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ABSTRACT 

 

Describing the contents and activities in an image or video in semantically and syntactically 

correct sentences is known as captioning. Automated captioning has been one of the most 

competitive major trends in present day research with new sophisticated models being 

discovered every day. Captioning models require intense training and perform intense 

complex calculations before successfully generating a caption and hence, takes considerable 

amount of time even in machines with high specifications. In this survey, we go through the 

recent state-of-the-art advancements in automatic image and video description 

methodologies using deep neural networks and summarize the important concepts that can 

be inferred from the researches. The summarization has been done with detailed analysis of 

methodologies used along with explanation of referenced context. Along with detailed 

description of available datasets and methodologies.  The focus of our research lies in 

techniques which are able to optimize existing concepts as well as incorporate new methods 

of visual attention to generate captions. This survey emphasizes on the importance of  

applicability and effectiveness of existing works in real life applications and highlights those 

computationally feasible and optimized techniques which can be supported in multiple 

devices ,including lightweight devices like smartphones. 

 

Keywords: Image Captioning, Video Captioning, Activity Recognition, Deep Learning, 

Convolutional Neural Networks, Recurrent Neural Networks 
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CHAPTER 1: INTRODUCTION 

1.1 Role of Deep Learning In Automated Caption Generation 

Deep Learning has outperformed almost all other types of machine learning methods, training 

models with an enormous amount of data and getting state of the art results. One of the very 

popular usages of deep learning is image and video captioning. Captioning refers to describing 

the content of visual sources like image or video, in well framed sentences. Social networks 

like Facebook, Instagram and Twitter have gained global popularity as a platform for 

communication as well as sharing media . The shared images and videos are rich sources of 

information regarding the person’s activities, location and appearance and this information can 

be leveraged for studying the interests of people for generating and making available content 

of interest to them. Surveying online media content by human workforces happens to be both 

computationally and economically infeasible. Such scenarios are great examples of  usage of 

image[69] and video captioning[58,59] , as they can extract comprehensive information from 

such media , in human understandable languages. Apart from these, captioning models find use 

in  accurately searching for image and video content online using image indexing or CBIR( 

Content Based Image Retrieval) and explaining activities inside an image and video without 

requiring to go through it. Captioners also play a significant aid for blind men and people with 

visual impairment , who are unable to perceive visual content by themselves. Visual description 

techniques[71] constitute a wide area of research, not only constrained to captioning, but also 

object detection and action recognition. The originality of captioning lies in action detection 

and recognition[57,75,76] where usually models are designed just to classify activities or 

actions in images and videos based on the poses and environment in consideration. Traditional 

machine learning techniques of detecting such features in image frames were to use computer 

vision techniques like HOG (Histogram of Gradients)[56],HOF[60] (Histogram of Optical 

Flow), Scale-Invariant Feature Transform (SIFT) which identify orientation and trajectories of 

pixels in motion and then apply classification algorithms like SVM to identify the gestures. 

These features have later been put to use in attention based captioning models. Plain vanilla 

Image Captioning models consist of two main steps to generate a caption. In the first step, the 

objects in the image are identified in different segments of the image and in the second part, a 

language model is used to frame the objects in a well-structured sentence that describes the 

image content. The first step is performed using a convoluted neural network that labels the 

image objects separately, with a particular confidence factor for each label. These 

convolutional networks are rather sophisticated and of great depth (depth referring to the 

number of hidden layers in the network) and need to be trained with a variety of images identify 

objects in an image accurately. The framing of sentences is performed by an RNN(Recurrent 

Neural Network) which takes in one word to be used as the starting of the sentence and then 

generates every next word based on the previous generations and the current object being 

focused in the image. The RNN has to be trained using human labelled captions of images 

(often 4 to 5 captions per image). RNN/LSTMs (Long Short Term Memory) for image 

captioning can be of two types: inject and merge. The inject model focuses both on the 

linguistic and perceptual features during training and hence requires both image features and 

generated word embeddings to be fed in every iteration into the LSTM . However  in the merge 

architecture, in very iteration, the LSTM is trained only using word embeddings /labels and at 

a later stage, image features are  merged into a dense layer along with the LSTM output and 
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passed into a SoftMax function to provide the output caption. In the paper[55] “What is the 

role of an RNN In an Image Caption Generator”, the authors have performed an experimental 

study between the two architectures of image caption generator and found that , surprisingly 

the merge model has performed better, with the same basic training (without using 

hyperparameters). Figure 1 represents the two models. Dense layer is a fully connected layer 

with bias. ‘v’ implies the output dimension of the dense layer is same as vocabulary size. All 

other intermediate layers are of varying dimensions which depend on experimentation. 
 

 
Fig 1: [A]The Merge Architecture [B]The inject architecture 

 

However in rare cases inject models have outperformed merge models , with increase in 

number of states and training dataset. Due to better performance to size ratio, merge models 

have gained more popularity. 

1.2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) specialize in classifying images. Images are of 3 

dimensions (height, width, number of channels). While first two dimensions correspond to the 

image resolution, the third dimension represents the number of channels (RGB) or pixel 

intensity values for each of the colors red, green and blue. Usually images of reduced 

dimensions are fed into the networks to prevent underfitting and also to avoid huge processing 

time. But even so, an image of size 224x224x3 thus if flattened into a 1-d vector would yield 

an input vector of length 150528 which is too huge to be fed into a normal neural network. 

CNN contain multiple layers of convolution, pooling and activation which in every instance 

simplifies our image into a more connected network without loss of information. At the end 

we have a fully connected network which is a normal neural network taking in a flattened 1-

dimensional vector as input and classifying the image in its output.  

 

1.2.1 Convolutional Layer:  

The convolutional layer uses a filter/ kernel of small dimension like 3x3 to run over the whole 

image in fixed gaps of pixels called strides, computing the dot product sum of all pixels which 

lie in the kernel window. Then this sum is copied to a new matrix of reduced dimension. Thus, 

we get a comprehensive, yet reduced dimension feature of our image in a convolution layer. 

Each filter is associated with identifying a different type of feature. For a different level, a 

different filter may be used to highlight some other feature of the image, and this filter may 
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have a different size. For example, one layer can be responsible for selecting image features 

based on shapes and edges. Another layer may have filters which select features based on the 

color intensities of the image. Strides define the number of pixels by which we can shift the 

filter to focus of a new set of pixels. Its value ranges from 1 to 3 usually. Having a better overlap 

among filters are better for preventing loss of image context. But this also increases training 

time and output volume. Depth refers to the number of filters that we want to use. Every filter 

adds to the depth of the generated output. So, if we use 3 filters, the output depth for that layer 

will become 3. The output volume from each layer depends on a set of hyperparameters 

namely: depth, stride and padding. One kernel is dedicated for each channel in that image. A 

9x9 RGB image with 3, 3x3 kernels at stride 1 (per channel), will produce an RGB feature of 

size 7x7x3.  

 

1.2.2 Pooling Layer:  

The pooling layer is an untrainable layer. It operates a small kernel on the image at fixed stride, 

to pick the pixel with maximum intensity in the window and discard other pixels. In the end, 

the result will consist of a matrix of reduced dimension. The significance of such a layer is to 

reduce the dimension of the feature image. The image features are often sparse in nature and 

some cells might not contain features that are of use for classification. The pooling layer 

discards those cells and keeps important ones only. 

 

1.2.3 RELU:  

The RELU activation function is an activation function which sets all negative values to zero 

and keeps other values intact. Usually Convolution or Pooling layers are followed by a RELU 

activation. 

 

 
Fig 2:  Components of a CNN 

 

 When images are not of acceptable dimensions, padding is necessary before sending it to 

further layers in the network, to achieve the specified dimension. In such cases padding with 

zeros is done. Usually sophisticated CNNs consist of various layers in their architecture and 

can predict image content of a huge number of classes.  
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Table 1 shows the performance of popular deep CNNs, which are used to classify everyday 

objects. The Top-1 and Top-5 Scores specify the correct prediction of objects from their 

images, by choosing the top 1 and top 5 prediction proposals, on testing with the ImageNet 

validation dataset. 
 

Table 1: Comparative Analysis of Contemporary CNNs 

Model Name Layers Trainable 

Params 

Size 

in 

MB 

Year Top-1 

Score 

Top-5 

Score 

VGG16 [42] 23 138357544 528 2014 0.713 0.901 

VGG19[42] 26 143667240 549 2014 0.713 0.900 

Resnet101[43] 101 44707176 171 2016 0.764 0.928 

Resnet152[43] 152 60419944 232 2016 0.766 0.931 

InceptionV3[44] 159 23851784 92 2016 0.779 0.937 

MobileNetV2[45,46] 88 3538984 16 2018 0.713 0.901 

 

1.3 Recurrent Neural Networks: 

Sequence driven data have a high amount of dependence of past and future output sequences. 

These outputs, hence can be seen as a function of time and previous outputs. To preserve the 

information of a previous sequence, we need some sort of memory and this is where Recurrent 

Neural Networks come to picture. Recurrent Neural Networks (RNNs) have "neural memory". 

They read inputs (like words) one at a time, and remember the context through the hidden layer 

activations that get passed from one time-step to the next. This allows a uni-directional RNN 

to take information from the past to process later inputs. Figure 3 shows a basic RNN structure. 

Here  x⟨t⟩ is the input x at the tth  time-step and y⟨t⟩ is the output y at the tth  time-step which is 

predicted using pervious outputs i.e. y⟨1⟩ ,y⟨2⟩ ,y⟨3⟩… y⟨t-1⟩. a⟨t⟩  is the activation for the tth 

timestep. 

 

 
Fig 3: A generic RNN 

 

One major drawback of ordinary RNNs is that in very later sequences, they tend to forget values 

of the initial sequences and often loose context. Also they are a victim of the vanishing gradient 

problem. These two things are easily tackled by modifying the RNN into an LSTM (Long 

Short-Term Memory). An LSTM [68] operates on gated memory, having 3 memory cells/ gates 

namely the update, output and forget gate. Figure 4 describes an LSTM cell. c⟨t⟩ is the memory 

cell value at tth timestep. Wi implies the weight matrix for the module i where i can belong to 

a hidden layer or any of the gates. 
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Fig 4: Single LSTM cell 

 

1.3.1 Forget gate: 

 Assuming we are reading words in a piece of text, and want use an LSTM to keep track of 

grammatical structures, such as whether the subject is singular or plural. If the subject changes 

from a singular word to a plural word, we need to find a way to get rid of our previously stored 

memory value of the singular/plural state. In an LSTM, the forget gate lets us do this: 
 

Γ⟨t⟩f=σ(Wf[a⟨t−1⟩,x⟨t⟩]+bf)                (1) 
 

Here, Wf are weights that govern the forget gate's behavior. We concatenate [a⟨t−1⟩,x⟨t⟩] and 

multiply by Wf. The equation above results in a vector Γ⟨t⟩
f with values between 0 and 1. This 

forget gate vector will be multiplied element-wise by the previous cell state c⟨t−1⟩. So, if one of 

the values of Γ⟨t⟩f is 0 (or close to 0) then it means that the LSTM should remove that piece of 

information (e.g. the singular subject) in the corresponding component of c⟨t−1⟩. If one of the 

values is 1, then it will keep the information. 

 

1.3.2 Update gate: 

Once we forget that the subject being discussed is singular, we need to find a way to update it 

to reflect that the new subject is now plural.  
 

Γ⟨t⟩
u=σ(Wu[a⟨t−1⟩,x(t)]+bu)                     (2) 

Similar to the forget gate, here Γ⟨t⟩u is again a vector of values between 0 and 1. This will be 

multiplied element-wise with c̃ ⟨t⟩, in order to compute c⟨t⟩. 

 

1.3.3 Updating the cell:  

To update the new subject we need to create a new vector of numbers that we can add to our 

previous cell state. The equation is: 
 

c̃ ⟨t⟩=tanh(Wc[a⟨t−1⟩,x⟨t⟩]+bc)                   (3) 

Finally, the new cell state is: 
 

c⟨t⟩=Γ⟨t⟩f∗c⟨t−1⟩+Γ⟨t⟩
u∗c̃ ⟨t⟩                  (4) 

1.3.4 Output gate: 

Following two formulas determine which output is to be used : 

Γ⟨t⟩
o=σ(Wo[a⟨t−1⟩,x⟨t⟩]+bo)             (5) 

a⟨t⟩=Γ⟨t⟩o∗tanh(c⟨t⟩)    (6) 
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Where in equation 5 one decides what to output and in equation 6 we multiply that output by 

the activation of the previous state. 

 

1.3.5 Types of RNN ( By Input-Output Dimensions): 

One-To-One: The simplest of the RNN architectures, this architecture takes in input of single 

dimension and outputs a single dimension output. This architecture is especially useful in areas 

where the input consists of a single entity, like an image and we have a single entity for its 

output (like a classifier). An image classification algorithm, which focuses on multiple parts of 

image in a sequence can be a great example of a one-to-one RNN. 

One -To-Many: These RNN models, take in a single input but output sequences of data (a 

vector of entities). The best example for One-to-Many architecture is Image captioning using 

Inject architecture, where an image is fed into the RNN while the RNN outputs a sequence of 

words. 

Many-To-One: An architecture where the input is a vector in sequence of objects and the 

output is a single entity. Text Classification and sentiment analysis is a good example of Many-

to-One architecture, as in these scenarios, a vector of words serve as the input while a single 

classification (good/bad) might be the output. 

Many-To-Many: In this case, both the input and output are sequences of data (vectors). They 

may or may not be of the same size. Models having different input and output sequence 

dimensions are challenging to make, especially where the output dimension is greater than the 

input dimension. Examples of many-to many architectures are Video Captioners with input as 

sequence of image frames and output as sequences of words, Text Translators where both input 

and output sequences are words. 

Figure 5 describes various RNN architectures based on Input-Output dimensions 

 
Fig 5: Various Input-Output-Based Architectures of RNN 

 

1.3.6 Bi-Directional RNNs: 

These RNN networks have a set of RNNs delivering training in forward direction and a separate 

set of RNNs delivering training in backward direction. They were introduced to increase the 

information amount in a network. In normal RNNs, one cannot reach the final future state from 

the current state. In Bi-RNNs future input information is reachable from the current state. Also, 

they retain the data length flexibility that normal RNNs have over basic MLPs. In a Bi-RNN, 

(Figure 6) both forward and backward RNN units produce outputs. 
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Fig 6: Bi-Directional RNNs 

 

Bi-directional LSTMs have the ability to produce more context aware captions. This is 

applicable for both image and video captioning and has been put to use for the latter in many 

researches works (ABIVIRNet). If we have a bidirectional LSTM as the decoder, for 

classifying video, after feeding rich caption features to the encoder, the LSTM can modify 

generated captions based on both previously generated and future generations. This produces 

good results but increases the complexity, parameters and training time by a huge margin. 
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CHAPTER 2: ATTENTION IN CAPTIONING 

2.1 Importance of Visual Attention 

Modern image captioners often use attention-based mechanisms which require referring back 

to the current image region in focus, to generate more context aware captions. Such an approach 

requires an architecture similar to the inject architecture where the RNN requires to refer to the 

visual region as well as previously generated words to generate the next word and also decide 

the next region of focus [6]. Attention is mainly applied to a captioner in the sequence 

generation phase by the RNN. Most attention models use a multi-modal RNN which received 

input from the input image as well as the previous generated words. In every iteration, special 

external features from the image or sentence vectors serve as the attention feature and bias the 

RNN to produce words which are more related to the current scenario. The “Show and Tell” 

[12] model, also known as Google NIC is the most widely used baseline image captioning 

model. Its attention-based variant “Show, Attend and Tell” [64] was the first to introduce the 

concept of soft and hard attention in captioning, in the year 2015. Figure 7 gives us an overview 

of both baseline and attention-based image captioning models. The attention module has been 

highlighted in the RNN module of the attention based captioner in figure B.  

 

Fig 7: [A] Generic Baseline Image Captioner , [B] Generic Attention based Image Captioner 

 

Figure 8 demonstrates the unsatisfactory performance of a captioning model if no attention is 

provided. The model used here is a VGG16 based model trained on Flickr8K dataset. The 

model identifies activities quite well but fails to accurately justify the quantities of objects or 

place of occurrence of the event.  

 

Fig 8: Baseline model fails to provide attention to detail in captions 
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2.2 Types of Attention: 

When we look at an image, we scan various parts of the image and identify its content, instead 

of focusing on the image as a whole. This implies that at a particular instance, we provide more 

attention to a specific region in the image. Modern captioners have tried to devise various 

methods of applying attention to their models. There can be two types of attention methods, 

neural networks are made to train on. 

2.2.1 Soft Attention:  

In soft attention [64,14] the model focuses on a specific part of the image, at a given instance, 

by distorting other parts of the image. Areas of more interest will be highlighted while other 

regions will have an attention of 0 (darkened). Figure 9 describes the concept. 

 

Fig 9:  Soft attention highlighting important areas and distorting other regions 
 

Soft attention computes in every step, how much weightage is to be given to a region of an 

image for generating a related word. Highlighted areas are obviously provided with higher 

weights (preserving original value) while darkened areas received lower weights.  

Let x1,x2 and x3  the marked sub-regions of an image.  A score si  is computed as a measure of 

attention to be provided to xi,  (with the context C=ht−1): 

si = tanh(WcC+WxXi)=tanh(Wcht−1+Wxxi)                 (7) 

si passed through a  softmax function computes the normalized weight αi. 

αi=softmax(s1,s2,…,si,…)                                               (8) 

With softmax, αi adds up to 1, and it can be used to compute a weighted average(Z) for x1,x2 

and x3. Finally, Z is used to replace x as the LSTM input. 

Z=∑αixi                                                                                                               (9) 

2.2.2 Hard Attention:  

The concept of Hard Attention [64,15,16] realizes that there is often ,no right procedure in 

which an image is scanned by the human eye and hence is non-differentiable. Given such a 

scenario, in order to  ensure the network is proceeding in the correct direction, in learning, 

reinforcement learning methods like Monte Carlo can be applied. Reinforcement learning 

techniques infer attributes from experiments where some samples which are able to achieve the 

target get a positive score while the ones which do not, get a negative score. Reinforcement 

Learning suffers from high variance problems when scaled to larger networks with more 

number of hidden layers. High variance means that one of the samples might be able to reach 

the reward state while another might fail. This causes problems in backpropagation.  Monte 
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Carlo uses a stochastic method of updating weights by choosing a set of samples and updating 

weights by averaging out of all these samples, instead of focusing on only a few samples. 

Choosing a large number of samples can help mitigating the problem of variance. The 

following equation is used in Monte Carlo reinforcement learning. Rt is the reward signal and 

r is the reward received at time t. T is the total time span. 

𝑅𝑡(𝑠, 𝑎) = ∑ 𝛾𝑡𝑟𝑡
𝑇
𝑡                                                                   (10) 

Comparing between soft and hard attention, soft attention  is more popular because of its 

simplicity. Soft attention’s main drawbacks are that it uses fixed grids to segregate regions in 

an image , whereas hard attention creates a new memory map of a region of the image, for use 

in the current iteration. But hard attention networks cannot be trained using back propagation 

and this makes it more complicated to train the attention module separately. Although hard 

attention is philosophically more appealing, it does not contribute much to enhancing the final 

caption output. 

2.3 Various Experimented Methods of Applying Attention:  

2.3.1 Scene Attention: 

 Scene specificity defines the global context of an image. Lets take for example, an image with 

a child in the park. A favorably generated caption could be “A boy is playing with a ball in the 

park”. But, if the same photo was shot in the beach, a desirable caption would be A boy is 

playing with a ball in the beach” .The importance of the surrounding sceneries are immense, 

especially in video captioning where the topic of the video itself will be based on the 

background scene. The authors of [6] have described how to compute scene vectors which 

contain extracted scene-related global contexts and use them as one of the inputs in an LSTM 

as an attention module. The scene vectors are computed by initially clustering images using an 

unsupervised algorithm. Latent Dirichlet Allocation (LDA) [61] is a generative unsupervised 

clustering model that posits that each document is a mixture of a small number of topics and 

that each word's presence is attributable to one of the document's topics. LDA is an example 

of a topic model. Clustering based on applying LDA on ground truth captions of an image, can 

help us decide the topic attributes of an image. Apart from LDA, image clustering may be also 

be used to generate scene vectors by unsupervised K-Means clustering [62]. Image clustering 

will be generated scene vectors based on image specific features like color intensities and 

edges, unlike language based LDA, which extracts features which are more topic oriented. Fu 

et al. in their scene specific captioner have hence constructed an 80-dimensional scene vector 

which contains the probability of that particular image belonging to one of the 80 topics they 

clustered in the database using LDA. The labelled vectors thus generated by unsupervised 

clustering, can be used to train a small multi-layer-perceptron (MLP) based on the image CNN 

features and output the same scene vector. This MLP, which is trained to mimic a clustering 

algorithm, can then be used to generate topic vectors of images from the test dataset. Figure 10 

describes the procedure for training the MLP and extracting topic vectors from an image. 
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Fig 10:  Scene Topic Extraction from an Image 

 

This procedure can be an efficient solution towards a balanced attention measure for captioning 

as an MLP can be trained quickly, without requiring much computational resources However, 

the scene MLP from [6] is able to attain an accuracy of 70% only, while trying to imitate the 

LDA clustering based classification. The reason for this is purely due to the fact that the topic 

labels were generated based on ground truth image captions, yet the MLP was trained based on 

the image features. It revises the fact that labelled captions often lack description of complete 

image information. Better clustering simulations may be implemented based on both image 

features as well as ground-truth captions, using a multi-modal architecture. 

2.3.2 Object or Region based Attention: 

The most intuitive approach towards attention in an image lies in the way humans actually see 

an image. Our vision focuses on multiple objects in the image one at a time and sums them all 

up while describing them as a whole. This process of focusing on various objects in the image 

has been proposed in [6] as Region Based attention. This primarily requires detecting separate 

objects in the image and generating the CNN features of each of these objects. Object detection 

algorithms specifically build bounding boxes around objects in an image and sometimes 

associate with describing the objects as well.  There are various object detection algorithms 

available like Selective search [7], R-CNN [8], YOLO [9]. Most of the object detection 

algorithms start from determining around 1000 to 2000 arbitrary image regions inside an 

image. R-CNN uses a deep CNN to classify get features of every region and uses an SVM to 

classify those regions. Selective search on the other hand provides a fast way of detecting 

objects by localizing similar regions into a single region set and segregating dissimilar ones. 

Selective search manages to segment an image in 1 second and takes 2 to 40 seconds to evaluate 

proposals. YOLO (you only look once) is one of the fastest object detection algorithms which 

use a more unified, yet simpler and faster method to deal with objects in an image. YOLO 

divides an image into a 7x7 grid where each grid predicts the object contained in that grid, by 

building a bounding box around it. It uses a 24-layer CNN trained with ImageNet data that 

predicts every grid content and later stitches neighboring boxes with overlapping content. 

YOLO suffers the drawback of detecting multiple small objects in a single grid. Despite its 

drawbacks YOLO is the fastest and well performing object detection algorithm managing to 

detect objects at 45 frames per second in a TITAN X GPU. 
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In paper [6] Selective search is used to extract the regions (or bounding boxes) from an image 

which are then processed for feature extraction. Selective search is best for generating 

hierarchical boxes where we have region overlaps. However, YOLO may be used for non-

overlapping object-based attention. After regions have been generated, the top 29 regions are 

selected based on a linear classifier trained to distinguish between good (with more overlaps 

with bounding boxes) and bad regions (with lesser overlaps) and features of these regions are 

extracted. 

In every iteration a single layer neural network is responsible for selecting the region of visual 

attention from the set of attention regions. The network takes input the previous predicted word, 

hidden state, set of regions and previous visual attention region to output the current region of 

interest. Then the regions can be added to an attention module of an LSTM to generate next 

word. 

2.3.3 Saliency: 

Saliency [3,4], in perspective of visual attention, refers to where a person focuses on a scene 

while studying its contents. Studying the various regions of gaze in an image can help us decide 

where to see, in an image, while captioning them. Recent studies regarding visual saliency have 

used datasets of images marked with fixation points captured using eye tracing glasses.  CNNs 

can be trained to identify these fixation points automatically, but their performance often 

degrades due to the rescaling of features in the deeper layers. Saliency Attentive Model (SAM) 

[5] uses a dilated CNN which preserves the quality of the feature-set, instead of rescaling it and 

then uses a Convolutional LSTM to refine initial predictions of saliency. Their specialized 

LSTM uses space varying features instead of time and finally generates a single channel 

convolutional map containing the saliency features highlighted. People tend to focus their 

attention to the center of the image, by default, since the main content of the image is 

photographed usually in the center. However, this may change with multiple points of interest 

in the image and create confusion regarding where to actually focus in the image. Hence SAM 

uses a gaussian function to learn the center biases and adjust the saliency map accordingly. A 

pre-computed (using covariance and mean matrices from image data) Gaussian kernel adjusts 

the LSTM output according to its bias and the final map is rescaled to the size of the original 

image. The overview of the whole procedure is described in Figure 11. 

 

Fig 11: Saliency map generator using attention convolutional LSTM in SAM [3] 

 

Saliency has been incorporated as an attention module in [13] to achieve state of the art results 

in captioning. The focus of their attention is dynamic as their implementation creates regions 

from images and focuses on saliency map of a particular selected region at every timestep to 
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generate captions. Initially a Fully Convoluted Network extracts features of multiple 

segmented regions from the image and also computes their saliency map. An LSTM with 

attention module is responsible for caption generation. The attention module takes inference 

from both saliency map and contextual map (region-based feature map) of the current selected 

region to bias the generation of the next word in the sentence, by the LSTM. The next region 

is selected, similar to [6], based on the current hidden layer input of the LSTM. This type of 

sophisticated implementation hence uses attention in attention (saliency in region-based 

attention) concept to excellence in captioning. However, this also makes the overall procedure 

rather computationally expensive, having to generate region based and saliency map features 

for every segment in the image. The generic method of applying Saliency based attention is 

portrayed in Figure 12. 

 

Fig 12: Saliency attention based Captioning 
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CHAPTER 3: MODEL ARCHITECTURE OPTIMIZATION METHODS  

3.1 Glove:  

Every captioner contains a word embedding layer which maps the one-hot encoded words, to 

a smaller sized representation. This layer has to be trained in the process of caption generation 

to learn the mapping of words existing in our vocab. The Glove [2] model is a pre-trained 

model which can represent a word in n-dimensional format. This representation of a word, 

preserves its semantic meaning. Ad-hoc models rely on Euclidean distance between vector 

representation of words to determine their semantic similarities, but this approach is highly 

limited to specific usage scenarios. Glove uses words occurring together to infer the similarity 

between them and this co-occurrence is represented by a log-bilinear model. The logarithmic 

ratio associate meanings which. are encoded as the n sized vectors. Glove vectors are suitable 

especially in word analogy tasks like captioning where one predicted word may have various 

other similar predictions without loss of overall meaning of the entire sentence. We are more 

likely to generate meaningful and syntactically correct sentences with glove embedding rather 

than self-embedding layers. Moreover, using pre-trained embedding will enable us to skip 

training this layer thus enhancing the overall training process of the captioning model. 

Co-occurring words, with similar meanings are shown in Figure 13 The dot-product of two co-

occurring words gives us the log of the probability of them co-occurring. The entities are 

arranged in their scenario of occurrence, signifying that the vector difference between the pairs 

are similar , when viewed from the given perspective. 

 

Fig 13: Similar or co-occuring words mapped to eachother (Image Source: GloVe) 

3.2 Choice of words: 

A good captioner has to be careful about its choice of words. In every timestep of sentence 

generation, a new word is appended to the current sentence which has to be chosen from a list 

of predicted words. Generating the best sentence will require us to try out all possible 

combinations of words, suitable for framing the sentence. But that will take exponential time. 

However, there are specialized algorithms to search for the best words from the list of words, 

at every iteration. The most popular searches used to achieve this are greedy search and beam 

search.  These algorithms are used explicitly in the testing phase of the captioner. 
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3.2.1 Greedy Search: 

 In every iteration, words are generated with probabilities of their occurrence given the current 

sentence. Greedy search simply chooses the words with highest probability in every iteration. 

This operation is extremely fast, but often fails to generate the most optimal sentences. 

3.2.2 Beam Search:  

Beam Search [1] is a technique where we keep track of a few best-by-now sentences (their 

number determined by the beam size, B. It is used in the sentence generation phase to generate 

the next best possible word from a group of words and keeps the best word to be used for 

further generation of sentences. The log likelihood is measured for the words, with the given 

sentence, rather than multiplying with their probabilities repetitively, since multiplying 

probabilities often lead to underflow in floating point arithmetic, as we progress with the 

decimal digits. Time complexity of beam search in worst case time = O(B*m) where B is the 

beam size and m are the maximum depth of any path in the search tree. Usually best sentences 

are generated with values of B ranging between 3 to 5. For B=1, Beam search behaves like a 

greedy search. Modern captioners only use Beam Search for caption generation. Performance 

of beam search is 2 to 6 percent better than greedy search, on an average, based on the 

performance metrics discussed in section 2. 

3.3 Enhancing Description Quality:  

3.3.1 Multiple Instance Learning: 

Even though annotated datasets have multiple sentences supporting an image, only one of them 

is used for validating the image caption. However, it may so happen that the other descriptions 

have other inferred concepts about the image which might have been missed by the current 

one. As a solution to this the OPR-MCM [11] (Online Positive Recall -Multiple Concept 

Mining) was proposed. It uses MIL (Multiple Instance Learning) by detecting the missing 

concepts from other captions, once the image caption has been generated based on the current 

trained model. The missing concepts are treated as negative concepts and selectively they are 

chosen to train the model again with these concepts so that we have a better and more complete 

caption generated in the following iterations. 

3.3.2 GANS: 

Even if generated captions are able to describe the content of an image, the sentence 

construction quality can be further refined to replicate that of a human constructed sentence by 

using Generative Adversarial Networks (GANS) [17]. The architecture GANS consist of a 

generator which generates an output and a discriminator (the adversary) which judges if the 

generated output is real or fake. Inspired by the Turing Test, GANs can be an economical and 

effective way of judging if generated captions from a captioner are generated by human. Good 

captioners will aim at generating captions which are almost indistinguishable from those 

proposed by humans. Over the years, multiple attempts have been made [18,19,20] to optimize 

caption generation using GANs. Discriminators for a captioning algorithm store information 

regarding the similarities between a caption and its image. The loss from the discriminator can 

contribute to the overall loss generated in every iteration of the training step to refine the model 

predictions. As the loss from GANs mainly focus on how far the syntax of the generated 

sentence is from replicating a human generated sentence, GANs can enhance the sentence 
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construction and attention in generated captions, to appear more human like. Figure 14 

describes how a discriminator can be trained on image and caption pairs. 

 

Fig 14: Role of GAN in optimizing Caption Generation 

 

These images, caption pairs are formed in an embedding layer whose output is fed into the 

discriminator as input. Although most generators [19,20] feed into the discriminator after just 

before computation stage in discriminator, in [18] the authors chose to differ. They compute 

the correlation of the image, caption pair using bilinear transformations at an earlier stage to 

compute similarity between the image and its caption. Then they further process the image and 

caption features separately, with attention to their similarity matrix, produced in the previous 

step. Once processed separately, both the outputs are fed into the final stage of discriminator 

for the decision output. The loss generated from the discriminator will contribute to 

backpropagation in the network to enhance successive generations. The authors have used soft 

attention model based on Show and Tell [64] with 14x14 grids (196 regions) to generate 196 

image feature vectors. In every iteration word are formed from a 512-state size output LSTM. 

Each word vector has an embedded length of 512. A caption is stated to be formed of T words. 

To generate the correlation between the current region of focus and the current word, a bilinear 

transformation is done between an embedded image vector and the word vector  to get Y, the 

correlation map. This Y is used in further linear units in each module (word and image features) 

whose outputs are summed up together (using a weighted sum) and then fed into the final 

module of the discriminator. The loss from the output of the discriminator is backpropagated. Co 

Attention based discriminator proves to be able to classify images with unrelated objects as 

well, and hence it has also been tested on the OOC dataset to get good results. Figure 15 

describes training the GAN in [18]. 
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Fig 15: Co-Attention Based Discriminator Model  

 

Reinforcement learning [63,79] has also been applied in image captioning by modeling the 

caption generation stage as the rewarding scheme. On basis of the rewards, an inference can be 

generated which helps in making more contextual predictions for the next word.  The main 

goal of such a technique revolved around minimizing the negative reward produced at the end 

of caption generation. 

3.4 Ensembles: 

An ensemble model is a model prepared by aggregating outputs of multiple models with same 

aim, to learn better. The concept of assembling suggests that poor performing models may 

perform better, if their learnings are put together. Lots of high variance results can be combined 

to make a low variance outcome and thus a desirable output with low bias and low variance 

may be achieved. The averaging of outputs is done by weighted voting mechanism where 

weight of contribution of every model may be proportional to the accuracy of the model. 

Assembling helps in regularizing the output without requiring early stopping. Ensembled 

models can be applied to captioning models as well, inference from multiple models can 
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contribute to generation of a caption with more rich information and semantics. Various authors 

[6,79,18] have demonstrated enhanced performance by usage of ensemble models. 

3.5 Variations in Captioning: 

Apart from basic image captioning, several variants of the same, have also been put to practice 

in recent researches. Captioning RNNs have been trained to produce captions with sentiments 

and better semantic styles. Authors of [65] created SentiCap by modifying the GNIC [12] 

captioner to include another RNN for generation of captions with sentiments. In this case, a 

switching RNN was used, which is a two-step model, trained with a large dataset of factual 

captions and a small dataset with sentimental words (positive or negatively classified). For 

generating and validating such sentimental captions, a new caption dataset had to be prepared 

containing a positive and a negative sentence caption for every image. The model was 

successful in describing images with proper adjectives having positive or negative meaning 

and also determining the sentiment (positive or negative) of the input image. SemStyle [66] 

was introduced for generating stylized captions, which are more expressive and narrative in 

nature. There are two main challenges in developing a storyteller captioner like SemStyle :1) 

Preparing dataset captions with language style inspired from story books and 2) maintaining 

relevance of the caption words, to the corresponding image, while generating story-like 

sentences. The authors tackled the first challenge by replacing the verbs in MSCOCO captions 

with ones collected from novels. Then, they proposed an encoder-decoder model where a term 

generator encodes image features to semantic terms which are framed into sentences by a 

language generator. SemStyle achieved a SPICE score of 0.134 and 87% generated captions 

marked to be related to the image, by human judgement.  
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CHAPTER 4: DATASETS FOR IMAGE CAPTIONING 

Having a labelled dataset [24] for captioning is the most important part of this task as gathering 

or preparing such datasets can be a time-consuming task. Some publicly available labelled 

datasets are as follows: 

4.1 Labelled Image Datasets 

ImageNet: The largest image dataset [23] in the world containing 14,197,122 images, 

organized according to the WordNet hierarchy. Most of them are labelled with nouns. Most 

data sources have ImageNet as their mother source. 

MSCOCO: Microsoft Common Objects in Context (MSCOCO) [22] contains 120K images 

with 5 captions for each image. There are 80k images for Training and 40k images for 

Validation. The contents of the image cover a variety of commonly seen objects, animals and 

activities. 

FickR: FickR [25] Contains 2 datasets. A large dataset with 30000 images with 5 captions each 

splits: 28000 images for Training and 2000 images for validation and another one with 8000 

images with train and test split as 6000 and 2000. Figure 16 contains examples from FlickR 

dataset. 

 
Fig 16: Samples from FlickR Dataset with the top 3 Groud Truth Annotations 

 

Both the FlickR and MSCOCO datasets are highly similar to eachother as most of the images 

in the datasets have the common mother-source , which is imagenet. Most images are originally 

taken from the FlickR website itself. However, the MSCOCO annotations are better in quality 

and describe images better, compared to FlickR. 

SALICON: SALICON( Saliency in Context) [26] the largest available dataset for saliency 

prediction. It contains 20,000 images taken from the MSCOCO dataset. Every image in the 

SALICON dataset has small highlighted regions, denoting them to be fixation points for the 

human eye, or in other words, regions of focus and attention. Eye fixations have been simulated 

with mouse movements while preparing the dataset. SALICON can be used to study attention 

models in Image Captioning. There are other notable datasets focusing in saliency like 

MIT1003[27], MIT300[28], CAT2000[29] which may be used for the same. In Figure 17 are 

a few marked images from SALICON dataset.  
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Fig 17:  Sample Images from SALICON dataset. Highlighted areas are regions of Eye Fixation 

 

OOC: The “Out of Context” (OOC) dataset [21] with contains 218 images containing objects 

that are highly unrelated to the context of the image. Such a dataset can prove to be highly 

challenging for a caption generator to be tested as a generator is usually trained on normal 

datasets where sentence formation is learnt based on relatable context only. It is highly 

recommended for future captioners to be tested on OOC for achieving state of the art results. 

Following  Figure 18 are a few examples of the content of OOC dataset. 

 

 
Fig 18: Sample Images from the Out Of Context (OOC) dataset with Ground Truth Captions 

4.2 Automatic Annotation Technique: 

Annotating image datasets is a time consuming and costly procedure . Moreover it requires a 

specialized group of people having good perception and grammatical capabilities to properly 

annotate an image . As a novel solution for annotations, KunFu et al. [10] devised an algorithm 

that automatically annotates images using pseudo-pair generation. The concept of their method 

lies in segregating different facts from every image and sentence available to us and then 

generate new pseudo-pairs of images and sentences by replacing parts of image and sentence 

content with known values from the corpus generated.  They initially generate a corpus of 

sentences and generate a knowledge base from them. Then they equate similarities between 

different entries in the knowledge base. Then pseudo sentences are generated by replacing 

concepts in the knowledge base items. Similarly, using various feature vector of images , 

pseudo image vectors are generated. Finally a captioner is trained to learn how to caption, by 

using adaptive visual replacement(AVR). The overview of the process is described in Figure 

19. 
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Fig 19: Generating pseudo images and sentences and teaching a captioner adaptive visual replacement 

 

The annotation generation as proposed by [10] requires the corpus to have similar items 

existing in the knowledge base to successfully caption an image without human inference. This 

may be effective for datasets containing images of similar subject and objects . However for a 

very diverse dataset which may contain lots of unrelated objects or in areas that require dense 

captioning, their technique may face a lot of difficulties.  
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CHAPTER 5: EVALUATION METRICS 

BLEU: Bilingual Evaluation Understudy Score (BLEU)[80] is a quick and inexpensive way 

to evaluate a generated sentence with reference to the original sentence. A perfect match gives 

a score of 1 and a perfect mismatch yields a 0 score. The approach works by counting matching 

word based n-grams (without considering word order) in the generated sentence to n-grams in 

the reference sentence. BLEU-1, BLEU-2, BLEU-3, BLEU-4 scores respectively signify 

scoring by considering 1,2,3 and 4 gram wordings respectively. BLEU is available in the NLTK 

library in python. 

METEOR: Metric for Evaluation of Translation with Explicit Ordering[81] judges the 

generated statements by creating one to one mappings with reference statements . Here 

mapping refers to getting the same word in both reference and generated statements. Then 

using precision and recall of ratio mapped words to total words, the score is calculated. It 

tackles some shortcomings of BLEU like recall and word matching count. 

ROGUE: Similar to BLEU, ROGUE( Recall-Oriented Understudy for Gisting Evaluation)[82] 

works with N grams. It calculates the N gram overlaps. ROGUE-L computes longest common 

subsequence between two statements. The major difference between ROGUE and BLEU is 

that BLEU is precision based while ROGUE is recall based. ROGUE cannot determine if the 

result is coherent or the sentences flow together in a sensible manner. 

CIDEr: Consensus-based Image Description Evaluation(CIDEr)[83] takes into account the 

possibilities of having varying descriptions for the statement with same meaning. CIDEr score 

accounts for both precision and recall as the average cosine similarity between the generated 

sentence and the reference sentences are calculated for n-grams of length . These n grams are 

chosen by giving higher weightage to more frequent keywords in the reference sentence and 

lower weightage to commonly occurring words (like articles) , after calculating the TF-IDF 

scores. 

SPICE: Semantic n-gram overlap methods for caption evaluation are limited to matching of 

words instead of their latent meanings . The sentences might be judged as dissimilar even if 

they contain the same semantic meaning for example : “some vegetables are being cooked on 

a stove” and “ A carrot and a garlic is sitting in top of a black container ” will not be evaluated 

by BLEU scores to have similar meanings. Semantic Propositional Image Caption Evaluation 

(SPICE)[84] was proposed to tackle this limitation , so that fair judgements could be made for 

caption comparison. SPICE creates a dependency tree (scene graph) from objects occurring in 

related scenes to capture their semantic relations. The reference and ground truth captions are 

encoded into candidate representations and then To evaluate the similarity of candidate and 

reference scene graphs, we view the candidates from the scene graph to capture the similarity 

between two sentences.  

BLEU, CIDER and METEOR scoring metrics have gained popularity due to their conventional 

usage for prolonged time. Apart from these metrics, captions have been evaluated based on 

crowd-sourced judgements, where a group of people vote generated captions on an online 

server based on relevance and appropriability .Over the years , judgement of generated captions 

have been made on basis of both ,to what extent the description is able to describe the image 

and , how close is it to a sentence framed by a human. Hodosh et al.[85] concluded in his 
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research that evaluation metrics like BLEU and ROGUE do not do complete justice in caption 

evaluation and further stated that rank based metrics can be better at evaluating comparative 

quality of captions. S@k scores which retrieve the percentage of results relevant to the image, 

from the top k generated captions (analogous to recall) has been recommended by the authors 

to judge a caption’s quality. 
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CHAPTER 6: IMAGE CAPTIONING RESULTS COMPARISON 

Image Captioning has been quite a competitive topic in the research industry and with recent 

advances in deep learning, the results of the state of the art captioners are very impressive . The 

performance comparisons between various captioning architectures has been described in 

Table 6 and their architectures have been compared in Table 6. While baseline image captioners 

find it difficult to distinguish between objects having similar properties of colour or shape ( 

like the sky and ocean, or a bed of flowers) , adding attention to the captioners , enhance the 

caption quality to a huge extent as the model acquires the capabilities to differentiate objects 

based on certain scenarios and hence bias the word generation towards the context of the image 

only. The performance variations are clearly visible in the basic GNIC[12] model and its 

attention based variant[64] , which performs better by a huge extent. Hard attention based 

captioners , although slower and harder to train, perform better by a great margin , compared 

to soft attention based model. The captions produced by the hard attention based GNIC still 

tops the list even after multiple models were introduced in later years. Region based 

attention[6], which is similar to hard attention hence, performs on par with hard attention . 

Scene attention based model[6] can be trained quickly as it requires minimal computation and 

achieves a perfect balance between computation complexity and performance. It can be ideal 

for caption generation in devices with limited computational abilities ( for e.g. Smartphones).  

Even though it is computationally heavier and involves more sophisticated techniques of  

accurate eye tracking, saliency[13] based attention performs on par with scene attention , thus 

making scene attention to be the inevitable choice when it comes to performance to cost ratio. 

Reinforcement based learning methods like [18,79,63] which aim to generate inference from 

the errors in generated captions, have enhanced quality of generated captions in multitude of 

ways. GAN based captioners[18] aiming to generate more human-like sentences succeeds in 

generating well framed sentences with highly descriptive verbs compared to other captioning 

architectures. The feedback provided from actual human response regarding caption quality 

further boosted the network’s performance in[18]. Multiple Instance Learning boosted the 

caption scores of OPRMCM[11] to beat state of the art methods as the concept directly  

incorporates training of the model with concepts it has failed to identify in previous caption 

proposal.  Multiple Instance Learning enables a model to generate captions with maximal detail 

coverage and often leads captions to be over-descriptive of objects in scenes. However, such a 

method can be universally applicable to most captioning models to boost their performance. 

 

Table 2: Comparison between architectures of various image-captioners 

Model Year CNN RNN Attention 

GNIC[12] 2015 GoogleNet LSTM - 

GNIC-Attn[64] 2015 VGG16 LSTM Soft and Hard 

RA+SS[6] 2017 ResNet152 LSTM Region + Scene 

Saliency[13] 2018 ResNet50 LSTM Soft + Saliency 
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GAN (Co-attn ) [18] 2018 ResNet 101 LSTM + GAN Soft +SCST[79] 

OPRMCM[11] 2019 VGG16 LSTM MIL 

SentiCap[65] 2018 VGG16 Switching LSTM - 

SemStyle[66] 2018 Inception V3 GRU Soft 

DeepReinf[63] 

Policy Value 

2019 VGG16 LSTM - 

 

Table 3: Comparison between performances of various image-captioners 

Dataset Model Name Attention B1 B2 B3 B4 M C 

MSCOCO 

 

 

        

GNIC[12] - - - - 27.7 23.7 85.5 

GNIC Soft[64] Soft 70.7 49.2 34.4 24.3 23.9 - 

GNIC Hard[64] Hard 71.8 50.4 35.7 25 23.04 - 

RA[6] Region Based 71.7 54.8 40.9 30.2 24.2 92.6 

SS[6] Scene 71.2 53.6 39.4 28.9 24.1 89 

RA+SS[6] Region+Scene 71.7 54.9 41.1 30.6 24.5 93.3 

Saliency[13] Saliency 70.8 53.6 39.1 28.4 24.8 89.8 

OPRMCM[11] Missing 

Concepts 
75.8 59.6 46 35.6 27.3 110.5 

DeepReinf[63] 

Policy Value 

- - - 39.5 28.2 24.3 90.7 

GAN(Co-Attn) 

[18] 

Soft+ Co-

Attention 

GAN 

- - - 33 27.1 111.1 

 

Flickr8k Baseline  - 54 34 25 15 - - 

GNIC[12] - 63 41 27 -   

GNIC Soft[64] Soft 67 44.8 29.9 19.5 18.93 - 

GNIC Hard[64] Hard 67 45.7 31.4 21.3 20.3 - 

RA[6] Region Based 59.5 40.4 26.2 16.6 17.8 39.9 

SS[6] Scene 62.2 44 30.1 20.2 20 51.2 

RA+SS[6] Region+Scene 61.2 43 29.6 19.8 19.5 48.9 

Saliency[13] Saliency 63.5 45.6 31.5 21.2 21.1 54.1 

 

Flickr30k GNIC[12] - 67 45 30 - - - 

GNIC Soft[64] Soft 66.7 43.4 28.8 19.1 18.49 - 

GNIC Hard[64] Hard 66.9 43.9 29.6 19.9 18.46 - 

RA[6] Region Based 62.9 44.1 30.6 21 18.7 43.2 

SS[6] Scene 63.2 44 30.1 29.9 18.3 38.9 

RA+SS[6] Region+Scene 61.2 43 29.6 19.8 19.5 48.9 

Saliency[13] Soft+Saliency 61.3 43.3 30.1 20.9 20.2 44.5 

 

MSCOCO 

(Sentiment) 

 

Senticap[65] 

 

Positive 

Sentiments 

49.1 29.1 17.5 10.8 16.8 54.4 

Negative 

Sentiments 

50 31.2 20.3 13.1 16.8 61.8 

MSCOCO Semstyle[66] - 65.3 - - 23.8 21.9 76.9 
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(verbs 

replaced 

with novel 

wordings) 

 

OOC 

GAN(Co-Attn) 

[18] 

Soft+ Co-

Attention 

GAN 

- - - 17.9 17.3 45.8 

SALICON Saliency[13] Soft+Saliency 69.2 51.4 37.2 26.9 22.9 73.3 
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CHAPTER 7: BASIC VIDEO CAPTIONING AND ITS PROBLEMS 

7.1 Video Captioning 

Excellent Image captioning has led way to research aspects in video captioning and 

classification. In the article “Deep Learning for Video Classification and Captioning” [67], the 

authors have discussed various approaches towards recent state of the art Video Captioning as 

well as providing sources of datasets and insight to the used evaluation metrics. Video 

Captioning inherently means to caption several frames of the video such that we get the 

contextual meaning of the series of frames in the video. It uses the exact science behind Image 

captioning. The most basic and intuitive approach towards video captioning would be to  

segment the video into a series of frames of distinct images, taken at intervals of 5 to 10 frames 

and captioning each frame. But this approach has its own problems and we demonstrate the 

issues of such an approach in Figure 20. We used a image captioning model similar to the one 

used in [6] with scene specific attention to caption every frame of the video. Some video 

captions generated have been compiled below with their corresponding frames. Repetitive 

captions and frames are not shown . At the very outset, it can be inferred that the model can 

generate satisfactory results as far as captioning per frame is concerned. The caption generation 

takes less than 0.5 sec per frame and hence could be suggested to be applicable for real-time 

video captioning , provided there is a setup for that. 

 

Fig 20:  Naive Per-Frame video captioning 

 

However one drawback of the model is context awareness of the entire video, due to processing 

of every frame disjointly. Also , if a model is  trained based on image captioning , it generates 

frame descriptions in the same format as one would describe a separate image. These are some 

major problems that arise when using an 2D captioning model (image captioner) for spatio- 

temporal 3D data like videos. The temporal dependencies of a video are lost in such approaches 

. To enable context awareness and generate more synchronized sentences, which are linked to 

one another, we need both temporal and spatial features to be recognized.  

7.2 Handling Spatio-Temporal Data: 

3D CNNs: Normal CNNs are mainly 2D CNNs which take input a 2 dimensional RGB image 

and output its feature vector, which again may be a 2 Dimensional vector or a flattened single 

dimensional vector. 2D CNNs are great in preserving image features but for videos , they are 

lossy. This is due to the fact that they cannot preserve temporal dependencies. 2D convolution 

of a video (represented in 3D) still gives us an image. To preserve temporal dependencies, 

which are of huge significance inside a video, we need to add another dimension to our input 
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and process all the sequence of video frames together as a 3 dimensional input. This is possible 

by using a 3D CNN ,for example, Conv3D[53].  In 3D CNNs, theoretically, we have the input 

as a fixed 3Dimensional vector where the first 2 dimensions are the frames height and width 

and the third dimension represents the time feature , representing the sequence in which that 

particular frame arrives.  Note that it is mandatory for a video to be represented as a sequence 

of fixed number of frames to preserve the consistency for input dimensions in the 3D CNN. In 

3D CNNs, we have 3D convolutional and pooling layers, and 3D kernels to adapt to them. The 

3D kernels are usually of size 3x3x3 and operate on 2 strides (one across depth and one across 

height and width). In the convolutional. The rest of the process is similar to that of a 2D CNN. 

The output generated by the convolutional layer, after applying a single filter kernel, is again a 

3D vector. Figure 21 describes the representation of a convolutional layer in the network for 

3D vector. Apart from captioning and action recognition, 3D convolutions have also been 

implemented for use in Medical scene analysis of 3D images and other forms of 3D image 

classification. 

 

Fig 21:  3D convolution layer in a 3D CNN for Video data 

 

3D CNNs are more complex and take more time to train than their 2D versions. One major 

drawback of using 3D CNNs is that it is mandatory to have all frames of the video together ,  

as input. Hence it cannot be used for online processing of video (or streaming video), where 

the whole video is not available in one go. For such cases, it is better to have a 2D CNN model 

combined with an LSTM model for encoding temporal features.  

7.3 Types of video captioning : 

Video captioning can be of two different types 1) Summarized and 2) Paragraph . Summarized 

video captions are single sentence descriptions which summarize the entire video. Summarized 

captioning can be applied to small video clips, with duration of a few seconds, where number 

of subjects and activities may be limited to one . Complicated scenes with multiple objects 

require multiple sentences to be described properly and paragraph captioning is used for such 

scenarios. Paragraph captions are more complicated to implement and generate multiple 

sentences describing the activities in a video . Another technique of generating paragraph 

captions is to segment a long video into small clips containing single events, and generate 

summarized captions for each of the clips. However that requires identifying the important 

clips inside the video and require a trained model to identify such segments to extract them 



39 
 

 
 

from the video automatically. Various methods have come to existence , with rigorous 

experimentation , over the years, to describe videos with captions. Some of the important ones 

have been described in the following sections. 

7.4 Attention in Video: 

Similar to attention in images, video attention plays a significant role in identifying the relations 

between several entities participating in the events in a video. Video attention primarily 

comprises of temporal attention which focuses on changes occurring in the video frames , with 

time. The temporal attention is best represented as a convolutional 3D feature, formed by 

concatenation of several features generated by computer vision description techniques like 

HOG, HOF, MBF. Some of them are described in this survey.  Convolutional 3D features 

hence generated , can be fused with the 2D convolutional features to get the final fusion score 

vector which is then passed onto the encoder. 

7.4.1 HOG: 

 Histograms of Oriented Graphs(HOG)[56] identifies changes in the video per frame , on a 

pixel level. HOG was primarily used in image processing and  object detection techniques, 

especially people detection. (Figure 22)It involves calculation in the direction of alteration of 

pixel intensities of different regions and denoting their changes (like change in the degree of 

rotation of a pixel) for the regions in a histogram (cells indicating the range of degrees by which 

a pixel has been rotated).  

 

Fig 22:  Calculation of HOG of  an image 

 

7.4.2 Flow of Action: 

The flow of action or optical flow [35,72] highlights the direction of movement of objects of 

interest in the image frame. Visual techniques to highlight this  are to warp a smaller scaled 

version of the image based on changing pixel values, focusing on the center of the image. Flow 

of action can be represented in a variety of ways. An example of warped image is shown in 

Figure 23, referenced from [35]: The flow of action concept has been put to use in the S2VT[32] 

model, and added to the CNN generated features, before the encoding process of video frames. 
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One can notice the change in the warped images of the scenery as the clouds arise in the second  

picture. 

 

Fig 23: Flow of action highlighted by image warping  

 

Soft Temporal Attention in Video: While soft attention in images corresponded to dividing 

the image into subregions and weighing the importance of each region in caption generation, 

the concept is a little different when it comes to videos. In videos[73], instead of regions, we 

calculate the weighted importance of the temporal features generated by the encoder, at the end 

of the encoding process. The model learns on which temporal regions to focus on, while 

decoding the next word in the video caption. The primary requirement for soft attention is 

having the spatial-temporal features of the video pre-generated. Figure 24 demonstrates a soft 

temporal attention module for video captioning. 

 

Fig 24: Generic Soft attention mechanism in Video 

 

7.4.3 Scene/Topic Based Attention:  

Scene attention inherently means focusing on  the region of occurrence or neighborhood of the 

activity in a video. The neighborhood surroundings of a person or an activity play a significant 

role in deciding the context and subject of the image frame. Scene based attention in video is 

similar to the concept of scene based attention in image, but may be computed in several 

methods.  A Dual CNN[37] approach may be used , where one CNN is dedicated to extract the 

frame background features while the other one extracts the complete video features . Figure 25 

shows how to use dual CNNs to generate scene and original image features in a captioning 

model. 
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Fig 25: Dual CNN for scene and feature extraction from image frames 

 

Siamese CNN or dual CNN approach has been very popular in researches regarding video 

descriptions, where two dedicated CNNs have been used in the model architecture, one devoted 

to spatial image features and the other detecting temporal features like optical flow. For 

distinguishing two adjacent frames,  the displacement vector fields can be calculated and then 

the sequence of predictions can be averaged out together. This type of architecture may be 

especially useful when dealing with sports videos. 
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CHAPTER 8: Video Captioning using Summarization: 

8.1 Initial studies: 

Long before the advent of proper metrics to evaluate generated sentences, Barbu et al.[33] in 

2012, devised a proper method to summarize videos using well framed sentences, and 

evaluated the results by crowdsourced judgement. Their method incorporated extraction of 

optical flow of events in the video, clustering of images related to various human poses and 

training a Hidden Markov Model (HMM) to generate sentences from a video. The model was 

trained to detect the direction of movements of objects in the video and describe the action 

using sentences. The performance was evaluated to achieve 49% accuracy in describing events 

accurately , given best out of the three sentences generated by the model. 

For labelling long term temporal dynamics, we can use an LSTM to generate more context 

aware captions to summarize a video. An example of this may be accumulating sentences like 

“person making dough”, “person baking dough” and “person adding topping”, into something 

like “person is cooking”. Although theoretically hard to explain, experimentally it has been 

proved that deeper RNNs are better , especially at predicting hierarchical sequences of time 

varying data. Video sequences are a great example of usage of such type of architecture where 

every scene carries forward the latent meaning of the previous scenes. Video captioning, which 

requires sequences of videos leading to a sequence of  representational words finds a significant 

usefulness of this architecture. Hence the concept of stacked LSTMs in video captioning were 

introduced by Venugopalan et al. in their S2VT video captioning model[32].  

8.2 Methods: 

8.2.1 Stacked LSTM: 

 Stacked LSTMs [30,31] are multiple LSTMs stacked on top of each other, thus creating a 

deeper LSTM network. Often each layer of LSTM is responsible for identifying different set 

of  temporal sequences .As we go deeper, an LSTM layer below received a sequence output 

rather than a single value output from the LSTM above it. This inherently requires the above 

layers of the LSTM to be of many-to-many architecture. Specifically, one output per input ,in 

every time step, rather than one output time step for all input time steps. 

In a previous work[33] Venugopalan et al. created a video captioner where the most important 

feature from a feature set of video frames  was max-pooled using a CNN and then an LSTM 

was used to decode the image for caption generation. The model totally ignored the sequence 

of frames in its approach as the pooling[36] was performed and hence the model was a failure 

in preserving the entire context of the video. To tackle this, Venugopalan et al. introduced a 

method where the sequence was preserved, namely the S2VT model which used stacked 

LSTMs.  

8.2.2 Encoder-Decoder Module: 

In S2VT the generation of sequences occur in two stages. The first stage is the encoding stage 

where sequence of video frames are read by the model and the second stage is called the 

decoding stage, where sequences of words are generated based on the sequence of video 

frames, encoded by the stacked LSTM. The encoder prepares a compact representation of the 
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entire video while the decoder is for language generation ,preserving the temporal connection 

between video frames. The reason for keeping the two modules (Encoder and Decoder) 

separate is that the decoder’s output may not be of any use to the encoder in the current process. 

As the entire information of the video , which is the only current information available, is 

already available to the encoder, encoder totally independent of the decoder. The architecture 

of S2VT is described in  Figure 26. It uses the same set of LSTM for both encoder and decoder 

stages. In the encoding stage, only video frame features are fed into the LSTM and as no word 

vectors are added , the decoder is fed padded blank sequences. In the decoding phase, when 

the encoder has finished processing sequences, a “start” token word is passed into the decoder 

, as well as the output from the encoder , to start sentence generation. During this phase th e 

upper LSTM is fed padded sequences, since we do not have requirement of further input from 

video frames.  

There can be two methods of implementing an encoder-decoder approach in Keras library. The 

first method involves summarizing the entire video using the encoder LSTM’s last output unit 

and using a repeatVector to distribute it among the decoder units, through the timesteps. The 

second approach involves a many-to-many encoder LSTM where sequences are returned at 

every timestep of the LSTM and fed into the decoder. Figure 26 describes the second approach. 

 

Fig 26: Single Encoder-Decoder Stacked LSTM used in S2VT 

 

Following this, the encoder-decoder approach gained popularity in context of video captioning, 

for future researches. Variations of the encoder-decoder approach were put forward by many 

researchers, one such being [37].  

Backward temporal dependencies can help in re-framing of those event descriptions that were 

based on only forward dependencies. To achieve both forward and temporal dependencies , the 

use of Bidirectional LSTM has been implemented by Peris st al.[37] in his attention based 

video captioner, ABIVIRNET (Attention Bidirectional Video Recurrent Net). The encoder 

model ,instead of creating compact sequences of the video, generates a new representation for 

the video frame features by combining the CNN feature of frames, and the output from each of 

the two LSTMs in the Bi-LSTM (LSTM output preservers the temporal features with frame 

interdependency). The decoder gets the combined feature vector and trains a soft attention 
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model which decides the most important feature from the sequence, to be determining the next 

word prediction. The chosen frame is then passed onto a decoder LSTM to generate the next 

word. Figure 27 describes the generic diagram of ABIVIRNET. ABIVIRNET also uses a scene 

attention model . Although the concept of scene or topic based attention is similar to the one 

discussed in section 3, the method of extraction the scene vector by [37] requires another CNN 

which is specialized in identifying the topic of image scenes. This feature vector along with the 

original CNN output , is then fed into the Bi-Directional LSTM encoder for further processing. 

 

Fig 27: ABIVIRNET-Using Bi-Directional LSTM encoder with Soft attention decoder 

 

8.2.3 Correlation between words and scenes:  

Grasping the correlation between encoded sequences and generated words can semantically 

enhance generated video captions. Achieving this would be possible by having a common-

space mapping mechanism for both the sentence vector and the encoded video sequence. 

Inferring from the differences between the actual and achieved values from the mapped 

reference, we can estimate a loss function which will contribute to the model’s learning 

process. Such a training procedure is expected to have better semantic consistency between the 

video frames and generated words.[35] describes a multi-modal mapping scheme of the 

generated  L dimensional caption sentence(D) to a C dimensional vector space, after the 

decoding process is over. The encoded M dimensional video sequence (X) , similarly is also 
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mapped to the same C dimension space using a function isomorphic to the previous one. In 

their implementation , these functions are essentially embedding matrices. The expected visual 

feature can be calculated as an inverse function based on the two embedding matrices and 

generated sentence. Difference between the expected and actual value can provide us with 

another loss measure(L2) that can contribute to the model’s training along with the initial 

loss(L1). Meanwhile, L1 can be calculated as the negative log likelihood of generating words of 

the sentence, given the previous words. The authors proved this approach to outperform the 

current state of the art captioners by generating captions with accurate context to the video. 

The model is summarized in Figure 28. The authors used a generic encoder -decoder model 

with the semantic consistency module. 

 
Fig 28: Attention Based captioner with Semantic Consistency 

 

8.2.4 Other Methods: 

Fusing multiple attention and learning modules together can benefit a captioning model’s 

performance to a great extent . This has been clearly demonstrated by Shi et al.[78] where a 

captioner model has been trained to identify boundary segments in a video ( segments which 

are independent from each-other’s contexts ) with hierarchical language modelling and video 

prediction along with soft attention mechanisms. They used an encoder-decoder architecture 

similar to [37] using Bi Directional GRUs to encode the video and then trained two GRUs ,one 

for video prediction  , to determine global context of a video and the other for caption 

generation using hierarchical modelling ( using hidden states of another RNN in current input 

of current RNN). Such an approach incorporating multiple attention and learning modules , 

which is similar to generation of an ensemble model , have outperformed many state-of-the-art 

approaches as we can see from the results discussed in section 4. 
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CHAPTER 9: VIDEO PARAGRAPH CAPTIONING 

Summarizing a complete video often misses out on important scenes in-between the video, that 

might not be directly related to the summarized caption. Moreover , summarization is 

performed with attention to only a handful of objects in the video and hence is often biased 

towards them. A complete video sequence usually consists of several types of activities , which 

would require description using separate sentences , instead of summarizing the whole video. 

The methods as described above, targeted describing clips containing single activities and 

hence could justify their techniques by using summarization. But in reality, completed video 

description techniques require both : 

1. identification of the different activity sequences through time and  

2. proper summarization of each sequence, with context to the next one.  

This is a challenging task, as ideally it requires linking the current sentence with previously 

generated sentences , with context the objects involved in the previous activity . Such type of 

video description with para-phrases is called paragraph captioning. Although successful 

research, in this topic has been very limited , there are some commendable works which deserve 

mention and have been described in the following section. 

9.1  Dense Video Phrase Captioning: 

HRNN: Yu et al.[54] proposed a Hierarchical RNN(HRNN) model for generating paragraph 

sentences which are in context to the video. The model is divided into two modules: Sentence 

generator and Paragraph generator. Their approach is very similar to image captioning based 

approaches as their model mostly generates one sentence per video frame . The model uses two 

stages of RNNs (GRUs , more specifically). One RNN (RNN 1) is used for predicting the next 

word of the current sentence being generated for the current frame. The other unit (RNN 2)is 

used to determine the current state of the complete paragraph , which has been generated based 

on mean pooled sentence embeddings .Video pool features are generated using an encoder-

decoder approach , however, the model also uses spatial soft attention (the same as soft 

attention applied for an image as described in section 3) which requires incorporating the actual 

frame of that segment and deciding which segment of the frame to focus on specifically. The 

soft attention module finds its significance in scenarios where one has to identify very small 

objects like cups, bowls  which appear in cooking videos TACOS dataset. These features are 

often overlooked when only temporal soft attention is applied over the whole video. To identify 

action segments like hand movements, the authors also incorporated an optical flow attention 

module . Hence there are two attention feature channels in the model.  During generation of 

sentence , RNN 1 is biased by the current paragraph state and the previous  generated word and 

its output is passed onto a multimodal embedding layer. The multimodal embedding merges 

input from RNN1 and the features generated by the attention modules into a 1024 dimensional 

vector which is used to generate the next word of the sentence . The paragraph generator 

module is invoked every-time after a complete sentence is generated. It takes input  a mean 

pooling of the word embeddings and  the last state of RNN1 to compute the current sentence 

embedding. RNN2 processes this to generate the overall paragraph state. The paragraph state 

is only used to bias RNN1 to maintain consistency regarding the context in which the sentences 

are being generated. The model has been described in Figure 29.   
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Fig 29: HRNN for video paragraph captioning per frame 
 

The HRNN approach purely relies on previously generated sentences to maintain consistency 

and context awareness. This approach performs well when tested on the TACOS Multilevel 

dataset , where the context lies only in cooking scenarios. However, this is prone to various 

challenges if used in a more diverse environment like MSR or MSVD dataset. Applying soft 

attention for every frame , increases the complexity of the procedure and makes it inconvenient 

to be applied for devices with limited computation power and memory. Also, event based 

approaches using DAPs have been found to be more logical than frame based paragraph 

generators.  Figure 30 shows  some sample outputs of HRNN in paragraph captions. 

 

Fig 30: Paragraph captions generated by HRNN (Source: [54]) 

9.2  Event Proposals Using DAP: 

The primary concern for dense paragraph captioning is getting proper temporal action 

proposals from the video sequences. These proposals essentially containing the start and end 

time of a particular action event occurring in the video. As an optimum solution to this situation, 

Escorcia et al. proposed DAPs( Deep Action Proposals)  model[51]. DAPs visualize a window 

frame of size T which is being run along a whole length video to generate P sequences of total 

proposals, all generated in a single pass. DAPs can be interpreted as a function which takes 

input a T-frame video sequence and outputs K-localization proposals denoting the time window 
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in which that event occurs. Determining the window size , ‘T’ and the stride ‘δ’ at which the 

window is moved through the video is still an optimization problem which requires 

experimentation. The process of generation of the K action proposals has been summarized 

below and described in Figure 31. Such networks can be trained on unsegmented video clips , 

having ground truth time segment proposals for the various events contained in them (eg: 

THUMOS14[52], MSVD, ActivityNet (137videos)) 

1. A visual encoder module uses a Conv3D layer to visually encode the sequence frames 

in the window.  

2. A sequence module consisting of LSTMs then take input from the Conv3D output to 

generate an encoded sequence from the last unit of LSTM at the end of the window 

time. 

3. The encoded sequence is then passes  into an event localizer. The event localizer takes 

input the encoded sequence and generates an output of size K , which correspond to K 

temporal action proposals in the stream.  

4. The prediction module determines the confidence of  the chosen proposals as generated 

from the localizer. 

 
Fig 31: DAP’s Proposal module for finding activity sequences 

 

DAPs have been found to be quite effective in proposing good temporal events and also have 

efficient runtime performance , with processing rates of 134FPS .on a Titan X GPU. Hence 

they have found their effective usage in dense video captioning. The critical factor for the 

performance of DAPs was found to be the window size T. However, the number of proposals 

, K did not have much impact on the overall performance. 

  

Krishna et al. [50] devised a way to use DAPs for dense video captioning. Their version of 

DAP operated on multiple strides (1,2 4 and 8) with feature segments taken in as sequences of 

16 frames. T=N*16 where N is the number of features and T is the window size for input to 

DAP. The stride length signifies a measure of the event duration for the current event. Longer 

strides aim to capture events of longer duration. Their adaptation of DAP  is also specialized 

to produce the visual representation of the event, upon event detection, from the hidden state 

of the DAP’s LSTM module, for that timestep. The visual features are then fed into a LSTM 

captioning module to generate the final caption for the event. The authors have also 
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incorporated a context attention module which is fed into the LSTM while captioning. Context 

attention pays weighted attention to the events prior to and events succeeding the current event 

to generate phrases with more context to related events. The context attention has found to be 

more accurate in the experimentation process. Figure 32 describes their model, highlighting 

the different important modules of the model. The training time took 2 days to converge on a 

Titan X GPU.  

The authors also were responsible for  producing the  paragraph-caption-annotated version of 

Activity Net , also known as ActivityNet-Captions, which they have used to evalutate their 

model.The authors have reported each sentence to describe 36 seconds of a videos ( each video 

being of 120sec duration on average) and all generated sentences to describe 94.6% of the 

content of the entire video. 

 
Fig 32: Dense Captioning with DAPs and temporal context attention 

 

Although both are targeted towards generating paraphrase captions, the DAPs based Dense 

captioner differs from HRNN in both architecture and motive. The HRNN based approach is   

object centric  as it focuses on objects occurring in the video. Also the word generation attention 

is based on previously generated sentences in the paragraph in HRNN where-as in the DAPs 

based dense captioner, attention is directly provided in context to the encoded video features 

of the past and previous events, instead of the generated sentences. The event based attention 

is more logical since the attention is based purely on the input data instead of generated outputs 

which may be erroneous.  
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CHAPTER 10: DATASETS USED FOR VIDEO CAPTIONING 

Video description datasets are of two major types. Action Recognition datasets have short 

length video clips (2 to 15sec) which are classified into one of the many classes defining some 

activity or human posture. These datasets have a single word describing each video . Video 

captioning datasets have every video annotated with phrases or sentences that have a detailed 

summarized description of the event occurring in the video with its objects and surroundings. 

Datasets targeted towards captioning may even contain  clips of longer duration. A major 

number of these datasets are annotated using the Amazon Mechanical Turk(AMT) services , 

which is a distributed workforce consisting of people who participate in work outsourced from 

companies , one of which happens to be annotation of videos. In this section we describe some 

popular video captioning datasets used widely. Table 4 contains a comparative analysis of the 

datasets . 

MVAD: The Montreal Video Annotation Dataset (M-VAD) is a movie description corpus [40] 

containing 49,000 short video clips from 92 different movies. The annotations are provided 

from automatic alignments of Audio Descriptions of the scenes, which are mainly targeted 

towards blind people for describing a scene to them. In 2019 , Pini et al. extended the MVAD 

dataset by creating the MVAD-Name dataset, which focuses on identifying the entities in 

scenes by their names. A face-detection model had to be trained to identify faces from the 

MVAD dataset, to generate attributes for the  MVAD-Name dataset. 

MSVD: One of the most popular datasets for benchmarking video captioners, the Microsoft 

Video Description corpus(MSVD) [74], is a compilation of clips from segments of  Youtube 

videos describing people doing a single activity in that clip. It consists of 1970 such clips, with 

an overall size of 1.72GB. Each video has varying number of annotations, in multiple 

languages. There is an average of 41 total annotations per video. In most works, only English 

captions have been filtered out for usage.  

MPII: Similar to MVAD, the MPII-MD dataset[41] consists of 68375 video clips from 

Hollywood movies, with a single sentence description for each , based on the audio data of the 

script. The dataset consists of a diverse amount of topics due to the great variety in movie 

scenes. However, this adds to the fact of making the training process on such a dataset, quite 

challenging.  

MSR Video to Text (MSR-VTT-10K): MSR-VTT(Microsoft -Video to Text) [39] is a huge 

corpus of  10000 video clips (total duration of 41.2 hrs) corresponding to various diverse topics 

with 20 annotations per clip, made by multiple AMT workers. The annotations have a 62.7% 

overlap , when it comes to describing the same video. It is a competent dataset when it comes 

to benchmarking video captioner models , due to its diverse content .The topics of the dataset 

vary across 20 categories. The clips from the dataset were prepared by segmenting videos into 

snapshots and segregating unlinked sequences into a different clip.  The train , validation and 

test split of the dataset is by default set as  6,513 2,990 and 497 respectively. 

ActivityNet: ActivityNet[49] consists of 137 untrimmed videos comprising of over 203 types 

of human activities , averaging at 1.5 different types of activities associated in each video. The 

total number of clips from the videos is 20k. Every distinguishable activity of the video is 

marked by their starting and ending time in the video to make the clip. The dasatset mainly 

consists of classification data and not sentences. In 2017, Krishna et al.[50] annotated the 
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videos of ActivityNet to produce the ActivityNet-Captions dataset, where every significant 

activity in the video is described in well framed sentence using dense captions, for that specific 

timeframe. Every clip of the ActivityNet Captions dataset consists of around 1 to 3 sentences 

with each sentence ranging from 6 to 14 words. 

Tacos Multilevel: Due to the limited availability of video-dataset which are annoted using 

phrase captions, the TACOS multilevel corpus [47] was prepared. The total size of the dataset 

in high definition quality is 29GB. The dataset content is very specific as it consists of only 

cooking videos, where most of the activities occur in the same room, but have involvement of 

different people , performing different activities with kitchen  items.This dataset contains 185 

long videos ,each with average duration of 6 minutes. Each video has multiple intervals in-

between and each interval is described by few sentences. This is called phrased annotation, 

which describes the activities in the video in detail. There are 524788 sentences across 16145 

distinct intervals in total, averaging at 87 intervals per video. The average length of a sentence 

is 8 words and the total vocabulary size is 2864. The vocabulary size happens to be relatively 

less , due to the limited context (cooking) in which objects appear. Because of the division of 

intervals , there are strong temporal dependencies among the interval frames, which needs to 

be given attention to while designing a captioner model for this dataset. The judgement 

regarding the similarity in description of the various sentences corresponding to the same video 

segment have been rated to be 3.27 out of a maximum of 5, for the entire dataset. 

Table 4: Comparison between various video datasets  used in video captioning  

Dataset 

Name 

Annota-

tion type 

Numbe

r of 

Videos 

Average 

Length 

per video 

Sentence

s per 

video 

(Averag

e) 

Topics Total 

no. of 

sentenc

es 

Vocab 

Size 

MSVD Summariz

ed 

1970 10.2s 41(multil

anguages

) 

Multiple 80827 12594 

MVAD Summariz

ed 

46009 6.2s 1-2 Movie 

Clips 

56634 18092 

MPII Summariz

ed 

68337 3.9s 1 Movie 

Clips 

68375 21700 

MSR-VTT Summariz

ed 

10000 14.8s 20 20 

different 

topics 

200000 29316 

ActivityN

et 

(Captions) 

Phrase 

Captions 

20000 180s 3 Multiple 

Human 

Activitie

s 

100000 - 

Tacos-

Multilevel 

Phrase-

captions 

185 6min, 87 

intervals 

per video 

284  

Cooking 

52478 2864 
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CHAPTER 11: VIDEO CAPTIONING RESULTS COMPARISON 

11.1 Summarization Based Results: 

Venugopalan et al’s LSTM architecture with mean pooling[34] focused on mainly frame based 

captioning, which lacked context of entire video. It’s evaluation was made only on basis of 

individual image based training with image dataset and hence serves less justice to video-

captioning. An enhancement to its architecture, the S2VT[32] performed better with its 

encoder-decoder stacked LSTM approach , retaining the spatio-temporal features of video data. 

AbiVirNet’s inclusion of Bi-LSTMs in their S2VT proved that Bi-LSTMs are truly capable of 

summarizing temporal concepts better than normal LSTMs. However most of these approaches 

have limited support of fixed number of frames while processing a video.. Thus the models 

may work well for only short length videos. 

Multi-modal approaches incorporating language and scene correlations, which are specifically 

targeted towards optimization of semantics of generated captions, have proven to be highly 

effective in maximizing a captioner’s performance as far as caption scoring metrics like BLEU 

and METEOR are concerned. 

Table 5: Comparison between  architecture of various models  used in video captioning by summarization 

Model Year CNN RNN Video 

Encoding 

Attention 

LSTM-

MeanPool[34] 

2015 AlexNet 2-Layer 

LSTM 

Mean 

Pooling 

- 

Enc-Dec +3D 

+Soft[73] 

2015 GoogleNet+ 

3DCNN 

LSTM Encoded 

Sequences 

Soft Attention 

S2VT[32] 2015 VGG+ 

Alexnet(flow) 

Stacked 

LSTM 

Encoded 

Sequences 

(Dual CNN) 

Optical Flow 

HRNE 

+Soft[77] 

2015 GoogleNet +3D 

CNN 

Hierarchical  

RNN 

Encoded  

Sequences 

Soft Attention 

AbiVirNet[37] 2016 GoogleNet 

[objects]+ 

GoogleNet[scenes] 

Bi-LSTM Encoded 

Sequences 

Scene Attention 

aLSTM[35] 2017 InceptionV3 Encoder-

Decoder 

LSTM 

Encoded 

Sequences 

Soft Attention+ 

Semantic 

Crossview 

Correlation 

Boundary 

Aware+Video 

Prediction[78] 

2018 ResNet 101 2 RNNs( 

Bi-GRU 

encoder + 

GRU 

decoder) 

Encoded 

Sequences 

Soft+ 

Hierarchical 

Language 

Model+ Video 

Prediction 

 

Table 6: Comparison between performances of various video-captioners (summarization)  

Model Attention Dataset B1 B2 B3 B4 M C 

LSTM-

MeanPool[34] 

- MSVD - - - 30.7 27.66 - 
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Enc-Dec +3D 

+Soft[73] 

Soft 

Attention 

MSVD[74] 41.92 - - - 29.6 51.67 

S2VT[32] Spatio-

Temporal 

MSVD - - - - 29.8 - 

AbiViRNet[37] Scene + 

Objects 

MSVD 52.8 - - - 31.3 67.2 

HRNE 

+Soft[77] 

Soft 

Attention 

 

MSVD 79.2 66.3 55.1 43.8 33.1 - 

MVAD - - - - 6.8 - 

aLSTM[35] Semantic 

Similarity 

Mapping 

MSVD 81.8 70.8 61.1 50.8 33.3 - 

Boundary 

Aware+Video 

Prediction[78] 

Soft +Video 

Prediction+ 

Hierarchcal 

Language 

Model 

MSVD - - - 50.3 32.9 74.3 

MSR-VTT - - - 39.8 26.4 43.3 

 

11.2 Dense Captioning Based Results 

Table 7: Comparison between architectures of various video-captioners (dense)  

Model Year CNN RNN Video Encoding Attention 

HRNN[54] 2016 C3D Hierarchical GRU Mean Pooling Temporal Attention 

DAPs[50] 2017 C3D DAPs+ LSTM Event Proposals Past and Future 

Context (Soft) 

 

Table 8: Comparison between performances of various video-captioners (dense)  

Model Attention Dataset B1 B2 B3 B4 M C 

DAPs(Dense) 

[50]  

context  ActivityNet 

-Captions 

26.33  13.98  8.45  5.52  10.03  29.92 

HRNN 

[54] 

Sentence 

embeddings 

MSVD 81.5 70.4 60.4 49.9 32.6 65.8 

Sentence 

embeddings 

TACOS 

Multilevel 

60.8 49.6 38.5 30.5 28.7 160.2 

 

Table 7 and 8 describe the performance of dense captioning networks.   Existing Dense 

captioners operate on different datasets and have varying implementations. Hence it is hard to 

compare them with complete justice, if the test cases are not similar. The DAPs(Dense) 

captioner is action centric as it is trained on human activity datasets, which makes it more 

globally applicable than HRNN model which is trained only on cooking videos and hence lacks 

generality. When trained on the ActivityNet dataset by the authors of [50] , the HRNN was 

reported to have a CIDER score of 22.4, which is less than the DAPs based approach.  
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CHAPTER 12: IMPLEMENTATION 

12.1 Baseline Image Captioner With Glove Embeddings 

12.1.1 Architecture 

The baseline captioning( Figure 33) model as designed, takes input the input sentence and the 

image features to output the next word of the sentence. We have created the dictionary of words 

by selecting words occurring at least 10 times in the entire set of ground truth caption sentences. 

The words have been one hot encoded and passed into a Glove embedding module. We have 

used the Glove 600B embedding which produces an output vector of 200 dimensions. The 

LSTM function can be framed as, predicting the next word of the sentence given the sequence 

of previous words of the sentence. Hence, the LSTM takes input of dimension (length of 

sentence, word embedding) from the Glove embedding layer. Finally the inputs from the LSTM 

and image features are fused together in a Add layer followed by a Dense layer to produce the 

next word of the sentence. The words are generated till the predicted word is the end token of 

the sentence. 

 

Fig 33: Baseline Glove Captioner 

 

12.2 Image Captioning with Scene Attention 

This model has been inspired from Kun Fu’s [6] Scene specific image captioner as the model  

manages to produce great captions using optimal computations , which is very important if we 

want to caption videos in real time. We pre-process the images to generate feature vectors 

which are also used to generate scene vectors from a perceptron model, trained based on the 

image topics. Then the image features and scene vectors together are fed into an embedding 

input layer of our RNN-LSTM based captioner working in a merge architecture. In every 

iteration , the LSTM produces the next word of the caption based on the previous word, scene 

vector and image features.  
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12.2.1 Resnet 152 
 

Our model uses ResNet152 for initial feature extraction from image 

frames. ResNet152[43] is deep CNN, specialized in semantic 

segmentation and object detection experiments and hence it is one of the 

best models for identifying different objects in an image precisely. 

Leveraging the power of its 152 layers, it even won the COCO 2015 

object detection competition. Caffe version of ResNet is publicly 

available from this link. Caffe is a python library specializing in deep 

learning models and models from contributers all around the world can 

be found in its “Model Zoo” which is a great source of research for 

downloading pre-trained models. We use Caffe’s Model zoo version of 

ResNet152 and construct the model from its weights and prototext using 

Caffe. We extract output from the pool5 layer of ResNet152 which 

generates features of dimension 1x2048. We have used MSCOCO dataset 

consisting of 82000 images from various categories to train our model. 

Every image has been fed into the ResNet152 to generate 2048 features 

per image and all the features have been saved in a pickle file in python 

for quick and easy access later on. The vocabulary has been generated by 

tokenizing captions available from MSCOCO image captions and 

contains 8843 words. The vocabulary consists of a JSON file with the 

mappings and inverse mappings of words and their respective numerical values.   

12.2.2 Biasing with Scene Attention 

The scene vectors are computed by initially clustering images using an unsupervised algorithm. 

We have used Latent Dirichlet Allocation(LDA)[61] like to extract a 80 dimensional scene 

vector which contains the probability of that particular image belonging to one of the 80 topics 

we have in our database. The scene vectors computed  here are based on the ground truth mage 

captions and these are used for training a multilayer perceptron(MLP) to produce scene vectors 

from other testing data during testing. The training samples for the MLP are the feature of 

images from the same training dataset of MSCOCO with the target outputs being the LDA-

inferred scene vectors. The process is similar to the one described in section 2.3.1. For imitating 

the clustering algorithm to generate the scene vector from testing images, we use a multilayer 

perceptron with two hidden layers with the sizes of 1,024 and 1024. We use SoftMax in the 

last layer and tanh function for others. The predicted scene-context vector is a continuous-

valued vector, representing soft assignments of scenes or topics.  

The LSTM unit which is our caption generator, takes 

in input both the image feature and its scene vector. 

The scene vector , in every iteration will bias the 

LSTM prediction, explicitly reminding it of the image 

context, while predicting the next word in the current 

iteration.  An embedding layer compresses the word 

vector of 8843 to a 512 dimension before feeding it to 

the LSTM . The LSTM produces  a 512 dimensional 

vector as output. This along with the image feature is merged together to be the input for the 

final dense MLP layer( output dim 8843) that produces the next word . The final model looks 

like what is described in Figure 34 

https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777
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Fig 34: Scene Attention Based Model 

12.3 Training and Results  

12.3.1 Pre-processing 

The training of both captioners has been done using MSCOCO dataset. The captions from the 

dataset have been filtered to not have any punctuations, special characters and numerical digits 

. The vocabulary has been prepared by tokenizing words from sentences. Less frequent words 

have been removed as they do not serve ay purpose in the training set due to their low 

frequency. Two  vocabularies are  prepared by selecting words occurring at least 10 time and 

5 times in the dataset, having sizes 6247 and 8843 respectively. We notice that the smaller 

vocabulary does not hamper the quality of captions in any way, during experimentation.  

For the RGB images , they have been resized to 224x224 pixels and passed into a ResNet152 

to extract their 2048 dimensional representational feature vector and stored in a pickle file , 

with the image ids. For the scene attention model, we have similarly extracted the 80 

dimensional scene vector using the trained MLP .  

12.3.2 Results  

Training time took 3 hours for the glove-baseline model  on a device operating an NVIDIA 

1060GTX graphics card  and Intel core i7 (8th gen) processor. The Scene attention based model 

took 5 hours on a Nvidia K10 GPU to be trained. The training times are approximated based 

on the time taken by them to produce satisfactory captions on the training dataset. Following 

are the results from the experiments. We find significant improvement in the scene model from 

the baseline model. The Glove model performs on par with scene attention although scene 

attention scores slightly better than glove model. 

Table 9: Experimental Results 

Model Attention B1 B2 B3 B4 M C 

Baseline - 67.2 49 33.8 25 22.3 80.5 

Glove - 68.9 51 37.6 27.5 23.2 85.2 

SS[6] Scene 71.2 53.6 39.4 28.9 24.1 89 

Glove+Scene Scene 72 54.1 40.2 29.1 24 89.6 
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The ensemble model by replacing the embedding layer of the scene attention model, with Glove 

has effective improvement on the scores as expected.Figure 35 shows the performance of two 

models tested by us, namely a Glove Embedding based baseline and a scene attention[6] based 

captioner, on the MSCOCO dataset. The IDs of the image are also provided for verification. It 

can be noted that due to the glove embeddings, even a baseline model can perform on par with 

an attention based model. The Glove based model in some instances, generates better captions 

than the scene attention model. 

 

Fig 35: Generated captions by  Glove Embedded Baseline model and a Scene Attention based model on 

some MSCOCO testing images 

12.4 Basic Paragraph-Video Captioning with Scene Attention 

We have used our image captioning model for video captioning too. Our trained MSCOCO 

model was tested on all 1970 videos of MSVD data corpus. Since MSVD videos do not have 

labelling of every frame and just have a summary of the whole video, we have not been able to 

compare each caption generated in every frame . But our model has been able to clearly 

describe the whole videos whatsoever, with a few minor exceptions. To make videos suitable 

for analysis in our network, we first process every video into frames taken at 1 second interval 

using Python’s open cv library and keep them in a folder containing their video id. Then the 

frames are each passed into the Resnet152 to generate 2048 sized features. All the video feature 

frames are kept in a pickle file.  

In Figure 36, Step 1 describes the above process in the following diagram. For step 2, we then 

predict the scene vectors of the processed frames by passing every feature vector of every frame 

through our MLP for scene vector. We save the scene vectors separately in another pickle file. 

Finally in step 3 , we clean the ground truth captions provided in the MSVD csv file for every 

video. Every video has at least 4 labels and leach label is made in various languages. We filter  

the English labels only, keeping only lowercase  alphabetical content, and discard the later. It 

is to be noted that MSVD also contains a lot of jargon captions which need to be discarded if 

comparisons are to be made with generated captions and ground truth. Here Pickle datafiles 

have been used because they preserve the data-structure of the content inside it and can easily 

be loaded directly into similar structure using the load function. Other filetypes like h5py, 

which are good for storing ML models , have various limitations when it comes to data 

structures as h5py doesn’t support any structure other that size-1 Numpy arrays. Pickle 

however can easy store a list of dictionaries which are being produced in our scenario. 
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Fig 36: Preprocessing MSVD videos for paragraph captioning 

 

Figure 37 summarizes the results of the video captioner. The drawbacks of such an 

implementation has been discussed in section 7.1. 

 

 
Fig 37: Video paragraph captions generated by the model 
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12.5 Event Change trigger From Optical Flow (Online DAP) 

DAPs require a lot of memory and computation power and also suffer from their drawback of 

not being able to support event proposals for online video. To cope with this limitation of DAP, 

we need to process the video online, frame by frame. As such, the entire 3D spatio-temporal 

data is not available to us and hence using a Conv3D to parse the video is not rational. To cope 

with online videos, we propose an event trigger mechanism. Suppose the first 10 frames of the 

video correspond to a person cooking and from 11th frame onwards, we find that the person is 

walking away through the door. Captions from the first event have little in common with the 

captions to be generated for the second event and hence these two events can be treated disjoint. 

So, we need to assign a trigger to frame 11 to detect the change in event. The significance of 

detecting event change can help in the generation of online video captions. The change in event 

will trigger that the current event might not have anything to do with the past events and hence 

, during captioning, the caption will be free from any bias generated from the past events. 

12.5.1 A possible architecture for Event Trigger 

We propose that a small 2D convolutional network be used to extract the per-frame video flow 

of action features. For every timestep, the last k ( value of k being 3 to 5 favorably) frame 

features can be encoded by an LSTM and outputted for detection of any event change , for the 

last k frames. This boils down to the usage of a CNN -LSTM model for detection of event 

changes in the video, where the CNN encodes the last k frames of the video and the LSTM 

determines whether there is any event change in these frames (binary output of 0 or 1).  

Event triggering can also help us to efficiently break down the video into segments and extract 

encoded sequences of each segment disjointly. This will greatly enhance the processing 

performance of the video , for captioning.  

Following model in Figure 38 summarizes a possible implementation of an event trigger. The 

CNN used for the purpose is a small CNN which can be used to identify CIFAR images. The 

FCN layer is removed and replaced with Embedding layer outputting 512-dimensional vector 

to be inputted into the online LSTM.  Normal LSTMs require a sequence of inputs, to be 

operated on and usually output a summarization on the entire sequence. However, our model 

concerns processing video frames online, as they arrive one frame at a time. To support this 

challenging architecture, a stateful LSTM is required, which realizes that the previous states 

are not to be forgotten while processing the current frame of the video. A stateful LSTM has 

to know the batch size of the input, so that it may preserver the states for that batch only and 

after processing it can reset the states for the next batch. In our case, for online learning, the 

batch size is set to be 1 as, frames arrive one at a time. We reset the states of the LSTM after 

all sequences of a particular video have been processed. The LSTM outputs are transmitted to 

a Dense layer with a single output (0 or 1).  The LSTM model used here is a one to one model. 

However, for better summarization, one may input a sequence of last 3 feature-frames of the 

video to the LSTM, thus designing a Many-to-One model. However, implementing such an 

architecture is challenging, if the CNN and LSTM are to be trained in the same model. 

Separately extracting features from a trained CNN like FlowNet [86,87] and inputting them 

into an LSTM may solve the issue. 
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Fig 38: Proposed architecture for online Event Trigger 

 

12.5.2 Preparing Data and Training an event trigger model: 

 Frames can be extracted from a video at 1 FPS and from for each of the frame taken at a 

timestep t, if ‘t’ has been marked by an annotator to be a change of event, for the frame extracted 

at time t, we append a 1 to the sequence of triggers ,while for all other frames , a 0 is appended 

to the trigger sequence. The ActivityNet captions dataset is annotated with event begin an 

ending timing for every main event in the video. We use this dataset to create the event triggers. 

For every sequence start or end timestamp, we append a 1 to the trigger list at the frame taken 

at that timestamp and keep all other trigger values as 0 (for every other frame) in the list. A 

sample from the processed training dataset would look like the one in Figure 39. 

 
Fig 39: Event triggers in the dataset 
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CHAPTER 13: CONCLUSION 

Image captioning has a lot of potential in the field of image and media search, given the 

perfection it has achieved over the years. With the increase in number of handheld devices like 

smartphones, it is important that such technology is made available to mobile devices by 

optimizing for support on hardware with lesser on-board computation power. Current 

implementations of captioning models, both image and video, although accurate, require high 

resource compensation to generate accurate and well framed captions and most models have 

been tested using sophisticated GPUs like Titan X and K80. However, from surveying recent 

model architectures, we conclude that caption generation can indeed be carried out in a more 

optimized way and to achieve that we propose the following: 

13.1 Possible improvements in generic captioning models, applicable to both 

image and video: 

 Using a faster and more lightweight CNN like MobileNet V2 to generate image features. 

MobileNet v2 is 40 times smaller than vGG16 and 20 times smaller than ResNet 152 and 

hence , object detection is likely to occur faster using MobileNets. 

 Shrinking the vocabulary to only contain words which have significant occurrence in the 

caption training data, as word having lesser frequencies are more likely to have inadequate 

amount of training samples for optimum identification.  This will also help in shrinking the 

size of embedding and multimodal word generation layers by a huge fraction. Glove 

embeddings have gained popularity for serving as a pre-trained embedding layer for word 

vectors, also preserving the word similarities and latent meanings. Pre-trained models save 

a lot of time in the training procedure as the embedding layer is one of the largest training 

modules of a captioning model. Moreover, Glove embeddings with a reduced dictionary 

can shrink the size of the embedding module by as much as 75%, without affecting the 

model’s performance. For example, a normal 8843 size vocab may be embedded in a 512-

dimension vector under normal circumstances. However, since Glove is a pretrained 

network with 200 and 300-dimensional word vectors, we can afford to further shrink the 

embedding layer to generate words having 200 dimensional features. A shrined vocabulary 

of size 6000 with each word having an embedding of 200 dimensions (6000*200) hence 

reduces the previous network size by 73.4%. 

 Both Soft attention and Hard attention use a lot of computational power to generate proper 

attention features and this can be hard on the processor or GPU for small devices. Hence 

instead of using soft or hard attention, Scene attention from [6] can be a good alternative to 

provide attention of background context, in caption generation. Scene attention can be 

computed in various ways like image clustering or topics clustering or by training another 

CNN to identify scenes in the background of an image and concatenating image features 

with the topic features generated by the scene CNN. 

 Models can be optimized using Multiple Instance Learning which focuses on retraining the 

captioner on sentences whose attributes have been missed by the generated caption. This 

will ensure that the model can extract all meaningful concepts from an image. 

 Traditional training methods intuitively are teaching networks to identify relationships 

between objects occurring in the scenes portrayed in the images. Thus, some models often 

generate outputs which may be not in context to the image under test, but may have 
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occurred in previous training images, which has led the model to think that such objects 

co-occur in most scenarios. Re-training with datasets like OOC can help the model get rid 

of mis-inferred references of non-occurring objects in an image and teach it to be more 

object centric. 

13.2 Possible improvements in video-captioners: 

Video Captioning systems being more challenging and computationally expensive, are a lesser 

explored research area when compared to image captioning. One of the most challenging tasks 

in video captioning is processing the video data such that the spatio-temporal features are 

preserved in the sequences. Most models use a 3D convolutional network for this, but if 

computational requirements are to be reduced, 3D CNNs are not a feasible option. However, 

2D convolutions are not able to preserve temporal dependencies. Moreover, in video paragraph 

captioning, the video needs to be processed in segments, where each segment has their own 

context and contributes to that particular region of the paragraph. Determining the strategically 

correct segments from a complete video is a challenging task also. Taking all these matters into 

consideration we propose the following to optimize video captioning systems for less 

computationally capable systems: 

 For segregating video segments from a complete video, small CNNs may be used to extract 

temporal trajectories from small video frames of 80x80 dimension and then passed into a 

joint RNN, similar to the one used DAPs, to output the detection of a frame with different 

context than the current one. Optical flow features of two different frames are to contain 

very different features from one another and so it should be easy to train a small classifier 

network to distinguish such features from adjacent video frames. Instead of comparing two 

simultaneous frames side by side, having an RNN keep track of the flow sequences would 

be a more conventionally feasible way for detecting change in context. The dimension of 

trajectory features produced by the small CNN should be small enough to not burden the 

system, yet be capable of making proper segment proposals. Thus, the overall system, can 

be an optimized improvement over DAPs and achieve similar results, when trained with 

datasets similar to the unsegmented ActivityNet video-dataset, with event proposals 

marked in the training set. 

 Instead of using 3D CNN, a 2D CNN can be used to extract spatial information from the 

video frames. In order to make up for the temporal dependencies, we can have a multi-

modal RNN which takes attention from optical flow features and current frames to generate 

ideal captions. This will also enable the network to operate on variable length input, by not 

constraining the network to contain fixed number of frames as data representation need not 

be 3D anymore. This can enable the network to caption online videos also which 

contemporary video captioning networks still fail to achieve, as they require all concerned 

frames to be present in the input from the start. 

 To support captioning of online videos, we need to encode the video data frames on the go. 

This requires a facility where encoding of a complete sequence of frames, which are in 

context to each other is performed by an RNN, till a frame with a different context is 

encountered. Here RNNs have the upper-hand as they are capable of dealing with data of 

varying dimensions by using padding. Stacked RNNs can achieve this, where the upper 

layer of RNNs will be responsible for encoding sequences and passing the output of the 

sequences (from the hidden layer) to the lower RNNs. The lower RNNs may be responsible 
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for decoding the sequences into the corresponding captions, wherever necessary. The 

technique is similar to the one proposed by Yu et al. [54], but depends on the input encoded-

scene and optical flow instead of generated words, to decide the captions. 

Captioning models can be optimized for better framed sentences in a plethora of ways, with 

emerging technologies like Reinforcement learning and GANs. However, optimizing the 

performance of captioners should be an important aspect of research as well.  Automatic 

captioning is a very broad field of research which can benefit the media industry and search 

engines to a huge extent and while existing techniques of captioning have reached a bottleneck, 

they are yet to reach the pinnacle. 
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