudy (type-d) sky-conditions have
been considered. The performance evaluation of the models has been done
using statistical error-tests and obtained results are illustrated in Table 4.9.

From Table 4.9, it has been observed that for composite climatic
conditions, the hazy-sky model provide better results with mean percentage
error of 0.0031%, followed by the sunny-sky model, partially foggy/cloudy sky
model and fully foggy/cloudy sky model with mean percentage error of
0.0741%, 0.0072% and 0.0077%, respectively.

After the detailed analysis, the average forecasting errors of the
proposed model are 0.023% in mean percentage error for the sample

photovoltaic installation.
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Table 4.9 Short-term PV power forecasting using fuzzy logic approach under composite

climatic conditions

Solar

Cell

Power (W)

.. Time . MPE
Sky-Conditions (hr) Ir{\ii\?/:ig)ce T(eorg;) ' Measured | Forecasted (%)

7:00 140.93 34.11 7.00 7.03 0.0036

8:00 273.76 40.55 15.00 15.00 -0.0002

9:00 486.12 48.14 30.33 30.34 0.1749

10:00 625.25 52.23 41.67 41.66 0.1210

11:00 783.13 57.79 54.17 54.18 0.1271

sunny/Clear Sky 12:00 875.34 62.86 60.50 60.50 0.0702

(Type-a) 13:00 888.95 64.69 61.17 61.18 -0.0060

14:00 744.96 63.91 42.00 42.00 -0.3153

15:00 726.73 61.55 46.33 46.33 0.3563

16:00 549.15 58.04 31.50 3151 -0.3178

17:00 361.60 52.72 19.33 19.33 -0.4892

18:00 204.59 48.83 9.80 9.80 -0.6141

Avg. 555.04 53.79 34.90 34.90 -0.0741

10:00 123.10 40.83 7.00 7.12 0.0218

11:00 146.12 44.49 9.67 9.70 0.0040

12:00 307.56 43.56 24.17 24.20 0.0031

Hazy Sky 13:00 519.54 52.55 45.50 45.46 -0.0008

(Type-b) 14:00 467.65 42.40 37.33 37.40 0.0018

15:00 313.06 49.36 21.50 21.50 0.0003

16:00 185.35 41.05 10.20 10.09 -0.0082

Avg. 294.62 44.89 22.20 22.21 0.0031

8:00 134.08 45.79 10.25 10.26 0.0024

9:00 179.69 47.49 13.00 12.99 -0.0021

10:00 355.98 52.07 30.33 30.14 -0.0063

11:00 463.45 55.57 40.17 40.78 0.0130

12:00 547.32 58.38 44.67 44.39 -0.0117

Partially 13:00 519.74 59.96 33.00 31.40 -0.0372

foggy/cloudy Sky 14:00 492.69 55.52 41.00 40.93 -0.0001

(Type-c) 15:00 647.10 61.30 52.00 51.69 -0.0105

16:00 562.02 59.64 34.67 35.16 0.0094

17:00 299.99 50.88 18.17 18.22 0.0049

18:00 235.30 50.73 12.83 12.65 -0.0158

19:00 156.43 47.99 6.50 7.23 0.1405

Avg. 382.82 53.78 28.05 27.99 0.0072

9:00 170.77 19.08 10.67 10.75 0.0120

10:00 74.87 19.02 10.67 10.62 -0.0030

Fully 11:00 96.49 23.29 9.00 8.72 -0.0042

foggy/cloudy Sky 12:00 41.20 18.50 8.00 8.10 0.0105

(Type-d) 13:00 140.77 18.57 10.33 10.46 0.0500

14:00 87.31 18.59 11.17 11.14 0.0067

15:00 164.25 17.86 11.00 10.83 -0.0183

Avg. 110.81 19.27 10.12 10.09 0.0077
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Further, the graph presented in Fig. 4.13 shows the variation in the

measured and the forecasted data for different sky-conditions.
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Fig. 4.13 Graphical analysis of short-term PV power forecasting under composite

climatic conditions

Normally, the day considered here is the different combination of

sunny, hazy, partially foggy/cloudy and fully foggy/cloudy sky-conditions

periods considered during the day time. For the sunny/clear day, Fig. 4.13(a)

shows the graphical analysis between the measured and forecasted data

variation based on fuzzy logic modelling. For this sky-condition, as compared

to temperature factor, a factor of time is important which majorly influenced

the solar energy and the time considered is from 7:00 A.M. to 18:00 P.M. in the
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evening and the day averaged mean percentage error is observed to be 0.0741%
as shown by the measured data presented in Table 4.9.

For hazy sky-condition, Fig. 4.13(b) shows the graphical analysis
between measured and forecasted data based on fuzzy logic modelling. For this
sky-condition, sun rays will get blocked as the factor of temperature affect
solar energy in comparison to a factor of time and the time considered is from
morning 10.00 A.M. to 16.00 P.M. in the evening and the day averaged mean
percentage error is observed to be 0.0031% for this sky-condition. The
maximum value of solar irradiance is 519.54 W/m? as shown by the measured
data presented in Table 4.9.

In partially foggy/cloudy sky-condition, Fig. 4.13(c) represents the
graphical analysis between the measured and the forecasted data based on
fuzzy logic modelling. For this sky-condition, the sunshine is partly absorbed
by the PV and partly by the cloud. Solar energy is correlated with both the
factor of temperature and time, and the considered time period is from morning
8:00 A.M. to 19:00 P.M. in the evening. The day average mean percentage
error is observed to be 0.0072% as shown by the measured data presented in
Table 4.9.

For fully foggy/cloudy day, Fig. 4.13(d) shows the graphical analysis
between the measured and forecasted data based on fuzzy logic modelling. The
maximum value of solar irradiance is 164.25 W/m? and the time considered is
from morning 9:00 A.M. to 15:00 P.M. in the evening. In this, the sun rays will
get fully blocked by the presence of cloud and both the factor of time and

temperature will affect solar irradiance. The day averaged mean percentage
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error is observed to be 0.0077% as shown by the measured data presented in
Table 4.9.

In addition, the industrial requirements have been satisfied as the short-
term PV power forecasting mean percentage error is less than 20%. However,
for each of the sky-model, the mean percentage error fluctuates, and the
variation in mean percentage error between the measured and forecasted data in

distinct sky-conditions during day time is presented below in Fig. 4.14.
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Fig. 4.14 Mean percentage error of four forecasting sky-based models

The variations in the error are highest for the sunny/clear sky model in
comparison to other models and the reason behind is that the intensity of solar
radiation is relatively large as compared to other models. It has been observed
that out of the four models, especially the hazy-sky model as shown in Fig.

4.13(b) perform well in forecasting power of a solar PV system for composite

climatic conditions.
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48 COMPARISON OF FUZZzZY LOGIC BASED MODEL WITH
EMPIRICAL MODELS

The developed model based on fuzzy logic approach has been
compared with empirical models for widely changing climatic conditions
across India and are reported in Table 4.10. The performance of models has

been evaluated by using statistical error-tests.

Table 4.10 Comparison of proposed fuzzy logic based model with regression model

Measured Fuzzy Regression
Station Hq
(MJ/m?) H, MPE Hq MPE
(MJI/m?) (%) (MJ/m?) (%)
Delhl_ 18.27 18.28 0.41 18.29 0.70
(Composite)
Chennai
(Warm and 19.53 19.51 0.37 19.59 2.25
Humid)
Jodhpur
(Hot and Dry) 20.41 20.44 0.02 20.27 0.41
Shillong
(Cold and 16.45 16.49 0.68 16.88 1.94
Cloudy)
Pune
(Moderate) 19.36 19.33 0.06 19.86 2.40

The results of simulation reveal that the fuzzy logic based model is
accurate and has less value of mean percentage error for all meteorological
stations across India as compared to regression models. So comparison result
shows that the model developed by implementing fuzzy logic modelling
provides accuracy and is convenient as compared to empirical models using

multiple regression analysis.
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4.9 CONCLUSION

In this chapter, model employing fuzzy logic approach based on sky-
conditions have been developed and presented for global solar energy
forecasting for five meteorological sites/locations representing distinct climate
zones across India. The meteorological parameters namely dew-point has been
considered along with other known available parameters namely sunshine
duration, ambient temperature, relative humidity, wind speed and global solar
energy. It has been concluded from the obtained results that the sunny/clear
sky (type-a) model favours hot and dry climate zone (Jodhpur), hazy sky (type-
b) model favours composite climate zone (Delhi), partially foggy/cloudy sky
(type-c) model favours warm and humid climate zone (Chennai) and fully
foggy/cloudy sky (type-d) model favours cold and cloudy climate zone
(Shillong), respectively.

Further, the fuzzy logic based model has been implemented for solar
photovoltaic applications and model based on sky-conditions employing fuzzy
logic methodology have been presented for one-hour ahead PV power
forecasting of solar PV system based upon the principle of fuzzy inference
system and the characteristics of sky-condition classification. The results of
correlation analysis shows that the forecasting errors of the proposed model are
within the permissible error limit for the solar photovoltaic installation. It has
been concluded from the obtained results that under composite climatic
conditions, the hazy-sky model outperforms other models as the measured data
closely matches the forecasted data followed by the sunny sky model, partially

foggy/cloudy sky model and fully foggy/cloudy sky model. The fuzzy logic
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approach favour results for the application of the sky-based model in
forecasting PV power output of solar PV system.

Lastly, the developed model have been compared with the empirical
models and the numerical results reveal that the proposed fuzzy logic based
model achieves better accuracy and is convenient than the empirical models

using multiple regression analysis.
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CHAPTER 5

SOLAR ENERGY FORECASTING USING
ANN-BASED MODEL

5.1 INTRODUCTION

In the previous chapter, the solar energy forecasting is performed using
fuzzy logic methodology. This chapter is focussed on the variants of Artificial
Neural Network (ANN) model i.e. Cascade-Forward Neural Network (CFNN),
Feed-Forward Neural Network (FFNN), Generalized Regression Neural
Network (GRNN), EIman Neural Network (ENN), Layered Recurrent Neural
Network (LRNN), Linear Neural Network (LNN) and Radial Basis Function
Neural Network (RBFNN) for modelling the system in forecasting global solar
energy under composite climatic conditions using meteorological parameters.
Simulations have been carried out by selecting the most suitable model based
on evaluation indexes and further applied for sky-condition defined as sunny,
hazy, partially and fully foggy/cloudy sky conditions and for distinct climatic
zone across India. The developed model has been implemented for solar PV
applications. Lastly, a comparison has been made with fuzzy logic based model

to check for accuracy and supremacy of the proposed ANN model.

This chapter is partially based on the following published papers:

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Comparison of intelligent modelling
techniques for solar energy forecasting and its application in solar photovoltaic
systems,” IET Energy Systems Integration, Vol. 1, No. 1, pp. 34-51, 2019. ISSN
No. 2516-8401(Online).

2. Gulnar Perveen, M. Rizwan and Nidhi Goel, “ANN modelling for estimating global
solar energy and its implementation in Solar Thermal Systems,” Proceedings of
International Conference on Renewable Energy and Sustainable Climate (Solaris
2019), Feb 07-09, 2019, Jamia Millia Islamia, Delhi, India.
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Lot of research has been carried out across the globe for forecasting
solar energy using ANN [89-91]. These models have been used in a broad
series of applications which include optimum estimation and forecasting;
least square optimization of numerical weather prediction; clustering and
classification technique [92-94]. Further, several previous researchers have
worked towards the accuracy in power forecasting of the solar PV system and
wind speed forecasting. Recently, solar PV technology has been growing
rapidly due to the benefits of solar energy which is available in abundance
and is a clean form of energy.

Numerous factors influence the generation of power in a solar PV
system namely solar irradiance, cell temperature, efficiency and sky-
conditions. Because of the inconsistency in solar radiation and factors affecting
environment such as sky-conditions, the power generation in a solar PV system
is a stochastic process, which not only affects the stability of the system but the
working capital and maintenance costs as well. So, to advance the solar PV
system stability, accurately forecasting global solar energy is needed taking
into consideration the influence of sky-conditions, since the accuracy of the
solar PV system has been greatly affected by the external environmental factors
such as clouds, moisture, dust and atmospheric temperature differences. The
power forecasting can help a manufacturer’s device some operational strategies
or policies in a way that can achieve better management [95-106].

This chapter aims to establish different ANN models in forecasting
global solar energy using meteorological parameters namely dew-point,
sunshine duration, wind speed, global solar energy, relative humidity and

ambient temperature under composite climatic conditions. Cascade-forward
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back propagation, feed-forward back propagation, generalized regression,
elman back-propagation, layered recurrent, linear layer and radial basis
function neural network model have been developed for modelling the
system using neural network toolbox of MATLAB. Simulations have been
done by carrying out a comparative analysis of different ANN models and
selecting the most suitable model based on statistical indicators and further
employed for five meteorological stations across India that represents distinct
climate zones such as hot and dry, cold and cloudy, warm and humid,
moderate and composite climate zone. Simulations are based on sky-
conditions namely sunny/clear sky (type-a), hazy sky (type-b), partially
foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions.
The obtained results can be further extended in forecasting the power of a
solar PV system for different sky-conditions under composite climatic
conditions. Lastly, comparisons have been done with fuzzy logic based
model using statistical error-tests to check for accuracy and supremacy of the
artificial neural network model.

5.2 COLLECTION AND SCALING OF METEOROLOGICAL
DATA

The 15 years averaged data have been obtained from National Institute
of Solar Energy (NISE) and Indian Meteorological Department (IMD) for
meteorological parameters namely sunshine hours, dew-point, global solar
energy, relative humidity, ambient temperature and wind speed. Further, the
normalization/scaling of the parameters have been done in 0.1 - 0.9 range and
expressed by Eq. (5.1). The data have been obtained for five meteorological

sites across India and are presented in Table 5.1 - Table 5.6.
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Table 5.1 Measured and scaled data for composite climatic conditions

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point

Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)
Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 7.719 0.65 13.985 0.428 65.487 0.381 14.119 0.475 5.153 0.42 4.60 0.446
February 7.936 0.594 16.788 0.449 59.643 0.496 18.581 0.557 7.848 0.28 4.90 0.448
March 7.406 0.722 21.118 0.682 53.297 0.409 22.730 0.361 7.344 0.422 5.62 0.479
April 9.22 0.718 25.214 0.609 36.188 0.456 30.027 0.538 8.417 0.350 5.72 0.433
May 8.848 0.645 24.227 0.561 34.297 0.355 34.138 0.656 9.516 0.409 8.559 0.539
June 7.133 0.599 20.912 0.638 52.560 0.383 33.399 0.530 10.589 0.458 16.14 0.491
July 4.587 0.431 19.381 0.414 70.637 0.61 30.48 0.422 10.395 0.508 24.60 0.629
August 5.552 0.531 18.802 0.538 79.359 0.429 29.14 0.599 9.57 0.379 26.06 0.609
September|  6.683 0.550 13.851 0.534 69.278 0.377 29.728 0.516 9.428 0.562 24.49 0.654
October 9.329 0.713 18.334 0.542 64.519 0.534 26.179 0.492 6.339 0.371 12.43 0.629
November| 7.197 0.547 14.562 0.341 49.800 0.437 20.921 0.622 6.531 0.484 7.06 0.553
December | 5.261 0.595 12.124 0.574 65.683 0.484 15.995 0.468 5.933 0.444 3.33 0.366
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Table 5.2 Measured and scaled data for warm and humid climatic conditions

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point

Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)
Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 8.94 0.701 17.64 0.524 71.32 0.515 25.46 0.223 8.22 0.432 20.33 0.467
February 9.75 0.866 21.07 0.899 76.29 0.549 26.61 0.788 9.06 0.451 21.13 0.519
March 9.05 0.882 23.53 0.594 73.75 0.318 27.84 0.799 6.98 0.503 20.77 0.540
April 9.37 0.61 23.86 0.472 71.26 0.412 30.53 0.475 8.78 0.420 23.07 0.468
May 8.83 0.626 22.87 0.753 67.14 0.452 31.71 0.506 7.49 0.583 24.49 0.498
June 7.35 0.64 21,51 0.683 64.04 0.532 30.73 0.539 8.48 0.569 24.65 0.433
July 6.18 0.534 18.87 0.661 62.25 0.465 30.53 0.649 10.04 0.455 22.74 0.501
August 4.78 0.511 19.04 0.583 71.30 0.504 29.07 0.554 8.85 0.491 24.52 0.490
September 6.16 0.582 19.66 0.596 79.09 0.542 29.10 0.216 8.41 0.442 24.63 0.436
October 6.52 0.622 17.28 0.633 80.06 0.461 27.75 0.595 6.25 0.415 24.20 0.694
November 5.81 0.547 15.13 0.566 83.73 0.467 25.64 0.519 11.58 0.461 22.71 0.577
December 7.07 0.638 13.89 0.527 78.13 0.527 26.09 0.272 9.49 0.50 21.16 0.482
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Table 5.3 Measured and scaled data for hot and dry climatic conditions

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point

Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)
Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 9.226 0.683 16.244 0.598 45.327 0.396 18.095 0.462 6.371 0.504 2.23 0.523
February 9.714 0.694 19.311 0.485 41.857 0.41 19.867 0.535 6.116 0.376 4.37 0.48
March 9.142 0.653 22.059 0.490 30.913 0.442 26.115 0.463 7.742 0.408 4.68 0.485
April 9.867 0.633 23.554 0.656 23.975 0.379 32.910 0.618 5.696 0.349 6.71 0.435
May 10.219 0.759 26.062 0.644 35.823 0.428 34.877 0.479 8.653 0.461 9.64 0.521
June 8.937 0.682 23.354 0.587 45914 0.573 33.520 0.553 14.038 0.555 19.38 0.678
July 8.039 0.645 19.055 0.618 60.780 0.426 31.518 0.533 13.996 0.540 25.07 0.511
August 8.097 0.675 20.157 0.716 62.331 0.422 31.445 0.471 5.988 0.462 25.39 0.499
September| 9.727 0.669 23.084 0.534 59.593 0.474 29.702 0.515 6.746 0.470 23.34 0.512
October 9.790 0.794 19.978 0.522 42.026 0.503 28.457 0.511 4.375 0.414 15.29 0.626
November| 9.323 0.774 17.342 0.474 42.008 0.474 22.078 0.475 3.30 0.351 9.56 0.451
December |  8.503 0.809 14.671 0.317 48.582 0.554 18.639 0.570 3.214 0.362 7.82 0.538
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Table 5.4 Measured and scaled data for moderate climatic conditions

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point

Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)
Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 9.497 0.529 16.998 0.607 59.887 0.49 19.781 0.464 1.493 0.504 11.58 0.494
February | 10.214 0.730 20.640 0.588 48.815 0.437 23.179 0.423 5.343 0.201 12.59 0.496
March 9.9 0.695 22.667 0.60 41.278 0.459 26.277 0.492 3.234 0.344 5.08 0.303
April 9.97 0.650 24.342 0.641 44.469 0.588 29.192 0.598 6.066 0.486 10.73 0.571
May 10.832 0.720 25.393 0.612 55.212 0.608 29.138 0.406 11.756 0.521 18.39 0.525
June 4.753 0.484 18.937 0.60 76.922 0.407 25.889 0.643 10.475 0.469 22.38 0.482
July 4.271 0.283 15.119 0.503 86.028 0.523 23.913 0.544 7.931 0.304 21.78 0.546
August 4.003 0.437 16.453 0.433 85.245 0.522 23.298 0.555 7.734 0.523 21.87 0.533
September| 5.567 0.530 18.404 0.535 84.233 0.555 24.07 0.388 4.675 0.518 21.58 0.575
October 7.668 0.590 18.785 0.534 75.960 0.615 24.237 0.552 2.274 0.304 20.06 0.60
November| 8.460 0.607 17.527 0.469 71.969 0.404 22.401 0.484 2.00 0.450 18.12 0.418
December | 8.739 0.734 17.109 0.721 63.012 0.405 19.274 0.502 2.407 0.503 16.33 0.653
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Table 5.5 Measured and scaled data for cold and cloudy climatic conditions

Sunshine hours Hy Relative Humidity Ambient Temp. Wind Speed Dew Point

Months (hrs) (MJ/m?) (%) (°C) (m/s) (°C)
Measured Scaled Measured Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled Measured |  Scaled
January 7.055 0.72 14.437 0.637 75.581 0.426 9.948 0.635 3.613 0.363 6.42 0.475
February 6.264 0.606 16.575 0.511 71.839 0.529 10.242 0.551 3.804 0.404 6.36 0.495
March 7.216 0.635 21.004 0.588 59.645 0.470 15.544 0.450 5.645 0.386 9.38 0.523
April 3.79 0.352 19.967 0.541 63.533 0.523 18.258 0.501 7.633 0.476 15.24 0.646
May 4.842 0.483 18.429 0.428 80.29 0.523 20.694 0.576 4.290 0.363 18.19 0.658
June 3.487 0.453 16.416 0.593 85.50 0.568 21.04 0.600 3.633 0.351 20.80 0.536
July 2.706 0.358 16.064 0.611 87.516 0.535 21.206 0.599 3.145 0.380 21.58 0.458
August 2.158 0.414 14.253 0.520 89.226 0.560 20.642 0.519 1.226 0.189 21.23 0.49
September| 2.747 0.356 13.982 0.432 85.917 0.483 20.002 0.471 0.867 0.331 20.05 0.64
October 5.871 0.557 15.004 0.464 80.742 0.654 18.39 0.603 2.290 0.466 17.79 0.467
November| 7.057 0.632 15.643 0.546 75.60 0.525 15.273 0.393 2.650 0.336 12.53 0.441
December |  7.597 0.638 15.632 0.634 74.403 0.593 11.889 0.344 0.839 0.268 10.04 0.527
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The normalization of the data has been obtained by using Eqg. (5.1) as:

Ls = [((M *(I— - I—min)) + Xmin] (5.1)

(Lmax — Lmin)

where

L = measured data

Ls= scaled/normalized data

Lmax = maximum value of relevant set of data
Lmin = minimum value of relevant set of data
Xmax = maximum limit of normalized range

Xmin= minimum limit of normalized range
5.3 ARCHITECTURE OF ARTIFICIAL NEURAL NETWORK

Model based on artificial intelligence techniques i.e. Artificial Neural
Network (ANN) is designed in such a way that the variables at the output are
calculated from variables at the input side by the composition of basic
connections and functions. The architecture has an input layer of nine inputs, a
hidden layer with tan-sigmoid function ‘tansig’ and an output layer as shown in
Fig. 5.1. MATLAB neural network toolbox has been used for implementing a
neural network algorithm. For training the network, Levenberg-Marquardt
training algorithms have been used and can be defined by using ‘TRAINLM’
command in MATLAB as shown in Fig. 5.2. The output is modelled by using
Eq. (5.2) as:

y =2 (wixij + 6;) (5.2)
where X;; is the ji neuron incoming signal (at the input layer), 6; is the bias of i
neuron and w;; is the connection weight directed from j neuron to i neuron (at

the hidden layer).
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Global Solar
Energy

Fig. 5.1 ANN architecture used for forecasting global solar energy

In this chapter, cascade-forward back-propagation, feed-forward back-
propagation, elman back-propagation, generalized regression, layered
recurrent, linear layer and radial basis function neural network architecture
have been designed and simulated in MATLAB. The following can be briefly
outlined for ANN model:-

(a) Normalization and scaling of the input and target data has been

done, and the range varies from 0 to 1.

(b) Creation of a neural network.

(c) Training and simulation of the neural network.

(d) Generation of the output data.

(e) De-normalize the output data.

(f) Comparing the obtained data with target data. Performance can be

evaluated by use of evaluation indexes.
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Performance function: MSE -

Fig. 5.2 MATLAB neural network toolbox

The variants of ANN architectures are discussed below as:

5.3.1 Feed-Forward Neural Network (FFNN)

The feed-forward neural network comprises series of layers where the

first layer connects the inputs to the network and every subsequent layer

connects with the previous layer. The network output is obtained in the final

layer. These networks are used for input-output mapping. Feed-forward neural

network with neurons in the hidden layer can fit any input to output mapping

problem.

5.3.2 Cascade-Forward Neural Network (CFNN)

The cascade-forward neural networks are related and same as that of the

feed-forward networks but such network creates connection its previous layer
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to the subsequent layers. Similar to feed-forward neural networks, a two or

more layer cascade network can have finite input to output relationship.
5.3.3 Elman Neural Network (ENN)

These are feed-forward networks with the layered recurrent connection
additions with tap delays. ElIman networks with one or more hidden layers can
learn any dynamic input to output relationship with enough number of neurons
in the hidden layers. However, these networks make use of simple calculations
at the cost of less reliable learning which results in a trade-off of reduced

training calculations, but the risk of poorer accuracy.
5.3.4 Generalized Regression Neural Network (GRNN)

These networks are used for function approximation. To fit the data
closely, a spread smaller than the typical distance between input vectors has

been used. To fit the data more smoothly, a larger spread has been used.
5.3.5 Layered Recurrent Neural Network (LRNN)

The layered recurrent neural network is same as that of the time and
distributed delay neural networks with finite input responses. Layer recurrent
networks with two and more layers can estimate dynamic output from past

inputs with enough hidden neurons and recurrent layer delays.
5.3.6 Linear Neural Network (LNN)

Linear layers can be trained to model static and dynamic linear systems,

given a low learning rate to be stable.
5.3.7 Radial Basis Function Neural Network (RBFNN)

It is used for function approximation and pattern classification problems
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which can easily design a radial basis function neural network with zero error.
5.4 EVALUATION INDEXES

For validation of the models, evaluation indexes have been used and are

defined as [107]:

5.4.1 Mean Absolute Percentage Error (MAPE)

It is described as summing up the absolute error in each period divided
by the measured values and then averaging the fixed percentages and the
relationship is given by Eq. (5.3) as:

MAPEs = 37, | =

mi

«100 (5.3)

where n is the number of observation, E = (m; - ;) is the absolute error, m; and

e; are the iy, measured and forecasted data values, respectively.
5.4.2 Normalized Mean Absolute Error (NMAE)

It is described by the following given Eq. (5.4) and can be expressed as:

NMAEy=—37,

«100 (5.4)

max(m;)
where n is the number of observation, E is the absolute error, m; and e; are the
i, measured and forecasted data, respectively. Since the measured data changes
significantly in a day i.e. from sunrise to sunset, so for the sake of fair

comparison, the normalized mean absolute error have been preferred.
5.4.3 Normalized Root Mean Square Error (nRMSE)

It is described by the following given Eq. (5.5) and expressed as:

£

1an 2
I3 IE]

max(m;)

NRMSEy, = %100 (5.5)
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where E = (m; - ;) is the absolute error, n is the number of observation, m; and
ej are the i, measured and forecasted data values, respectively. This definition
of error is normalized over the maximum hourly measured data. It measures the

mean magnitude of the absolute error.
9.5 RESULTS AND DISCUSSIONS
5.5.1 Modeling Variants of ANN Architectures

In the first part of this chapter, the variants of the artificial neural
network architecture have been developed which include cascade-forward,
feed-forward, elman back-propagation, generalized regression, layered
recurrent, linear layer and radial basis function neural network under composite
climatic conditions. It comprises an input layer, hidden layer with ‘tansig’
tangent sigmoid transfer function and ‘purelin’ linear transfer function in the
output layer. Levenberg-Marquardt training algorithm was found to give a
good prediction. For validation of the models, evaluation indexes have been
used and are presented in Table 5.6.

From Table 5.6, it is learned that among the different artificial neural
network architecture investigated, the radial basis function neural network
model gave the most accurate result as compared to other models with
averaged mean absolute percentage error (MAPE) of 0.001%, normalized mean
absolute error (NMAE) of 0.017% and normalized root mean square error
(nRMSE) of 0.092% when the simulation is performed between the measured

and forecasted data.

138



Table 5.6 Variants of ANN architectures along with evaluation indexes under composite climatic conditions

ANN Architecture
Measured Performance Li
Month Hq Cascade- Elman Feed- Generalized Layer inear . .
(MJ/m?) Measures forward backdro forward regression recurrent layer Radial basis
backdrop P g (train)

Estimated H, (MJ/mz) 13.98 13.98 13.99 13.91 13.93 13.95 13.95

Jan 13.98 MAPE (%) 0.03 0.02 0.02 0.26 0.04 0.02 0.01
' NMAE (%) 0.76 0.45 0.49 6.21 0.93 0.50 0.20

NRMSE (%) 1.04 0.79 0.80 7.90 1.78 1.17 1.11

Estimated H, (MJ/mz) 16.76 16.80 16.90 16.76 16.82 16.79 16.79

Feb 16.79 MAPE (%) 0.04 0.02 0.08 0.31 0.02 0.00 0.00
' NMAE (%) 0.78 0.47 1.52 6.70 0.42 0.00 0.00

NRMSE (%) 1.26 0.94 2.02 8.50 0.63 0.00 0.00

Estimated H, (MJ/mz) 21.08 21.16 21.13 21.30 21.10 21.12 21.12

Mar 21 12 MAPE (%) 0.04 0.02 0.04 0.27 0.02 0.04 0.00
' NMAE (%) 1.07 0.51 1.02 7.22 0.62 1.19 0.00

NRMSE (%) 1.89 0.76 1.26 9.64 1.40 1.47 0.00

Estimated H, (MJ/m?) 25.31 25.15 25.15 25.26 2501 25.22 25.21

Apr 25 12 MAPE (%) 0.03 0.02 0.02 0.20 0.01 0.00 0.00
' NMAE (%) 0.81 0.45 0.58 5.42 0.17 0.10 0.00

nRMSE (%) 1.39 0.83 1.28 6.71 0.34 0.12 0.00

Estimated H, (MJ/mZ) 24.2 24.24 24.25 24.28 24.25 24.23 24.23

May 2493 MAPE (%) 0.02 0.01 0.01 0.18 0.03 0.01 0.00
' NMAE (%) 0.49 0.33 0.29 5.08 0.70 0.37 0.00

nRMSE (%) 0.69 0.44 0.86 5.69 0.98 0.46 0.00

Estimated H, (MJ/mz) 20.8 20.91 20.93 21.17 20.86 20.91 20.91

Jun 20.91 MAPE (%) 0.08 0.04 0.02 0.36 0.02 0.00 0.00
NMAE (%) 1.90 0.92 0.45 8.95 0.49 0.00 0.00

nRMSE (%) 2.57 1.23 0.76 11.86 0.93 0.00 0.00

Estimated H, (MJ/mz) 19.48 19.36 19.34 19.31 19.32 19.38 19.38

Jul 1938 MAPE (%) 0.04 0.04 0.04 0.47 0.04 0.04 0.00
NMAE (%) 0.97 0.92 0.77 10.24 0.89 0.79 0.00

nRMSE (%) 1.58 1.18 1.21 12.13 1.17 0.97 0.00
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Table 5.6 Variants of ANN architectures along with evaluation indexes under composite climatic conditions (contd....)

ANN Architecture
Measured Performance Li
Month Hyq Cascade- Elman Feed- Generalized Layer inear . .
(MJ/m?) Measures forward backdro forward regression recurrent layer Radial basis
backdrop P g (train)
Estimated H, (MJ/mz) 18.94 18.75 18.84 18.95 18.78 18.80 18.80
Aug 18.80 MAPE (%) 0.12 0.04 0.05 0.54 0.03 0.01 0.00
NMAE (%) 2.44 0.74 0.14 12.21 0.74 0.18 0.00
nRMSE (%) 291 1.30 0.05 13.89 1.11 0.22 0.00
Estimated H, (MJ/mz) 13.87 13.86 13.85 13.83 13.85 13.85 13.85
Sep 13.85 MAPE (%) 0.03 0.01 0.01 0.24 0.01 0.00 0.00
NMAE (%) 0.86 0.15 0.26 5.94 0.22 0.11 0.00
NRMSE (%) 1.07 0.34 0.39 7.69 0.32 0.14 0.00
Estimated H, (MJ/mz) 18.40 18.31 18.34 18.36 18.33 18.33 18.33
Oct 18.33 MAPE (%) 0.03 0.01 0.02 0.21 0.01 0.01 0.00
NMAE (%) 0.82 0.32 0.53 5.58 0.24 0.32 0.00
NRMSE (%) 1.14 0.58 0.72 6.72 0.61 0.47 0.00
Estimated H, (MJ/mZ) 14.59 14.56 14.57 14.59 14.57 14.56 14.56
Nov 14.56 MAPE (%) 0.03 0.01 0.01 0.21 0.01 0.02 0.00
NMAE (%) 0.68 0.12 0.13 5.04 0.26 0.55 0.00
NRMSE (%) 1.63 0.19 0.19 6.38 0.70 0.71 0.00
Estimated H, (MJ/m?) 12.26 12.20 12.15 12.21 12.13 12.13 12.12
Dec 1212 MAPE (%) 0.06 0.03 0.08 0.37 0.03 0.03 0.00
NMAE (%) 1.48 0.79 1.95 9.17 0.84 0.66 0.00
nRMSE (%) 2.12 2.29 2.41 11.04 1.29 0.80 0.00
Estimated H, (MJ/mZ) 18.31 18.27 18.29 18.33 18.26 18.27 18.27
Avg. 18.27 MAPE (%) 0.05 0.02 0.03 0.30 0.02 0.02 0.001
NMAE (%) 1.09 0.51 0.68 7.31 0.54 0.40 0.017
nRMSE (%) 1.61 0.91 1.00 9.01 0.94 0.54 0.092
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5.5.2 Forecasting Solar Energy Employing the RBFNN and FFNN Model

In the second part of this chapter, by employing Radial Basis Function
Neural Network (RBFNN) model, simulations have been carried out based on
sky-conditions i.e. sunny sky (type-a), hazy sky (type-b), partially
foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions and
applied for different meteorological stations with distinct climate zone across
India and are presented in Table 5.7.

Further, it is evident from Table 5.7 that the RBFNN model is far
accurate and precise with Mean Absolute Percentage Error (MAPE) of
0.00646%, Normalized Mean Absolute Error (NMAE) of 0.0049% and
normalized Root Mean Square Error (nRMSE) of 0.078% which shows that the
error is within the permissible error limits. Similarly, the Feed-Forward Neural
Network (FFNN) model is chosen at random for comparing the results with the
RBFNN model. The obtained results have been further simulated based on sky-
conditions and for distinct climate zone across India and are presented in Table

5.8. From Table 5.7 and Table 5.8, the following can be briefly summarized:-
(@  Clear/Sunny sky (type-a)

For sunny/clear sky-condition, it has been observed from the computed
data presented in Table 5.8 which employs the FFNN model, the minimum
value of MAPE obtained is 0.44%, NMAE is 0.40% and nRMSE is 0.70%,
whereas, in case of RBFNN model, the minimum value of MAPE obtained is
1.1x10°® %, NMAE is 1x10® % and nRMSE is 0.01363% as shown by the
computed data presented in Table 5.7 by simulating the measured and

forecasted data.
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Table 5.7 Forecasted global solar energy employing the RBFNN model based on sky-conditions for distinct climate zones across India

Global Solar Energy Hg

Climate -
Zone Horeendtens Measured () Fuzzy IVI('(?/\"F;E N?g/op)\E HR(L\//(I))SE

Clear/Sunny Sky 20.58 20.58 0.000008062 0.000007276 0.023162273

New Delhi Hazy Sky 18.12 18.10 0.000000012 0.000000010 0.014784684
(Composite) Partially Foggy/Cloudy Sky 12.51 12.51 0.000000023 0.000000017 0.015340431
Fully Foggy/Cloudy Sky 11.37 11.30 0.000000041 0.000000018 0.019464528
Clear/Sunny Sky 23.62 23.62 0.000000014 0.0000000137 0.0130413684

Chennai Hazy Sky 21.04 21.04 0.000000025 0.0000000222 0.0664993013
(Warm and Humid) | partially Foggy/Cloudy Sky 18.40 18.40 0.000000013 0.0000000009 0.0214053710
Fully Foggy/Cloudy Sky 11.88 11.88 0.000000032 0.0000000140 0.0218700869

Clear/Sunny Sky 21.76 21.76 0.000000011 0.000000010 0.013635427

Jodhpur Hazy Sky 19.79 19.80 0.000000015 0.000000014 0.015340431
(Hotand Dry) | partially Foggy/Cloudy Sky 18.16 18.16 0.000000018 0.000000014 0.016476619
Fully Foggy/Cloudy Sky 15.75 15.78 0.000000007 0.000000003 0.004467361

Clear/Sunny Sky 22.85 22.85 0.009598276 0.008828894 0.088976002

Shillong Hazy Sky 19.25 19.25 0.006468338 0.004964164 0.078564044
(Cold and Cloudy) |partially Foggy/Cloudy Sky 15.93 15.93 0.000000025 0.000000016 0.019464087
Fully Foggy/Cloudy Sky 11.22 11.22 0.0000000001 0.0000000001 0.0000000001

Clear/Sunny Sky 21.49 21.52 0.000000018 0.000000007 0.012756144

Pune Hazy Sky 20.41 20.42 0.000005699 0.000005086 0.024854072
(Moderate) Partially Foggy/Cloudy Sky 18.71 18.71 0.000054524 0.000037123 0.014467972
Fully Foggy/Cloudy Sky 13.73 13.73 0.000000038 0.000000020 0.020648805
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Table 5.8 Forecasted global solar energy employing the FFNN model based on sky-conditions for distinct climate zone across India

Global Solar Energy Hg

Climate .
Zone oreendtens Measured (g Fuzzy M('(?/\"F;E N?g/:)\E nR(‘I’\//cIJ)SE
Clear/Sunny Sky 20.54 20.55 0.9098539 0.8237889 1.2491250
New Delhi Hazy Sky 18.12 18.14 0.6061892 0.5101836 1.0993097
(Composite) | partially Foggy/Cloudy Sky 12.51 12.51 1.6099966 1.1410815 2.0724769
Fully Foggy/Cloudy Sky 11.37 11.31 2.2029587 0.9092731 1.5296920
Chennai Clear/Sunny Sky 23.41 22.77 3.0888259 2.7558138 1.3601598
(Warm and Hazy Sky 21.11 21.07 1.2512550 1.0771491 1.3079257
Humid) Partially Foggy/Cloudy Sky 18.37 18.25 0.7914716 0.6094748 0.9984168
Fully Foggy/Cloudy Sky 11.95 12.21 2.8557605 1.5777821 1.6175690
Clear/Sunny Sky 21.76 21.81 0.4471779 0.4079172 0.7088581
Jodhpur Hazy Sky 19.79 19.68 0.8232167 0.6524025 1.2857318
(Hotand Dry) | partially Foggy/Cloudy Sky 18.16 18.25 1.0856531 0.7390095 1.5030082
Fully Foggy/Cloudy Sky 15.75 15.54 0.0162731 0.0107279 0.0107279
Clear/Sunny Sky 22.92 22.85 0.5298038 0.4953913 0.9758976
Shillong Hazy Sky 19.25 19.25 0.8151853 0.6580462 1.2527437
(Cold and Cloudy) | partially Foggy/Cloudy Sky 16.28 16.24 1.9176360 1.3166599 1.6443384
Fully Foggy/Cloudy Sky 11.62 11.63 0.0162731 0.0107279 0.0205869
Clear/Sunny Sky 21.49 21.48 0.6985575 0.6432756 1.2194507
Pune Hazy Sky 20.42 20.31 0.8042275 0.6318676 1.1171241
(Moderate) Partially Foggy/Cloudy Sky 18.71 18.90 1.8603160 1.4328736 1.4152323
Fully Foggy/Cloudy Sky 13.73 13.75 1.6115142 0.7257172 1.3800854
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The error for the Radial Basis Function Neural Network (RBFNN)
model is comparatively less and reduced than the Feed-Forward Neural
Network (FFNN) model. Also, in both of the developed model i.e. the RBFNN
and FFNN model, the error is observed to be minimum for Jodhpur station.
This is due to the reason that the Jodhpur climatic conditions are hot and dry
which prevail sunny weather throughout the year, with high variation in
ambient temperature. During summer, the ambient temperature varies from 30-
35°C whereas, during winter, it varies from 5 - 25°C; so, the variation is high of
the value of 10°C as illustrated in Table 5.3.

Jodhpur climate is extreme, with high solar insolation during day time
because of which the surrounding region got heated up very quickly and at
night time also there is a clear sky because of which the heat absorbed by
atmosphere got dissipated to the upper atmospheric region. The climate of
Jodhpur is defined as hot and dry with sandy ground conditions as the relative
humidity varies from 24 - 62% due to water surface bodies. In such climatic
conditions, the design criteria should be for increasing power generation from

solar energy technology based photovoltaic system.

(b)  Hazy sky (type-b)

For hazy sky-condition, it has been observed from the computed data
presented in Table 5.8 which employs the FFNN model, the minimum value of
MAPE obtained is 0.60%, NMAE is 0.51% and nRMSE is 1.09%, whereas, in
case of RBFNN model, the minimum value of MAPE obtained is 1.2 x 10°® %,
NMAE is 1 x 10® % and nRMSE is 0.014% as shown by the computed data

presented in Table 5.7 by simulating the measured and forecasted data.
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The error for the RBFNN model is comparatively less and reduced than
FFNN model. Also, in both of the developed model, the error is observed to be
minimum for Delhi station that falls under composite climate zone.

The contributing factor for this sky-condition is the variation in relative
humidity from 30 - 40% during dry days to 60 - 80% during wet days. The
presence of high value of relative humidity is one of the main reasons that
categorize Delhi under the composite climate zone and not under hot and dry
climate zone as shown by the measured data presented in Table 5.1. Also,
during the summer season, the solar insolation is high and in monsoon season
the solar insolation is low with predominant diffuse radiation.

The sky is clear in winter; overcast and dull in monsoon season; and

often hazy in the summer season.
(©) Partially foggy/cloudy sky (type-c)

For this sky-condition, it has been observed from the computed data
presented in Table 5.8 which employs the FFNN model, the minimum value of
MAPE obtained is 0.79%, NMAE is 0.60% and nRMSE is 0.99%, whereas, in
case of RBFNN model, the minimum value of MAPE obtained is 1.3x107® %,
NMAE is 9x10™° % and nRMSE is 0.0214%, by simulating the measured and
forecasted data respectively.

The error for the RBFNN model is comparatively less and reduced than
FFNN model. Also, in both of the developed models, the error is observed to
be the minimum for Chennai station that falls under warm and humid climate
zone.

The reason behind is that for this sky-conditions, the sky is partially

cloudy as diffuse radiation is very intense during clear days and the dissipated
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heat from the surface of the earth is generally marginal during the night
because of the presence of clouds. Hence, ambient temperature variation is
quite low. One of the main characteristics of this climate zone is the high
amount of relative humidity that varies from 70-90% throughout the year. In
summer, the temperature can go as high as 30-35°C during the day whereas, in
winter, the maximum temperature is between 20-25°C during day time as as

shown by the measured data presented in Table 5.2.
d) Fully foggy/cloudy sky (type-d)

For this sky-condition, it has been observed from the data presented in
Table 5.8 which employs the FFNN model, the minimum value of MAPE
obtained is 0.016%, NMAE is 0.010% and nRMSE is 0.020%; whereas, in case
of RBFNN model, the minimum value of MAPE obtained is 1.0 x 10™° %,
NMAE is 1.0 x 10°% and nRMSE is 1.0 x 10™° % as shown by the computed
data presented in Table 5.7 by simulating the measured and forecasted data.

The error for the RBFNN model is comparatively less and reduced than
the FFNN model. Also, in both of the developed models, the error is found to
be the minimum for Shillong that falls under cold and cloudy climate zone.

This is due to the reason that the intensity of solar radiation is low
during winter due to the presence of high amount of diffuse solar radiation
which makes extremely cold winters. During summer, the ambient temperature
varies between 20-25°C and 10-15°C during winter. The variation in humidity
is high of the range 70-90% as shown by the measured data presented in
Table 5.5. The sky for this climate zone is overcast and cloudy all throughout

the year except during short summer.
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Further, the graphical representation showing a comparison of the
measured data and forecasted data obtained by employing the RBFNN model
and FFNN model have been shown in Fig. 5.3 - Fig. 5.7 based on sky-

conditions and further simulated for distinct climatic conditions across India.
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Fig. 5.3 Graphical representation of measured and forecasted global solar energy employing
the RBFNN and FFNN model for warm and humid climate zone
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Fig. 5.4 Graphical representation of measured and forecasted global solar energy employing
the RBFNN and FFNN model for hot and dry climate zone
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Fig. 5.5 Graphical representation of measured and forecasted global solar energy employing
the RBFNN and FFNN model for composite climate zone
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Fig. 5.7 Graphical representation of measured and forecasted global solar energy employing
the RBFNN and FFNN model for cold and cloudy climate zone
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From Fig. 5.3 - Fig. 5.7, it is evident that the RBFNN model i.e. the
red dashed line (——— ) exactly follows the black solid line (——) which
represents the measured data where in case of the FFNN model i.e. the blue
dash dot line (------- ) shows some deviation with the measured data.
Therefore, it has been observed that the radial-basis function neural network

model outperforms feed-forward neural network model.
5.6 IMPLEMENTATION IN SOLAR PV SYSTEM

Forecasting of power is essential for planning the operation of solar
PV systems. So, obtained results are further exploited for simulating with
input parameters namely solar insolation, and cell temperature by employing
ANN model for forecasting power in solar PV system using Heterojunction
with Intrinsic Thin Layer (HIT) solar PV module of 210 W, operated at
maximum power point conditions, the performance specification are listed in
Table A.2 of Appendix A. The ANN model employing radial basis function
neural network have been implemented in forecasting power of a solar
photovoltaic system and are presented in Table 5.9 under composite climatic
conditions.

It has been observed from Table 5.9, that by employing the RBFNN
model, the month-wise average mean absolute percentage error is 0.007%
which is obtained by comparing the measured data with forecasted data in a
solar PV system employing 210 W, HIT solar PV module, which is within
the permissible error limit. Also, the month-wise average normalized mean
absolute error is 0.092% and normalized root mean square error observed is

0.109% respectively.
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Table 5.9 Forecasted power in a solar PV system employing the RBFNN model under composite climatic conditions

Month Hq I Voc Cell over () MAPE NMAE NRMSE
(wim') ) V) Tem?’%’;ture Measured ANN (%) (%) (%)
Jan 361.15 0.42 81.47 28.14 20.65 20.61 0.007 0.120 0.140
Feb 461.52 0.61 82.03 35.69 29.89 29.87 0.002 0.040 0.049
Mar 548.24 0.62 83.64 40.12 31.56 30.61 0.006 0.030 0.025
April 575.12 0.60 79.62 42.53 30.23 30.26 0.005 0.018 0.031
May 559.67 0.59 77.35 46.22 30.53 30.53 0.002 0.022 0.028
June 537.17 0.55 76.92 45.24 26.14 26.14 0.008 0.193 0.217
July 537.81 0.05 76.66 48.28 25.68 25.71 0.020 0.167 0.199
Aug 428.80 0.47 76.90 53.27 22.13 22.13 0.001 0.027 0.031
Sep 437.51 0.50 77.78 51.62 23.68 23.68 0.016 0.236 0.288
Oct 466.57 0.63 78.74 53.21 29.91 29.90 0.001 0.016 0.019
Nov 369.82 0.44 78.48 45.08 21.20 21.23 0.014 0.205 0.257
Dec 370.84 0.47 80.66 43.36 25.60 25.61 0.004 0.023 0.029
Avg. 471.18 0.50 79.19 44.40 26.43 26.36 0.007 0.092 0.109
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57 ANN MODEL FOR SHORT-TERM SOLAR ENERGY
FORECASTING

Further, the generation of power in a solar photovoltaic system
depends more on the changes in climatic conditions. Therefore, in the present
work, different sky-conditions have been considered for forecasting power
under composite climatic conditions and evaluation indexes have been used to

validate the performance of models and shown in Fig. 5.8 — Fig. 5.11.
5.7.1 Sunny/Clear Sky (Type-a)

1* June 2016 was observed as a sunny day as the diffuse solar energy
is lower than 25% of global solar energy and the sunshine duration is equal to
or more than 9 hours. As shown in Fig. 5.8, the forecasted bell-shaped power
curve on hourly basis was accurately following the measured power

employing the ANN methodology and the considered duration is of 24 hours.

Sunny/Clear Sky
—=— Measured Power
—@— Forecasted Power

~
o
J

)

MAPE% = 0.0019%
NMAE% = 0.013%
NRMSE% = 0.021%

a1
o
|

IN] w »
o S o
1 1 1

Solar photovoltaic power output (W
1)
1

o
1

Time (hour)

Fig. 5.8 Forecasted power in a solar photovoltaic system for a sunny day - 1% June 2016 with
evaluation indexes

It has been observed that the sunny sky model gives the maximum

power output of 16.92 W with MAPE of 0.0019%, NMAE of 0.013% and
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NRMSE of 0.021%. In this sky-condition, time factor majorly affects the solar

radiation than the factor of temperature.
5.7.2 Hazy Sky (Type-b)

Similarly, 26" December 2016 was observed as a hazy day as the
diffuse solar energy is lower than 50% of global solar energy and the sunshine
duration is between 7-9 hours. In this sky-condition as well, the forecasted
bell-shaped power curve on hourly was accurately following the measured
power employing the proposed artificial neural network methodology as

illustrated in Fig. 5.9 and the considered duration is of 24 hours.

Hazy sky
70 o —&— Measured Power
—@— Forecasted Power

60 —

50 -

MAPE% = 0.054
NMAE% = 0.361
NRMSE% = 0.748

40 —

30 -

20 4

Solar photovoltaic power output (W)

10

Time (hour)

Fig. 5.9 Forecasted power in a solar photovoltaic system for the hazy day - 26" December 2016
with evaluation indexes

For hazy sky model, the forecasted power is comparatively smaller than
the sunny sky model with a maximum power output of 13.44 W, MAPE of
0.054%, NMAE of 0.361% and nRMSE of 0.7488%. In a hazy sky day, the sun
rays will get blocked and here a factor of temperature majorly affects the solar
insolation as compared to a factor of time, which is not the same as incase of

sunny sky day.
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5.7.3 Partially Foggy/Cloudy Sky (Type-c)

Similarly, 3" August 2016 was observed as a partially foggy/cloudy sky
as the diffuse solar energy is lower than 75% of global solar energy and the
sunshine durationis between 5-7 hours. In this sky-condition, the power curve
is biased during noon with a maximum power output of only 6.42 W, MAPE of

0.024%, NMAE of 0.087% and nRMSE of 0.204% as shown in Fig. 5.10.

Partially foggy/cloudy sky
70 — —@— Measured Power
—@— Forecasted Power

60

50 MAPE% = 0.024
NMAE% = 0.087
NRMSE% = 0.204

Solar photovoltaic power output (W)

Time (hour)

Fig. 5.10 Forecasted power in a solar PV system for the partially foggy/cloudy day - 3" August
2016 with evaluation indexes

The considered duration is of 24 hours and for this model, the sun rays
are partially absorbed by the solar photovoltaic system and partially by the
cloud cover and both the factor of time and temperature affects the solar

radiation.
5.7.4 Fully Foggy/Cloudy Sky (Type-d)

Similarly, 3 January 2016 was observed as a fully foggy/cloudy sky as
the diffuse solar energy is greater than 75% of global solar energy and the

sunshine duration is lower than 5 hours. For this sky-condition, the power
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curve is biased during noon hours with a maximum power output of 2.97 W,
mean absolute percentage error of 0.109%, the normalized mean absolute error
of 0.716% and normalized root mean square error of 1.58% as represented by
the measured and forecasted data shown in Fig. 5.11 employing artificial neural
network methodology and the considered duration is of 24 hours. In this model,
the sun rays will get fully blocked by the presence of cloud, and both the factor

of time and temperature will affect the solar radiation.
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Fig. 5.11 Forecasted power in a solar PV system for fully foggy/cloudy day - 3" January 2016
with evaluation indexes

5.8 COMPARISON OF ANN MODELS WITH FUZZY LOGIC
BASED MODEL

A comparative analysis has been carried out between the ANN model
employing radial basis function neural network and fuzzy logic based model in
forecasting global solar energy for different sky-conditions and the
performance has been measured based on evaluation indexes and are presented

in Table 5.10.
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Table 5.10 Comparative analysis of ANN model with fuzzy logic based model for distinct climate zone across India

Climate Sky-Conditions Global (S&I?/I;nliz)rlergy o ,zﬂ/IZ)E
Zone Measured Fuzzy ANN Fuzzy ANN
Clear/Sunny Sky 20.57 20.2 20.58 -2.32 -0.03
New Delhi Hazy Sky 18.12 185 18.14 0.03 0.14
(Composite) Partially Foggy/Cloudy Sky 12.51 12.8 12.51 2.24 0.16
Fully Foggy/Cloudy Sky 7.48 10.1 8.13 35.1 8.63
Clear/Sunny Sky 23.60 22.3 23.30 -5.83 -1.31
Chennai Hazy Sky 21.11 20.8 21.10 -1.08 -0.03
(Warm and Humid) | partially Foggy/Cloudy Sky 18.33 18.9 18.37 0.10 0.02
Fully Foggy/Cloudy Sky 11.88 12.1 12.22 3.27 2.14
Clear/Sunny Sky 21.76 21.7 21.73 -0.31 -0.05
Jodhpur Hazy Sky 19.99 20.1 19.86 0.68 -0.51
(Hotand Dry) |partially Foggy/Cloudy Sky 18.08 18 18.16 -0.34 0.21
Fully Foggy/Cloudy Sky 16.63 19.2 16.62 13.6 0.11
Clear/Sunny Sky 22.85 22.7 22.78 -0.95 -0.25
Shillong Hazy Sky 19.25 19.3 19.25 0.51 0.02
(Cold and Cloudy) | partially Foggy/Cloudy Sky 16.09 16.5 16.06 2.94 -0.16
Fully Foggy/Cloudy Sky 11.22 11.6 11.23 1.30 0.46
Clear/Sunny Sky 21.49 21.5 21.48 -0.06 -0.05
Pune Hazy Sky 20.41 20.2 20.44 -0.57 0.25
(Moderate) Partially Foggy/Cloudy Sky 18.71 18.9 19.18 1.16 0.90
Fully Foggy/Cloudy Sky 13.73 13.8 13.75 4.95 0.30
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On comparing the obtained results, the error in case of proposed ANN
model employing radial basis function neural network is comparatively less
and reduced as compared to fuzzy logic based model for each of the climate

zone across the entire country which means that it provides better accuracy.
59 CONCLUSION

In this chapter, the variants of ANN architectures i.e. cascade-forward,
feed-forward, elman back-propagation, generalized regression, layered
recurrent, linear layer and radial basis function neural network architecture
have been developed and presented for modelling the system in forecasting
global solar energy using meteorological parameters under composite climatic
conditions. It has been concluded from the obtained results that the radial basis
function neural network model has emerged to provide a better prediction with
minimum error as compared to other models based on evaluation indexes.

Further, simulations have been performed for forecasting global solar
energy employing radial basis function neural network model based on sky-
conditions i.e. sunny sky (type-a), hazy sky (type-b), partially foggy/cloudy
sky (type-c) and fully foggy/cloudy sky (type-d) condition and obtained results
have been compared with feed-forward neural network model and further
applied for distinct climate zone across India.

It has been concluded that by employing radial basis function neural
network, the obtained results are precise and accurate in each of the climate
zone across the entire country.

Obtained results are further exploited to forecast solar PV system
power based on sky-conditions which employ 210 W, HIT solar PV modules

operated at MPPT conditions for composite climatic conditions.
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It has been concluded from the results that for composite climatic
conditions, the hazy-sky model outperforms other models as the measured
data matches the forecasted data followed by the sunny-sky model, partially
foggy/cloudy sky model and fully foggy/cloudy sky model. The result reveals
that the model may be implemented for a broad series of applications.

Lastly, the comparison of the proposed ANN model has been made
with fuzzy logic based model and the obtained results after statistical analysis
reveals the accuracy and supremacy of the proposed ANN model as

compared to fuzzy logic based model.
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CHAPTER 6

HYBRID INTELLIGENT MODEL FOR
FORECASTING SOLAR ENERGY

6.1 INTRODUCTION

In the previous chapters modelling based on Artificial Neural Network
(ANN) and fuzzy logic were used for forecasting solar energy. This chapter
presents the hybrid intelligent models for forecasting global solar energy using
meteorological parameters. In this, a model underlying the principle of
Adaptive Neural-Fuzzy Inference System (ANFIS) architecture has been
presented, which provides a basis of Fuzzy Inference System (FIS)
implemented within the framework of adaptive networks. Simulations have
been carried out based on sky-conditions such as sunny sky (type-a), hazy sky
(type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy (type-d)
sky-conditions and for distinct climate zone i.e. warm and humid, hot and dry,
cold and cloudy, moderate and composite climate across India. Further, the
obtained results have been implemented for solar PV system based on sky-
conditions such as sunny, hazy, partially and fully foggy/cloudy sky-conditions
under composite climatic conditions. Lastly, a comparison of the proposed
model has been carried out with variants of artificial neural network model and

fuzzy logic based model for validation of the results.

This chapter is partially based on the following published papers:

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Comparison of intelligent modelling
techniques for solar energy forecasting and its application in solar PV systems,” IET
Energy Systems Integration, Vol. 1, No.1, pp. 34-51, 2019. ISSN No. 2516-8401
(Online).
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For modelling complex systems, an accurate analysis of a number of
hidden layers with aid of artificial neural network is a difficult task. Therefore,
to overcome these drawbacks, a hybrid intelligent model has been proposed
which integrate the concept of Fuzzy Inference System (FIS) and Artificial
Neural Network (ANN) in forecasting global solar energy. Recently, the
ANFIS based model has attracted many researchers in various scientific fields
due to the growing need of an intelligent technique to model the system [108].
Many researchers have worked in an application area where the fusion of ANN
and fuzzy logic approach has been effectively implemented.

For real-time applications, a comprehensive survey has been carried out
based on neuro-fuzzy rule generation algorithm for delivering maximum power
to the load based on Maximum Power Point Tracking (MPPT) conditions as it
gives a faster response with precision and accuracy. Many grid-connected
solar PV plants are based on photovoltaic technology, but varying sky-
conditions makes the output of the system non-deterministic and stochastic
[109-115]. So, accurate forecasting is essential as the uncertainty of sky-
conditions greatly affects the power of solar PV systems. Lot of research has
been done for forecasting global solar energy by employing ANFIS modelling;
however, literature based on ANFIS modelling for forecasting global solar
energy in different sky-conditions and for distinct climatic conditions is less
reported.

This chapter proposes hybrid intelligent model i.e. ANFIS-based model
for forecasting global solar energy based on sky-conditions using
meteorological parameters. Simulations have been carried out for different

climatic conditions across India with aid of statistical performance indicators.
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The obtained results have been implemented to forecast power in solar PV
system at Maximum Power Point (MPP) conditions. Lastly, the comparison of
the ANFIS-based model has been made with variants of ANN model and the
fuzzy logic based model for validation of the results.

6.2 DEVELOPMENT OF ANFIS BASED MODEL FOR
FORECASTING SOLAR ENERGY

The ANFIS involves hybrid learning rule for system optimization. It is
a graphical analysis of Fuzzy-Sugeno system which lies within the framework
of adaptive networks and is surrounded by neural learning capabilities. The
main factor influencing the hybrid method is that the convergence rate is faster
as search space dimensions have been reduced for the back-propagation neural
network method. Neuro-fuzzy systems combine artificial neural network with
fuzzy inference systems, which allows transformation of the system into if-then
rules set, and the fuzzy inference system becomes a neural network structure
with distributed connection strengths. Hybrid intelligent model is advantageous
for research and applications based on an artificial neural network algorithms
and adaptation of fuzzy linguistic rules. An adaptive network is basically a
network structure comprising nodes and directional links with overall input-
output behaviour defined with a set of modifiable parameters and makes use of
hybrid learning algorithm for identifying parameters of the fuzzy inference
system. It combines least-squares and back-propagation gradient descent
method to train the parameters of the membership function. In the forward
phase of the network algorithm, identification of the least squares estimates has
been done by the consequent parameters. In the backward phase, the

derivatives of the squared error propagate backwards from the output layer to
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the input layer wherein the premise parameters are updated by the gradient
descent algorithm. ANFIS training uses algorithms for reducing the error.
ANFIS is the fuzzy model put in the framework of the adaptive system for

model building and validation to facilitate training and adaptation [116-120].
6.2.1 The ANFIS Architecture

The ANFIS network is a multilayer feed-forward network comprising
nodes wherein each node is connected by directed links and is performing the
function for generating single node output from incoming signals. In an ANFIS
network, each link specifies signal direction from one node to another node.
The adaptive network configuration perform a node function in signals coming
from previous nodes for generating a single output at the node and each node
function is parameterized and by changing the modifiable parameters, the
overall functioning of the node and behaviour of the network are changed. The
architecture of ANFIS has been shown in Fig. 6.1 which comprises five layers
i.e. fuzzy layer, product layer, normalized layer, de-fuzzy layer and the output

layer.

A
x<

Az

B,
y <
B

V1, V2

l

T Layer 5
T V1,V2
Layer 1 T
Layer 4

Fig. 6.1 Architecture of ANFIS for forecasting global solar energy
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The ANFIS architecture comprises a fuzzy inference system (FIS) and
membership functions are tuned with the back-propagation algorithm and least
squares method. The aim is to determine the optimum values of FIS with aid of
algorithm. Optimization has been done during the training session wherein the
error between the measured and targeted output is minimized. A hybrid
algorithm which combines least squares estimates and gradient descent method
has been used for optimization [121]. Consider that the ANFIS architecture has
two inputs namely x and y and one output f.

A first-order Takagi, Sugeno and Kang (TSK) fuzzy inference system
has been implemented comprising two rules:

Rule 1: If (x is A;) and (y is B;) then f; = pix +quy + 11

Rule 2: If (x is Az) and (y is By) then f, = pox + gy + 12
where p1, P2, 01, G2, 1 and r, represent the linear parameters; and Ay, A,, By and
B, are non-linear parameters.

While defining ANFIS architecture, one of the important considerations
is that tuning of the number of training epochs, the number of fuzzy rules and
the number of membership functions should be made accurately. A better and
more accurate system can be well defined if the difference between desired
output and measured data output is less.

The integration of artificial neural network and fuzzy logic i.e. fuzzy
neural network has been established; generally, the arrangements of fuzzy logic

and the neural network are called as ANFIS.
6.2.2 Layers of ANFIS

A concise outline of five layers of ANFIS architecture with inputs x, y

and one output f has been shown in Fig. 6.1 which comprises five layers as:
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@ Layer 1

For this layer, input node i comprises an adaptive node producing
membership of the linguistic label. In this layer, A;, Az, B1and B; are the input
of the system and O; defines the output of the i™ node of layer 1. Each
adaptive node is a square node with square function represented by using
Eg. (6.1) - Eq. (6.2).

O1i = Mai(x) fori=1.2 (6.1)
O1j=Mej(y) forj=1,2 6.2)
where pa;and pgjare the membership function degree, O;; and Oy represents

the output function, for fuzzy sets A;and B respectively.
(b) Layer 2

In layer 2, membership function weights are checked, which receives
input A; from the previous layer and acts as a membership function to represent
fuzzy sets of respective input variables. Each node represents the fixed node
labeled with ‘11> where the output is the product of all incoming signals which
can be shown by using Eq. (6.3) as:

O2i = Hai (X) * pgj(y) fori=1,2 (6.3)
which are the firing strengths of the rules. In general, any T-norm operator that

performs fuzzy AND can be used as a node function in this layer.
(© Layer 3

This layer is marked with a circle labeled as ‘N’, which indicates the
normalization to the firing strength from the previous layer. It does pre-
condition matching of fuzzy rules which otherwise compute activation level of

each rule. In this layer, the i node computes the ratio of i" rule’s strength to
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the sum of all rules firing strength and the output can be expressed as Os;

using Eq. (6.4) as:

Ozi= ——fori=1,2 (6.4)

wqi+wy
For convenience, outputs of this layer will be called as normalized firing

strengths.
d) Layer 4

In this, the output values are resulted from the rules inference and
represent the product of the normalized firing rule strength and first-order
polynomial which can be expressed by Eg. (6.5) as:

Osi =W, f;=w, (pix+qy+r)fori=1.2 (6.5)
where O4; represents layer 4 output. In this layer, pi, gi and r; are linear

parameters or consequent parameters.
e Layer 5

This layer basically does the summation of all incoming signals coming
from its previous layer i.e. layer 4 and does the transformation of fuzzy
classification results into crisp values which comprise single fixed node labeled
as ‘X’. This layer does the summing of all the incoming signals calculated
using Eq. (6.6) as:

Osi=XwWf; = % fori=1,2 (6.6)

Hence, when the premise parameters are fixed, the adaptive network
output can be expressed as a combination of a consequent parameter and the
behaviour of the network is considered to be the same as that of the Sugeno

fuzzy model.
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6.3

RESULTS AND DISCUSSIONS

In this chapter, ANFIS-based model has been employed for forecasting

global solar energy with aid of meteorological parameters. For training and

testing of the data, MATLAB software has been used with function “anfisedit”

in the command window and evaluating the output by using the function

“evalfis (input, tra)” where the term “input” contains the input data and “tra”

represents the training data as shown in Fig. 6.2 respectively.

Training data - o FIS output - * — ANFIS Info.  —
1r
&
0sl & #of inputs: 5
s & ) & # of outputs: 1
= 06l & E *@ # of input mfs:
a & g ¥ z ¥ 33333
=] &
S 04 ¥ &% P
Gk
02l & & iy
&
0 I I ! I L I Structure
0 5 0 15 20 25 30 3 Clear Blot
Index
Load data Generate FIS [ Train FIS — [ TestFIs ]
Type: R Optim. Method:
o Training Load from file hybrid - Flot against:
. file Load from worksp. Error Tolerance: @' Training data
Testing 0
. @ Grid partition Testing data
Checking @ worksp. Epochs:
- Sub. clustering 100 Checking data
emo
Load Data.. | Clear Data | Generate FIS .. | Train Now | | | Zoorest ey

Fig. 6.2 ANFIS training data simulated in MATLAB with five inputs and one output

Further, the ANFIS model structure simulated in MATLAB with five

meteorological parameters as inputs namely wind speed, dew-point, sunshine

hours, relative humidity, ambient temperature and global solar energy as the

output have been shown in Fig. 6.3. Here, ground data of five meteorological

stations have been considered using statistical performance indicators and are

illustrated in Table 6.1.
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Fig. 6.3 ANFIS model structure with five inputs and one output simulated in MATLAB

From Table 6.1, following can be briefly summarized:-
6.3.1 Clear/Sunny Sky (Type-a)

In sunny/clear sky-condition, the computed error is observed to be
minimum for Jodhpur station in comparison to other station with averaged
mean absolute percentage error of 1x10™%. The reason behind is that
Jodhpur enjoys hot and dry climatic conditions wherein sunny weather

prevails all throughout the year.
6.3.2 Hazy Sky (Type-b)

In hazy sky-condition, the computed error is observed to be minimum
for the composite climate in comparison to other climatic conditions with
averaged mean absolute percentage error of 5x10°%. This is due to the
presence of high value of relative humidity which varies about 25-35%

during dry periods to 60-90% during wet periods.
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Table 6.1 ANFIS based model for forecasting global solar energy along with statistical performance indicators for distinct climate zone

Global Solar Energy Hy

Climate Sky-Conditions (MJ/n) MAPE NMAE nRMSE
Zone Measured Fuzzy (%) (%) (%)

Clear/Sunny Sky 20.60 20.60 0.00013 0.00012 0.13798

New Delhi Hazy Sky 18.10 18.10 0.00005 0.00008 0.13700

(Composite) Partially Foggy/Cloudy Sky 12.52 12.52 0.00089 0.00006 0.19377

Fully Foggy/Cloudy Sky 7.48 7.48 0.00004 0.00000 0.00000

Clear/Sunny Sky 23.60 23.60 0.00012 0.00012 0.11429

Chennai Hazy Sky 21.11 21.11 0.00924 0.00852 0.19315

(Warm and Humid) | partially Foggy/Cloudy Sky 17.58 17.58 0.00750 0.00610 0.19967

Fully Foggy/Cloudy Sky 12.30 12.20 0.00008 0.41493 0.49918

Clear/Sunny Sky 21.758 21.758 0.00010 0.00013 0.12458

Jodhpur Hazy Sky 19.986 19.986 0.00006 0.00005 0.11210

(Hotand Dry) | partially Foggy/Cloudy Sky 18.075 18.075 0.00905 0.00007 0.13261

Fully Foggy/Cloudy Sky 16.628 16.752 0.00544 0.00442 0.09626

Clear/Sunny Sky 22.83 22.83 0.00966 0.00889 0.14512

Shillong Hazy Sky 19.25 19.25 0.00662 0.00509 0.20678

(Cold and Cloudy) | partially Foggy/Cloudy Sky 16.09 16.09 0.00421 0.00267 0.24032

Fully Foggy/Cloudy Sky 11.22 11.22 0.00001 0.00054 0.20333

Clear/Sunny Sky 21.49 21.52 0.10504 0.09868 0.28673

Pune Hazy Sky 20.42 20.43 0.03890 0.03146 0.21360

(Moderate) Partially Foggy/Cloudy Sky 18.71 18.71 0.00180 0.00013 0.10925

Fully Foggy/Cloudy Sky 13.73 13.83 0.00012 0.00006 0.13132
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6.3.3 Partially Foggy/Cloudy Sky (Type-c)

For this sky-condition, the error is observed to be minimum for warm
and humid climate in comparison to other climate zone with mean absolute
percentage error of 7.5x10°%. This condition is apparently due to high
diffused radiations owing to the cloudy conditions, which also results in the

marginal dissipation of heat during the night.
6.3.4 Fully Foggy/Cloudy Sky (Type-d)

In this sky-condition, the computed error is observed to be minimum
for Shillong station in comparison to other station with mean absolute
percentage error of 1x107%.

The main contributing factor is that during winter the solar radiation
intensity is comparatively lower with a high percentage of diffused solar
radiation, which makes extremely cold winters.

Further, the comparison of the measured and forecasted data obtained
by using ANFIS based model for varying sky-conditions have been presented
in Fig. 6.4 — Fig. 6.8 and further simulated for distinct climate zone across
India.

It has been observed from Fig. 6.4 - Fig. 6.8 that the forecasted data
attained by employing the ANFIS-based model in varying sky-conditions is
same as that of the measured data and the performance of the model is

satisfying.
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Fig. 6.4 Graphical representation of measured and forecasted global solar energy using
ANFIS methodology for warm and humid climate zone
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Fig. 6.5 Graphical representation of measured and forecasted global solar energy using
ANFIS methodology for hot and dry climate zone
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Fig. 6.6 Graphical representation of measured and forecasted global solar energy using
ANFIS methodology for composite climate zone
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Fig. 6.7 Graphical representation of measured and forecasted global solar energy using
ANFIS methodology for moderate climate zone
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Fig. 6.8 Graphical representation of measured and forecasted global solar energy using
ANFIS methodology for cold and cloudy climate zone
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6.4 IMPLEMENTATION OF ANFIS-BASED MODEL FOR SOLAR
PV APPLICATIONS

Attributing to meteorological factor, the solar PV power output
fluctuates along with the solar insolation intensity, which shows random
behaviour based on the topographical location and seasonal variation and is
difficult to control. In the present work, 250 W, multi-crystalline solar PV
modules have been used whose performance specification are listed in table
A.1 of Appendix. The ANFIS based model has been employed to forecast the
behaviour of power generation in a solar photovoltaic system and shown in
Table 6.2 for composite climate zone.

From Table 6.2, it is evident that the mean absolute percentage error of
a solar photovoltaic system is 0.0077% by employing ANFIS based model,
which is accurate and within the permissible error limit. Further, it is to be
noted that for the winter season (January), the mean absolute percentage error
is 0.0057%; for the summer season (May), the mean absolute percentage error
obtained is 0.0027% respectively. The value of mean absolute percentage
error is comparatively large for the rainy season (July) of the value of
0.0220%, due to large uncertainties associated with the data.

The ANFIS methodology integrates the features of fuzzy logic and
artificial neural network which increases the system accuracy, robustness and
adaptability with the non-linearity associated with the data.

6.5 SHORT-TERM PV POWER FORECASTING USING ANFIS
BASED MODEL

The daily power generation in a solar photovoltaic system based on

the performance characterization is presented in Fig. 6.9.
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Table 6.2 Forecasted power of a solar PV system employing ANFIS modelling under composite climate zone

Month Vomax lomax |rr§3liz1:10e Voo e Tgr(::L. PE)VV\\;(;r MAPE NMAE nRMSE
V) (A) (Wimd) V) (A) °C) (%) (%) (%)
Measured | Forecasted

Jan 60.48 1.05 341.98 69.5 11 20.80 64.15 64.12 0.0057 0.0027 0.0031
Feb 59.95 1.49 450.78 69.6 15 28.19 89.61 89.57 0.0022 0.0017 0.0020
Mar - - - - - - - - - - -
April - - - - - - - - - - -
May 56.93 1.38 557.92 66.4 1.4 44.53 79.08 79.06 0.0027 0.0020 0.0023
June 57.57 1.20 528.54 66.2 1.2 42.32 68.28 70.19 0.0346 0.0262 0.0460
July 57.03 1.02 532.32 66.3 1.0 39.15 59.03 59.03 0.0220 0.0156 0.0354
Aug 57.07 1.03 411.69 66.7 11 38.15 59.52 59.52 0.0036 0.0022 0.0027
Sep 57.36 111 418.73 66.9 1.2 35.56 64.35 64.28 0.0052 0.0024 0.0029
Oct 57.78 1.52 464.71 68.1 1.6 37.75 88.08 88.09 0.0003 0.0002 0.0002
Nov 58.90 1.15 346.12 68.6 1.2 29.33 68.21 68.21 0.0005 0.0003 0.0003
Dec 60.09 1.26 359.34 69.8 1.3 23.94 76.30 76.30 0.0006 0.0004 0.0006
Avg. 58.32 1.22 441.21 67.8 1.3 33.97 71.66 71.84 0.0077 0.0054 0.0096

*Data could not be arranged for these months
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Fig 6.9 Photovoltaic system power generation on daily basis for 3 days

Fig. 6.9 presents the generation of power for 3 days i.e. 9", 10" and
11™ June and the days considered represent sunny days so solar radiation
remains almost the same. Thus, it has been concluded that a high correlation
prevails for generated power on a daily basis. The power output is available
during the entire day and causes fluctuation to the grid when integrating
unsteady photovoltaic power into the grid. Since many factors are involved
which affects the solar photovoltaic system power output but the main factor
is the variation in sky-condition, which makes it difficult to examine the
performance characteristics with a single model.

In this, the power in a solar PV system is classified based on
different sky-condition such as sunny sky, hazy sky, partially and fully
foggy/cloudy sky respectively. The data has been collected on a daily basis
and arranged within 1 hour for short-term PV power forecasting. The
ANFIS-based model has been implemented to forecast the behaviour of a
solar PV system under composite climatic conditions. The architecture of
ANFIS simulated in MATLAB with two inputs namely cell temperature,

solar irradiance and power output are shown in Fig. 6.10.

179



input

output

Logical Operations
and

(] or

not

Fig. 6.10 ANFIS model structure with two inputs and one output simulated in MATLAB

Further, the graphical representation between the measured and forecasted

power employing ANFIS modelling technique under four weather types is shown

in Fig. 6.11.
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Fig 6.11 Graphical analysis of PV power output in a solar photovoltaic system
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From Fig. 6.11, it is evident that the generation of power in a solar
PV system varies significantly with sky-conditions. It has been observed
that the hazy sky model performs well in power forecasting of solar PV
system. This observation reveals that the forecasting model should be based
on sky classifications.

6.6 COMPARISON OF ANFIS-BASED MODEL WITH ANN
MODELS

The proposed ANFIS-based model is compared with the ANN model
trained with the feed-forward neural network, linear layer network in
forecasting global solar energy. Also, the comparison has been made with
generalized regression neural network and the performance is measured
using statistical performance tests and shown in Table 6.3.

It has been observed from Table 6.3, that the ANFIS-based model
provides accurate results with MAPE of 2.1 x 107% as compared to ANN
model. The value of MAPE obtained by employing feed-forward neural
network is 0.0020%, with generalized regression neural network, the mean
absolute percentage error obtained is 0.30%, and with linear layer neural
network, the mean absolute percentage error obtained is 0.016%.

6.7 COMPARISON OF INTELLIGENT MODELS WITH
EMPIRICAL MODELS

Further, the comparative analysis of ANFIS based models have
been made with fuzzy logic, ANN and with empirical models using
multiple regression analysis. The performance has been evaluated using
statistical validation test for composite climate of India and are presented

in Table 6.4.

181



It has been observed from Table 6.4 that the hybrid intelligent models
perform best in comparison to other models for forecasting global solar
energy. The average mean percentage error obtained by using regression
models is 1.67% for composite climatic conditions. However, the obtained
result is far better by using intelligent models for global solar energy
forecasting. With fuzzy logic methodology, the average mean percentage error
reduced to 0.41% which is comparatively lesser than the empirical model
using multiple regression analysis.

The mean percentage error further reduced to 0.12% by using the ANN
model trained with feedforward back-propagation neural network. Lastly, by
using hybrid intelligent model i.e. ANFIS methodology, the averaged mean
percentage error further reduced to 3.84 x 10°% which provides accurate
results as compared to other models.

It is, therefore, revealed from the results that by employing hybrid
intelligent models, the obtained error is less. This is due to the reason that the
ANFIS-based model presents a specified mathematical structure and makes it a
good adaptive approximator. Further, for a network of similar complexity, the
ANFIS model provides better learning ability and reduces convergence error.
The ANFIS model achieves non-linear mapping and shows supremacy to the

neural network and other methods of similar complexity.
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Table 6.3 Comparison of ANFIS-based model with ANN model

ANFIS FFENN GRNN LNN
Measured
Month (M?ﬁnz) Fore;asted MAPE Forel:asted MAPE Fore|(_:|asted MAPE Fore;:'asted MAPE
(MJ/m?) (%) (MJ/m?) (%) (MJ/m?) (%0) (MI/m?) (%0)
Jan 13.985 13.98 0.00000016 13.969 0.0018 13.91 0.26 13.951 0.021
Feb 16.788 16.79 0.00000017 16.903 0.0047 16.76 0.31 16.788 0.000
Mar 21.118 21.12 0.00000020 21.131 0.0019 21.30 0.27 21.123 0.044
Apr 25.214 25.21 0.00000010 25.166 0.0008 25.26 0.20 25.215 0.004
May 24.227 24.23 0.00000020 24.251 0.0009 24.28 0.18 24.230 0.013
Jun 20.912 20.91 0.00000025 20.931 0.0009 21.17 0.36 20.912 0.000
Jul 19.381 19.38 0.00000014 19.339 0.0019 19.31 0.47 19.381 0.036
Aug 18.802 18.80 0.00000021 18.837 0.0015 18.95 0.54 18.804 0.008
Sep 13.851 13.85 0.00000019 13.854 0.0008 13.83 0.24 13.853 0.004
Oct 18.334 18.33 0.00000027 18.339 0.0011 18.36 0.21 18.335 0.012
Nov 14.562 14.56 0.00000011 14.568 0.0004 14.59 0.21 14.564 0.024
Dec 12.124 12.12 0.00000051 12.151 0.0071 12.21 0.37 12.127 0.027
Avg. 18.275 18.27 0.00000021 18.287 0.0020 18.33 0.30 18.273 0.016
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Table 6.4 Comparative analysis of intelligent models with empirical models under composite climate zone

Measured Regression Fuzzy ANN ANFIS
Month (MT/QmZ) Foreﬁjsted MPE | RMSE Fore:'asted MPE | RMSE Fore:'asted MPE | RMSE Fore;:'asted MPE RMSE
am?y | @ | OO gy | PO ] OO T gy | 00 | OO (mymy) (%) (%)
Jan 13.98 14.02 1.21 1.24 13.85 -0.79 | 0.574 13.97 -0.12 | 0.05 13.98 -0.00002964 | 0.000000000
Feb 16.79 16.79 0.96 1.90 16.62 -0.82 | 0.838 16.90 0.82 0.21 16.79 -0.00004093 | 0.000000000
Mar 21.12 21.11 1.53 1.95 21.12 0.19 0.973 21.13 0.12 0.09 21.12 -0.00004902 | 0.000000002
Apr 25.21 25.25 0.89 1.58 25.16 -0.13 | 1.393 25.07 -0.18 | 0.13 25.12 -0.00003183 | 0.000000001
May 24.23 24.22 0.31 1.96 23.58 -2.5 | 1.405 24.25 0.07 0.05 24.23 -0.00002040 | 0.000000002
Jun 20.91 20.93 2.58 1.90 21.23 1.7 1.361 20.93 0.06 0.04 20.91 -0.00007744 | 0.000000002
Jul 19.38 19.38 3.23 1.69 19.53 2.07 | 3.629 19.34 -0.28 | 0.11 19.38 -0.00002974 | 0.000000000
Aug 18.80 18.85 351 1.78 18.98 0.69 | 2.582 18.84 0.25 0.05 18.80 -0.00005338 | 0.000000001
Sep 13.85 13.90 1.37 1.87 13.89 0.85 | 0.905 13.85 0.04 0.00 13.85 -0.00002834 | 0.000000000
Oct 18.33 18.36 0.39 1.45 18.72 224 | 0.728 18.34 0.04 0.02 18.33 -0.00002741 | 0.000000001
Nov 14.56 14.58 0.76 1.79 14.48 -0.51 | 0.444 14.57 0.05 0.00 14.56 -0.00002199 | 0.000000000
Dec 12.12 12.12 3.27 1.97 12.3 1.92 | 0.559 12.15 0.54 0.14 12.12 -0.00005155 | 0.0000000009
Avg. 18.27 18.29 1.67 1.76 18.29 0.41 1.28 18.28 0.12 0.08 18.27 -0.00003847 | 0.000000001
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6.8 CONCLUSION

In this chapter, a model underlying the principle of ANFIS
architecture has been established in forecasting global solar energy with aid
of meteorological parameters namely sunshine hours, global solar energy,
wind speed, relative humidity, ambient temperature and dew-point. Three
criteria namely mean absolute percentage error, normalized mean absolute
error and normalized root mean square error have been used for verifying the
forecasting errors of proposed ANFIS based models. Simulations have been
carried out for varying sky-conditions i.e. sunny sky (type-a), hazy sky
(type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy sky
(type-d) conditions and successfully applied for distinct climate zone across
India.

It has been concluded from the overall statistical analysis that by
employing hybrid intelligent model, the error has been reduced significantly
for each of the climate zone across the entire country. Also, the obtained
results reveals that the sunny/clear sky (type-a) model performs better for hot
and dry climate zone as compared to other climate zone. Similarly, the hazy
sky (type-b) model provides favourable results for composite climate zone,
partially foggy/cloudy sky (type-c) model favours warm and humid climate
zone and lastly, fully foggy/cloudy sky (type-d) model achieves favourable
results for cold and cloudy climate zone, respectively.

Obtained results are further exploited to forecast solar PV system
power based on sky-conditions which employ 250 W, Multi-crystalline solar

PV modules operated at MPPT conditions for composite climatic conditions. It
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has been concluded that the hazy sky model perform better than other sky
model for composite climate zone.

Further, the proposed model has been compared with the variants of
ANN models i.e. feed-forward neural network, generalized regression neural
network and linear layer neural network. It has been observed that the
proposed model underlying the principle of ANFIS methodology reveals
precise and accurate results.

Also, a comparison of the proposed model has been made with the
fuzzy logic based model and traditional regression models. It has been
concluded from the obtained results that the hybrid intelligent models

provides convenience and supremacy to other model.
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CHAPTER 7

SOLAR ENERGY FORECASTING APPLICATIONS
FOR SOLAR PV SYSTEMS

7.1 INTRODUCTION

In the previous chapter, the solar energy forecasting is performed using
hybrid intelligent model consisting of fuzzy inference systems and artificial
neural network. This chapter is based on the application of solar energy
forecasting in solar photovoltaic systems. As the power from solar energy
sources is fluctuating and nonlinear in nature, therefore, the power variation in
a solar photovoltaic system can lead to the unstable operation of the power
system. Therefore, intelligent approaches based on fuzzy logic, Artificial
Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference Systems
(ANFIS) have been used for 10 minutes ahead solar energy forecasting
fluctuations in solar PV systems. Using the above model, faster convergence
rate and stronger training and learning ability may be achieved. The proposed
work would be useful for power engineers in proper operation and control of
the power plants. The short-term PV power forecasting may be implemented
for many applications such as providing appropriate control for PV system
integration, optimization, power smoothening, real-time power dispatch which

may mitigate the issues of power fluctuations obtained from solar PV systems.

This chapter is partially based on the following published papers:

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Performance mapping of solar thermal
technologies,” Proceedings of International Conference on Renewable Energy and
Sustainable Climate (Solaris 2019), Feb 07-09, 2019, Jamia Millia Islamia, Delhi,

India.
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7.2  COLLECTION OF DATA

The data for solar irradiance, ambient temperature, cell temperature,
relative humidity have been collected from National Institute of Solar Energy
(NISE) for Delhi location at 10 minutes time interval and used as input for very
short-term power forecasting in a solar PV system.

7.3 INTELLIGENT APPROACH FOR SHORT-TERM SOLAR
ENERGY FORECASTING

The power output from renewable energy sources is seeking attention
due to advancement in the field of solar PV systems including enhanced
efficiency of solar cells. In the current situation, bidding on power has been
done on 10 minutes timescale by most of the distribution companies. Further,
the uncertainty and the variability associated with the solar PV power plant
lead to the inappropriate operation. Hence, this mandates the short-term power
forecasting for successfully and efficiently integrating the power plants into the
utility grid.

In this chapter, an intelligent modelling technique such as fuzzy logic,
artificial neural network and hybrid intelligent model have been presented for
very short-term power forecasting of a solar photovoltaic system under
composite climatic conditions. The input includes the parameters such as solar
irradiance, cell temperature and solar photovoltaic generation at a time scale of
10 minutes for the day [122-129].

The power generation has been affected by many parameters such as
climatic variations, solar insolation, solar panel temperature, ambient
temperature and the topographical position. So, it becomes difficult to define

the output with single model; therefore, the output is modelled based on
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different weather conditions such as sunny, hazy, partially foggy/cloudy and
fully foggy/cloudy sky-conditions using meteorological parameters as these
factors make a significant impact on solar PV system power output. Solar
irradiance is the factor by which the PV power is most significantly gets

affected. The PV power output estimation can be expressed by Eq. (7.1) as:

G
Ppy = [va,src * Tgo * [T—y= (T] - 25)]] * Npys * Npyp (7.1)
G

where Ppy,stc represents the rated power output of solar PV system of single
array at maximum power point, Ppy is the solar PV array power output at MPP,
Gr is solar irradiance at STC in W/m?, Npys represents the series PV arrays, y is
temperature parameter at Maximum Power Point (MPP), Npyp represents the
parallel PV arrays, Tamp is ambient temperature in °C, T; is the temperature of
the solar panel in °C and Nocr is a constant.

Further, weather conditions such as cloudy, dusts have large influence
on solar irradiance reaching to the PV panels by scattering and reflecting,
thereby reducing the direct radiation to the ground. Therefore, a good and
accurate forecasting model for solar energy requires an intelligent approach

which uses historical PV power and meteorological parameters.
7.4  EVALUATION INDEXES

The effect of the different methods of training is investigated by means
of some evaluation indexes. These indexes aim at assessing the accuracy of the

forecasts and the related error, it is therefore necessary to define the indexes.
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7.4.1 Mean Absolute Percentage Error (MAPE)

The hourly error e, is the staring definition given as the difference
between the hourly mean values of the power measured in the h-th hour Ppp
and the forecast Py provided by the adopted model.

en = Pmn - Ppn (W)

From the hourly error expression and its absolute value, other definitions can

be inferred; i.e., the well-known mean absolute percentage error (MAPE):

eh
Pm,h

MAPEy,= =37,

| = 100 (7.3)

where n is the number of sample (hours) considered, usually it is calculated for
a single day, month, or year.
7.4.2 Normalized Mean Absolute Error (NMAE)

Since the hourly measured power P, significantly changes during the
same day (i.e., sunrise, noon, and sunset), for the sake of a fair comparison, in

this chapter normalized mean absolute error have been preferred.

NMAEy=—37,

eh
C

«100 (7.4)

where n is the number of sample (hours) considered and the percentage of the
absolute error is referred to the rated power C of the plant, in place of the
hourly measured power Pph. It is largely used to evaluate the accuracy of

predictions and trend estimations.
7.4.3 Normalized Root Mean Square Error (nRMSE)

It is based on the maximum hourly power output Pn described by the

Eq. (7.5) and expressed as:

100 (7.5)
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This definition of error is the well-known root mean square error
(RMSE) which has been normalized over the maximum hourly power output

Pmn measured in the considered time range, for the sake of a fair comparison.
7.5 RESULTS AND DISCUSSIONS

The solar PV power forecasting is an important element for smart grid
approach which helps in optimization of the smart energy management system
and has the ability to integrate the renewable power generation in an efficient
manner.

Considering different weather conditions, various seasons are chosen
accordingly for covering wider aspects of the developed model. Since the
power generating from solar energy resource is fluctuating in nature, so, it
becomes difficult to estimate power output with mathematical models;
therefore, intelligent approaches based on fuzzy logic, ANN and ANFIS
models have been presented for power forecasting of solar PV system.

In this research, 250 W, Multi-crystalline and 210 W, Heterojunction
with Intrinsic Thin Layer (HIT) solar PV modules have been considered whose
performance characteristics have been shown in Table A.1 - Table A.2 of

Appendix A respectively.

7.5.1 Intelligent Modelling for Short-Term Power Forecasting in Solar
PV System Employing 210 W, HIT PV Modules

Intelligent modelling techniques i.e. fuzzy logic, ANN and ANFIS
modelling have been applied in forecasting power of a solar PV system and are

presented in Table 7.1.
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It has been observed from Table 7.1 that the month-wise average mean
absolute percentage error using fuzzy logic methodology is 0.10%; for ANN
methodology, the mean absolute percentage error reduced to 0.04%; and for
ANFIS methodology the mean absolute percentage error further reduced to
0.01% which reveals that the obtained results are precise and far accurate as the
computed error is less.

This is due to the reason that ANFIS based model integrates the
features of both fuzzy logic approach and artificial neural network. Further,
the graphical representation between the measured and forecasted power

employing different methodologies have been presented in Fig. 7.1.
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Fig. 7.1 Graphical analysis of measured and forecasted PV power employing fuzzy logic,
ANN and ANFIS methodologies
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Table 7.1 Intelligent methodologies for forecasting power in a solar PV system employing HIT solar PV modules under composite climate zone

Fuzzy ANN ANFIS

Month |rr§1(()jliz:1ce Voc lsc TC;:Ip MFe);SAl/Jerre ‘ Forecasted Forecasted Forecasted

owimdy | (1A ey |y | paer MEEE TS | P | Yoy | oe | o0 | P | e | o0 | o6

(W) (W) (W)

Jan 361.15 81.47 | 0.42 | 28.14 20.80 19.79 0.18 0.09 0.11 20.46 0.01 0.01 0.02 20.61 0.00 0.00 0.00
Feb 461.52 82.03 | 0.61 | 35.69 30.15 30.02 0.07 0.05 0.07 29.87 0.00 0.00 0.01 29.87 0.00 0.00 0.00
Mar 548.24 83.64 | 0.62 | 40.12 31.56 31.25 0.01 0.03 0.03 30.56 0.01 0.02 0.00 29.56 0.00 0.00 0.00
April 575.12 79.62 | 0.60 | 42.53 30.23 32.56 0.15 0.06 0.04 29.56 0.00 0.02 0.00 27.12 0.00 0.00 0.00
May 559.67 77.35 | 0.59 | 46.22 31.05 35.19 0.12 0.05 0.06 30.52 0.00 0.00 0.00 30.53 0.00 0.00 0.00
June 537.17 76.92 | 0.55 | 45.24 26.20 26.00 0.07 0.06 0.07 26.14 0.00 0.00 0.00 26.14 0.01 0.00 0.01
July 537.81 76.66 | 0.05 | 48.28 24.45 25.72 0.05 0.04 0.05 25.67 0.02 0.02 0.03 25.71 0.00 0.00 0.00
Aug 428.80 76.90 | 0.47 | 53.27 22.33 22.59 0.06 0.04 0.05 22.14 0.03 0.01 0.04 22.13 0.00 0.00 0.00
Sep 43751 77.78 | 0.50 | 51.62 23.80 23.99 0.13 0.07 0.09 22.40 0.27 0.12 0.19 23.80 0.07 0.03 0.04
Oct 466.57 78.74 | 0.63 | 53.21 29.92 29.40 0.07 0.06 0.07 29.97 0.01 0.00 0.01 29.90 0.00 0.00 0.00
Nov 369.82 78.48 | 0.44 | 45.08 20.85 20.65 0.13 0.05 0.06 18.90 0.03 0.01 0.02 21.23 0.00 0.00 0.00
Dec 370.84 80.66 | 0.47 | 43.36 25.53 32.57 0.12 0.01 0.09 25.62 0.10 0.08 0.43 25.61 0.00 0.00 0.01
Avg. 471.19 79.19 | 0.50 | 44.40 26.41 27.48 0.10 0.05 0.07 25.98 0.04 0.03 0.06 26.02 0.01 0.00 0.01
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From Fig. 7.1, it has been observed that the forecasted power
employing ANFIS methodology closely follows the measured power as
compared to others methodologies such as fuzzy logic and artificial neural
network.

Further, the power generation in a solar PV system with 210 W, HIT
solar PV modules for different sky-conditions has been shown in Table 7.2.

Following inferences can be drawn from Table 7.2 shown as:
(@) Sunny/clear sky

1% June 2015 is considered as a sunny day based on the annual analysis
of solar radiation data and availability of sunshine hours. Further, the
graphical representation between measured and forecasted power for sunny
sky condition have been shown in Fig. 7.2 from which it has been observed
that the forecasted power employing ANFIS methodology on hour basis
closely follows the measured power, whereas some deviation can be seen in
terms of fuzzy logic approach and ANN approach.

The maximum power output is observed to be 62 W during the day
with averaged mean absolute percentage error of 0.0610% using the fuzzy
logic methodology, by employing ANN methodology the error is 0.0014%
and by employing ANFIS methodology the mean absolute percentage error

has been further reduced to 0.0010%.
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Table 7.2 Short-term PV power forecasting employing HIT solar PV module under composite climatic

conditions
Sky S Time Cell So_lar Measured Forecastel.=:du = ForecastegNN Forecasf;’;“:ls
Zﬂzdltl (hr) 'I;Sgp Ir(m\/\;i;:qr;;: € P(o\;zvv)e ' Power M(';; E Power M(':/:;E Power M(';F))E
(W) (W) (W)
7:00 34.11 140.93 7.00 7.02 0.0900 7.02 0.0027 7.03 0.0036
8:00 40.55 27376 13.83 15.00 0.0840 13.84 0.0015 12.85 0.0001
9:00 48.14 486.12 28.00 30.34 0.0830 28.02 0.0009 28.01 0.0004
10:00 52.23 625.25 39.83 41.66 0.0460 39.82 0.0002 39.83 0.0002
11:00 57.79 783.13 52.33 54.17 0.0350 5231 0.0005 52.34 0.0002
Sunny 12:00 62.86 875.34 59.33 60.50 0.0200 59.35 0.0003 59.06 0.0040
sky 13:00 64.69 888.95 62.00 61.17 0.0900 61.88 0.0018 61.99 0.0005
14:00 63.91 744.96 43.17 42.00 0.0270 43.16 0.0000 43.46 0.0052
15:00 61.55 726.73 48.33 46.32 0.0420 48.32 0.0001 48.33 0.0007
16:00 58.04 549.15 34.33 3151 0.0820 34.34 0.0004 34.35 0.0006
17:00 52.72 361.6 20.83 19.32 0.0720 20.79 0.0024 20.82 0.0004
Avg. 54.24 586.90 37.18 37.18 0.0610 37.17 0.0014 37.10 0.0010
10:00 40.83 123.1 8.00 7.12 0.0100 8.39 0.0492 8.03 0.0031
11:00 44.49 146.12 8.50 9.70 0.0020 9.45 0.1408 8.49 0.0011
12:00 4356 307.56 19.67 24.20 0.2300 20.25 0.0123 19.66 0.0004
Hazy 13:00 52.55 519.54 45.00 45.46 0.0100 44.82 0.0031 44.98 0.0003
sky 14:00 424 467.65 39.00 37.40 0.0410 39.25 0.0060 39.01 0.0001
15:00 49.36 313.06 24.50 21.50 0.0170 24.54 0.0012 2451 0.0004
16:00 41.05 185.35 11.00 10.09 0.0830 11.68 0.0828 11.00 0.0001
Avg. 44.89 294,63 22.24 2221 0.0561 22.63 0.0422 22.24 0.0008
8:00 45.79 134.08 9.67 10.26 0.0610 9.72 0.0045 9.66 0.0008
9:00 47.49 179.69 27.33 12.99 0.5250 27.32 0.0038 12.36 0.0670
10:00 52.07 355.98 32.50 30.14 0.0730 33.33 0.0125 27.53 0.0031
11:00 5557 463.45 44,00 40.78 0.0730 44,01 0.0010 32.56 0.0108
12:00 58.38 547.32 39.50 44.39 0.1240 39.24 0.0013 43.92 0.0005
Partiall 13:00 59.96 519.74 39.83 31.40 0.2120 39.95 0.0130 39.49 0.0026
)’Jggg;’ 1400 | 5552 492.69 50.17 40.93 0.1840 50.28 00024 | 39.78 | 0.0009
sky 15:00 61.3 647.1 37.33 51.69 0.3850 37.60 0.0178 50.22 0.0010
16:00 59.64 562.02 2117 35.16 0.6610 21.20 0.0114 37.59 0.0139
17:00 50.88 299.99 15.33 18.22 0.1880 15.39 0.0034 20.88 0.0096
18:00 50.73 2353 7.33 12.65 0.7250 7.53 0.0473 15.30 0.0076
19:00 47.99 156.43 7.33 7.23 0.0130 7.75 0.0858 8.81 0.2480
Avg. 53.78 382.82 27.62 27.99 0.2687 27.78 0.0305 28.18 0.0170
9:00 19.08 170.77 12.50 10.75 0.1400 12.60 0.0066 12.48 0.0011
10:00 19.02 74.87 8.33 10.62 0.2750 8.35 0.0030 8.40 0.0099
Fully 11:00 23.29 96.49 11.17 8.72 0.2190 12.78 0.1733 10.98 0.0442
foggy 12:00 185 412 7.83 8.10 0.0340 7.82 0.0018 7.81 0.0036
[cloudy | 13:00 1857 140.77 10.67 10.46 0.0200 10.66 0.0002 10.63 0.0056
sky 14:00 18.59 87.31 9.83 11.14 0.1330 10.11 0.0243 10.01 0.0735
15:00 17.86 164.25 12.00 10.83 0.0970 12.01 0.0016 12.00 0.0004
Avg. 19.27 110.81 10.33 10.09 0.1311 10.62 0.0301 10.33 0.0198
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Fig. 7.2 Graphical analysis of measured and forecasted PV power employing intelligent
methodologies for sunny sky-condition

(b) Hazy sky

26™ December 2015 is considered as a hazy day based on the annual
analysis of solar radiation data and availability of sunshine hours. Further, the
graphical representation between measured and forecasted power for hazy sky
condition have been shown in Fig. 7.3 from which it has been observed that
the forecasted power employing ANFIS methodology on hour basis closely
follows the measured power, whereas some deviation can be seen in terms of
fuzzy logic approach and ANN.

The maximum power output is observed to be 50 W during the day
with averaged mean absolute percentage error by employing fuzzy logic
methodology is 0.0561%, by employing artificial neural network methodology
the mean absolute percentage error reduced to 0.0422% and by employing

ANFIS methodology the error have been further reduced to 0.0008%.
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Fig. 7.3 Graphical analysis of measured and forecasted PV power employing intelligent
methodologies for hazy sky-condition

(©) Partially foggy/cloudy sky

3" August 2015 is considered as partially foggy/cloudy day based on
the annual analysis of solar radiation data and availability of sunshine hours.
Further, the graphical representation between measured and forecasted power
for partially foggy/cloudy sky condition have been shown in Fig. 7.4 from
which it has been observed that the forecasted power employing ANFIS
methodology on hour basis closely follows the measured power, whereas
some deviation can be seen in terms of fuzzy logic approach and ANN.

The maximum power output is observed to be 44 W during the day
with averaged mean percentage error by employing fuzzy logic methodology
is 0.2687%, by employing ANN methodology the mean absolute percentage
error reduced to 0.0305%, and by employing ANFIS methodology the error

further reduced to 0.0170%.
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Fig. 7.4  Graphical analysis of measured and forecasted PV power employing intelligent
methodologies for partially foggy/cloudy sky-condition

d) Fully foggy/cloudy sky

3" January 2015 is considered as a fully foggy/cloudy day based on
the annual analysis of solar radiation data and availability of sunshine hours.
Further, the graphical representation between measured and forecasted power
for fully foggy/cloudy sky condition have been shown in Fig. 7.5 from which
it is evident that the forecasted power employing ANFIS methodology on hour
basis closely follows the measured power, whereas some deviation can be
seen in terms of fuzzy logic approach and ANN.

The maximum power output is observed to be 12 W during the day
with averaged mean absolute percentage error by employing fuzzy logic
methodology is 0.1311%, by using ANN methodology the error reduced to
0.0301% and by employing ANFIS methodology the mean absolute

percentage error further reduced to 0.0198%.
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Fig. 7.5 Graphical analysis of measured and forecasted power employing intelligent
methodologies for fully foggy/cloudy sky-condition

From Table 7.2, it has been observed that out of the four models,
especially the hazy sky model perform well with mean absolute mean
percentage error of 0.0008% in forecasting the power of a solar photovoltaic
system followed by sunny sky model with mean absolute percentage error of
0.0010%, partially foggy/cloudy sky model with mean absolute percentage
error of 0.0170% and fully foggy/cloudy sky model with mean absolute
percentage error of 0.0198% by using ANFIS methodology.

7.5.2 Intelligent Modelling for Short-Term Power Forecasting in Solar
PV System Employing 250 W, Multi-crystalline PV Modules

Similarly, intellgent modelling techniques have been presented for
power forecasting of solar PV system employing Multi-crystalline 250 W,
solar PV modules operating at Maximum Power Point Tracking (MPPT)
conditions and are presented in Table 7.3.

From Table 7.3, it has been observed that by employing the ANFIS-based

model, the average MPE obtained is 0.0001% which is far less as compared to
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other models. By employing fuzzy logic, the MPE obtained is 0.01% and with
ANN model mean percentage error of 0.0021% is achieved. Hence, the hybrid
modelling approach is far accurate and precise as compared to other models.

Further, it has been concluded from the obtained results that for all
months of the year, error is less in case of the ANFIS model.

For winter season (January), the averaged MPE by employing fuzzy logic
approach is 0.09%, using ANN the error reduced to 0.004% and with ANFIS
model the error further reduced to 0.0003%.

Similarly, for the summer season (June) the averaged MPE by employing
fuzzy logic is 0.07%, by using ANN the error reduced to 0.0033% and with
ANFIS model the error further reduced to 0.0001%.

It has been observed that error is large for the rainy season (August)
because of large uncertainties associated with the data. The average mean
percentage error by employing fuzzy logic is 0.28%, using ANN the error
reduced to 0.0304% and with ANFIS model the error further reduced to
0.0003%.

In view of aforesaid, it has been observed that the ANFIS-based model
performs better than other models in terms of faster convergence rate with
learning and training ability. The ANFIS methodology makes use of training
pattern as compared to other methods and hence reduces the computational time
complexity. It has certain advantages such as the ease of design, robustness and
adaptability with the non-linearity associated with the data. The ANFIS
methodology integrates the features of both fuzzy logic and ANN which

increases the system accuracy and makes the system response much faster.
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Table 7.3 Intelligent methodologies for forecasting power in a solar PV system employing Multi-crystalline solar PV modules under composite climate zone

Fuzzy ANN ANFIS
Month Solar v I Cell |Measured
Irradiance pmax_| fpmax | Temp | Power | Forecasted MPE | RMSE Forecasted MPE | RMSE Forecasted MPE |RMSE

(W/m?) V) (A) (°C) (W) Power (%) (%) Power (%) (%) Power (%) (%)
(W) ’ N () ’ 7w i ’
Jan 341.98 60.48 1.05 20.80 64.15 64.37 -0.09 | 0.10 63.82 0.0040 | 0.01 64.12 -0.0003 | 0.00
Feb 450.78 59.95 1.49 28.19 89.61 88.66 -0.02 | 0.08 86.93 0.0161 | 0.05 89.57 0.0005 0.00

Mar* i i i i i i i i i i i i i i

April* i i i i i i i i i i i i i i
May 557.92 56.93 1.38 | 4453 79.08 78.12 0.00 0.07 79.03 0.0007 | 0.00 79.06 0.0003 | 0.00
June 528.54 57.57 1.20 | 42.32 68.28 44.66 -0.07 | 0.07 70.19 0.0033 | 0.01 70.19 -0.0001 | 0.00
July 532.32 57.03 1.02 39.15 59.03 56.59 -0.04 | 0.13 59.22 -0.0049 | 0.01 59.03 -0.0024 | 0.04
Aug 411.69 57.07 1.03 38.15 59.52 61.77 0.28 0.50 59.29 -0.0304 | 0.05 59.52 -0.0003 | 0.05
Sep 418.73 57.36 111 35.56 64.35 52.35 0.13 0.14 64.40 -0.0009 | 0.01 64.28 0.0011 | 0.00
Oct 464.71 57.78 1.52 37.75 88.08 90.44 -0.04 | 0.06 88.24 -0.0027 | 0.01 88.09 -0.0001 | 0.00
Nov 346.12 58.90 1.15 29.33 68.21 64.64 -0.01 | 0.12 68.29 -0.0050 | 0.01 68.21 0.0000 | 0.00
Dec 359.34 60.09 1.26 23.94 76.30 70.93 -0.05 | 0.17 76.20 -0.0009 | 0.01 76.30 0.0000 | 0.00
Avg. 441.21 58.32 1.22 33.97 71.66 67.25 0.01 0.14 71.56 -0.0021 | 0.02 71.84 -0.0001 | 0.01

*Data could not be arranged for these months
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Further, the uncertainty associated with the solar PV power plant leads to
the inappropriate operation of the system. Therefore, short-term power
forecasting is essential for successful and efficient integration of solar power
generating plants into the utility grid. In this chapter, an intelligent modelling
technique such as fuzzy logic, artificial neural network and a hybrid modelling
approach has been presented for very short-term power forecasting of a solar
photovoltaic system under composite climatic conditions and is shown in
Fig. 7.6.

The input includes the measurements of solar irradiance, cell temperature,
and PV generation for the day at a timescale of 10 minutes and used as input for
short-term PV power output forecasting which varies according to different

weather conditions and is illustrated in Table 7.4 — Table 7.7 respectively.
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Fig. 7.6 Graphical analysis of short-term PV power forecasting for (a) sunny sky;
(b) hazy sky; (c) partially foggy/cloudy sky; and (d) fully foggy/cloudy sky
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Further, parallel computation is allowed in ANFIS structure which
presents a well-structured representation with a hybrid platform for solving
complex problems and is a feasible alternative to the conventional model-based
control schemes. This hybrid approach deals with the issues associated with
variations and uncertainty in the power plant parameters and structure, thereby
improving the system robustness. Further, it allows better integration with other

control design methods.
(@ Sunny sky

From Table 7.4, it has been observed that the performance of the sunny
sky model is better in power forecasting of a solar PV system. The average
measured power during a sunny sky day is 98 W. However, the MPE obtained is
0.077% by employing fuzzy logic methodology, the error reduces to 0.0079% by

using ANN, and it further reduces to 0.0054% with ANFIS methodology.
(b) Hazy sky

It has been observed from Table 7.5 that the mean percentage error
obtained by using the fuzzy logic methodology for this sky condition is 0.049%,
the error reduced to 0.022% by using the artificial neural network; however, with
ANFIS model the mean percentage error is less and further reduced to 0.004%.

The averaged measured power during a hazy sky day is 82 W.
(©) Partially foggy/cloudy sky

It has been observed from Table 7.6 that the mean percentage error
obtained by using fuzzy logic methodology for this sky-condition is 1.20%, this
error reduced to 0.20% by using ANN; however, with ANFIS model the mean

percentage error is less and further reduced to 0.03%.
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Table 7.4 Intelligent models for very short-term PV power forecasting for sunny sky-condition under
composite climate

Fuzzy ANN ANFIS

Time Cell Solar Measured

(hn) Temperature | Irradiance Power Forecasted MPE Forecasted MPE Forecasted MPE

©c) (W/mZ) (W) Power (%) Power (%) Power (%)
(W) (W) (W)

7:00 172.30 32.74 24.00 40.03 -0.67 24.07 0.01 24.34 -0.003
7:10 203.49 33.82 28.00 39.12 -0.65 28.03 -0.08 25.74 -0.001
7:20 237.48 35.78 34.00 38.39 -0.13 32.82 -0.11 30.25 0.035
7:30 273.82 36.38 39.00 38.21 0.02 38.93 0.02 39.70 0.002
7:40 309.60 37.18 46.00 52.53 -0.14 46.00 0.06 48.73 0.000
7:50 344.42 38.67 52.00 69.39 -0.33 51.97 0.01 52.28 0.001
8:00 375.21 38.52 58.00 76.46 -0.58 57.95 -0.04 55.48 0.001
8:10 416.11 40.17 65.00 86.79 -0.35 65.10 -0.04 62.59 -0.002
8:20 449.55 41.67 71.00 89.33 -0.29 71.03 0.01 71.81 0.000
8:30 473.28 41.37 76.00 90.41 -0.44 75.92 0.01 76.98 0.001
8:40 498.73 42.48 84.00 91.14 -0.74 84.03 -0.04 80.65 0.000
8:50 526.30 44.24 90.00 91.50 -0.02 90.06 -0.07 84.07 -0.001
9:00 552.73 43.69 91.00 91.68 -0.01 90.94 -0.01 89.66 0.001
9:10 572.15 43.29 95.00 91.50 0.04 94.93 0.01 95.71 0.001
9:20 577.01 44.16 103.00 91.86 0.11 102.91 -0.06 97.15 0.001
9:30 608.90 42.08 111.00 91.50 0.18 110.95 -0.01 110.15 0.000
9:40 643.27 43.88 112.00 91.68 0.18 112.02 0.02 114.78 0.000
9:50 660.41 44.97 118.00 96.39 0.18 117.98 -0.01 116.86 0.000
10:00 689.73 46.23 122.00 104.55 0.14 121.97 0.00 121.52 0.000
10:10 721.67 47.69 134.00 111.26 0.17 133.90 -0.03 130.12 0.001
10:20 757.03 46.45 136.00 119.05 0.12 136.08 0.04 141.86 -0.001
10:30 776.57 46.66 140.00 120.86 0.14 140.07 0.04 146.16 0.000
10:40 798.90 47.27 144.00 120.32 0.16 144.06 0.03 148.99 0.000
10:50 804.94 49.59 148.00 121.95 0.18 148.16 0.01 149.45 -0.001
11:00 839.69 50.09 153.00 121.41 0.21 152.98 -0.01 150.93 0.000
11:10 852.43 50.22 152.00 121.23 0.20 152.09 -0.01 151.16 -0.001
11:20 869.61 51.26 151.00 117.78 0.22 150.96 0.00 151.49 0.000
11:30 871.66 52.55 155.00 109.08 0.30 154.88 -0.02 151.89 0.001
11:40 876.80 53.20 148.00 105.09 0.29 148.08 0.03 152.20 -0.001
11:50 881.92 54,57 157.00 98.57 0.37 156.55 -0.03 152.62 0.003
12:00 899.63 54.18 164.00 99.84 0.39 163.75 -0.07 152.69 0.002
12:10 908.85 52.84 158.00 107.27 0.32 159.77 -0.04 152.26 -0.011
12:20 897.87 53.69 155.00 102.19 0.34 154.92 -0.02 152.54 0.001
12:30 887.53 53.28 158.00 103.83 0.34 158.22 -0.04 152.33 -0.001
12:40 891.21 54,17 162.00 99.66 0.38 162.12 -0.06 152.64 -0.001
12:50 887.54 53.98 149.00 100.38 0.33 148.96 0.02 152.56 0.000
13:00 860.72 54.87 152.00 97.12 0.36 152.03 0.00 152.27 0.000
13:10 878.20 54.84 150.00 97.12 0.35 150.05 0.02 152.61 0.000
13:20 831.79 55.48 142.00 95.31 0.33 142.08 0.06 150.83 -0.001
13:30 820.42 54.47 130.00 99.48 0.23 129.95 0.15 149.67 0.000
13:40 663.15 54.04 52.00 102.01 -0.96 52.41 0.04 54.15 -0.008
13:50 544.29 49.97 53.00 74.83 -0.41 53.06 0.52 80.33 -0.001
14:00 731.88 51.01 137.00 115.97 0.15 137.02 -0.06 128.69 0.000
14:10 735.79 52.71 128.00 111.44 0.13 127.81 -0.08 117.28 0.001
14:20 749.46 52.35 125.00 113.43 0.09 125.01 0.03 129.11 0.000
14:30 753.09 52.34 137.00 113.61 0.17 136.99 -0.04 131.53 0.000
14:40 747.67 51.80 117.00 116.69 0.00 117.16 0.12 131.58 -0.001
14:50 711.90 51.56 116.00 112.16 0.03 115.99 -0.01 114.97 0.000
15:00 662.45 51.18 106.00 101.83 0.04 106.01 -0.01 104.95 0.000
15:10 638.30 51.41 107.00 95.49 0.11 107.05 -0.09 96.93 0.000
15:20 595.64 50.84 89.00 84.61 0.05 88.97 0.03 91.43 0.000
15:30 577.80 50.35 99.00 80.44 0.19 98.95 -0.10 89.09 0.001
15:40 540.84 49.93 76.00 75.19 0.01 75.91 0.05 80.03 0.001
15:50 485.17 49.64 69.00 75.91 -0.85 69.04 -0.01 68.35 -0.001
16:00 457.16 48.68 63.00 79.90 -0.27 63.05 0.07 67.18 -0.001
16:10 425.11 47.84 66.00 83.16 -0.26 65.91 -0.08 60.73 0.001
16:20 423.65 47.33 61.00 85.52 -0.40 60.99 0.02 62.31 0.000
16:30 365.12 46.93 53.00 77.91 -0.47 53.05 -0.03 51.48 -0.001
16:40 340.34 46.94 54.00 71.02 -0.32 53.97 -0.09 48.91 0.001
Avg. 593.61 47.26 98.26 87.89 -0.077 98.27 0.007 98.19 0.0054
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Table 7.5 Intelligent models for very short-term PV power forecasting for hazy sky-condition
under composite climate zone

Time Cell Solar Measured Fuzzy ANN ANFIS
(tn) Terrlperature Irradla?ce Power Forecasted MPE Forecasted MPE Forecasted MPE
(°C) (W/m?) (W) Power (%) Power (%) Power (%)
(W) (W) (W)
10:00 125.45 10.63 18 16.54 0.08 22.14 -0.23 22.36 0.24
10:10 126.52 10.21 22 16.61 0.25 23.09 -0.05 22.27 0.01
10:20 127.23 9.10 24 16.66 0.10 23.97 0.00 22.14 -0.08
10:30 125.81 5.45 24 16.57 0.31 27.09 -0.13 22.08 -0.08
10:40 150.74 1243 25 27.34 0.00 24.77 0.01 23.55 -0.06
10:50 171.66 8.37 25 15.51 0.38 25.64 -0.03 22.95 -0.08
11:00 174.73 10.67 25 14.93 0.28 25.95 -0.04 23.40 -0.06
11:10 208.48 11.50 33 18.35 0.08 32.50 0.02 34.07 0.03
11:20 227.30 18.44 33 37.04 0.08 34.03 -0.03 31.93 -0.03
11:30 247.76 17.34 39 37.92 0.03 40.48 -0.04 41.64 0.07
11:40 276.06 19.01 37 41.09 -0.11 36.31 0.02 37.05 0.00
11:50 406.26 16.92 57 44.44 0.22 56.81 0.00 55.45 -0.03
12:00 479.51 17.24 49 71.58 -0.46 49.41 -0.01 51.99 0.06
12:10 498.50 17.48 69 80.75 -0.17 69.22 0.00 66.41 -0.04
12:20 527.75 22.37 139 89.56 0.02 138.21 0.01 136.34 -0.02
12:30 527.66 25.23 135 95.02 0.30 135.15 0.00 142.69 0.06
12:40 525.47 27.16 153 107.18 0.30 150.98 0.01 146.73 -0.04
12:50 525.18 31.56 150 138.91 0.07 147.60 0.02 147.44 -0.02
13:00 512.66 32.20 150 138.03 0.08 147.86 0.01 147.44 -0.02
13:10 500.73 30.07 159 137.15 0.14 152.83 0.04 147.39 -0.07
13:20 489.57 31.91 145 136.26 0.06 146.45 -0.01 147.38 0.02
13:30 494.87 35.14 143 138.73 0.03 141.03 0.01 147.41 0.03
13:40 491.77 35.69 134 139.08 -0.04 132.80 0.01 147.39 0.10
13:50 427.95 32.66 143 118.99 0.17 143.22 0.00 141.34 -0.01
14:00 401.02 33.05 125 114.41 0.08 130.69 -0.05 125.52 0.00
14:10 400.24 34.07 127 116.17 0.09 130.40 -0.03 124.92 -0.02
14:20 357.63 34.09 114 112.65 0.01 114.40 0.00 114.48 0.00
14:30 331.88 31.96 114 110.88 0.03 114.50 0.00 113.55 0.00
14:40 285.04 32.76 99 87.80 -0.25 96.29 0.03 104.56 0.06
14:50 261.53 29.54 95 66.29 0.03 96.04 -0.01 89.16 -0.06
15:00 242.06 31.93 77 76.52 0.01 77.87 -0.01 75.63 -0.02
15:10 230.01 31.82 69 75.46 0.11 70.38 -0.02 69.24 0.00
15:20 221.92 29.72 63 66.47 -0.13 63.89 -0.01 66.01 0.05
15:30 188.42 27.89 58 65.41 -0.13 59.83 -0.03 60.77 0.05
15:40 155.54 26.57 60 63.65 -0.18 61.30 -0.02 57.50 -0.04
Avg. 321.27 23.41 82 74.06 0.049 82.37 -0.022 82.01 0.004
(d) Fully foggy/cloudy sky

From Table 7.7, it is evident that the photovoltaic power output is less

during fully foggy/cloudy sky condition with averaged measured power of only

27 W. The mean percentage error is 0.21% by employing fuzzy logic

methodology, the error reduces to 0.091% by using ANN and with ANFIS the

error obtained is 0.04% respectively.
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Table 7.6 Intelligent models for very short-term PV power forecasting for partially foggy/cloudy
sky-condition under composite climate zone

Time Cell Solar Measured Fuzzy ANN ANFIS
(rl1r) Temoperature Irradia?ce Power Forecasted MPE Forecasted MPE Forecasted MPE
(°C) (W/m?) (W) Power (%) Power (%) Power (%)
(W) (W) (W)
7:30 27.78 126.72 21.00 17.00 0.19 20.77 0.05 21.97 0.01
7:40 27.32 200.00 22.00 19.43 -3.88 22.11 0.53 33.70 0.00
7:50 30.58 213.53 34.00 31.55 -2.06 34.07 0.20 40.90 0.00
8:00 30.38 196.07 29.00 21.85 0.01 28.85 0.12 32.41 0.01
8:10 32.13 155.48 21.00 18.46 -4.05 20.78 0.15 24.05 0.01
8:20 30.11 145.30 32.00 29.13 -2.21 32.24 -0.28 22.96 -0.01
8:30 30.71 189.78 43.00 19.43 -1.43 42.97 -0.30 30.21 0.00
8:40 31.05 194.45 24.00 21.85 -3.35 23.84 0.32 31.63 0.01
8:50 31.60 198.55 48.00 41.25 -1.17 47.89 -0.31 33.25 0.00
9:00 32.83 194.56 28.00 26.70 -2.74 27.88 0.13 31.75 0.00
9:10 32.52 171.08 25.00 21.85 -3.22 24.76 0.05 26.34 0.01
9:20 36.07 428.21 145.00 101.88 0.21 145.06 -0.41 85.45 0.00
9:30 39.29 556.78 137.00 124.91 0.09 136.80 -0.09 125.07 0.00
9:40 39.48 364.60 58.00 58.23 -0.76 57.93 0.36 78.99 0.00
9:50 36.55 291.87 50.00 38.83 -1.17 49.82 0.24 61.90 0.00
10:00 36.52 323.32 70.00 70.35 -0.56 70.08 0.04 72.69 0.00
10:10 40.46 647.12 56.00 52.65 -1.20 55.77 1.45 137.36 0.00
10:20 42.29 471.39 60.00 62.83 -1.01 59.75 0.58 94.76 0.00
10:30 40.12 422.82 69.00 67.93 -0.64 68.91 0.22 83.88 0.00
10:40 39.86 355.46 52.00 53.38 -0.95 51.76 0.50 78.08 0.00
10:50 37.21 335.57 190.00 181.90 0.45 207.69 -0.60 75.13 -0.09
11:00 40.62 548.37 205.00 205.91 0.39 204.92 -0.40 123.47 0.00
11:10 43.14 614.47 35.00 34.95 -2.33 34.80 2.75 131.26 0.01
11:20 41.61 559.81 182.00 184.08 0.33 181.87 -0.31 125.65 0.00
11:30 47.08 685.34 165.00 168.56 0.36 164.86 -0.18 135.74 0.00
11:40 47.73 536.57 46.00 46.10 -1.25 45.61 0.28 59.10 0.01
11:50 39.88 190.67 24.00 26.70 -2.92 23.74 0.34 32.13 0.01
12:00 38.71 697.05 205.00 197.66 0.40 204.93 -0.02 199.91 0.00
12:10 48.17 691.84 44.00 41.25 -1.40 43.67 1.22 97.48 0.01
12:20 39.87 357.89 211.00 208.58 0.52 210.61 -0.63 78.33 0.00
12:30 49.96 999.30 95.00 89.75 -0.20 96.63 0.22 116.09 -0.02
12:40 47.13 314.66 17.00 17.00 -2.45 18.48 -0.17 14.12 -0.09
12:50 33.73 159.05 42.00 41.25 -1.56 42.14 -0.34 27.91 0.00
13:00 35.99 595.71 96.00 92.18 -0.27 95.76 0.37 131.61 0.00
13:10 45.39 494.68 116.00 114.00 0.09 115.71 -0.12 102.64 0.00
13:20 44.69 611.38 171.00 162.50 0.37 170.10 -0.24 130.79 0.01
13:30 48.66 771.60 47.00 46.10 -1.38 46.97 1.54 119.16 0.00
13:40 38.09 197.20 47.00 43.68 -1.15 46.78 -0.30 32.74 0.00
13:50 3241 269.89 129.00 121.28 0.20 129.09 -0.21 101.86 0.00
14:00 40.22 611.36 120.00 101.88 -0.04 119.94 0.09 131.00 0.00
14:10 44.97 622.18 131.00 118.85 0.18 130.80 0.00 131.64 0.00
14:20 45.83 564.36 160.00 143.10 0.35 159.66 -0.23 123.50 0.00
14:30 50.30 816.62 140.00 121.28 0.19 139.92 -0.17 115.93 0.00
14:40 52.02 732.09 154.00 135.83 0.25 154.48 -0.27 112.02 0.00
14:50 51.68 601.10 69.00 67.93 -0.50 70.33 -0.13 59.79 -0.02
15:00 46.00 546.27 152.00 157.17 0.31 151.95 -0.22 118.74 0.00
15:10 49.51 730.86 132.00 132.92 0.17 131.75 -0.15 112.26 0.00
15:20 49.95 708.75 141.00 138.74 0.24 140.92 -0.27 102.79 0.00
15:30 49.20 559.45 53.00 46.10 -0.96 52.72 0.00 52.82 0.01
15:40 44.75 318.37 46.00 43.68 -0.82 45.90 0.54 70.84 0.00
15:50 42.11 492.21 61.00 65.02 -0.98 60.62 0.69 102.92 0.01
16:00 44.46 562.50 114.00 109.15 0.04 114.49 0.11 126.08 0.00
16:10 45.29 498.01 77.00 70.35 -0.38 77.39 0.35 104.30 -0.01
16:20 43.82 376.77 33.00 21.85 -2.17 33.13 142 79.96 0.00
16:30 36.07 141.85 18.00 14.72 -5.19 18.63 0.67 30.00 -0.03
16:40 29.57 142.20 25.00 21.85 -3.07 24.70 -0.09 22.73 0.01
16:50 32.19 264.58 68.00 61.86 -0.52 67.81 0.39 94.71 0.00
Avg. 39.53 407.10 76.95 71.80 -1.20 77.22 0.20 76.94 0.03
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Table 7.7 Intelligent models for very short-term PV power forecasting for fully foggy/cloudy
sky-condition under composite climate zone

Cell Solar Measured Fuzzy ANN ANFIS

'I('I:r:\)e Terr})peratu re Irradiag\ce Power Fo;g&;s::ed MPE Folgicvsz':w MPE Folggt\:lvea;s:ed MPE

(°C) (Wim?) (W) (W) (%) (W) (%) (W) (%)
8:40 14.86 168.07 19 20.94 -0.33 18.95 0.32 25.00 0.00
8:50 13.76 161.85 25 24.25 -0.06 25.15 0.00 25.01 -0.01
9:00 14.97 182.38 21 20.94 0.00 21.05 0.19 24.99 0.00
9:10 15.45 101.30 23 20.94 -0.60 22.89 0.27 29.26 0.00
9:20 15.35 135.45 15 12.99 -0.76 15.00 0.64 24.57 0.00
9:30 15.08 132.03 28 26.30 0.06 28.10 -0.12 2477 0.00
9:40 15.75 101.30 60 56.05 0.37 60.07 -0.37 37.96 0.00
9:50 19.77 101.30 64 60.03 0.40 63.69 0.00 64.01 0.00
10:00 19.73 181.75 27 20.94 0.22 26.90 0.01 27.16 0.00
10:10 17.71 261.96 11 10.63 0.03 11.03 0.00 11.00 0.00
10:20 16.14 187.71 16 14.31 -0.06 15.99 0.42 22.69 0.00
10:30 15.76 129.26 14 12.33 -1.00 14.19 0.77 24.80 -0.01
10:40 15.14 101.30 21 17.63 -0.73 20.87 0.09 22.89 0.01
10:50 14.45 101.30 18 16.30 -1.00 18.10 0.24 22.25 -0.01
11:00 14.77 101.30 24 20.28 -0.50 24.06 -0.07 22.28 0.00
11:10 15.13 101.30 22 20.28 -0.64 21.91 0.04 22.81 0.00
11:20 15.32 120.11 23 20.94 -0.33 22.92 0.08 24.85 0.00
11:30 15.28 101.30 19 17.63 -0.92 18.80 0.28 24.29 0.01
11:40 14.93 127.09 22 20.94 -0.26 21.91 0.11 24.52 0.00
11:50 15.10 101.30 37 36.18 0.02 36.78 -0.39 22.68 0.01
12:00 16.76 101.30 26 20.94 -0.39 26.03 0.51 39.27 0.00
12:10 17.05 134.24 33 27.96 0.15 33.14 -0.28 23.63 0.00
12:20 17.61 123.50 30 28.89 -0.02 30.14 -0.08 27.67 0.00
12:30 17.46 148.36 33 27.56 0.16 32.98 -0.31 22.83 0.00
12:40 17.42 142.59 17 14.31 -0.63 17.06 0.35 22.95 0.00
12:50 16.14 150.40 15 14.31 -0.84 14.93 0.52 22.76 0.00
13:00 15.43 145,55 33 32.20 0.20 33.05 -0.27 24.21 0.00
13:10 16.44 101.30 50 36.51 0.27 50.06 -0.21 39.26 0.00
13:20 16.17 101.30 23 20.28 -0.61 22.83 0.71 39.22 0.01
13:30 14.61 217.00 24 20.94 0.13 23.93 0.00 23.98 0.00
13:40 14.99 155.18 44 26.97 0.39 44.16 -0.43 24.98 0.00
13:50 16.19 101.30 41 37.04 0.10 41.00 -0.04 39.23 0.00
14:00 16.00 151.67 29 27.43 0.05 29.14 -0.22 22.76 0.00
14:10 15.87 187.44 29 18.62 0.36 28.39 -0.22 22.74 0.02
14:20 15.65 176.43 18 16.30 -0.23 17.74 0.28 23.09 0.01
14:30 15.27 128.87 17 12.33 -0.61 16.80 0.45 24.67 0.01
Avg. 15.93 137.94 27 23.70 -0.21 26.94 0.091 26.97 0.04

It has been concluded from the obtained results that by employing
ANFIS methodology for composite climatic conditions, the hazy-sky model
(type-b) with mean percentage error of 0.004% outperforms other models as
the measured data matches the forecasted data followed by the sunny-sky
model (type-a) with mean percentage error of 0.0054%, partially
foggy/cloudy sky model (type-c) with mean percentage error of 0.03% and
fully foggy/cloudy sky model (type-d) with mean percentage error of 0.04%
respectively. The result reveals that the proposed model may be implemented

for a broad series of applications.
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7.6 CONCLUSION

In this chapter, different models based on intelligent approaches such
as fuzzy logic, artificial neural network and adaptive neural-fuzzy inference
system have been developed and presented for short-term PV power
forecasting using meteorological parameters. Further, the simulations have
been carried out based on sky-conditions such as sunny sky, hazy sky,
partially foggy/cloudy sky and fully foggy/cloudy sky under composite
climate zone. It has been observed from the overall analysis that for
composite climate zone, hazy sky model performs better than other sky-based
model. A comparison of proposed ANFIS methodology has been made with
fuzzy logic and ANN methodologies. It has been concluded that the
performance of ANFIS based model provides accurate results as compared to

other intelligent models.
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CHAPTER 8

CONCLUSIONS AND FUTURE SCOPE

8.1 CONCLUSIONS OF THE CURRENT RESEARCH

For the effective and accurate utilization of solar energy devices, data
based on solar radiation resource plays an important role. Unfortunately, the
devices for the measurement of such data are rarely available because of
instrument high cost, limited spatial coverage and limited length of the
record. Due to unavailability of the measured data, global solar energy
forecasting is of prime importance at the earth’s surface. For this purpose, it
is essential to develop models based on more readily available meteorological
data for forecasting global solar energy for such locations where
measurements have not been done with reasonable accuracy. The
mathematical and regression models of solar energy forecasting were found
satisfactorily but for clear sky conditions. Due to high uncertainty in weather
conditions, intelligent approaches based models such as fuzzy logic, artificial
neural network and other hybrid models are being proposed by researchers
for forecasting global solar energy using meteorological parameters.

Further, the variation in the power output of the solar PV system is
dependent on external environmental factors such as ambient temperature,
sky-condition etc. which can make system unstable. The variations and
fluctuations in the power output subsequently reduces the PV power

generation capacity. Short-term solar energy forecasting models such as
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hourly and weekly are available in the literature but 10 minutes ahead solar
energy forecasting are less reported in the literature.

In this research, an attempt has been made to establish intelligent
models such as fuzzy logic approach, Artificial Neural Network (ANN) and
hybrid intelligent models i.e. Adaptive Neural-Fuzzy Inference System
(ANFIS) model for forecasting global solar energy based on sky-conditions
defined as clear sky (type-a), hazy sky (type-b), partially foggy/cloudy sky
(type-c) and fully foggy/cloudy (type-d) sky-conditions and for five weather
stations across India covering widely changing climatic conditions thereof,
such as warm and humid, hot and dry, cold and cloudy, composite and
moderate climatic conditions.

Firstly, sunshine-based models with linear and non-linear correlations
have been developed and presented using sunshine duration as a
meteorological parameter. Secondly, empirical models have been established
based on multiple regression analysis which correlates global solar energy
with other meteorological parameter namely sunshine hours, ambient
temperature, relative humidity, wind speed, amount of rainfall, atmospheric
pressure and cloudiness index and applied for five weather stations across
India. The regression and correlation coefficients for each model is calculated
and presented. Principle component analysis have been performed based on
statistical error-tests. After the statistical analysis, it has been observed that
the correlation which incorporates seven variables has emerged to provide
accurate results for estimating global solar energy for each of the climate
zone across the entire country. Good agreement has been noticed between

measured and estimated data based on seven variables correlations, which
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makes it useful in estimating global solar energy. The models presented have
reasonable estimation errors. Based on the overall analysis, it has been
concluded that the considered parameters have strong influence on estimating
global solar energy. Therefore, the proposed models can be successfully used
to estimate global solar energy in distinct climate zone across India or
elsewhere with similar climatic conditions.

The mathematical models available in the literature shows relative
large errors and not suitable to estimate global solar energy in varying sky-
conditions. Therefore, an intelligent approach based on fuzzy logic modelling
have been devloped and presented to forecast global solar energy using dew-
point as meteorological parameter along with other known available
parameters namely sunshine duration, global solar energy, wind speed,
ambient temperature and relative humidity for varying sky-conditions namely
clear sky (type-a), hazy sky (type-b), partially foggy/cloudy sky (type-c) and
fully foggy/cloudy sky (type-d) conditions. Three criteria namely mean
percentage error, mean bias error and root mean square error are used to
verify the forecasting errors of the proposed modelling approach. The
obtained results concludes that the fuzzy logic based models achieves better

accuracy and is convenient than the traditional regression methods.

Further, it has been observed that for complex systems with large data

sets, maintaining accuracy for such data sets using fuzzy logic modelling would

be a tedious task. Therefore, ANN based models are introduced, employing

artificial intelligent techniques which can subsequently perform the structure

simulation. In this research, the variants of ANN architecture have been

discussed for modelling the system in forecasting global solar energy. Cascade-
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forward, feed-forward, elman back-propagation, generalized regression, layered
recurrent, linear layer, and radial basis function neural network architecture has
been developed under composite climate zone using MATLAB. Simulations
have been carried out by selecting the most suitable model based on evaluation
indexes. Among the several discussed ANN architectures, the Radial Basis
Function Neural network (RBFNN) model has emerged to provide a better
prediction with minimum error based on evaluation indexes. Further, a close
comparison of radial basis function neural network model has been made with
Feed-Forward Neural Network (FFNN) model and successfully applied for five
meteorological stations i.e. warm and humid (Chennai), hot and dry (Jodhpur),
cold and cloudy (Shillong), moderate (Pune) and composite (Delhi) climate zone
across India. It has been observed from the obtained results, that the radial basis
function neural network model provides more accurate results in comparison to
other ANN models i.e. feed-forward neural network model for each of the
climate zones across the entire country.

Using ANN, an accurate analysis of a number of neurons and hidden
layers becomes a difficult task since they are large in number which involves
large training time that subsequently slows down the response of the system.
Therefore, hybrid intelligent models i.e. Adaptive Neural-Fuzzy Inference
System (ANFIS) are introduced for forecasting solar energy which is a fusion of
artificial neural network and fuzzy logic approach for forecasting global solar
energy. In this research, a model underlying the principle of ANFIS architecture
has been employed for forecasting global solar energy using meteorological
parameters. Three criteria hamely mean absolute percentage error, normalized

root mean square error and normalized mean absolute error and have been used
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for verifying the forecasting errors of proposed ANFIS based models.
Simulations have been carried out for varying sky-conditions and successfully
applied for distinct climate zone. Further, comparison of ANFIS-based model
has been fuzzy logic based model and ANN models. It has been concluded from
the obtained results that the ANFIS-based model are far accurate and precise than
other existing neural network and fuzzy logic based models.

Further, in this thesis, a very short-term solar energy forecasting
based on 10-minutes timescale has been presented to forecast the power
output of a solar PV system. It has been concluded from the obtained results
that for composite climatic conditions, the hazy sky (type-b) model
outperforms other models as the measured data matches the forecasted data
followed by the sunny sky model (type-a), partially foggy/cloudy sky
model(type-c) and fully foggy/cloudy sky (typed) model. The result reveals
that the short-term PV power forecasting may be implemented for for a broad
series of applications.

This research would be practically useful in providing appropriate
control, optimization, power smoothening, real-time dispatch, the requirement of
additional generating stations and the selection of appropriate energy storage
system which may mitigate the issues of power fluctuations obtained from solar
photovoltaic systems.

Such forecasts would be helpful for managing supply and demand for
energy building in a smart grid environment. This research will help the
stakeholders such as power engineer, technocrats, utility, designer, service

provider and operation engineer for developing the smart energy management
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system wherein the photovoltaic based power forecasting is one of the key

components for this new paradigm.

8.2 SCOPE OF FUTURE WORK

In the present research, all efforts have been made to present different
intelligent techniques such as fuzzy logic, ANN and ANFIS for global solar
energy forecasting. The results obtained from these models have been applied for
solar photovoltaic power forecasting. Presented intelligent model may be
improved by using some other optimization techniques such as Grey Wolf
Optimization (GWO) and Genetic Algorithm (GA) for solar energy forecasting
problem. In addition, few more parameters such as aerosol index, dust
accumulation etc. may be added as input parameters in the aforesaid models.

Solar PV forecasting is a paradigm for smart-grid environment. Some issues
related to the grid like reliability and stability resulting from unpredictable events
may be addressed. Further, an appropriate energy storage system may be

proposed in the distributed generating systems using forecasting models.
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APPENDIX-A

Table A.1 Performance specifications of 250 W, multi-crystalline solar PV modules

Multi-crystalline solar PV module Specifications
The efficiency of module 1, 15.30%
maximum power point voltageVpmax 3492V
maximum power point current lymax 8.59 A

Open circuit voltage V. 44.83 V
NOCT 45°C to + 2°C

Table A.2 Performance specifications of 210 W, HIT solar PV modules

HIT solar PV module

Specifications

The efficiency of module 1, 16.70%
The efficiency of the cell 18.9%

Short circuit current I 557 A
Open circuit voltage V. 509V

Ambient temperature

- 4°F to 115°F
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APPENDIX-B

Fig. A.1 Experimental demonstration of Heterojunction with Intrinsic Thin Layer (HIT) solar
PV module at National Institute of Solar Energy (NISE), India

Fig. A.2 Experimental demonstration of multi-crystalline solar PV module at National
Institute of Solar Energy (NISE), India
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