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CHAPTER 1 

INTRODUCTION 

  

1.1 GENERAL 

 The demand for energy has increased due to industrialization, 

urbanization and population growth. In order to meet the demand for energy, 

Renewable Energy Sources (RES) are exploited because of its advantages such 

as developed economic growth and sustainability etc. The generation of power 

from such source of energy was observed to be 21.43% as on 28
th
 Feb 2019. 

However, it can rise exponentially so to meet the energy demand of the future. 

Further, the advancement in solar photovoltaic (PV) technology which includes 

the improved efficiency of solar cells, maintenance of minority carriers 

lifetime, minimization of optical losses and reduced cost of energy generation 

over last decades has attracted solar PV technology usage for generation of 

power. In addition, the motive behind the growing deployment of solar PV 

technology is diminishing the cost of photovoltaic systems given by the 

government of various countries. For Indian climatic conditions, the theoretical 

solar power has reached to around 5,000 trillion kWh/year and the daily 

average solar energy varied from 4-7 kWh/m
2
/day where about 300 days in a 

year are sunny and clear.  Also, the  sunshine  hours observed  is  around 

1,500-2,000 hours per year which is more than the current total energy 

consumption. Hence, the conversion of solar energy into electricity for solar 

photovoltaic systems can effectively be harnessed for power generation in 

India [1-2]. 
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 The large-scale penetration of solar PV technology in the smart energy 

management system has become a challenging task. The variation in power 

output of solar PV system can lead to the unstable operation of the system. The 

fluctuations in the output subsequently lower the capacity of PV generation. 

Damage may arise in the stability of the utility grid and the power quality 

because of the imbalance between the demand and supply. Many factors are 

involved that affect the power generation such as climatic variations, solar 

insolation, ambient temperature, solar panel temperature and topographical 

position [3]. So, defining the output with the single model is a tedious task; 

therefore, in this thesis, the output is modelled based on sky-conditions namely 

clear sky, hazy sky, partially foggy/cloudy sky and fully foggy/cloudy sky-

conditions, as such factors make a significant impact on the solar photovoltaic 

system power output. Simulations have been carried out for varied climatic 

conditions thereof, such as warm and humid, hot and dry, cold and cloudy, 

moderate and composite climate zone across India. 

1.2 CURRENT SCENARIO OF RENEWABLE ENERGY SOURCES 

IN INDIA 

 In 2018, the highest growth rate of energy resource has met by 

renewable energy, which meets the quarters of the world’s energy demand. The 

continuous growth in energy demand, depleting fossil fuels and emerging 

economy makes mandatory to enhance the existing potential of renewable 

energy for Indian power sector.  

  In India, as of 2005, government-funded and subsidized solar electricity 

production is not less than approximately 6.4 MW per year which as compared 

to other developing countries is more. India is ranked number one in terms of 
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solar  electricity  production per  watt installed, with an solar insolation of 

1,700-1,900 kWh/kWp. In 2010, 25.1 MWp of power was added and 

approximately 468.30 MWp was added in year 2011.  

As on 28
th 

February 2019, India has achieved a total grid-interactive 

capacity of 76,887.47 MWp through renewable energy generation. It consists of 

the Wind Power capacity of 35,326.10 MWp, Solar Power capacity of 

27,099.78 MWp, Bio Power (Biomass, Bagasse cogeneration and Waste-to-

power) capacity of 9,918.54 MWp and Small Hydro Power capacity of 

4,543.05 MWp. Target and achievement for the year 2018-19 and cumulative 

achievements as on 28
th 

February 2019 are presented in Table 1.1 [4]. 

Table 1.1 Target and cumulative achievements of grid-interactive renewable power 

 

 

 

 

  

 

 

 

 

 

 

 

 Sector 

FY 2018-19 
Cumulative  

Achievements as on 

28.02.2019 

(MWp) 

Target 

(MWp) 

Achievement 

(Apr - Feb 2019) 

(MWp) 

Solar Power 11,000.00 4,634.39 27,099.78 

Wind Power 4,000.00 1,031.15 35,326.10 

Small Hydro Power 250.00 46.65 4,543.05 

Bio Power 

(Biomass, Bagasse 

cogeneration and 

Waste-to-power) 

352.00 416.63 9,918.54 

Total 15,602.00 6,128.82 76,887.47 
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Renewable energy resources are being utilized by many for generation 

of power. Table 1.2 shows the target and cumulative achievements of off-

grid/captive power renewable energy system source wise. 

Table 1.2 Target and cumulative achievements of off-grid/captive power 

 

 

 

 

 

 

 

 

 

 

 An increase in 6.3% power generation was noticed where Wind Power 

contributes 46.99%, Solar Power contributes 33.71%, Small Hydro Power 

contributes 6.04% and Bio Power contributes a total of 13.26% only as shown 

in Fig. 1.1.  

 

Fig. 1.1 India’s RES installed capacity 
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(Biomass, Bagasse 

Cogeneration, and 

Waste-to-Power)  
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Small Hydro Power  

6.04% 

Sector 

FY 2018-19 Cumulative  

Achievements as on 

28.02.2019 

(MWp) 

Target 

(MWp) 

Achievement 

(Apr - Feb 2019) 

(MWp) 

Waste to Energy 18.00 6.58 178.73 

Biomass Gassifiers 1.00 0.00 163.37 

SPV Systems 200.00 171.70 843.11 

Total 219.00 178.28 1185.21 



5 

 

As on 28
th

 February 2019, the total installed power capacity from 

different sources reaches 350 GWp approximately; in which, contribution from 

other sources are Coal Power shows a major contribution with 54.57%, Large 

Hydro Power of 12.97%, Renewable Energy Sources shows contribution of 

21.43%, Gas with 7.12%, Oil shows contribution of only 0.18%, Lignite 

contributing to 1.79% and Nuclear contributing to 1.94% as shown in Fig. 1.2. 

 

Fig. 1.2 Total installed power capacity in India as on 28th Feb 2019 

 In the present scenario, the total installed power capacity has reached 

approximately 3,50,162 MWp as on 28
th

 February 2019 where the Coal Power 

shows the major contribution of installed power capacity of 1,91,093 MWp, 

Renewable Energy Source with installed power capacity of 74,082 MWp, Gas 

with contribution of 24,937 MWp, Large Hydro Power contributing with 

capacity of 45,399 MWp, Lignite contributing with capacity of 6,260 MWp, 

Nuclear with installed power capacity of 6,780 MWp and Oil which shows 

contribution  of  installed  power  capacity  of  638 MWp only as shown in 

Table 1.3 [5]. 
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Table 1.3 Total installed power capacity as on 28th Feb 2019 

   Source 
Total Installed Power Capacity 

(MWp) 

Percentage Share 

 (%) 

RES 74,082 21.43% 

Coal 1,91,093 54.57% 

Gas 24,937 7.12% 

Large Hydro 45,399 12.97% 

Nuclear 6,780 1.94% 

Lignite 6,260 1.79% 

Oil 638 0.18% 

Total 3,50,162 100% 

 

Further, the Indian Govt. took initiatives for promoting RES electricity 

generation. Among these one such scheme is the Electricity Act 2003 [6-7] 

where the requirement of a license for stand-alone generation and distribution 

system in rural areas has been removed. Furthermore, National Rural 

Electrification Policy, 2005 and National Rural Electrification Policy, 2006 

have been brought up for speeding up the process of rural electrification. The 

New Tariff Policy makes it mandate for purchasing a minimum percentage of 

energy from such sources [8-14].  

1.3 INITIATIVES OF GOVERNMENT OF INDIA IN RESPECT OF 

RENEWABLE ENERGY  

 Recently, in 2016, the formation of International Solar Alliance (ISA), 

headquartered at National Institute of Solar Energy (NISE), Ministry of New 

and Renewable Energy (MNRE), in India has emerged as one of the leading 
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destinations for solar energy-based research and applications. More than 121 

countries have participated and joined together in International Solar Alliance 

for exploiting the solar energy potential and thereby reducing fossil fuels 

dependency. 

 The Govt. of India has played an important role for promoting the 

adoption of RES by providing attractive schemes and incentives namely 

Generation Based Incentives (GBIs), viability gap funding, concessional 

finance, capital interest subsidies and fiscal incentives etc. Further, the 

Jawaharlal Nehru National Solar Mission (JNNSM) was launched with a target 

of achieving 175 GWp of grid-interactive solar power by end of year 2022. 

Major initiatives were taken from the Government of India such as solar roof-

top projects, solar parks, solar photovoltaic power plants, solar defence 

schemes and solar pumps etc. [15]. 

 Further, an effort has been made for the expansion of the monitoring 

stations on high potential locations for solar PV applications. A total of 45 

Indian Meteorological Department (IMD) stations undertook the 

measurements, but most of such locations are located either at airports or at 

metropolitan cities etc. Therefore, the Indian Govt. has planned for expansion 

of the monitoring station by installing an additional 51 Solar Radiation 

Resource Assessment (SRRA) stations for producing the best quality radiation 

data. These stations are expected to be located in areas of high potential 

producing the best quality data throughout the country. This project further 

envisages the addition of 60 meteorological stations across India and will 

subsequently augment the existing network of monitoring stations as shown in 

Fig. 1.3. 

https://en.wikipedia.org/wiki/Fossil_fuel
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Fig. 1.3 Solar radiation resource assessment stations across India 

1.4  SOLAR ENERGY POTENTIAL AND ITS UTILIZATION 

There is always an increase in the demand of energy specifically 

electricity due to the growing population of the world. One of the major 

contributions in the greenhouse gas emission arises from the burning of fossil 

fuels which contributes to electricity production. So, there arises a need for 
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clean form of energy i.e. renewable energy which can contribute to the energy 

demand worldwide. Solar energy appears to be one of the most predictable and 

foreseeable forms of renewable energy which has no greenhouse gas emissions 

and also its natural flow is intense.  

 The utilization of solar energy resource for the generation of electricity 

especially with the solar PV technology is gaining attention and plays a major 

role in the global solar energy production. Since year 2000, industry based on 

solar PV technology has grown by around 45% per year on an average. So, 

after every 2-3 years, the installed global solar capacity has been doubling. 
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Fig. 1.4 Solar PV global capacity in GW 

Most of the places on earth receives sufficient amount of sunlight to 

make solar photovoltaic technology a technically viable option when coupled 

with other forms of energy storage such as batteries or the thermal storage. Fig. 

1.4 presents the solar PV global capacity from year 2005 to 2018 [16].         

 The effective utilization of solar energy and other renewable energy 

resources are considered based on the availability and capacity of source, 

coherency between source and a user, low cost of energy conversion and 
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transmission and lastly, the steady performance of a source along with 

ecological issues. These features along with other local conditions like 

location, climate and longitude have made a remarkable impact in determining 

the possibilities of applying solar energy and other renewable-based methods 

for energy conversion. 

1.5 CLIMATE ZONES IN INDIA 

 The climatic condition of India ranges from severely cold zone with 

high altitude locations to extremely hot conditions. India’s climatic conditions 

favour five different climate zones. The defined criteria for assigning location 

to such climate zones depend on weather condition that prevails for a period of 

six months or more. Based on this condition, Bansal and Minke [17] presented 

the climate zone by evaluating the averaged mean monthly radiation data from 

233 different meteorological sites/locations and made it possible to define five 

distinct climatic zones across the entire country as shown in Table 1.4. 

Table 1.4 Geographical features of Indian stations with distinct climate zone 

Climate 

zone 
Station 

Latitudinal 

extent 

(
o
N) 

Longitudinal 

extent 

(
o
E) 

Ambient 

temp. 

(
o
C) 

Relative 

humidity               

(%) 

No. of  

clear sky  

days 

Composite 
New Delhi, 

Delhi 
28.61 77.2 

This condition exists when six 

months or more do not occur in any 

of the below-mentioned categories. 

Hot and 

Dry 

Jodhpur, 

Rajasthan 
26.28 73.02 >30 < 55 >20 

Warm and 

Humid 

Chennai,  

Tamil Nadu 
13.08 80.27 >30 >55 < 20 

Moderate 
Pune, 

Maharashtra 
18.52 73.85 25-30 < 75 < 20 

Cold and 

Cloudy 

Shillong, 

Meghalaya 
25.56 91.88 < 25 >55 < 20 
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1.6 MODELLING FOR SOLAR ENERGY ESTIMATION AND 

FORECASTING 

 The availability of meteorological data plays a vital role in most of the 

research-based applications. Because of non-availability of measured solar 

radiation data, the utilities are facing problem in the financial evaluation of the 

projects. For simulating the dynamic behaviour of solar energy systems, an 

accurate measurement of solar radiation data plays an important role. Further, 

the intelligent modelling techniques for forecasting solar energy play a 

significant role in the designing and the development of solar energy 

technologies. Wide-scale information regarding the availability of total solar 

radiation at the site is needed for analysis of solar energy systems.  

   Many sensitive measuring systems have been installed at the 

meteorological sites for measuring the solar radiation data and for monitoring 

day to day recording. But it’s unfortunate that in most part of the India, the 

availability of weather data is scarce, so it is of prime importance and a great 

need to develop methodologies for weather data forecasting based on more 

readily available meteorological data. 

1.7 PROBLEM FORMULATION  

 The measurement and estimation of solar energy data is a difficult task 

and such data are rarely available even for those stations where measurement 

has already been done. Further, the PV power forecasting is an important 

element for smart energy management system for the integration of 

photovoltaic into low voltage grids. In the present scenario, the utilities are 

developing the smart grid application across the world and the PV power 

forecasting is one of the key tools for a new paradigm. The forecasting of solar 
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energy during clear sky can be done simply with the help of mathematical and 

regression models; however, forecasting under the influence of hazy sky, 

cloudy and foggy sky conditions do not provide accurate results using these 

models. 

 In this research, an attempt has been made to establish an intelligent 

models for forecasting global solar energy based on sky-conditions i.e. sunny 

sky (type-a), hazy sky (type-b), partially foggy/cloudy sky (type-c) and fully 

foggy/cloudy sky (type-d) conditions and for distinct climate zones across 

India covering widely changing climatic conditions thereof, such as warm and 

humid, hot and dry, cold and cloudy, moderate and composite climate zone 

respectively. Simulations have been carried out based on meteorological 

parameters which correlates global solar energy with other available 

parameters namely dew-point, ambient temperature, sunshine hours, relative 

humidity, atmospheric pressure, dew point and wind speed. Further, the 

comparisons of the proposed model have been done with developed empirical 

models using multiple regression analysis with aid of statistical validation tests. 

The obtained results are simulated for solar PV system. 

1.8 ORGANIZATION OF THE THESIS  

 This thesis comprises eight chapters; the details of which are listed 

below: 

Chapter 1: This chapter covers a brief introduction about the current 

scenario of renewable energy status in India, initiatives being taken by the 

Government, solar energy potential and its utilization and lastly, climate zones 

across India. The scope of the work includes modelling techniques for solar 

energy estimation and forecasting.  
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Chapter 2: A brief literature review on mathematical and regression models 

for solar energy estimation is given in this chapter. Further, a comprehensive 

literature review on intelligent modelling techniques has been carried out and 

recent research on short-term PV power forecasting is also presented. Based on 

the detailed literature review, research gaps have been identified and presented 

towards the end of the chapter. 

Chapter 3: In this chapter, sunshine-based models and empirical models 

have been developed for estimating global solar energy for five meteorological 

stations across India. An exercise has been carried out for selecting the most 

suitable model based on principal component analysis. Eight statistical 

indicators have been used for measuring the performance of the proposed 

models. Further to check for accuracy of the proposed model, a comparison 

has been carried out with well-established models discussed in the literature. 

Chapter 4: This chapter presented a model employing fuzzy logic approach 

for forecasting global solar energy with aid of meteorological parameters based 

on sky-conditions such as sunny sky (type-a), hazy sky (type-b), partially 

foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions. 

Simulations have been performed for distinct climatic conditions and the 

performance evaluation has been done by using statistical error-tests. Further, 

the comparison of the model has been made with the empirical model. The 

obtained results are implemented for short-term PV power forecasting in solar 

PV systems. 

Chapter 5: This chapter presents the variant of Artificial Neural Network 

(ANN) architecture i.e. Cascade-Forward Neural Network (CFNN), Feed-

Forward Neural Network (FFNN), Elman Neural Network (ENN), Generalized 
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Regression Neural Network (GRNN), Layered Recurrent Neural Network 

(LRNN), Linear Neural Network (LNN) and Radial Basis Function Neural 

Network (RBFNN) for modelling the system to forecast global solar energy 

using meteorological parameters under composite climatic conditions. 

Simulations have been carried out by selecting the most suitable model using 

evaluation indexes and further applied for different sky-conditions covering 

widely changing climatic conditions across India. Further, the proposed models 

based on sky-conditions are compared with fuzzy logic based model. The 

obtained results are simulated for PV power forecasting under composite 

climatic conditions. 

Chapter 6: In this chapter, a model underlying principle of Adaptive 

Neural-Fuzzy Inference System (ANFIS) have been presented for forecasting 

global solar energy based on sky-conditions with aid of meteorological 

parameters and simulation have been carried out for five meteorological 

stations across India. Further, the developed model has been implemented for 

solar photovoltaic systems. 

Chapter 7: This chapter includes short-term solar energy forecasting in 

solar PV applications. Intelligent modelling techniques have been employed 

and obtained results reveal that the systems may be implemented for a broad 

series of applications. 

Chapter 8: This chapter provides a summary of conclusions which has 

been carried out based on the analysis of intelligent modelling techniques and 

its implementation for solar photovoltaic applications. Some suggestions are 

also presented for scope of future work in the thesis.  
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 INTRODUCTION 

 In this chapter, a brief literature survey of the previous work done has 

been carried out, which includes mathematical models for estimating solar 

energy, empirical models for estimating solar energy, fuzzy logic approach for 

forecasting solar energy, solar energy assessment with aid of artificial neural 

network and hybrid intelligent models for solar energy forecasting. Due to 

limited space few recent research papers have been discussed in this chapter. 

Based on the literature survey, the research gaps are analyzed and problems are 

formulated accordingly. 

2.2 MATHEMATICAL MODELS FOR ESTIMATING SOLAR 

ENERGY  

Model based on solar radiation ranges from mathematical models to 

hybrid intelligent models. In the past, many mathematical models namely 

Reference Evaluation of Solar Transmittance (REST), Modified Hottel’s, Code 

for Physical Computation of Radiation, 2 bands (CPCR2), Reference 

Evaluation of Solar Transmittance, 2 bands (REST2) etc. were developed for 

estimation of global solar energy under cloudless-skies. 

 Rizwan et al. [18] proposed the REST2 and CPCR2 model for 

estimating solar energy. Further, in this research REST2 model uses the two- 

band scheme as used in CPCR2 model, which is an important parameter for 

estimation of solar energy. It has been concluded from this research that the 
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REST2 model performs better as compared to other well-established models 

under cloudless sky for Indian climatic conditions. 

 Gueymard [19] presented REST2 and CPCR2 model in the estimation 

of cloudless-sky illuminance, photo-synthetically active radiation and 

broadband irradiance. In this research, it has been observed that the REST2 

model appears to perform better than the CPCR2 model for estimating 

illuminance, photo-synthetically active radiation and broadband irradiance.  

 Gueymard [20-21] proposed the performance of broadband direct 

irradiance model. In this work, two models i.e. the transmittance models and 

the bulk models were established for providing modelling of the broadband 

transmittances. It has been concluded from this research that the transmittance 

model performs better than the bulk models with aid of Linke’s turbidity 

coefficient. 

2.3 ESTIMATING SOLAR ENERGY USING REGRESSION 

MODELLING 

 The mathematical models available in the literature are found 

inaccurate, primarily due to extreme simplicity of parameterization; therefore, 

empirical models based on multiple regression analysis are presented for 

estimating global solar energy.  

 Angstrom [22] presented the first attempt for estimating global solar 

radiation, well-established empirical relation between sunshine hours and 

global solar radiation under clear sky conditions. Further, Page [23] and 

Prescott [24] suggested replacing clear day solar radiation with extraterrestrial 

solar radiation. 
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 Kirmani et al. [25] proposed model for estimating solar energy which is 

based on Angstrom’s model. In this work, empirical models were established 

based on multiple regression analysis with aid of meteorological parameters 

namely ambient temperature, sunshine hour, wind speed, relative humidity and 

rainfall. The performance of the model has been evaluated using statistical 

indicators. It has been concluded from this research that the correlations based 

on five meteorological parameters gave the best correlations.  

 Cenk et al. [26] proposed 105 literature models based on regression 

modelling for estimation of global solar energy in the Turkey region and the 

performance have been evaluated based on statistical validation tests. It has 

been concluded from this research that the cubic models are suitable from 

January-June period whereas quadratic models are suitable from July-

December period.  

 Most of the previous researches available in the literature have been 

carried out for Middle East countries; however, very few models are available 

that discussed about estimating solar energy for Indian climatic conditions. 

Khalil and Aly [27] proposed empirical models for estimating global 

solar energy using meteorological parameters such as sunshine hours, relative 

humidity and ambient temperature for Saudi Arabia region with aid of 

statistical error-tests. It has been concluded from this research that during 

summer, maximum value of solar energy can be obtained while this value 

diminishes during autumn and winter. 

Awan et al. [28] proposed analysis of solar energy data and solar 

photovoltaic systems output across the Kingdom of Saudi Arabia. In this work, 

the pattern of solar resource and the solar photovoltaic system has been 
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compared with the country load profile. It has been observed in this research 

that during summer, Tabuk station performs best for the solar PV power plant 

as the stress can be reduced by companies during the season of the high load by 

cutting off the peak load in afternoon during summer season. 

Teke and Yildirim [29] proposed linear, quadratic and cubic models for 

estimating solar energy for Eastern Mediterranean Region (EMR) with aid of 

meteorological data in the Turkish state metrological services. Further, 

comparison between monthly models and general models has been performed 

by using statistical error-tests. It has been observed in this research, that the use 

of cubic general model has been recommended for EMR.  

Liu et al. [30] investigated the performance of different site-dependent 

models based on 15 solar radiation stations in the Tibetan Plateau and its 

surrounding regions. A large variation in the coefficients has been observed in 

this research among different site-dependent models over the Tibetan Plateau, 

due to the great spatial difference in elevation and the climate characteristics. It 

has been concluded from this research that the sunshine-based models have 

better performance than temperature-based models for estimating solar energy.  

 Ihaddadene et al. [31] proposed six empirical models namely (i) 

Hargreaves and Samani model, (ii) Chen model, (iii) Bristow and Campbell 

model, (iv) Li 1 model, (v) Li 2 model and (vi) Okonkwo model for estimating 

global solar energy from ambient temperature for the city of Djelfa (Algeria). It 

has been observed from this research, after performing the statistical analysis, 

that the Li 2 model perform best and has been verified for Biskra and Ghardaia. 

 Bahel et al. [32] proposed model based on Angstrom correlation for 

estimation of global solar energy. In this work, the correlations defined 
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between global solar energy and sunshine hours provide favourable estimates. 

Further, the proposed model has been compared with Rietveld’s model and 

results obtained give better estimates than other correlations.  

Abdalla [33] proposed model for measurements of global solar energy 

with sunshine hours, relative humidity, maximum temperature, sea level 

pressure and vapour pressure. It has been observed in this research that the 

proposed model provides an excellent agreement between the measured and 

estimated data and recommended to be used for the city of Bahrain. 

 Akinoglu and Ecevit [34] presented a quadratic model for estimating 

monthly average global solar radiation. In this work, the developed correlations 

have been compared with Rietveld, Benson et al., Ogelman et al. and recent 

formulation by Gopinathan model. It has been concluded from this research 

that the quadratic model provides better performance in terms of global 

applicability and should be preferred for estimation of global solar radiation 

when the data related to bright sunshine hours are available. 

 In all of the above discussed models, estimation of global solar energy 

have been done using meteorological parameters; however, no recent finding is 

reported that uses dew-point along with other known available meteorological 

parameters like atmospheric pressure, amount of rainfall, ambient temperature, 

sunshine hours, relative humidity, wind speed and cloudiness index for 

estimating global solar energy and for widely changing climatic conditions i.e.  

warm and humid, hot and dry, cold and cloudy, moderate and composite 

climate conditions. Hence, a clear scope exists for developing model which can 

measure the impact of additional meteorological parameters on global solar 

energy and for distinct climate zones across India. 
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2.4 FUZZY LOGIC APPROACH FOR SOLAR ENERGY 

FORECASTING  

 The regression models developed so far for assessing solar energy were 

available for clear sky-conditions; however, such models are unsuitable for 

estimating global solar energy during cloudy sky conditions. Presence of 

moisture, dust, clouds and aerosols in the lower atmospheric region causes 

uncertainty in the atmosphere. The reduction in extraterrestrial solar radiation 

occurs due to the external atmosphere which varies from 30% in a clear sky 

condition to 100% in a cloudy/foggy sky condition. For Indian climatic 

conditions where about 50-100 days are cloudy, accurately estimating global 

solar energy based on multiple regression analysis is a tedious task. Therefore, 

intelligent modelling techniques have been introduced for forecasting global 

solar energy. 

 The fuzzy logic models are introduced wherein probabilistic approaches 

do not give a realistic description of the phenomenon. Most of the previous 

researches investigated the fuzzy logic model for forecasting solar energy and 

its application in the field of the renewable energy system. 

 Sen [35] proposed a fuzzy logic based model using duration of sunshine 

hours for estimation of global solar energy. In this work, fuzzy logic modelling 

has been employed for solar energy forecasting using duration of sunshine 

hours. Further, the fuzzy logic algorithm has been used which has the ability to 

explain knowledge in a human-like manner in the form of rules with aid of 

linguistic variables only.  

 Suganthi et al. [36] presented an application of fuzzy logic modelling 

for renewable energy systems such as wind, solar, bio-energy, hybrid systems 
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and micro-grid. In this research, fuzzy logic based models has been widely 

used for site assessment, for solar PV system installation, optimization and 

Maximum Power Point Tracking (MPPT) algorithm for solar photovoltaic 

systems.  

 Saez et al. [37] proposed Energy Management System (EMS) technique 

in determining the generation units dispatch which is optimizer-based requiring 

the estimation of solar energy resources and loads. In this research, system 

based on forecasting techniques includes a representation of the uncertainties 

connected with solar energy resources and loads generating fuzzy models 

incorporating uncertainty representation of future predictions.  

 Recently, Perveen et al. [38] proposed a model based on fuzzy logic 

modelling in forecasting solar energy with aid of different meteorological 

parameters based on sky-conditions for distinct climate zones across India. It 

has been observed in this research that with the inclusion of dew point as a 

meteorological parameter the accuracy of the proposed model has significantly 

increased.  

2.5 SOLAR ENERGY ASSESSMENT USING ANN 

 For complex systems with large data sets, maintaining accuracy using 

fuzzy logic modelling would be a tedious task. Therefore, Artificial Neural 

Network (ANN) based models are introduced, employing artificial intelligence 

techniques which can subsequently perform the structure simulation. The ANN 

model is ideal for modelling a non-linear, dynamic and complex system.  

 Kaushika et al. [39] proposed ANN model based on using diffuse, 

global and Direct Normal Irradiance (DNI). In this research, the algorithm 

includes diffuse, global and DNI estimation in a clear/sunny sky-conditions. 
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Further, the clearness index which corresponds to diffuse, direct and global 

solar energy are thereby mapped with weather data namely sunshine hour, 

rainfall and relative humidity in the analysis of ANN. It has been concluded 

from this research, that the proposed ANN model provides excellent 

compatibility.  

 Yadav and Chandel [40] proposed an ANN-based model for estimation 

of solar energy. It has been concluded from this research, that the ANN-based 

models provides more accuracy than the conventional methods after 

performing the review of artificial neural network based modelling techniques 

for identifying methods available for estimating global solar energy.  

 Chang et al. [41] proposed Radial Basis Function Neural Network 

(RBFNN) model for short-term photovoltaic (PV) power forecasting wherein 

24 hour of input data at 10-min resolution have been considered for training the 

proposed neural network. Further, the proposed RBFNN model has been 

compared with other ANN-based models. It has been concluded from this 

research that the RBFNN model is more accurate than other models.  

 Jamil and Zeeshan [42] proposed ANN application for forecasting wind 

speed in Gujarat, India. Further, in this work, ANN model has been used to 

forecast wind speed with aid of data measured to train and test the given 

information. It has been concluded from this research that the ANN modelling 

techniques are better than the conventional forecasting methods. 

 Khosravi et al. [43] proposed three model of machine learning 

algorithms which has been implemented to predict wind direction, wind speed 

and wind turbine power. In this work, Support Vector Regression-Radial Basis 

Function (SVR-RBF) represents the first model, Multi-Layered Feed-Forward 
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Neural Network (MLFFNN) data training with distinct training algorithms 

represents the second model, and Adaptive Neural-Fuzzy Inference System-

Particle Swarm Optimization (ANFIS-PSO) represents the third model. In this, 

a large data set of wind speed and direction are measured in duration of 5, 10, 

30-min and 1-hour intervals efficiently used for estimating wind speed for 

Bushehr. It has been concluded from this research that the SVR-RBF model 

outperforms MLFFNN and ANFIS-PSO models. 

2.6 ANFIS-BASED MODEL FOR SOLAR ENERGY FORECASTING 

 Detailed literature review reveals that for estimation of complex 

functions, an accurate analysis of a number of neurons and hidden layers with 

aid of ANN is a difficult task as they are large in number. Also, large training 

time is involved in such a neural network, which subsequently slows down the 

response of the system. Existing neural network model does the summation 

operation, however, it does not perform the operation based on the product of 

weighted inputs. Therefore, hybrid intelligent models are introduced for 

forecasting solar energy which is a fusion of artificial neural network and fuzzy 

logic approach for forecasting global solar energy. Many researchers have 

investigated the integrated features of Adaptive Neural-Fuzzy Inference 

System (ANFIS) in forecasting global solar energy and its application in wind 

power forecasting.  

 Kumar and Kalavathi [44] proposed ANN and ANFIS based model for 

predicting the PV generation. In this research, the proposed model is validated 

and compared with the data set of the photovoltaic power generating station. A 

proposed model is developed and simulated in MATLAB for evaluating the 

performance of the system. 
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 Walia et al. [45] proposed the basic architecture underlying the 

principle of ANFIS which is implemented within the adaptive networks 

framework. In this research, with input and output data, the proposed 

architecture of ANFIS construct mapping based on human knowledge and 

hybrid learning algorithm. The result of simulation shows that the ANFIS 

based model has been used for modelling nonlinear functions. 

 Jang [46] have presented an ANN application for forecasting wind 

speed in architecture underlying the principle of ANFIS which is implemented 

within the framework of adaptive networks. It has been concluded from this 

research, that the proposed ANFIS model can construct an input-output 

mapping based on stipulated data pairs.  

 Zheng et al. [47] proposed a double stage hierarchical ANFIS approach 

for short-term wind power estimation in China. In this research, the ANFIS 

approach has two stages wherein the first ANFIS stage makes use of Numerical 

Weather Prediction (NWP) for forecasting wind speed at the region and the 

second stage models the relation between wind speed and power. Further, the 

influence of input data on prediction accuracy has been analyzed by dividing 

the input data sets into five subsets. It has been concluded from this research 

that the ANFIS approach resulted in significant forecasting accuracy 

enhancements.  

 A hybrid methodology for short-term power forecasting has been 

proposed using ANFIS by Liu et al. [48]. In this research, individual 

forecasting models are presented such as back-propagation neural network, 

least squares support vector machines and radial basis function neural network. 
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It has been concluded from this research that the proposed hybrid methodology 

based on ANFIS provides a significant improvement in accuracy. 

2.7 IMPLEMENTATION OF SOLAR ENERGY FORECASTING IN 

SOLAR PV SYSTEMS 

  In the present scenario, the market for renewable energy is huge and 

most of the green technologies are in operation by making use of solar energy 

either directly or indirectly. Solar PV technology has showed a significant 

growth around the world as many projects are in pipeline which shares the 

production of electricity. Solar PV technology generate electricity directly as 

they make use of photovoltaic effect and directly convert the sun’s energy into 

electricity. The electricity is then transferred to the grid as Alternating Current 

(AC) and with the required value of voltage.  

  In this research, Multi-crystalline solar PV modules and Heterojunction 

with Intrinsic Thin (HIT) layer solar PV modules have been employed for 

short-term PV power forecasting operated at Maximum Power Point Tracking 

(MPPT) conditions under composite climatic conditions. The solar PV power 

forecasting is an important element for smart grid approach which helps in 

optimization of the smart energy management system and has the ability to 

integrate the renewable power generation in an efficient manner. Since the 

power generating from solar energy resource is fluctuating and non-linear in 

nature, it becomes very difficult to estimate power output with mathematical 

models; therefore, intelligent approaches based on fuzzy logic, ANN and 

ANFIS based models have been presented for power forecasting of solar PV 

system employing multi-crystalline and HIT solar PV modules. 
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  Last few years have seen tremendous growth in the field of renewable 

power generation especially in the field of solar energy which employs PV 

system comprising a number of solar cells. Its advantages include minimization 

of greenhouse gas emissions and simple scalability while disadvantage is that 

the power output diminishes due to dust, clouds and other obstructions in the 

atmosphere. Therefore, intelligent modelling techniques have been introduced 

to accurately forecast the power generation in solar PV system based on sky-

conditions. 

 Mosa et al. [49] proposed an efficient Maximum Power Point Tracking 

(MPPT) of solar photovoltaic systems using Model Predictive Control (MPC) 

methodology which is applied to a DC to DC converter. In this research, MPC 

controller has been combined with Incremental Conductance (INC) method 

improving the speed of the controller that track incident solar energy and the 

result obtained in this research shows an increased photovoltaic system overall 

efficiency. 

 Mehrabankhomartash et al. [50] presented the optimal battery system in 

a solar photovoltaic power plant which is installed in building situated in Iran. 

In this research, the sizing of battery lies on financial evaluation considering 

the damage costs which arises because of outages which abuilding is facing in 

photovoltaic system life spam. In this research, the sizing of battery has been 

explained by the Monte-Carlo simulation method and this research confirms 

the advantage of the proposed approach with the conventional ones. 

 Chen et al. [51] presented an advanced statistical method for solar 

power forecasting based on artificial intelligence techniques which used power 

measurements and meteorological forecasts of solar irradiance, relative 

https://en.wikipedia.org/wiki/Solar_cell
https://www.sciencedirect.com/topics/engineering/battery-system
https://www.sciencedirect.com/topics/engineering/damage-cost
https://www.sciencedirect.com/topics/engineering/outages
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humidity and temperature as input. The developed model is helpful in 

operational planning for transmission system operator and for PV power 

system operators trading in electricity market.  

 Mahmoudi et al. [52] proposed an MPPT method which is based on the 

theory of Finite Control Set-Model Predictive Control (FCS-MPC) for solar PV 

systems. In this research, the photovoltaic current and power data is measured 

from former steps to estimate power for the next step which corresponds to 

power converter switching configurations. It has been concluded in this 

research that the proposed method performs better than Perturb and Observe 

(P&O) method. 

Shi et al. [53] proposed method for forecasting PV system power output 

which is based on Support Vector Machine (SVM) and weather classification 

for different sky conditions. In this research, a day-ahead photovoltaic power 

output forecasting model has been used which is based on actual power and 

weather forecasting data as well as SVM principle. It has been concluded from 

this research that the model appears to be effective and promising for grid-

connected solar PV systems. 

 Abushaiba et al. [54] proposed an MPPT method for solar PV 

applications. In this research, the concept of Model predictive Control (MPC) 

has been used where this method treats the solar PV module as the plant and 

uses the behaviour of the module for maximum power point tracking 

conditions. 

 Yang et al. [55] proposed PV power forecasting in Energy management 

System (EMS) for distributed energy resources. In this research, weather-based 

hybrid method has been presented for one day ahead PV power forecasting. It 
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comprises classification, training and the forecasting stages. The Self-

Organizing Map (SOM) and Learning Vector Quantization (LVQ) networks 

have been used in the classification stage which is used to classify photovoltaic 

power; Support Vector Regression (SVR) has been used in the training stage to 

train the input and output data for temperature, probability of precipitation, and 

solar energy. Lastly, the fuzzy inference method has been used in the 

forecasting stage to select a trained model for accurately forecasting solar 

energy. It has been concluded from this research that the proposed model 

provides better accuracy than the SVR and traditional ANN methods. 

 Riffonneau et al. [56] proposed a power management mechanism for 

grid-interacted PV systems so to help photovoltaic generation to grid by 

proposing peak shaving service in a lower cost. In this research, simulations 

and real condition applications have been carried out wherein peak shaving has 

been observed with minimal cost, but the grid power fluctuations have been 

minimized with photovoltaic penetration to the grid.  

2.8  KNOWLEDGE GAP ANALYSIS 

 This section summarizes the research gaps analyzed from the literature 

survey discussed in the previous sections.  

Empirical model for estimating global solar energy:  

After carrying out a detailed literature survey on modelling techniques, 

it has been identified that most of the empirical models available in the 

literature for forecasting global solar energy were based on using 

meteorological parameters like duration of sunshine hours, ambient 

temperature, wind speed and others; however, very few literature have 

elucidated about using atmospheric pressure, amount of rainfall and cloudiness 
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index in addition to other known available meteorological parameters. Further, 

most of the models have been developed for Middle East countries; however, 

solar energy forecasting for Indian climatic conditions have been less reported 

in the literature. 

Therefore, sunshine-based models with linear and non-linear 

correlations and empirical models have been established to estimate solar 

energy for Indian climatic conditions. Meteorological parameters include 

sunshine hours, global solar energy, ambient temperature, relative humidity, 

wind speed, atmospheric pressure, amount of rainfall and cloudiness index for 

distinct climate zone across India. The results obtained have been evaluated 

based on statistical indicators like Mean Percentage Error (MPE), Mean Bias 

Error (MBE), Root Mean Square Error (RMSE), t-stat method, Sum of the 

Square of the Relative Error (SSRE), Relative Standard Error (RSE), 

Correlation Coefficient (r) and Coefficient of Determination (R
2
). It has been 

concluded based on the results obtained by statistical analysis, that the 

meteorological parameters considered do have a strong influence on estimating 

global solar energy. 

 Intelligent models for forecasting solar energy: 

Based on the exhaustive literature review on the intelligent modelling 

techniques, it has been observed that the forecasting of solar energy during 

clear sky can be done simply with the help of mathematical and regression 

models; however, forecasting under the influence of cloudy sky conditions do 

not provide accurate results using these mathematical models.  

Therefore, in the present research, an attempt has been made to develop 

intelligent models employing fuzzy logic approach, ANN and ANFIS 
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modelling for forecasting global solar energy based on variation in sky-

conditions defined as clear sky (type-a), hazy sky (type-b), partially 

foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions and 

for distinct climate zones i.e. warm and humid, hot and dry, cold and cloudy, 

composite and moderate climate zone. Further, the comparisons of the 

proposed intelligent models have been carried out with empirical models using 

statistical error-tests. The result obtained by employing ANFIS-based model 

provides more accuracy than the ANN and fuzzy logic based model. 

Solar energy forecasting applications for solar PV system: 

Short term solar energy forecasting models such as hourly, weekly are 

available in the literature but 10 minutes ahead solar energy forecasting less 

reported in the literature using intelligent methodologies such as fuzzy logic, 

ANN and ANFIS [57]. This chapter deals with the short-term solar energy 

forecasting in a solar PV system. In the present scenario, the bidding of power 

has been done on 10 minutes basis by many distribution companies. Keeping in 

mind aforesaid, 10 minutes ahead forecasting has been done and presented. 

Therefore, an intelligent approach have been developed and applied for short 

term solar energy forecasting problem in solar PV system under composite 

climatic conditions.  
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     CHAPTER 3 

EMPIRICAL MODELS FOR ESTIMATING  

SOLAR ENERGY 
   

  3.1  INTRODUCTION 

 Based on the literature review in the previous chapter, it is observed 

that for the development of solar devices, it is essential to develop model that 

can estimate solar energy based on more readily available data with reasonable 

accuracy. In this chapter, sunshine-based models with linear and non-linear 

correlations have been established to estimate solar energy for different 

climatic conditions. Further, empirical models have been established using 

multiple regression analysis that correlates global solar energy with other 

meteorological parameters namely relative humidity, sunshine hours, wind 

speed, atmospheric pressure, rainfall and cloudiness index to estimate global 

solar energy and applied for distinct climate zone across India. Simulations 

have been carried out using statistical error-tests. Further, principal component 

analysis has been performed to select the most suitable model based on the 

closeness parameter. Lastly, the comparison has been made with the well-

established models available in the literature. 

This chapter is based on the following published papers: 

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Development of empirical models for 

forecasting global solar energy,” Proceedings of 2nd
 IEEE International Conference 

on Power Electronics, Intelligent Control and Energy Systems (ICPEICES-2018), 

October 22-24, 2018, Delhi Technological University, Delhi, India. 

2. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Correlations for forecasting global 

solar radiation using meteorological parameters,” Proceedings of IEEE 41
st
 National 

Systems Conference (NSC) 2017 on Super-Intelligent Machines and Man, 

December 1-3, pp. 49-57, 2017, Dayalbagh Educational Institute, Agra, India. 
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3.2  METEOROLOGICAL DATA 

 In this chapter, the long-term measured, 15 years averaged data have 

been obtained from National Institute of Solar Energy (NISE) and Indian 

Meteorological Department (IMD). The input parameters include sunshine 

duration, ambient temperature, wind speed, relative humidity, atmospheric 

pressure, amount of rainfall and cloudiness index whereas global solar energy 

is the output parameter and obtained for five meteorological sites with distinct 

climatic conditions across India and are presented in Table 3.1 - Table 3.5 [58]. 

3.3  EMPIRICAL CORRELATIONS FOR ESTIMATING SOLAR 

ENERGY 

 This chapter deals with establishing correlations using multiple 

regression analysis for estimating global solar energy with aid of 

meteorological parameters for five distinct climate zones across India. The 

estimated value of global solar energy Hg can be obtained on multiplication of 

the estimated clearness index (
𝐻𝑔

𝐻𝑜
) by Ho, where Hg represents the measured 

global solar energy and Ho represents an extraterrestrial solar radiation which 

can be calculated using standard geometric procedures and are later presented 

through Eq. (3.11) – Eq. (3.14). In equation with one parameter, the linear 

regression analysis can be obtained by Eq. (3.1) as: 

 y = a + bx,                  (3.1) 

 Since there is increase in the number of parameters so the equation with 

multiple regression analysis can be obtained from Eq. (3.2) as: 

 y = a + bx1 + cx2 + dx3 + ex4 + fx5 +…+ nxn,                (3.2) 

where a,b,c,d,e,f..…n are the regression coefficients; and x, x1, x2, x3, x4, 

x5…..xn represents the correlated parameters. 
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Table 3.1 Meteorological data for warm and humid climate zone  

Months 

Clearness  

Index  

(𝐻𝑔

𝐻𝑜
) 

Relative 

Sunshine 

( 𝑆

𝑆𝑜
) 

Ambient  

Temperature 

 (
o
C) 

Relative 

Humidity 

 (%) 

Rainfall  

(mm) 

Wind Speed 

(Km/hr) 

Atmospheric 

Pressure  

(hPa) 

Cloudiness 

Index 

(𝐻𝑑

𝐻𝑔
) 

Jan 0.50 0.79 25.46 71.32 0.03 8.22 1012.84 0.44 

Feb 0.54 0.84 26.61 76.29 0.09 9.06 1009.74 0.34 

Mar 0.55 0.76 27.84 73.75 0.00 6.98 1008.99 0.32 

Apr 0.52 0.76 30.53 71.26 0.00 8.78 1019.08 0.35 

May 0.49 0.70 31.71 67.14 9.46 7.49 1033.84 0.40 

Jun 0.46 0.58 30.73 64.04 0.57 8.48 1013.19 0.51 

Jul 0.40 0.49 30.53 62.25 0.51 10.04 1014.78 0.79 

Aug 0.41 0.38 29.07 71.30 1.55 8.85 1003.74 0.64 

Sep 0.44 0.51 29.10 79.09 2.13 8.41 1014.47 0.53 

Oct 0.43 0.56 27.75 80.06 1.39 6.25 1009.47 0.52 

Nov 0.42 0.51 25.64 83.73 1.41 11.58 1011.95 0.59 

Dec 0.41 0.63 26.09 78.13 0.31 9.49 1012.08 0.58 

Avg. 0.46 0.63 28.42 73.20 1.45 8.64 1013.68 0.50 
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Table 3.2 Meteorological data for hot and dry climate zone 

Months 

Clearness  

Index  

(𝐻𝑔

𝐻𝑜
) 

Relative 

Sunshine  

( 𝑆

𝑆𝑜
) 

Ambient 

Temperature 

 (
o
C) 

Relative 

Humidity 

 (%) 

Rainfall  

(mm) 

Wind Speed 

(Km/hr) 

Atmospheric 

Pressure  

(hPa) 

Cloudiness 

Index 

(𝐻𝑑

𝐻𝑔
) 

Jan 0.60 0.87 18.09 45.33 6.37 0.06 991.99 0.26 

Feb 0.60 0.87 19.87 41.86 6.12 0.00 987.13 0.25 

Mar 0.57 0.77 26.12 30.91 7.74 0.03 1009.11 0.29 

Apr 0.52 0.78 32.91 23.98 5.70 0.02 979.69 0.35 

May 0.53 0.77 34.88 35.82 8.65 0.05 978.01 0.30 

Jun 0.47 0.66 33.52 45.91 14.04 0.10 974.44 0.50 

Jul 0.38 0.60 31.52 60.78 14.00 0.27 974.42 0.60 

Aug 0.43 0.63 31.44 62.33 5.99 0.97 976.47 0.51 

Sep 0.56 0.80 29.70 59.59 6.75 0.15 980.46 0.24 

Oct 0.58 0.86 28.46 42.03 4.38 0.00 993.23 0.25 

Nov 0.61 0.87 22.08 42.01 3.30 0.00 988.79 0.21 

Dec 0.57 0.82 18.64 48.58 3.21 0.00 991.78 0.30 

Avg. 0.54 0.78 27.27 44.93 7.19 0.14 985.46 0.34 
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Table 3.3 Meteorological data for composite climate zone 

Months 

Clearness  

Index  

(𝐻𝑔

𝐻𝑜
) 

Relative 

Sunshine  

( 𝑆

𝑆𝑜
) 

Ambient 

Temperature 

 (
o
C) 

Relative 

Humidity 

 (%) 

Rainfall  

(mm) 

Wind Speed 

(Km/hr) 

Atmospheric 

Pressure  

(hPa) 

Cloudiness 

Index 

(𝐻𝑑

𝐻𝑔
) 

Jan 0.39 0.75 14.11 65.48 5.15 0.17 990.03 0.39 

Feb 0.38 0.72 18.64 59.49 7.71 0.43 986.33 0.38 

Mar 0.55 0.74 22.73 53.30 7.34 0.02 983.27 0.25 

Apr 0.56 0.72 30.03 36.19 8.42 0.08 979.30 0.22 

May 0.49 0.62 34.14 34.30 9.52 0.03 976.22 0.22 

Jun 0.41 0.72 33.40 52.56 10.59 0.28 972.74 0.27 

Jul 0.39 0.66 30.48 70.64 10.40 0.31 984.73 0.28 

Aug 0.40 0.51 29.14 79.36 9.57 0.82 974.82 0.31 

Sep 0.34 0.32 29.73 69.28 9.43 0.43 979.55 0.40 

Oct 0.55 0.42 26.18 64.52 6.34 0.00 983.97 0.29 

Nov 0.54 0.52 20.92 49.80 6.53 0.00 986.67 0.37 

Dec 0.50 0.85 16.00 65.68 5.93 0.00 991.57 0.46 

Avg. 0.46 0.63 25.46 58.38 8.08 0.21 982.43 0.32 
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Table 3.4 Meteorological data for moderate climate zone  

Months 

Clearness  

Index  

(𝐻𝑔

𝐻𝑜
) 

Relative 

Sunshine  

( 𝑆

𝑆𝑜
) 

Ambient 

Temperature 

 (
o
C) 

Relative 

Humidity 

 (%) 

Rainfall  

(mm) 

Wind Speed 

(Km/hr) 

Atmospheric 

Pressure  

(hPa) 

Cloudiness 

Index 

(𝐻𝑑

𝐻𝑔
) 

Jan 0.54 0.74 19.78 59.88 1.49 0.00 982.92 0.31 

Feb 0.53 0.90 23.18 48.82 5.34 0.00 947.97 0.23 

Mar 0.55 0.83 26.28 41.28 3.23 0.00 948.68 0.31 

Apr 0.53 0.80 29.19 44.47 6.07 0.00 945.63 0.28 

May 0.53 0.84 29.14 55.21 11.76 0.02 944.35 0.34 

Jun 0.37 0.35 25.89 76.92 10.48 0.19 942.76 0.67 

Jul 0.30 0.31 23.91 86.03 7.93 0.28 954.91 0.79 

Aug 0.35 0.31 23.30 85.24 7.73 0.09 943.78 0.81 

Sep 0.45 0.46 24.07 84.23 4.68 0.17 945.02 0.57 

Oct 0.56 0.68 24.24 75.96 2.27 2.31 947.39 0.37 

Nov 0.64 0.80 22.40 71.97 2.00 0.02 950.14 0.33 

Dec 0.70 0.85 19.27 63.01 2.41 0.00 962.04 0.23 

Avg. 0.50 0.66 24.22 66.09 5.45 0.26 948.42 0.44 
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Table 3.5 Meteorological data for cold and cloudy climate zone 

Months 

Clearness  

Index  

(𝐻𝑔

𝐻𝑜
) 

Relative 

Sunshine 

( 𝑆

𝑆𝑜
) 

Ambient 

Temperature 

 (
o
C) 

Relative 

Humidity 

 (%) 

Rainfall  

(mm) 

Wind Speed 

(Km/hr) 

Atmospheric 

Pressure  

(hPa) 

Cloudiness 

Index 

(𝐻𝑑

𝐻𝑔
) 

Jan 0.52 0.67 9.95 75.58 3.61 0.22 840.99 0.34 

Feb 0.51 0.56 10.24 71.84 3.80 0.68 838.66 0.42 

Mar 0.54 0.61 15.54 59.65 5.65 1.87 838.72 0.41 

Apr 0.45 0.30 18.26 63.53 7.63 5.61 839.83 0.47 

May 0.38 0.37 20.69 80.29 4.29 3.53 838.13 0.60 

Jun 0.33 0.26 21.04 85.50 3.63 15.68 834.75 0.70 

Jul 0.33 0.20 21.21 87.52 3.15 14.15 835.36 0.80 

Aug 0.31 0.17 20.64 89.23 1.23 12.92 836.08 0.77 

Sep 0.34 0.23 20.00 85.92 0.87 7.53 838.44 0.73 

Oct 0.43 0.52 18.39 80.74 2.29 1.53 842.01 0.48 

Nov 0.54 0.66 15.27 75.60 2.65 0.33 843.31 0.43 

Dec 0.60 0.73 11.89 74.40 0.84 0.01 841.67 0.22 

Avg. 0.44 0.44 16.93 77.48 3.30 5.34 839.00 0.53 
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3.4 SUNSHINE-BASED MODELS FOR ESTIMATING SOLAR 

ENERGY 

 In estimation models, the most widely used method for estimating 

global solar energy is Angstrom - Prescott model which is based on the 

correlation of the ratio of global solar energy to extraterrestrial solar radiation 

with ratio of relative sunshine hours. In this chapter, sunshine-based models 

with linear and non-linear correlations have been established and the 

performance is evaluated based on statistical error-tests.  

Model 1: Linear model  

Source – Angstrom-Prescott model [22][24] 

𝐻  

𝐻𝑜
 = a + b(

𝑆

𝑆𝑜
)                              (3.3) 

Model 2: Quadratic model  

Source – Akinoglu and Ecevit model [34] 

𝐻 

𝐻𝑜
 = a + b(

𝑆

𝑆𝑜
) + c(

𝑆

𝑆𝑜
)2                                                          

(3.4) 

Model 3: Cubic model 

Source – Bahel et al. model [32] 

𝐻 

𝐻𝑜
 = a + b(

𝑆

𝑆𝑜
) + c(

𝑆

𝑆𝑜
)2+ d(

𝑆

𝑆𝑜
)3                      

(3.5) 

Model 4: Linear logarithmic model 

Source – Newland model [59] 

𝐻  

𝐻𝑜
 = a + b(

𝑆

𝑆𝑜
) + c log(

𝑆

𝑆𝑜
)                            (3.6) 

Model 5: Logarithmic model 

Source – Ampratwum and Dorvlo model [60] 
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𝐻   

𝐻𝑜
 = a + b log(

𝑆

𝑆𝑜
)                             (3.7) 

Model 6: Linear exponential model 

Source – Bakirci model [61]  

𝐻 

𝐻𝑜
 = a + b(

𝑆

𝑆𝑜
) + c exp(

𝑆

𝑆𝑜
)                                       (3.8) 

Model 7: Exponential model  

Source – Almorox et al. model [62] 

𝐻  

𝐻𝑜
 = a + b exp(

𝑆

𝑆𝑜
)                  (3.9) 

Model 8: Exponent model 

Source – Bakirci model [61] 

𝐻  

𝐻𝑜
 = a + (

𝑆

𝑆𝑜
)𝑏                                        

(3.10) 

 In Eq. (3.3) - Eq. (3.10) as shown above, a, b, c and d are the regression 

coefficients. The daily extraterrestrial solar radiation Ho can be expressed by 

Eq. (3.11) - Eq. (3.14) in the following manner as [63]: 

Ho = 
24 ∗ 3600

𝜋
𝐺𝑆𝐶 (1 + 0.033 cos

360𝑛𝑑𝑎𝑦

365
) ∗ (𝑐𝑜𝑠ϕ 𝑐𝑜𝑠𝛿 cos 𝜔𝑠

𝜋𝜔𝑠

180
sin ϕ)       (3.11) 

δ = 23.45 sin[360

365
(𝑛𝑑𝑎𝑦 + 284)]                                    (3.12) 

ωs = cos
-1

(-tanϕ tanδ)                (3.13) 

So is calculated using Cooper’s formula which is expressed as:- 

So = 
2

15
 cos

-1
(-tanϕ tanδ)                          (3.14) 

where Gsc is the solar constant and equals 1367 W/m
2
, δ represents the solar 

declination angle, ϕ is the latitudinal extent of the site, ωs represents the mean 

sunrise hour angle and nday represents the number of days which is equal to 1 
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for 1
st 

January and 365 for 31
st
 December. S represents the bright sunshine 

hours and So represents the maximum daily hours of bright sunshine. 

3.5  PRINCIPAL COMPONENT ANALYSIS  

 Principal Component Analysis (PCA) is a technique which is used for 

identification of a smaller number of uncorrelated variables known as principle 

components from a larger set of data. It is a tool used in predictive models and 

exploratory data analysis. The technique has been widely used to emphasize 

variation and capture strong patterns in a data set.  It is a simple non-parametric 

technique for extracting information from complex and confusing data sets. 

Principle component analysis has been used to eliminate the number of 

variables or when there are too many predictors compared to number of 

observations or to avoid non-collinearity.  

 For choosing the model with best correlation, the principal component 

analysis has been performed. For better analysis, parameters such as 

correlation of coefficient (r) and coefficient of determination (R
2
) are chosen as 

the closeness parameter. Steps for performing principal component analysis are 

as follows: 

(a) Standardization 

(b) Computation of correlation matrix 

(c) Compute the eigenvectors and eigenvalues of the correlation matrix 

(d) Feature vector 

(e) Recast the data along the principal component axis 

 Consider for example warm and humid climate zone with models based 

on four variables correlation represented by Eq. (3.90) - Eq. (3.97). The 

principal component analysis have been performed on these equations based on 
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closeness parameters i.e. correlation coefficient (r) and coefficient of 

determination (R
2
), the following graph has been obtained after applying PCA 

on above equations and shown below in Fig. 3.1. 

 

Fig. 3.1 Principal component analysis for Eq. (3.90) – Eq. (3.97)  

 In Fig. 3.1 as shown above, Eq. (3.94) lies in the fourth quadrant 

satisfying the condition and provides better analysis with (r) and (R
2
) chosen as 

closeness parameter. 

3.6 STATISTICAL PERFORMANCE EVALUATIONS 

 For model evaluation, different statistical evaluation indexes namely 

Mean Percentage Error (MPE), Relative Standard Error (RSE), Mean Bias 

Error (MBE), t-statistics (t-stat) method, Root Mean Square Error (RMSE), 

correlation coefficient (r) and the coefficient of determination (R
2
) are the 

frequently used methods for comparison [64-75].  

3.6.1  Mean Percentage Error (MPE) 

 It is the percentage deviation in estimated data of solar radiation from 

measured data of solar radiation which is given by Eq. (3.15) as shown below: 

 MPE =∑
𝐸

𝑛

𝑛
𝑖=1        (3.15) 
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where E is the absolute error and expressed as E = (
𝑐𝑖−𝑚𝑖

𝑚𝑖
) ∗ 100, n is the 

number of observation, ci and mi are the ith calculated and measured values, 

respectively. 

3.6.2  Mean Bias Error (MBE) 

It gives information associated with long-term performance of the 

correlations on performing the comparison of the deviation between the 

measured and estimated values and ‘zero’ is its ideal value. It is expressed by 

Eq. (3.16) as shown below: 

MBE =  
1

𝑛
∑ (𝑐𝑖  

𝑛
𝑖=1 -  𝑚𝑖)      (3.16) 

where n is the number of observations, ci and mi are the ith calculated and 

measured values, respectively.  

3.6.3  Sum of the Square of Relative Error (SSRE) 

 It gives the positive result of the sum of the square of relative deviation 

and it’s value is ‘zero’. It is expressed by Eq. (3.17) as shown below: 

 SSRE = ∑ ((
𝑐𝑖−𝑚𝑖

𝑚𝑖
)

2

)𝑛
𝑖=1      (3.17) 

where n is the number of observations, ci and mi are the ith calculated and 

measured values, respectively.  

3.6.4  Relative Standard Error (RSE) 

 It gives the degree of accuracy of estimation of correlations and can be 

expressed by Eq. (3.18) shown below as:  

  RSE = √
𝑆𝑆𝑅𝐸

𝑛
      (3.18) 

where n is the number of observation. 
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3.6.5  Root Mean Square Error (RMSE) 

 It is expressed by Eq. (3.19) as shown below: 

 RMSE = √
1

𝑛
∑ (𝑐𝑖 − 𝑚𝑖)2𝑛

𝑖=1      (3.19) 

where n is the number of observations, ci and mi are the ith calculated and 

measured values, respectively. The value of root mean square error is positive 

where it’s ideal value is ‘zero’.  

3.6.6 t-stat (t-statistic) Method 

 In order to check for estimation of equation whether it is statistically 

significant, or  not  from the measured data, in a defined confidence level, the 

t-statistic can be expressed by Eq. (3.20) as:  

 t-stat = √[
(𝑛−1)𝑀𝐵𝐸2

𝑅𝑀𝑆𝐸2  − 𝑀𝐵𝐸2]     (3.20) 

where n is the number of observations. 

3.6.7  Coefficient of Determination (R
2
) 

 The coefficient of determination is used to test the linear relationship 

between the measured and the estimated data. It can be defined by Eq. (3.21) as 

shown below:  

 R
2 
= 

∑ (𝑐𝑖−𝑐𝑎)(𝑚𝑖−𝑚𝑎)𝑛
𝑖=1

√[∑ (𝑐𝑖−𝑐𝑎)2𝑛
𝑖=1 ][∑ (𝑚𝑖−𝑚𝑎)2]𝑛

𝑖=1

             (3.21) 

where n is the number of observation, ca is the average calculated values, ma is 

the average measured values, ci is the i
th 

calculated values and mi is the i
th 

measured values. 
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3.7  RESULTS AND DISCUSSIONS 

3.7.1  Sunshine-based Models for Estimating Global Solar Energy 

 In the first part of this chapter, models based on sunshine duration with 

linear, quadratic, cubic, linear logarithmic, logarithmic, linear exponential, 

exponential and exponent correlations have been established using multiple 

regression analysis. The regression coefficients a, b, c and d are obtained for 

eight models i.e. models 1-8 as shown in Eq. (3.3) - Eq. (3.10) of the sunshine-

based models with aid of measured data and presented in Table 3.6 - Table 3.8 

respectively for five meteorological sites representing different climatic 

conditions across India. MATLAB curve fitting tool has been used for 

obtaining the regression coefficients. From Table 3.6 - Table 3.8, the following 

can be briefly summarized: 

(a) Warm and humid climate zone   

 It has been observed that for this climate zone, the dependencies are 

stronger for cubic term with correlation of coefficient (r = 0.80) obtained 

between the clearness index and relative sunshine duration. 

 The coefficient of determination is observed to be (R
2
 = 0.65) which 

means 65% of the clearness index can be accounted using relative sunshine 

duration.  

 The values of the estimated global solar energy using derived 

correlations are compared with the measured values as shown in Fig. 3.2 (a). 

 Further, the relation between the clearness index and relative sunshine 

duration is obtained by Eq. (3.24) as:  

𝐻𝑔

𝐻𝑜
 = 0.426 - 0.232(

𝑆

𝑆𝑜
) + 0.505(

𝑆

𝑆𝑜
)

2
 - 0.086(

𝑆

𝑆𝑜
)

3    
         (3.24) 
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Table 3.6 Sunshine-based models for warm and humid & hot and dry climate zone across India 

Stations Model 
Eq. 

No. 
Equations 

MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 
r R

2
 

Chennai 

(Warm and 

Humid) 

Linear 3.22 
𝐻𝑔

𝐻𝑜
 = 0.259 + 0.321( 𝑆

𝑆𝑜
) 1.52 0.00 0.05 0.77 0.62 

Quadratic 3.23 
𝐻𝑔

𝐻𝑜
 = 0.289 + 0.252( 𝑆

𝑆𝑜
) + 0.041( 𝑆

𝑆𝑜
)2 1.79 0.00 0.05 0.78 0.63 

Cubic 3.24 
𝐻𝑔

𝐻𝑜
 = 0.426 - 0.232( 𝑆

𝑆𝑜
) + 0.505( 𝑆

𝑆𝑜
)2 - 0.086( 𝑆

𝑆𝑜
)3 1.79 0.00 0.04 0.80 0.65 

Linear 

Logarithmic 
3.25 

𝐻𝑔

𝐻𝑜
 = 0.134 + 0.434( 𝑆

𝑆𝑜
) + 0.011 log( 𝑆

𝑆𝑜
) -10.35 -0.05 0.10 0.74 0.57 

Logarithmic 3.26 
𝐻𝑔

𝐻𝑜
 = 0.533 +  0.153 log( 𝑆

𝑆𝑜
) 15.60 0.04 0.08 0.62 0.42 

Linear 

Exponential 
3.27 

𝐻𝑔

𝐻𝑜
 = 0.243 + 0.230( 𝑆

𝑆𝑜
) + 0.037 exp( 𝑆

𝑆𝑜
) 1.97 0.00 0.04 0.78 0.63 

Exponential 3.28 
𝐻𝑔

𝐻𝑜
 = 0.113 + 0.184 exp( 𝑆

𝑆𝑜
) 2.58 0.00 0.05 0.77 0.61 

Exponent 3.29 
𝐻𝑔

𝐻𝑜
 = 0.556( 𝑆

𝑆𝑜
)0.318 5.79 0.01 0.06 0.71 0.53 

Jodhpur 

(Hot and Dry) 

Linear 3.30 
𝐻𝑔

𝐻𝑜
 = 0.375 + 0.214( 𝑆

𝑆𝑜
) -0.55 

-0.01 
0.05 0.51 0.33 

Quadratic 3.31 
𝐻𝑔

𝐻𝑜
 = 0.586 - 0.414( 𝑆

𝑆𝑜
) + 0.439( 𝑆

𝑆𝑜
)2 -0.44 -0.01 0.04 0.60 0.41 

Cubic 3.32 
𝐻𝑔

𝐻𝑜
 = - 0.46 + 0.032( 𝑆

𝑆𝑜
) - 0.693( 𝑆

𝑆𝑜
)2 + 0.769(

𝑆

𝑆𝑜
)3 1.18 0.00 0.04 0.50 0.40 

Linear 

Logarithmic 
3.33 

𝐻𝑔

𝐻𝑜
 = -0.196 + 0.801( 𝑆

𝑆𝑜
) - 0.396 log( 𝑆

𝑆𝑜
) -7.37 -0.05 0.13 0.53 0.35 

Logarithmic 3.34 
𝐻𝑔

𝐻𝑜
 = 0.570 + 0.125 log( 𝑆

𝑆𝑜
) 4.10 0.01 0.05 0.66 0.47 

Linear 

Exponential 
3.35 

𝐻𝑔

𝐻𝑜
 = 0.114 - 0.673( 𝑆

𝑆𝑜
) + 0.309 exp( 𝑆

𝑆𝑜
) -1.51 -0.02 0.05 0.60 0.41 

Exponential 3.36 
𝐻𝑔

𝐻𝑜
 = 0.297 + 0.111 exp( 𝑆

𝑆𝑜
) -0.89 -0.01 0.05 0.52 0.34 

Exponent 3.37 
𝐻𝑔

𝐻𝑜
 = 0.569( 𝑆

𝑆𝑜
)0.234 -1.81 -0.02 0.05 0.49 0.30 
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Table 3.7 Sunshine-based models for composite and moderate climate zone across India 

Stations Model 
Eq. 

No. 
Equations 

MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 
r R

2
 

Delhi 

(Composite) 

Linear 3.38 
𝐻𝑔

𝐻𝑜
 = 0.367 + 0.205( 𝑆

𝑆𝑜
) 1.24 0.00 0.04 0.59 0.40 

Quadratic 3.39 
𝐻𝑔

𝐻𝑜
 = 0.470 - 0.117( 𝑆

𝑆𝑜
) + 0.238( 𝑆

𝑆𝑜
)2 1.04 0.00 0.04 0.66 0.47 

Cubic 3.40 
𝐻𝑔

𝐻𝑜
 = 0.504 - 0.241( 𝑆

𝑆𝑜
) + 0.231( 𝑆

𝑆𝑜
)2 + 0.067( 𝑆

𝑆𝑜
)3 1.44 0.00 0.04 0.66 0.46 

Linear 

Logarithmic 
3.41 

𝐻𝑔

𝐻𝑜
 = 0.033 + 0.522( 𝑆

𝑆𝑜
) - 0.142 log( 𝑆

𝑆𝑜
) -19.43 -0.09 0.12 0.54 0.40 

Logarithmic 3.42 
𝐻𝑔

𝐻𝑜
 = 0.543 + 0.098 log( 𝑆

𝑆𝑜
) 10.62 0.03 0.07 0.52 0.40 

Linear 

Exponential 
3.43 

𝐻𝑔

𝐻𝑜
 = 0.208 - 0.282( 𝑆

𝑆𝑜
) + 0.245 exp( 𝑆

𝑆𝑜
) 1.74 0.00 0.04 0.65 0.46 

Exponential 3.44 
𝐻𝑔

𝐻𝑜
 = 0.261 + 0.124 exp( 𝑆

𝑆𝑜
) 1.61 0.00 0.04 0.61 0.40 

Exponent 3.45 
𝐻𝑔

𝐻𝑜
 = 0.543( 𝑆

𝑆𝑜
)0.185 2.31 0.00 0.05 0.54 0.40 

Pune 

(Moderate) 

Linear 3.46 
𝐻𝑔

𝐻𝑜
 = 0.156 + 0.281( 𝑆

𝑆𝑜
) 3.10 0.01 0.04 0.73 0.57 

Quadratic 3.47 
𝐻𝑔

𝐻𝑜
 = 0.392 + 0.036( 𝑆

𝑆𝑜
) + 0.172( 𝑆

𝑆𝑜
)2 3.65 0.01 0.04 0.71 0.53 

Cubic 3.48 
𝐻𝑔

𝐻𝑜
 = 0.82-0.62( 𝑆

𝑆𝑜
) + 0.52( 𝑆

𝑆𝑜
)2 - 0.6( 𝑆

𝑆𝑜
)3 2.46 0.01 0.04 0.70 0.53 

Linear 

Logarithmic 
3.49 

𝐻𝑔

𝐻𝑜
 = 0.093 + 0.506( 𝑆

𝑆𝑜
) - 0.097 log( 𝑆

𝑆𝑜
) 5.19 0.00 0.08 0.70 0.52 

Logarithmic 3.50 
𝐻𝑔

𝐻𝑜
 = 0.567 +  0.193 log( 𝑆

𝑆𝑜
) 17.69 0.06 0.08 0.65 0.45 

Linear 

Exponential 
3.51 

𝐻𝑔

𝐻𝑜
 = 0.230 + 0.006( 𝑆

𝑆𝑜
) + 0.133 exp( 𝑆

𝑆𝑜
) 3.19 0.01 0.04 0.72 0.56 

Exponential 3.52 
𝐻𝑔

𝐻𝑜
 = 0.119 + 0.194 exp( 𝑆

𝑆𝑜
) 3.15 0.01 0.04 0.72 0.54 

Exponent 3.53 
𝐻𝑔

𝐻𝑜
 = 0.590( 𝑆

𝑆𝑜
)0.445 3.16 0.01 0.04 0.72 0.54 
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Table 3.8 Sunshine-based models for cold and cloudy climate zone across India 

Stations Model 
Eq. 

No. 
Equations 

MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 
r R

2
 

Shillong 

(Cold and cloudy) 

Linear 3.54 
𝐻𝑔

𝐻𝑜
 = 0.239 + 0.586( 𝑆

𝑆𝑜
) 1.09 -0.01 0.07 0.70 0.51 

Quadratic 3.55 
𝐻𝑔

𝐻𝑜
 = 0.301 + 0.187( 𝑆

𝑆𝑜
) - 0.4( 𝑆

𝑆𝑜
)2 3.33 0.00 0.06 0.72 0.55 

Cubic 3.56 
𝐻𝑔

𝐻𝑜
 = 0.369 - 0.250( 𝑆

𝑆𝑜
) + 1.059( 𝑆

𝑆𝑜
)2 - 0.601( 𝑆

𝑆𝑜
)3 3.15 0.00 0.06 0.70 0.52 

Linear 

Logarithmic 
3.57 

𝐻𝑔

𝐻𝑜
 = 0.160 + 0.458( 𝑆

𝑆𝑜
) + 0.049 log( 𝑆

𝑆𝑜
) 0.11 -0.02 0.12 0.64 0.45 

Logarithmic 3.58 
𝐻𝑔

𝐻𝑜
 = 0.546 + 0.145 log( 𝑆

𝑆𝑜
) 18.88 0.06 0.10 0.64 0.44 

Linear 

Exponential 
3.59 

𝐻𝑔

𝐻𝑜
= 0.160 + 0.104( 𝑆

𝑆𝑜
) + 0.132 exp( 𝑆

𝑆𝑜
) 4.36 0.00 0.09 0.70 0.53 

Exponential 3.60 
𝐻𝑔

𝐻𝑜
 = 0.061 + 0.229 exp( 𝑆

𝑆𝑜
) 3.52 0.00 0.07 0.68 0.50 

Exponent 3.61 
𝐻𝑔

𝐻𝑜
 = 0.573( 𝑆

𝑆𝑜
)0.355 3.76 0.00 0.07 0.70 0.52 
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(b)  Hot and dry climate zone 

 It has been observed that for this climate zone, the dependencies are 

stronger for the logarithmic term with correlation of coefficient (r = 0.66) 

obtained between the clearness index and relative sunshine duration. 

 The coefficient of determination is observed to be (R
2
 = 0.47) which 

means 47% of the clearness index can be accounted using relative sunshine 

duration.  

 The values of the estimated global solar energy using derived 

correlations are compared with the measured values as shown in Fig. 3.2 (b). 

 Further, the relation between the clearness index and relative sunshine 

duration is shown by Eq. (3.34) as:  

 
𝐻𝑔

𝐻𝑜
 = 0.570 + 0.125 log(

𝑆

𝑆𝑜
)               (3.34) 

(c)  Composite climate zone 

 It has been observed that for this climate zone, the dependencies are 

stronger for the quadratic term with correlation of coefficient r = 0.66 obtained 

between the clearness index and relative sunshine duration. 

 The coefficient of determination is observed to be R
2
 = 0.47 which 

means 47% of the clearness index can be accounted using relative sunshine 

duration.  

 The values of the global solar energy estimated using derived 

correlations are compared with the measured values as shown in Fig. 3.2 (c).  

 Further, the relation between the clearness index and relative sunshine 

duration is shown by Eq. (3.39) as: 

𝐻𝑔

𝐻𝑜
 = 0.470 - 0.117(

𝑆

𝑆𝑜
) + 0.238(

𝑆

𝑆𝑜
)

2                                    
(3.39) 
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(d)  Moderate climate zone 

 It has been observed that for this climate zone, the dependencies are 

stronger for the linear term with correlation of coefficient r = 0.73 obtained 

between the clearness index and relative sunshine duration. 

 The coefficient of determination is observed to be R
2
 = 0.57 which 

means 57% of the clearness index can be accounted using relative sunshine 

duration.  

 The values of the estimated global solar energy using derived 

correlations are compared with the measured values as shown in Fig. 3.2 (d). 

 Further, the relation between the clearness index and relative sunshine 

duration is shown by Eq. (3.46) as:  

𝐻𝑔

𝐻𝑜
 = 0.156 + 0.281(

𝑆

𝑆𝑜
)                  (3.46) 

(e)  Cold and cloudy climate zone 

 It has been observed that for this climate zone, the dependencies are 

stronger for the quadratic term with correlation of coefficient r = 0.72 obtained 

between the clearness index and relative sunshine duration. 

 The coefficient of determination is observed to be R
2
 = 0.55 which 

means 55% of the clearness index can be accounted using relative sunshine 

hours.  

 The values of the estimated global solar energy using derived 

correlations are compared with the measured values as shown in Fig. 3.2 (e). 

 Further, the relation between the clearness index and relative sunshine 

duration is shown by Eq. (3.55) as:  

𝐻𝑔

𝐻𝑜
 = 0.301 + 0.187(

𝑆

𝑆𝑜
) - 0.4(

𝑆

𝑆𝑜
)

2                     
(3.55) 
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Fig. 3.2 Graphical representation of measured and estimated global solar energy for linear 

and non – linear  sunshine  based models  for (a) Chennai (b) Jodhpur (c) Delhi 

(d) Pune and (e) Shillong 
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 For each of the climate zone, all the developed models have distinct 

values of determination coefficients where the largest difference between the 

determination coefficients of the best and worst fit model obtained is 0.23 for 

warm and humid climate (Chennai), 0.17 for hot and dry climate (Jodhpur), 

0.07 for composite (Delhi), 0.12 for moderate (Pune) and 0.11 for cold and 

cloudy climate (Shillong) zone.  

 It has been observed that the best fit is obtained for composite climate 

zone with the smallest difference between the best and worst determination 

coefficients of 0.07 as shown by the computed data presented in Table 3.7. 

Similarly, the weakest fit is obtained for warm and humid climate zone with the 

largest difference between the best and worst determination coefficients of 0.23 

as shown by the computed data presented in Table 3.6 respectively.  

3.7.2  Empirical Models for Solar Energy Estimation 

 In the second part of this chapter, empirical models have been 

established using multiple regression analysis of different parameters namely 

global solar energy, sunshine hours, atmospheric pressure, wind speed, rainfall, 

ambient temperature, relative humidity and cloudiness index for different 

meteorological sites in India representing widely changing climatic conditions 

thereof, such as warm and humid (Chennai), hot and dry (Jodhpur), cold and 

cloudy (Shillong), moderate (Pune) and composite (Delhi) climatic conditions. 

The performance of the models has been evaluated based on statistical error-

tests i.e. MPE, MBE, SSRE, RSE, RMSE, t-stat, r and R
2
 and are illustrated in 

Table 3.9 - Table 3.33. 
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Table 3.9 Empirical models based on one and two variables correlation along with statistical errors for warm and humid climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

 (%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

one 

 variable 

correlation 

3.62 
𝐻𝑔

𝐻𝑜
 = 0.379 + 0.004(𝑇𝑚

𝑇𝑜
) 0.61 0.00 0.73 0.12 0.05 23.31 0.35 0.18 

3.63 
𝐻𝑔

𝐻𝑜
 = -5.495 + 0.006(𝑃𝑚

𝑃𝑜
) 5.51 0.02 11.23 0.30 0.14 39.13 0.21 0.07 

3.64 
𝐻𝑔

𝐻𝑜
 = 0.656 - 0.352(𝐻𝑑

𝐻𝑔
) -0.04 0.00 0.35 0.08 0.03 6.38 0.71 0.54 

3.65 
𝐻𝑔

𝐻𝑜
 = 0.532 - 0.036(𝑅𝐹𝑚

𝑅𝐹𝑜
) 1.35 0.00 1.25 0.15 0.05 77.04 0.16 0.05 

3.66 
𝐻𝑔

𝐻𝑜
 = 0.636 - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.78 0.00 0.84 0.13 0.05 26.33 0.36 0.17 

3.67 
𝐻𝑔

𝐻𝑜
 = 0.259 + 0.321( 𝑆

𝑆𝑜
) 1.52 0.00 0.96 0.15 0.05 4.50 0.77 0.62 

3.68 
𝐻𝑔

𝐻𝑜
 = 0.540 - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 1.38 0.00 1.20 0.14 0.05 46.17 0.17 0.05 

Models  

based on  

two 

 variables 

correlation 

3.69 
𝐻𝑔

𝐻𝑜
 = 0.281 + 0.217( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) 0.29 0.00 0.61 0.09 0.04 8.32 0.62 0.43 

3.70 
𝐻𝑔

𝐻𝑜
 = -3.532 + 0.225( 𝑆

𝑆𝑜
) + 0.004(𝑃𝑚

𝑃𝑜
) 0.58 0.00 0.82 0.12 0.04 9.65 0.57 0.38 

3.71 
𝐻𝑔

𝐻𝑜
 = 0.551 + 0.107( 𝑆

𝑆𝑜
) - 0.265(𝐻𝑑

𝐻𝑔
) 1.51 0.00 0.34 0.08 0.04 5.67 0.89 0.79 

3.72 
𝐻𝑔

𝐻𝑜
 = 0.363 + 0.220( 𝑆

𝑆𝑜
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.61 0.00 0.83 0.12 0.04 29.88 0.51 0.33 

3.73 
𝐻𝑔

𝐻𝑜
 = 0.436 + 0.195( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.45 0.00 0.72 0.11 0.04 17.19 0.55 0.38 

3.74 
𝐻𝑔

𝐻𝑜
 = 0.368 + 0.230( 𝑆

𝑆𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 0.48 0.00 0.66 0.11 0.04 24.82 0.54 0.36 
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 Table 3.10 Empirical models based on three variables correlation along with statistical errors for warm and humid climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

three 

 variables 

correlation 

 

3.75 
𝐻𝑔

𝐻𝑜
 = 0.683 + 0.063( 𝑆

𝑆𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.332(𝐻𝑑

𝐻𝑔
) 2.95 0.01 0.81 0.13 0.04 3.06 0.90 0.80 

3.76 
𝐻𝑔

𝐻𝑜
 = -1.813 + 0.282( 𝑆

𝑆𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) + 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.24 0.00 1.07 0.15 0.05 4.53 0.77 0.63 

3.77 
𝐻𝑔

𝐻𝑜
 = -3.163 + 0.283( 𝑆

𝑆𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) + 0.003(𝑃𝑚

𝑃𝑜
) 2.19 0.00 1.12 0.15 0.04 3.82 0.81 0.66 

3.78 
𝐻𝑔

𝐻𝑜
 = -2.854 + 0.277( 𝑆

𝑆𝑜
) + 0.006(𝑇𝑚

𝑇𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) 2.13 0.00 0.95 0.14 0.05 4.44 0.79 0.65 

3.79 
𝐻𝑔

𝐻𝑜
 = 0.435 + 0.054( 𝑆

𝑆𝑜
) + 0.006(𝑇𝑚

𝑇𝑜
) - 0.336(𝐻𝑑

𝐻𝑔
) 1.35 0.00 0.62 0.11 0.03 2.46 0.90 0.82 

3.80 
𝐻𝑔

𝐻𝑜
 = 0.184 + 0.272( 𝑆

𝑆𝑜
) + 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.67 0.00 1.68 0.18 0.05 4.31 0.79 0.64 

3.81 
𝐻𝑔

𝐻𝑜
 = 0.131 + 0.286( 𝑆

𝑆𝑜
) + 0.006(𝑇𝑚

𝑇𝑜
) - 0.006(𝑅𝐹𝑚

𝑅𝐹𝑜
) 2.68 0.00 1.54 0.18 0.05 4.47 0.79 0.64 

3.82 
𝐻𝑔

𝐻𝑜
 = 0.120 + 0.273( 𝑆

𝑆𝑜
) + 0.006(𝑇𝑚

𝑇𝑜
) - 0.008(𝑊𝑆𝑚

𝑊𝑆0
) 4.09 0.01 3.08 0.24 0.07 6.67 0.70 0.56 

3.83 
𝐻𝑔

𝐻𝑜
 = 0.671 + 0.055( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.342(𝐻𝑑

𝐻𝑔
) 1.34 0.00 0.56 0.11 0.03 2.56 0.90 0.81 

3.84 
𝐻𝑔

𝐻𝑜
 = 0.433 + 0.274( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) 2.60 0.00 1.69 0.18 0.05 3.86 0.81 0.66 

3.85 
𝐻𝑔

𝐻𝑜
 = -1.836 + 0.295( 𝑆

𝑆𝑜
) - 0.012(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) 2.19 0.00 1.06 0.15 0.05 4.60 0.78 0.64 

3.86 
𝐻𝑔

𝐻𝑜
 = 0.592 + 0.066( 𝑆

𝑆𝑜
) - 0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.340(𝐻𝑑

𝐻𝑔
) 1.32 0.00 0.55 0.11 0.03 2.47 0.90 0.82 

3.87 
𝐻𝑔

𝐻𝑜
 = 0.362 + 0.3( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.008(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.62 0.00 1.49 0.17 0.05 4.57 0.77 0.63 

3.88 
𝐻𝑔

𝐻𝑜
 = 0.284 + 0.29( 𝑆

𝑆𝑜
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.011(𝑊𝑆𝑚

𝑊𝑆0
) 2.39 0.00 1.41 0.17 0.04 3.71 0.82 0.67 

3.89 
𝐻𝑔

𝐻𝑜
 = 0.573 + 0.060( 𝑆

𝑆𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.341(𝐻𝑑

𝐻𝑔
) 1.41 0.00 0.67 0.12 0.03 2.47 0.90 0.82 
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 Table 3.11 Empirical models based on four variables correlation along with statistical errors for warm and humid climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

four 

variables 

correlation 

3.90 
𝐻𝑔

𝐻𝑜
 = 0.467 + 0.054( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.329(𝐻𝑑

𝐻𝑔
) 1.31 0.00 0.61 0.11 0.03 2.36 0.91 0.83 

3.91 
𝐻𝑔

𝐻𝑜
 = 0.236 + 0.276( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.008(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.29 -0.01 1.64 0.18 0.05 4.16 0.79 0.66 

3.92 
𝐻𝑔

𝐻𝑜
 = -1.644 + 0.285( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.007(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) 2.39 0.00 1.03 0.15 0.05 4.38 0.79 0.65 

3.93 
𝐻𝑔

𝐻𝑜
 = -1.528 + 0.268( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(𝑃𝑚

𝑃𝑜
) 1.97 0.00 0.90 0.14 0.04 3.61 0.82 0.69 

3.94 
𝐻𝑔

𝐻𝑜
 = 0.530 + 0.048( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.330(𝐻𝑑

𝐻𝑔
) 0.48 0.00 0.54 0.11 0.04 2.50 0.91 0.82 

3.95 

𝐻𝑔

𝐻𝑜
 = 0.204 + 0.256( 𝑆

𝑆𝑜
) + 0.006(𝑇𝑚

𝑇𝑜
)  -  0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑊𝑆𝑚

𝑊𝑆0
) 

2.38 0.00 1.47 0.17 0.04 3.62 0.82 0.69 

3.96 
𝐻𝑔

𝐻𝑜
 = 0.620 + 0.055( 𝑆

𝑆𝑜
)  - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.338(𝐻𝑑

𝐻𝑔
) 1.29 0.00 0.54 0.11 0.03 2.40 0.91 0.82 

3.97 
𝐻𝑔

𝐻𝑜
 = 0.448 + 0.273( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) - 0.005(𝑅𝐹𝑚

𝑅𝐹𝑜
) 2.21 0.00 1.21 0.16 0.04 3.55 0.83 0.69 
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 Table 3.12 Empirical models based on five variables correlation along with statistical errors for warm and humid climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

five 

variables 

correlation 

3.98 

𝐻𝑔

𝐻𝑜
 = 0.44 + 0.074( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.01(𝑃𝑚

𝑃𝑜
) - 

0.3(𝐻𝑑

𝐻𝑔
) 

0.89 0.00 0.30 0.08 0.03 2.13 0.92 0.86 

3.99 

𝐻𝑔

𝐻𝑜
 = 0.163 + 0.070( 𝑆

𝑆𝑜
) + 0.005(𝑇𝑚

𝑇𝑜
) + 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) -

0.3(𝐻𝑑

𝐻𝑔
) 

0.99 0.00 0.34 0.09 0.03 2.27 0.92 0.84 

3.100 

𝐻𝑔

𝐻𝑜
 = -3.2 + 0.25( 𝑆

𝑆𝑜
) + 0.007(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
)  

+ 0.003(𝑃𝑚

𝑃𝑜
) 

1.85 0.00 0.75 0.13 0.04 3.40 0.84 0.71 

3.101 

𝐻𝑔

𝐻𝑜
 = -2 + 0.275( 𝑆

𝑆𝑜
) + 0.005(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.008(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 

0.002(𝑃𝑚

𝑃𝑜
) 

1.62 0.00 0.63 0.12 0.04 3.27 0.84 0.73 

3.102 

𝐻𝑔

𝐻𝑜
 = 0.548+0.066( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑃𝑚

𝑃𝑜
) -

0.307(𝐻𝑑

𝐻𝑔
) 

0.98 0.00 0.34 0.09 0.03 2.23 0.92 0.84 

3.103 

𝐻𝑔

𝐻𝑜
 = 0.508 + 0.05( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) + 0.003(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) 

- 0.333(𝐻𝑑

𝐻𝑔
) 

1.40 0.00 0.54 0.11 0.03 2.42 0.91 0.83 

3.104 

𝐻𝑔

𝐻𝑜
 = 0.28 + 0.25( 𝑆

𝑆𝑜
) + 0.005(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) -

0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

2.06 0.00 1.11 0.15 0.04 3.34 0.84 0.72 

3.105 

𝐻𝑔

𝐻𝑜
 = 0.564 + 0.059( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) -

0.323(𝐻𝑑

𝐻𝑔
) 

1.12 0.00 0.43 0.10 0.03 2.21 0.92 0.85 
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 Table 3.13 Empirical models based on six and seven variables correlation along with statistical errors for warm and humid climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

six 

variables 

correlation 

3.106 

𝐻𝑔

𝐻𝑜
 = -0.823 + 0.261( 𝑆

𝑆𝑜
) + 0.005(𝑇𝑚

𝑇𝑜
)  - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) 

- 0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 

1.53 0.00 0.57 0.11 0.04 3.13 0.86 0.74 

3.107 

𝐻𝑔

𝐻𝑜
 = 0.627 + 0.076( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.296(𝐻𝑑

𝐻𝑔
) 

0.86 0.00 0.28 0.08 0.03 2.09 0.93 0.86 

3.108 

𝐻𝑔

𝐻𝑜
 = 0.938 + 0.073( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+ 0.0001(𝑃𝑚

𝑃𝑜
) - 0.304(𝐻𝑑

𝐻𝑔
) 

0.86 0.00 0.28 0.08 0.03 2.07 0.93 0.86 

3.109 

𝐻𝑔

𝐻𝑜
 = 0.558 + 0.054( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑅𝐻𝑚

𝑅𝐻𝑜
)+ 

0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.325(𝐻𝑑

𝐻𝑔
) 

1.10 0.00 0.43 0.10 0.03 2.16 0.92 0.85 

Models  

based on 

seven 

variables 

correlation 

3.110 

𝐻𝑔

𝐻𝑜
 = 0.945 + 0.072( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.300(𝐻𝑑

𝐻𝑔
) 

1.93 0.00 0.56 0.11 0.04 2.55 0.93 0.87 
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 From Table 3.9 - Table 3.13, the following can be briefly summarized:  

(a) Warm and humid climate zone 

Correlation based on seven variables has been observed to be the most 

suitable model on the basis of closeness parameters with correlation of 

coefficient (r = 0.93) obtained between the clearness index and relative sunshine 

duration, wind speed, ambient temperature, relative humidity, atmospheric 

pressure, amount of rainfall, cloudiness index.  

The coefficient of determination has been observed to be (R
2
 = 0.87) 

which mean 87% of the clearness index can be accounted by sunshine hours, 

ambient temperature, relative humidity, wind speed, amount of rainfall, 

atmospheric pressure and cloudiness index.  

The relation between the parameters namely clearness index, relative 

sunshine duration, ambient temperature, relative humidity, wind speed, amount 

of rainfall, atmospheric pressure  and  cloudiness index is given by Eq. (3.110) 

expressed as: 

𝐻𝑔

𝐻𝑜
 = 0.945 + 0.072(

𝑆

𝑆𝑜
) + 0.003(

𝑇𝑚

𝑇𝑜
) + 0.0001(

𝑅𝐻𝑚

𝑅𝐻𝑜
) +  

0.003(
𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(

𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(

𝑃𝑚

𝑃𝑜
) - 0.300(

𝐻𝑑

𝐻𝑔
)                       (3.110) 

Further, the estimated data values of global solar energy using the derived 

correlation have been compared with the measured data values as shown in 

Fig. 3.3(a). 
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                    Table 3.14 Empirical models based on one and two variables correlation along with statistical errors for hot and dry climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

one 

 variable 

correlation 

3.111 
𝐻𝑔

𝐻𝑜
 = 0.379 + 0.004(𝑇𝑚

𝑇𝑜
) 0.61 0.00 0.73 0.12 0.05 23.31 0.35 0.18 

3.112 
𝐻𝑔

𝐻𝑜
 = -5.495 + 0.006(𝑃𝑚

𝑃𝑜
) 5.51 0.02 11.23 0.30 0.14 39.13 0.21 0.07 

3.113 
𝐻𝑔

𝐻𝑜
 = 0.656 - 0.352(𝐻𝑑

𝐻𝑔
) -0.04 0.00 0.35 0.08 0.03 6.38 0.71 0.54 

3.114 
𝐻𝑔

𝐻𝑜
 = 0.532 - 0.036(𝑅𝐹𝑚

𝑅𝐹𝑜
) 1.35 0.00 1.25 0.15 0.05 77.04 0.16 0.05 

3.115 
𝐻𝑔

𝐻𝑜
 = 0.636 - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.78 0.00 0.84 0.13 0.05 26.33 0.36 0.17 

3.116 
𝐻𝑔

𝐻𝑜
 = 0.540 - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 1.38 0.00 1.20 0.14 0.05 46.17 0.17 0.05 

3.117 
𝐻𝑔

𝐻𝑜
 = 0 .375 + 0.214( 𝑆

𝑆𝑜
) -0.55 -0.01 0.85 0.12 0.05 8.67 0.51 0.33 

Models  

based on  

two 

 variables 

correlation 

3.118 
𝐻𝑔

𝐻𝑜
 = 0.281 + 0.217( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) 0.29 0.00 0.61 0.09 0.04 8.32 0.62 0.43 

3.119 
𝐻𝑔

𝐻𝑜
 = -3.532 + 0.225( 𝑆

𝑆𝑜
) + 0.004(𝑃𝑚

𝑃𝑜
) 0.58 0.00 0.82 0.12 0.04 9.65 0.57 0.38 

3.120 
𝐻𝑔

𝐻𝑜
 = 0.587 + 0.069( 𝑆

𝑆𝑜
) - 0.307(𝐻𝑑

𝐻𝑔
) -0.08 0.00 0.34 0.08 0.03 5.67 0.70 0.55 

3.121 
𝐻𝑔

𝐻𝑜
 = 0.363 + 0.220( 𝑆

𝑆𝑜
)  -  0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.61 0.00 0.83 0.12 0.04 29.88 0.51 0.33 

3.122 
𝐻𝑔

𝐻𝑜
 = 0.436 + 0.195( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.45 0.00 0.72 0.11 0.04 17.19 0.55 0.38 

3.123 
𝐻𝑔

𝐻𝑜
 = 0.368 + 0.230( 𝑆

𝑆𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 0.48 0.00 0.66 0.11 0.04 24.82 0.54 0.36 
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        Table 3.15 Empirical models based on three variables correlation along with statistical errors for hot and dry climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

three 

 variables 

correlation 

 

3.124 
𝐻𝑔

𝐻𝑜
 = -1.797 + 0.055( 𝑆

𝑆𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) - 0.306(𝐻𝑑

𝐻𝑔
) -0.12 0.00 0.33 0.08 0.03 4.64 0.77 0.61 

3.125 
𝐻𝑔

𝐻𝑜
 = -3.093 + 0.192( 𝑆

𝑆𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) + 0.004(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.42 0.00 0.70 0.11 0.04 8.76 0.60 0.41 

3.126 
𝐻𝑔

𝐻𝑜
 = -3.428 + 0.231( 𝑆

𝑆𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 0.004(𝑃𝑚

𝑃𝑜
) -0.35 -0.01 0.68 0.11 0.04 8.29 0.60 0.40 

3.127 
𝐻𝑔

𝐻𝑜
= -2.941 + 0.206( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) 0.24 0.00 0.59 0.10 0.04 7.31 0.65 0.46 

3.128 
𝐻𝑔

𝐻𝑜
 = 0.541 + 0.073( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.293(𝐻𝑑

𝐻𝑔
) -0.14 0.00 0.30 0.08 0.03 4.85 0.77 0.62 

3.129 
𝐻𝑔

𝐻𝑜
 = 0.363 + 0.204( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.25 0.00 0.59 0.10 0.04 7.43 0.65 0.46 

3.130 
𝐻𝑔

𝐻𝑜
 =  0.289 + 0.208( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) - 0.012(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.27 0.00 0.60 0.10 0.04 8.20 0.63 0.44 

3.131 
𝐻𝑔

𝐻𝑜
 = 0.312 + 0.218( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 0.19 0.00 0.48 0.10 0.04 7.80 0.64 0.45 

3.132 
𝐻𝑔

𝐻𝑜
 = 0.630 + 0.056( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.306(𝐻𝑑

𝐻𝑔
) -0.18 0.00 0.29 0.07 0.03 5.49 0.75 0.60 

3.133 
𝐻𝑔

𝐻𝑜
 = 0.459 + 0.196( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 0.29 0.00 0.53 0.10 0.04 16.05 0.58 0.40 

3.134 
𝐻𝑔

𝐻𝑜
 = -3.445 + 0.219( 𝑆

𝑆𝑜
) - 0.009(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.004(𝑃𝑚

𝑃𝑜
) 0.57 0.00 0.82 0.11 0.04 9.59 0.57 0.38 

3.135 
𝐻𝑔

𝐻𝑜
 = 0.606 + 0.051( 𝑆

𝑆𝑜
) - 0.014(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.315(𝐻𝑑

𝐻𝑔
) -0.11 0.00 0.32 0.08 0.03 5.68 0.75 0.59 

3.136 
𝐻𝑔

𝐻𝑜
 = 0.442 + 0.192( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.43 0.00 0.70 0.11 0.04 17.04 0.56 0.38 

3.137 
𝐻𝑔

𝐻𝑜
 = 0.374 + 0.226( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.005(𝑊𝑆𝑚

𝑊𝑆0
) 0.45 0.00 0.63 0.08 0.04 24.68 0.55 0.37 

3.138 
𝐻𝑔

𝐻𝑜
 = 0.591 + 0.070( 𝑆

𝑆𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.310(𝐻𝑑

𝐻𝑔
) -0.10 0.00 0.32 0.08 0.03 5.62 0.75 0.59 
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 Table 3.16 Empirical models based on four variables correlation along with statistical errors for hot and dry climate zone 

Models 
Eq. 

No. 
Equations 

MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

four 

variables 

correlation 

3.139 
𝐻𝑔

𝐻𝑜
 = 0.543 + 0.067( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
)  + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.305(𝐻𝑑

𝐻𝑔
) -0.13 0.00 0.30 0.08 0.03 4.76 0.77 0.62 

3.140 
𝐻𝑔

𝐻𝑜
 = 0.362 + 0.201( 𝑆

𝑆𝑜
)+ 0.01(𝑇𝑚

𝑇𝑜
)  - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.24 0.00 0.58 0.10 0.04 7.29 0.65 0.47 

3.141 
𝐻𝑔

𝐻𝑜
 = -2.223 + 0.195( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) 0.42 -0.01 0.74 0.11 0.04 9.15 0.58 0.38 

3.142 

𝐻𝑔

𝐻𝑜
 = -2.967 + 0.195( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
)  + 

0.003(𝑃𝑚

𝑃𝑜
) 

7.10 0.02 3.69 0.17 0.06 7.67 0.60 0.40 

3.143 
𝐻𝑔

𝐻𝑜
 = 0.684 + 0.060( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
)  -  0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.305(𝐻𝑑

𝐻𝑔
) -0.19 0.00 0.28 0.06 0.03 4.52 0.78 0.63 

3.144 
𝐻𝑔

𝐻𝑜
 = 0.466 + 0.207( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) -  0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) 0.15 0.00 0.46 0.09 0.04 5.81 0.66 0.48 

3.145 
𝐻𝑔

𝐻𝑜
 = 0.637+0.057( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
)  -  0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.304(𝐻𝑑

𝐻𝑔
) -0.20 0.00 0.27 0.07 0.03 5.31 0.76 0.61 

3.146 
𝐻𝑔

𝐻𝑜
 = 0.464 + 0.194( 𝑆

𝑆𝑜
) -0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.26 0.00 0.51 0.10 0.04 15.88 0.59 0.41 
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 Table 3.17 Empirical models based on five variables correlation along with statistical errors for hot and dry climate zone 

Models 
Eq. 

No. 
Equations 

MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

five 

variables 

correlation 

3.147 

𝐻𝑔

𝐻𝑜
 = -1.289 + 0.042( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.013(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) -

0.291(𝐻𝑑

𝐻𝑔
) 

-0.20 0.00 0.28 0.07 0.03 4.22 0.79 0.65 

3.148 

𝐻𝑔

𝐻𝑜
 = -1.2 + 0.049( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) -

0.296(𝐻𝑑

𝐻𝑔
) 

-0.21 0.00 0.28 0.07 0.03 4.11 0.80 0.65 

3.149 

𝐻𝑔

𝐻𝑜
 = -2.16 + 0.18( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.003(𝑃𝑚

𝑃𝑜
) 

0.10 -0.01 0.48 0.09 0.04 6.33 0.69 0.49 

3.150 

𝐻𝑔

𝐻𝑜
 = -2.269 + 0.207( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) - 0.009(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+ 0.003(𝑃𝑚

𝑃𝑜
) 

0.13 0.00 0.44 0.09 0.04 6.55 0.68 0.49 

3.151 

𝐻𝑔

𝐻𝑜
 = -1.78 + 0.051( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(𝑃𝑚

𝑃𝑜
) -

0.299(𝐻𝑑

𝐻𝑔
) 

-0.19 0.00 0.29 0.07 0.03 4.24 0.79 0.64 

3.152 

𝐻𝑔

𝐻𝑜
 = 0.712 + 0.057( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) 

- 0.310(𝐻𝑑

𝐻𝑔
) 

-0.21 0.00 0.27 0.07 0.03 4.44 0.78 0.64 

3.153 

𝐻𝑔

𝐻𝑜
 = 0.469 + 0.203( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.002(𝑊𝑆𝑚

𝑊𝑆0
) -

0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

0.13 0.00 0.44 0.09 0.04 6.83 0.67 0.49 

3.154 

𝐻𝑔

𝐻𝑜
 = 0.677 + 0.085( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) -

0.301(𝐻𝑑

𝐻𝑔
) 

-0.19 0.00 0.28 0.08 0.03 4.46 0.78 0.64 
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                Table 3.18 Empirical models based on six and seven variables correlation along with statistical errors for hot and dry climate zone 

 Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

six 

variables 

correlation 

3.155 

𝐻𝑔

𝐻𝑜
 = -2.364 + 0.194( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 

0.002(𝑊𝑆𝑚

𝑊𝑆0
) - 0.005(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) 

0.10 0.00 0.43 0.09 0.04 5.96 0.70 0.52 

3.156 

𝐻𝑔

𝐻𝑜
 = -1.087 + 0.036( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 

0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) - 0.299(𝐻𝑑

𝐻𝑔
) 

-0.22 0.00 0.27 0.07 0.03 4.07 0.80 0.66 

3.157 

𝐻𝑔

𝐻𝑜
 = -1.510 + 0.038( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 

0.013(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) - 0.302(𝐻𝑑

𝐻𝑔
) 

-0.21 0.00 0.28 0.07 0.03 4.17 0.79 0.65 

3.158 

𝐻𝑔

𝐻𝑜
 = 0.734 + 0.043( 𝑆

𝑆𝑜
) - 0.003(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.316(𝐻𝑑

𝐻𝑔
) 

-0.22 0.00 0.27 0.07 0.03 4.39 0.79 0.65 

Models  

based on seven 

variables 

correlation 

3.159 

𝐻𝑔

𝐻𝑜
 = -1.087 + 0.034( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 

0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) - 0.305(𝐻𝑑

𝐻𝑔
) 

-0.36 -0.01 0.28 0.08 0.03 3.77 0.79 0.64 



63 

 

From Table 3.14 - Table 3.18, the following can be briefly summarized:  

(b) Hot and dry climate zone 

Correlation based on seven variables has been observed to be the most 

suitable model on the basis of closeness parameters with correlation of 

coefficient (r = 0.79) obtained between the clearness index and relative 

sunshine duration, wind speed, ambient temperature, relative humidity, 

atmospheric pressure, amount of rainfall, cloudiness index.  

The coefficient of determination has been observed to be (R
2
 = 0.64) 

which mean 64% of the clearness index can be accounted by sunshine hours, 

ambient temperature, relative humidity, wind speed, amount of rainfall, 

atmospheric pressure and cloudiness index.  

The relation between the parameters namely clearness index, relative 

sunshine duration, ambient temperature, relative humidity, wind speed, amount 

of rainfall, atmospheric pressure and cloudiness index is given by Eq. (3.159) 

expressed as: 

𝐻𝑔

𝐻𝑜
 = -1.087 + 0.034(

𝑆

𝑆𝑜
) - 0.002(

𝑇𝑚

𝑇𝑜
) - 0.001(

𝑅𝐻𝑚

𝑅𝐻𝑜
) - 

0.001(
𝑊𝑆𝑚

𝑊𝑆0
) - 0.011(

𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(

𝑃𝑚

𝑃𝑜
) - 0.305(

𝐻𝑑

𝐻𝑔
)          (3.159) 

Further, the estimated data values of global solar energy using the derived 

correlation have been compared with the measured data values as shown in 

Fig. 3.3(b). 
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 Table 3.19 Empirical models based on one and two variables correlation along with statistical errors for composite climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE  

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

one 

 variable 

correlation 

3.160 
𝐻𝑔

𝐻𝑜
 = 0.360 + 0.003(𝑇𝑚

𝑇𝑜
) 1.67 0.00 0.58 0.13 0.05 31.70 0.30 0.13 

3.161 
𝐻𝑔

𝐻𝑜
 =  1.501 - 0.001(𝑃𝑚

𝑃𝑜
) 1.98 0.00 0.73 0.14 0.06 31.48 0.26 0.09 

3.162 
𝐻𝑔

𝐻𝑜
 = 0.670 - 0.405(𝐻𝑑

𝐻𝑔
) 0.67 0.00 0.23 0.08 0.03 4.28 0.78 0.62 

3.163 
𝐻𝑔

𝐻𝑜
 = 0.491 - 0.053(𝑅𝐹𝑚

𝑅𝐹𝑜
) 1.67 0.00 0.60 0.13 0.05 24.80 0.39 0.21 

3.164 
𝐻𝑔

𝐻𝑜
 =  0.692 - 0.003(𝑅𝐻𝑚

𝑅𝐻𝑜
) 1.43 0.00 0.47 0.12 0.05 14.42 0.46 0.25 

3.165 
𝐻𝑔

𝐻𝑜
 = 0.487 + 0.001(𝑊𝑆𝑚

𝑊𝑆0
) 1.80 0.00 0.63 0.13 0.06 38.18 0.27 0.11 

3.166 
𝐻𝑔

𝐻𝑜
 =  0 .367 + 0.205( 𝑆

𝑆𝑜
) 1.24 0.00 0.46 0.08 0.04 7.86 0.59 0.40 

Models  

based on  

two 

 variables 

correlation 

3.167 
𝐻𝑔

𝐻𝑜
 = 25.4855 + 0.307( 𝑆

𝑆𝑜
) + 0.23(𝑇𝑚

𝑇𝑜
) 0.48 0.76 0.00 0.36 0.10 0.04 0.20 0.62 

3.168 
𝐻𝑔

𝐻𝑜
 = 1.580 + 0.18( 𝑆

𝑆𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) 0.90 0.00 0.30 0.09 0.04 7.10 0.63 0.43 

3.169 
𝐻𝑔

𝐻𝑜
 = 0.4597 + 0.625( 𝑆

𝑆𝑜
) + 0.055(𝐻𝑑

𝐻𝑔
) 0.49 0.59 0.00 0.19 0.07 0.03 0.63 0.81 

3.170 
𝐻𝑔

𝐻𝑜
 = 0.397 + 0.176( 𝑆

𝑆𝑜
) - 0.028(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.87 0.00 0.29 0.09 0.04 7.77 0.62 0.43 

3.171 
𝐻𝑔

𝐻𝑜
 = 0.483 + 0.155( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.88 0.00 0.29 0.09 0.04 7.67 0.63 0.44 

3.172 
𝐻𝑔

𝐻𝑜
 = 0.391 + 0.177( 𝑆

𝑆𝑜
) + 0.001(𝑊𝑆𝑚

𝑊𝑆0
) 0.84 0.00 0.26 0.09 0.04 7.65 0.60 0.45 
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 Table 3.20 Empirical models based on three variables correlation along with statistical errors for composite climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

three 

 variables 

correlation 

 

3.173 
𝐻𝑔

𝐻𝑜
 = 0.527 + 0.131( 𝑆

𝑆𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.278(𝐻𝑑

𝐻𝑔
) 0.58 0.00 0.18 0.08 0.03 4.76 0.76 0.59 

3.174 
𝐻𝑔

𝐻𝑜
 = 0.590 + 0.153( 𝑆

𝑆𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) + 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.84 0.00 0.27 0.09 0.04 6.35 0.67 0.48 

3.175 
𝐻𝑔

𝐻𝑜
 = 1.615 + 0.172( 𝑆

𝑆𝑜
) + 0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.001(𝑃𝑚

𝑃𝑜
) 0.80 0.00 0.26 0.09 0.04 6.42 0.66 0.47 

3.176 
𝐻𝑔

𝐻𝑜
 = 2.312 + 0.177( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.002(𝑃𝑚

𝑃𝑜
) 0.86 0.00 0.28 0.09 0.04 6.21 0.67 0.47 

3.177 
𝐻𝑔

𝐻𝑜
 = 0.589 + 0.138( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.301(𝐻𝑑

𝐻𝑔
) 0.56 0.00 0.18 0.07 0.03 4.21 0.77 0.61 

3.178 
𝐻𝑔

𝐻𝑜
 = 0.584 + 0.157( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.81 0.00 0.26 0.09 0.04 6.03 0.69 0.50 

3.179 
𝐻𝑔

𝐻𝑜
 = 0.449 + 0.174( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) - 0.027(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.83 0.00 0.27 0.09 0.04 6.50 0.66 0.47 

3.180 
𝐻𝑔

𝐻𝑜
 = 0.432 + 0.131( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) -3.32 -0.02 0.56 0.12 0.06 11.07 0.57 0.39 

3.181 
𝐻𝑔

𝐻𝑜
 = 0.547 + 0.116( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.263(𝐻𝑑

𝐻𝑔
) 0.78 0.00 0.19 0.08 0.04 6.40 0.72 0.56 

3.182 
𝐻𝑔

𝐻𝑜
 = 0.485 + 0.148( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑊𝑆𝑚

𝑊𝑆0
) 0.78 0.00 0.25 0.09 0.04 6.62 0.67 0.48 

3.183 
𝐻𝑔

𝐻𝑜
 =  1.672 + 0.172( 𝑆

𝑆𝑜
) - 0.023(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) 0.82 0.00 0.27 0.09 0.04 6.44 0.67 0.47 

3.184 
𝐻𝑔

𝐻𝑜
 =  0.498 + 0.131( 𝑆

𝑆𝑜
) - 0.020(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.258(𝐻𝑑

𝐻𝑔
) 0.57 0.00 0.18 0.08 0.03 5.09 0.74 0.58 

3.185 
𝐻𝑔

𝐻𝑜
 =  0.476 + 0.150( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.024(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.82 0.00 0.27 0.09 0.04 7.14 0.65 0.46 

3.186 
𝐻𝑔

𝐻𝑜
 =  0.398 + 0.168( 𝑆

𝑆𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.024(𝑊𝑆𝑚

𝑊𝑆0
) 0.77 0.00 0.25 0.09 0.04 6.96 0.65 0.47 

3.187 
𝐻𝑔

𝐻𝑜
 =  0.492 + 0.114( 𝑆

𝑆𝑜
) + 0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.262(𝐻𝑑

𝐻𝑔
) -1.70 -0.01 0.37 0.09 0.04 5.55 0.71 0.54 
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         Table 3.21 Empirical models based on four variables correlation along with statistical errors for composite climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

four 

variables 

correlation 

3.188 
𝐻𝑔

𝐻𝑜
 = 0.586 + 0.136( 𝑆

𝑆𝑜
)  -  0.004(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.284(𝐻𝑑

𝐻𝑔
) 0.51 0.00 0.16 0.07 0.03 4.33 0.78 0.62 

3.189 
𝐻𝑔

𝐻𝑜
 = 0.593 + 0.159( 𝑆

𝑆𝑜
)  -  0.005(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.031(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.76 0.00 0.25 0.09 0.04 5.72 0.71 0.55 

3.190 
𝐻𝑔

𝐻𝑜
 = -0.038 + 0.159( 𝑆

𝑆𝑜
)  -  0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.023(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 0.78 0.00 0.26 0.09 0.04 6.00 0.69 0.50 

3.191 

𝐻𝑔

𝐻𝑜
 = 0.725 + 0.148( 𝑆

𝑆𝑜
) -  0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.0001(
𝑃𝑚

𝑃𝑜
) 

0.74 0.00 0.24 0.08 0.04 5.71 0.70 0.51 

3.192 
𝐻𝑔

𝐻𝑜
 = 0.723 + 0.121( 𝑆

𝑆𝑜
) - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.282(𝐻𝑑

𝐻𝑔
) 0.52 0.00 0.17 0.07 0.03 3.96 0.80 0.65 

3.193 
𝐻𝑔

𝐻𝑜
 = 0.611 + 0.160( 𝑆

𝑆𝑜
) - 0.005(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) 3.12 0.01 0.50 0.10 0.04 5.84 0.71 0.52 

3.194 
𝐻𝑔

𝐻𝑜
 = 0.549 + 0.113( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
)+ 0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.249(𝐻𝑑

𝐻𝑔
) 0.65 0.00 0.17 0.07 0.03 4.61 0.77 0.62 

3.195 
𝐻𝑔

𝐻𝑜
 = 0.479 + 0.144( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑊𝑆𝑚

𝑊𝑆0
)  - 0.026(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.54 0.00 0.24 0.09 0.04 6.69 0.68 0.49 
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 Table 3.22 Empirical models based on five variables correlation along with statistical errors for composite climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

five 

variables 

correlation 

3.196 

𝐻𝑔

𝐻𝑜
 =1.421 + 0.141( 𝑆

𝑆𝑜
) - 0.005(𝑇𝑚

𝑇𝑜
) - 0.014(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) -

0.27(𝐻𝑑

𝐻𝑔
) 

0.50 0.00 0.16 0.07 0.03 3.89 0.81 0.66 

3.197 

𝐻𝑔

𝐻𝑜
 = 0.733 + 0.127( 𝑆

𝑆𝑜
) - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) 

- 0.287(𝐻𝑑

𝐻𝑔
) 

0.49 0.00 0.16 0.07 0.03 3.79 0.81 0.67 

3.198 

𝐻𝑔

𝐻𝑜
 = 0.5 + 0.16( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) -0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.0001(𝑃𝑚

𝑃𝑜
) 

-0.4 -0.01 0.26 0.09 0.04 4.67 0.72 0.55 

3.199 

𝐻𝑔

𝐻𝑜
 = 2.546 + 0.176( 𝑆

𝑆𝑜
) - 0.003(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.026(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

- 0.002(𝑃𝑚

𝑃𝑜
) 

0.69 0.00 0.22 0.08 0.04 5.30 0.72 0.54 

3.200 

𝐻𝑔

𝐻𝑜
 = 1.558 + 0.144( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.001(𝑃𝑚

𝑃𝑜
) -

0.294(𝐻𝑑

𝐻𝑔
) 

0.49 0.00 0.16 0.07 0.03 3.94 0.80 0.65 

3.201 

𝐻𝑔

𝐻𝑜
 = 0.74 + 0.127( 𝑆

𝑆𝑜
) - 0.007(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) -

0.268(𝐻𝑑

𝐻𝑔
) 

0.47 0.00 0.15 0.13 0.03 3.82 0.81 0.67 

3.202 

𝐻𝑔

𝐻𝑜
 = 0.61 + 0.155( 𝑆

𝑆𝑜
) - 0.005(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) -

0.031(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

0.69 0.00 0.22 0.08 0.04 5.24 0.73 0.55 

3.203 

𝐻𝑔

𝐻𝑜
 = 0.743 + 0.122( 𝑆

𝑆𝑜
) - 0.007(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.027(𝑅𝐹𝑚

𝑅𝐹𝑜
) -

0.269(𝐻𝑑

𝐻𝑔
) 

0.49 0.00 0.16 0.07 0.03 3.81 0.81 0.67 
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 Table 3.23 Empirical models based on six and seven variables correlation along with statistical errors for composite climate zone 

 Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

six 

variables 

correlation 

3.204 

𝐻𝑔

𝐻𝑜
 = 1.370 + 0.155( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.030(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) 

0.65 0.00 0.21 0.08 0.04 4.80 0.75 0.58 

3.205 

𝐻𝑔

𝐻𝑜
 = 0.735 + 0.12( 𝑆

𝑆𝑜
) - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.030(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+ 0.0001(𝑃𝑚

𝑃𝑜
) - 0.274(𝐻𝑑

𝐻𝑔
) 

0.46 0.00 0.15 0.07 0.03 3.64 0.82 0.69 

3.206 

𝐻𝑔

𝐻𝑜
 = 1.920 + 0.140( 𝑆

𝑆𝑜
) - 0.005(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 

0.022(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.001(𝑃𝑚

𝑃𝑜
) - 0.283(𝐻𝑑

𝐻𝑔
) 

0.45 0.00 0.15 0.07 0.03 3.72 0.82 0.68 

3.207 

𝐻𝑔

𝐻𝑜
 = 1.171 + 0.123( 𝑆

𝑆𝑜
) - 0.007(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.029(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.261(𝐻𝑑

𝐻𝑔
) 

0.45 0.00 0.15 0.07 0.03 3.68 0.82 0.68 

Models  

based on seven 

variables 

correlation 

3.208 

𝐻𝑔

𝐻𝑜
 = 1.008 + 0.123( 𝑆

𝑆𝑜
) - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.028(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.264(𝐻𝑑

𝐻𝑔
) 

0.42 0.00 0.14 0.07 0.03 3.48 0.83 0.71 
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From Table 3.19 - Table 3.23, the following can be briefly summarized:  

(c)  Composite climate zone 

Correlation based on seven variables has been observed to be the most 

suitable model on the basis of closeness parameters with correlation of 

coefficient (r = 0.83) obtained between the clearness index and relative 

sunshine duration, wind speed, ambient temperature, relative humidity, 

atmospheric pressure, amount of rainfall, cloudiness index.  

The coefficient of determination has been observed to be R
2
 = 0.71 

which mean 71% of the clearness index can be accounted by sunshine hours, 

ambient temperature, relative humidity, wind speed, amount of rainfall, 

atmospheric pressure and cloudiness index.  

The relation between the parameters namely clearness index, relative 

sunshine duration, ambient temperature, relative humidity, wind speed, amount 

of rainfall, atmospheric pressure and cloudiness index is given by Eq. (3.208) 

expressed as: 

𝐻𝑔

𝐻𝑜
 = 1.008 + 0.123(

𝑆

𝑆𝑜
) - 0.006(

𝑇𝑚

𝑇𝑜
) - 0.001(

𝑅𝐻𝑚

𝑅𝐻𝑜
) +  

0.0001(
𝑊𝑆𝑚

𝑊𝑆0
) - 0.028(

𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(

𝑃𝑚

𝑃𝑜
) - 0.264(

𝐻𝑑

𝐻𝑔
)          (3.208) 

Further, the estimated data values of global solar energy using the 

derived correlation have been compared with the measured data values as 

shown in Fig. 3.3(c). 
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 Table 3.24 Empirical models based on one and two variables correlation along with statistical errors for moderate climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

one 

 variable 

correlation 

3.209 
𝐻𝑔

𝐻𝑜
 = 0.469 + 0.001(𝑇𝑚

𝑇𝑜
) 1.90 -0.02 3.25 0.24 0.09 47.45 0.23 0.07 

3.210 
𝐻𝑔

𝐻𝑜
 =  -1.954 + 0.003(𝑃𝑚

𝑃𝑜
) 9.04 0.00 7.27 0.32 0.11 273.9 0.19 0.05 

3.211 
𝐻𝑔

𝐻𝑜
 = 0.591 - 0.324(𝐻𝑑

𝐻𝑔
) 1.46 -0.02 2.85 0.22 0.08 27.28 0.47 0.30 

3.212 
𝐻𝑔

𝐻𝑜
 = 0.487 + 0.034(𝑅𝐹𝑚

𝑅𝐹𝑜
) 2.27 -0.02 3.59 0.25 0.09 51.46 0.14 0.03 

3.213 
𝐻𝑔

𝐻𝑜
 = 0.611 -  0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.07 -0.02 3.42 0.25 0.09 37.80 0.25 0.09 

3.214 
𝐻𝑔

𝐻𝑜
 =  0.479 + 0.005(𝑊𝑆𝑚

𝑊𝑆0
) 1.97 -0.02 3.27 0.25 0.09 51.51 0.21 0.06 

3.215 
𝐻𝑔

𝐻𝑜
 = 0.156 + 0.281( 𝑆

𝑆𝑜
) 3.10 0.01 0.75 0.12 0.04 6.97 0.71 0.53 

Models  

based on  

two 

 variables 

correlation 

3.216 
𝐻𝑔

𝐻𝑜
 = 0.160 + 0.268( 𝑆

𝑆𝑜
) + 0.005(𝑇𝑚

𝑇𝑜
) -0.15 -0.03 2.29 0.19 0.08 31.3 0.53 0.35 

3.217 
𝐻𝑔

𝐻𝑜
 = -0.011 + 0.292( 𝑆

𝑆𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) -0.07 -0.03 2.43 0.19 0.08 9.80 0.56 0.36 

3.218 
𝐻𝑔

𝐻𝑜
 =  0.426 + 0.159( 𝑆

𝑆𝑜
) -  0.178(𝐻𝑑

𝐻𝑔
) -0.29 -0.03 2.17 0.18 0.07 19.8 0.58 0.41 

3.219 
𝐻𝑔

𝐻𝑜
 = 0.267 + 0.282( 𝑆

𝑆𝑜
) -  0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.06 -0.02 2.74 0.20 0.08 16.5 0.50 0.32 

3.220 
𝐻𝑔

𝐻𝑜
 = 0.369 + 0.249( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) -0.01 -0.02 2.43 0.19 0.08 13.6 0.53 0.36 

3.221 
𝐻𝑔

𝐻𝑜
 = 0.273 + 0.277( 𝑆

𝑆𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) -0.07 -0.03 2.41 0.19 0.08 15.9 0.52 0.34 
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 Table 3.25 Empirical models based on three variables correlation along with statistical errors for moderate climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

three 

 variables 

correlation 

 

3.222 
𝐻𝑔

𝐻𝑜
 = 0.439 + 0.222( 𝑆

𝑆𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.358(𝐻𝑑

𝐻𝑔
) 1.03 0.00 0.42 0.08 0.03 3.04 0.87 0.75 

3.223 
𝐻𝑔

𝐻𝑜
 = -0.435 + 0.377( 𝑆

𝑆𝑜
)  - 0.002(𝑃𝑚

𝑃𝑜
) + 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 1.26 0.00 0.52 0.09 0.03 4.43 0.77 0.61 

3.224 
𝐻𝑔

𝐻𝑜
 =  0.276 + 0.422( 𝑆

𝑆𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑃𝑚

𝑃𝑜
) 1.17 0.00 0.61 0.10 0.04 4.91 0.75 0.59 

3.225 
𝐻𝑔

𝐻𝑜
 = -0.731 + 0.407( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 0.99 0.00 0.42 0.09 0.03 4.19 0.79 0.64 

3.226 
𝐻𝑔

𝐻𝑜
 =  0.467 + 0.214( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.340(𝐻𝑑

𝐻𝑔
) 0.61 0.00 0.24 0.07 0.03 3.01 0.87 0.76 

3.227 
𝐻𝑔

𝐻𝑜
 = 0.211 + 0.369( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.37 0.00 0.88 0.10 0.04 3.65 0.75 0.64 

3.228 
𝐻𝑔

𝐻𝑜
 = 0.180 + 0.375( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) - 0.010(𝑅𝐹𝑚

𝑅𝐹𝑜
) 4.28 0.01 2.12 0.14 0.04 5.52 0.74 0.59 

3.229 
𝐻𝑔

𝐻𝑜
 = 0.158 + 0.397( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) - 0.004(𝑊𝑆𝑚

𝑊𝑆0
) 1.02 0.00 0.43 0.09 0.03 4.23 0.79 0.63 

3.230 
𝐻𝑔

𝐻𝑜
 = 0.561 + 0.194( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.288(𝐻𝑑

𝐻𝑔
) 0.64 0.00 0.32 0.08 0.03 3.67 0.82 0.69 

3.231 
𝐻𝑔

𝐻𝑜
 = 0.390 + 0.375( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 1.31 0.00 0.55 0.09 0.03 4.46 0.76 0.61 

3.232 
𝐻𝑔

𝐻𝑜
 = -0.836 + 0.427( 𝑆

𝑆𝑜
) + 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 0.71 0.00 0.27 0.08 0.03 4.77 0.76 0.60 

3.233 
𝐻𝑔

𝐻𝑜
 = 0.502 + 0.216( 𝑆

𝑆𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.353(𝐻𝑑

𝐻𝑔
) 0.41 0.00 0.14 0.06 0.03 3.01 0.87 0.76 

3.234 
𝐻𝑔

𝐻𝑜
 = 0.395 + 0.3( 𝑆

𝑆𝑜
) + 0.380(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.49 0.00 0.31 0.08 0.04 4.18 0.77 0.61 

3.235 
𝐻𝑔

𝐻𝑜
 = 0.219 + 0.415( 𝑆

𝑆𝑜
) + 0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) 0.73 0.00 0.29 0.08 0.03 4.78 0.76 0.60 

3.236 
𝐻𝑔

𝐻𝑜
 = 0.502 + 0.203( 𝑆

𝑆𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) - 0.358(𝐻𝑑

𝐻𝑔
) 0.67 0.00 0.31 0.07 0.03 3.07 0.86 0.75 
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  Table 3.26 Empirical models based on four variables correlation along with statistical errors for moderate climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

four 

variables 

correlation 

3.237 
𝐻𝑔

𝐻𝑜
 = 0.457 + 0.2( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) - 0.343(𝐻𝑑

𝐻𝑔
) 0.58 0.00 0.24 0.07 0.03 2.90 0.87 0.77 

3.238 
𝐻𝑔

𝐻𝑜
 = 0.353 + 0.37( 𝑆

𝑆𝑜
)  - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.58 0.00 0.22 0.07 0.03 3.67 0.82 0.69 

3.239 
𝐻𝑔

𝐻𝑜
 = -0.697 + 0.381( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.020(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 0.61 0.00 0.24 0.08 0.03 4.14 0.79 0.65 

3.240 

𝐻𝑔

𝐻𝑜
 = 0.125 + 0.370( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.0001(𝑃𝑚

𝑃𝑜
) 

1.25 0.00 0.52 0.09 0.03 4.29 0.77 0.62 

3.241 
𝐻𝑔

𝐻𝑜
 = 0.544 + 0.181( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.335(𝐻𝑑

𝐻𝑔
) 0.57 0.00 0.23 0.07 0.03 2.71 0.89 0.79 

3.242 
𝐻𝑔

𝐻𝑜
 = 0.253 + 0.36( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) 0.94 0.00 0.40 0.08 0.03 3.79 0.81 0.67 

3.243 
𝐻𝑔

𝐻𝑜
 = 0.586 + 0.168( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.252(𝐻𝑑

𝐻𝑔
) -1.7 -0.02 0.51 0.09 0.04 2.86 0.86 0.75 

3.244 
𝐻𝑔

𝐻𝑜
 = 0.385 + 0.374( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.022(𝑅𝐹𝑚

𝑅𝐹𝑜
) 0.49 0.00 0.30 0.08 0.03 4.09 0.78 0.62 
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 Table 3.27 Empirical models based on five variables correlation along with statistical errors for moderate climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

five 

variables 

correlation 

3.245 

𝐻𝑔

𝐻𝑜
 = 0.390 + 0.222( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) -

0.339(𝐻𝑑

𝐻𝑔
) 

0.35 0.00 0.12 0.06 0.02 2.74 0.89 0.79 

3.246 

𝐻𝑔

𝐻𝑜
 = 0.541+ 0.176( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) -

0.339(𝐻𝑑

𝐻𝑔
) 

0.54 0.00 0.22 0.06 0.02 2.61 0.88 0.80 

3.247 

𝐻𝑔

𝐻𝑜
 = -1.03 + 0.35( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.001(𝑃𝑚

𝑃𝑜
) 

0.95 0.00 0.41 0.09 0.03 3.39 0.84 0.71 

3.248 

𝐻𝑔

𝐻𝑜
 = -0.5 + 0.3( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+0.001(𝑃𝑚

𝑃𝑜
) 

0.62 0.00 0.23 0.07 0.03 3.82 0.81 0.68 

3.249 

𝐻𝑔

𝐻𝑜
 =  1.083 + 0.199( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.001(

𝑃𝑚

𝑃𝑜
) -

0.342(𝐻𝑑

𝐻𝑔
) 

0.08 0.00 0.23 0.07 0.03 2.80 0.88 0.78 

3.250 

𝐻𝑔

𝐻𝑜
 = 0.498 + 0.165( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) 

- 0.343(𝐻𝑑

𝐻𝑔
) 

0.32 0.00 0.30 0.07 0.03 2.55 0.87 0.77 

3.251 

𝐻𝑔

𝐻𝑜
 = 0.368 + 0.36( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) 

+0.006(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

3.75 0.02 0.61 0.10 0.05 5.33 0.80 0.67 

3.252 

𝐻𝑔

𝐻𝑜
 = 0.589 + 0.185( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) -

0.333(𝐻𝑑

𝐻𝑔
) 

0.34 0.00 0.12 0.05 0.02 2.57 0.90 0.81 
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 Table 3.28 Empirical models based on six and seven variables correlation along with statistical errors for moderate climate zone 

 Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

six 

variables 

correlation 

3.253 

𝐻𝑔

𝐻𝑜
 = -1.188 + 0.359( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
)  + 

0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.005(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) 

0.53 0.00 0.21 0.07 0.03 3.46 0.84 0.71 

3.254 

𝐻𝑔

𝐻𝑜
 = 0.258 + 0.183( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.336(𝐻𝑑

𝐻𝑔
) 

0.31 0.00 0.11 0.05 0.02 2.47 0.90 0.82 

3.255 

𝐻𝑔

𝐻𝑜
 = 0.9 + 0.21( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+ 0.0001(𝑃𝑚

𝑃𝑜
) - 0.340(𝐻𝑑

𝐻𝑔
) 

0.33 0.00 0.12 0.05 0.02 2.64 0.89 0.80 

3.256 

𝐻𝑔

𝐻𝑜
 =  0.545 + 0.17( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.003(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.339(𝐻𝑑

𝐻𝑔
) 

0.32 0.00 0.12 0.05 0.02 2.46 0.90 0.82 

Models  

based on seven 

variables 

correlation 

3.257 

𝐻𝑔

𝐻𝑜
 = 0.447 + 0.17( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
)  + 

0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.340(𝐻𝑑

𝐻𝑔
) 

0.25 0.02 4.78 0.05 0.05 4.80 0.90 0.81 
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From Table 3.24 - Table 3.28, the following can be briefly summarized:  

 (d)  Moderate climate zone 

Correlation based on seven variables has been observed to be the most 

suitable model on the basis of closeness parameters with correlation of 

coefficient (r = 0.90) obtained between the clearness index and relative 

sunshine duration, wind speed, ambient temperature, relative humidity, 

atmospheric pressure, amount of rainfall, cloudiness index.  

The coefficient of determination has been observed to be R
2
 = 0.81 

which mean 81% of the clearness index can be accounted by sunshine hours, 

ambient temperature, relative humidity, wind speed, amount of rainfall, 

atmospheric pressure and cloudiness index. 

The relation between the parameters namely clearness index, relative 

sunshine duration, ambient temperature, relative humidity, wind speed, 

amount of rainfall, atmospheric  pressure  and cloudiness index is given by 

Eq. (3.257) expressed as: 

𝐻𝑔

𝐻𝑜
 = 0.447 + 0.17(

𝑆

𝑆𝑜
) + 0.0001(

𝑇𝑚

𝑇𝑜
) - 0.001(

𝑅𝐻𝑚

𝑅𝐻𝑜
) +  

0.003(
𝑊𝑆𝑚

𝑊𝑆0
) + 0.004(

𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(

𝑃𝑚

𝑃𝑜
) - 0.340(

𝐻𝑑

𝐻𝑔
)                    (3.257) 

Further, the estimated data values of global solar energy using the 

derived correlation have been compared with the measured data values as 

shown in Fig. 3.3(d).  
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     Table 3.29 Empirical models based on one and two variables correlation along with statistical errors for cold and cloudy climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

one 

 variable 

correlation 

3.258 
𝐻𝑔

𝐻𝑜
 = -0.121 + 0.032(𝑇𝑚

𝑇𝑜
) 6.77 0.00 3.08 0.30 0.09 17.23 0.41 0.21 

3.259 
𝐻𝑔

𝐻𝑜
 = 4.069  +  0.005(𝑃𝑚

𝑃𝑜
) 9.77 0.00 6.37 0.41 0.10 52.24 0.19 0.06 

3.260 
𝐻𝑔

𝐻𝑜
 = 0.729 - 0.563(𝐻𝑑

𝐻𝑔
) 4.75 0.00 2.44 0.25 0.07 8.43 0.70 0.77 

3.261 
𝐻𝑔

𝐻𝑜
 = 0.453 - 0.007(𝑅𝐹𝑚

𝑅𝐹𝑜
) 8.33 0.00 4.83 0.35 0.10 32.65 0.30 0.13 

3.262 
𝐻𝑔

𝐻𝑜
 = 1.059 - 0.008(𝑅𝐻𝑚

𝑅𝐻𝑜
) 5.86 0.00 2.76 0.28 0.08 7.89 0.58 0.36 

3.263 
𝐻𝑔

𝐻𝑜
 = 0.396 + 0.013(𝑊𝑆𝑚

𝑊𝑆0
) 8.78 0.00 5.59 0.39 0.10 110.60 0.22 0.09 

3.264 
𝐻𝑔

𝐻𝑜
 = 0.239 + 0.586( 𝑆

𝑆𝑜
) 1.09 -0.01 1.73 0.20 0.07 12.52 0.67 0.49 

Models  

based on  

two 

 variables 

correlation 

3.265 
𝐻𝑔

𝐻𝑜
 = 0.097 + 0.364( 𝑆

𝑆𝑜
) + 0.009(𝑇𝑚

𝑇𝑜
) 2.59 0.00 0.94 0.16 0.06 5.96 0.72 0.55 

3.266 
𝐻𝑔

𝐻𝑜
 = -2.025 + 0.375( 𝑆

𝑆𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) 3.47 0.00 1.47 0.18 0.07 5.98 0.69 0.51 

3.267 
𝐻𝑔

𝐻𝑜
 = 0.480 + 0.245( 𝑆

𝑆𝑜
) - 0.296(𝐻𝑑

𝐻𝑔
) 2.00 0.00 0.76 0.15 0.05 4.41 0.78 0.62 

3.268 
𝐻𝑔

𝐻𝑜
 = 0.257 + 0.372( 𝑆

𝑆𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) 3.29 0.00 1.34 0.18 0.07 6.05 0.70 0.52 

3.269 
𝐻𝑔

𝐻𝑜
 = 0.404 + 0.339( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.69 -0.01 1.09 0.17 0.06 5.60 0.73 0.56 

3.270 
𝐻𝑔

𝐻𝑜
 = 0.230 + 0.376( 𝑆

𝑆𝑜
) + 0.005(𝑊𝑆𝑚

𝑊𝑆0
) 2.51 0.00 0.96 0.16 0.06 5.57 0.72 0.55 
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 Table 3.30 Empirical models based on three variables correlation along with statistical errors for cold and cloudy climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

three 

 variables 

correlation 

 

3.271 
𝐻𝑔

𝐻𝑜
 = -1.645 + 0.246( 𝑆

𝑆𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) - 0.287(𝐻𝑑

𝐻𝑔
) 1.92 0.00 0.71 0.14 0.05 4.21 0.79 0.64 

3.272 
𝐻𝑔

𝐻𝑜
 = -0.429 + 0.336( 𝑆

𝑆𝑜
) - 0.002(𝑃𝑚

𝑃𝑜
) + 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.37 0.00 0.86 0.15 0.06 4.85 0.75 0.59 

3.273 
𝐻𝑔

𝐻𝑜
 = -1.734 + 0.375( 𝑆

𝑆𝑜
) + 0.005(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(𝑃𝑚

𝑃𝑜
) 2.52 0.00 0.92 0.16 0.06 5.23 0.74 0.57 

3.274 
𝐻𝑔

𝐻𝑜
 = -3.537 + 0.366( 𝑆

𝑆𝑜
) + 0.008(𝑇𝑚

𝑇𝑜
) + 0.004(𝑃𝑚

𝑃𝑜
) 2.50 0.00 0.89 0.16 0.06 5.26 0.74 0.57 

3.275 
𝐻𝑔

𝐻𝑜
 = 0.412 + 0.253( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) - 0.270(𝐻𝑑

𝐻𝑔
) 1.84 0.00 0.66 0.13 0.05 4.25 0.79 0.64 

3.276 
𝐻𝑔

𝐻𝑜
 = 0.459 + 0.342( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.33 0.00 0.81 0.15 0.06 4.95 0.75 0.59 

3.277 
𝐻𝑔

𝐻𝑜
 = 0.122 + 0.363( 𝑆

𝑆𝑜
) + 0.008(𝑇𝑚

𝑇𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) 2.47 0.00 0.91 0.16 0.06 5.40 0.73 0.57 

3.278 
𝐻𝑔

𝐻𝑜
 = 0.103 + 0.363( 𝑆

𝑆𝑜
) + 0.007(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) 2.24 0.00 0.76 0.15 0.06 5.19 0.74 0.58 

3.279 
𝐻𝑔

𝐻𝑜
 = 0.605 + 0.221( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.226(𝐻𝑑

𝐻𝑔
) 1.87 0.00 0.66 0.14 0.05 4.11 0.79 0.65 

3.280 
𝐻𝑔

𝐻𝑜
 = 0.430 + 0.338( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 2.29 0.00 0.82 0.15 0.06 4.80 0.76 0.61 

3.281 
𝐻𝑔

𝐻𝑜
 = -2.620 + 0.371( 𝑆

𝑆𝑜
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) 3.22 0.00 1.31 0.17 0.06 5.61 0.68 0.54 

3.282 
𝐻𝑔

𝐻𝑜
 = 0.465 + 0.248( 𝑆

𝑆𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.279(𝐻𝑑

𝐻𝑔
) 1.90 0.00 0.72 0.14 0.05 4.22 0.79 0.64 

3.283 
𝐻𝑔

𝐻𝑜
 = 0.445 + 0.336( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 2.36 0.00 0.93 0.16 0.06 4.88 0.75 0.59 

3.284 
𝐻𝑔

𝐻𝑜
 = 0.228 + 0.374( 𝑆

𝑆𝑜
) + 0.005(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 2.50 0.00 0.93 0.16 0.06 5.21 0.74 0.57 

3.285 
𝐻𝑔

𝐻𝑜
 = 0.459 + 0.263( 𝑆

𝑆𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) - 0.280(𝐻𝑑

𝐻𝑔
) 2.85 0.00 0.74 0.15 0.06 4.02 0.79 0.64 
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 Table 3.31 Empirical models based on four variables correlation along with statistical errors for cold and cloudy climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

four 

variables 

correlation 

3.286 
𝐻𝑔

𝐻𝑜
 = 0.390 + 0.247( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) - 0.263(𝐻𝑑

𝐻𝑔
) 2.23 0.00 0.62 0.14 0.05 4.00 0.80 0.66 

3.287 
𝐻𝑔

𝐻𝑜
 = 0.492 + 0.342( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) 2.21 0.00 0.83 0.15 0.06 4.65 0.77 0.61 

3.288 
𝐻𝑔

𝐻𝑜
 = -0.688 + 0.337( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 2.96 0.00 0.91 0.16 0.06 4.66 0.77 0.61 

3.289 
𝐻𝑔

𝐻𝑜
 = -0.473 + 0.340( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(𝑃𝑚

𝑃𝑜
) 2.20 0.00 0.77 0.15 0.06 4.49 0.77 0.62 

3.290 
𝐻𝑔

𝐻𝑜
 = 0.682 + 0.239( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.258(𝐻𝑑

𝐻𝑔
) 2.07 0.00 0.61 0.14 0.05 3.93 0.81 0.67 

3.291 
𝐻𝑔

𝐻𝑜
 = 0.429 + 0.343( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) 2.12 0.00 0.71 0.15 0.06 4.58 0.77 0.61 

3.292 
𝐻𝑔

𝐻𝑜
 = 0.587 + 0.221( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.263(𝐻𝑑

𝐻𝑔
) 1.75 0.00 0.62 0.14 0.05 3.82 0.81 0.67 

3.293 
𝐻𝑔

𝐻𝑜
 = 0.420 + 0.341( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) 2.21 0.00 0.84 0.15 0.06 4.62 0.77 0.61 
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 Table 3.32 Empirical models based on five variables correlation along with statistical errors for cold and cloudy climate zone 

Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on 

five 

variables 

correlation 

3.294 

𝐻𝑔

𝐻𝑜
 = -2.59 + 0.252( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.004(𝑃𝑚

𝑃𝑜
) 

- 0.268(𝐻𝑑

𝐻𝑔
) 

-1.43 -0.01 0.86 0.14 0.06 3.56 0.81 0.67 

3.295 

𝐻𝑔

𝐻𝑜
 = -0.394 + 0.244( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) -

0.256(𝐻𝑑

𝐻𝑔
) 

5.85 0.02 1.30 0.13 0.06 4.27 0.81 0.67 

3.296 

𝐻𝑔

𝐻𝑜
 = 0.19 + 0.34( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.0001(𝑃𝑚

𝑃𝑜
) 

5.77 0.01 1.21 0.18 0.07 4.88 0.78 0.62 

3.297 

𝐻𝑔

𝐻𝑜
 = -2.75 + 0.36( 𝑆

𝑆𝑜
) + 0.006(

𝑇𝑚

𝑇𝑜
) + 0.005(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+0.003(𝑃𝑚

𝑃𝑜
) 

-1.25 -0.01 1.39 0.18 0.08 4.46 0.76 0.59 

3.298 

𝐻𝑔

𝐻𝑜
 = -1.861 + 0.248( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) + 0.003(𝑃𝑚

𝑃𝑜
) 

- 0.256(𝐻𝑑

𝐻𝑔
) 

1.72 0.00 0.57 0.13 0.05 3.75 0.81 0.68 

3.299 

𝐻𝑔

𝐻𝑜
 = 0.651 + 0.234( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) -

0.256(𝐻𝑑

𝐻𝑔
) 

1.61 0.00 0.54 0.13 0.05 3.67 0.82 0.68 

3.300 

𝐻𝑔

𝐻𝑜
 = 0.46 + 0.34( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
)  

1.94 0.00 0.72 0.14 0.05 4.37 0.78 0.63 

3.301 

𝐻𝑔

𝐻𝑜
 = 0.7 + 0.24( 𝑆

𝑆𝑜
) - 0.003(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) -

0.253(𝐻𝑑

𝐻𝑔
) 

1.65 0.00 0.57 0.13 0.05 3.69 0.82 0.68 
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                      Table 3.33 Empirical models based on six and seven variables correlation along with statistical errors for cold and cloudy climate zone 

 Models Eq. 

No. 
Equations MPE 

(%) 

MBE 

(%) 

SSRE 

(%) 

RSE 

(%) 

RMSE 

(%) 
t-stat r R

2
 

Models  

based on  

six 

variables 

correlation 

3.302 

𝐻𝑔

𝐻𝑜
 = -0.495 + 0.35( 𝑆

𝑆𝑜
) - 0.003(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.003(𝑊𝑆𝑚

𝑊𝑆0
)+ 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 

1.99 0.00 0.71 0.14 0.05 4.24 0.79 0.64 

3.303 

𝐻𝑔

𝐻𝑜
 = -0.718 + 0.246( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) + 0.002(𝐻𝑑

𝐻𝑔
) 

1.62 0.00 0.56 0.13 0.05 3.57 0.83 0.69 

3.304 

𝐻𝑔

𝐻𝑜
 = -2.175 + 0.246( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) + 

0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.003(𝑃𝑚

𝑃𝑜
) - 0.257(𝐻𝑑

𝐻𝑔
) 

3.50 0.01 0.70 0.21 0.05 4.13 0.82 0.69 

3.305 

𝐻𝑔

𝐻𝑜
 = 0.675 + 0.219( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.002(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.255(𝐻𝑑

𝐻𝑔
) 

-0.19 -0.01 0.58 0.13 0.05 3.50 0.82 0.69 

Models  

based on seven 

variables 

correlation 

3.306 

𝐻𝑔

𝐻𝑜
 = -0.547 + 0.241( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 

0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) - 0.256(𝐻𝑑

𝐻𝑔
) 

1.50 0.00 0.50 0.12 0.05 3.42 0.84 0.71 
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From Table 3.29 - Table 3.33, the following can be briefly summarized:  

 (e) Cold and cloudy climate zone 

  Correlation based on seven variables has been observed to be the most 

suitable model on the basis of closeness parameters with correlation of 

coefficient (r = 0.84) obtained between the clearness index and relative 

sunshine duration, wind speed, ambient temperature, relative humidity, 

atmospheric pressure, amount of rainfall, cloudiness index.  

  The coefficient of determination has been observed to be (R
2
 = 0.71) 

which mean 71% of the clearness index can be accounted by sunshine hours, 

ambient temperature, relative humidity, wind speed, amount of rainfall, 

atmospheric pressure and cloudiness index.  

  The relation between the parameters namely clearness index, relative 

sunshine duration, ambient temperature, relative humidity, wind speed, 

amount of rainfall, atmospheric pressure and cloudiness  index is  given by 

Eq. (3.306) expressed as: 

𝐻𝑔

𝐻𝑜
 = -0.547 + 0.241(

𝑆

𝑆𝑜
) - 0.004(

𝑇𝑚

𝑇𝑜
) - 0.002(

𝑅𝐻𝑚

𝑅𝐻𝑜
) +  

0.003(
𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(

𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(

𝑃𝑚

𝑃𝑜
) - 0.256(

𝐻𝑑

𝐻𝑔
)                               (3.306) 

  Further, the estimated data values of global solar energy using the 

derived correlation have been compared with the measured data values as 

shown in Fig. 3.3(e). 

  The developed models have been further processed based on principal 

component analysis to obtain the correlation with highest correlation 

coefficients using one, two, three, four, five and six variables correlation and 

the performance of the models  have  been  evaluated based on statistical 

error-tests and are illustrated in Table 3.34 - Table 3.36.  
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                                     Table 3.34 Empirical correlations alongwith statistical errors for warm and humid & hot and dry climate zone across India 

Climate Zone Eq. No. Models/Equations 
MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 
r R

2
 

Chennai 

(Warm and 

humid) 

3.67 
𝐻𝑔

𝐻𝑜
 = 0.259 + 0.321( 𝑆

𝑆𝑜
) 1.52 0.00 0.05 0.77 0.62 

3.71 
𝐻𝑔

𝐻𝑜
 = 0.551 + 0.107( 𝑆

𝑆𝑜
)  - 0.265(𝐻𝑑

𝐻𝑔
) 1.51 0.00 0.04 0.89 0.79 

3.75 
𝐻𝑔

𝐻𝑜
 = 0.683 + 0.063( 𝑆

𝑆𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.332(𝐻𝑑

𝐻𝑔
) 2.95 0.01 0.04 0.89 0.80 

3.94 
𝐻𝑔

𝐻𝑜
 = 0.530 + 0.048( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
)  - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.330(𝐻𝑑

𝐻𝑔
) 0.48 0.00 0.04 0.91 0.82 

3.103 
𝐻𝑔

𝐻𝑜
 = 0.508 + 0.05( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) + 0.003(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.333(𝐻𝑑

𝐻𝑔
) 1.40 0.00 0.03 0.91 0.83 

3.108 

𝐻𝑔

𝐻𝑜
 = 0.938 + 0.073( 𝑆

𝑆𝑜
) + 0.002(𝑇𝑚

𝑇𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 

0.304(𝐻𝑑

𝐻𝑔
) 

0.86 0.00 0.03 0.93 0.86 

3.110 

𝐻𝑔

𝐻𝑜
 = 0.945 + 0.072( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑅𝐻𝑚

𝑅𝐻𝑜
) +  0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) 

+ 0.0001(𝑃𝑚

𝑃𝑜
) - 0.300(𝐻𝑑

𝐻𝑔
) 

1.93 0.00 0.04 0.93 0.87 

Jodhpur 

 (Hot and dry) 

3.113 
𝐻𝑔

𝐻𝑜
 = 0.656 - 0.352(𝐻𝑑

𝐻𝑔
) -0.04 0.00 0.03 0.71 0.54 

3.120 
𝐻𝑔

𝐻𝑜
 = 0.587 + 0.069( 𝑆

𝑆𝑜
) - 0.307(𝐻𝑑

𝐻𝑔
) -0.08 0.00 0.03 0.70 0.55 

3.128 
𝐻𝑔

𝐻𝑜
 = 0.541 + 0.073( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) - 0.293(𝐻𝑑

𝐻𝑔
) -0.14 0.00 0.03 0.77 0.62 

3.139 
𝐻𝑔

𝐻𝑜
 = 0.543 + 0.067( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.305(𝐻𝑑

𝐻𝑔
) -0.13 0.00 0.03 0.77 0.62 

3.151 
𝐻𝑔

𝐻𝑜
 = -1.78 + 0.051( 𝑆

𝑆𝑜
) + 0.001(𝑇𝑚

𝑇𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) + 0.002(

𝑃𝑚

𝑃𝑜
) - 0.299(𝐻𝑑

𝐻𝑔
) -0.19 0.00 0.03 0.79 0.64 

3.156 

𝐻𝑔

𝐻𝑜
 = -1.087 + 0.036( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
)  - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) - 

0.299(𝐻𝑑

𝐻𝑔
) 

-0.22 0.00 0.03 0.80 0.66 

3.159 

𝐻𝑔

𝐻𝑜
 = -1.087 + 0.034( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 

0.002(𝑃𝑚

𝑃𝑜
) - 0.305(𝐻𝑑

𝐻𝑔
) 

-0.36 -0.01 0.03 0.79 0.64 
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 Table 3.35 Empirical correlations along with statistical errors for composite and moderate climate zone across India 

Climate Zone Eq. No. Models/Equations 
MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 
r R

2
 

Delhi 
(Composite) 

3.162 
𝐻𝑔

𝐻𝑜
 = 0.670 - 0.405(𝐻𝑑

𝐻𝑔
) 0.67 0.00 0.03 0.78 0.62 

3.169 
𝐻𝑔

𝐻𝑜
 = 0.4597 + 0.625( 𝑆

𝑆𝑜
) + 0.055(𝐻𝑑

𝐻𝑔
) 0.49 0.59 0.07 0.63 0.81 

3.177 
𝐻𝑔

𝐻𝑜
 = 0.589 + 0.138( 𝑆

𝑆𝑜
)  - 0.004(𝑇𝑚

𝑇𝑜
) - 0.301(𝐻𝑑

𝐻𝑔
) 0.56 0.00 0.03 0.77 0.61 

3.192 
𝐻𝑔

𝐻𝑜
 = 0.723 + 0.121( 𝑆

𝑆𝑜
)  - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.282(𝐻𝑑

𝐻𝑔
) 0.52 0.00 0.03 0.80 0.65 

3.201 
𝐻𝑔

𝐻𝑜
 = 0.74 + 0.127( 𝑆

𝑆𝑜
) - 0.007(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.268(𝐻𝑑

𝐻𝑔
) 0.47 0.00 0.03 0.81 0.67 

3.205 
𝐻𝑔

𝐻𝑜
 = 0.73+0.120( 𝑆

𝑆𝑜
)-0.006(𝑇𝑚

𝑇𝑜
)-0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
)-0.030(𝑅𝐹𝑚

𝑅𝐹𝑜
)+0.0001(𝑃𝑚

𝑃𝑜
) - 0.274(𝐻𝑑

𝐻𝑔
) 0.46 0.00 0.03 0.82 0.69 

3.208 

𝐻𝑔

𝐻𝑜
 = 1.008 + 0.123( 𝑆

𝑆𝑜
) - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.028(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 

0.0001(𝑃𝑚

𝑃𝑜
) - 0.264(𝐻𝑑

𝐻𝑔
) 

0.42 0.00 0.03 0.83 0.71 

Pune 

(Moderate) 

3.215 
𝐻𝑔

𝐻𝑜
 = 0.156 + 0.281( 𝑆

𝑆𝑜
) 3.10 0.01 0.04 0.71 0.53 

3.218 
𝐻𝑔

𝐻𝑜
 = 0.426 + 0.159( 𝑆

𝑆𝑜
) - 0.178(𝐻𝑑

𝐻𝑔
) -0.29 -0.03 0.07 0.58 0.41 

3.222 
𝐻𝑔

𝐻𝑜
 = 0.439 + 0.222( 𝑆

𝑆𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) - 0.358(𝐻𝑑

𝐻𝑔
) 1.03 0.00 0.03 0.87 0.75 

3.243 
𝐻𝑔

𝐻𝑜
 = 0.586 + 0.168( 𝑆

𝑆𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.252(𝐻𝑑

𝐻𝑔
) -1.71 -0.02 0.04 0.86 0.75 

3.252 
𝐻𝑔

𝐻𝑜
 = 0.589 + 0.185( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
) - 0.33(𝐻𝑑

𝐻𝑔
) 0.34 0.00 0.02 0.90 0.81 

3.255 
𝐻𝑔

𝐻𝑜
 = 0.9+0.21( 𝑆

𝑆𝑜
)+0.0001(𝑇𝑚

𝑇𝑜
)+0.004(𝑊𝑆𝑚

𝑊𝑆0
)+0.002(𝑅𝐹𝑚

𝑅𝐹𝑜
)+0.0001(𝑃𝑚

𝑃𝑜
)-0.34(𝐻𝑑

𝐻𝑔
) 0.33 0.00 0.02 0.89 0.80 

3.257 

𝐻𝑔

𝐻𝑜
 = 0.447 + 0.17( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 

0.0001(𝑃𝑚

𝑃𝑜
) - 0.34(𝐻𝑑

𝐻𝑔
) 

0.25 0.02 0.05 0.90 0.81 
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Table 3.36 Empirical correlations along with statistical errors for cold and cloudy climate zone across India 

Climate Zone Eq. No. Models/Equations 
MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 
r R

2
 

Shillong 
(Cold and 

cloudy) 

3.260 
𝐻𝑔

𝐻𝑜
 = 0.729 - 0.563(𝐻𝑑

𝐻𝑔
) 4.75 0.00 0.07 0.70 0.77 

3.269 
𝐻𝑔

𝐻𝑜
 = 0.404 + 0.339( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) 0.69 -0.01 0.06 0.73 0.56 

3.279 
𝐻𝑔

𝐻𝑜
 = 0.605 + 0.221( 𝑆

𝑆𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.226(𝐻𝑑

𝐻𝑔
) 1.87 0.00 0.05 0.79 0.65 

3.286 
𝐻𝑔

𝐻𝑜
 = 0.390 + 0.247( 𝑆

𝑆𝑜
) + 0.004(𝑇𝑚

𝑇𝑜
) + 0.004(𝑊𝑆𝑚

𝑊𝑆0
) - 0.263(𝐻𝑑

𝐻𝑔
) 2.23 0.00 0.05 0.80 0.66 

3.299 
𝐻𝑔

𝐻𝑜
 = 0.651 + 0.234( 𝑆

𝑆𝑜
) - 0.001(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) - 0.256(𝐻𝑑

𝐻𝑔
) 1.61 0.00 0.05 0.82 0.68 

3.303 

𝐻𝑔

𝐻𝑜
 = -0.718 + 0.246( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) + 

0.002(𝐻𝑑

𝐻𝑔
) 

1.62 0.00 0.05 0.83 0.69 

3.306 

𝐻𝑔

𝐻𝑜
 = -0.547 + 0.241( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 

0.001(𝑃𝑚

𝑃𝑜
) - 0.256(𝐻𝑑

𝐻𝑔
) 

1.50 0.00 0.05 0.84 0.71 
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  It has been concluded from Table 3.34 - 3.36 that the correlations 

based on seven variables provides accurate model with highest values of (r) 

and (R
2
) for each of the climate zones across the entire country. Further, the 

graphical representation has been shown in Fig. 3.3 for distinct climate zone. 
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   Fig. 3.3 Graphical representation of measured and estimated global solar energy for 

empirical models (a) Chennai (b) Jodhpur (c) Delhi (d) Pune and (e) Shillong 

  It has been observed from Fig. 3.3 that for composite climate zone, an 

excellent match has been noticed between the measured and estimated data. 

3.8 COMPARISON OF PROPOSED MODEL WITH OTHER 

MODELS  

 The proposed model is further compared with other well-established 

models available in the literature and is presented in Table 3.37.  
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Table 3.37 Comparison with other well-established models 

Models Eq. No. Equations/Models 
MPE 

(%) 

MBE 

(%) 

RMSE 

(%) 

Proposed Model 

3.110 

𝐻𝑔

𝐻𝑜
 = 0.945 + 0.072( 𝑆

𝑆𝑜
) + 0.003(𝑇𝑚

𝑇𝑜
)  + 0.0001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 

0.0001(𝑃𝑚

𝑃𝑜
) -0.300(𝐻𝑑

𝐻𝑔
) 

1.93 0.00 0.04 

3.159 

𝐻𝑔

𝐻𝑜
 = -1.087 + 0.034( 𝑆

𝑆𝑜
) - 0.002(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) - 0.001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.011(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.002(𝑃𝑚

𝑃𝑜
) -

0.305(𝐻𝑑

𝐻𝑔
) 

-0.36 -0.01 0.03 

3.208 

𝐻𝑔

𝐻𝑜
 = 1.008 + 0.123( 𝑆

𝑆𝑜
) - 0.006(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.0001(𝑊𝑆𝑚

𝑊𝑆0
) - 0.028(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) -

0.264(𝐻𝑑

𝐻𝑔
) 

0.42 0.00 0.03 

3.257 

𝐻𝑔

𝐻𝑜
 = 0.447 + 0.17( 𝑆

𝑆𝑜
) + 0.0001(𝑇𝑚

𝑇𝑜
) - 0.001(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.004(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.0001(𝑃𝑚

𝑃𝑜
) -

0.340(𝐻𝑑

𝐻𝑔
) 

0.25 0.02 0.05 

3.306 

𝐻𝑔

𝐻𝑜
 = -0.547 + 0.241( 𝑆

𝑆𝑜
) - 0.004(𝑇𝑚

𝑇𝑜
) - 0.002(𝑅𝐻𝑚

𝑅𝐻𝑜
) + 0.003(𝑊𝑆𝑚

𝑊𝑆0
) + 0.0001(𝑅𝐹𝑚

𝑅𝐹𝑜
) + 0.001(𝑃𝑚

𝑃𝑜
) 

-0.256(𝐻𝑑

𝐻𝑔
) 

1.50 0.00 0.05 

Angstrom- Prescott Model 3.307 
𝐻𝑔

𝐻𝑜
 = 0.0801 + 0.709( 𝑆

𝑆𝑜
) 96.06 15.62 16.54 

Rietveld Model 3.308 
𝐻𝑔

𝐻𝑜
 = 0.18 + 0.62( 𝑆

𝑆𝑜
) 35.71 4.80 5.21 

Page Model 3.309 
𝐻𝑔

𝐻𝑜
 = 0.23 + 0.48( 𝑆

𝑆𝑜
) 25.90 3.32 3.52 

Akinoglu and Ecevit 

Model 
3.310 

𝐻𝑔

𝐻𝑜
 = 0.145 + 0.845( 𝑆

𝑆𝑜
) - 0.28( 𝑆

𝑆𝑜
)2 32.47 4.15 4.36 

Bahel Model 3.311 
𝐻𝑔

𝐻𝑜
 = 0.16 + 0.87( 𝑆

𝑆𝑜
) - 0.16( 𝑆

𝑆𝑜
)2 + 0.34( 𝑆

𝑆𝑜
)3 -53.24 -6.51 7.69 

Newland Model 3.312 
𝐻𝑔

𝐻𝑜
 = 0.34 - 0.4( 𝑆

𝑆𝑜
) + 0.17 log( 𝑆

𝑆𝑜
) 88.87 16.72 18.54 

Abdalla Model 3.313 
𝐻𝑔

𝐻𝑜
 = 0.5289 + 0.459( 𝑆

𝑆𝑜
) + 0.004073(𝑇𝑚

𝑇𝑜
) - 0.006481(𝑅𝐻𝑚

𝑅𝐻𝑜
) -93.19 -14.40 15.40 
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 The results of statistical error-tests reveal that the proposed model is 

accurate as compared to other models with mean percentage error of 1.93% 

for warm and humid climate (Chennai), 0.36% for hot and dry climate 

(Jodhpur), 0.42% for composite climate (Delhi), 0.25% for moderate 

climate (Pune) and 1.50% for cold and cloudy climate zone (Shillong). The 

obtained results indicate a good agreement between the measured and 

estimated data in comparison to other well-established models. 

3.9 CONCLUSION 

  In the present work, 40 sunshine-based models with linear and non-

linear correlations have been established using sunshine hour as a 

meteorological parameter for five meteorological stations that represents 

distinct climate zone across India. It has been concluded from the obtained 

results that the weakest fit is achieved for warm and humid climate zone with 

the largest difference between the best and worst determination coefficients 

and the best fit is obtained for composite climatic zone with the smallest 

difference between the best and worst determination coefficients.  

 Further, in this work, 245 empirical models have been established 

correlating global solar energy with other parameters namely sunshine hours, 

relative humidity, ambient temperature, wind speed, atmospheric pressure, 

amount of rainfall and cloudiness index using multiple regression analysis for 

five weather stations across India. The regression and correlation coefficients 

for each model has been calculated and presented. The developed models have 

been further processed based on principal component analysis to obtain the 

correlation with highest correlation coefficients. The performance of the 

models has been evaluated using statistical error-tests. It has been concluded 
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from the statistical analysis that the correlations which incorporate seven 

variables has emerged to be accurate and shows a good agreement between 

measured and estimated data making it useful for estimating solar energy in 

each climate zones across the country. Further, the proposed model have been 

compared with well-established model available in the literature and the 

results of statistical error-tests reveal that the models presented are accurate 

and have reasonable estimation errors. It has been concluded from statistical 

analysis that the meteorological parameters considered made a strong 

influence on estimating global solar energy. Also, the geographical parameters 

tend to effect global solar energy and have a strong influence on it. Therefore, 

in this research, the models being proposed could be successfully used for 

estimating global solar energy in distinct climate zone across India and 

elsewhere with similar climatic conditions. 
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CHAPTER 4 

FUZZY LOGIC APPROACH FOR ASSESSING  

SOLAR ENERGY 

 

4.1  INTRODUCTION 

 This chapter presents a model employing fuzzy logic approach to 

forecast global solar energy based on sky-conditions namely sunny sky (type-a), 

hazy sky (type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy 

sky (type-d) conditions. Meteorological parameters include dew-point along 

with other available parameters namely duration of sunshine hours, wind speed, 

global solar energy, relative humidity and ambient temperature. Simulations 

have been carried out for distinct climate zone across India such as composite 

(Delhi), warm and humid (Chennai), hot and dry (Jodhpur), cold and cloudy 

(Shillong) and moderate (Pune) climate zone. Also, the comparison of the 

proposed model has been made with the empirical models using statistical 

indicators for each of the climate zones across the country. Further, the 

developed model has been implemented for solar photovoltaic system under 

composite climatic conditions. 

This chapter is based on the following published papers: 

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Intelligent model for solar energy 

forecasting and its implementation for solar photovoltaic applications,” Journal of 

Renewable  and  Sustainable Energy,  AIP, Vol. 10, No. 6, Article ID. 063702, pp. 

1-23, 2018. ISSN No. 1941-7012, Impact factor: 1.337, SCI Expanded. 

2.   Gulnar Perveen, M. Rizwan and Nidhi Goel, “Fuzzy logic modelling and its solar 

thermal applications,” Proceedings of 2nd 
IEEE International Conference on Power 

Electronics, Intelligent Control and Energy Systems (ICPEICES-2018), October 

22-24, 2018, Delhi Technological University, Delhi, India. 
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 4.2  SOLAR ENERGY FORECASTING AND ITS NECESSITY 

 Solar energy is one of the most important parameter for solar energy 

based research and applications but the measuring equipment’s are unavailable 

in most of the meteorological sites because of the high cost of instruments and 

limited spatial coverage. Therefore, forecasting global solar energy is essential 

for these stations where measurements have not been done with aid of 

meteorological parameters. 

 Most of the grid-interactive solar PV plants are built using photovoltaic 

technology. However, because of variation in sky-conditions, the system output 

is stochastic and non-deterministic. Therefore, accurately forecasting global 

solar energy is essential in different sky-condition as the power output of the 

solar system has been greatly influenced by the presence of environmental 

factors such as dust, moisture, cloud and atmospheric temperature differences. 

Most of the previous researches provided a forecasting tool for estimating PV 

power output with reasonable accuracy. Some of them were based on Markov 

chain, Auto Regressive (AR) and Auto Regressive Moving Average (ARMA). 

However, such non-deterministic model shows inaccuracy and relatively 

observed with large errors because they are based on probability estimation. 

Moreover, global solar energy forecasting using these models is a tedious task 

as it depends on the mathematical formulation. These drawbacks can be 

overcome by using intelligent models for forecasting global solar energy. In 

many previous researches, intelligent modelling techniques have been discussed 

such as fuzzy logic modelling which is applied to meteorology [76]. Many deals 

with meteorological estimations such as atmospheric circulation pattern by 

fuzzy c-mean, micro-grid planning on fuzzy interval modes, fuzzy classification 
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of clouds [77-85]. Many models based on fuzzy logic techniques have been 

proposed using meteorological parameters namely ambient temperature and 

cloudiness index for forecasting global solar energy [86-87]. Most of the models 

discussed in the literature were confined to clear sky-conditions; however, very 

few literature is available that discussed about modelling based on different sky 

conditions such as sunny/clear, hazy, foggy and cloudy sky-conditions for 

estimating global solar energy by using fuzzy logic based model. 

 This chapter aims to develop model based on sky-conditions using 

intelligent modelling techniques to forecast global solar energy which is 

classified as sunny and clear sky (type-a), hazy sky (type-b), partially 

foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions by 

using meteorological parameters for five weather stations representing different 

climatic conditions across India. The performance of the model has been 

measured with aid of statistical error-tests. Further, the results obtained by 

employing fuzzy logic modelling have been used for 210 Wp Heterojunction 

with Intrinsic Thick (HIT) layer solar photovoltaic (PV) modules in forecasting 

power of the solar PV system at Maximum Power Point Tracking (MPPT) 

conditions. Lastly, comparative analysis has been made with regression models 

to verify for the accuracy and supremacy of the proposed model.  

4.3 METEOROLOGICAL DATA 

4.3.1  Compilation and Normalization/Scaling of Data 

 In this chapter, the recorded hourly averaged data (2006-2016) have 

been obtained from Indian Meteorological Department (IMD), National Institute 

of Solar Energy (NISE) and in collaboration with National Institute of Wind 

Energy (NIWE) and are presented in Table 4.1 - Table 4.5 [88]. 
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Table 4.1 Measured and scaled data for composite climate zone 

Months 

Sunshine hours              

(hrs)     

Hg 

 (MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 7.854 0.665 15.406 0.342 63.990 0.461 16.061 0.452 3.200 0.308 7.585 0.520 

February 7.936 0.594 30.206 0.610 59.940 0.448 21.551 0.667 3.835 0.420 9.067 0.379 

March 7.338 0.715 37.413 0.478 40.996 0.497 26.793 0.439 3.982 0.359 11.481 0.686 

April 9.220 0.718 40.810 0.671 21.083 0.510 34.213 0.551 4.187 0.469 10.837 0.396 

May 8.848 0.645 36.325 0.590 34.658 0.433 35.076 0.591 4.276 0.406 15.296 0.598 

June 7.604 0.577 32.239 0.630 47.960 0.552 34.916 0.477 4.111 0.433 21.934 0.550 

July 4.740 0.375 24.584 0.529 78.492 0.531 30.317 0.508 2.995 0.504 25.920 0.623 

August 5.934 0.524 28.998 0.554 81.261 0.427 29.801 0.532 3.552 0.500 26.092 0.571 

September 6.683 0.550 34.356 0.655 61.926 0.323 31.235 0.631 3.080 0.394 22.766 0.408 

October 9.329 0.713 31.284 0.651 43.948 0.342 29.867 0.548 3.156 0.441 15.409 0.387 

November 7.197 0.547 25.436 0.601 40.824 0.259 24.263 0.708 2.932 0.398 8.881 0.375 

December 5.807 0.597 23.105 0.719 61.105 0.417 19.211 0.588 2.784 0.384 10.089 0.411 
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Table 4.2 Measured and scaled data for warm and humid climate zone 

Months 

Sunshine hours              

(hrs)     

Hg 

 (MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 8.939 0.701 36.723 0.627 66.306 0.459 27.605 0.653 4.429 0.417 16.658 0.657 

February 9.745 0.768 42.053 0.542 68.185 0.571 28.801 0.535 4.581 0.487 21.796 0.724 

March 9.048 0.660 42.904 0.785 68.902 0.483 29.660 0.717 5.552 0.468 23.517 0.615 

April 9.370 0.610 45.108 0.420 70.923 0.546 31.212 0.734 7.452 0.479 25.548 0.683 

May 8.826 0.626 38.886 0.704 58.133 0.568 32.210 0.686 6.152 0.573 20.613 0.701 

June 7.607 0.642 31.346 0.536 50.155 0.542 31.505 0.609 5.207 0.427 15.379 0.510 

July 6.768 0.554 34.562 0.563 64.267 0.552 31.148 0.515 5.402 0.429 22.659 0.718 

August 5.235 0.535 33.742 0.632 61.215 0.453 31.504 0.593 5.326 0.571 16.880 0.640 

September 6.160 0.582 32.469 0.592 68.075 0.443 30.529 0.612 4.587 0.535 21.678 0.705 

October 6.942 0.598 35.381 0.661 61.848 0.413 30.606 0.665 4.148 0.456 18.109 0.616 

November 6.778 0.607 34.611 0.623 67.610 0.502 28.215 0.729 4.937 0.453 17.324 0.646 

December 7.295 0.624 29.994 0.677 74.825 0.501 26.883 0.721 5.676 0.209 17.882 0.646 
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Table 4.3 Measured and scaled data for hot and dry climate zone 

Months 

Sunshine hours              

(hrs)     

Hg 

 (MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 9.226 0.683 29.401 0.706 52.680 0.396 21.874 0.542 2.961 0.409 11.113 0.516 

February 9.714 0.694 25.876 0.580 43.371 0.321 23.289 0.400 3.675 0.407 10.492 0.275 

March 9.120 0.649 41.565 0.657 43.781 0.420 29.297 0.561 3.811 0.461 14.227 0.508 

April 9.867 0.114 45.527 0.663 39.967 0.463 33.304 0.389 4.512 0.422 10.266 0.455 

May 11.207 0.720 44.668 0.664 54.048 0.448 36.172 0.448 6.640 0.451 21.585 0.656 

June 8.937 0.682 42.398 0.630 66.533 0.553 35.373 0.416 6.937 0.395 28.830 0.550 

July 8.039 0.645 34.383 0.554 51.791 0.510 31.722 0.649 5.319 0.562 22.048 0.564 

August 8.097 0.675 29.267 0.593 38.743 0.413 29.120 0.572 4.350 0.469 16.688 0.540 

September 9.727 0.669 43.056 0.640 74.121 0.662 31.146 0.430 4.634 0.496 24.035 0.652 

October 9.790 0.794 38.689 0.732 61.764 0.482 30.185 0.575 3.458 0.440 21.277 0.594 

November 9.323 0.774 34.811 0.595 33.593 0.321 26.310 0.508 2.606 0.404 2.727 0.367 

December 8.503 0.352 33.146 0.542 36.781 0.432 23.842 0.605 2.838 0.405 7.274 0.523 
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Table 4.4 Measured and scaled data for cold and cloudy climate zone 

Months 

Sunshine hours              

(hrs)     

Hg 

 (MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 7.463 0.633 25.668 0.662 60.397 0.425 18.845 0.593 2.783 0.519 10.361 0.674 

February 6.488 0.567 31.894 0.658 54.030 0.500 22.126 0.473 3.233 0.394 12.160 0.423 

March 7.216 0.635 34.109 0.638 50.563 0.399 25.340 0.503 3.685 0.517 13.693 0.508 

April 3.790 0.317 32.930 0.598 66.778 0.506 25.771 0.505 4.086 0.361 18.787 0.512 

May 4.842 0.483 33.664 0.523 74.971 0.547 27.203 0.537 4.348 0.362 22.311 0.533 

June 4.180 0.492 31.453 0.665 79.623 0.290 28.139 0.723 6.208 0.533 24.263 0.607 

July 3.245 0.403 14.122 0.469 82.342 0.572 27.193 0.422 3.195 0.303 23.839 0.668 

August 2.505 0.439 22.089 0.556 84.819 0.520 27.043 0.573 3.981 0.451 24.304 0.610 

September 3.287 0.394 19.580 0.527 82.378 0.522 27.148 0.432 2.719 0.380 23.795 0.650 

October 5.871 0.557 22.366 0.461 71.681 0.498 26.310 0.446 2.015 0.337 20.755 0.538 

November 7.057 0.632 19.460 0.468 63.465 0.507 23.759 0.433 1.783 0.274 16.345 0.497 

December 7.600 0.630 20.430 0.560 61.230 0.560 21.350 0.500 2.560 0.450 17.250 0.520 
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Table 4.5 Measured and scaled data for moderate climate zone 

Months 

Sunshine hours              

(hrs)     

Hg 

 (MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 9.497 0.529 21.431 0.454 43.378 0.376 22.907 0.558 2.424 0.332 9.007 0.394 

February 10.214 0.730 19.437 0.607 40.726 0.493 27.010 0.560 2.833 0.450 11.500 0.494 

March 9.900 0.695 27.621 0.456 38.978 0.523 29.078 0.489 2.980 0.434 13.768 0.483 

April 9.970 0.650 25.986 0.624 39.984 0.405 30.728 0.511 3.143 0.401 16.281 0.462 

May 10.832 0.720 22.087 0.590 48.620 0.596 30.473 0.498 4.316 0.498 18.937 0.546 

June 5.070 0.502 18.694 0.540 68.874 0.564 26.741 0.516 4.247 0.475 20.564 0.545 

July 4.271 0.283 16.304 0.514 80.475 0.527 24.557 0.448 4.170 0.386 20.928 0.396 

August 4.003 0.437 17.319 0.576 77.787 0.459 24.703 0.537 4.768 0.429 20.549 0.585 

September 5.567 0.530 17.249 0.461 73.359 0.538 25.010 0.407 3.790 0.419 19.761 0.498 

October 7.668 0.590 10.901 0.467 65.409 0.459 24.631 0.608 2.248 0.364 18.086 0.510 

November 8.460 0.607 13.812 0.442 53.745 0.620 21.823 0.458 2.143 0.466 11.449 0.301 

December 8.739 0.698 25.561 0.479 43.514 0.514 24.589 0.615 2.699 0.306 10.854 0.403 
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The data has been obtained at meteorological location/sites for 

parameters like global solar energy, sunshine hours, ambient temperature, wind 

speed, dew-point and relative humidity. The normalization/scaling of the input 

parameters has been done for avoiding convergence issues which are defined in 

0.1 - 0.9 range and expressed by Eq. (4.1) for five meteorological sites across 

India.  

Ls = [(( (Xmax  −  Xmin) 

(Lmax −  Lmin)
)*(L – Lmin)) + Xmin]                 (4.1) 

where  

L = measured data 

Ls = scaled data  

Lmax = highest value of relevant set of data 

Lmin = lowest value of relevant set of data 

Xmax = maximum limit of normalized range 

Xmin = minimum limit of normalized range 

4.3.2 Classification of Sky-Conditions  

 The models based on sky-conditions can be classified as follows [87]: 

  (a)  Clear/sunny sky (type-a) 

If the sunshine hour is equivalent to or greater than 9 hour, and diffuse 

solar energy is lower than or equivalent to 25% of global solar energy. 

  (b)  Hazy sky (type-b) 

 If the sunshine hour is between 7-9 hour and diffuse solar energy is 

lower than 50% or greater than 25% of global solar energy. 
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(c)    Partially foggy/cloudy sky (type-c) 

 If the sunshine hour is between 5-7 hour and the diffuse solar energy is 

lower than 75% or greater than 50% of global solar energy. 

(d)  Fully foggy/cloudy sky (type-d) 

 If the sunshine hour is lower than 5 hour and the diffuse solar energy is 

greater than 75% of global solar energy.   

4.4 DEVELOPMENT OF FUZZY LOGIC BASED MODEL FOR 

FORECASTING SOLAR ENERGY  

 The fuzzy logic based model has been employed for forecasting global 

solar energy with aid of meteorological parameters in different sky conditions 

and for distinct climate zones across India. The model has been developed with 

input parameters namely sunshine duration, relative humidity, wind speed, 

ambient temperature, dew point, latitude, longitude and altitude for forecasting 

global solar energy and shown below in Fig. 4.1. The results obtained are then 

defuzzified to get the forecasted output. 

 

 

 

   

 

 

 

 

 

Fig. 4.1 Fuzzy logic based model for forecasting global solar energy 
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4.4.1 Fuzzy Sets 

 The theory of fuzzy logic has been introduced by Prof. Lotfi Zadeh in 

1965 at University of California. Since, then it has been successfully 

implemented in many engineering applications. The concept of fuzzy logic lies 

in truth values between 0 and 1 i.e. between completely true and completely 

false. In conditions where mathematical models do not give practical 

descriptions of the models, approach based on fuzzy logic is being used for 

many applications.  

 Let A and B be two sets of universal set Y. The union between two sets 

is denoted by A∪B and represents all the elements in the universe belonging to 

set A, set B or both sets A and B. The intersection of two sets is denoted by 

A∩B and represents all the elements in the universe belonging to both set as A 

and B. Here, characteristic function µp of a subset of universal set Y lies in the 

two element sets {0,1} and µp (Y) = 1, if YεP otherwise it’s value is zero. The 

value of the fuzzy set P lies in the interval {0,1}. Now, µp is defined as the 

membership function and µp (Y) is the grade of membership function of yεY in 

P.  

Consider fuzzy subsets A and B with membership function as µA and 

µB. The union and intersection can be defined as follows:  

  Union: µA∪B (Y) = max [µA (Y), µB (Y)] 

  Intersection: µA∩B (Y) = min [µA (Y), µB (Y)] 

4.4.2 Fuzzy Inference System 

A fuzzy inference system defines a mechanism for evaluating fuzzy 

system for calculating output from input data sets and is represented by input 

and output linguistic variables along with fuzzy IF-THEN rule base defined by 
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rule editor and rule viewer as shown in Fig. 4.2. It consists of fuzzification, 

fuzzy rules evaluation and defuzzification. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 4.2 Block diagram of fuzzy inference system 

 4.4.3 Fuzzy Membership Function 

 The model based on fuzzy logic approach for forecasting global solar 

energy has been established and simulated in MATLAB where the developed 

model comprises set of rules being made for qualitative descriptions. In the 

proposed model based on fuzzy logic approach, three variables are defined 

namely low, medium and high. The assignment of the membership function is 

the key task. In this, five membership functions are described with fuzzy terms 

namely Very Low (VL), Low-Medium/Low (LM/L), Medium-High/Medium 

(MH/M), High-High/High (HH/H) and Very High (VH) which lies in 0.1 - 0.9 

range and fuzzy inference system defined a set of rules for forecasting global 

solar energy. Fig. 4.3 - Fig. 4.4 presents the fuzzy membership function for 

parameters namely wind speed and sunshine duration respectively.  
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Fig. 4.3 Fuzzy membership functions for wind speed 
 

 
Fig. 4.4 Fuzzy membership functions for sunshine duration 

4.4.4 Fuzzy Rules 

The MATLAB fuzzy logic toolbox has been used for implementing the 

defined fuzzy rules which are fired in fuzzy systems with aid of fuzzy 

inference system.  

The design of fuzzy system refers to the development of mechanisms 

for fuzzy information processing and decision making capability within a 

digital platform and soft computing environment. 
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 The fuzzy inference algorithm implements IF-THEN rules or 

statements which are used to formulate the condition statement comprising 

fuzzy logic. A fuzzy rule base has IF-THEN components where the IF part is 

denoted as an antecedent and the THEN part is denoted as a consequent. The 

basic structure of fuzzy IF-THEN rule is expressed as: 

IF <antecedent> THEN <consequent> 

Here, a set of multiple-antecedent fuzzy rules have been defined for 

forecasting global solar energy where the input includes sunshine duration, 

wind speed, ambient temperature, relative humidity, dew-point and the output 

is global solar energy as shown in Table 4.6.  

Further, the fuzzy rule base simulated in MATLAB for the month of 

January for warm and  humid climate  zone (Chennai) have been shown in Fig. 

4.5. Similar analysis has been carried out for remaining period i.e. from 

February to December and for other climate zones i.e. hot and dry (Jodhpur), 

cold and cloudy (Shillong), moderate (Pune) and composite (Delhi) climate 

zone respectively. 

 

Fig. 4.5 Fuzzy rule base simulated in MATLAB 
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Table 4.6 Fuzzy rule base defined for the month of January for warm and humid climate zone 

No. of days 

in month 

Inputs Output 

Sunshine 

hours 

Wind 

Speed 

Ambient 

Temperature 

Relative 

Humidity 

Dew 

Point 

Global 

Solar 

Energy 

1 VH VH HH MH VH M 

2 H MH HH MH VH H 

3 VL LM HH MH VH VH 

4 L LM MH HH VH H 

5 H MH HH LM HH H 

6 M HH HH LM HH H 

7 H MH HH LM HH H 

8 M HH HH LM MH VH 

9 H LM HH LM LH H 

10 VH LM MH VL VL VH 

11 L MH MH LM LH VH 

12 M LM MH LM LH H 

13 H LM MH LM LH M 

14 H LM MH LM LH M 

15 VH LM MH VL VL H 

16 H VL VL MH VL M 

17 H MH HH MH HH H 

18 H LM HH LM HH H 

19 VH MH HH MH VH M 

20 VH MH HH VH VH L 

21 H LM VH MH VH M 

22 M MH HH VH VH VL 

23 H HH MH VH VH L 

24 H VH HH HH VH M 

25 H MH HH MH VH H 

26 VH LM HH MH VH H 

27 VH LM MH MH HH H 

28 VH VL HH MH HH H 

29 VH LM VH MH VH H 

30 VH LM VH MH VH H 

31 VH LM VH MH VH H 

 



104 

 

4.4.5 Fuzzy Editor Viewer 

The fuzzy editor viewer in MATLAB has been used for viewing output. 

Further, Fig. 4.6 shows output corresponding to 5
th
 rule in an editor viewer of 

MATLAB. 

 

Fig. 4.6 Fuzzy editor viewer corresponding to 5th rule in MATLAB 

4.5  RESULTS AND DISCUSSIONS 

 In this chapter, models based on sky-conditions such as clear sky (type-

a), hazy sky (type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy 

sky (type-d) employing fuzzy logic approach has been developed and presented 

for forecasting global solar energy with aid of meteorological parameters namely 

dew-point along with other known available parameters namely wind speed, 

duration of sunshine hours, global solar energy, ambient temperature and relative 
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humidity. A comparative analysis has been carried out between the measured 

and the forecasted data for five meteorological sites which represents different 

climatic conditions such as warm and humid, hot and dry, cold and cloudy, 

composite and moderate climate zone based on statistical indicators as shown in 

Table 4.7 from which, the following can be briefly summarized:- 

4.5.1 Clear/Sunny Sky (Type-a)  

 The fuzzy logic based model has been employed for forecasting global 

solar energy, wherein for this sky-condition, the minimum value of mean 

percentage error is observed to be 1.23% and obtained for hot and dry climatic 

conditions (Jodhpur) as shown by the calculated data presented in Table 4.7.  

 The minimum error has been obtained for this climate climate zone 

beacause Jodhpur climatic conditions are hot and dry with relative humidity 

varying from 33 - 74% as shown by the measured data presented in Table 4.3, 

which is generally low, because of low water surface bodies and vegetation. 

For this sky condition, the sky is generally clear with a large amount of 

solar insolation at day time since the surrounded atmospheric region gets heated 

up very fast. It has been also observed that the average sunshine hour is 

approximately 12.36 hrs, which is comparatively high as compared to other 

meteorological sites as shown by the computed data presented in Table 4.7.  At 

night time also, there is a clear sky, therefore, the heat absorbed by the surface at 

day time gets dissipated in upper atmospheric region fast. Hence, at night time, 

the ambient temperature is low which makes the atmospheric surface much 

cooler.  

 Jodhpur is well famous as the ‘Sun City’ for clear/sunny sky-conditions 

prevailing throughout the year. 
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Table 4.7 Fuzzy logic based model for forecasting global solar energy for distinct climate zone 

Climate 

Zone 
Sky Conditions 

Hg 

(MJ/m
2
) Sunshine hours 

(hrs) 

MPE 

(%) 

MBE 

(%) 
Measured Fuzzy 

New Delhi  

(Composite) 

Clear/Sunny Sky 29.96 30.20 9.30 1.94 0.24 

Hazy Sky 29.71 29.76 8.09 0.22 0.05 

Partially Foggy/Cloudy Sky 23.93 23.88 6.30 1.96 -0.05 

Fully Foggy/Cloudy Sky 23.13 22.54 0.30 -2.56 -0.59 

Chennai 

(Warm and Humid) 

Clear/Sunny Sky 38.60 36.80 10.28 -4.32 -1.80 

Hazy Sky 32.98 36.49 8.58 6.82 0.07 

Partially Foggy/Cloudy Sky 37.93 37.50 6.61 -0.80 -0.43 

Fully Foggy/Cloudy Sky 34.79 35.73 2.26 5.79 0.94 

Jodhpur 

(Hot and Dry) 

Clear/Sunny Sky 38.63 37.81 12.36 -1.23 -0.82 

Hazy Sky 36.93 36.35 8.67 1.39 -0.57 

Partially Foggy/Cloudy Sky 35.35 31.72 6.63 -7.90 -3.63 

Fully Foggy/Cloudy Sky 36.56 38.58 2.84 4.39 2.02 

Shillong                       

(Cold and Cloudy) 

Clear/Sunny Sky 31.30 30.12 9.546 -2.74 -1.18 

Hazy Sky 24.48 25.45 7.256 5.77 0.97 

Partially Foggy/Cloudy Sky 26.25 26.25 4.443 9.05 -0.002 

Fully Foggy/Cloudy Sky 32.68 32.41 1.200 0.36 -0.30 

Pune 

(Moderate) 

Clear/Sunny Sky 20.25 20.61 10.12 4.75 0.28 

Hazy Sky 19.70 19.68 8.46 0.89 0.26 

Partially Foggy/Cloudy Sky 18.89 18.94 6.08 1.78 0.04 

Fully Foggy/Cloudy Sky 16.42 16.01 2.85 -0.89 -0.41 
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4.5.2 Hazy Sky (Type-b)  

 For this sky-condition, by employing fuzzy logic based model, the 

minimum value of mean percentage error is observed to be 0.22% and has been 

obtained for composite climatic conditions (Delhi) as shown by the computed 

data presented in Table 4.7. This is due to the reason that relative humidity is 

high which varies 35 - 61% in dry periods and 64 - 81% in wet periods as shown 

by the measured data presented in Table 4.1. It has been also observed that 

during monsoon the solar insolation intensity is low and during summer the solar 

intensity is high as the average sunshine hour measured is 8.09 hrs, as shown by 

the computed data presented in Table 4.7, which when compared to Jodhpur 

station is comparatively lesser.  

 For this sky condition, the sky is generally dull and overcast in monsoon 

and becomes hazy during summer.  

4.5.3 Partially Foggy/Cloudy sky (Type-c)  

For this sky-condition, by employing fuzzy logic based model, the 

minimum value of mean percentage error is observed to be 0.80% and has been 

obtained for warm and humid climatic conditions (Chennai) as shown by the 

computed data presented in Table 4.7. The reason behind is that diffuse solar 

energy is high due to cloud cover and because of presence of clouds the heat 

dissipation from the earth’s surface to the sky during the night is least. Hence, 

during summer, the sky is partially cloudy as variation in ambient temperature is 

from 30-35
o
C during the day and 25-30

o
C during the night. The variation in 

maximum ambient temperature is from 25-30
o
C in day time and 20-25

o
C in 

night time during the winter season. It has been observed for this climate zone 
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that the relative humidity varies from 58-74% in a year, which is generally high 

as shown by the measured data presented in Table 4.2 and the averaged 

sunshine hours are 6.61 hrs only.   

4.5.4 Fully Foggy/Cloudy Sky (Type-d)  

 For this sky-condition, by employing fuzzy logic based model, the 

minimum value of mean percentage error is observed to be 0.36% and has been 

obtained for cold and cloudy climatic conditions (Shillong) as shown by the 

computed data presented in Table 4.7.  

This is due to the reason that during winter, the solar insolation is quite 

low due to the presence of diffuse solar energy which makes winters extremely 

cold. The summers are comparatively quite pleasant as the variation in 

maximum air temperature lies between 25 - 30
o
C during day time and 17 - 27

o
C 

during night time whereas the winters are comparatively chilly.   

It has been also observed from the measured data presented in Table 4.4, 

that the variation in relative humidity is from 50 - 85% which is generally high. 

For this climate zone, the sky is generally cloudy and overcast throughout the 

year except for short summer where the daily measured bright sunshine hour 

availability is 1.20 hrs only as shown by the data presented in Table 4.7.  

Further, the graphical analysis of comparison of the measured and 

forecasted data by employing fuzzy logic based for different sky-conditions and 

for distinct climate zone across India has been shown in Fig. 4.7 - Fig. 4.11 

respectively. 

For composite climate zone (Delhi), as shown in Fig. 4.7(b), the hazy 

sky model perform better than other models as the forecasted data is almost 

same as that of the measured data. 
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Fig. 4.7 Graphical analysis of the measured and forecasted Hg for composite climatic conditions 
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Fig. 4.8 Graphical analysis of the measured and forecasted Hg for warm and humid climatic conditions  
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Fig. 4.9 Graphical analysis of the measured and forecasted Hg for hot and dry climatic conditions  
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Fig. 4.10 Graphical analysis of the measured and forecasted Hg for cold and cloudy climatic    
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Fig. 4.11 Graphical analysis of the measured and forecasted Hg for moderate climatic conditions  
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For hot and dry climate zone (Jodhpur), as shown in Fig. 4.9(a), 

sunny/clear sky model perform better than other models as the forecasted data is 

almost same as that of the measured data. 

Similarly, for warm and humid climatic zone (Chennai), as shown in 

Fig. 4.8(c), partially foggy/cloudy sky model perform better than other models 

as the forecasted data is almost same as that of the measured data. 

Also, for cold and cloudy climate zone (Shillong), as shown in Fig. 

4.10(d), fully foggy/cloudy sky model perform better than other models as the 

forecasted data is almost same as that of the measured data. 

4.6  APPLICATION OF SOLAR ENERGY FORECASTING IN 

SOLAR PV SYSTEM  

 The power generation in solar PV system is dependent on certain factors 

namely cell temperature, solar irradiance and the topographical position. In this 

chapter, HIT solar PV module of 210 Wp power output is selected whose 

performance specifications are listed in Table A.2 of Appendix A and operated 

at MPPT conditions. Since, the power generation has been greatly affected by 

solar irradiance and ambient temperature, therefore, such parameters are taken 

into consideration. The data which includes solar irradiance, cell temperature 

and PV power has been obtained and arranged within 1 hour. During the 

summer season, the availability of sunshine hours is from morning 6:00 A.M. to 

18:00 P.M. in the evening, the data are collected on daily basis with the 

availability of solar irradiance. Similarly, during winter season, the variation is 

from morning 8:00 A.M. to evening 17:00 P.M. Fuzzy logic methodology has 

been employed for forecasting power output in solar PV system. The fuzzy 

inference system includes input parameter like solar irradiance, ambient 
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temperature and weather descriptions, follows fuzzification, rule evaluation and 

lastly, results has been defuzzified for PV power forecasting. 

 Based on Standard Test Condition (STC) conditions, and influenced by 

parameters namely solar irradiance and cell temperature, the solar PV power 

generation can be expressed by using Eq. (4.2) – Eq. (4.3) as:  

PPV = [𝑃𝑃𝑉,𝑆𝑇𝐶 ∗
𝐺𝑇

1000
∗ [1 − 𝛾 ∗ (𝑇𝑗 −  25)]] ∗ 𝑁𝑃𝑉𝑠 ∗  𝑁𝑃𝑉𝑝   (4.2) 

 and 𝑇𝑗 =  𝑇𝑚 +
𝐺𝑇

800
∗ (𝑁𝑂𝐶𝑇  - 20)                 (4.3) 

where PPV,STC represents the rated power output of solar PV system of single 

array at Maximum Power Point (MPP), PPV is the solar PV array power output 

at MPP, GT is solar irradiance at STC in W/m
2
, NPVS represents the series PV 

arrays, 𝛾 is temperature parameter at Maximum Power Point (MPP), NPVP 

represents the parallel PV arrays, Tm is ambient temperature in 
o
C, Tj is the 

temperature of the solar panel in 
o
C and NOCT is a constant.  

 The solar PV power output can be forecasted by using fuzzy logic based 

model as shown below in Fig. 4.12. 

 

 

 

 

Fig. 4.12 Fuzzy logic based model for PV power forecasting 

 In this, 210 Wp HIT solar PV modules have been chosen and operated at 

MPPT conditions. The input parameters include solar irradiance, cell 

temperature and sky information obtained from NISE and power is the output 

parameter. The forecasted PV power has been obtained by employing fuzzy 

logic methodology and is illustrated in Table 4.8 for composite climate zone.  
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Table 4.8 Forecasted power in solar PV system under composite climatic conditions 

Month 
Voc 

(V) 

Isc 

(A) 

Solar  

Irradiance  

(W/m
2
) 

Cell  

Temperature 

(
o
C) 

Power 

(W) MPE 

(%) 
Measured Forecasted 

January 81.47 0.42 361.15 28.14 20.80 19.79 -0.0064 

February 82.03 0.61 461.52 35.69 30.15 30.02 0.0060 

March 83.64 0.62 548.24 40.12 31.56 31.25 0.0100 

April 79.62 0.60 575.12 42.53 30.23 32.56 0.1500 

May 77.35 0.59 559.67 46.22 31.05 35.19 0.1938 

June 76.92 0.55 537.17 45.24 26.20 26.00 0.0166 

July 76.66 0.05 537.81 48.28 24.45 25.72 0.0023 

August 76.90 0.47 428.80 53.27 22.33 22.59 0.0308 

September 77.78 0.50 437.51 51.62 23.80 23.99 0.0378 

October 78.74 0.63 466.57 53.21 29.92 29.40 -0.0090 

November 78.48 0.44 369.82 45.08 20.85 20.65 -0.0173 

December 80.66 0.47 370.84 43.36 25.53 32.57 0.2827 

   Average 79.19 0.50 471.18 44.40 26.41 27.48 0.0581 
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The result obtained in Table 4.8 reveals that the mean percentage error 

obtained for solar PV system averaged month-wise is 0.0581% by using fuzzy 

logic based model which is observed within the permissible error limit.  

Further, it is to be noted that for the winter season (January), the mean 

percentage error is 0.0064%; for the rainy season (May), the mean percentage 

error obtained is 0.1938% which is comparatively large because of the large 

uncertainties associated with the data and mean percentage error for summer 

season (June) is 0.0166%. 

4.7  FUZZY LOGIC APPROACH FOR SHORT-TERM PV POWER 

FORECASTING  

 Further, the variation in sky-condition has influenced the forecasting 

pattern of solar energy. Sunny/clear sky (type-a), hazy sky (type-b), partially 

foggy/cloudy sky (type-c) and fully foggy/cloudy (type-d) sky-conditions have 

been considered. The performance evaluation of the models has been done 

using statistical error-tests and obtained results are illustrated in Table 4.9.  

From Table  4.9, it has been observed that for composite climatic 

conditions, the hazy-sky model provide better results with mean percentage 

error of 0.0031%, followed by the sunny-sky model, partially foggy/cloudy sky 

model and fully foggy/cloudy sky model with mean percentage error of 

0.0741%, 0.0072% and 0.0077%, respectively. 

After the detailed analysis, the average forecasting errors of the 

proposed model are 0.023% in mean percentage error for the sample 

photovoltaic installation. 
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Table 4.9 Short-term PV power forecasting using fuzzy logic approach under composite 

climatic conditions 

Sky-Conditions 
Time    

(hr) 

Solar 

Irradiance 

(W/m
2
) 

Cell  

Temp. 

(
o
C) 

Power (W) MPE  

(%) Measured  Forecasted 

Sunny/Clear Sky 

(Type-a) 

7:00 140.93 34.11 7.00 7.03 0.0036 

8:00 273.76 40.55 15.00 15.00 -0.0002 

9:00 486.12 48.14 30.33 30.34 0.1749 

10:00 625.25 52.23 41.67 41.66 0.1210 

11:00 783.13 57.79 54.17 54.18 0.1271 

12:00 875.34 62.86 60.50 60.50 0.0702 

13:00 888.95 64.69 61.17 61.18 -0.0060 

14:00 744.96 63.91 42.00 42.00 -0.3153 

15:00 726.73 61.55 46.33 46.33 0.3563 

16:00 549.15 58.04 31.50 31.51 -0.3178 

17:00 361.60 52.72 19.33 19.33 -0.4892 

18:00 204.59 48.83 9.80 9.80 -0.6141 

Avg. 555.04 53.79 34.90 34.90 -0.0741 

Hazy Sky 

(Type-b) 

10:00 123.10 40.83 7.00 7.12 0.0218 

11:00 146.12 44.49 9.67 9.70 0.0040 

12:00 307.56 43.56 24.17 24.20 0.0031 

13:00 519.54 52.55 45.50 45.46 -0.0008 

14:00 467.65 42.40 37.33 37.40 0.0018 

15:00 313.06 49.36 21.50 21.50 0.0003 

16:00 185.35 41.05 10.20 10.09 -0.0082 

Avg.  294.62 44.89 22.20 22.21 0.0031 

Partially  

foggy/cloudy Sky                         

(Type-c) 

8:00 134.08 45.79 10.25 10.26 0.0024 

9:00 179.69 47.49 13.00 12.99 -0.0021 

10:00 355.98 52.07 30.33 30.14 -0.0063 

11:00 463.45 55.57 40.17 40.78 0.0130 

12:00 547.32 58.38 44.67 44.39 -0.0117 

13:00 519.74 59.96 33.00 31.40 -0.0372 

14:00 492.69 55.52 41.00 40.93 -0.0001 

15:00 647.10 61.30 52.00 51.69 -0.0105 

16:00 562.02 59.64 34.67 35.16 0.0094 

17:00 299.99 50.88 18.17 18.22 0.0049 

18:00 235.30 50.73 12.83 12.65 -0.0158 

19:00 156.43 47.99 6.50 7.23 0.1405 

Avg. 382.82 53.78 28.05 27.99 0.0072 

Fully 

foggy/cloudy Sky                              

(Type-d) 

 

9:00 170.77 19.08 10.67 10.75 0.0120 

10:00 74.87 19.02 10.67 10.62 -0.0030 

11:00 96.49 23.29 9.00 8.72 -0.0042 

12:00 41.20 18.50 8.00 8.10 0.0105 

13:00 140.77 18.57 10.33 10.46 0.0500 

14:00 87.31 18.59 11.17 11.14 0.0067 

15:00 164.25 17.86 11.00 10.83 -0.0183 

Avg. 110.81 19.27 10.12 10.09 0.0077 
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Further, the graph presented in Fig. 4.13 shows the variation in the 

measured and the forecasted data for different sky-conditions. 
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Fig. 4.13 Graphical analysis of short-term PV power forecasting under composite 

climatic conditions 

 

Normally, the day considered here is the different combination of  

sunny, hazy, partially foggy/cloudy and fully foggy/cloudy sky-conditions 

periods considered during the day time. For the sunny/clear day, Fig. 4.13(a) 

shows the graphical analysis between the measured and forecasted data 

variation based on fuzzy logic modelling. For this sky-condition, as compared 

to temperature factor, a factor of time is important which majorly influenced 

the solar energy and the time considered is from 7:00 A.M. to 18:00 P.M. in the 
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evening and the day averaged mean percentage error is observed to be 0.0741% 

as shown by the measured data presented in Table 4.9. 

 For hazy sky-condition, Fig. 4.13(b) shows the graphical analysis 

between measured and forecasted data based on fuzzy logic modelling. For this 

sky-condition, sun rays will get blocked as the factor of temperature affect 

solar energy in comparison to a factor of time and the time considered is from 

morning 10.00 A.M. to 16.00 P.M. in the evening and the day averaged mean 

percentage error is observed to be 0.0031% for this sky-condition. The 

maximum value of solar irradiance is 519.54 W/m
2 

as shown by the measured 

data presented in Table 4.9. 

 In partially foggy/cloudy sky-condition, Fig. 4.13(c) represents the 

graphical analysis between the measured and the forecasted data based on 

fuzzy logic modelling. For this sky-condition, the sunshine is partly absorbed 

by the PV and partly by the cloud. Solar energy is correlated with both the 

factor of temperature and time, and the considered time period is from morning 

8:00 A.M. to 19:00 P.M. in the evening. The day average mean percentage 

error is observed to be 0.0072% as shown by the measured data presented in 

Table 4.9. 

 For fully foggy/cloudy day, Fig. 4.13(d) shows the graphical analysis 

between the measured and forecasted data based on fuzzy logic modelling. The 

maximum value of solar irradiance is 164.25 W/m
2 

and the time considered is 

from morning 9:00 A.M. to 15:00 P.M. in the evening. In this, the sun rays will 

get fully blocked by the presence of cloud and both the factor of time and 

temperature will affect solar irradiance. The day averaged mean percentage 
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error is observed to be 0.0077% as shown by the measured data presented in 

Table 4.9. 

 In addition, the industrial requirements have been satisfied as the short-

term PV power forecasting mean percentage error is less than 20%. However, 

for each of the sky-model, the mean percentage error fluctuates, and the 

variation in mean percentage error between the measured and forecasted data in 

distinct sky-conditions during day time is presented below in Fig. 4.14.  
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 Fig. 4.14 Mean percentage error of four forecasting sky-based models 

The variations in the error are highest for the sunny/clear sky model in 

comparison to other models and the reason behind is that the intensity of solar 

radiation is relatively large as compared to other models. It has been observed 

that out of the four models, especially the hazy-sky model as shown in Fig. 

4.13(b) perform well in forecasting power of a solar PV system for composite 

climatic conditions.  

 



 

  

  

122 

 

4.8 COMPARISON OF FUZZY LOGIC BASED MODEL WITH 

EMPIRICAL MODELS  

 The developed model based on fuzzy logic approach has been 

compared with empirical models for widely changing climatic conditions 

across India and are reported in Table 4.10. The performance of models has 

been evaluated by using statistical error-tests. 

        Table 4.10 Comparison of proposed fuzzy logic based model with regression model 

Station 

Measured  

Hg 

(MJ/m
2
) 

Fuzzy Regression 

Hg 

(MJ/m
2
) 

MPE 

(%) 

Hg 

(MJ/m
2
) 

MPE 

(%) 

Delhi 
(Composite) 

18.27 18.28 0.41 18.29 0.70 

Chennai 

(Warm and 

Humid) 

19.53 19.51 0.37 19.59 2.25 

Jodhpur 

(Hot and Dry) 
20.41 20.44 0.02 20.27 0.41 

Shillong 

(Cold and 

Cloudy) 

16.45 16.49 0.68 16.88 1.94 

Pune 

(Moderate) 

 

19.36 

 

 

19.33 

 

 

0.06 

 

 

19.86 

 

 

2.40 

 

 

The results of simulation reveal that the fuzzy logic based model is 

accurate and has less value of mean percentage error for all meteorological 

stations across India as compared to regression models. So comparison result 

shows that the model developed by implementing fuzzy logic modelling 

provides accuracy and is convenient as compared to empirical models using 

multiple regression analysis. 
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4.9 CONCLUSION 

 In this chapter, model employing fuzzy logic approach based on sky-

conditions have been developed and presented for global solar energy 

forecasting for five meteorological sites/locations representing distinct climate 

zones across India. The meteorological parameters namely dew-point has been 

considered along with other known available parameters namely sunshine 

duration, ambient temperature, relative humidity, wind speed and global solar 

energy. It has been concluded from the obtained  results that the sunny/clear 

sky (type-a) model favours hot and dry climate zone (Jodhpur), hazy sky (type-

b) model favours composite climate zone (Delhi), partially foggy/cloudy sky 

(type-c) model favours warm and humid climate zone (Chennai) and fully 

foggy/cloudy sky (type-d) model favours cold and cloudy climate zone 

(Shillong), respectively. 

 Further, the fuzzy logic based model has been implemented for solar 

photovoltaic applications and model based on sky-conditions employing fuzzy 

logic methodology have been presented for one-hour ahead PV power 

forecasting of solar PV system based upon the principle of fuzzy inference 

system and the characteristics of sky-condition classification. The results of 

correlation analysis shows that the forecasting errors of the proposed model are 

within the permissible error limit for the solar photovoltaic installation. It has 

been concluded from the obtained results that under composite climatic 

conditions, the hazy-sky model outperforms other models as the measured data 

closely matches the forecasted data followed by the sunny sky model, partially 

foggy/cloudy sky model and fully foggy/cloudy sky model.  The fuzzy logic 
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approach favour results for the application of the sky-based model in 

forecasting PV power output of solar PV system.   

 Lastly, the developed model have been compared with the empirical 

models and the numerical results reveal that the proposed fuzzy logic based 

model achieves better accuracy and is convenient than the empirical models 

using multiple regression analysis. 
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CHAPTER 5 

SOLAR ENERGY FORECASTING USING  

ANN-BASED MODEL 

5.1  INTRODUCTION 

 In the previous chapter, the solar energy forecasting is performed using 

fuzzy logic methodology. This chapter is focussed on the variants of Artificial 

Neural Network (ANN) model i.e. Cascade-Forward Neural Network (CFNN), 

Feed-Forward Neural Network (FFNN), Generalized Regression Neural 

Network (GRNN), Elman Neural Network (ENN), Layered Recurrent Neural 

Network (LRNN), Linear Neural Network (LNN) and Radial Basis Function 

Neural Network (RBFNN) for modelling the system in forecasting global solar 

energy under composite climatic conditions using meteorological parameters. 

Simulations have been carried out by selecting the most suitable model based 

on evaluation indexes and further applied for sky-condition defined as sunny, 

hazy, partially and fully foggy/cloudy sky conditions and for distinct climatic 

zone across India. The developed model has been implemented for solar PV 

applications. Lastly, a comparison has been made with fuzzy logic based model 

to check for accuracy and supremacy of the proposed ANN model. 

This chapter is partially based on the following published papers: 

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Comparison of intelligent modelling 

techniques for solar energy forecasting and its application in solar photovoltaic 

systems,” IET Energy Systems Integration, Vol. 1, No. 1, pp. 34-51, 2019. ISSN 

No. 2516-8401(Online). 

2. Gulnar Perveen, M. Rizwan and Nidhi Goel, “ANN modelling for estimating global 

solar energy and its implementation in Solar Thermal Systems,” Proceedings of 

International Conference on Renewable Energy and Sustainable Climate (Solaris 

2019), Feb 07-09, 2019, Jamia Millia Islamia, Delhi, India. 
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 Lot of research has been carried out across the globe for forecasting 

solar energy using ANN [89-91]. These models have been used in a broad 

series of applications which include optimum estimation and forecasting; 

least square optimization of numerical weather prediction; clustering and 

classification technique [92-94]. Further, several previous researchers have 

worked towards the accuracy in power forecasting of the solar PV system and 

wind speed forecasting. Recently, solar PV technology has been growing 

rapidly due to the benefits of solar energy which is available in abundance 

and is a clean form of energy.  

 Numerous factors influence the generation of power in a solar PV 

system namely solar irradiance, cell temperature, efficiency and sky-

conditions. Because of the inconsistency in solar radiation and factors affecting 

environment such as sky-conditions, the power generation in a solar PV system 

is a stochastic process, which not only affects the stability of the system but the 

working capital and maintenance costs as well. So, to advance the solar PV 

system stability, accurately forecasting global solar energy is needed taking 

into consideration the influence of sky-conditions, since the accuracy of the 

solar PV system has been greatly affected by the external environmental factors 

such as clouds, moisture, dust and atmospheric temperature differences. The 

power forecasting can help a manufacturer’s device some operational strategies 

or policies in a way that can achieve better management [95-106].       

 This chapter aims to establish different ANN models in forecasting 

global solar energy using meteorological parameters namely dew-point, 

sunshine duration, wind speed, global solar energy, relative humidity and 

ambient temperature under composite climatic conditions. Cascade-forward 
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back propagation, feed-forward back propagation, generalized regression, 

elman back-propagation, layered recurrent, linear layer and radial basis 

function neural network model  have been developed for modelling the 

system using neural network toolbox of MATLAB. Simulations have been 

done by carrying out a comparative analysis of different ANN models and 

selecting the most suitable model based on statistical indicators and further 

employed for five meteorological stations across India that represents distinct 

climate zones such as hot and dry, cold and cloudy, warm and humid, 

moderate and composite climate zone. Simulations are based on sky-

conditions namely sunny/clear sky (type-a), hazy sky (type-b), partially 

foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions. 

The obtained results can be further extended in forecasting the power of a 

solar PV system for different sky-conditions under composite climatic 

conditions. Lastly, comparisons have been done with fuzzy logic based 

model using statistical error-tests to check for accuracy and supremacy of the 

artificial neural network model.                 

5.2 COLLECTION AND SCALING OF METEOROLOGICAL 

DATA  

 The 15 years averaged data have been obtained from National Institute 

of Solar Energy (NISE) and Indian Meteorological Department (IMD) for 

meteorological parameters namely sunshine hours, dew-point, global solar 

energy, relative humidity, ambient temperature and wind speed. Further, the 

normalization/scaling of the parameters have been done in 0.1 - 0.9 range and 

expressed by Eq. (5.1). The data have been obtained for five meteorological 

sites across India and are presented in Table 5.1 - Table 5.6.  
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Table 5.1 Measured and scaled data for composite climatic conditions 

Months 

Sunshine hours              

(hrs) 

Hg 

(MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 7.719 0.65 13.985 0.428 65.487 0.381 14.119 0.475 5.153 0.42 4.60 0.446 

February 7.936 0.594 16.788 0.449 59.643 0.496 18.581 0.557 7.848 0.28 4.90 0.448 

March 7.406 0.722 21.118 0.682 53.297 0.409 22.730 0.361 7.344 0.422 5.62 0.479 

April 9.22 0.718 25.214 0.609 36.188 0.456 30.027 0.538 8.417 0.350 5.72 0.433 

May 8.848 0.645 24.227 0.561 34.297 0.355 34.138 0.656 9.516 0.409 8.559 0.539 

June 7.133 0.599 20.912 0.638 52.560 0.383 33.399 0.530 10.589 0.458 16.14 0.491 

July 4.587 0.431 19.381 0.414 70.637 0.61 30.48 0.422 10.395 0.508 24.60 0.629 

August 5.552 0.531 18.802 0.538 79.359 0.429 29.14 0.599 9.57 0.379 26.06 0.609 

September 6.683 0.550 13.851 0.534 69.278 0.377 29.728 0.516 9.428 0.562 24.49 0.654 

October 9.329 0.713 18.334 0.542 64.519 0.534 26.179 0.492 6.339 0.371 12.43 0.629 

November 7.197 0.547 14.562 0.341 49.800 0.437 20.921 0.622 6.531 0.484 7.06 0.553 

December 5.261 0.595 12.124 0.574 65.683 0.484 15.995 0.468 5.933 0.444 3.33 0.366 
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Table 5.2 Measured and scaled data for warm and humid climatic conditions 

Months 

Sunshine hours              

(hrs) 

Hg 

(MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 8.94 0.701 17.64 0.524 71.32 0.515 25.46 0.223 8.22 0.432 20.33 0.467 

February 9.75 0.866 21.07 0.899 76.29 0.549 26.61 0.788 9.06 0.451 21.13 0.519 

March 9.05 0.882 23.53 0.594 73.75 0.318 27.84 0.799 6.98 0.503 20.77 0.540 

April 9.37 0.61 23.86 0.472 71.26 0.412 30.53 0.475 8.78 0.420 23.07 0.468 

May 8.83 0.626 22.87 0.753 67.14 0.452 31.71 0.506 7.49 0.583 24.49 0.498 

June 7.35 0.64 21.51 0.683 64.04 0.532 30.73 0.539 8.48 0.569 24.65 0.433 

July 6.18 0.534 18.87 0.661 62.25 0.465 30.53 0.649 10.04 0.455 22.74 0.501 

August 4.78 0.511 19.04 0.583 71.30 0.504 29.07 0.554 8.85 0.491 24.52 0.490 

September 6.16 0.582 19.66 0.596 79.09 0.542 29.10 0.216 8.41 0.442 24.63 0.436 

October 6.52 0.622 17.28 0.633 80.06 0.461 27.75 0.595 6.25 0.415 24.20 0.694 

November 5.81 0.547 15.13 0.566 83.73 0.467 25.64 0.519 11.58 0.461 22.71 0.577 

December 7.07 0.638 13.89 0.527 78.13 0.527 26.09 0.272 9.49 0.50 21.16 0.482 
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Table 5.3 Measured and scaled data for hot and dry climatic conditions 

Months 

Sunshine hours              

(hrs) 

Hg 

(MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 9.226 0.683 16.244 0.598 45.327 0.396 18.095 0.462 6.371 0.504 2.23 0.523 

February 9.714 0.694 19.311 0.485 41.857 0.41 19.867 0.535 6.116 0.376 4.37 0.48 

March 9.142 0.653 22.059 0.490 30.913 0.442 26.115 0.463 7.742 0.408 4.68 0.485 

April 9.867 0.633 23.554 0.656 23.975 0.379 32.910 0.618 5.696 0.349 6.71 0.435 

May 10.219 0.759 26.062 0.644 35.823 0.428 34.877 0.479 8.653 0.461 9.64 0.521 

June 8.937 0.682 23.354 0.587 45.914 0.573 33.520 0.553 14.038 0.555 19.38 0.678 

July 8.039 0.645 19.055 0.618 60.780 0.426 31.518 0.533 13.996 0.540 25.07 0.511 

August 8.097 0.675 20.157 0.716 62.331 0.422 31.445 0.471 5.988 0.462 25.39 0.499 

September 9.727 0.669 23.084 0.534 59.593 0.474 29.702 0.515 6.746 0.470 23.34 0.512 

October 9.790 0.794 19.978 0.522 42.026 0.503 28.457 0.511 4.375 0.414 15.29 0.626 

November 9.323 0.774 17.342 0.474 42.008 0.474 22.078 0.475 3.30 0.351 9.56 0.451 

December 8.503 0.809 14.671 0.317 48.582 0.554 18.639 0.570 3.214 0.362 7.82 0.538 
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Table 5.4 Measured and scaled data for moderate climatic conditions 

Months 

Sunshine hours              

(hrs) 

Hg 

(MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 9.497 0.529 16.998 0.607 59.887 0.49 19.781 0.464 1.493 0.504 11.58 0.494 

February 10.214 0.730 20.640 0.588 48.815 0.437 23.179 0.423 5.343 0.201 12.59 0.496 

March 9.9 0.695 22.667 0.60 41.278 0.459 26.277 0.492 3.234 0.344 5.08 0.303 

April 9.97 0.650 24.342 0.641 44.469 0.588 29.192 0.598 6.066 0.486 10.73 0.571 

May 10.832 0.720 25.393 0.612 55.212 0.608 29.138 0.406 11.756 0.521 18.39 0.525 

June 4.753 0.484 18.937 0.60 76.922 0.407 25.889 0.643 10.475 0.469 22.38 0.482 

July 4.271 0.283 15.119 0.503 86.028 0.523 23.913 0.544 7.931 0.304 21.78 0.546 

August 4.003 0.437 16.453 0.433 85.245 0.522 23.298 0.555 7.734 0.523 21.87 0.533 

September 5.567 0.530 18.404 0.535 84.233 0.555 24.07 0.388 4.675 0.518 21.58 0.575 

October 7.668 0.590 18.785 0.534 75.960 0.615 24.237 0.552 2.274 0.304 20.06 0.60 

November 8.460 0.607 17.527 0.469 71.969 0.404 22.401 0.484 2.00 0.450 18.12 0.418 

December 8.739 0.734 17.109 0.721 63.012 0.405 19.274 0.502 2.407 0.503 16.33 0.653 
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Table 5.5 Measured and scaled data for cold and cloudy climatic conditions 

Months 

Sunshine hours              

(hrs) 

Hg 

(MJ/m
2
) 

Relative Humidity               

(%) 

Ambient Temp. 

(
o
C) 

Wind Speed                       

(m/s) 

Dew Point                    

(
o
C) 

Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled Measured Scaled 

January 7.055 0.72 14.437 0.637 75.581 0.426 9.948 0.635 3.613 0.363 6.42 0.475 

February 6.264 0.606 16.575 0.511 71.839 0.529 10.242 0.551 3.804 0.404 6.36 0.495 

March 7.216 0.635 21.004 0.588 59.645 0.470 15.544 0.450 5.645 0.386 9.38 0.523 

April 3.79 0.352 19.967 0.541 63.533 0.523 18.258 0.501 7.633 0.476 15.24 0.646 

May 4.842 0.483 18.429 0.428 80.29 0.523 20.694 0.576 4.290 0.363 18.19 0.658 

June 3.487 0.453 16.416 0.593 85.50 0.568 21.04 0.600 3.633 0.351 20.80 0.536 

July 2.706 0.358 16.064 0.611 87.516 0.535 21.206 0.599 3.145 0.380 21.58 0.458 

August 2.158 0.414 14.253 0.520 89.226 0.560 20.642 0.519 1.226 0.189 21.23 0.49 

September 2.747 0.356 13.982 0.432 85.917 0.483 20.002 0.471 0.867 0.331 20.05 0.64 

October 5.871 0.557 15.004 0.464 80.742 0.654 18.39 0.603 2.290 0.466 17.79 0.467 

November 7.057 0.632 15.643 0.546 75.60 0.525 15.273 0.393 2.650 0.336 12.53 0.441 

December 7.597 0.638 15.632 0.634 74.403 0.593 11.889 0.344 0.839 0.268 10.04 0.527 
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The normalization of the data has been obtained by using Eq. (5.1) as: 

Ls  = [(( (Xmax  −  Xmin) 

(Lmax  −  Lmin)
)*(L – Lmin)) + Xmin]               (5.1) 

where  

L = measured data 

Ls = scaled/normalized data  

Lmax = maximum value of relevant set of data 

Lmin = minimum value of relevant set of data 

Xmax = maximum limit of normalized range 

Xmin = minimum limit of normalized range 

 5.3 ARCHITECTURE OF ARTIFICIAL NEURAL NETWORK 

 Model based on artificial intelligence techniques i.e. Artificial Neural 

Network (ANN) is designed in such a way that the variables at the output are 

calculated from variables at the input side by the composition of basic 

connections and functions. The architecture has an input layer of nine inputs, a 

hidden layer with tan-sigmoid function ‘tansig’ and an output layer as shown in 

Fig. 5.1. MATLAB neural network toolbox has been used for implementing a 

neural network algorithm. For training the network, Levenberg-Marquardt 

training algorithms have been used and can be defined by using ‘TRAINLM’ 

command in MATLAB as shown in Fig. 5.2. The output is modelled by using 

Eq. (5.2) as: 

y = ∑ (𝑤𝑖𝑗𝑥𝑖𝑗 +  𝜃𝑖
𝑛
𝑗=1 )                                                                                   (5.2) 

where xij is the jth neuron incoming signal (at the input layer), 𝜃𝑖 is the bias of i 

neuron and wij is the connection weight directed from j neuron to i neuron (at 

the hidden layer). 



 

  

  

134 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 ANN architecture used for forecasting global solar energy 

 In this chapter, cascade-forward back-propagation, feed-forward back-

propagation, elman back-propagation, generalized regression, layered 

recurrent, linear layer and radial basis function neural network architecture 

have been designed and simulated in MATLAB. The following can be briefly 

outlined for ANN model:-  

(a) Normalization and scaling of the input and target data has been 

done, and the range varies from 0 to 1. 

(b) Creation of a neural network. 

(c) Training and simulation of the neural network. 

(d) Generation of the output data. 

(e) De-normalize the output data. 

(f) Comparing the obtained data with target data. Performance can be 

evaluated by use of evaluation indexes. 
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Fig. 5.2 MATLAB neural network toolbox  

The variants of ANN architectures are discussed below as: 

5.3.1 Feed-Forward Neural Network (FFNN) 

 The feed-forward neural network comprises series of layers where the 

first layer connects the inputs to the network and every subsequent layer 

connects with the previous layer. The network output is obtained in the final 

layer. These networks are used for input-output mapping. Feed-forward neural 

network with neurons in the hidden layer can fit any input to output mapping 

problem. 

5.3.2  Cascade-Forward Neural Network (CFNN) 

 The cascade-forward neural networks are related and same as that of the 

feed-forward networks but such network creates connection its previous layer 
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to the subsequent layers. Similar to feed-forward neural networks, a two or 

more layer cascade network can have finite input to output relationship. 

5.3.3  Elman Neural Network (ENN) 

 These are feed-forward networks with the layered recurrent connection 

additions with tap delays. Elman networks with one or more hidden layers can 

learn any dynamic input to output relationship with enough number of neurons 

in the hidden layers. However, these networks make use of simple calculations 

at the cost of less reliable learning which results in a trade-off of reduced 

training calculations, but the risk of poorer accuracy.  

5.3.4  Generalized Regression Neural Network (GRNN) 

 These networks are used for function approximation. To fit the data 

closely, a spread smaller than the typical distance between input vectors has 

been used. To fit the data more smoothly, a larger spread has been used. 

5.3.5  Layered Recurrent Neural Network (LRNN) 

              The layered recurrent neural network is same as that of the time and 

distributed delay neural networks with finite input responses. Layer recurrent 

networks with two and more layers can estimate dynamic output from past 

inputs with enough hidden neurons and recurrent layer delays. 

5.3.6  Linear Neural Network (LNN) 

 Linear layers can be trained to model static and dynamic linear systems, 

given a low learning rate to be stable. 

5.3.7  Radial Basis Function Neural Network (RBFNN) 

 It is used for function approximation and pattern classification problems 
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which can easily design a radial basis function neural network with zero error. 

5.4 EVALUATION INDEXES  

 For validation of the models, evaluation indexes have been used and are 

defined as [107]: 

5.4.1 Mean Absolute Percentage Error (MAPE) 

 It is described as summing up the absolute error in each period divided 

by the measured values and then averaging the fixed percentages and the 

relationship is given by Eq. (5.3) as:  

 MAPE% = 
 1

𝑛
∑ |

𝐸

𝑚𝑖
| ∗ 100𝑛

𝑖=1       (5.3) 

where n is the number of observation, E = (mi - ei) is the absolute error, mi and 

ei  are the ith measured and forecasted data values, respectively. 

5.4.2  Normalized Mean Absolute Error (NMAE) 

 It is described by the following given Eq. (5.4) and can be expressed as: 

 NMAE% = 
 1

  𝑛
∑ |

𝐸

max (𝑚𝑖)
| ∗ 100𝑛

𝑖=1     (5.4) 

where n is the number of observation, E is the absolute error, mi and ei are the 

ith measured and forecasted data, respectively. Since the measured data changes 

significantly in a day i.e. from sunrise to sunset, so for the sake of fair 

comparison, the normalized mean absolute error have been preferred.  

5.4.3  Normalized Root Mean Square Error (nRMSE) 

 It is described by the following given Eq. (5.5) and expressed as: 

nRMSE% =  
√

1

𝑛
∑ |𝐸|2𝑛

𝑖=1

max (𝑚𝑖)
∗ 100     (5.5) 
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where E = (mi - ei) is the absolute error, n is the number of observation, mi and 

ei are the ith measured and forecasted data values, respectively. This definition 

of error is normalized over the maximum hourly measured data. It measures the 

mean magnitude of the absolute error.  

5.5 RESULTS AND DISCUSSIONS 

5.5.1 Modeling Variants of ANN Architectures   

 In the first part of this chapter, the variants of the artificial neural 

network architecture have been developed which include cascade-forward, 

feed-forward, elman back-propagation, generalized regression, layered 

recurrent, linear layer and radial basis function neural network under composite 

climatic conditions. It comprises an input layer, hidden layer with ‘tansig’ 

tangent sigmoid transfer function and ‘purelin’ linear transfer function in the 

output layer. Levenberg-Marquardt training algorithm was found to give a 

good prediction. For validation of the models, evaluation indexes have been 

used and are presented in Table 5.6.  

From Table 5.6, it is learned that among the different artificial neural 

network architecture investigated, the radial basis function neural network 

model gave the most accurate result as compared to other models with 

averaged mean absolute percentage error (MAPE) of 0.001%, normalized mean 

absolute error (NMAE) of 0.017% and normalized root mean square error 

(nRMSE) of 0.092% when the simulation is performed between the measured 

and forecasted data. 
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                                                                Table 5.6 Variants of ANN architectures along with evaluation indexes under composite climatic conditions 

Month 

Measured 

Hg 

(MJ/m
2
) 

Performance 

Measures 

ANN Architecture 

Cascade-

forward 

backdrop 

Elman 

backdrop 

Feed-

forward 

Generalized 

regression 

Layer 

recurrent 

Linear 

layer 

(train) 

Radial basis 

Jan 13.98 

Estimated Hg (MJ/m2) 13.98 13.98 13.99 13.91 13.93 13.95 13.95 

MAPE (%) 0.03 0.02 0.02 0.26 0.04 0.02 0.01 

NMAE (%) 0.76 0.45 0.49 6.21 0.93 0.50 0.20 

nRMSE (%) 1.04 0.79 0.80 7.90 1.78 1.17 1.11 

Feb 16.79 

Estimated Hg (MJ/m2) 16.76 16.80 16.90 16.76 16.82 16.79 16.79 

MAPE (%) 0.04 0.02 0.08 0.31 0.02 0.00 0.00 

NMAE (%) 0.78 0.47 1.52 6.70 0.42 0.00 0.00 

nRMSE (%) 1.26 0.94 2.02 8.50 0.63 0.00 0.00 

Mar 21.12 

Estimated Hg (MJ/m2) 21.08 21.16 21.13 21.30 21.10 21.12 21.12 

MAPE (%) 0.04 0.02 0.04 0.27 0.02 0.04 0.00 

NMAE (%) 1.07 0.51 1.02 7.22 0.62 1.19 0.00 

nRMSE (%) 1.89 0.76 1.26 9.64 1.40 1.47 0.00 

Apr 25.12 

Estimated Hg (MJ/m2) 25.31 25.15 25.15 25.26 25.21 25.22 25.21 

MAPE (%) 0.03 0.02 0.02 0.20 0.01 0.00 0.00 

NMAE (%) 0.81 0.45 0.58 5.42 0.17 0.10 0.00 

nRMSE (%) 1.39 0.83 1.28 6.71 0.34 0.12 0.00 

May 24.23 

Estimated Hg (MJ/m2) 24.2 24.24 24.25 24.28 24.25 24.23 24.23 

MAPE (%) 0.02 0.01 0.01 0.18 0.03 0.01 0.00 

NMAE (%) 0.49 0.33 0.29 5.08 0.70 0.37 0.00 

nRMSE (%) 0.69 0.44 0.86 5.69 0.98 0.46 0.00 

Jun 20.91 

Estimated Hg (MJ/m2) 20.8 20.91 20.93 21.17 20.86 20.91 20.91 

MAPE (%) 0.08 0.04 0.02 0.36 0.02 0.00 0.00 

NMAE (%) 1.90 0.92 0.45 8.95 0.49 0.00 0.00 

nRMSE (%) 2.57 1.23 0.76 11.86 0.93 0.00 0.00 

Jul 19.38 

Estimated Hg (MJ/m
2
) 19.48 19.36 19.34 19.31 19.32 19.38 19.38 

MAPE (%) 0.04 0.04 0.04 0.47 0.04 0.04 0.00 

NMAE (%) 0.97 0.92 0.77 10.24 0.89 0.79 0.00 

nRMSE (%) 1.58 1.18 1.21 12.13 1.17 0.97 0.00 
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                                    Table 5.6 Variants of ANN architectures along with evaluation indexes under composite climatic conditions (contd….) 

Month 

Measured 

Hg 

(MJ/m
2
) 

Performance 

Measures 

ANN Architecture 

Cascade-

forward 

backdrop 

Elman 

backdrop 

Feed-

forward 

Generalized 

regression 

Layer 

recurrent 

Linear 

layer 

(train) 

Radial basis 

Aug 18.80 

Estimated Hg (MJ/m2) 18.94 18.75 18.84 18.95 18.78 18.80 18.80 

MAPE (%) 0.12 0.04 0.05 0.54 0.03 0.01 0.00 

NMAE (%) 2.44 0.74 0.14 12.21 0.74 0.18 0.00 

nRMSE (%) 2.91 1.30 0.05 13.89 1.11 0.22 0.00 

Sep 13.85 

Estimated Hg (MJ/m2) 13.87 13.86 13.85 13.83 13.85 13.85 13.85 

MAPE (%) 0.03 0.01 0.01 0.24 0.01 0.00 0.00 

NMAE (%) 0.86 0.15 0.26 5.94 0.22 0.11 0.00 

nRMSE (%) 1.07 0.34 0.39 7.69 0.32 0.14 0.00 

Oct 18.33 

Estimated Hg (MJ/m2) 18.40 18.31 18.34 18.36 18.33 18.33 18.33 

MAPE (%) 0.03 0.01 0.02 0.21 0.01 0.01 0.00 

NMAE (%) 0.82 0.32 0.53 5.58 0.24 0.32 0.00 

nRMSE (%) 1.14 0.58 0.72 6.72 0.61 0.47 0.00 

Nov 14.56 

Estimated Hg (MJ/m2) 14.59 14.56 14.57 14.59 14.57 14.56 14.56 

MAPE (%) 0.03 0.01 0.01 0.21 0.01 0.02 0.00 

NMAE (%) 0.68 0.12 0.13 5.04 0.26 0.55 0.00 

nRMSE (%) 1.63 0.19 0.19 6.38 0.70 0.71 0.00 

Dec 12.12 

Estimated Hg (MJ/m2) 12.26 12.20 12.15 12.21 12.13 12.13 12.12 

MAPE (%) 0.06 0.03 0.08 0.37 0.03 0.03 0.00 

NMAE (%) 1.48 0.79 1.95 9.17 0.84 0.66 0.00 

nRMSE (%) 2.12 2.29 2.41 11.04 1.29 0.80 0.00 

Avg. 18.27 

Estimated Hg (MJ/m2) 18.31 18.27 18.29 18.33 18.26 18.27 18.27 

MAPE (%) 0.05 0.02 0.03 0.30 0.02 0.02 0.001 

NMAE (%) 1.09 0.51 0.68 7.31 0.54 0.40 0.017 

nRMSE (%) 1.61 0.91 1.00 9.01 0.94 0.54 0.092 
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5.5.2  Forecasting Solar Energy Employing the RBFNN and FFNN Model  

 In the second part of this chapter, by employing Radial Basis Function 

Neural Network (RBFNN) model, simulations have been carried out based on 

sky-conditions i.e. sunny sky (type-a), hazy sky (type-b), partially 

foggy/cloudy sky (type-c) and fully foggy/cloudy sky (type-d) conditions and 

applied for different meteorological stations with distinct climate zone across 

India and are presented in Table 5.7.  

 Further, it is evident from Table 5.7 that the RBFNN model is far 

accurate and precise with Mean Absolute Percentage Error (MAPE) of 

0.00646%, Normalized Mean Absolute Error (NMAE) of 0.0049% and 

normalized Root Mean Square Error (nRMSE) of 0.078% which shows that the 

error is within the permissible error limits. Similarly, the Feed-Forward Neural 

Network (FFNN) model is chosen at random for comparing the results with the 

RBFNN model. The obtained results have been further simulated based on sky-

conditions and for distinct climate zone across India and are presented in Table 

5.8. From Table 5.7 and Table 5.8, the following can be briefly summarized:- 

 (a)  Clear/Sunny sky (type-a) 

 For sunny/clear sky-condition, it has been observed from the computed 

data presented in Table 5.8 which employs the FFNN model, the minimum 

value of MAPE obtained is 0.44%, NMAE is 0.40% and nRMSE is 0.70%, 

whereas, in case of RBFNN model, the minimum value of MAPE obtained is 

1.1x10
-8 

%, NMAE is 1x10
-8 

% and nRMSE is 0.01363% as shown by the 

computed data presented in Table 5.7 by simulating the measured and 

forecasted data.  
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Table 5.7 Forecasted global solar energy employing the RBFNN model based on sky-conditions for distinct climate zones across India 

Climate 

Zone 
Sky-Conditions 

Global Solar Energy Hg 

(MJ/m
2
) 

MAPE 

(%) 

NMAE 

(%) 

nRMSE                

(%) 
Measured Fuzzy 

New Delhi  

(Composite) 

Clear/Sunny Sky 20.58 20.58 0.000008062 0.000007276 0.023162273 

Hazy Sky 18.12 18.10 0.000000012 0.000000010 0.014784684 

Partially Foggy/Cloudy Sky 12.51 12.51 0.000000023 0.000000017 0.015340431 

Fully Foggy/Cloudy Sky 11.37 11.30 0.000000041 0.000000018 0.019464528 

Chennai 

(Warm and Humid) 

Clear/Sunny Sky 23.62 23.62 0.000000014 0.0000000137 0.0130413684 

Hazy Sky 21.04 21.04 0.000000025 0.0000000222 0.0664993013 

Partially Foggy/Cloudy Sky 18.40 18.40 0.000000013 0.0000000009 0.0214053710 

Fully Foggy/Cloudy Sky 11.88 11.88 0.000000032 0.0000000140 0.0218700869 

Jodhpur 

(Hot and Dry) 

Clear/Sunny Sky 21.76 21.76 0.000000011 0.000000010 0.013635427 

Hazy Sky 19.79 19.80 0.000000015 0.000000014 0.015340431 

Partially Foggy/Cloudy Sky 18.16 18.16 0.000000018 0.000000014 0.016476619 

Fully Foggy/Cloudy Sky 15.75 15.78 0.000000007 0.000000003 0.004467361 

Shillong                       

(Cold and Cloudy) 

Clear/Sunny Sky 22.85 22.85 0.009598276 0.008828894 0.088976002 

Hazy Sky 19.25 19.25 0.006468338 0.004964164 0.078564044 

Partially Foggy/Cloudy Sky 15.93 15.93 0.000000025 0.000000016 0.019464087 

Fully Foggy/Cloudy Sky 11.22 11.22 0.0000000001 0.0000000001 0.0000000001 

Pune 

(Moderate) 

Clear/Sunny Sky 21.49 21.52 0.000000018 0.000000007 0.012756144 

Hazy Sky 20.41 20.42 0.000005699 0.000005086 0.024854072 

Partially Foggy/Cloudy Sky 18.71 18.71 0.000054524 0.000037123 0.014467972 

Fully Foggy/Cloudy Sky 13.73 13.73 0.000000038 0.000000020 0.020648805 
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Table 5.8 Forecasted global solar energy employing the FFNN model based on sky-conditions for distinct climate zone across India 

Climate 

Zone 
Sky-Conditions 

Global Solar Energy Hg 

(MJ/m
2
) 

MAPE 

(%) 

NMAE 

(%) 

nRMSE                

(%) 
Measured Fuzzy 

New Delhi  

(Composite) 

Clear/Sunny Sky 20.54 20.55 0.9098539 0.8237889 1.2491250 

Hazy Sky 18.12 18.14 0.6061892 0.5101836 1.0993097 

Partially Foggy/Cloudy Sky 12.51 12.51 1.6099966 1.1410815 2.0724769 

Fully Foggy/Cloudy Sky 11.37 11.31 2.2029587 0.9092731 1.5296920 

Chennai 

(Warm and 

Humid) 

Clear/Sunny Sky 23.41 22.77 3.0888259 2.7558138 1.3601598 

Hazy Sky 21.11 21.07 1.2512550 1.0771491 1.3079257 

Partially Foggy/Cloudy Sky 18.37 18.25 0.7914716 0.6094748 0.9984168 

Fully Foggy/Cloudy Sky 11.95 12.21 2.8557605 1.5777821 1.6175690 

Jodhpur 

(Hot and Dry) 

Clear/Sunny Sky 21.76 21.81 0.4471779 0.4079172 0.7088581 

Hazy Sky 19.79 19.68 0.8232167 0.6524025 1.2857318 

Partially Foggy/Cloudy Sky 18.16 18.25 1.0856531 0.7390095 1.5030082 

Fully Foggy/Cloudy Sky 15.75 15.54 0.0162731 0.0107279 0.0107279 

Shillong                       

(Cold and Cloudy) 

Clear/Sunny Sky 22.92 22.85 0.5298038 0.4953913 0.9758976 

Hazy Sky 19.25 19.25 0.8151853 0.6580462 1.2527437 

Partially Foggy/Cloudy Sky 16.28 16.24 1.9176360 1.3166599 1.6443384 

Fully Foggy/Cloudy Sky 11.62 11.63 0.0162731 0.0107279 0.0205869 

Pune 

(Moderate) 

Clear/Sunny Sky 21.49 21.48 0.6985575 0.6432756 1.2194507 

Hazy Sky 20.42 20.31 0.8042275 0.6318676 1.1171241 

Partially Foggy/Cloudy Sky 18.71 18.90 1.8603160 1.4328736 1.4152323 

Fully Foggy/Cloudy Sky 13.73 13.75 1.6115142 0.7257172 1.3800854 
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The error for the Radial Basis Function Neural Network (RBFNN) 

model is comparatively less and reduced than the Feed-Forward Neural 

Network (FFNN) model. Also, in both of the developed model i.e. the RBFNN 

and FFNN model, the error is observed to be minimum for Jodhpur station. 

This is due to the reason that the Jodhpur climatic conditions are hot and dry 

which prevail sunny weather throughout the year, with high variation in 

ambient temperature. During summer, the ambient temperature varies from 30-

35
o
C whereas, during winter, it varies from 5 - 25

o
C; so, the variation is high of 

the value of 10
o
C as illustrated in Table 5.3.   

Jodhpur climate is extreme, with high solar insolation during day time 

because of which the surrounding region got heated up very quickly and at 

night time also there is a clear sky because of which the heat absorbed by 

atmosphere got dissipated to the upper atmospheric region. The climate of 

Jodhpur is defined as hot and dry with sandy ground conditions as the relative 

humidity varies from 24 - 62% due to water surface bodies. In such climatic 

conditions, the design criteria should be for increasing power generation from 

solar energy technology based photovoltaic system. 

(b) Hazy sky (type-b) 

 For hazy sky-condition, it has been observed from the computed data 

presented in Table 5.8 which employs the FFNN model, the minimum value of 

MAPE obtained is 0.60%, NMAE is 0.51% and nRMSE is 1.09%, whereas, in 

case of RBFNN model, the minimum value of MAPE obtained is 1.2 x 10
-8 

%, 

NMAE is 1 x 10
-8 

% and nRMSE is 0.014% as shown by the computed data 

presented in Table 5.7 by simulating the measured and forecasted data.  
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The error for the RBFNN model is comparatively less and reduced than 

FFNN model. Also, in both of the developed model, the error is observed to be 

minimum for Delhi station that falls under composite climate zone. 

 The contributing factor for this sky-condition is the variation in relative 

humidity from 30 - 40% during dry days to 60 - 80% during wet days. The 

presence of high value of relative humidity is one of the main reasons that 

categorize Delhi under the composite climate zone and not under hot and dry 

climate zone as shown by the measured data presented in Table 5.1. Also, 

during the summer season, the solar insolation is high and in monsoon season 

the solar insolation is low with predominant diffuse radiation.  

 The sky is clear in winter; overcast and dull in monsoon season; and 

often hazy in the summer season. 

(c) Partially foggy/cloudy sky (type-c) 

For this sky-condition, it has been observed from the computed data 

presented in Table 5.8 which employs the FFNN model, the minimum value of 

MAPE obtained is 0.79%, NMAE is 0.60% and nRMSE is 0.99%, whereas, in 

case of RBFNN model, the minimum value of MAPE obtained is 1.3x10
-8 

%, 

NMAE is 9x10
-10 

% and nRMSE is 0.0214%, by simulating the measured and 

forecasted data respectively. 

The error for the RBFNN model is comparatively less and reduced than 

FFNN model. Also, in both of the developed models, the error is observed to 

be the minimum for Chennai station that falls under warm and humid climate 

zone. 

 The reason behind is that for this sky-conditions, the sky is partially 

cloudy as diffuse radiation is very intense during clear days and the dissipated 
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heat from the surface of the earth is generally marginal during the night 

because of the presence of clouds. Hence, ambient temperature variation is 

quite low. One of the main characteristics of this climate zone is the high 

amount of relative humidity that varies from 70-90% throughout the year. In 

summer, the temperature can go as high as 30-35
o
C during the day whereas, in 

winter, the maximum temperature is between 20-25
o
C during day time as as 

shown by the measured data presented in Table 5.2. 

(d)  Fully foggy/cloudy sky (type-d) 

 For this sky-condition, it has been observed from the data presented in 

Table 5.8 which employs the FFNN model, the minimum value of MAPE 

obtained is 0.016%, NMAE is 0.010% and nRMSE is 0.020%; whereas, in case 

of RBFNN model, the minimum value of MAPE obtained is 1.0 x 10
-10 

%, 

NMAE is 1.0 x 10
-10 

% and nRMSE is 1.0 x 10
-10 

% as shown by the computed 

data presented in Table 5.7 by simulating the measured and forecasted data.  

The error for the RBFNN model is comparatively less and reduced than 

the FFNN model. Also, in both of the developed models, the error is found to 

be the minimum for Shillong that falls under cold and cloudy climate zone. 

 This is due to the reason that the intensity of solar radiation is low 

during winter due to the presence of high amount of diffuse solar radiation 

which makes extremely cold winters. During summer, the ambient temperature 

varies between 20-25
o
C and 10-15

o
C during winter. The variation in humidity 

is high of the range 70-90% as shown  by the  measured data presented in 

Table 5.5. The sky for this climate zone is overcast and cloudy all throughout 

the year except during short summer.  
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 Further, the graphical representation showing a comparison of the 

measured data and forecasted data obtained by employing the RBFNN model 

and FFNN model have been shown in Fig. 5.3 - Fig. 5.7 based on sky-

conditions and further simulated for distinct climatic conditions across India. 
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Fig. 5.3 Graphical representation of measured and forecasted global solar energy employing 

the RBFNN and FFNN model for warm and humid climate zone  
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Fig. 5.4 Graphical representation of measured and forecasted global solar energy employing 

the RBFNN and FFNN model for hot and dry climate zone 
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Fig. 5.5 Graphical representation of measured and forecasted global solar energy employing 

the RBFNN and FFNN model for composite climate zone  
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Fig. 5.6 Graphical representation of measured and forecasted global solar energy employing 

the RBFNN and FFNN model for moderate climate zone  
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Fig. 5.7  Graphical representation of measured and forecasted global solar energy employing 

the RBFNN and FFNN model for cold and cloudy climate zone  
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From Fig. 5.3 - Fig. 5.7, it is evident that the RBFNN model i.e. the 

red dashed line (          ) exactly follows the black solid line (        ) which 

represents the measured data where in case of the FFNN model i.e. the blue 

dash dot line (         ) shows some deviation with the measured data. 

Therefore, it has been observed that the radial-basis function neural network 

model outperforms feed-forward neural network model.  

5.6 IMPLEMENTATION IN SOLAR PV SYSTEM 

 Forecasting of power is essential for planning the operation of solar 

PV systems. So, obtained results are further exploited for simulating with 

input parameters namely solar insolation, and cell temperature by employing 

ANN model for forecasting power in solar PV system using Heterojunction 

with Intrinsic Thin Layer (HIT) solar PV module of 210 Wp operated at 

maximum power point conditions, the performance specification are listed in 

Table A.2 of Appendix A. The ANN model employing radial basis function 

neural network have been implemented in forecasting power of a solar 

photovoltaic system and are presented in Table 5.9 under composite climatic 

conditions. 

 It has been observed from Table 5.9, that by employing the RBFNN 

model, the month-wise average mean absolute percentage error is 0.007% 

which is obtained by comparing the measured data with forecasted data in a 

solar PV system employing 210 Wp HIT solar PV module, which is within 

the permissible error limit. Also, the month-wise average normalized mean 

absolute error is 0.092% and normalized root mean square error observed is 

0.109% respectively. 
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               Table 5.9 Forecasted power in a solar PV system employing the RBFNN model under composite climatic conditions 

Month Hg 

(W/m
2
) 

Isc 

(A) 

Voc 

(V) 

Cell  

Temperature 

(
o
C) 

Power (W) 
MAPE  

(%) 

NMAE 

(%) 

nRMSE 

(%) 
Measured ANN 

Jan 361.15 0.42 81.47 28.14 20.65 20.61 0.007 0.120 0.140 

Feb 461.52 0.61 82.03 35.69 29.89 29.87 0.002 0.040 0.049 

Mar 548.24 0.62 83.64 40.12 31.56 30.61 0.006 0.030 0.025 

April 575.12 0.60 79.62 42.53 30.23 30.26 0.005 0.018 0.031 

May 559.67 0.59 77.35 46.22 30.53 30.53 0.002 0.022 0.028 

June 537.17 0.55 76.92 45.24 26.14 26.14 0.008 0.193 0.217 

July 537.81 0.05 76.66 48.28 25.68 25.71 0.020 0.167 0.199 

Aug 428.80 0.47 76.90 53.27 22.13 22.13 0.001 0.027 0.031 

Sep 437.51 0.50 77.78 51.62 23.68 23.68 0.016 0.236 0.288 

Oct 466.57 0.63 78.74 53.21 29.91 29.90 0.001 0.016 0.019 

Nov 369.82 0.44 78.48 45.08 21.20 21.23 0.014 0.205 0.257 

Dec 370.84 0.47 80.66 43.36 25.60 25.61 0.004 0.023 0.029 

Avg. 471.18 0.50 79.19 44.40 26.43 26.36 0.007 0.092 0.109 
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5.7  ANN MODEL FOR SHORT-TERM SOLAR ENERGY 

FORECASTING 

 Further, the generation of power in a solar photovoltaic system 

depends more on the changes in climatic conditions. Therefore, in the present 

work, different sky-conditions have been considered for forecasting power 

under composite climatic conditions and evaluation indexes have been used to 

validate the performance of models and shown in Fig. 5.8 – Fig. 5.11. 

5.7.1  Sunny/Clear Sky (Type-a) 

 1
st
 June 2016 was observed as a sunny day as the diffuse solar energy 

is lower than 25% of global solar energy and the sunshine duration is equal to 

or more than 9 hours. As shown in Fig. 5.8, the forecasted bell-shaped power 

curve on hourly basis was accurately following the measured power 

employing the ANN methodology and the considered duration is of 24 hours.  
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Fig. 5.8 Forecasted power in a solar photovoltaic system for a sunny day - 1st June 2016 with   

evaluation indexes 

 It has been observed that the sunny sky model gives the maximum 

power output of 16.92 W with MAPE of 0.0019%, NMAE of 0.013% and 
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nRMSE of 0.021%. In this sky-condition, time factor majorly affects the solar 

radiation than the factor of temperature. 

5.7.2  Hazy Sky (Type-b) 

 Similarly, 26
th 

December 2016 was observed as a hazy day as the 

diffuse solar energy is lower than 50% of global solar energy and the sunshine 

duration is between 7-9 hours. In this sky-condition as well, the forecasted 

bell-shaped power curve on hourly was accurately following the measured 

power employing the proposed artificial neural network methodology as 

illustrated in Fig. 5.9 and the considered duration is of 24 hours.  
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   Fig. 5.9 Forecasted power in a solar photovoltaic system for the hazy day - 26th December 2016 

with evaluation indexes 

For hazy sky model, the forecasted power is comparatively smaller than 

the sunny sky model with a maximum power output of 13.44 W, MAPE of 

0.054%, NMAE of 0.361% and nRMSE of 0.7488%. In a hazy sky day, the sun 

rays will get blocked and here a factor of temperature majorly affects the solar 

insolation as compared to a factor of time, which is not the same as incase of 

sunny sky day. 
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5.7.3  Partially Foggy/Cloudy Sky (Type-c) 

 Similarly, 3
rd 

August 2016 was observed as a partially foggy/cloudy sky 

as the diffuse solar energy is lower than 75% of global solar energy and the 

sunshine durationis between 5-7 hours. In this sky-condition, the power curve 

is biased during noon with a maximum power output of only 6.42 W, MAPE of 

0.024%, NMAE of 0.087% and nRMSE of 0.204% as shown in Fig. 5.10.  
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  Fig. 5.10 Forecasted power in a solar PV system for the partially foggy/cloudy day - 3rd August 

2016 with evaluation indexes 

 

The considered duration is of 24 hours and for this model, the sun rays 

are partially absorbed by the solar photovoltaic system and partially by the 

cloud cover and both the factor of time and temperature affects the solar 

radiation. 

5.7.4  Fully Foggy/Cloudy Sky (Type-d) 

 Similarly, 3
rd

 January 2016 was observed as a fully foggy/cloudy sky as 

the diffuse solar energy is greater than 75% of global solar energy and the 

sunshine duration is lower than 5 hours. For this sky-condition, the power 
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curve is biased during noon hours with a maximum power output of 2.97 W, 

mean absolute percentage error of 0.109%, the normalized mean absolute error 

of 0.716% and normalized root mean square error of 1.58% as represented by 

the measured and forecasted data shown in Fig. 5.11 employing artificial neural 

network methodology and the considered duration is of 24 hours. In this model, 

the sun rays will get fully blocked by the presence of cloud, and both the factor 

of time and temperature will affect the solar radiation. 
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Fig. 5.11 Forecasted power in a solar PV system for fully foggy/cloudy day - 3rd January 2016 

with evaluation indexes 

 

5.8  COMPARISON OF ANN MODELS WITH FUZZY LOGIC 

BASED MODEL 

A comparative analysis has been carried out between the ANN model 

employing radial basis function neural network and fuzzy logic based model in 

forecasting global solar energy for different sky-conditions and the 

performance has been measured based on evaluation indexes and are presented 

in Table 5.10.  
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    Table 5.10 Comparative analysis of ANN model with fuzzy logic based model for distinct climate zone across India 

Climate 

Zone 
Sky-Conditions 

Global Solar Energy Hg 

(MJ/m
2
) 

MPE 

(%) 

Measured Fuzzy ANN Fuzzy ANN 

New Delhi  

(Composite) 

Clear/Sunny Sky 20.57 20.2 20.58 -2.32 -0.03 

Hazy Sky 18.12 18.5 18.14 0.03 0.14 

Partially Foggy/Cloudy Sky 12.51 12.8 12.51 2.24 0.16 

Fully Foggy/Cloudy Sky 7.48 10.1 8.13 35.1 8.63 

Chennai 

(Warm and Humid) 

Clear/Sunny Sky 23.60 22.3 23.30 -5.83 -1.31 

Hazy Sky 21.11 20.8 21.10 -1.08 -0.03 

Partially Foggy/Cloudy Sky 18.33 18.9 18.37 0.10 0.02 

Fully Foggy/Cloudy Sky 11.88 12.1 12.22 3.27 2.14 

Jodhpur 

(Hot and Dry) 

Clear/Sunny Sky 21.76 21.7 21.73 -0.31 -0.05 

Hazy Sky 19.99 20.1 19.86 0.68 -0.51 

Partially Foggy/Cloudy Sky 18.08 18 18.16 -0.34 0.21 

Fully Foggy/Cloudy Sky 16.63 19.2 16.62 13.6 0.11 

Shillong                       

(Cold and Cloudy) 

Clear/Sunny Sky 22.85 22.7 22.78 -0.95 -0.25 

Hazy Sky 19.25 19.3 19.25 0.51 0.02 

Partially Foggy/Cloudy Sky 16.09 16.5 16.06 2.94 -0.16 

Fully Foggy/Cloudy Sky 11.22 11.6 11.23 1.30 0.46 

Pune 

(Moderate) 

Clear/Sunny Sky 21.49 21.5 21.48 -0.06 -0.05 

Hazy Sky 20.41 20.2 20.44 -0.57 0.25 

Partially Foggy/Cloudy Sky 18.71 18.9 19.18 1.16 0.90 

Fully Foggy/Cloudy Sky 13.73 13.8 13.75 4.95 0.30 
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On comparing the obtained results, the error in case of proposed ANN 

model employing radial basis function neural network is comparatively less 

and reduced as compared to fuzzy logic based model for each of the climate 

zone across the entire country which means that it provides better accuracy.  

5.9 CONCLUSION 

 In this chapter, the variants of ANN architectures i.e. cascade-forward, 

feed-forward, elman back-propagation, generalized regression, layered 

recurrent, linear layer and radial basis function neural network architecture  

have been developed and presented for modelling the system in forecasting 

global solar energy using meteorological parameters under composite climatic 

conditions. It has been concluded from the obtained results that the radial basis 

function neural network model has emerged to provide a better prediction with 

minimum error as compared to other models based on evaluation indexes.  

Further, simulations have been performed for forecasting global solar 

energy employing radial basis function neural network model based on sky-

conditions i.e. sunny sky (type-a), hazy sky (type-b), partially foggy/cloudy 

sky (type-c) and fully foggy/cloudy sky (type-d) condition and obtained results 

have been compared with feed-forward neural network model and further 

applied for distinct climate zone across India.  

It has been concluded that by employing radial basis function neural 

network, the obtained results are precise and accurate in each of the climate 

zone across the entire country. 

Obtained results are further exploited to forecast solar PV system 

power based on sky-conditions which employ 210 Wp HIT solar PV modules 

operated at MPPT conditions for composite climatic conditions.  
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It has been concluded from the results that for composite climatic 

conditions, the hazy-sky model outperforms other models as the measured 

data matches the forecasted data followed by the sunny-sky model, partially 

foggy/cloudy sky model and fully foggy/cloudy sky model. The result reveals 

that the model may be implemented for a broad series of applications. 

 Lastly, the comparison of the proposed ANN model has been made 

with fuzzy logic based model and the obtained results after statistical analysis 

reveals the accuracy and supremacy of the proposed ANN model as 

compared to fuzzy logic based model. 
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CHAPTER 6 

HYBRID INTELLIGENT MODEL FOR 

FORECASTING SOLAR ENERGY 

 

6.1  INTRODUCTION 

 In the previous chapters modelling based on Artificial Neural Network 

(ANN) and fuzzy logic were used for forecasting solar energy. This chapter 

presents the hybrid intelligent models for forecasting global solar energy using 

meteorological parameters. In this, a model underlying the principle of 

Adaptive Neural-Fuzzy Inference System (ANFIS) architecture has been 

presented, which provides a basis of Fuzzy Inference System (FIS) 

implemented within the framework of adaptive networks. Simulations have 

been carried out based on sky-conditions such as sunny sky (type-a), hazy sky 

(type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy (type-d) 

sky-conditions and for distinct climate zone i.e. warm and humid, hot and dry, 

cold and cloudy, moderate and composite climate across India. Further, the 

obtained results have been implemented for solar PV system based on sky-

conditions such as sunny, hazy, partially and fully foggy/cloudy sky-conditions 

under composite climatic conditions. Lastly, a comparison of the proposed 

model has been carried out with variants of artificial neural network model and 

fuzzy logic based model for validation of the results. 

This chapter is partially based on the following published papers: 

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Comparison of intelligent modelling 

techniques for solar energy forecasting and its application in solar PV systems,” IET 

Energy Systems Integration, Vol. 1, No.1, pp. 34-51, 2019. ISSN No. 2516-8401 

(Online). 
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 For modelling complex systems, an accurate analysis of a number of 

hidden layers with aid of artificial neural network is a difficult task. Therefore, 

to overcome these drawbacks, a hybrid intelligent model has been proposed 

which integrate the concept of Fuzzy Inference System (FIS) and Artificial 

Neural Network (ANN) in forecasting global solar energy. Recently, the 

ANFIS based model has attracted many researchers in various scientific fields 

due to the growing need of an intelligent technique to model the system [108]. 

Many researchers have worked in an application area where the fusion of ANN 

and fuzzy logic approach has been effectively implemented.  

 For real-time applications, a comprehensive survey has been carried out 

based on neuro-fuzzy rule generation algorithm for delivering maximum power 

to the load based on Maximum Power Point Tracking (MPPT) conditions as it 

gives a faster response with precision and accuracy.  Many grid-connected 

solar PV plants are based on photovoltaic technology, but varying sky-

conditions makes the output of the system non-deterministic and stochastic 

[109-115]. So, accurate forecasting is essential as the uncertainty of sky-

conditions greatly affects the power of solar PV systems. Lot of research has 

been done for forecasting global solar energy by employing ANFIS modelling; 

however, literature based on ANFIS modelling for forecasting global solar 

energy in different sky-conditions and for distinct climatic conditions is less 

reported. 

 This chapter proposes hybrid intelligent model i.e. ANFIS-based model 

for forecasting global solar energy based on sky-conditions using 

meteorological parameters. Simulations have been carried out for different 

climatic conditions across India with aid of statistical performance indicators. 
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The obtained results have been implemented to forecast power in solar PV 

system at Maximum Power Point (MPP) conditions. Lastly, the comparison of 

the ANFIS-based model has been made with variants of ANN model and the 

fuzzy logic based model for validation of the results. 

6.2 DEVELOPMENT OF ANFIS BASED MODEL FOR 

FORECASTING SOLAR ENERGY 

 The ANFIS involves hybrid learning rule for system optimization. It is 

a graphical analysis of Fuzzy-Sugeno system which lies within the framework 

of adaptive networks and is surrounded by neural learning capabilities. The 

main factor influencing the hybrid method is that the convergence rate is faster 

as search space dimensions have been reduced for the back-propagation neural 

network method. Neuro-fuzzy systems combine artificial neural network with 

fuzzy inference systems, which allows transformation of the system into if-then 

rules set, and the fuzzy inference system becomes a neural network structure 

with distributed connection strengths. Hybrid intelligent model is advantageous 

for research and applications based on an artificial neural network algorithms 

and adaptation of fuzzy linguistic rules. An adaptive network is basically a 

network structure comprising nodes and directional links with overall input-

output behaviour defined with a set of modifiable parameters and makes use of 

hybrid learning algorithm for identifying parameters of the fuzzy inference 

system. It combines least-squares and back-propagation gradient descent 

method to train the parameters of the membership function. In the forward 

phase of the network algorithm, identification of the least squares estimates has 

been done by the consequent parameters. In the backward phase, the 

derivatives of the squared error propagate backwards from the output layer to 
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the input layer wherein the premise parameters are updated by the gradient 

descent algorithm. ANFIS training uses algorithms for reducing the error. 

ANFIS is the fuzzy model put in the framework of the adaptive system for 

model building and validation to facilitate training and adaptation [116-120]. 

6.2.1 The ANFIS Architecture  

 The ANFIS network is a multilayer feed-forward network comprising 

nodes wherein each node is connected by directed links and is performing the 

function for generating single node output from incoming signals. In an ANFIS 

network, each link specifies signal direction from one node to another node. 

The adaptive network configuration perform a node function in signals coming 

from previous nodes for generating a single output at the node and each node 

function is parameterized and by changing the modifiable parameters, the 

overall functioning of the node and behaviour of the network are changed. The 

architecture of ANFIS has been shown in Fig. 6.1 which comprises five layers 

i.e. fuzzy layer, product layer, normalized layer, de-fuzzy layer and the output 

layer.  

 

 

 

 

 

 

 

 

Fig. 6.1 Architecture of ANFIS for forecasting global solar energy 
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The ANFIS architecture comprises a fuzzy inference system (FIS) and 

membership functions are tuned with the back-propagation algorithm and least 

squares method. The aim is to determine the optimum values of FIS with aid of 

algorithm. Optimization has been done during the training session wherein the 

error between the measured and targeted output is minimized. A hybrid 

algorithm which combines least squares estimates and gradient descent method 

has been used for optimization [121]. Consider that the ANFIS architecture has 

two inputs namely x and y and one output f.  

A first-order Takagi, Sugeno and Kang (TSK) fuzzy inference system 

has been implemented comprising two rules: 

Rule 1: If (x is A1) and (y is B1) then  f1 = p1x +q1y + r1 

Rule 2: If (x is A2) and (y is B2) then  f2 = p2x + q2y + r2 

where p1, p2, q1, q2, r1 and r2 represent the linear parameters; and A1, A2, B1 and 

B2 are non-linear parameters.  

While defining ANFIS architecture, one of the important considerations 

is that tuning of the number of training epochs, the number of fuzzy rules and 

the number of membership functions should be made accurately. A better and 

more accurate system can be well defined if the difference between desired 

output and measured data output is less.  

The integration of artificial neural network and fuzzy logic i.e. fuzzy 

neural network has been established; generally, the arrangements of fuzzy logic 

and the neural network are called as ANFIS.  

6.2.2  Layers of ANFIS 

 A concise outline of five layers of ANFIS architecture with inputs x, y 

and one output f has been shown in Fig. 6.1 which comprises five layers as: 
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(a)   Layer 1 

 For this layer, input node i comprises an adaptive node producing 

membership of the linguistic label. In this layer, A1, A2, B1 and B2 are the input 

of the system and O1,i defines the output of the i
th
 node of layer 1. Each 

adaptive node is a  square  node  with  square  function  represented by using 

Eq. (6.1) - Eq. (6.2). 

O1,i  = µA,i (x) for i = 1,2                 (6.1) 

O1,j = µB,j (y) for j = 1,2                  6.2) 

where µA,i and µB,j are the membership function degree, O1,i  and O1,j represents 

the output function, for fuzzy sets Ai and Bi respectively. 

(b)  Layer 2 

In layer 2, membership function weights are checked, which receives 

input Ai from the previous layer and acts as a membership function to represent 

fuzzy sets of respective input variables. Each node represents the fixed node 

labeled with ‘∏’ where the output is the product of all incoming signals which 

can be shown by using Eq. (6.3) as: 

O2,i  = µA,i (x) * µB,j (y) for i = 1,2                (6.3) 

which are the firing strengths of the rules. In general, any T-norm operator that 

performs fuzzy AND can be used as a node function in this layer. 

(c) Layer 3 

 This layer is marked with a circle labeled as ‘N’, which indicates the 

normalization to the firing strength from the previous layer. It does pre-

condition matching of fuzzy rules which otherwise compute activation level of 

each rule. In this layer, the i
th

 node computes the ratio of i
th 

rule’s strength to 
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the sum of all rules firing strength and the output can be expressed as O3,i  

using Eq. (6.4) as: 

O3,i  =  
𝑤𝑖

𝑤1+𝑤2
 for i = 1,2                                       (6.4) 

For convenience, outputs of this layer will be called as normalized firing 

strengths. 

(d)      Layer 4 

 In this, the output values are resulted from the rules inference and 

represent the product of the normalized firing rule strength and first-order 

polynomial which can be expressed by Eq. (6.5) as: 

O4,i  =  𝑤𝑖̅̅ ̅̅ 𝑓𝑖  = 𝑤𝑖 ̅̅̅̅ (pix + qi y + ri) for i = 1,2                          (6.5) 

where O4,i represents layer 4 output. In this layer, pi, qi and ri are linear 

parameters or consequent parameters. 

(e) Layer 5 

 This layer basically does the summation of all incoming signals coming 

from its previous layer i.e. layer 4 and does the transformation of fuzzy 

classification results into crisp values which comprise single fixed node labeled 

as ‘Σ’. This layer does the summing of all the incoming signals calculated 

using Eq. (6.6) as: 

O5,i = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖 = 
∑ 𝑤𝑖𝑓𝑖

𝑤1+𝑤2
 for i =1, 2                (6.6)  

Hence, when the premise parameters are fixed, the adaptive network 

output can be expressed as a combination of a consequent parameter and the 

behaviour of the network is considered to be the same as that of the Sugeno 

fuzzy model.  
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6.3 RESULTS AND DISCUSSIONS 

 In this chapter, ANFIS-based model has been employed for forecasting 

global solar energy with aid of meteorological parameters. For training and 

testing of the data, MATLAB software has been used with function “anfisedit” 

in the command window and evaluating the output by using the function 

“evalfis (input, tra)” where the term “input” contains the input data and “tra” 

represents the training data as shown in Fig. 6.2 respectively. 

 

              Fig. 6.2 ANFIS training data simulated in MATLAB with five inputs and one output 

 

Further, the ANFIS model structure simulated in MATLAB with five 

meteorological parameters as inputs namely wind speed, dew-point, sunshine 

hours, relative humidity, ambient temperature and global solar energy as the 

output have been shown in Fig. 6.3. Here, ground data of five meteorological 

stations have been considered using statistical performance indicators and are 

illustrated in Table 6.1. 
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Fig. 6.3 ANFIS model structure with five inputs and one output simulated in MATLAB 

 

 

From Table 6.1, following can be briefly summarized:- 

6.3.1 Clear/Sunny Sky (Type-a) 

 In sunny/clear sky-condition, the computed error is observed to be 

minimum for Jodhpur station in comparison to other station with averaged 

mean absolute percentage error of 1x10
-4

%. The reason behind is that 

Jodhpur enjoys hot and dry climatic conditions wherein sunny weather 

prevails all throughout the year.  

6.3.2 Hazy Sky (Type-b) 

 In hazy sky-condition, the computed error is observed to be minimum 

for the composite climate in comparison to other climatic conditions with 

averaged mean absolute percentage error of 5x10
-5

%. This is due to the 

presence of high value of relative humidity which varies about 25-35% 

during dry periods to 60-90% during wet periods. 
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       Table 6.1 ANFIS based model for forecasting global solar energy along with statistical performance indicators for distinct climate zone 

Climate 

Zone 
Sky-Conditions 

Global Solar Energy Hg 

(MJ/m
2
) 

MAPE 

(%) 

NMAE 

(%) 

nRMSE                

(%) 
Measured Fuzzy 

New Delhi  

(Composite) 

Clear/Sunny Sky 20.60 20.60 0.00013 0.00012 0.13798 

Hazy Sky 18.10 18.10 0.00005 0.00008 0.13700 

Partially Foggy/Cloudy Sky 12.52 12.52 0.00089 0.00006 0.19377 

Fully Foggy/Cloudy Sky 7.48 7.48 0.00004 0.00000 0.00000 

Chennai 

(Warm and Humid) 

Clear/Sunny Sky 23.60 23.60 0.00012 0.00012 0.11429 

Hazy Sky 21.11 21.11 0.00924 0.00852 0.19315 

Partially Foggy/Cloudy Sky 17.58 17.58 0.00750 0.00610 0.19967 

Fully Foggy/Cloudy Sky 12.30 12.20 0.00008 0.41493 0.49918 

Jodhpur 

(Hot and Dry) 

Clear/Sunny Sky 21.758 21.758 0.00010 0.00013 0.12458 

Hazy Sky 19.986 19.986 0.00006 0.00005 0.11210 

Partially Foggy/Cloudy Sky 18.075 18.075 0.00905 0.00007 0.13261 

Fully Foggy/Cloudy Sky 16.628 16.752 0.00544 0.00442 0.09626 

Shillong                       

(Cold and Cloudy) 

Clear/Sunny Sky 22.83 22.83 0.00966 0.00889 0.14512 

Hazy Sky 19.25 19.25 0.00662 0.00509 0.20678 

Partially Foggy/Cloudy Sky 16.09 16.09 0.00421 0.00267 0.24032 

Fully Foggy/Cloudy Sky 11.22 11.22 0.00001 0.00054 0.20333 

Pune 

(Moderate) 

Clear/Sunny Sky 21.49 21.52 0.10504 0.09868 0.28673 

Hazy Sky 20.42 20.43 0.03890 0.03146 0.21360 

Partially Foggy/Cloudy Sky 18.71 18.71 0.00180 0.00013 0.10925 

Fully Foggy/Cloudy Sky 13.73 13.83 0.00012 0.00006 0.13132 
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 6.3.3 Partially Foggy/Cloudy Sky (Type-c) 

 For this sky-condition, the error is observed to be minimum for warm 

and humid climate in comparison to other climate zone with mean absolute 

percentage error of 7.5x10
-3

%. This condition is apparently due to high 

diffused radiations owing to the cloudy conditions, which also results in the 

marginal dissipation of heat during the night.  

6.3.4 Fully Foggy/Cloudy Sky (Type-d) 

 In this sky-condition, the computed error is observed to be minimum 

for Shillong station in comparison to other station with mean absolute 

percentage error of 1x10
-5

%.   

The main contributing factor is that during winter the solar radiation 

intensity is comparatively lower with a high percentage of diffused solar 

radiation, which makes extremely cold winters.  

Further, the comparison of the measured and forecasted data obtained 

by using ANFIS based model for varying sky-conditions have been presented 

in Fig. 6.4 – Fig. 6.8 and further simulated for distinct climate zone across 

India. 

It has been observed from Fig. 6.4 - Fig. 6.8 that the forecasted data 

attained by employing the ANFIS-based model in varying sky-conditions is 

same as that of the measured data and the performance of the model is 

satisfying. 
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Fig. 6.4 Graphical representation of measured and forecasted global solar energy using 

ANFIS methodology for warm and humid climate zone 
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Fig. 6.5 Graphical representation of measured and forecasted global solar energy using 

ANFIS methodology for hot and dry climate zone 
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Fig. 6.6 Graphical representation of measured and forecasted global solar energy using 

ANFIS methodology for composite climate zone 

 

 

 

 



 

  

  

175 
 

 

 

 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
12

14

16

18

20

22

24

26

28

30

(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
12

14

16

18

20

22

24

26

28

30

Fully foggy/cloudy sky (Type-d)

  Measured GSR (MJ/m
2
)

   ANFIS

 

Partially foggy/cloudy sky (Type-c)

  Measured GSR (MJ/m
2
)

  ANFIS

                        

(b)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
10

12

14

16

18

20

22

24

26

28

30

G
lo

b
a
l 

S
o
la

r 
E

n
e
rg

y
 (

M
J/

m
2
)

G
lo

b
a
l 

S
o
la

r 
E

n
e
rg

y
 (

M
J/

m
2
)

Hazy sky (Type-b)

  Measured GSR (MJ/m
2
)

   ANFIS

                            

(c)

Jan Jun Jul Aug Sep Oct Nov
10

12

14

16

18

20

22

24

26

28

30

Sunny/Clear sky  (Type-a)

  Measured GSR (MJ/m
2
)

  ANFIS

 

(d)

 

Fig. 6.7 Graphical representation of measured and forecasted global solar energy using 

ANFIS methodology for moderate climate zone 
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Fig. 6.8  Graphical representation of measured and forecasted global solar energy using  

ANFIS methodology for cold and cloudy climate zone 

 

 

 

 

 

 



 

  

  

177 
 

6.4 IMPLEMENTATION OF ANFIS-BASED MODEL FOR SOLAR 

PV APPLICATIONS 

 Attributing to meteorological factor, the solar PV power output 

fluctuates along with the solar insolation intensity, which shows random 

behaviour based on the topographical location and seasonal variation and is 

difficult to control. In the present work, 250 Wp multi-crystalline solar PV 

modules have been used whose performance specification are listed in table 

A.1 of Appendix. The ANFIS based model has been employed to forecast the 

behaviour of power generation in a solar photovoltaic system and shown in 

Table 6.2 for composite climate zone. 

From Table 6.2, it is evident that the mean absolute percentage error of 

a solar photovoltaic system is 0.0077% by employing ANFIS based model, 

which is accurate and within the permissible error limit. Further, it is to be 

noted that for the winter season (January), the mean absolute percentage error 

is 0.0057%; for the summer season (May), the mean absolute percentage error 

obtained is 0.0027% respectively. The value of mean absolute percentage 

error is comparatively large for the rainy season (July) of the value of 

0.0220%, due to large uncertainties associated with the data.  

The ANFIS methodology integrates the features of fuzzy logic and 

artificial neural network which increases the system accuracy, robustness and 

adaptability with the non-linearity associated with the data. 

6.5 SHORT-TERM PV POWER FORECASTING USING ANFIS 

BASED MODEL  

 The daily power generation in a solar photovoltaic system based on 

the performance characterization is presented in Fig. 6.9. 
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Table 6.2 Forecasted power of a solar PV system employing ANFIS modelling under composite climate zone 

Month 
Vpmax 

(V) 

Ipmax 

(A) 

Solar 

Irradiance 

(W/m
2
) 

Voc          

(V) 

Isc              

(A) 

Cell  

Temp.  

(
o
C) 

Power 

(W) 
MAPE  

(%) 

NMAE 

(%) 

nRMSE  

(%) 

Measured Forecasted 

Jan 60.48 1.05 341.98 69.5 1.1 20.80 64.15 64.12 0.0057 0.0027 0.0031 

Feb 59.95 1.49 450.78 69.6 1.5 28.19 89.61 89.57 0.0022 0.0017 0.0020 

Mar - - - - - - - - - - - 

April - - - - - - - - - - - 

May 56.93 1.38 557.92 66.4 1.4 44.53 79.08 79.06 0.0027 0.0020 0.0023 

June 57.57 1.20 528.54 66.2 1.2 42.32 68.28 70.19 0.0346 0.0262 0.0460 

July 57.03 1.02 532.32 66.3 1.0 39.15 59.03 59.03 0.0220 0.0156 0.0354 

Aug 57.07 1.03 411.69 66.7 1.1 38.15 59.52 59.52 0.0036 0.0022 0.0027 

Sep 57.36 1.11 418.73 66.9 1.2 35.56 64.35 64.28 0.0052 0.0024 0.0029 

Oct 57.78 1.52 464.71 68.1 1.6 37.75 88.08 88.09 0.0003 0.0002 0.0002 

Nov 58.90 1.15 346.12 68.6 1.2 29.33 68.21 68.21 0.0005 0.0003 0.0003 

Dec 60.09 1.26 359.34 69.8 1.3 23.94 76.30 76.30 0.0006 0.0004 0.0006 

Avg. 58.32 1.22 441.21 67.8 1.3 33.97 71.66 71.84 0.0077 0.0054 0.0096 

*Data could not be arranged for these months  
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       Fig 6.9 Photovoltaic system power generation on daily basis for 3 days 

 Fig. 6.9 presents the generation of power for 3 days i.e. 9
th

, 10
th
 and 

11
th

 June and the days considered represent sunny days so solar radiation 

remains almost the same. Thus, it has been concluded that a high correlation 

prevails for generated power on a daily basis. The power output is available 

during the entire day and causes fluctuation to the grid when integrating 

unsteady photovoltaic power into the grid. Since many factors are involved 

which affects the solar photovoltaic system power output but the main factor 

is the variation in sky-condition, which makes it difficult to examine the 

performance characteristics with a single model.  

 In this, the power in a solar PV system is classified based on 

different sky-condition such as sunny sky, hazy sky, partially and fully 

foggy/cloudy sky respectively. The data has been collected on a daily basis 

and arranged within 1 hour for short-term PV power forecasting. The 

ANFIS-based model has been implemented to forecast the behaviour of a 

solar PV system under composite climatic conditions. The architecture of 

ANFIS simulated in MATLAB with two inputs namely cell temperature, 

solar irradiance and power output are shown in Fig. 6.10.  
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 Fig. 6.10 ANFIS model structure with two inputs and one output simulated in MATLAB  

 

  Further, the graphical representation between the measured and forecasted 

power employing ANFIS modelling technique under four weather types is shown 

in Fig. 6.11. 
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Fig 6.11 Graphical analysis of PV power output in a solar photovoltaic system 
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From Fig. 6.11, it is evident that the generation of power in a solar 

PV system varies significantly with sky-conditions. It has been observed 

that the hazy sky model performs well in power forecasting of solar PV 

system. This observation reveals that the forecasting model should be based 

on sky classifications. 

6.6 COMPARISON OF ANFIS-BASED MODEL WITH ANN 

MODELS  

 The proposed ANFIS-based model is compared with the ANN model 

trained with the feed-forward neural network, linear layer network in 

forecasting global solar energy. Also, the comparison has been made with 

generalized regression neural network and the performance is measured 

using statistical performance tests and shown in Table 6.3. 

It has been observed from Table 6.3, that the ANFIS-based model 

provides accurate results with MAPE of 2.1 x 10
-7

% as compared to ANN 

model. The value of MAPE obtained by employing feed-forward neural 

network is 0.0020%, with generalized regression neural network, the mean 

absolute percentage error obtained is 0.30%, and with linear layer neural 

network, the mean absolute percentage error obtained is 0.016%. 

6.7 COMPARISON OF INTELLIGENT MODELS WITH 

EMPIRICAL MODELS  

Further, the comparative analysis of ANFIS based models have 

been made with fuzzy logic, ANN and with empirical models using 

multiple regression analysis. The performance has been evaluated using 

statistical validation test for composite climate of India and are presented 

in Table 6.4. 
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It has been observed from Table 6.4 that the hybrid intelligent models 

perform best in comparison to other models for forecasting global solar 

energy. The average mean percentage error obtained by using regression 

models is 1.67% for composite climatic conditions. However, the obtained 

result is far better by using intelligent models for global solar energy 

forecasting. With fuzzy logic methodology, the average mean percentage error 

reduced to 0.41% which is comparatively lesser than the empirical model 

using multiple regression analysis. 

The mean percentage error further reduced to 0.12% by using the ANN 

model trained with feedforward back-propagation neural network. Lastly, by 

using hybrid intelligent model i.e. ANFIS methodology, the averaged mean 

percentage error further reduced to 3.84 x 10
-5

% which provides accurate 

results as compared to other models.  

It is, therefore, revealed from the results that by employing hybrid 

intelligent models, the obtained error is less. This is due to the reason that the 

ANFIS-based model presents a specified mathematical structure and makes it a 

good adaptive approximator. Further, for a network of similar complexity, the 

ANFIS model provides better learning ability and reduces convergence error. 

The ANFIS model achieves non-linear mapping and shows supremacy to the 

neural network and other methods of similar complexity. 
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Table 6.3 Comparison of ANFIS-based model with ANN model 

Month 

Measured  

Hg 

(MJ/m
2
) 

ANFIS FFNN GRNN LNN 

Forecasted 

 Hg            

(MJ/m
2
) 

MAPE       

(%) 

Forecasted 

 Hg            

(MJ/m
2
) 

MAPE 

 (%) 

Forecasted  

Hg            

(MJ/m
2
) 

MAPE 

(%) 

Forecasted 

Hg            

(MJ/m
2
) 

MAPE 

(%) 

Jan 13.985 13.98 0.00000016 13.969 0.0018 13.91 0.26 13.951 0.021 

Feb 16.788 16.79 0.00000017 16.903 0.0047 16.76 0.31 16.788 0.000 

Mar 21.118 21.12 0.00000020 21.131 0.0019 21.30 0.27 21.123 0.044 

Apr 25.214 25.21 0.00000010 25.166 0.0008 25.26 0.20 25.215 0.004 

May 24.227 24.23 0.00000020 24.251 0.0009 24.28 0.18 24.230 0.013 

Jun 20.912 20.91 0.00000025 20.931 0.0009 21.17 0.36 20.912 0.000 

Jul 19.381 19.38 0.00000014 19.339 0.0019 19.31 0.47 19.381 0.036 

Aug 18.802 18.80 0.00000021 18.837 0.0015 18.95 0.54 18.804 0.008 

Sep 13.851 13.85 0.00000019 13.854 0.0008 13.83 0.24 13.853 0.004 

Oct 18.334 18.33 0.00000027 18.339 0.0011 18.36 0.21 18.335 0.012 

Nov 14.562 14.56 0.00000011 14.568 0.0004 14.59 0.21 14.564 0.024 

Dec 12.124 12.12 0.00000051 12.151 0.0071 12.21 0.37 12.127 0.027 

Avg. 18.275 18.27 0.00000021 18.287 0.0020 18.33 0.30 18.273 0.016 
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Table 6.4 Comparative analysis of intelligent models with empirical models under composite climate zone 

Month 

Measured 

Hg                    

(MJ/m
2
) 

Regression Fuzzy ANN ANFIS 

Forecasted 

Hg 

(MJ/m
2
) 

MPE 

(%) 

RMSE             

(%) 

Forecasted 

Hg 

(MJ/m
2
) 

MPE         

(%) 

RMSE             

(%) 

Forecasted 

Hg 

(MJ/m
2
) 

MPE        

(%) 

RMSE         

(%) 

Forecasted 

Hg 

(MJ/m
2
) 

MPE              

(%) 

RMSE                   

(%) 

Jan 13.98 14.02 1.21 1.24 13.85 -0.79 0.574 13.97 -0.12 0.05 13.98 -0.00002964 0.000000000 

Feb 16.79 16.79 0.96 1.90 16.62 -0.82 0.838 16.90 0.82 0.21 16.79 -0.00004093 0.000000000 

Mar 21.12 21.11 1.53 1.95 21.12 0.19 0.973 21.13 0.12 0.09 21.12 -0.00004902 0.000000002 

Apr 25.21 25.25 0.89 1.58 25.16 -0.13 1.393 25.07 -0.18 0.13 25.12 -0.00003183 0.000000001 

May 24.23 24.22 0.31 1.96 23.58 -2.5 1.405 24.25 0.07 0.05 24.23 -0.00002040 0.000000002 

Jun 20.91 20.93 2.58 1.90 21.23 1.7 1.361 20.93 0.06 0.04 20.91 -0.00007744 0.000000002 

Jul 19.38 19.38 3.23 1.69 19.53 2.07 3.629 19.34 -0.28 0.11 19.38 -0.00002974 0.000000000 

Aug 18.80 18.85 3.51 1.78 18.98 0.69 2.582 18.84 0.25 0.05 18.80 -0.00005338 0.000000001 

Sep 13.85 13.90 1.37 1.87 13.89 0.85 0.905 13.85 0.04 0.00 13.85 -0.00002834 0.000000000 

Oct 18.33 18.36 0.39 1.45 18.72 2.24 0.728 18.34 0.04 0.02 18.33 -0.00002741 0.000000001 

Nov 14.56 14.58 0.76 1.79 14.48 -0.51 0.444 14.57 0.05 0.00 14.56 -0.00002199 0.000000000 

Dec 12.12 12.12 3.27 1.97 12.3 1.92 0.559 12.15 0.54 0.14 12.12 -0.00005155 0.0000000009 

Avg. 18.27 18.29 1.67 1.76 18.29 0.41 1.28 18.28 0.12 0.08 18.27 -0.00003847 0.000000001 
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6.8 CONCLUSION 

 In this chapter, a model underlying the principle of ANFIS 

architecture has been established in forecasting global solar energy with aid 

of meteorological parameters namely sunshine hours, global solar energy, 

wind speed, relative humidity, ambient temperature and dew-point. Three 

criteria namely mean absolute percentage error, normalized mean absolute 

error and normalized root mean square error have been used for verifying the 

forecasting errors of proposed ANFIS based models. Simulations have been 

carried out for varying sky-conditions i.e.  sunny sky (type-a), hazy sky 

(type-b), partially foggy/cloudy sky (type-c) and fully foggy/cloudy sky 

(type-d) conditions and successfully applied for distinct climate zone across 

India.  

It has been concluded from the overall statistical analysis that by 

employing hybrid intelligent model, the error has been reduced significantly 

for each of the climate zone across the entire country. Also, the obtained 

results reveals that the sunny/clear sky (type-a) model performs better for hot 

and dry climate zone as compared to other climate zone. Similarly, the hazy 

sky (type-b) model provides favourable results for composite climate zone, 

partially foggy/cloudy sky (type-c) model favours warm and humid climate 

zone and lastly, fully foggy/cloudy sky (type-d) model achieves favourable 

results for cold and cloudy climate zone, respectively. 

Obtained results are further exploited to forecast solar PV system 

power based on sky-conditions which employ 250 Wp Multi-crystalline solar 

PV modules operated at MPPT conditions for composite climatic conditions. It 
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has been concluded that the hazy sky model perform better than other sky 

model for composite climate zone. 

Further, the proposed model has been compared with the variants of 

ANN models i.e. feed-forward neural network, generalized regression neural 

network and linear layer neural network. It has been observed that the 

proposed model underlying the principle of ANFIS methodology reveals 

precise and accurate results.  

Also, a comparison of the proposed model has been made with the 

fuzzy logic based model and traditional regression models. It has been 

concluded from the obtained results that the hybrid intelligent models 

provides convenience and supremacy to other model.  
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CHAPTER 7 

SOLAR ENERGY FORECASTING APPLICATIONS  

FOR SOLAR PV SYSTEMS 

7.1  INTRODUCTION 

 In the previous chapter, the solar energy forecasting is performed using 

hybrid intelligent model consisting of fuzzy inference systems and artificial 

neural network. This chapter is based on the application of solar energy 

forecasting in solar photovoltaic systems. As the power from solar energy 

sources is fluctuating and nonlinear in nature, therefore, the power variation in 

a solar photovoltaic system can lead to the unstable operation of the power 

system. Therefore, intelligent approaches based on fuzzy logic, Artificial 

Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) have been used for 10 minutes ahead solar energy forecasting 

fluctuations in solar PV systems. Using the above model, faster convergence 

rate and stronger training and learning ability may be achieved. The proposed 

work would be useful for power engineers in proper operation and control of 

the power plants. The short-term PV power forecasting may be implemented 

for many applications such as providing appropriate control for PV system 

integration, optimization, power smoothening, real-time power dispatch which 

may mitigate the issues of power fluctuations obtained from solar PV systems. 

 

This chapter is partially based on the following published papers: 

1. Gulnar Perveen, M. Rizwan and Nidhi Goel, “Performance mapping of solar thermal 

technologies,” Proceedings of International Conference on Renewable Energy and 

Sustainable Climate (Solaris 2019), Feb 07-09, 2019, Jamia Millia Islamia, Delhi, 

India. 
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7.2  COLLECTION OF DATA 

  The data for solar irradiance, ambient temperature, cell temperature, 

relative humidity have been collected from National Institute of Solar Energy 

(NISE) for Delhi location at 10 minutes time interval and used as input for very 

short-term power forecasting in a solar PV system.  

7.3 INTELLIGENT APPROACH FOR SHORT-TERM SOLAR 

ENERGY FORECASTING 

 The power output from renewable energy sources is seeking attention 

due to advancement in the field of solar PV systems including enhanced 

efficiency of solar cells. In the current situation, bidding on power has been 

done on 10 minutes timescale by most of the distribution companies. Further, 

the uncertainty and the variability associated with the solar PV power plant 

lead to the inappropriate operation. Hence, this mandates the short-term power 

forecasting for successfully and efficiently integrating the power plants into the 

utility grid. 

 In this chapter, an intelligent modelling technique such as fuzzy logic, 

artificial neural network and hybrid intelligent model have been presented for 

very short-term power forecasting of a solar photovoltaic system under 

composite climatic conditions. The input includes the parameters such as solar 

irradiance, cell temperature and solar photovoltaic generation at a time scale of 

10 minutes for the day [122-129]. 

 The power generation has been affected by many parameters such as 

climatic variations, solar insolation, solar panel temperature, ambient 

temperature and the topographical position. So, it becomes difficult to define 

the output with single model; therefore, the output is modelled based on 
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different weather conditions such as sunny, hazy, partially foggy/cloudy and 

fully foggy/cloudy sky-conditions using meteorological parameters as these 

factors make a significant impact on solar PV system power output. Solar 

irradiance is the factor by which the PV power is most significantly gets 

affected. The PV power output estimation can be expressed by Eq. (7.1) as: 

PPV = [𝑃𝑃𝑉,𝑆𝑇𝐶 ∗
𝐺𝑇

1000
∗ [1 − 𝛾 ∗ (𝑇𝑗 −  25)]] ∗ 𝑁𝑃𝑉𝑠 ∗  𝑁𝑃𝑉𝑝   (7.1) 

 and 𝑇𝑗 =  𝑇𝑎𝑚𝑏 +
𝐺𝑇

800
∗ (𝑁𝑂𝐶𝑇 - 20)                 (7.2) 

where PPV,STC represents the rated power output of solar PV system of single 

array at maximum power point, PPV is the solar PV array power output at MPP, 

GT is solar irradiance at STC in W/m
2
, NPVS represents the series PV arrays, 𝛾 is 

temperature parameter at Maximum Power Point (MPP), NPVP represents the 

parallel PV arrays, Tamb is ambient temperature in 
o
C, Tj is the temperature of 

the solar panel in 
o
C and NOCT is a constant.  

 Further, weather conditions such as cloudy, dusts have large influence 

on solar irradiance reaching to the PV panels by scattering and reflecting, 

thereby reducing the direct radiation to the ground. Therefore, a good and 

accurate forecasting model for solar energy requires an intelligent approach 

which uses historical PV power and meteorological parameters.  

7.4 EVALUATION INDEXES  

 The effect of the different methods of training is investigated by means 

of some evaluation indexes. These indexes aim at assessing the accuracy of the 

forecasts and the related error, it is therefore necessary to define the indexes. 
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7.4.1 Mean Absolute Percentage Error (MAPE) 

 The hourly error eh is the staring definition given as the difference 

between the hourly mean values of the power measured in the h-th hour Pm,h 

and the forecast Pp,h  provided by the adopted model. 

 eh = Pm,h  - Pp,h  (W) 

From the hourly error expression and its absolute value, other definitions can 

be inferred; i.e., the well-known mean absolute percentage error (MAPE): 

 MAPE% = 
 1

𝑛
∑ |

𝑒ℎ 

P𝑚,ℎ 
| ∗ 100𝑛

𝑖=1      (7.3) 

where n is the number of sample (hours) considered, usually it is calculated for 

a single day, month, or year. 

7.4.2  Normalized Mean Absolute Error (NMAE) 

 Since the hourly measured power Pm,h  significantly changes during the 

same day (i.e., sunrise, noon, and sunset), for the sake of a fair comparison, in 

this chapter normalized mean absolute error have been preferred. 

 NMAE% = 
 1

   𝑛
∑ |

𝑒ℎ 

C
| ∗ 100𝑛

𝑖=1     (7.4) 

where n is the number of sample (hours) considered and the percentage of the 

absolute error is referred to the rated power C of the plant, in place of the 

hourly measured power Pm,h. It is largely used to evaluate the accuracy of 

predictions and trend estimations.  

7.4.3  Normalized Root Mean Square Error (nRMSE) 

 It is based on the maximum hourly power output Pm,h described by the 

Eq. (7.5) and expressed as: 

nRMSE% = 
√

1

𝑛
∑ |𝑒ℎ|2𝑛

𝑖=1

max (P𝑚,ℎ)
∗ 100     (7.5) 
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This definition of error is the well-known root mean square error 

(RMSE) which has been normalized over the maximum hourly power output 

Pm,h measured in the considered time range, for the sake of a fair comparison.  

7.5 RESULTS AND DISCUSSIONS 

 The solar PV power forecasting is an important element for smart grid 

approach which helps in optimization of the smart energy management system 

and has the ability to integrate the renewable power generation in an efficient 

manner.  

 Considering different weather conditions, various seasons are chosen 

accordingly for covering wider aspects of the developed model. Since the 

power generating from solar energy resource is fluctuating in nature, so,  it 

becomes difficult to estimate power output with mathematical models; 

therefore, intelligent approaches based on fuzzy logic, ANN and ANFIS 

models have been presented for power forecasting of solar PV system.  

 In this research, 250 Wp Multi-crystalline and 210 Wp Heterojunction 

with Intrinsic Thin Layer (HIT) solar PV modules have been considered whose 

performance characteristics have been shown in Table A.1 - Table A.2 of 

Appendix A respectively.  

7.5.1  Intelligent Modelling for Short-Term Power Forecasting in Solar 

PV System Employing 210 Wp HIT PV Modules 

  Intelligent modelling techniques i.e. fuzzy logic, ANN and ANFIS 

modelling have been applied in forecasting power of a solar PV system and are 

presented in Table 7.1.  
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 It has been observed from Table 7.1 that the month-wise average mean 

absolute percentage error using fuzzy logic methodology is 0.10%; for ANN 

methodology, the mean absolute percentage error reduced to 0.04%; and for 

ANFIS methodology the mean absolute percentage error further reduced to 

0.01% which reveals that the obtained results are precise and far accurate as the 

computed error is less.  

This is due to the reason that ANFIS based model integrates the 

features of both fuzzy logic approach and artificial neural network.  Further, 

the graphical representation between the measured and forecasted power 

employing different methodologies have been presented in Fig. 7.1.  
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Fig. 7.1 Graphical analysis of measured and forecasted PV power employing fuzzy logic, 

ANN and ANFIS methodologies 
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Table 7.1 Intelligent methodologies for forecasting power in a solar PV system employing HIT solar PV modules under composite climate zone 

Month 
Solar 

Irradiance 

(W/m
2
) 

Voc        

(V) 

Isc 

(A) 

Cell 

Temp      

(
o
C) 

Measured 

Power            

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power              

(W) 

MAPE           

(%) 

NMAE 

(%) 

nRMSE 

(%) 

Forecasted 

Power              

(W) 

MAPE           

(%) 

NMAE 

(%) 

nRMSE 

(%) 

Forecasted 

Power              

(W) 

MAPE           

(%) 

NMAE 

(%) 

nRMSE 

(%) 

Jan 361.15 81.47 0.42 28.14 20.80 19.79 0.18 0.09 0.11 20.46 0.01 0.01 0.02 20.61 0.00 0.00 0.00 

Feb 461.52 82.03 0.61 35.69 30.15 30.02 0.07 0.05 0.07 29.87 0.00 0.00 0.01 29.87 0.00 0.00 0.00 

Mar 548.24 83.64 0.62 40.12 31.56 31.25 0.01 0.03 0.03 30.56 0.01 0.02 0.00 29.56 0.00 0.00 0.00 

April 575.12 79.62 0.60 42.53 30.23 32.56 0.15 0.06 0.04 29.56 0.00 0.02 0.00 27.12 0.00 0.00 0.00 

May 559.67 77.35 0.59 46.22 31.05 35.19 0.12 0.05 0.06 30.52 0.00 0.00 0.00 30.53 0.00 0.00 0.00 

June 537.17 76.92 0.55 45.24 26.20 26.00 0.07 0.06 0.07 26.14 0.00 0.00 0.00 26.14 0.01 0.00 0.01 

July 537.81 76.66 0.05 48.28 24.45 25.72 0.05 0.04 0.05 25.67 0.02 0.02 0.03 25.71 0.00 0.00 0.00 

Aug 428.80 76.90 0.47 53.27 22.33 22.59 0.06 0.04 0.05 22.14 0.03 0.01 0.04 22.13 0.00 0.00 0.00 

Sep 437.51 77.78 0.50 51.62 23.80 23.99 0.13 0.07 0.09 22.40 0.27 0.12 0.19 23.80 0.07 0.03 0.04 

Oct 466.57 78.74 0.63 53.21 29.92 29.40 0.07 0.06 0.07 29.97 0.01 0.00 0.01 29.90 0.00 0.00 0.00 

Nov 369.82 78.48 0.44 45.08 20.85 20.65 0.13 0.05 0.06 18.90 0.03 0.01 0.02 21.23 0.00 0.00 0.00 

Dec 370.84 80.66 0.47 43.36 25.53 32.57 0.12 0.01 0.09 25.62 0.10 0.08 0.43 25.61 0.00 0.00 0.01 

Avg. 471.19 79.19 0.50 44.40 26.41 27.48 0.10 0.05 0.07 25.98 0.04 0.03 0.06 26.02 0.01 0.00 0.01 
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From Fig. 7.1, it has been observed that the forecasted power 

employing ANFIS methodology closely follows the measured power as 

compared to others methodologies such as fuzzy logic and artificial neural 

network.  

 Further, the power generation in a solar PV system with 210 Wp HIT 

solar PV modules for different sky-conditions has been shown in Table 7.2.  

Following inferences can be drawn from Table 7.2 shown as: 

(a)  Sunny/clear sky 

 1
st 

June 2015 is considered as a sunny day based on the annual analysis 

of solar radiation data and availability of sunshine hours. Further, the 

graphical representation between measured and forecasted power for sunny 

sky condition have been shown in Fig. 7.2 from which it has been observed 

that the forecasted power employing ANFIS methodology on hour basis 

closely follows the measured power, whereas some deviation can be seen in 

terms of fuzzy logic approach and ANN approach.  

The maximum power output is observed to be 62 W during the day 

with averaged mean absolute percentage error of 0.0610% using the fuzzy 

logic methodology, by employing ANN methodology the error is 0.0014% 

and by employing ANFIS methodology the mean absolute percentage error 

has been further reduced to 0.0010%.  
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Table 7.2 Short-term PV power forecasting employing HIT solar PV module under composite climatic 

conditions 

 

 

Sky -

conditi

ons 

Time      

(hr) 

Cell 

Temp 

(
o
C) 

Solar 

Irradiance 

(W/m
2
) 

Measured 

Power    

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power        

(W) 

MAPE 

(%) 

Forecasted 

Power    

(W) 

MAPE 

(%) 

Forecasted 

Power     

(W) 

MAPE           

(%) 

Sunny 

sky              

7:00 34.11 140.93 7.00 7.02 0.0900 7.02 0.0027 7.03 0.0036 

8:00 40.55 273.76 13.83 15.00 0.0840 13.84 0.0015 12.85 0.0001 

9:00 48.14 486.12 28.00 30.34 0.0830 28.02 0.0009 28.01 0.0004 

10:00 52.23 625.25 39.83 41.66 0.0460 39.82 0.0002 39.83 0.0002 

11:00 57.79 783.13 52.33 54.17 0.0350 52.31 0.0005 52.34 0.0002 

12:00 62.86 875.34 59.33 60.50 0.0200 59.35 0.0003 59.06 0.0040 

13:00 64.69 888.95 62.00 61.17 0.0900 61.88 0.0018 61.99 0.0005 

14:00 63.91 744.96 43.17 42.00 0.0270 43.16 0.0000 43.46 0.0052 

15:00 61.55 726.73 48.33 46.32 0.0420 48.32 0.0001 48.33 0.0007 

16:00 58.04 549.15 34.33 31.51 0.0820 34.34 0.0004 34.35 0.0006 

17:00 52.72 361.6 20.83 19.32 0.0720 20.79 0.0024 20.82 0.0004 

Avg. 54.24 586.90 37.18 37.18 0.0610 37.17 0.0014 37.10 0.0010 

Hazy 

sky                   

10:00 40.83 123.1 8.00 7.12 0.0100 8.39 0.0492 8.03 0.0031 

11:00 44.49 146.12 8.50 9.70 0.0020 9.45 0.1408 8.49 0.0011 

12:00 43.56 307.56 19.67 24.20 0.2300 20.25 0.0123 19.66 0.0004 

13:00 52.55 519.54 45.00 45.46 0.0100 44.82 0.0031 44.98 0.0003 

14:00 42.4 467.65 39.00 37.40 0.0410 39.25 0.0060 39.01 0.0001 

15:00 49.36 313.06 24.50 21.50 0.0170 24.54 0.0012 24.51 0.0004 

16:00 41.05 185.35 11.00 10.09 0.0830 11.68 0.0828 11.00 0.0001 

Avg.  44.89 294.63 22.24 22.21 0.0561 22.63 0.0422 22.24 0.0008 

Partiall

y foggy 

/cloudy 

sky             

8:00 45.79 134.08 9.67 10.26 0.0610 9.72 0.0045 9.66 0.0008 

9:00 47.49 179.69 27.33 12.99 0.5250 27.32 0.0038 12.36 0.0670 

10:00 52.07 355.98 32.50 30.14 0.0730 33.33 0.0125 27.53 0.0031 

11:00 55.57 463.45 44.00 40.78 0.0730 44.01 0.0010 32.56 0.0108 

12:00 58.38 547.32 39.50 44.39 0.1240 39.24 0.0013 43.92 0.0005 

13:00 59.96 519.74 39.83 31.40 0.2120 39.95 0.0130 39.49 0.0026 

14:00 55.52 492.69 50.17 40.93 0.1840 50.28 0.0024 39.78 0.0009 

15:00 61.3 647.1 37.33 51.69 0.3850 37.60 0.0178 50.22 0.0010 

16:00 59.64 562.02 21.17 35.16 0.6610 21.20 0.0114 37.59 0.0139 

17:00 50.88 299.99 15.33 18.22 0.1880 15.39 0.0034 20.88 0.0096 

18:00 50.73 235.3 7.33 12.65 0.7250 7.53 0.0473 15.30 0.0076 

19:00 47.99 156.43 7.33 7.23 0.0130 7.75 0.0858 8.81 0.2480 

Avg. 53.78 382.82 27.62 27.99 0.2687 27.78 0.0305 28.18 0.0170 

Fully 

foggy 

/cloudy 

sky                             

9:00 19.08 170.77 12.50 10.75 0.1400 12.60 0.0066 12.48 0.0011 

10:00 19.02 74.87 8.33 10.62 0.2750 8.35 0.0030 8.40 0.0099 

11:00 23.29 96.49 11.17 8.72 0.2190 12.78 0.1733 10.98 0.0442 

12:00 18.5 41.2 7.83 8.10 0.0340 7.82 0.0018 7.81 0.0036 

13:00 18.57 140.77 10.67 10.46 0.0200 10.66 0.0002 10.63 0.0056 

14:00 18.59 87.31 9.83 11.14 0.1330 10.11 0.0243 10.01 0.0735 

15:00 17.86 164.25 12.00 10.83 0.0970 12.01 0.0016 12.00 0.0004 

Avg. 19.27 110.81 10.33 10.09 0.1311 10.62 0.0301 10.33 0.0198 
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Fig. 7.2 Graphical analysis of measured and forecasted PV power employing intelligent 

methodologies for sunny sky-condition 

 

(b)  Hazy sky 

 26
th 

December 2015 is considered as a hazy day based on the annual 

analysis of solar radiation data and availability of sunshine hours. Further, the 

graphical representation between measured and forecasted power for hazy sky 

condition have been shown in Fig. 7.3 from which it has been observed that 

the forecasted power employing ANFIS methodology on hour basis closely 

follows the measured power, whereas some deviation can be seen in terms of 

fuzzy logic approach and ANN.  

The maximum power output is observed to be 50 W during the day 

with averaged mean absolute percentage error by employing fuzzy logic 

methodology is 0.0561%, by employing artificial neural network methodology 

the mean absolute percentage error reduced to 0.0422% and by employing 

ANFIS methodology the error have been further reduced to 0.0008%. 
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Fig. 7.3 Graphical analysis of measured and forecasted PV power employing intelligent   

methodologies for hazy sky-condition 

 

 

(c)  Partially foggy/cloudy sky 

 

 3
rd 

August 2015 is considered as partially foggy/cloudy day based on 

the annual analysis of solar radiation data and availability of sunshine hours. 

Further, the graphical representation between measured and forecasted power 

for partially foggy/cloudy sky condition have been shown in Fig. 7.4 from 

which it has been observed that the forecasted power employing ANFIS 

methodology on hour basis closely follows the measured power, whereas 

some deviation can be seen in terms of fuzzy logic approach and ANN. 

 The maximum power output is observed to be 44 W during the day 

with averaged mean percentage error by employing fuzzy logic methodology 

is 0.2687%, by employing ANN methodology the mean absolute percentage 

error reduced to 0.0305%, and by employing ANFIS methodology the error 

further reduced to 0.0170%. 
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Fig. 7.4  Graphical analysis of measured and forecasted PV power employing intelligent 

methodologies for partially foggy/cloudy sky-condition 

 

(d)  Fully foggy/cloudy sky 

 3
rd  

January 2015 is considered as a fully foggy/cloudy day based on 

the annual analysis of solar radiation data and availability of sunshine hours. 

Further, the graphical representation between measured and forecasted power 

for fully foggy/cloudy sky condition have been shown in Fig. 7.5 from which 

it is evident that the forecasted power employing ANFIS methodology on hour 

basis closely follows the measured power, whereas some deviation can be 

seen in terms of fuzzy logic approach and ANN. 

The maximum power output is observed to be 12 W during the day 

with averaged mean absolute percentage error by employing fuzzy logic 

methodology is 0.1311%, by using ANN methodology the error reduced to 

0.0301% and by employing ANFIS methodology the mean absolute 

percentage error further reduced to 0.0198%.  
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Fig. 7.5  Graphical analysis of measured and forecasted power employing intelligent   

methodologies for fully foggy/cloudy sky-condition 

  

From Table 7.2, it has been observed that out of the four models, 

especially the hazy sky model perform well with mean absolute mean 

percentage error of 0.0008% in forecasting the power of a solar photovoltaic 

system followed by sunny sky model with mean absolute percentage error of 

0.0010%, partially foggy/cloudy sky model with mean absolute percentage 

error of 0.0170% and fully foggy/cloudy sky model with mean absolute 

percentage error of 0.0198% by using ANFIS methodology. 

7.5.2  Intelligent Modelling for Short-Term Power Forecasting in Solar 

PV System Employing 250 Wp Multi-crystalline PV Modules 

 Similarly, intellgent modelling techniques have been presented for 

power forecasting of solar PV system employing Multi-crystalline 250 Wp 

solar PV modules operating at Maximum Power Point Tracking (MPPT) 

conditions and are presented in Table 7.3. 

  From Table 7.3, it has been observed that by employing the ANFIS-based 

model, the average MPE obtained is 0.0001% which is far less as compared to 
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other models. By employing fuzzy logic, the MPE obtained is 0.01% and with 

ANN model mean percentage error of 0.0021% is achieved. Hence, the hybrid 

modelling approach is far accurate and precise as compared to other models.  

  Further, it has been concluded from the obtained results that for all 

months of the year, error is less in case of the ANFIS model.  

  For winter season (January), the averaged MPE by employing fuzzy logic 

approach is 0.09%, using ANN the error reduced to 0.004% and with ANFIS 

model the error further reduced to 0.0003%.  

  Similarly, for the summer season (June) the averaged MPE by employing 

fuzzy logic is 0.07%, by using ANN the error reduced to 0.0033% and with 

ANFIS model the error further reduced to 0.0001%.  

  It has been observed that error is large for the rainy season (August) 

because of large uncertainties associated with the data. The average mean 

percentage error by employing fuzzy logic is 0.28%, using ANN the error 

reduced to 0.0304% and with ANFIS model the error further reduced to 

0.0003%. 

  In view of aforesaid, it has been observed that the ANFIS-based model 

performs better than other models in terms of faster convergence rate with 

learning and training ability. The ANFIS methodology makes use of training 

pattern as compared to other methods and hence reduces the computational time 

complexity.  It has certain advantages such as the ease of design, robustness and 

adaptability with the non-linearity associated with the data. The ANFIS 

methodology integrates the features of both fuzzy logic and ANN which 

increases the system accuracy and makes the system response much faster.  
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  Table 7.3 Intelligent methodologies for forecasting power in a solar PV system employing Multi-crystalline solar PV modules under composite climate zone 

Month 
Solar 

Irradiance 

(W/m
2
) 

Vpmax 

(V) 

Ipmax 

(A) 

Cell  

Temp. 

 (
o
C) 

Measured 

Power  

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power        

(W) 

MPE 

(%) 

RMSE 

(%) 

Forecasted 

Power        

(W) 

MPE 

(%) 

RMSE 

(%) 

Forecasted 

Power        

 (W) 

MPE  

(%) 

RMSE 

 (%) 

Jan 341.98 60.48 1.05 20.80 64.15 64.37 -0.09 0.10 63.82 0.0040 0.01 64.12 -0.0003 0.00 

Feb 450.78 59.95 1.49 28.19 89.61 88.66 -0.02 0.08 86.93 0.0161 0.05 89.57 0.0005 0.00 

Mar* 
- - - - - - - - - - - - - - 

April* 
- - - - - - - - - - - - - - 

May 557.92 56.93 1.38 44.53 79.08 78.12 0.00 0.07 79.03 0.0007 0.00 79.06 0.0003 0.00 

June 528.54 57.57 1.20 42.32 68.28 44.66 -0.07 0.07 70.19 0.0033 0.01 70.19 -0.0001 0.00 

July 532.32 57.03 1.02 39.15 59.03 56.59 -0.04 0.13 59.22 -0.0049 0.01 59.03 -0.0024 0.04 

Aug 411.69 57.07 1.03 38.15 59.52 61.77 0.28 0.50 59.29 -0.0304 0.05 59.52 -0.0003 0.05 

Sep 418.73 57.36 1.11 35.56 64.35 52.35 0.13 0.14 64.40 -0.0009 0.01 64.28 0.0011 0.00 

Oct 464.71 57.78 1.52 37.75 88.08 90.44 -0.04 0.06 88.24 -0.0027 0.01 88.09 -0.0001 0.00 

Nov 346.12 58.90 1.15 29.33 68.21 64.64 -0.01 0.12 68.29 -0.0050 0.01 68.21 0.0000 0.00 

Dec 359.34 60.09 1.26 23.94 76.30 70.93 -0.05 0.17 76.20 -0.0009 0.01 76.30 0.0000 0.00 

Avg. 441.21 58.32 1.22 33.97 71.66 67.25 0.01 0.14 71.56 -0.0021 0.02 71.84 -0.0001 0.01 

 *Data could not be arranged for these months
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  Further, the uncertainty associated with the solar PV power plant leads to 

the inappropriate operation of the system. Therefore, short-term power 

forecasting is essential for successful and efficient integration of solar power 

generating plants into the utility grid. In this chapter, an intelligent modelling 

technique such as fuzzy logic, artificial neural network and a hybrid modelling 

approach has been presented for very short-term power forecasting of a solar 

photovoltaic system  under  composite  climatic  conditions and  is shown  in  

Fig. 7.6. 

  The input includes the measurements of solar irradiance, cell temperature, 

and PV generation for the day at a timescale of 10 minutes and used as input for 

short-term PV power output forecasting which varies according to different 

weather conditions and is illustrated in Table 7.4 – Table 7.7 respectively. 
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Fig. 7.6  Graphical analysis of short-term PV power forecasting for (a) sunny sky;  

    (b) hazy sky; (c) partially foggy/cloudy sky; and (d) fully foggy/cloudy sky 
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  Further, parallel computation is allowed in ANFIS structure which 

presents a well-structured representation with a hybrid platform for solving 

complex problems and is a feasible alternative to the conventional model-based 

control schemes. This hybrid approach deals with the issues associated with 

variations and uncertainty in the power plant parameters and structure, thereby 

improving the system robustness. Further, it allows better integration with other 

control design methods. 

(a) Sunny sky 

 From Table 7.4, it has been observed that the performance of the sunny 

sky model is better in power forecasting of a solar PV system. The average 

measured power during a sunny sky day is 98 W. However, the MPE obtained is 

0.077% by employing fuzzy logic methodology, the error reduces to 0.0079% by 

using ANN, and it further reduces to 0.0054% with ANFIS methodology.  

(b) Hazy sky 

 It has been observed from Table 7.5 that the mean percentage error 

obtained by using the fuzzy logic methodology for this sky condition is 0.049%, 

the error reduced to 0.022% by using the artificial neural network; however, with 

ANFIS model the mean percentage error is less and further reduced to 0.004%. 

The averaged measured power during a hazy sky day is 82 W.  

(c) Partially foggy/cloudy sky 

 It has been observed from Table 7.6 that the mean percentage error 

obtained by using fuzzy logic methodology for this sky-condition is 1.20%, this 

error reduced to 0.20% by using ANN; however, with ANFIS model the mean 

percentage error is less and further reduced to 0.03%.    
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Table 7.4 Intelligent models for very short-term PV power forecasting for sunny sky-condition under 

composite climate 

Time  

(hr) 

Cell 

Temperature  

(
o
C) 

Solar 

Irradiance 

(W/m
2
) 

Measured 

Power  

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

7:00 172.30 32.74 24.00 40.03 -0.67 24.07 0.01 24.34 -0.003 

7:10 203.49 33.82 28.00 39.12 -0.65 28.03 -0.08 25.74 -0.001 

7:20 237.48 35.78 34.00 38.39 -0.13 32.82 -0.11 30.25 0.035 

7:30 273.82 36.38 39.00 38.21 0.02 38.93 0.02 39.70 0.002 

7:40 309.60 37.18 46.00 52.53 -0.14 46.00 0.06 48.73 0.000 

7:50 344.42 38.67 52.00 69.39 -0.33 51.97 0.01 52.28 0.001 

8:00 375.21 38.52 58.00 76.46 -0.58 57.95 -0.04 55.48 0.001 

8:10 416.11 40.17 65.00 86.79 -0.35 65.10 -0.04 62.59 -0.002 

8:20 449.55 41.67 71.00 89.33 -0.29 71.03 0.01 71.81 0.000 

8:30 473.28 41.37 76.00 90.41 -0.44 75.92 0.01 76.98 0.001 

8:40 498.73 42.48 84.00 91.14 -0.74 84.03 -0.04 80.65 0.000 

8:50 526.30 44.24 90.00 91.50 -0.02 90.06 -0.07 84.07 -0.001 

9:00 552.73 43.69 91.00 91.68 -0.01 90.94 -0.01 89.66 0.001 

9:10 572.15 43.29 95.00 91.50 0.04 94.93 0.01 95.71 0.001 

9:20 577.01 44.16 103.00 91.86 0.11 102.91 -0.06 97.15 0.001 

9:30 608.90 42.08 111.00 91.50 0.18 110.95 -0.01 110.15 0.000 

9:40 643.27 43.88 112.00 91.68 0.18 112.02 0.02 114.78 0.000 

9:50 660.41 44.97 118.00 96.39 0.18 117.98 -0.01 116.86 0.000 

10:00 689.73 46.23 122.00 104.55 0.14 121.97 0.00 121.52 0.000 

10:10 721.67 47.69 134.00 111.26 0.17 133.90 -0.03 130.12 0.001 

10:20 757.03 46.45 136.00 119.05 0.12 136.08 0.04 141.86 -0.001 

10:30 776.57 46.66 140.00 120.86 0.14 140.07 0.04 146.16 0.000 

10:40 798.90 47.27 144.00 120.32 0.16 144.06 0.03 148.99 0.000 

10:50 804.94 49.59 148.00 121.95 0.18 148.16 0.01 149.45 -0.001 

11:00 839.69 50.09 153.00 121.41 0.21 152.98 -0.01 150.93 0.000 

11:10 852.43 50.22 152.00 121.23 0.20 152.09 -0.01 151.16 -0.001 

11:20 869.61 51.26 151.00 117.78 0.22 150.96 0.00 151.49 0.000 

11:30 871.66 52.55 155.00 109.08 0.30 154.88 -0.02 151.89 0.001 

11:40 876.80 53.20 148.00 105.09 0.29 148.08 0.03 152.20 -0.001 

11:50 881.92 54.57 157.00 98.57 0.37 156.55 -0.03 152.62 0.003 

12:00 899.63 54.18 164.00 99.84 0.39 163.75 -0.07 152.69 0.002 

12:10 908.85 52.84 158.00 107.27 0.32 159.77 -0.04 152.26 -0.011 

12:20 897.87 53.69 155.00 102.19 0.34 154.92 -0.02 152.54 0.001 

12:30 887.53 53.28 158.00 103.83 0.34 158.22 -0.04 152.33 -0.001 

12:40 891.21 54.17 162.00 99.66 0.38 162.12 -0.06 152.64 -0.001 

12:50 887.54 53.98 149.00 100.38 0.33 148.96 0.02 152.56 0.000 

13:00 860.72 54.87 152.00 97.12 0.36 152.03 0.00 152.27 0.000 

13:10 878.20 54.84 150.00 97.12 0.35 150.05 0.02 152.61 0.000 

13:20 831.79 55.48 142.00 95.31 0.33 142.08 0.06 150.83 -0.001 

13:30 820.42 54.47 130.00 99.48 0.23 129.95 0.15 149.67 0.000 

13:40 663.15 54.04 52.00 102.01 -0.96 52.41 0.04 54.15 -0.008 

13:50 544.29 49.97 53.00 74.83 -0.41 53.06 0.52 80.33 -0.001 

14:00 731.88 51.01 137.00 115.97 0.15 137.02 -0.06 128.69 0.000 

14:10 735.79 52.71 128.00 111.44 0.13 127.81 -0.08 117.28 0.001 

14:20 749.46 52.35 125.00 113.43 0.09 125.01 0.03 129.11 0.000 

14:30 753.09 52.34 137.00 113.61 0.17 136.99 -0.04 131.53 0.000 

14:40 747.67 51.80 117.00 116.69 0.00 117.16 0.12 131.58 -0.001 

14:50 711.90 51.56 116.00 112.16 0.03 115.99 -0.01 114.97 0.000 

15:00 662.45 51.18 106.00 101.83 0.04 106.01 -0.01 104.95 0.000 

15:10 638.30 51.41 107.00 95.49 0.11 107.05 -0.09 96.93 0.000 

15:20 595.64 50.84 89.00 84.61 0.05 88.97 0.03 91.43 0.000 

15:30 577.80 50.35 99.00 80.44 0.19 98.95 -0.10 89.09 0.001 

15:40 540.84 49.93 76.00 75.19 0.01 75.91 0.05 80.03 0.001 

15:50 485.17 49.64 69.00 75.91 -0.85 69.04 -0.01 68.35 -0.001 

16:00 457.16 48.68 63.00 79.90 -0.27 63.05 0.07 67.18 -0.001 

16:10 425.11 47.84 66.00 83.16 -0.26 65.91 -0.08 60.73 0.001 

16:20 423.65 47.33 61.00 85.52 -0.40 60.99 0.02 62.31 0.000 

16:30 365.12 46.93 53.00 77.91 -0.47 53.05 -0.03 51.48 -0.001 

16:40 340.34 46.94 54.00 71.02 -0.32 53.97 -0.09 48.91 0.001 

Avg. 593.61 47.26 98.26 87.89 -0.077 98.27 0.007 98.19 0.0054 
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Table 7.5  Intelligent models for very short-term PV power forecasting for hazy sky-condition 

under composite climate zone 

Time  

(hr) 

Cell 

Temperature  

(
o
C) 

Solar 

Irradiance 

(W/m
2
) 

Measured 

Power  

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

10:00 125.45 10.63 18 16.54 0.08 22.14 -0.23 22.36 0.24 

10:10 126.52 10.21 22 16.61 0.25 23.09 -0.05 22.27 0.01 

10:20 127.23 9.10 24 16.66 0.10 23.97 0.00 22.14 -0.08 

10:30 125.81 5.45 24 16.57 0.31 27.09 -0.13 22.08 -0.08 

10:40 150.74 12.43 25 27.34 0.00 24.77 0.01 23.55 -0.06 

10:50 171.66 8.37 25 15.51 0.38 25.64 -0.03 22.95 -0.08 

11:00 174.73 10.67 25 14.93 0.28 25.95 -0.04 23.40 -0.06 

11:10 208.48 11.50 33 18.35 0.08 32.50 0.02 34.07 0.03 

11:20 227.30 18.44 33 37.04 0.08 34.03 -0.03 31.93 -0.03 

11:30 247.76 17.34 39 37.92 0.03 40.48 -0.04 41.64 0.07 

11:40 276.06 19.01 37 41.09 -0.11 36.31 0.02 37.05 0.00 

11:50 406.26 16.92 57 44.44 0.22 56.81 0.00 55.45 -0.03 

12:00 479.51 17.24 49 71.58 -0.46 49.41 -0.01 51.99 0.06 

12:10 498.50 17.48 69 80.75 -0.17 69.22 0.00 66.41 -0.04 

12:20 527.75 22.37 139 89.56 0.02 138.21 0.01 136.34 -0.02 

12:30 527.66 25.23 135 95.02 0.30 135.15 0.00 142.69 0.06 

12:40 525.47 27.16 153 107.18 0.30 150.98 0.01 146.73 -0.04 

12:50 525.18 31.56 150 138.91 0.07 147.60 0.02 147.44 -0.02 

13:00 512.66 32.20 150 138.03 0.08 147.86 0.01 147.44 -0.02 

13:10 500.73 30.07 159 137.15 0.14 152.83 0.04 147.39 -0.07 

13:20 489.57 31.91 145 136.26 0.06 146.45 -0.01 147.38 0.02 

13:30 494.87 35.14 143 138.73 0.03 141.03 0.01 147.41 0.03 

13:40 491.77 35.69 134 139.08 -0.04 132.80 0.01 147.39 0.10 

13:50 427.95 32.66 143 118.99 0.17 143.22 0.00 141.34 -0.01 

14:00 401.02 33.05 125 114.41 0.08 130.69 -0.05 125.52 0.00 

14:10 400.24 34.07 127 116.17 0.09 130.40 -0.03 124.92 -0.02 

14:20 357.63 34.09 114 112.65 0.01 114.40 0.00 114.48 0.00 

14:30 331.88 31.96 114 110.88 0.03 114.50 0.00 113.55 0.00 

14:40 285.04 32.76 99 87.80 -0.25 96.29 0.03 104.56 0.06 

14:50 261.53 29.54 95 66.29 0.03 96.04 -0.01 89.16 -0.06 

15:00 242.06 31.93 77 76.52 0.01 77.87 -0.01 75.63 -0.02 

15:10 230.01 31.82 69 75.46 0.11 70.38 -0.02 69.24 0.00 

15:20 221.92 29.72 63 66.47 -0.13 63.89 -0.01 66.01 0.05 

15:30 188.42 27.89 58 65.41 -0.13 59.83 -0.03 60.77 0.05 

15:40 155.54 26.57 60 63.65 -0.18 61.30 -0.02 57.50 -0.04 

Avg. 321.27 23.41 82 74.06 0.049 82.37 -0.022 82.01    0.004 

 

(d) Fully foggy/cloudy sky 

 From Table 7.7, it is evident that the photovoltaic power output is less 

during fully foggy/cloudy sky condition with averaged measured power of only 

27 W. The mean percentage error is 0.21% by employing fuzzy logic 

methodology, the error reduces to 0.091% by using ANN and with ANFIS the 

error obtained is 0.04% respectively.  
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Table 7.6 Intelligent models for very short-term PV power forecasting for partially foggy/cloudy     

sky-condition under composite climate zone 

Time  

(hr) 

Cell 

Temperature  

(
o
C) 

Solar 

Irradiance 

(W/m
2
) 

Measured 

Power  

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

7:30 27.78 126.72 21.00 17.00 0.19 20.77 0.05 21.97 0.01 

7:40 27.32 200.00 22.00 19.43 -3.88 22.11 0.53 33.70 0.00 

7:50 30.58 213.53 34.00 31.55 -2.06 34.07 0.20 40.90 0.00 

8:00 30.38 196.07 29.00 21.85 0.01 28.85 0.12 32.41 0.01 

8:10 32.13 155.48 21.00 18.46 -4.05 20.78 0.15 24.05 0.01 

8:20 30.11 145.30 32.00 29.13 -2.21 32.24 -0.28 22.96 -0.01 

8:30 30.71 189.78 43.00 19.43 -1.43 42.97 -0.30 30.21 0.00 

8:40 31.05 194.45 24.00 21.85 -3.35 23.84 0.32 31.63 0.01 

8:50 31.60 198.55 48.00 41.25 -1.17 47.89 -0.31 33.25 0.00 

9:00 32.83 194.56 28.00 26.70 -2.74 27.88 0.13 31.75 0.00 

9:10 32.52 171.08 25.00 21.85 -3.22 24.76 0.05 26.34 0.01 

9:20 36.07 428.21 145.00 101.88 0.21 145.06 -0.41 85.45 0.00 

9:30 39.29 556.78 137.00 124.91 0.09 136.80 -0.09 125.07 0.00 

9:40 39.48 364.60 58.00 58.23 -0.76 57.93 0.36 78.99 0.00 

9:50 36.55 291.87 50.00 38.83 -1.17 49.82 0.24 61.90 0.00 

10:00 36.52 323.32 70.00 70.35 -0.56 70.08 0.04 72.69 0.00 

10:10 40.46 647.12 56.00 52.65 -1.20 55.77 1.45 137.36 0.00 

10:20 42.29 471.39 60.00 62.83 -1.01 59.75 0.58 94.76 0.00 

10:30 40.12 422.82 69.00 67.93 -0.64 68.91 0.22 83.88 0.00 

10:40 39.86 355.46 52.00 53.38 -0.95 51.76 0.50 78.08 0.00 

10:50 37.21 335.57 190.00 181.90 0.45 207.69 -0.60 75.13 -0.09 

11:00 40.62 548.37 205.00 205.91 0.39 204.92 -0.40 123.47 0.00 

11:10 43.14 614.47 35.00 34.95 -2.33 34.80 2.75 131.26 0.01 

11:20 41.61 559.81 182.00 184.08 0.33 181.87 -0.31 125.65 0.00 

11:30 47.08 685.34 165.00 168.56 0.36 164.86 -0.18 135.74 0.00 

11:40 47.73 536.57 46.00 46.10 -1.25 45.61 0.28 59.10 0.01 

11:50 39.88 190.67 24.00 26.70 -2.92 23.74 0.34 32.13 0.01 

12:00 38.71 697.05 205.00 197.66 0.40 204.93 -0.02 199.91 0.00 

12:10 48.17 691.84 44.00 41.25 -1.40 43.67 1.22 97.48 0.01 

12:20 39.87 357.89 211.00 208.58 0.52 210.61 -0.63 78.33 0.00 

12:30 49.96 999.30 95.00 89.75 -0.20 96.63 0.22 116.09 -0.02 

12:40 47.13 314.66 17.00 17.00 -2.45 18.48 -0.17 14.12 -0.09 

12:50 33.73 159.05 42.00 41.25 -1.56 42.14 -0.34 27.91 0.00 

13:00 35.99 595.71 96.00 92.18 -0.27 95.76 0.37 131.61 0.00 

13:10 45.39 494.68 116.00 114.00 0.09 115.71 -0.12 102.64 0.00 

13:20 44.69 611.38 171.00 162.50 0.37 170.10 -0.24 130.79 0.01 

13:30 48.66 771.60 47.00 46.10 -1.38 46.97 1.54 119.16 0.00 

13:40 38.09 197.20 47.00 43.68 -1.15 46.78 -0.30 32.74 0.00 

13:50 32.41 269.89 129.00 121.28 0.20 129.09 -0.21 101.86 0.00 

14:00 40.22 611.36 120.00 101.88 -0.04 119.94 0.09 131.00 0.00 

14:10 44.97 622.18 131.00 118.85 0.18 130.80 0.00 131.64 0.00 

14:20 45.83 564.36 160.00 143.10 0.35 159.66 -0.23 123.50 0.00 

14:30 50.30 816.62 140.00 121.28 0.19 139.92 -0.17 115.93 0.00 

14:40 52.02 732.09 154.00 135.83 0.25 154.48 -0.27 112.02 0.00 

14:50 51.68 601.10 69.00 67.93 -0.50 70.33 -0.13 59.79 -0.02 

15:00 46.00 546.27 152.00 157.17 0.31 151.95 -0.22 118.74 0.00 

15:10 49.51 730.86 132.00 132.92 0.17 131.75 -0.15 112.26 0.00 

15:20 49.95 708.75 141.00 138.74 0.24 140.92 -0.27 102.79 0.00 

15:30 49.20 559.45 53.00 46.10 -0.96 52.72 0.00 52.82 0.01 

15:40 44.75 318.37 46.00 43.68 -0.82 45.90 0.54 70.84 0.00 

15:50 42.11 492.21 61.00 65.02 -0.98 60.62 0.69 102.92 0.01 

16:00 44.46 562.50 114.00 109.15 0.04 114.49 0.11 126.08 0.00 

16:10 45.29 498.01 77.00 70.35 -0.38 77.39 0.35 104.30 -0.01 

16:20 43.82 376.77 33.00 21.85 -2.17 33.13 1.42 79.96 0.00 

16:30 36.07 141.85 18.00 14.72 -5.19 18.63 0.67 30.00 -0.03 

16:40 29.57 142.20 25.00 21.85 -3.07 24.70 -0.09 22.73 0.01 

16:50 32.19 264.58 68.00 61.86 -0.52 67.81 0.39 94.71 0.00 

Avg. 39.53 407.10 76.95 71.80 -1.20 77.22 0.20 76.94 0.03 
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Table 7.7 Intelligent models for very short-term PV power forecasting for fully foggy/cloudy 

sky-condition under composite climate zone  

Time  

(hr) 

Cell 

Temperature  

(
o
C) 

Solar 

Irradiance 

(W/m
2
) 

Measured 

Power  

(W) 

Fuzzy ANN ANFIS 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

Forecasted 

Power           

(W) 

MPE            

(%) 

8:40 14.86 168.07 19 20.94 -0.33 18.95 0.32 25.00 0.00 

8:50 13.76 161.85 25 24.25 -0.06 25.15 0.00 25.01 -0.01 

9:00 14.97 182.38 21 20.94 0.00 21.05 0.19 24.99 0.00 

9:10 15.45 101.30 23 20.94 -0.60 22.89 0.27 29.26 0.00 

9:20 15.35 135.45 15 12.99 -0.76 15.00 0.64 24.57 0.00 

9:30 15.08 132.03 28 26.30 0.06 28.10 -0.12 24.77 0.00 

9:40 15.75 101.30 60 56.05 0.37 60.07 -0.37 37.96 0.00 

9:50 19.77 101.30 64 60.03 0.40 63.69 0.00 64.01 0.00 

10:00 19.73 181.75 27 20.94 0.22 26.90 0.01 27.16 0.00 

10:10 17.71 261.96 11 10.63 0.03 11.03 0.00 11.00 0.00 

10:20 16.14 187.71 16 14.31 -0.06 15.99 0.42 22.69 0.00 

10:30 15.76 129.26 14 12.33 -1.00 14.19 0.77 24.80 -0.01 

10:40 15.14 101.30 21 17.63 -0.73 20.87 0.09 22.89 0.01 

10:50 14.45 101.30 18 16.30 -1.00 18.10 0.24 22.25 -0.01 

11:00 14.77 101.30 24 20.28 -0.50 24.06 -0.07 22.28 0.00 

11:10 15.13 101.30 22 20.28 -0.64 21.91 0.04 22.81 0.00 

11:20 15.32 120.11 23 20.94 -0.33 22.92 0.08 24.85 0.00 

11:30 15.28 101.30 19 17.63 -0.92 18.80 0.28 24.29 0.01 

11:40 14.93 127.09 22 20.94 -0.26 21.91 0.11 24.52 0.00 

11:50 15.10 101.30 37 36.18 0.02 36.78 -0.39 22.68 0.01 

12:00 16.76 101.30 26 20.94 -0.39 26.03 0.51 39.27 0.00 

12:10 17.05 134.24 33 27.96 0.15 33.14 -0.28 23.63 0.00 

12:20 17.61 123.50 30 28.89 -0.02 30.14 -0.08 27.67 0.00 

12:30 17.46 148.36 33 27.56 0.16 32.98 -0.31 22.83 0.00 

12:40 17.42 142.59 17 14.31 -0.63 17.06 0.35 22.95 0.00 

12:50 16.14 150.40 15 14.31 -0.84 14.93 0.52 22.76 0.00 

13:00 15.43 145.55 33 32.20 0.20 33.05 -0.27 24.21 0.00 

13:10 16.44 101.30 50 36.51 0.27 50.06 -0.21 39.26 0.00 

13:20 16.17 101.30 23 20.28 -0.61 22.83 0.71 39.22 0.01 

13:30 14.61 217.00 24 20.94 0.13 23.93 0.00 23.98 0.00 

13:40 14.99 155.18 44 26.97 0.39 44.16 -0.43 24.98 0.00 

13:50 16.19 101.30 41 37.04 0.10 41.00 -0.04 39.23 0.00 

14:00 16.00 151.67 29 27.43 0.05 29.14 -0.22 22.76 0.00 

14:10 15.87 187.44 29 18.62 0.36 28.39 -0.22 22.74 0.02 

14:20 15.65 176.43 18 16.30 -0.23 17.74 0.28 23.09 0.01 

14:30 15.27 128.87 17 12.33 -0.61 16.80 0.45 24.67 0.01 

Avg. 15.93 137.94 27 23.70 -0.21 26.94 0.091 26.97 0.04 

 

It has been concluded from the obtained results that by employing 

ANFIS methodology for composite climatic conditions, the hazy-sky model 

(type-b) with mean percentage error of 0.004% outperforms other models as 

the measured data matches the forecasted data followed by the sunny-sky 

model (type-a) with mean percentage error of 0.0054%, partially 

foggy/cloudy sky model (type-c) with mean percentage error of 0.03% and 

fully foggy/cloudy sky model (type-d) with mean percentage error of 0.04% 

respectively. The result reveals that the proposed model may be implemented 

for a broad series of applications. 
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7.6 CONCLUSION 

 In this chapter, different models based on intelligent approaches such 

as fuzzy logic, artificial neural network and adaptive neural-fuzzy inference 

system have been developed and presented for short-term PV power 

forecasting using meteorological parameters. Further, the simulations have 

been carried out based on sky-conditions such as sunny sky, hazy sky, 

partially foggy/cloudy sky and fully foggy/cloudy sky under composite 

climate zone. It has been observed from the overall analysis that for 

composite climate zone, hazy sky model performs better than other sky-based 

model. A comparison of proposed ANFIS methodology has been made with 

fuzzy logic and ANN methodologies. It has been concluded that the 

performance of ANFIS based model provides accurate results as compared to 

other intelligent models.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE SCOPE 

 

8.1  CONCLUSIONS OF THE CURRENT RESEARCH 

For the effective and accurate utilization of solar energy devices, data 

based on solar radiation resource plays an important role. Unfortunately, the 

devices for the measurement of such data are rarely available because of 

instrument high cost, limited spatial coverage and limited length of the 

record. Due to unavailability of the measured data, global solar energy 

forecasting is of prime importance at the earth’s surface. For this purpose, it 

is essential to develop models based on more readily available meteorological 

data for forecasting global solar energy for such locations where 

measurements have not been done with reasonable accuracy. The 

mathematical and regression models of solar energy forecasting were found 

satisfactorily but for clear sky conditions. Due to high uncertainty in weather 

conditions, intelligent approaches based models such as fuzzy logic, artificial 

neural network and other hybrid models are being proposed by researchers 

for forecasting global solar energy using meteorological parameters. 

Further, the variation in the power output of the solar PV system is 

dependent on external environmental factors such as ambient temperature, 

sky-condition etc. which can make system unstable. The variations and 

fluctuations in the power output subsequently reduces the PV power 

generation capacity. Short-term solar energy forecasting models such as 
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hourly and weekly are available in the literature but 10 minutes ahead solar 

energy forecasting are less reported in the literature. 

In this research, an attempt has been made to establish intelligent 

models such as fuzzy logic approach, Artificial Neural Network (ANN) and 

hybrid intelligent models i.e. Adaptive Neural-Fuzzy Inference System 

(ANFIS) model for forecasting global solar energy based on sky-conditions 

defined as clear sky (type-a), hazy sky (type-b), partially foggy/cloudy sky 

(type-c) and fully foggy/cloudy (type-d) sky-conditions and for five weather 

stations across India covering widely changing climatic conditions thereof, 

such as warm and humid, hot and dry, cold and cloudy, composite and 

moderate climatic conditions.  

 Firstly, sunshine-based models with linear and non-linear correlations 

have been developed and presented using sunshine duration as a 

meteorological parameter. Secondly, empirical models have been established 

based on multiple regression analysis which correlates global solar energy 

with other meteorological parameter namely sunshine hours, ambient 

temperature, relative humidity, wind speed, amount of rainfall, atmospheric 

pressure and cloudiness index and applied for five weather stations across 

India. The regression and correlation coefficients for each model is calculated 

and presented. Principle component analysis have been performed based on 

statistical error-tests. After the statistical analysis, it has been observed that 

the correlation which incorporates seven variables has emerged to provide 

accurate results for estimating global solar energy for each of the climate 

zone across the entire country. Good agreement has been noticed between 

measured and estimated data based on seven variables correlations, which 
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makes it useful in estimating global solar energy. The models presented have 

reasonable estimation errors. Based on the overall analysis, it has been 

concluded that the considered parameters have strong influence on estimating 

global solar energy. Therefore, the proposed models can be successfully used 

to estimate global solar energy in distinct climate zone across India or 

elsewhere with similar climatic conditions. 

 The mathematical models available in the literature shows relative 

large errors and not suitable to estimate global solar energy in varying sky-

conditions. Therefore, an intelligent approach based on fuzzy logic modelling 

have been devloped and presented to forecast global solar energy using dew-

point as meteorological parameter along with other known available 

parameters namely sunshine duration, global solar energy, wind speed, 

ambient temperature and relative humidity for varying sky-conditions namely 

clear sky (type-a), hazy sky (type-b), partially foggy/cloudy sky (type-c) and 

fully foggy/cloudy sky (type-d) conditions. Three criteria namely mean 

percentage error, mean bias error and root mean square error are used to 

verify the forecasting errors of the proposed modelling approach. The 

obtained results concludes that the fuzzy logic based models achieves better 

accuracy and is convenient than the traditional regression methods. 

Further, it has been observed that for complex systems with large data 

sets, maintaining accuracy for such data sets using fuzzy logic modelling would 

be a tedious task. Therefore, ANN based models are introduced, employing 

artificial intelligent techniques which can subsequently perform the structure 

simulation. In this research, the variants of ANN architecture have been 

discussed for modelling the system in forecasting global solar energy. Cascade-
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forward, feed-forward, elman back-propagation, generalized regression, layered 

recurrent, linear layer, and radial basis function neural network architecture has 

been developed under composite climate zone using MATLAB. Simulations 

have been carried out by selecting the most suitable model based on evaluation 

indexes. Among the several discussed ANN architectures, the Radial Basis 

Function Neural network (RBFNN) model has emerged to provide a better 

prediction with minimum error based on evaluation indexes.  Further, a close 

comparison of radial basis function neural network model has been made with 

Feed-Forward Neural Network (FFNN) model and successfully applied for five 

meteorological stations i.e. warm and humid (Chennai), hot and dry (Jodhpur), 

cold and cloudy (Shillong), moderate (Pune) and composite (Delhi) climate zone 

across India. It has been observed from the obtained results, that the radial basis 

function neural network model provides more accurate results in comparison to 

other ANN models i.e.  feed-forward neural network model for each of the 

climate zones across the entire country.  

Using ANN, an accurate analysis of a number of neurons and hidden 

layers becomes a difficult task since they are large in number which involves 

large training time that subsequently slows down the response of the system. 

Therefore, hybrid intelligent models i.e. Adaptive Neural-Fuzzy Inference 

System (ANFIS) are introduced for forecasting solar energy which is a fusion of 

artificial neural network and fuzzy logic approach for forecasting global solar 

energy. In this research, a model underlying the principle of ANFIS architecture 

has been employed for forecasting global solar energy using meteorological 

parameters. Three criteria namely mean absolute percentage error, normalized 

root mean square error and normalized mean absolute error and have been used 
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for verifying the forecasting errors of proposed ANFIS based models. 

Simulations have been carried out for varying sky-conditions and successfully 

applied for distinct climate zone.  Further, comparison of ANFIS-based model 

has been fuzzy logic based model and ANN models. It has been concluded from 

the obtained results that the ANFIS-based model are far accurate and precise than 

other existing neural network and fuzzy logic based models.  

Further, in this thesis, a very short-term solar energy forecasting 

based on 10-minutes timescale has been presented to forecast the power 

output of a solar PV system. It has been concluded from the obtained results 

that for composite climatic conditions, the hazy sky (type-b) model 

outperforms other models as the measured data matches the forecasted data 

followed by the sunny sky model (type-a), partially foggy/cloudy sky 

model(type-c) and fully foggy/cloudy sky (typed) model. The result reveals 

that the short-term PV power forecasting may be implemented for for a broad 

series of applications. 

This research would be practically useful in providing appropriate 

control, optimization, power smoothening, real-time dispatch, the requirement of 

additional generating stations and the selection of appropriate energy storage 

system which may mitigate the issues of power fluctuations obtained from solar 

photovoltaic systems.  

 Such forecasts would be helpful for managing supply and demand for 

energy building in a smart grid environment. This research will help the 

stakeholders such as power engineer, technocrats, utility, designer, service 

provider and operation engineer for developing the smart energy management 
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system wherein the photovoltaic based power forecasting is one of the key 

components for this new paradigm.  

8.2  SCOPE OF FUTURE WORK 

 In the present research, all efforts have been made to present different 

intelligent techniques such as fuzzy logic, ANN and ANFIS for global solar 

energy forecasting. The results obtained from these models have been applied for 

solar photovoltaic power forecasting. Presented intelligent model may be 

improved by using some other optimization techniques such as Grey Wolf 

Optimization (GWO) and Genetic Algorithm (GA) for solar energy forecasting 

problem. In addition, few more parameters such as aerosol index, dust 

accumulation etc. may be added as input parameters in the aforesaid models.  

 Solar PV forecasting is a paradigm for smart-grid environment. Some issues 

related to the grid like reliability and stability resulting from unpredictable events 

may be addressed.  Further, an appropriate energy storage system may be 

proposed in the distributed generating systems using forecasting models.  
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APPENDIX-A 

 

Table A.1 Performance specifications of 250 Wp multi-crystalline solar PV modules 

Multi-crystalline solar PV module Specifications 

The efficiency of module ƞo 15.30% 

maximum power point voltageVpmax 34.92 V 

maximum power point current Ipmax 8.59 A 

Open circuit voltage Voc 44.83 V 

NOCT 45
o
C to ± 2

o
C 

 

Table A.2 Performance specifications of 210 Wp HIT solar PV modules 

HIT solar PV module Specifications 

The efficiency of module ƞo 16.70% 

The efficiency of the cell 18.9% 

Short circuit current  Isc 5.57 A 

Open circuit voltage Voc 50.9 V 

Ambient temperature - 4
o
F to 115

o
F 

 

 

 

 

 

 

 

 

 

 

 



 

  

  

230 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

  

231 

 

 APPENDIX-B 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

Fig. A.1 Experimental demonstration of Heterojunction with Intrinsic Thin Layer (HIT) solar 

PV module at National Institute of Solar Energy (NISE), India 

 

 
 

Fig. A.2 Experimental demonstration of multi-crystalline solar PV module at National 

Institute of Solar Energy (NISE), India 
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