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ABSTRACT
The identification of seizure activities in non-stationary electroencephalogra-
phy (EEG) is a challenging task. The seizure detection by human inspection
of EEG signals is prone to errors, inaccurate as well as time-consuming. Sev-
eral attempts have been made to develop automatic systems so as to assist
neurophysiologists in identifying epileptic seizures accurately. The proposed
study suggests using Discrete Wavelet Transform to decompose the EEG
signals into frequency sub-bands. We choose a certain subset of the fre-
quency sub-bands for feature selection. Following the DWT decomposition,
we calculate the Standard Deviation for each sub-band present in the subset.
Finally, the standard deviation values of the sub-bands are fed to a Support
Vector Machine. The proposed work consists of 5 experiments which are
essentially classification problems: 3 of which are Multi-class classification
problems and the rest two are Binary Classification problems. In the pro-
posed work, we investigate the three-class classification problems focused on
classifying an EEG signal into one of the three classes, which are 1. Healthy
patient 2. Seizure-free epochs:inter-ictal stage 3. Epileptic Activity:ictal
stage. The dataset used in the proposed work is obtained from the De-
partment of Epileptology of the University of Bonn.The accuracy achieved
in one of the Multi-class classification experiment in the proposed work is
98.45% which beats the state of the art accuracy in this three-class prob-
lem. Additionally, the proposed method has achieved highest accuracy of
100% in classifying normal EEG signals(eyes closed) and seizure EEG signal
and an accuracy of 100% in classifying normal EEG signals(eyes open) and
seizure EEG signal which is comparable with the existing state of the art
EEG signal classification techniques. Six different classification techniques
have been used in each of the five experiments conducted where every classi-
fication technique has been used with 8 different Daubechies wavelets db1 to
db8. The results obtained from these experiments provide valuable insights
establishing that SVM performs the best in most of the experiments with
the db4 wavelet among the 8 wavelets achieving the highest accuracy.
Keywords: Epilepsy · Electroencephalogram(EEG) Signals · Sig-
nal Processing · Wavelet Decomposition · Classification · Machine
Learning
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Chapter 1

Introduction

1.1 Overview

Epilepsy is a chronic condition caused in the brain where seizures occur multi-
ple times unreliably. It generally occurs where the victim loses consciousness
or there are tremendous convulsions over the entire body. This lowers the
life expectancy[2] . On a biological basis, the seizures in epileptic patients
are caused because they seem to have inability to have control over the level
of their cortical neurons. With negative potential shifts in the patients, the
seizures start occurring because it causes the over-excitation of the cortical
neuronal networks [6]. As a measure to remedy this, research was done on
how to suppress this negative shifts. Neurofeedback was conducted on the
patients to reinforce them to modify their baseline levels of potential[26]. In
most Human Behavioral Science Hospitals, the onset of an epileptic seizure
is detected using Electroencephalogram(EEG) which is worn on the scalp. It
has multiple channel electrodes to capture the brain waves. The readings on
the EEG are the result of the electrical activities of the neurons. Electrodes
are pasted with the help of a gel on the scalp of the patient. The standard
method to apply the electrodes on the scalp is the 10-20 system. Automatic
seizure detection using patient non-specific classifiers has two main advan-
tages in medical science. Firstly, this would mean we can get the seizure
data with greater accuracy. Secondly, as a great therapy this would avoid
the danger caused by seizures [42]. In a therapeutic sense, a closed system
can be built which can send signals to the patient about the onset of a seizure,
and thus helpful in performing various kinds of Neurofeedback methods [25].
But, there are problems associated with patient non-specific classifiers. They
might display very low accuracy along with a significant delay in detection
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of seizures.[Wilson et al, 2004] because the seizure activity and non-seizure
activity is variable from patient to patient. The designing of patient-specific
classifiers for seizure detection is a challenge because of several reasons:

1. There has to be a sharp distinction between detector sensitivity and
specificity because epileptic patients have seizure states and non-seizure
states overlapping with each other

2. The transition from seizure state to non-seizure state is a non-stationary
process, and therefore the detection has to be done within a short crit-
ical time

3. Algorithms have to be designed keeping in mind the scarcity of training
data

Seizure Detectors are classified into two types:

1. Seizure Onset Detectors

2. Seizure Event Detectors

The purpose of each of these is complimentary to the other. In other words,
a seizure onset detector has to recognize a seizure with the shortest possible
delay relaxing on the accuracy of the prediction. On the other hand, the
purpose of a seizure event detector is to identify a discharge as accurately as
possible with a relaxation on the latency of seizure detection.

1. Seizure Onset Detection

In a therapeutic sense, seizure onset detection could be used to trigger
the neurostimulators. This has an effect while a seizure is occuring . A
well-working seizure onset detection model can help aware the doctor
to administer an anti-convolusant. This does not mean doctors can
wait for too long to warn the patient. It increases the possibility that
the patient will be incapable of any reaction to the seizures.

2. Seizure Event Detection

Seizure event detectors can help doctors for better therapy of epilepsy
over time. Due to various reasons, doctors end up prescribing too
much or too little. What can be done in order to alleviate this is that
a device can be worn on the scalp which can do seizure event detection
to provide the statistics(number, frequency, duration) of the seizures.
Correlating this information with medication can maximally benefit
the patients.

2



1.2 Motivation

Almost 80% of the patients with Epilepsy live in low earning countries. They
have a response to medication 70% of the time. About three-quarters of the
people who have epilepsy do not get the treatment they need. In many areas
of the world, epileptic patients are still suffering from the discrimination
and dogmatism. To talk about the rates of the disease, there are almost 50
million people suffering from epilepsy. On a scale of 1000 people, we have 4-
10 persons having epilepsy. Research shows that in the poorer countries the
ratio is much higher around 7 to 14 people have epilepsy out of 1000 people.
Almost 2.4 million people are identified with Epilepsy every year. In high-
income countries, around 0.03-0.05% of the people in the total popluation
have epilepsy. In poorer countries it can be twice the numbers. Epilepsy
is about 0.6% of the diseases, based on a statistical study that considers
years of life cut short because of early death. An Indian study done in 1998
concluded that the expenses invested in epilepsy treatment on a patient
was about 88% of the country’s economic production value. On a study on
Statistics Of Epilepsy done by M. Leuret, of the Bictre, Paris, the following
evidences are taken from the paper on this subject. “24 out of 106 cases
started getting seizures at an age between 10 and 14. 18 experienced their
first seizure between 15 and 19 years. 16 were attacked between 20 and
24 years. Of these 106 cases it was found out that the father and mother
had Epilepsy in 6 cases only. Of these 106 patients, 30 were drunkards, 15
addicted. 30 of the 106 patients had attacks regularly once a fortnight; 17
used to have seizures once a month; 13 once a week; 9 every three or four
days; 4 almost daily and 2 daily,1 every 2 months, 3 every three months
and 24 at very irregular intervals. In 29, they were as many in the day as
in the night. In 8 they occurred in the day, in 12 they occur frequently
in the day. In 8 cases, seizures occur in the night only; in 3 cases seizures
happened in the morning only; and in 1 case seizures happen in the evening
only.” In order to minimize the rate of epileptic seizures, the thesis
attempts the problem of seizure detection using Machine Learning
Algorithm. This will require acquisition of the EEG signals of the
patients.
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1.3 Problem Statement

Around 50 million people in the world are estimated to suffer from Epilepsy.
The convulsions that occur in these patients are as a result of excess electrical
discharges in large number of neurons. In medical institutions , epileptic ac-
tivity is detected manually by using the technique called Electroencephalog-
raphy(EEG). The manual method to detect epileptic activity in pa-
tients is to look for a "spike followed by a smooth" complex in the
EEG signal. This process is very time consuming and erroneous. This mo-
tivates the need to develop fast, reliable and accurate techniques for seizure
detection in epileptic patients.
The goal of seizure detection is to classify from the EEG readings, whether
the activity is seizure or non-seizure. Unfortunately, the problem of seizure
classification cause many algorithms to form multiple segmentations beyond
simple seizure and non-seizure states. So, a supervised framework has to be
used instead of unsupervised.

Before automated systems were developed, the EEG signals used to be
manually analyzed by neurologists for detection of seizure. Some of the re-
lated works for eg. Sharmila et al. [41] and Guo et al.[17] in the field of
Epileptic Seizure Detection use Discrete Wavelet Transform for decomposi-
tion of the EEG signals. The wavelet decomposition is done upto eight lev-
els. The wavelet coefficients obtained after the decomposition are fed to the
Machine Learning Classifiers used in the works respectively with very good
results. The proposed work closely resembles the research done by Sharmila
et al [41] and achieves better results. The highest accuracy achieved on a
Multi-class classification on Healthy, Inter-Ictal and Ictal patients is 98.45%
in the proposed work which beats the state of the art accuracy. The pur-
pose of the thesis is focused on building an autonomous system
which achieves the task of epileptic seizure detection using various
Machine Learning Algorithms.
The proposed work does a 8-level Wavelet Decomposition of the EEG sig-
nals and then uses a subset of the coefficients obtained unlike the research
in Sharmila et al. [41] which uses all the coefficients obtained from Wavelet
Decomposition. The proposed work achieves a greater accuracy because of
selecting a subset of the coefficients which helps avoid redundancy. The co-
efficients considered in the proposed work are the Detail Coefficients D3, D4

and D5 and the Approximation Coefficient A8. The reason for select-
ing these four coefficients is because the most important informa-
tion related to epileptic activities are found to be present in these
frequency sub-bands of Gamma and Delta [19],[36]. The proposed
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method, results and comparisons along with the insights into them will be
discussed in the coming chapters eventually.
The novelty of the proposed work lies in the feature selection process. The
wavelet coefficients used in the proposed work are the Detail Coefficients D3,
D4 and D5 and the Approximation Coefficient A8 unlike the existing works
which use all the wavelet coefficients.
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1.4 Scope of the work

The scope of the work is to classify the EEG signals into healthy,
inter-ictal and ictal classes using Machine Learning Algorithms like
SVM, Decision Tree, Random Forest, Nearest Neighbors, Naive
Bayes and AdaBoost classifiers.The data obtained from the University
of Bonn(available in public domain) have been used in this work. The Dis-
crete Wavelet Transform is applied on the sampled EEG signals and their
statistical standard deviation has been calculated for the four wavelet coef-
ficients obtained after Wavelet Decomposition upto 8 levels. This standard
deviation measure is fed as a feature vector to various Machine Learning
classifiers after which a comparison is made between them in all the classifi-
cation problems.
The following work deals with five experiments which are the following:

1. Classification between Healthy Patients(with eyes open)(set A) and
Patients experiencing seizure activity (set E)

2. Classification between Healthy Patients(with eyes closed)(set B) and
Patients experiencing seizure activity (set E)

3. Classification between Healthy Patients(with eyes closed)(set B) and
Patients in inter-ictal state whose EEG readings obtained from hip-
pocampal formation of opposite hemisphere of the brain(set C) and
Patients experiencing seizure activity (set E)

4. Classification between Healthy Patients(with eyes closed)(set B) and
Patients in inter-ictal state whose EEG readings obtained from hip-
pocampal formation which was the epileptogenic area(set D) and Pa-
tients experiencing seizure activity (set E)

5. Classification between Healthy Patients(with eyes open)(set A) and
Patients in inter-ictal state whose EEG readings obtained from hip-
pocampal formation of which was the epileptogenic area(set D) and
Patients experiencing seizure activity (set E)

The proposed work is then compared with the state of the art among
which the work closely resembles Sharmila et al. [41] and Guo et al. [17].
This establishes our approach.
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1.5 Organization of the Thesis

The organization of the Thesis is as follows: Chapter 2 discusses the Re-
lated Works in the field of Epileptic Seizure Prediction using various Wavelet
Decomposition techniques and then feed the features extracted to Machine
Learning Algorithms like Neural Networks, SVM etc. The features used are
usually obtained by calculating the Approximate Entropy or Maximum value
of the wavelet coefficients. The proposed work computes the standard
deviation of the coefficients and then feeds it to the classifiers.

Electroencephalography in Chapter 3 with an understanding of Epilep-
tic Seizures followed by a summary on Electroencephalography(EEG) which
discusses the device and its electrodes briefly. The chapter ends with some
EEG signals.

Chapter 4 discusses the EEG dataset followed by some performance
metrics used to evaluate the performance of the seizure detector.

Chapter 5 describes the Wavelet Transform, its comparison with Short-
Time Fourier Transform followed by examples on Approximation and a dis-
cussion on Multiresolution Analysis.

Chapter 6 describes the Continuous Wavelet Transform followed by a
short study on Comparison among the Fourier Transform, Short-time Fourier
Transform and Wavelet Transform.

Chapter 7 discusses the Discrete Wavelet Transform, its concept of
Subband coding through which the process of Wavelet Decomposition is
explained followed by an example of Subband Coding. The chapter concludes
with a summary of Daubechies Wavelet, which has been used in the proposed
work.

Chapter 8 discusses the Proposed Method and describes briefly the
Classifiers used.

Chapter 9 describes the Results obtained from the five experiments in
the proposed work followed by important conclusions and insights from the
results.

The thesis concludes with Conclusion and Future Work on this topic in
Chapter 10.
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Chapter 2

Related Works

As the seizure event detectors were developed, the research began[16]. Ini-
tially, the seizure event detectors were patient non-specific. Naturally, for
reasons discussed above the accuracy was poor. Then to improve the per-
formance, researchers came up with patient-specific event detectors. These
detectors were better in comparison because seizure and non-seizure states
across an individual aren’t much distinguishable.

Among the earliest patient non-specific seizure event detector designed
was by Gotman(1982)[16]. The Gotman Algorithm was driven by the search
of sustained rhythmic activity in the brain with a frequency lying in the
range of 3-20 Hz and amplitude thrice the value in the background signal.
A seizure event was detected by the algorithm whenever a rhythmic activity
was recorded on at least two electrodes persisting for 4 seconds.

So far the Gotman algorithm could successfully detect activities below
20 Hz. But its disadvantage was soon exposed when it had to detect seizure
with a mixture of frequencies or those with low amplitude high frequency
activities. In a paper[37] it was found out the Gotman algorithm only detects
50% of the test seizures. In that paper, 28 patients with a total of 126
seizures were taken as the data. The algorithm produced 0.5 false detections
per hour.

Clearly after this research there was a need to work more on the signal
processing part to characterize that a particular signal is rhythmic. One such
effort was the Reveal Seizure Detector by Wilson[51]. This algorithm focused
on decomposition of EEG signals on a time-frequency domain by taking
2-second EEG Epoch. The Reveal algorithm then uses Artificial Neural
Networks whether the features obtained from the electrodes are consistent
with the seizures already detected on the patient.
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The Wilson paper reported that 76% of the test seizures from the dataset
of 672 seizures comprising of 426 persons. Also, it only produced 0.11 false
detections per hour. On further improvement, the sensitivity increased to
78%. The Wilson algorithm had better sensitivity but it had poor specificity
when studying the abnormal non-seizure activity of patients with scalp EEG.

A patient non-specific seizure event detector was developed[37]. The
concept of wavelet decomposition was used for feature extraction to measure
the probability of an impending seizure. Whenever the probability exceeded
a threshold decided apriori that would mean the algorithm declare an onset
of seizure. It could successfully identify 78% of the test seizures with 0.86
false detections per hour. The research identified the failure to identify the
seizures was due to focal activity, mixed frequency or short duration; It might
be due to intense eye movements and chewing that the false detections have
occurred.

It was followed by the first patient-specific seizure onset detection algorithm[33,
34, 35]. It uses nearest-neighbor classifier to classify a feature-vector to be
belonging to a seizure class or non-seizure class. The training on the classi-
fier is done from the feature vectors that are already labelled. The features
included are seizure’s average amplitude, highest frequency and rhythmicity.
A seizure is declared if the classifier choses half of the channels on which
the seizure turned out to be positive. This method did predict 100% of the
test seizures with a delay of 9.35 seconds and the false detections were 0.03
per hour. The non-seizure data on which false detection was studied was
made by concatenating epochs of EEG obtained from daily brain waves of
the patient at regular intervals. When compared to Gotman’s work, this
work had much better specificity and sensitivity, but the detection latency
was still questionable.

Meier developed a patient non-specific seizure detector which was seizure-
specific[24]. The research classified seizure into 6 classes based on the domi-
nant frequency that appears on the onset of the seizure. Then for each type
a Support Vector-Machine was trained. It was then seen whether the feature
vector extracted from an EEG-epoch was on the verge of being a seizure ac-
tivity. A single feature vector consisting of all the features was constructed.
Its performance was then evaluated. 91 seizures and 1,360 hours of non-
seizure EEG of 57 patients was taken for the purpose. It detected 96% of
the test seizures. Average lag time was 1.6 seconds and false detections were
0.45 per hour. But as No Free-Lunch would have it, it came with a short-
coming in the very classification of the frequency it had done. If the seizure
type was not already included among the 6 categories there was a very high
probability that the seizure would not be recognized at all.
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In other studies, The SVM has been the most common classifier to dis-
tinguish between seizure and non-seizure events. Using the CHB(Children’s
Hospital of Boston) database and a patient-specific prediction methodology,
a research [42] by A.Shoeb did his PhD Thesis on this topic where he used
SVM on a dataset with 24 patients. The classification accuracy 96% with
a false positive rate of 0.08 false detections per hour. Something similar re-
search was done, five records from the CHB database were taken and study
was conducted using the Linear Discriminant Analysis[22]. The classification
accuracy achieved was 91.8%.

Acharya et al used entropy for his work on EEG and seven different clas-
sifiers were used among which the best performance was by Fuzzy Sugeno
Classifier. It achieved a classification accuracy of about 98.1%. The worst
performing was the Naïve Bayes Classifier which achieved 88.1% classifica-
tion accuracy [1].

Nasehi and Pourghassem worked on the same dataset with a Particle
Swarm Optimization (a genetic algorithm). The Neural Network gave 98%
for sensitivity and false detections were 0.125 per hour[27].

Yuan et al. gave a patient-specific seizure detection system and trained a
neural network. The system was trained on 21 seizure records and tested on
65 records. The accuracy achieved were an average of 91.2% for sensitivity
and 95% for specificity and the overall accuracy achieved was 94.9% [53].

Patel et al. gave a classification algorithm consuming low power which
could classify rhythmic activities as seizures. The FRE Dataset was used.
The study compared between multiple classifiers like Linear Discriminant
Analysis(LDA), Quadratic Discriminant Analysis, Mahalanobis Distance Clas-
sifier and SVM. It did the study on 13 samples. LDA gave the best accuracy
87.7%. Overall the average accuracy was 76.5% [31].

In a recent study by Fergus et al.[11] the previous ideas have been ex-
plored further. The fact is that EEG capturing the data and the time taken
by the experts to interpret the data is time taking. So, Automated detec-
tion of correlation of seizure states across the brain has been explored. The
dataset used contained 342 records(171 discharge activities and 171 non-
discharge activities). The k-NN Classifier was used and 93% accuracy was
achieved with this method.

In a research conducted on neo-natal patients [46], the system was able
to report an accuracy of 89% with 1 false detection per hour, 96% with
two false detections per hour, 100% with four false detections per hour.
The classification system created allows the control of the final decision by
choosing the confidence factors according to which the false detections vary.

Most of the recent works are based on classification between healthy
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patients with eyes closed and patients experiencing seizure activity. The
dataset used is described in chapter 4. Research has been done suggesting
the use of a hybrid SVM [44]which has been optimized by the use of a
Genetic Algorithm(GA) and Particle Swarm Optimization(PSO). Das et al.
[9] have used SVM where the Normal Inverse Gaussian (NIG) parameters
of the frequency sub-bands have been used as features giving a maximum
accuracy of 100%.

Sharma et al. [40]have introduced Analytic Time-Frequency Flexible
Wavelet Transform(ATFFWT) for EEG signal decomposition and Fractal
Dimensions have been calculated for each sub-band which is fed to a Least
Squares-SVM(LS-SVM) to obtain a maximum of 100% accuracy on some
datasets.

In other techniques[5], tunable-Q wavelet transform(TQWT) has been
used to decompose the signal following which a Quality Factor(Q) based
entropy value of the sub-bands obtained have been fed to a Support Vector
Machine to get a maximum accuracy of 100%. Other works [29] include using
Discrete Wavelet Transform to decompose the EEG signals and calculation
of Approximate Entropy(ApEn) of the detail and approximate coefficients
obtained at each level of decomposition. Kumar et al [23] used a wavelet-
based fuzzy approximate entropy(fApEn) method. The fApEn values of the
sub-bands are calculated and the feature vectors are fed for classification.
The highest accuracy obtained is 100%. Salem et al. have used a three-
stage algorithm [38] consisting of Signal Decomposition followed by Feature
Extraction and finally Classification. The extracted features are fed to an
Ant-Colony Classifier to finally achieve detection rate of 100%. Ocak et al.
[29] have used DWT followed by calculating Approximate Entropy values
where a threshold value was chosen. The difference in Approximate Entropy
between epileptic and normal EEG helped detect seizures with upto 96%
accuracy.

Wani et al.[50] worked on the multi-class classification problem of seizure
detection. Given an EEG epoch the task was to classify it into one of the
three classes: 1. Healthy, 2. Inter-Ictal and 3. Seizure Activity. The highest
accuracy achieved was 95%.

Ullah et al.[49] proposed a P-1D-CNN system with very less learnable
parameters providing an accuracy of 99.1±0.9%. Guo et al. [17] used ApEn
for EEG analysis to obtain an accuracy of 99.85%. While, Srinivasan et
al [43] used Probabilistic Neural Networks by calculating ApEn values of
the sub-bands to get 100% accuracy. Nicolau et al [28] used Permutation
Entropy(PE) as a feature for SVM classifier. The Table 2 shows the related
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Authors Method Used Type Of Experiment Accuracy

Tzallas et al.
[48]

Time frequency Features
using ANN

A-E
ABCD-E

100%
97.73%

Guo et al. [18] DWT and line length feature
using ANN ABCD-E 97.77 %

Orhan et al.
[30]

DWT and clustering using
multilayer perceptron ANN

A-E
ABCD-E

100%
99.60%

Gandhi et al.
[14]

DWT and energy , std
and entropy features;using
SVM and Probabilistic NN

ABCD-E 95.44 %

Nicolau et al.
[28]

Permutation Entropy and
SVM

A-E
B-E
C-E
D-E
ABCD-E

93.55%
82.88%
88.00%
79.94%
86.10%

Kaya et al. [21] 1D LBP and functional tree
1D LBP and BayesNet

A-E
D-E
CD-E

99.5%
95.5%
97%

Samiee et al
[39]

Rational Discrete Short time
fourier transform using
multilayer perceptron

A-E
B-E
C-E
D-E
ABCD-E

99.80%
99.30%
98.50%
94.90%
98.10%

Peker et al.
[32]

DTCWT using complex
valued NN

A-E
ABCD-E

100%
99.15%

Swami et al
[45]

DTCWT and energy,
std, Shanon entropy features
using GRNN

A-E
B-E
C-E
D-E
AB-E
CD-E
ABCD-E

100%
98.89%
98.72%
93.33%
99.18%
95.15%
95.24%
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Authors Method Used Type Of Experiment Accuracy

Sharma et al .[40] ATFFWT and FD feature
using LS-SVM

A-E
B-E
C-E
D-E
AB-E
CD-E
AB-CD
ABCD-E

100%
100%
99%
98.50%
100%
98.67%
92.50%
99.20%

Tiwari et al .[47] Key point based LBP and SVM ABCD-E 99.3 %

Chen [8] DTCWT and Fourier features
with NN classifier

A-E
ABCD-E

100%
100%

Bajaj and Pachori [4]
Amplitude and frequency
modulation bandwidths of IMFs
and Least Squares-SVM

ABCD-E 99.5 %

Yuan et al .[52]
ApEn, hurst Exponent, scaling
exponents of EEG and Extreme
Learning Machine Algorithm

ABCD-E
D-E

99.5%
96.5%

Bhattacharya et al .[5] TQWT-based multi-scale K-NN
Entropy

A-E
B-E
C-E
D-E
A-BCDE

100%
100%
99.5%
98%
99%

Das et al. [9]
SVM using NIG parameters
as features in dual-tree complex
wavelet transform domain

ABCDE
A-E
AD-E
D-E
C-E

100%
100%
100%
100%
100%

A.Sharmila
P.Geethanjali [41] Naïve Bayes/k-NN Classifiers

A-E
B-E
C-E
AB-E
AC-E
BC-E
CD-E
ABC-E

100%
99.25%
99.62%
99.16%
99.50%
98.25%
98.75%
98.68%

Proposed Work Discrete Wavelet Transform, SVM
Classifier

A-E
B-E
BC-E
AD-E
BD-E

100%
100%
98.45%
95%
96.87%

Table 2.1: Results and Features used in Previous and proposed method using
the same EEG dataset

works in seizure detection which have used the dataset from University of
Bonn, the very same that has been used in the proposed work. Some of the
methods use DWT for Wavelet Decomposition, however the proposed work
closely resembles the work done by Sharmila et al. [41], achieving better
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results than state of the art.

2.1 Conclusions

From the Table 2.1, it is evident that the works by Sharmila et al. [41]
and Guo et al. [17] give the best results. But these works use all of the
wavelet coefficients obtained after Wavelet Decomposition. On the other
hand, the proposed work uses a subset of the 9(nine) wavelet coefficients
obtained which requires choosing only those coefficients which have minimum
redundancy whilst having the most important information present in their
window.
Infact, the proposed work beats the state of the art accuracy in the Multi-
class classification experiment of classifying an EEG epoch into healthy,inter-
ictal and epileptic. The accuracy obtained in the work done by Sharmila et
al. [41] is 98.25% while the proposed work achieves a higher accuracy of
98.45%
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Chapter 3

Electroencephalography And
Epileptic seizures

This chapter reviews the features and summary of epileptic seizures and how
the Electroencephalogram uses the electrographic properties of seizures for
therapeutic and diagnostic purposes.

3.1 Seizures

To understand the physiology underlying epileptic seizures we have to start
looking from neurons which are the cells within our brain. They can gen-
erate and send electric signals to each other. Neurons interconnect among
each other to form a neural network. Neurons receive messages which can be
inhibitive or excitatory in nature. In the former the activity in the neuron
ins suppressed while in the latter activity is encouraged [20]. When patients
suffer the epileptic seizure, these are recurring periods of hyperactivity of
cortical neurons which are caused by negative shifts in potential. This in-
volves a massive number of neurons in one or more neural networks. The
seizure states are separated by periods of transition of states which creates an
imbalance causing excitation to arise instead of inhibition. This is primarily
caused in these patients because they specifically have defects in neural net-
works organization. The disorders may be due to genetic reasons or from a
shock to the Central Nervous System. Epileptic seizures can be divided into
many types based on which part of the brain their origin is. Focal seizures
originate in a small region of the brain’s cortex and it has been clinically
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proven that they affect that part during seizure activities. To explain this,
the best scenario would be to consider the temporal lobe of the brain which
processes emotions and short-term memory. So when focal seizures occur
in the temporal lobe it causes feelings such as euphoria, fear meaning all
the negative emotions of hallucinations etc. When Focal seizures spread to
adjacent areas of the brain, it causes convulsions in the whole-body. There
are generalized seizures which affect the entire cerebral cortex of the brain.
The generalized seizures often result in loss of consciousness. The general
signs in the patient are jerking or atonic seizure.

A seizure that starts as a focal seizure and then gradually starts affecting
not only the temporal lobe but also the entire cerebral cortex and becomes
a generalized seizure is called a secondarily generalized seizure.

3.2 Electroencephalography(EEG)

EEG is the measure of the ionic current that flows from the neurons in our
brain and the electrical activity is recorded on the EEG. The clinical EEG
equipment are used for patients suffering from ADHD, Alzheimer disease,
Epilepsy. Usually the device kept is called the scalp EEG. The electrodes
are used to measure the electrical potentials generated by the neurons. The
EEG device which has the electrodes arranged symmetrically on the scalp
which is used to get a temporal and spatial summary of the synchronous
excitation of numerous neurons within the brain can be seen in Figure 3.1.
Odd numbered electrodes are place on the left side of the scalp and even

Figure 3.1: EEG Electrodes placed symmetrically on the scalp

numbered on the right. An EEG Signal is taken by measuring the potential
difference measured between two electrodes. Consider, the channel FP2-F8.
It is formed by taking the potential difference between the potential at FP2
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and that in F8. Each EEG channel records the ionic electrical activities of
a region of the brain such as the channel FP2-F8 records the activity of the
frontal lobe of the right hemisphere.

In case of a seizure in the focal region of the brain, only a few EEG
channels that lie in the proximity of the site of origin of the seizure are active.
But when a generalized seizure occurs all the EEG channels become active.
The neurons lying closest to the surface of the scalp are most responsible for
the scalp EEG. Also, there are brain fluids which inhibit the amplitude of
higher frequency brain waves.

So, the problem that arises with this is that the small, deep region within
the brain involved in a seizure cannot be detected by using scalp EEG.

EEG describes the ionic activities in the brain based on the portion of the
brain whether its frontal, posterior, lateral and bilateral lobe of the brain.

An EEG wave has a delta component if the highest frequency is less
than 4Hz, a theta component if it’s 4-8 Hz, an alpha component when it is
8-12 Hz, a beta component if the dominant frequency is from 12-30 Hz or
a brain wave whose gamma component when its greater than 30 Hz. Scalp
EEG depends a lot upon the dominant frequency of the brain waves and
on the spatial features. It is however different for a person when awake
and during sleep. EEG readings can be foiled by sweating, chewing, rapid
eye-movements. The figure 3.2 shows 10 seconds of awake EEG followed
by 37 seconds eye-blinking causing deflection in the EEG channels FP1-F7,
FP1-F3, FP2-F4,FP2-F8.

The figure Fig 3.3 shows sample EEG readings while patient is asleep.
The activity between 12-14 seconds is called sleep spindle. While the figure
3.4 shows 10 seconds of awake EEG followed by chewing causing physiological
artifact in scalp EEG.
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Figure 3.2: 10 seconds of awake EEG followed by 37 seconds eye-blinking

3.2.1 Seizures within the scalp Electroencephalogram

Within the scalp EEG, the occurrence of seizures are exhibited as a spike
increase in the spectral energy in the brain. That happens because there are
spectral components within the patients which start increasing or decreas-
ing(depending upon the patient). This has been noticed it occurs with ap-
pearance or disappearance of frequency components within the range 0-25Hz
[15]. Along with this variability it can also be said that there is variability
in the EEG channels where the spectral energy varies across patients.

Let us look at an example. In Figure 3.5 Consider patient A whose seizure
begins at 1723seconds and consists of flattening of the waves. Then for a few
seconds the amplitude of this rhythm increases as its frequency decreases.
The figure 3.6 is depicting the seizure of patient B whose seizure begins at
6313 seconds. The rhythmic activities can be clearly seen on the channels
F7-T7, T7-P7. It is now known that the rhythmic activities are visible on a
scalp EEG while the seizure is occurring, however the spatial and spectral
energies are variable across patients. The figure 3.7 shows an excess spike in
the EEG of the epileptic patient. It can be easily observed from 2884-2892
seconds that there are spikes. Although these spikes are present on the EEG
of the patient A these are not a result by the physical activities associated
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Figure 3.3: Demonstration of 10 seconds of sleep EEG. Sleep Spindles oc-
curring at 12-14 seconds

with Patient A’s attack in Fig 3.5. Whereas in the next figure, the abnormal
discharge is a result with physical activity is visible in the Figure 3.7.
There are many examples like this to illustrate that the spectral and spatial
features during seizure and non-seizure states are variable across patients.
So, clearly this is the primary reason why patient non-specific seizure de-
tectors have poor sensitivity and specificity [16]. Experts in the study of
EEG have observed that if a patient has not suffered any brain disorder it
is highly likely that the seizures recorded months apart would exhibit very
similar spectral and spatial features. Seizure Attacks are recurring periods of
neural network malfunctioning. The symptoms are variable across patients
depending on whether it is a generalized seizure or focal seizure. The scalp
and the intracranial EEG measure the ionic activity of neurons are used to
detect seizures. The scalp EEG has poor spatial resolution but high spatial
coverage. On the other hand, the intracranial EEG has the opposite features.
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Figure 3.4: Demonstration of 10 seconds of awake EEG followed by chewing

Figure 3.5: Example of a seizure as recorded on a scalp EEG of a patient.
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Figure 3.6: Example of a seizure of another patient as seen on the scalp
EEG.

Figure 3.7: Seizure recorded within the scalp EEG where the onset of the
seizure is accompanied by a spike
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Chapter 4

EEG Data and Testing

In this chapter, the scalp EEG Dataset will be discussed along with the
testing. We find the latency, sensitivity and specificity of the patient-specific
seizure onset detector.

4.1 EEG Dataset

The dataset [3] used in our work is obtained from the Department of Epilep-
tology of the University of Bonn. Each data set consists of 100 single channel
EEG epochs. It consists of EEG recordings having a sampling rate of 173.61
Hz for the duration of 23.6 seconds. It has 5 sets of data consisting of 100
EEG recording for each set. Set A and B are for healthy patients with the
eyes open and close respectively. Set C and D are for the Interictal case of
epilepsy. The EEG signals in in sets C were recorded from a hippocampal
formation of an opposite hemisphere of the brain while the EEG signals in
set D were recorded from the hippocampal formation which was the epilep-
togenic area. Set E is for Ictal or the patient having a seizure attack.

4.2 Performance Metrics

There are three metrics used to characterize the performance of our seizure
onset detector:

1. ELECTROGRAPHIC SEIZURE ONSET DETECTION LA-
TENCY EOLATENCY
On the EEG, the detection of a seizure is usually indicated by the
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changes in potential across scalp EEG. However the clinical definition
of a seizure is that the physical symptoms start occurring. EOlatency
is defined as the time elapsed between the onset of the seizure on EEG
and electrographic onset. It is usually >= 0.

2. SENSITIVITY
We have used the term called ‘sensitivity’ a lot in the previous chapters.
Sensitivity is defined as the percentage of test seizures detected by the
seizure onset detector.

3. FALSE ALARMS PERHOUR It is defined as the number of times,
for one hour, that the seizure onset detector reports a false positive,
meaning that it detects n epileptic seizure whereas it is actually not.

4.3 Performance Metric Measurement

The performance metric measurement is used to evaluate the performance
of the seizure detector. Let us assume that NNS denotes the number of
non-seizure samples and NS denote the number of seizure samples.

4.3.1 Measuring EOlatency and S

The detector is trained using “leave-one-out” cross-validation technique. In
this method, the detector is trained on all the non-seizure records of the
patient and all but one seizure records. The seizure onset detector is then
given the task of detecting the seizure record which was left out. This process
is repeated Ns times and each time one of the Ns seizure records is considered
as the test data. Let Sm ∈ { 0,1 } be a binary variable where 0 means no
seizure and 1 means a seizure, let EOlatency,m denote the latency with which
the detector records the Electrographic Seizure Onset Detection Latency. Let
FAs,m be the number of false alarms given out while testing the mth seizure
record. Let K denote the total number of detected seizures. The following
equations relate the quantities with the performance of the detector:

S =
1

Ns

∑
Sm (4.1)

EOlatency =
1

K

∑
(Sm ∗ EOlatency,m) (4.2)
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4.3.2 Measuring the False Alarms FA

The training is done on all the seizure records and all but one non-seizure
records. It is then made to test the left-out non-seizure record. Now this
process is repeated Nns times where in each of the time one non-seizure
record is left out of the training data and then taken as the testing data.

The equation used to calculate the number of False Detections of the
detector:

FA = (
1

Ns +Nns
) ∗ (

∑
FAns,n +

∑
FAs,m) (4.3)
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Chapter 5

Wavelet Transform

5.1 Overview

5.1.1 Introduction

The Fourier Transform is useful for converting time domain signal to fre-
quency domain signals. But the standard Fourier Transform is only local-
ized in frequency, therefore it becomes difficult to tell at what particular time
a particular frequency exists. The Short- Time Fourier Transform(STFT)
gives information on both the time and frequency with a problem that since
the window used is small, the resolution in frequency is limited.

The problem with STFT lies in the Heisenberg’s Uncertainty Prin-
ciple. The problem is simply that the exact time-frequency information of
a signal is not possible.

In Fourier Transform, it is known exactly which frequencies exist and
the value of the signal at every time instance is also known. Thus there are
no frequency resolution and time resolution problem. The window length is
shorter in STFT, which creates the frequency resolution problem. The prob-
lem that arises is that there is no more information about what frequencies
exist, rather only a band of frequencies that exist is known. To summarize
the scenario, using a narrow window improves the time resolution of the sig-
nal at the cost of frequency resolution. The problem to the dilemma of the
choice of the window is application dependent. If the frequency components
are well separated, it is a good choice to look for good time resolution in this
case.

It seems that the solution to the above problem is Wavelet Transform.
It uses small wavelets on which scaling and shifting is applied which allow
to analyze the signal in various scales and in various locations respectively.
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Figure 5.1: The Haar Wavelet

5.1.2 History

The first publication on wavelet transform dates back to 1909, where a math-
ematician named Alfréd Haar proposed the Haar Wavelet. The term wavelet
was invented in the year 1984. For a long time, the Haar Wavelet remained
the only known orthogonal wavelet until in 1985, Yves Meyer proposed the
second orthogonal wavelet called the Meyer Wavelet.

In 1988, Mallat and Meyer brought the concept of Multiresolution.
In 1989, the Fast Wavlet Transform was introduced by Mallat which

promised several applications in the signal processing domain.

5.2 Approximation Theory andMultiresolution Anal-
ysis

The Heisenberg’s uncertainty principle gives rise to time resolution and fre-
quency resolution problems. The alternative approach to analyze any signal
is Multiresolution Analysis(MRA). MRA does not analyze every fre-
quency component equally.

MRA is designed in a way such that for high frequencies, it gives good
time resolution and for lower frequencies, it gives good frequency resolution.
This makes sense when we realize that the signals that exist in applications
have higher frequency components which exist only for a short duration and
the lower frequency components exist for longer durations.
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5.2.1 A Simple Approximation Example

Consider a periodic function x(t) with period T

x(t) = 1− 2|t|
T
, |t| < T. (5.1)

We can decompose a periodic signal with period T into higher order har-

monics,

x(t) =

∞∑
k=−∞

akexp(j
2πkt

T
) (5.2)

The following analysis equation describes the orthogonal property of ex-
ponential equations having complex parts,

ak =
1

T

∫ T
2

−T
2

x(t)exp(−j 2πkt

T
)dt (5.3)

The Fourier Series coefficients are

ak =
sin2(πk/2)

2(πk/2)2
(5.4)

The physical significance of calculating the Fourier Series coefficient is that it
indicates the amplitude and the phase of the higher order harmonics, indexed
by k. The higher the value of k, the higher frequency it approximates.

Intuitively, as k approaches infinity, the reconstructed signal resembles
the original.

5.2.2 Abstract Idea in the Approximation Example

A signal can be decomposed into linear combination of the basis signals given
by,

f(t) =
∑
k

akφk(t) (5.5)

where ak are expansion coefficients and the φk(t) are expansion functions.
If we choose the basis function correctly, there exists its dual function also.
It is referred by φDk (t) . φk(t) and φDk (t) are orthonormal. The inner product
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is given by

< φk(t), φ
D
k (t) >=

∫
φk(t)φ

D
k (t)dt = δij (5.6)

The expansion coefficients are given by:

< f(t), φDk (t) > =

∫
f(t)(φDk )∗(t)dt

=

∫
(
∑
k′

ak′φk′(t))(φ
D
k )∗(t)dt

=
∑
k′

ak′δk′k

= ak

So, the expansion coefficients can be defined by the following equation:

ak =< f(t), φDk (t) >=

∫
f(t)(φDk )∗(t)dt (5.7)

It is very important that a good choice of basis function and its dual
is made. Usually, some of the expansion coefficients of are critical values
and some decay to zero. This property helps in data compression while
maintaining the resemblance to the original signal also.

5.3 Example about Multiresolution

5.3.1 Approximate discrete-time signals using delta function

Consider a discrete-time signal

x[n] = (
1

2
)|n| (5.8)

Now, the next task is to find the expansion coefficients of x[n]. To do that,
a basis function and its dual have to be chosen. Thereafter, we check if the
orthonormal property holds true:

< φk(t), φ
D
k (t) >=< δ[n− i], δ[n− j] >=

∞∑
n=−∞

δ[n− i]δ[n− j] = δij (5.9)
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From equation 5.7, the expansion coefficients come out to be

ak =< x[n], δ[n− k] >=

∞∑
n=−∞

(
1

2
)|n|δ[n− k] = (

1

2
)|k| (5.10)

The above example demonstrates the translations of the delta function δ[n].
δ[n−k] would mean that the impulse is at n = k. the reconstruction using the
expansion coefficients is straight forward. For instance, if we wish to know
the signal when n ∈ [-1,0], the coefficients a−1, a0 are used for reconstruction
of the original signal in that range.

5.3.2 Reconstruction Using Scaling

Consider a continuous function φ(t) such that it is defined by,

φ(t) =

{
1 if 0 ≤ t < 1

0 otherwise

The single delta function is a rectangular function of width 1. Its scaled

Figure 5.2: The result of approximation using delta functions. (a) Original
signal x[n] (b) Obtained coefficients ak (c) Reconstructed signal x1[n] =∑0

k=−2 akδ[n− k] (d) Reconstructed signal x2[n] =
∑2

k=0 akδ[n− k]
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Figure 5.3: Plot of the scaled version of the basis. (a)φn(t) = φ0(t) (b)
φn(t) = φ1(t) (c) φn(t) = φ−1(t) (d) φn(t) = φ−2(t)

version is given by

φs(t) = φ(st) (5.11)

For brevity purposes, let s = 2n where n is an integer. Unfortunately, the
scaled versions of the function φs(t) are not orthogonal to each other. To
obtain orthonormal basis functions from φn(t), we apply

φ′0(t) = φ0(t) = φ(t)

φ′1(t) = φ1(t)−
< φ1(t), φ0(t) >

< φ0(t), φ0(t) >
φ0(t)

=


1/2 if 0 ≤ t < 1/2

−1/2 if 1/2 ≤ t < 1

0 otherwise

= ψ(t)/2

This process is continuously applied to extend the basis.It is mathemati-
cally found out that φ(t) has more concentration at lower frequencies while
ψ(t) has more concentration at high frequencies. φ(t) is called the Scaling
Function which gives the approximation coefficients while ψ(t) is called the
Wavelet Function which gives the detail coefficients.
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5.3.3 Multiresolution Analysis

In the section 5.3.1, an orthonormal function was found corresponding to its
translated version. Various Frequency resolutions can be achieved by varying
the scaling versions of the original signal.

With the above two properties, the basis functions can be constructed
using the functions φ(t) and ψ(t). These are defined by:

φj,k(t) = 2j/2φ(2jt− k) (5.12)

ψj,k(t) = 2j/2ψ(2jt− k) (5.13)

where j is the scaling parameter and k is the translation parameter. The
subspace swept by the Scaling Function and the Wavelet Function:

Vj = Span{φj,k(t)} (5.14)

Wj = Span{ψj,k(t)} (5.15)

Some Observations worth mentioning here as follows:

1. The scaling function does not overlap with the translated version of
the scaling function. They are orthogonal.

2. It can be observed from equation 5.3 that φ−1(t) = φ0(t) + φ0(t− 1).
This means the scaling functions at lower scales are enveloped within
the scaling functions at higher scales.

3. This helps in representation of functions with arbitrary precision.

Therefore, our example of the Haar Scaling Function is given by

φ(t) = φ0,0(t) =
1√
2
φ1,0(t) +

1√
2
φ1,1(t). (5.16)

The scaling function φj,k can be represented in terms of its scaled version
and translated version

φ(t) =
1√
2

(
√

2φ(2t)) +
1√
2

(
√

2φ(2t− 1)) (5.17)
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Figure 5.4: The relationship between scaling and wavelet function spaces

The generic form of equation 5.17 is the refinement equation or the dilation
equation is given by,

φ(t) =
∑
n

hφ[n]
√

2φ(2t− n) (5.18)

The physical significance of equation 5.18 lies in the fact that it relates the
scaling function with higher frequency i.e. φ(2t). Thus, the scaling function
φ(t) can be obtained by applying a low pass filter hφ[n].
Similarly, there is a relationship between wavelet functions given by

ψ(t) =
∑
n

hψ[n]
√

2ψ(2t− n) (5.19)

For HaarWavelets, hφ[n] = {1/
√

2,−1/
√

2} and hψ[n] = {1/
√

2,−1/
√

2}.
These two filters are related by,

hψ[n] = (−1)nhφ[1− n] (5.20)

V0 is the approximation when scaling factor = 0. To obtain higher order of
approximation, the union of the subspaces swept by varying levels of wavelet
functions. With the infinite union of these wavelet sets, any set can be rep-
resented with arbitrary precision. The total set formed by infinite union is
given by

L2(R) = V0 ⊕W0 ⊕W1... (5.21)
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This shows that any function lying in this set can be decomposed using the
Scaling and Wavelet Functions. The advantage of using Wavelet Transform
is that unlike in STFT which has constant resolution at all times and fre-
quencies, Wavelet Transform gives good time resolution (and poor frequency
resolution) at high frequencies and good frequency resolution (and poor time
resolution) at low frequencies. This is beneficial because in case of seizure
activity, the EEG signals form spike and slow complex which are character-
ized by high frequencies. Thus, it is extremely beneficial to get a good time
resolution during these discharges. A close look ath Figure 5.5 suggests that

Figure 5.5: The time-frequency resolution in Wavelet Transform

although the heights and widths of the individual boxes change, the over-
all area is still constant. At low values of frequency, the boxes are shorter
in height, thus meaning that at low frequencies the frequency resolution is
good but time resolution is poor. At higher frequencies, the boxes become
shorter, meaning that the time resolution becomes better and the frequency
resolution gets poorer.
In case of STFT, the time resolution and frequency resolution is decided by
the length of the window, so for the entire analysis the time and frequency
resolutions are constant, thus the time-frequency planes consists of squares.
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Chapter 6

The Continuous Wavelet
Transform

6.1 Introduction

The continuous wavelet transform is an alternate approach to the Short Time
Fourier Transform to get around the Resolution Problem. Here, the original
signal is multiplied with a function (as in STFT where a small length window
is used). There are mainly two differences in both of these approaches:

1. The Fourier transforms of the signals are not computed, so only a single
peak will be seen.

2. The width of the window is varied in the wavelet transform.

6.2 Definition

A wavelet function ψ(t) ∈ L2(R) is defined as a function which is limited in
time, having values in a certain range and zeros elsewhere with zero mean.
Therefore,

∫ ∞
−∞

ψ(t)dt = 0 (6.1)

||ψ(t)||2 =

∫ ∞
−∞

ψ(t)ψ∗(t)dt = 1 (6.2)
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Having been discussed the translation and the scaling properties, the basis
function can be derived from the mother wavelet function,

ψs,u(t) =
1√
s
ψ(
t− u
s

)

∣∣∣∣∣
u∈R,s∈R+

(6.3)

where u is the shifting parameter and s is the scaling parameter. Note that
s ∈ R+ because negative scaling is ignored in the wavelet transform. The
continuous wavelet transform is given by

Wf(s, u) =< f(t), φs,u >

=

∫ ∞
−∞

f(t)ψ∗s,u(t)dt

=

∫ ∞
−∞

f(t)
1√
s
ψ∗(

t− u
s

)dt

(6.4)

It can be observed from the above equation that we can do both the frequency
resolution(parameter s) and the time resolution at the same time(parameter
u) now.
The inverse wavelet transform is

f(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

Wf(s, u)
1√
s
ψ(
t− u
s

)du
ds

s2
(6.5)

where Cψ is

Cψ =

∫ ∞
0

|Ψ(ω)|2

ω
dω <∞ (6.6)

Ψ(ω) is the Fourier Transform of ψ(t)

6.3 Wavelet Transform: An Example

In the previous section, the mother wavelet function was introduced with
its definition and properties. To demonstrate an example on Wavelet Trans-
form, the Mexican Hat Wavelet has been taken here:

ψ(t) =
2

π1/4
√

3σ
(
t2

σ2
− 1)exp(− t

2

σ2
) (6.7)

The name "Mexican-hat" comes from the fact that this function resembles a
Mexican hat when plotted against time. It is derived from the second deriva-
tive of the Gaussian function, exp(−t2/(2σ2)). The wavelet decays fast to
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zero because the Gaussian Function drops to zero fast.
The Fourier Transform of this mother wavelet is calculated as

Ψ(ω) =
−
√

8ω
5
2π

1
4

√
3

ω2exp(−σ
2ω2

2
) (6.8)

The illustration is provided in the figure 6.1. the Ricker Wavelet r(t) along

Figure 6.1: Mexican Hat Wavelet and its Fourier Transform

with its Fourier transform R(ω) where the highest angular frequency is
60πrads−1.The two vertical dashed lines at ω = 100 and ω = 300 denote
half of the peak frequency.
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6.4 Comparison among the Fourier Transform, Short-
time Fourier Transform(STFT) andWavelet Trans-
form

6.4.1 Forward Transform

Fourier Transform

F (ω) =

∫ ∞
−∞

f(t)exp(−jωt)dt (6.9)

As already discussed, a signal varying in time is translated to frequency
domain with the help of Fourier Transform. However, the disadvantage is
that Frequency Resolution is not possible here.

STFT

Sf(u, ξ) =

∫ ∞
−∞

f(t)w(t− u)exp(−jξt)dt (6.10)

The problem with Frequency Resolution in Fourier Transform is addressed
here with the use of a small window w(t − u) which only takes a small
portion of the original signal and then its Fourier Transform is calculated.
The problem that arises here is that the low frequency components are not
detected on the spectrum.

Wavelet Transform

Wf(s, u) =

∫ ∞
−∞

f(t)
1√
s
ψ∗(

t− u
s

)dt (6.11)

The previous problem is resolved in the Wavelet Transform. Here, both
the Frequency Resolution and Time Resolution is achieved. As the scaling
and shifting is done on the mother wavelet, very low frequency components
are located at large s while very high frequency components are located at
small s.

6.4.2 Inverse Transform

Fourier Transform

f(t) =
1

2π

∫ ∞
−∞

F (ω)exp(jωt)dt (6.12)
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STFT

f(t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Sf(u, ξ)w(t− u)exp(jξt)dξdu (6.13)

Wavelet Transform

f(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

Wf(s, u)
1√
s
ψ(
t− u
s

)du
ds

s2
(6.14)

Cψ =

∫ ∞
0

|Ψ(ω)|2

ω
dω <∞ (6.15)

6.4.3 Time-Frequency Tiling

The Heisenberg Uncertainty Principle in Quantum Physics, states that it is
not possible to state both the position and the momentum of a particle at
the same time. This is the comparison of the Fourier transform, STFT and
the Wavelet Transform:

Fourier Transform

The time resolution is very poor. Frequency resolution is very precise if the
signal is integrated over the whole time axis.

STFT

A sliding window is considered on the original signal instead of the original
signal. The Frequency resolution depends on the size of the window. The
window is uniformly placed, so there is no possibility of zooming in on a
particular frequency.

Wavelet Transform

The wavelet transform out of these three techniques strikes a balance be-
tween time resolution and frequency resolution and using the parameter s,
the higher frequency ranges require higher values of s. Similarly, for lower
frequency components, lower value of s is needed. This helps in a better
time-frequency analysis.
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Chapter 7

Discrete Wavelet Transform

7.1 Why is DWT needed

The discretized continuous wavelet transform obtained by sampling the CWT
is not a true discrete transform. The information provided by the wavelet
series is very redundant when it comes to reconstructing the signal. The
redundancy present takes up a considerable amount of time. While, DWT
gives information for analysis and synthesis of the signals with lesser redun-
dancy and lesser computational time. It is easier to implement than CWT.

7.2 Subband Coding

The basic concept is similar to the Continuous Wavelet Transform(CWT). As
explained before, the CWT is basically a measure of the correlation/similarity
between a wavelet chosen and the original signal with the frequency used as
a measure of similarity. The CWT is computed by scaling the window func-
tion, shifting the window, multiplying it by the signal and integrating it over
the entire time.For discrete CWT, different filters having different cutoff are
used to decompose the signal. The signal is then passed through high pass
filters and low pass filters to analyze the high frequencies and low frequencies
respectively.

The resolution of a signal means the amount of information available in
the signal. The resolution can be varied by filters and the scale(frequency)
of the signal can be changed by upsampling and downsampling. Upsampling
refers to addition of new samples to the signal. Downsampling refers to
removal of existing samples from the signal.

The wavelet coefficients in DWT are obtained by sampling the CWT on
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a dyadic grid, i.e. s0 = 2 and t0 = 1 yielding s = 2j and t = k ∗ 2j . Let’s
denote the discrete signal as x[n].

The DWT starts by passing the signal through a halfband low-pass filter,
which mathematically means that the convolution of the signal with the
impulse of the filter is carried out,

x[n] ∗ h[n] =
∞∑

k=−∞
x[k] · h[n− k] (7.1)

Having done this, the frequencies which are more than half the highest fre-
quency in the signal are removed. Now, half of the samples can be removed
because the highest frequency is now p/2radians, considering it was p radians
originally. The signal is now downsampled, so that the signal has half the
number of points. Filtering the signal has no effect on the scale. Filtering
effects the resolution of the signal. It needs to be mentioned here that the
half number of samples are redundant after filtering of the signal. So, half
the samples are discarded by downsmapling to remove redundancy.

The mathematical expression of the above process is given by,

y[n] =

∞∑
k=−∞

h[k] · x[2n− k] (7.2)

The DWT decomposes the signal into various frequency bands with varying
resolutions (unlike in STFT) having detail coefficients and approximation
coefficients. The highpass filter g[n] and low-pass filter h[n] present achieve
the task of decomposing the signal into frequency bands. This signal can
now be downsampled by a factor of 2 to eliminate the redundancy. The
mathematical equations are as follows:

yhigh[k] =
∑
n

x[n] · g[2k − n] (7.3)

ylow[k] =
∑
n

x[n] · h[2k − n] (7.4)

Here, yhigh[k] and ylow[k] are the outputs of the highpass and low-pass filters
respectively after downsampling.

Having decomposed this signal, a lot of insights need to be explicitly
mentioned. The number of samples have been halved, which effectively in-
creases the frequency resolution by a factor of 2. This is called Subband
Coding which can be used for successive decomposition. For every level,
filtering and down-sampling is done.
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Figure 7.1: The schematic diagram to realize discrete wavelet transform.
Here the filter names are changed.

7.3 Example of Subband Coding

Let us take an example to demonstrate Subband Coding. Consider that the
original signal x[n] has 512 discrete points to begin with. Let the spectral
components range from 0 to p rad/s. On the first decomposition, the output
from the highpass filter has p/2 to p rad/s frequencies. These 256 points form
the first level of Wavelet Decomposition. The output of the low-pass filter,
with the frequencies ranging from is passed through further decomposition.
The output from the second high pass filter has frequencies ranging from
p/4 to p/2 rad/s which are the second level of DWT coefficients. This
window has half the time resolution but twice the frequency resolution than
the first level because we have achieved a frequency resolution which is 4
times that of original signal. This is continued until there are two samples
left. In the proposed work, wavelet decomposition done was upto
8 levels. The DWT of the original EEG signal is obtained on
combing all the coefficients . DWT strikes an amazing balance between
the time resolution and frequency resolution. As discussed, Time resolution
is not possible in Fourier Transform. In DWT, if the information needed
lies in the high frequency window,time localization will be precise but if
the required information lies at very low frequencies, the time localization is
erroneous due to fewer samples. Most EEG signals are of this type. The
epileptic activities are characterized by spike and slow complexes
which have high frequency. So, with DWT we get a good time
resolution at higher frequencies and good frequency resolution at
lower frequencies. The frequency bands that do not hold much prominence
will have very less amplitude. They can be discarded with any major loss of
information, allowing data reduction.
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7.4 Mathematical Analysis

The high-pass filters and low-pass filters are related by

g[L− 1− n] = (−1)n · h[n] (7.5)

where g[n] is the high-pass filter and h[n] is the low-pass filter and L is the
filter length(number of points). The filtering and down- sampling operations
are mathematically given by,

yhigh[k] =
∑
n

x[n] · g[−n+ 2k] (7.6)

ylow[k] =
∑
n

x[n] · g[−n+ 2k] (7.7)

(7.8)

The reconstruction of the signal follows a reverse order. The signals at every
level are upsampled by the same factor, followed by synthesis filters (high-
pass and low-pass). The reconstruction formula is,

x[n] =

∞∑
k=−∞

(yhigh[k] · g[−n+ 2k]) + (ylow[k] · h[−n+ 2k]) (7.9)

It should be stated that perfect reconstruction is not possible if the filters
are not ideal halfband, but under certain conditions some wavelets provide
perfect reconstruction. These are Daubechies’ wavelets which have
been used in this work.

7.5 Example of Decomposition by DWT

Consider a signal with 256 samples. Let the sampling frequency be 10 MHz.
Let us obtain its DWT coefficients. The highest frequency must be 5 MHz.
The first level consists of a low pass filter h[n] and a high pass filter g[n], the
outputs of these are then downsampled by 2. The high pass filters contains
the frequency range [2.5,5] MHz range. There are 128 such samples. The
low pass filter output has frequencies in the range of [0,2.5] MHz are sent for
successive DWT decomposition.

At the second level, the high-pass filter has 64 samples and the output
of the low-pass filter is passed through a high-pass filter and low-pass filter
in the third level.The output of the third high pass filter has 32 samples.
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This continues till we are left with 1 DWT coefficient. It should be
noted that lesser number of samples are used at lower frequencies, so the
time resolution decreases but the frequency resolution increases because the
frequency interval decreases. The first few coefficients do not carry much
information due to very less time resolution.

7.6 Daubechies Wavelet

The wavelet functions discussed here are based on the lectures by I.Daubechies
[10]. Ingrid Daubechies, the brightest name in the world of wavelet research,
found something called compactly supported orthonormal wavelets - hence
making discrete wavelet analysis practically possible.

Daubechies designed this wavelet for a known vanishing moment with a
minimum size discrete filter. The conclusion is that if we want a wavelet
function with p vanishing moments, the minimum filter size to be used turns
out to be 2p.
The Daubechies family wavelets are denoted by “dbN ”, where N is the order
of wavelet, and db denotes the “surname” of the wavelet family. The db1
wavelet, as mentioned earlier, denotes Haar wavelet.
The nine members of the Daubechies Wavlet Family are shown in the fol-
lowing figure.

Figure 7.2: Wavelet Functions of the nine members of the Daubechies
Wavelet Family
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Chapter 8

Proposed Method

The proposed work deals with five experiments, three among which are
Multi-class classification problems and the rest of the two are Binary Clas-
sifications. The pre-ictal state which the proposed work classifies the EEG
signal, is a very useful class for medical purposes. If the start of the pre-
ictal state is predicted correctly, the medication can be provided
at the earliest so as to avoid the next seizure attack. It is impor-
tant to mention that the proposed work does not propose or recommend any
particular method of EEG data acquisition as this is out of the scope of this
proposed work. The EEG data in this work is acquired from the University
Of Bonn, available in the public domain. The first stage of our proposed

Figure 8.1: Wavelet Decomposition upto 8 levels

method consists of gathering the sampled EEG signals and then perform
pre-processing on them.

Having done the pre-processing, the second stage is creating 3 matrices
corresponding to the three classes used in Multi-Class Classification and the
two classes in cases of Binary Classification.
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The third stage of our proposed method is mainly analysis of the EEG
signal of the patient using Discrete Wavelet Transform(DWT). DWT is a
convenient technique for this purpose because using DWT, we can decompose
the original signal into its frequency components to obtain EEG sub-bands
in various ranges of frequency. It is appropriate to mention here that the
brain waves existing at different frequency ranges are most active during
certain human activities.The main advantage behind using wavelets is that
these are localized in both time and frequency whereas on the other hand
the Fourier Transform is localized only in frequency. The wavelet transform
strikes a balance between the frequency resolution and time resolution of the
signal. In the proposed work, Wavelet Decomposition upto the eight level
is applied to the dataset considered over which the three-class classification
is to be done. The structure of the level 8 wavelet decomposition is shown
below. The Proposed Work has been depicted in the form of a flowchart in
Fig 8.2. The frequency range for all the coefficients are as follows:

1. D1: 86.8 - 173.6 Hz

2. D2: 43.4 - 86.8 Hz

3. D3: 21.7 - 43.4 Hz

4. D4: 10.85 - 21.7 Hz

5. D5: 5.42 - 10.85 Hz

6. D6: 2.71 - 5.42 Hz

7. D7: 1.35 - 2.7 Hz

8. D8: 0.67 - 1.35 Hz

9. A8: 0 - 0.67 Hz

According to Haddad et al. [19], there is a high correlation between Delta
and Gamma sub-bands with Temporal Seizures. Their research reveals that
gamma spikes have more probability to originate on the same nodes after
delta high voltages have been recorded and there is a high correlation in these
events. According to L. Ren et al. [36], it was found out that the Gamma
waves often precede the interictal epileptiform spike discharges(IED) in cer-
tain brain areas. Their research work shows a strong correlation between the
Seizure Onset Zone and gamma-IEDs. So, the proposed work included
the coefficients D3 and A8.
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Only few data exist where focal beta activity is manifested as an electroen-
cephalographic seizure pattern. This pattern has only been observed in pa-
tients with intractable seizure disorders [7]. The reason for including the
coeffcients D4 and D5 is because the EEG signals of the healthy patients
were recorded with their eyes open and with their eyes closed. It is likely
that the alpha waves and the beta waves were the most active in these
patients the entire time, considering that alpha waves are most dominant
during wakeful alertness, calmness and mental coordination while the beta
waves are most active during waking state of consciousness when the patient
is paying attention towards cognitive tasks and the outside world. Consid-

Figure 8.2: A flowchart of the proposed classification framework.

ered coefficients for all healthy, interictal, ictal periods of seizure have been
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provided in the following figures 8.3, 8.4 and 8.5.
The coefficients A8, D3, D4, and D5 have been considered for the proposed
method in the fourth stage. Having selected the four wavelet coefficients
for every feature vector where a feature vector represents a patient of a class,
the Standard deviation of the considered coefficients has been computed for
all the EEG epochs of a patient in this stage. Thus, we had 4097 discrete
EEG readings for every patient to begin with after which Wavelet Decom-
position was done upto 8 levels creating 9 coefficients. 4 coefficients where
selected out of them whose standard deviation was calculated. The feature
matrix consists of five features as the standard deviation of Approximation
Coefficient A8 and Detail Coefficients D3 , D4 and D5 along with the class
label for every feature vector.

In the fifth stage, a train-test split is made for every class and the
training samples are fed to the classifiers. The proposed work uses 60%
training data and 40% testing data.
The classifiers are imported and the classification is done in the sixth stage.
This work consists of five types of experiments which are mainly classification
problems, namely:

1. Binary-class classification of healthy patients, with eyes open and pa-
tients experiencing seizures

2. Binary-class classification of healthy patients, with eyes closed and
patients experiencing seizures

3. Multi-class classification of healthy patients, with eyes open and pa-
tients in inter-ictal state(whose EEG readings were recorded from hip-
pocampal formation which was the epileptogenic area) and patients
experiencing seizures

4. Multi-class classification of healthy patients, with eyes closed and pa-
tients in inter-ictal state(whose EEG readings were recorded from hip-
pocampal formation of an opposite hemisphere of the brain) and pa-
tients experiencing seizures

5. Multi-class classification of healthy patients, with eyes closed and pa-
tients in inter-ictal state(whose EEG readings were recorded from hip-
pocampal formation in the epileptogenic area of the brain) and patients
experiencing seizures

This work compared the result obtained using 8 different Daubechies wavelets
namely db1, db2, db3, db4, db5, db6, db7, db8. The results obtained af-
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ter using each of these wavelets are tabulated in the next chapter and the
insights obtained from the results are mentioned thereby.

The features extracted which are essentially the statistical standard devi-
ation of the selected coefficients in the previous stage are fed into the Machine
Learning classifiers. The classifiers used in the proposed work are SVM, De-
cision Tree, Random Forest, Naive Bayes, Nearest Neighbors and AdaBoost.
The results obtained are mentioned in the next chapter. The results ob-
tained using each classifier in each of the five experiments are mentioned
and tabulated in the next chapter.
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Figure 8.3: Wavelet Decomposition of Healthy EEG signals

Figure 8.4: Wavelet Decomposition of Inter-ictal EEG signals

Figure 8.5: Wavelet Decomposition of Ictal EEG signals
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8.1 Classifiers Used

The following classifiers were used in this work:

8.1.1 Support Vector Machine

A Support Vector Machine is a powerful classifier which gives the optimal
hyperplane. The advantage of using SVM is the optimal hyperplane which
maximizes the distance between the nearest datapoints of both the classes.
Consider the Figure 8.6 for example. The correct hyper-plane is decided
only after maximizing the distances between nearest data point on both the
class. The important parameters associated with SVM which have a high
impact on model performance are the kernel, gamma, and C. We can choose
the kernel to be linear, rbf, poly etc. The gamma parameter is the value
or the extent to which the SCM tries to fit the training dataset. The “C”
parameter is the penalty parameter of the error term. For higher values of
C, the hyperplane has a small margin if it correctly classifies all the training
points correctly. Similarly, a larger value of C gives a wide-margin hyperplane
even if the hyperplane does a lot of misclassification on the training samples.
The Multi-class SVM is implemented using a one-vs-one method.

Figure 8.6: Support Vector Machine

The parameter C influences the misclassification on training examples. A
large value of C gives a small-margin hyperplane if that hyperplane looks
for correctly classifying all the training points. A small value of C, means
that we are ready to trade-off classifying every training point correctly in
exchange for a broader margin.
C was taken as 0.025 in this work along with a linear kernel. The
proposed work consists of 4 features. So, the feature space is 4-
dimensional. And thus hyper-planes will be formed to separate
two classes in this feature space.
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8.1.2 Decision Tree

Decision Trees are non-parametric classifiers also used for regression. It
learns simple decision rules from the variables/features and keeps splitting
the feature space. Decision Trees are used for classification and regression.
These are tree data structures where each internal node represents a feature
and the branch represent a decision. Each attribute is denoted by a node
where the most important attribute is the root node. The decision is arrived
by starting from the root node and moving downwards until a leaf node is
reached. There are mainly two types of Decision Trees:

1. Classification Trees

2. Regression Trees

An example of Decision Tree is given in the figure below. The task is to
predict whether a person is fit or unfit and the given information are his age,
eating habit and physical activity.

Figure 8.7: Decision Tree

In the proposed work, the Decision Tree is trained using the four attributes
which are the standard deviation of the wavelet coefficients D3, D4, D5 and
A8. The maximum depth of the Decision Tree used in the proposed
work was 5.

8.1.3 Nearest Neighbors

In Nearest Neighbor Classification,classification is achieved with a majority
count of the nearest neighbors of each point: the unknown data point is
assigned the label which has the most number of data points as the nearest
neighbors of the unknown data point.
This can be demonstrated by a simple example. Following is a feature space
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Figure 8.8: Simple Data Spread

containing triangles and squares: The task is to classify the feature vector
denoted by "plus". Consider k = 3. Hence, the blue star is now encircled
with 3 of its closest neighbors measured by the Euclidean distance. The
situation is the following: The three closest points the new feature vectors

Figure 8.9: Nearest Neighbors in action

are all triangles. Hence, it is classified to be a triangle. The choice of k is
highly data-dependent: it has been generally observed that a high value of
k diminishes the noise, but the boundaries formed are less distinct.
k was taken as 3 in the proposed work. The proposed work consists
of 4 features. So, the feature space is 4-dimensional. And hyper-
spheres will thus be formed while selecting the 3-nearest neighbors.

8.1.4 Random Forest

The Random Forest Classifier creates a number of decision trees in the train-
ing phase. The decision taken by the majority of the trees is considered to
be the final classification result. The advantage in using the Random Forest
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Classifier in this work is because it avoids overfitting. Random Forest handle
the missing values. Also, Random Forests can be used for categorical data
too. The Random Forest Pseudocode is as follows:

1. "k" features selected randomly from "m" features

2. Among the "k" features, calculate the node "d"

3. This node is divided into child nodes using the best split approach

4. Steps 1 to 3 are repeated until "l" number of nodes are obtained

5. Build Random Forest by repeating steps 1 to 4 for "n" times to create
"n" number of trees

Random Forest pseudocode

1. The testing data is taken and using the rules of each randomly created
Decision Trees, every outcome from each tree is stored

2. Each predicted target are taken into votre

3. The highest voted prediction is considered to be the final decision

The maximum depth of the decision trees is taken to be 5. The
number of trees are taken as 10. Only one feature was considered
for the splitting which was the value obtained after quantization
of the sampled signal.

8.1.5 Naive Bayes Classifier

These methods are a set of supervised learning algorithms which are based
on Bayes’ Theorem.
According to Bayes’ Theorem, the Aposteriori Probability probability is ob-
tained from Apriori Probability and likelihood by the following equation:

P (y|x1, ....., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)
(8.1)

The conditional probability is given by,

P (xi|y, x1, x2, ..., xi−1, xi+1, ...xn) = P (xi|y) (8.2)

Thus the equation 8.1 can be further simplified:

P (y|x1, ....., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, ...., xn)
(8.3)
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Since, the denominator is a constant, the following classification rule can be
applied

P (y|x1, ....., xn) ∝ P (y)
∏n
i=1 P (xi|y)

which gives

ŷ = argmax
y

P (y)

n∏
i=1

P (xi|y) (8.4)

P (y) and P (xi|y) can be estimated by the Maximum A posteriori(MAP)rule.
There are many advantages in using these classifiers. These are faster com-
pared to others and help avoid problems related to the curse of dimension-
ality.
The disadvantage in this method is its poor estimation.

8.1.6 AdaBoost Classifier

AdaBoost classifier is another ensemble classifier like the Random Forest
Classifier. The working of this classifier is characterized by using a classifier
on the dataset initially[12]. Then, multiple copies of the classifier are selected
at every iteration with various weights assigned to the training instances
where a higher weight is assigned to the misclassified item so that it is taken
as a training instance in the next iteration of the next classifier.
The most accurate classifiers are assigned more weights, so that they have
more impact on the final classification decision.
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Chapter 9

Results And Comparison

The proposed work deals with the three-class classification problems where
the classes are consisted of Healthy patients(with eyes open and eyes closed),
Patients in an inter-ictal stage (whose EEG readings have been recorded from
the opposite hemisphere of the brain and epileptogenic zone of the brain)
and patients experiencing epileptic activity.
The following work was carried out on a Intel(R) Core(TM)i5-8250U CPU@1.80
GHz with a 64-bit OS, x64-based processor. The language used was Python3
in Anaconda Environment. The packages used were the following:

1. NumPy (ver1.12.1)

2. Pandas (ver0.20.1)

3. Scikit-Learn (ver0.18.1)

4. PyWavelets (ver0.5.2)

5. Matplotlib (ver2.0.2)

6. Time

7. os
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9.1 Multi-Class Classification

The following table shows the list of all the classifiers used in the work where
the highest classification accuracy achieved was 98.45% (by Support Vector
Machine). The accuracy is obtained while using the classifier for Multi-Class
Classification on datasets BC-E.

Classifier Accuracy

Support Vector Machine 98.45%
Nearest Neighbors 95.34%
Random Forest 95.34%
Naive Bayes 94.57%
Decision Tree 93.79%
AdaBoost 74.41%

Table 9.1: Comparison between accuracy achieved by different classifiers in
Multi-Class Classification of BC-E

Classifier Accuracy

Support Vector Machine 95.34%
Nearest Neighbors 83%
Random Forest 96.12%
Naive Bayes 86.82%
Decision Tree 95.34%
AdaBoost 94.57%

Table 9.2: Comparison between accuracy achieved by different classifiers in
Multi-Class Classification of AD-E
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Classifier Accuracy

Support Vector Machine 96.89%
Nearest Neighbors 94.57%
Random Forest 93.79%
Naive Bayes 92.24%
Decision Tree 92.24%
AdaBoost 76.74%

Table 9.3: Comparison between accuracy achieved by different classifiers in
Multi-Class Classification of BD-E

9.2 Two-Class Classification

The following table shows the list of all the classifiers used in the work where
the highest classification accuracy achieved was 100% (by Support Vector
Machine). The accuracy is obtained while using the classifier for Two-Class
Classification on datasets A-E and B-E.

Cases Classifier Used Accuracy

A-E

Support Vector Machine
Nearest Neighbors
Random Forest
Naive Bayes
Decision Tree
AdaBoost

96.67%
100%
100%
100%
96.67%
96.67%

B-E

Support Vector Machine
Nearest Neighbors
Random Forest
Naive Bayes
Decision Tree
AdaBoost

100%
96.67%
96.67%
96.67%
100%
100%

Table 9.4: Comparison between accuracy achieved by different classifiers in
Two-Class Classification
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9.3 Comparison of Accuracy with different Daubechies
Wavelets

The proposed work deals with the three-class classification problem where
EEG epochs are classified into healthy patients with eyes closed, seizure-free
intervals and seizure (ictal periods) epochs along with two two-class classi-
fication problems where one problem was classification of EEG epochs into
healthy patients(with eyes closed) and patients experiencing seizure. The
other problem being classification of EEG epochs into healthy patients(with
eyes open) and patients experiencing seizure. The following tables show com-
parisons of accuracy obtained using different wavelets:

Wavelet Used Accuracy for BC-E Classifier Used
db1 97.67% SVM
db2 97.67% SVM
db3 97.67% SVM
db4 98.45% SVM
db5 96.96% SVM
db6 96.96% SVM
db7 96.96% SVM
db8 96.96% SVM

Table 9.5: Comparison between accuracy achieved by using different
Daubechies wavelets on the dataset BC-E

Wavelet Used Accuracy for B-E Classifier Used
db1 100% SVM
db2 100% Decision Tree
db3 100% SVM
db4 100% SVM
db5 100% SVM
db6 100% Decision Tree
db7 100% Nearest Neighbors
db8 100% SVM

Table 9.6: Comparison between highest accuracy achieved by using different
Daubachies wavelets in classifiers on set B-E

The description of the datasets A, B, C, D and E are summarized in Chapter
4. It is observed that the highest accuracy is obtained using the db4 wavelet
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Wavelet Used Accuracy for A-E Classifier Used
db1 100% SVM
db2 100% SVM
db3 100% SVM
db4 100% SVM
db5 100% SVM
db6 100% SVM
db7 100% SVM
db8 100% Nearest Neighbors

Table 9.7: Comparison between highest accuracy achieved by using different
Daubachies wavelets in classifiers on set A-E

Wavelet Used Accuracy for AD-E Classifier Used
db1 94.57% SVM
db2 94.57% AdaBoost
db3 95.34% SVM
db4 96.12% Random Forest
db5 96.12% Random Forest
db6 95.34% Random Forest
db7 94.57% SVM
db8 94.57% SVM

Table 9.8: Comparison between highest accuracy achieved by using different
Daubachies wavelets in classifiers on set AD-E

Wavelet Used Accuracy for BD-E Classifier Used
db1 95.34% SVM
db2 95.34% SVM
db3 96.89% SVM
db4 96.89% SVM
db5 94.57% SVM
db6 95.34% SVM
db7 96.89% SVM
db8 96.89% SVM

Table 9.9: Comparison between highest accuracy achieved by using different
Daubachies wavelets in classifiers on set BD-E
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which gives 98.45% in the three-class classification problem and 100% in
both the binary classification problem. This might be due to the smoothing
factor of db4 making it suitable to detect changes in the EEG Epoch.

9.4 Conclusions from Results

The results obtained from the various experiments conducted provide many
insights to look into. Working with an automated system which accomplishes
the task of Multi-class classification instead of a system which does Two-class
classification is a better choice because in the former, the inter-ictal activity
is detected separately. This can help physicians to administer the vaccines
and provide immediate medication to these patients in inter-ictal state before
they experience the next epileptic activity. This is not possible to achieve in
the Binary-Classification scenario.
The results obtained in Table 9.1 and Table 9.2 show that a higher accuracy
is achieved while performing classification using the sets BC-E. This gives
meaningful insights that set A has healthy patients whose EEG were recorded
with eyes open and set B has healthy patients whose EEG were recorded
with eyes closed. The blinking of the eyes from patients in set A contribute
to physiological artifacts which are not present if set B is used. And, thus
an accuracy of 98.45% is achieved in the Multi-class classification using set
BC-E while the highest accuracy achieved using set AD-E is 95%.
The results obtained from Table 9.4 shows that both the sets A-E and B-E
are linearly separable considering we achieved 100% accuracy using SVM in
the case of B-E. SVM achieves 96.67% accuracy in set A-E which may be due
to outliers. However on using k-NN classifier where k= 3, we achieve 100%
accuracy in set A-E. This explains that the outliers are very few in population
thereby leading the k-NN classifier to the right classification everytime the
testing point is assigned the label of the majority count.
It is observed from the tables that the highest accuracy is achieved using
the fourth-order Daubechies(db4) wavelet. This can be attributed to their
better localization performance in both time domain and frequency domain
compared to other Daubechies wavelet. Furthermore, for Signal Processing
in EEG, db4 wavelets are better suited due to their smoothing factor and
shape[13].
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Chapter 10

Conclusion and Future Work

It is a very time consuming and computationally expensive task to detect
epileptic seizure activities from lengthy EEG signals. This process is usually
done by trained professional. In this work an automated epileptic seizure de-
tection system has been developed based on DWT followed by classification
of the EEG epochs into one of the three classes namely healthy, interictal
and ictal by an SVM classifier. The EEG recordings obtained from healthy
patients with eyes closed and patients having seizures have been classified
with an accuracy of 100%. The EEG recordings obtained from healthy pa-
tients with eyes open and patients having seizures have been classified with
an accuracy of 100%. The EEG recording obtained from the three classes
during healthy, interictal and ictal dataset have been classified with an ac-
curacy as high as 98.45 %. It would be beneficial if the proposed method is
used in real time for three-class classification. It is expected that with this
system, subtle information which are usually hidden in the EEG data will
be revealed to the clinicians with the help of which better decision can be
taken. The proposed model must be validated using some other database
than the one used here. Additionally, if the proposed model is to be used in
real-time epilepsy seizure detection the proposed model needs to be tested
with long duration EEG records with more patients.
As a part of future work, we plan to deploy the method to test and predict
seizure activity in epileptic patients in a clinical environment and apply deep
learning methods.
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