INTELLIGENT MODELLING FOR SOLAR ENERGY FORECASTING AND APPLICATIONS

A Thesis submitted to the Delhi Technological University for the award of Doctor of Philosophy

in

Electronics and Communication Engineering

Submitted by: GULNAR PERVEEN (2K14/Ph.D./ECE/08)

Under the Joint Supervision of:

Dr. Nidhi Goel Associate Professor Department of Electronics & Communication Engg. IGDTUW, Delhi Dr. M. Rizwan Associate Professor Department of Electrical Engineering DTU, Delhi

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) DELHI-110042, INDIA

2019

DECLARATION

I Gulnar Perveen, a Ph.D. scholar, Roll No. 2K14/Ph.D./ECE/08 hereby declare that the thesis titled **"Intelligent Modelling for Solar Energy Forecasting and Applications"** which is submitted by me to the Department of Electronics and Communication Engineering, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy has not previously formed the basis for the award of any degree, diploma associateship, fellowship or other similar title or recognition.

Place: Delhi Date: 08.04.2019 (GULNAR PERVEEN)

CERTIFICATE

On the basis of declaration submitted by Ms. Gulnar Perveen, a Ph.D. scholar, Roll No. 2K14/Ph.D./ECE/08. I hereby certify that the thesis titled **"Intelligent Modelling for Solar Energy Forecasting and Applications"** which is submitted to the Department of Electronics and Communication Engineering, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy, is an original contribution with existing knowledge and faithful record of research carried out by her under my guidance and supervision.

To the best of my knowledge this work has not been submitted in part or full for any degree or diploma to this university or elsewhere.

Place: Delhi Date: 08.04.2019

(**Dr. Nidhi Goel**) Supervisor Associate Professor Department of Electronics and Communication Engg. Indira Gandhi Delhi Technical University for Women, Delhi (**Dr. M. Rizwan**) Jt. Supervisor Associate Professor Department of Electrical Engg. Delhi Technological University Delhi

ACKNOWLEDGEMENT

This thesis may not have been in its present shape and content without the astute and continuous guidance of my supervisor Dr. Nidhi Goel and Jt. supervisor Dr. M. Rizwan. I extend my sincere gratitude to them for their persistent guidance, encouragement and motivation throughout the research work. Dr. M. Rizwan is an outstanding mentor and working with him helped me in supplementing my thoughts in the right direction for attaining the desired objectives. I consider it my proud privilege to have worked with him and I am forever thankful to him for all his wise words and inspiring thoughts.

I wish to express gratefulness to Prof. S. Indu, Head, Department of Electronics and Communication Engineering and Prof. Madhusudan Singh, Head, Department of Electrical Engineering, Delhi Technological University, Delhi, for all the help during my research.

I am also thankful to all faculty members of the Department of Electronics and Communication Engineering and Department of Electrical Engineering, Delhi Technological University for their encouragement and moral support for the completion of this thesis.

I would like to extend my special thanks to SRC members Prof. T. S. Bhatti, Professor, Centre for Energy Studies, IIT Delhi who has given me valuable guidance and advice to improve quality of my research work.

I wish to express my gratitude to all DRC members particularly Prof. M. T. Beg, Jamia Millia Islamia, New Delhi for giving his valuable suggestions to improve my Ph.D. thesis.

I extend my personal thanks to my friends and colleagues especially, Md. Tausif Ahmed, Shagufta Khan, Priyanka Chaudhary, Astitva Kumar, Priyanka Anand and Rahul Bansal for their valuable support and reminding me to complete my work at the earliest.

iv

The assistance of the valuable staffs in Electrical Energy Utilization Laboratory of Delhi Technological University is gratefully acknowledged. I extend my gratitude to all my seniors and colleagues at National Institute of Solar Energy (NISE), Gurgaon for their substantial technical assistance and companionship during my research.

I want to take this opportunity to thank my parents, from the bottom of my heart for everything that they have done and continue to do for me. They have sacrificed a lot in their lives to help me come this far. Every bit of mine would always remain indebted to my loving parents whose blessing have been and will always be an inseparable part of every stride of my life. I also want to thank my brothers Gulzar, Ajaz and Niyaz for being a consistent source of motivation.

This acknowledgment would not be complete without mentioning my husband. He has been my core support system and words cannot articulate my admiration for him. He gave his unconditional love, support and continues to be a source of inspiration during my research.

I am wholly indebted to ALLAH who is the superpower of this universe.

Place: Delhi Date: 08.04.2019

(GULNAR PERVEEN)

ABSTRACT

Due to the growing population of the world, there is a surge in the demand for energy - specifically element energy. The production of electricity contributes the largest share in the emission of greenhouse gases that emanate from the burning of fossil fuel. So, a need has arisen for a clean form of energy i.e. renewable energy that can contribute to the increasing demand for energy worldwide. For the accurate design and development of solar energy based systems, solar radiation resource data plays a significant role. Unfortunately, the measured data is rarely available for research purpose for these stations where measurement is already being done. Therefore, it is essential to develop modelling techniques that can forecast global solar energy for such locations where measurements have not been done with reasonable accuracy. The number of mathematical models has been developed for assessment of solar energy under cloudless skies. In fact, it is rather difficult to forecast accurately the behaviour of solar radiation by using these stochastic models, as they need the bases of the precise definition of problem domains and these stochastic models were found with relatively large errors and sometimes difficult to be adopted widely. These models developed, however, are not appropriate to forecast solar energy during cloudy sky. So, fuzzy logic based model have been developed in situations when deterministic or probabilistic models do not provide a realistic description of the phenomenon under study. A lot of research has been carried out and it is observed that for modelling complex systems involving large data sets, it is difficult to maintain accuracy with so much of data sets by employing fuzzy logic approach. So, an Artificial Neural Network (ANN) models were introduced, that employ artificial intelligence techniques and are data-driven which can subsequently simulate the structure. For complex function estimation, the prediction of a number of hidden layers and hidden neurons accurately using ANN is difficult as they are large in number. Also, the training time for the conventional neural network is too large, which results in a slower response of the system. The existing neural model performs only

the operation of summation of its weighted inputs; it does not perform the operation of products on its weighted inputs. Therefore, hybrid intelligent models have been introduced for forecasting solar energy which integrates the features of fuzzy logic approach and ANN. Further, the obtained results have been implemented for short-term power forecasting in solar photovoltaic (PV) system under composite climate zone.

CONTENTS

Declaration	i
Certificate	ii
Acknowledgement	iii
Abstract	v
Contents	vii
List of Figures	xii
List of Tables	xvi
List of Abbreviation, Symbols and Nomenclature	xxi

CHAPTER 1 INTRODUCTION

1.1	General	1
1.2	Current scenario of renewable energy sources in India	2
1.3	Initiatives of Government of India in respect of renewable energy	6
1.4	Solar energy potential and its utilization	8
1.5	Climate zones in India	10
1.6	Modelling for solar energy estimation and forecasting	11
1.7	Problem formulation	11
1.8	Organization of the thesis	12

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	15
2.2	Mathematical models for estimating solar energy	15

2.3	Estimating solar energy using regression modelling	16
2.4	Fuzzy logic approach for solar energy forecasting	20
2.5	Solar energy assessment using ANN	21
2.6	ANFIS-based model for solar energy forecasting	23
2.7	Implementation of solar energy forecasting in solar PV systems	25
2.8	Knowledge gap analysis	28
CHAPTE	R 3 EMPIRICAL MODELS FOR ESTIMATING SOLAR ENERGY	
3.1	Introduction	31
3.2	Meteorological data	32
3.3	Empirical correlations for estimating global solar energy	32
3.4	Sunshine-based models for estimating solar energy	38
3.5	Principal component analysis	40
3.6	Statistical performance evaluations	41
3.7	Results and discussions	44
3.8	Comparison of proposed model with other models	85
3.9	Conclusion	87
CHAPTE	R 4 FUZZY LOGIC APPROACH FOR ASSESSING SOLAR ENERGY	
4.1	Introduction	89
4.2	Solar energy forecasting and its necessity	90
4.3	Meteorological data	91
	4.3.1 Compilation and normalization of data	91

	4.3.2 Classification of sky-conditions	97	
4.4	Development of fuzzy logic based models for forecasting solar energy		
	4.4.1 Fuzzy sets	99	
	4.4.2 Fuzzy inference system	99	
	4.4.3 Fuzzy membership function	100	
	4.4.4 Fuzzy rules	101	
	4.4.5 Fuzzy editor viewer	104	
4.5	Results and discussions	104	
4.6	Application of solar energy forecasting in solar PV system	114	
4.7	Fuzzy logic approach for short-term PV power forecasting	117	
4.8	Comparison of fuzzy logic based model with empirical models	122	
4.9	Conclusion	123	
СНАРТЕ	ER 5 SOLAR ENERGY FORECASTING USING ANN-BASED		
	MODEL		
5.1	Introduction	125	
5.2	Collection and scaling of meteorological data	127	
5.3	Architecture of artificial neural network	133	
	5.3.1 Feed-forward neural network	135	
	5.3.2 Cascade-forward neural network	135	
	5.3.3 Elman neural network	136	
	5.3.4 Generalized regression neural network	136	
	5.3.5 Layered recurrent neural network	136	
	5.3.6 Linear neural network	136	

	5.3.7 Radial basis function neural network	136
5.4	Evaluation indexes	137
5.5	Results and discussions	138
5.6	Implementation in solar PV system	152
5.7	ANN model for short-term solar energy forecasting	154
5.8	Comparison of ANN models with fuzzy logic based model	157
5.9	Conclusion	159
CHAPTE	R 6 HYBRID INTELLIGENT MODEL FOR FORECASTING	
	SOLAR ENERGY	
6.1	Introduction	161
6.2	Development of ANFIS based model for forecasting solar energy	163
	6.2.1 The ANFIS architecture	164
	6.2.2 Layers of ANFIS	165
6.3	Results and discussions	168
6.4	Implementation of ANFIS-based model for solar PV applications	177
6.5	Short-term PV power forecasting using ANFIS-based model	177
6.6	Comparison of ANFIS-based model with ANN models	181
6.7	Comparison of intelligent models with empirical models	181
6.8	Conclusion	185
CHAPTE	R 7 SOLAR ENERGY FORECASTING APPLICATIONS SOLAR PV SYSTEMS	

7.1	Introduction	187

7.2	Collection of data	188	
7.3	Intelligent approach for short-term solar energy forecasting	188	
7.4	Evaluation indexes	189	
7.5	Results and discussions	191	
7.6	Conclusion	207	
CHAPTER 8 CONCLUSIONS AND FUTURE SCOPE			
0.1	Conclusions of the current research	209	

8.1	Conclusions of the current research	209
8.2	Scope of future work	213
	REFERENCES	215
	APPENDIX-A	229
	APPENDIX-B	231
	LIST OF PUBLICATIONS	233

LIST OF FIGURES

Figure 1	.1 India's RES installed capacity	4
Figure 1	.2 Total installed power capacity in India as on 28 th Feb 2019	5
Figure 1	.3 Solar radiation resource assessment stations across India	8
Figure 1	.4 Solar PV global capacity in GW	9
Figure ³	Principal component analysis for Eq.(3.90) - Eq.(3.97)	41
Figure 3	Graphical representation of measured and estimated global solar energy for linear and non-linear sunshine based models for (a) Chennai (b) Jodhpur (c) Delhi (d) Pune and (e) Shillong	50
Figure 3	Graphical representation of measured and estimated global solar energy for empirical models for (a) Chennai (b) Jodhpur (c) Delhi (d) Pune and (e) Shillong	85
Figure 4	.1 Fuzzy logic based model for forecasting global solar energy	98
Figure 4	.2 Block diagram of fuzzy inference system	100
Figure 4	3 Fuzzy membership functions for wind speed	101
Figure 4	.4 Fuzzy membership functions for sunshine duration	101
Figure 4	.5 Fuzzy rule base simulated in MATLAB	102
Figure 4	Fuzzy editor viewer corresponding to 5 th rule in MATLAB	104
Figure 4	Graphical analysis of measured and forecasted H_g for composite climatic conditions	109
Figure 4	$H_{\rm g}$ Graphical analysis of measured and forecasted $H_{\rm g}$ for warm and humid climatic conditions	110
Figure 4	.9 Graphical analysis of measured and forecasted H _g for hot and dry climatic conditions	111
Figure 4	.10 Graphical analysis of measured and forecasted H _g for cold and cloudy climatic conditions	112
Figure 4	H_{g} Graphical analysis of measured and forecasted H_{g} for moderate climatic conditions	113
Figure 4	.12 Fuzzy logic based model for PV power forecasting	115

Figure 4.13	Graphical analysis of short-term PV power forecasting under composite climatic conditions	119
Figure 4.14	Mean percentage error of four forecasting sky-based models	121
Figure 5.1	ANN architecture used for forecasting global solar energy	134
Figure 5.2	MATLAB neural network toolbox	135
Figure 5.3	Graphical representation of measured and forecasted global solar energy employing the RBFNN and FFNN model for warm and humid climate zone	147
Figure 5.4	Graphical analysis of measured and forecasted global solar energy employing the RBFNN and FFNN model for hot and dry climate zone	148
Figure 5.5	Graphical analysis of measured and forecasted global solar energy employing the RBFNN and FFNN model for composite climate zone	149
Figure 5.6	Graphical analysis of measured and forecasted global solar energy employing the RBFNN and FFNN model for moderate climate zone	150
Figure 5.7	Graphical analysis of measured and forecasted global solar energy employing the RBFNN and FFNN model for cold and cloudy climate zone	151
Figure 5.8	Forecasted power in a solar photovoltaic system for a sunny day - 1 st June 2016 with evaluation indexes	154
Figure 5.9	Forecasted power in a solar photovoltaic system for a hazy day - 26 th December 2016 with evaluation indexes	155
Figure 5.10	Forecasted power in a solar PV system for a partially foggy/cloudy day-3 rd August 2016 with evaluation indexes	156
Figure 5.11	Forecasted power in a solar PV system for a fully foggy/cloudy day-3 rd January 2016 with evaluation indexes	157
Figure 6.1	Architecture of ANFIS for forecasting global solar energy	164
Figure 6.2	ANFIS training data simulated in MATLAB with five inputs and one output	168
Figure 6.3	ANFIS model structure with five inputs and one output simulated in MATLAB	169
Figure 6.4	Graphical representation of measured and forecasted global solar energy using ANFIS methodology for warm and humid climate zone	172

Figure 6	Graphical representation of measured and forecasted global solar energy using ANFIS methodology for hot and dry climate zone	173
Figure 6	Graphical representation of measured and forecasted global solar energy using ANFIS methodology for composite climate zone	174
Figure 6	Graphical representation of measured and forecasted global solar energy using ANFIS methodology for moderate climate zone	175
Figure 6	Graphical representation of measured and forecasted global solar energy using ANFIS methodology for cold and cloudy climate zone	176
Figure 6	Photovoltaic system power generation on daily basis for 3 days	179
Figure 6	ANFIS model structure with two inputs and one output simulated in MATLAB	180
Figure 6	Graphical analysis of PV power output in a solar PV system	180
Figure 7	Graphical analysis of measured and forecasted PV power employing fuzzy logic, ANN and ANFIS methodologies	192
Figure 7	Graphical analysis of measured and forecasted PV power employing intelligent methodologies for sunny sky- condition	196
Figure 7	Graphical analysis of measured and forecasted PV power employing intelligent methodologies for hazy sky- condition	197
Figure 7	Graphical analysis of measured power and forecasted PV power employing intelligent methodologies for partially foggy/cloudy sky-condition	198
Figure 7	Graphical analysis of measured and forecasted PV power employing intelligent methodologies for fully foggy/cloudy sky-condition	199
Figure 7	Graphical analysis of short-term PV power forecasting for (a) sunny sky; (b) hazy sky; (c) partially foggy/cloudy sky; and (d) fully foggy/cloudy sky	202
Figure A	Experimental demonstration of HIT solar PV modules at National Institute of Solar Energy (NISE), India	231
Figure A	Experimental demonstration of Multi-crystalline solar PV modules at National Institute of Solar Energy (NISE), India	231

LIST OF TABLES

Table 1.1	Target and cumulative achievements of grid-interactive renewable power	3
Table 1.2	Target and cumulative achievements of off grid/captive power	4
Table 1.3	Total installed power capacity as on 28th Feb 2019	6
Table 1.4	Geographical features of Indian stations with distinct climate zone	10
Table 3.1	Meteorological data for warm and humid climate zone	33
Table 3.2	Meteorological data for hot and dry climate zone	34
Table 3.3	Meteorological data for composite climate zone	35
Table 3.4	Meteorological data for moderate climate zone	36
Table 3.5	Meteorological data for cold and cloudy climate zone	37
Table 3.6	Sunshine-based models for warm and humid & hot and dry climate zone across India	45
Table 3.7	Sunshine-based models for composite and moderate climate zone across India	46
Table 3.8	Sunshine-based models for cold and cloudy climate zone across India	47
Table 3.9	Empirical models based on one and two variables correlation along with statistical errors for warm and humid climate zone	52
Table 3.10	Empirical models based on three variables correlation along with statistical errors for warm and humid climate zone	53
Table 3.11	Empirical models based on four variables correlation along with statistical errors for warm and humid climate zone	54
Table 3.12	Empirical models based on five variables correlation along with statistical errors for warm and humid climate zone	55
Table 3.13	Empirical models based on six and seven variables correlation along with statistical errors for warm and humid climate zone	56
Table 3.14	Empirical models based on one and two variables correlation along with statistical errors for hot and dry climate zone	58
Table 3.15	Empirical models based on three variables correlation along with statistical errors for hot and dry climate zone	59

Table 3.16	Empirical models based on four variables correlation along with statistical errors for hot and dry climate zone	60
Table 3.17	Empirical models based on five variables correlation along with statistical errors for hot and dry climate zone	61
Table 3.18	Empirical models based on six and seven variables correlation along with statistical errors for hot and dry climate zone	62
Table 3.19	Empirical models based on one and two variables correlation along with statistical errors for composite climate zone	64
Table 3.20	Empirical models based on three variables correlation along with statistical errors for composite climate zone	65
Table 3.21	Empirical models based on four variables correlation along with statistical errors for composite climate zone	66
Table 3.22	Empirical models based on five variables correlation along with statistical errors for composite climate zone	67
Table 3.23	Empirical models based on six and seven variables correlation along with statistical errors for composite climate zone	68
Table 3.24	Empirical models based on one and two variables correlations along with statistical errors for moderate climate zone	70
Table 3.25	Empirical models based on three variables correlations along with statistical errors for moderate climate zone	71
Table 3.26	Empirical models based on four variables correlations along with statistical errors for moderate climate zone	72
Table 3.27	Empirical models based on five variables correlations along with statistical errors for moderate climate zone	73
Table 3.28	Empirical models based on six and seven variables correlations along with statistical errors for moderate climate zone	74
Table 3.29	Empirical models based on one and two variables correlations along with statistical errors for cold and cloudy climate zone	76
Table 3.30	Empirical models based on three variables correlations along with statistical errors for cold and cloudy climate zone	77
Table 3.31	Empirical models based on four variables correlations along with statistical errors for cold and cloudy climate zone	78
Table 3.32	Empirical models based on five variables correlations along with statistical errors for cold and cloudy climate zone	79

Table 3.33	Empirical models based on six and seven variables correlations along with statistical errors for cold and cloudy climate zone	80
Table 3.34	Empirical correlations along with statistical errors for warm and humid & hot and dry climate zone across India	82
Table 3.35	Empirical correlations along with statistical errors for composite and moderate climate zone across India	83
Table 3.36	Empirical correlations along with statistical errors for cold and cloudy climate zone across India	84
Table 3.37	Comparison with other well-established models	86
Table 4.1	Measured and scaled data for composite climate zone	92
Table 4.2	Measured and scaled data for warm and humid climate zone	93
Table 4.3	Measured and scaled data for hot and dry climate zone	94
Table 4.4	Measured and scaled data for cold and cloudy climate zone	95
Table 4.5	Measured and scaled data for moderate climate zone	96
Table 4.6	Fuzzy rule base for the month of January for warm and humid climate zone	103
Table 4.7	Fuzzy logic based model for forecasting global solar energy for distinct climatic conditions	106
Table 4.8	Forecasted power in solar PV system under composite climatic conditions	116
Table 4.9	Short-term PV power forecasting using fuzzy logic approach under composite climatic conditions	118
Table 4.10	Comparison of fuzzy logic based model with empirical model	122
Table 5.1	Measured and scaled data for composite climatic conditions	128
Table 5.2	Measured and scaled data for warm and humid climatic conditions	129
Table 5.3	Measured and scaled data for hot and dry climatic conditions	130
Table 5.4	Measured and scaled data for moderate climatic conditions	131
Table 5.5	Measured and scaled data for cold and cloudy climatic conditions	132
Table 5.6	Variants of ANN architectures along with evaluation indexes under composite climatic conditions	139

Table 5.7	Forecasted global solar energy employing the RBFNN model based on sky-conditions for distinct climate zone across India	142
Table 5.8	Forecasted global solar energy employing the FFNN model based on sky-conditions for distinct climate zone across India	143
Table 5.9	Forecasted power in a solar PV system employing the RBFNN model under composite climatic conditions	153
Table 5.10	Comparative analysis of ANN model with fuzzy logic based model for distinct climate zone across India	158
Table 6.1	ANFIS based model for forecasting global solar energy along with statistical performance indicators for distinct climate zone	170
Table 6.2	Forecasted power of a solar PV system employing ANFIS based model under composite climate zone	178
Table 6.3	Comparison of ANFIS-based model with ANN models	183
Table 6.4	Comparative analysis of intelligent models with empirical models under composite climate zone	184
Table 7.1	Intelligent methodologies for forecasting power in a solar PV system employing HIT solar PV modules under composite climate zone	193
Table 7.2	Short-term PV power forecasting employing HIT solar PV modules under composite climatic conditions	195
Table 7.3	Intelligent methodologies for forecasting power in a solar PV system employing Multi-crystalline solar PV modules under composite climate zone	201
Table 7.4	Intelligent models for very short-term PV power forecasting for sunny sky-condition under composite climate zone	204
Table 7.5	Intelligent models for very short-term PV power forecasting for hazy sky-condition under composite climate zone	205
Table 7.6	Intelligent models for very short-term PV power forecasting for partially foggy/cloudy sky-condition under composite climate zone	206
Table 7.7	Intelligent models very for short-term PV power forecasting for fully foggy/cloudy sky-condition under composite climate zone	207
Table A.1	Performance specifications of 250 W_p Multi-crystalline solar PV modules	229
Table A.2	Performance specifications of 210 W_p HIT solar PV modules	229

LIST OF ABBREVIATION, SYMBOLS AND NOMENCLATURE

a,b,c,d	regression coefficients of empirical models (dimensionless)
Ca	average calculated value (dimensionless)
Ci	<i>i</i> th calculated value (dimensionless)
E	absolute error (%)
e _i	<i>i</i> th estimated value (dimensionless)
e_h	hourly error (hours)
\mathbf{f}_{i}	first order polynomial
G _{sc}	solar constant (W/m ²)
GT	solar irradiance at Standard Test Condition (STC) (W/m^2)
GW_{p}	giga watt peak
H _d	diffuse solar energy (MJ/m ²)
H/Hg	global solar energy (MJ/m ²)
Ho	extraterrestrial solar radiation on horizontal surface (MJ/m ²)
I _{pmax}	maximum power point current of solar PV module (A)
I _{sc}	short circuit current of solar PV module at STC (A)
kWh/kW _p	kilowatt hours per kilowatt peak
kWh/m²/day	kilowatt hour per meter square per day
kWh/year	kilowatt hour per year
L	measured data
L _{max}	highest value of relevant set of data
L_{min}	lowest value of relevant set of data
Ls	normalized/scaled data
m_a	average measured value (dimensionless)
MJ/m^2	mega joule per meter square

m_i	i^{th} measured value (dimensionless)
\mathbf{MW}_{p}	mega watt peak
n	number of observations (dimensionless)
Noct	temperature of solar panel (°C)
NPVP	photovoltaic arrays in parallel (number)
N _{PVS}	photovoltaic arrays in series (number)
$O_{l,i}$	output function for fuzzy sets A_i
$\mathrm{O}_{I,j}$	output function for fuzzy sets B_j
O _{2,<i>i</i>}	output of i^{th} node of layer 2
O _{3,i}	output of <i>i</i> th node of layer 3
O _{4,i}	output of <i>i</i> th node of layer 4
O _{5,i}	output of <i>i</i> th node of layer 5
P _m	measured atmospheric pressure (hPa)
P _{max}	power of solar PV module at Maximum Power Point (MPP) (W)
$P_{m,h}$	hourly mean values of the measured power in the <i>h</i> -th hour
Po	maximum possible atmospheric pressure (hPa)
$P_{p,h}$	hourly mean values of the forecasted power in the h -th hour
P_{PV}	power output of solar PV array at MPP (W)
P _{PV,STC}	rated power output of solar PV system of single array at MPP (W)
r	correlation coefficient (dimensionless)
R ²	coefficient of determination (dimensionless)
RF _m	measured rainfall (mm)
RFo	maximum possible rainfall (mm)

RH _m	measured relative humidity (%)	
RH_{o}	maximum possible relative humidity (%)	
S	measured sunshine duration (hours)	
So	maximum possible sunshine duration (hours)	
T_j	ambient temperature around PV panels (°C)	
$T_{amb}/T_{\rm m}$	measured ambient temperature (°C)	
To	maximum possible ambient temperature (°C)	
V _{oc}	open circuit voltage of solar PV module at STC (V)	
V _{pmax}	maximum power point voltage of solar PV module (V)	
Wi	<i>i</i> th rules strength	
wi	normalized firing rule strength	
Wij	connection weight directed from <i>j</i> neuron to <i>i</i> neuron	
WS _m	measured wind speed (Km/hr)	
WSo	maximum possible wind speed (Km/hr)	
Xij	<i>j</i> th neuron incoming signal	
X _{max}	maximum limit of normalized range	
\mathbf{X}_{\min}	minimum limit of normalized range	
Greek Symbols		
φ	latitude of the site (degree)	
ω _s	mean sunrise hour angle (degree)	
<i>N_{day}</i>	number of days in a year beginning from 1 st January (dimensionless)	

δ solar declination angle (degree) optical efficiency (%) η_0 temperature parameter at MPP (dimensionless) γ θ_i bias of *i* neuron $\mu_A(Y)$ membership function of subset A of universal set Y membership function degree of fuzzy sets A_i $\mu_{A,i}(x)$ $\mu_{A\cup B}(Y)$ union of fuzzy sets A and B of universal set Y intersection of fuzzy sets A and B of universal set Y $\mu_{A\cap B}(Y)$ $\mu_B(Y)$ membership function of subset B of universal set Y $\mu_{B,j}(y)$ membership function degree of fuzzy sets B_i membership function μ_p $\mu_p(Y)$ grade of membership function of universal set Y Ν normalization to the firing strength Σ summation function υ union \cap intersection

Nomenclature

AC	Alternating Current
ANFIS	Adaptive Neural-Fuzzy Inference System
ANN	Artificial Neural Network
AR	Auto Regressive
ARMA	Auto Regressive Moving Average
CFNN	Cascade Forward Neural Network
CPCR2	Code for Physical Computation of Radiation, 2 bands
CWET	Centre for Wind Energy Technology

DNI	Direct Normal Irradiance
EMR	Eastern Mediterranean Region
EMS	Energy Management System
ENN	Elman Neural Network
FCS-MPC	Finite Control Set-Model Predictive Control
FFNN	Feed Forward Neural Network
FIS	Fuzzy Inference System
FY	Financial Year
GA	Genetic Algorithm
GBIs	Generation Based Incentives
GRNN	Generalized Regression Neural Network
GWO	Grey Wolf Optimization
Н	High
НН	High-High
HIT	Heterojunction with Intrinsic Thin Layer
IMD	Indian Meteorological Department
INC	Incremental Conductance
ISA	International Solar Alliance
IST	Indian Standard Time
JNNSM	Jawaharlal Nehru National Solar Mission
L	Low
LAT	Local Apparent Time
LM	Low-Medium

LNN	Linear Neural Network
LRNN	Layered Recurrent Neural Network
LVQ	Learning Vector Quantization
Μ	Medium
MAPE	Mean Absolute Percentage Error
MBE	Mean Bias Error
MF	Membership Function
МН	Medium-High
MLFFNN	Multi-Layer Feed Forward Neural Network
MNRE	Ministry of New and Renewable Energy
MPC	Model Predictive Control
MPE	Mean Percentage Error
MPP	Maximum Power Point
MPPT	Maximum Power Point Tracking
NAPCC	National Action Plan on Climatic Change
NISE	National Institute of Solar Energy
NIWE	National Institute of Wind Energy
NMAE	Normalized Mean Absolute Error
nRMSE	Normalized Root Mean Square Error
NWP	Numerical Weather Prediction
P&O	Perturb and Observe
PSO	Particle Swarm Optimization
PV	Photovoltaic

RBFNN	Radial Basis Function Neural Network
RES	Renewable Energy Sources
REST	Reference Evaluation of Solar Transmittance
REST2	Reference Evaluation of Solar Transmittance, 2 bands
RMSE	Root Mean Square Error
SEC	Solar Energy Centre
SOM	Self-Organizing Map
SPV	Solar Photovoltaic
SRRA	Solar Radiation Resource Assessment
STC	Standard Test Condition
SVM	Support Vector Machine
SVR	Support Vector Regression
SVR-RBF	Support Vector Regression -Radial Basis Function
TRAINLM	Levenberg-Marquardt Training algorithm
TSK	Takagi, Sugeno & Kang
VH	Very-High

VL Very-Low