
DESIGN AND DEVELOPMENT OF
MODELS FOR ANALYZING

SOFTWARE EVOLUTION

By

MEGHA UMMAT
Roll No.: 2k13/Ph.D./COE/05

Under the guidance of
Dr. Ruchika Malhotra

Associate Professor, Discipline of Software Engineering,
Department of Computer Science & Engineering

Submitted in fulfillment of the requirements of the degree of
Doctor of Philosophy to the

DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)
SHAHBAD DAULATPUR, MAIN BAWANA ROAD, DELHI 110042

2019

Copyright c©May, 2019
Delhi Technological University, Shahbad Daulatpur,
Main Bawana Road, Delhi 110042
All rights reserved

Declaration

I, Megha Ummat, Ph.D. student Roll No.: 2k13/Ph.D./COE/05, hereby declare

that the thesis entitled “Design and Development of Models for Analyzing Soft-

ware Evolution” which is being submitted for the award of the degree of Doctor

of Philosophy in Computer Science & Engineering, is a record of bonafide research

work carried out by me in the Department of Computer Science & Engineering, Delhi

Technological University. I further declare that the work presented in the thesis has

not been submitted to any University or Institution for any degree or diploma.

Date :

Place : New Delhi

Megha Ummat

meghakhanna86@gmail.com

Roll No.: 2k13/Ph.D./COE/05

Discipline of Software Engineering,

Department Of Computer Science & Engineering,

Delhi Technological University (DTU),

New Delhi -110042

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

Date:

This is to certify that the work embodied in the thesis titled “Design and Develop-

ment of Models for Analyzing Software Evolution ” has been completed by Ms.

Megha Ummat Roll No.: 2k13/Ph.D./COE/05 under the guidance of Dr. Ruchika

Malhotra towards fulfillment of the requirements for the degree of Doctor of Phi-

losophy of Delhi Technological University, Delhi. This work is based on original

research and has not been submitted in full or in part for any other diploma or degree

of any university.

Supervisor

Dr. RUCHIKA MALHOTRA

Associate Professor

Discipline of Software Engineering

Department of Computer Science & Engineering

Delhi Technological University, Delhi 110042

“This thesis is dedicated to my dear grandmother Late

Smt. Usha Khanna for being my eternal light. I will

always miss you Dadi.”

Acknowledgment

“Guru Govind dono khade kake lagu paay, Balihari Guru aapki Govind diyo batay”

This saying by Sant Kabir enlightens one about the true meaning of a guide, someone

without whose help, one is unable to cross the hurdles of life. I thank God for blessing

me with a true guide, Dr. Ruchika Malhotra. Mam has paved the way for me to

achieve my goals, has motivated me and has always pushed me to improve and hone

my skills in the right manner for the ultimate aim. My association with Mam has

truly been the sole reason for my existence in my professional domain, and it has not

stopped at that. Mam has been a source of my motivation, a light in the darkness for

me, both professionally and personally. I am deeply indebted to mam for choosing

me as one of her students, for giving me the opportunity to learn under her kind

guidance and for lending me support. This work would have never been possible

without mam’s trust in me and her guidance at each step. I thank mam from the core

of my heart for being what she is and for making me what I am.

I would like to convey my sincere thanks to Dr. Rajni Jindal, HoD, Depart-

ment of Computer Science & Engineering, Delhi Technological University for her

cooperation while carrying out this research work.

At this moment of accomplishment, I am greatly indebted to my husband Mr.

Nikhil Ummat, who has always been by my side and has unfailing supported me

during my pursuit of a Ph.D degree. I would especially like to thank my father Mr.

Rakesh Khanna who instilled in me that nothing is impossible if I set my mind for

it. He has been a true motivator throughout. I would also like to thank my mother,

Mrs. Smriti Khanna and brother, Mr. Atul Khanna for their unwavering support

and confidence in all what I do, which is the reason for all my achievements. Lastly,

my deep regards to my parents-in-law and extended family for their unfailing love,

blessings and moral support.

Megha Ummat

Abstract

Software systems are important business assets of any organization. However, in or-

der to maintain the value of these assets, software evolution i.e. the process of plan-

ning and implementing change to the existing software systems is a crucial activity.

One of the prime concerns while implementing changes is to maintain the quality

of the software product as there are fewer resources and rigid deadlines, which may

result in poor processes and software quality degradation. In such a scenario, the

responsibility of a software practitioner is to envisage methods which provide good

quality software with ideal resource usage at optimum costs. One such cost effec-

tive approach is to develop models for predicting change-prone parts of a software

as these parts are considered as sources of changes and defects in a software. Detec-

tion of change-prone parts in the initial stages of software development lifecycle will

help software developers in outlining competent resource usage during maintenance

activities, planning remedial actions for software restructuring and implementing cor-

rective actions for early removal of software defects.

Prediction of change-prone parts in an object-oriented software involves the use

of various object-oriented metrics as predictor variables, which are representative of

software characteristics such as size, coupling, cohesion and inheritance. Further-

more, we need a classification technique for developing an efficient prediction model

which is able to distinguish between change-prone and not change-prone parts of a

software. The various elements involved in the creation of software change predic-

tion models need to be assessed and improved to yield efficient change-prediction

models.

This thesis verifies and validates the relationship between several object-oriented

metrics and change-proneness attribute of an object-oriented class to develop effec-

tive prediction models. We also analyze the trends of object-oriented metrics in an

evolving software in order to ascertain how the structural characteristics of a software

change with its evolution. The thesis also evaluates the use of a specific set of process

metrics, which are named as evolution-based metrics. These metrics encapsulate the

evolution history of a class in an object-oriented software. Furthermore, the effec-

tiveness of a combined set of object-oriented metrics and evolution-based metrics

have also been investigated for determining the change-prone nature of a class in an

object-oriented software.

Apart from predictor variables, the thesis also evaluates several categories of data

analysis techniques, which can be used for developing software change prediction

models. The investigated categories include statistical techniques and machine learn-

ing techniques, which have been used by several researchers in this domain. How-

ever, a new class of techniques i.e. search-based algorithms and their hybridized

versions have recently gained popularity. We first review the capabilities, advantages

and the experimental set-ups required to use this set of algorithms. Furthermore,

we explore their capability for developing models which determine the change-prone

nature of a class. The thesis also proposes a new set of classification algorithms

based on ensemble methodology, using a search-based algorithm as a base-classifier.

The proposed algorithms produce outputs by aggregating a number of constituent

classifiers, which are fitness variants of the same base-classifier namely Constricted

Particle Swarm Optimization. We also propose a unique classifier, which outputs the

best classifier amongst an ensemble of classifiers for each data point (object-oriented

class).

The thesis also evaluates the scenario when the historical data used for devel-

oping a change prediction model is imbalanced in nature. A dataset is said to be

of imbalanced nature, when the ratio of category of classes (change-prone and not

change-prone) is disproportionate. In general, as the number of change-prone classes

is few as compared to the number of not change-prone classes, effective learning is

problematic. This is because the learning algorithm is provided with very few in-

stances of change-prone classes, therefore, it is unable to learn their characteristics

properly resulting in lower accuracy while determining change-prone classes. The

thesis investigates the use of sampling methods and MetaCost learners for develop-

ing efficient change prediction models from imbalanced training data.

Apart from determining the change-prone nature of classes, it is also important

to determine the impact of change in a software. We determine the change-impact

of bug correction in a software i.e. the number of classes that would be affected

when a specific software bug is corrected. Additionally, the thesis also proposes

a categorization of software bugs into different levels on the basis of maintenance

effort and change impact values in order to optimize maintenance resources.

Contents

List of Tables xiii

List of Figures xix

List of Publications xxiii

Abbreviations xxvii

1 Introduction 1

1.1 Introduction . 1

1.2 What is Software Quality? . 4

1.2.1 Software Quality Attributes 5

1.3 What is Software Evolution? . 8

1.3.1 Software Evolution Cycle 8

1.4 Software Quality and Software Evolution 9

1.5 Software Metrics . 10

1.5.1 Overview of existing OO Metric Suites 11

1.6 Developing Prediction Models for Software Evolution 13

1.7 Literature Survey . 16

1.7.1 Software Metrics . 17

1.7.2 Evolution-based Studies 19

1.8 Objectives of the Thesis . 25

i

1.8.1 Vision . 25

1.8.2 Focus . 25

1.8.3 Goals . 26

1.9 Organization of the Thesis . 28

2 Research Methodology 33

2.1 Introduction . 33

2.2 Research Process . 34

2.3 Definition of Research Problem . 34

2.4 Literature Survey . 35

2.5 Define Variables . 36

2.5.1 Object-Oriented Metrics 36

2.5.2 Evolution-based Metrics 40

2.5.3 Bug Descriptions . 40

2.5.4 Dependent Variables . 40

2.6 Selection of Data Analysis Methods 41

2.6.1 Logistic Regression . 42

2.6.2 Linear Discriminant Analysis 44

2.6.3 Multilayer Perceptron . 45

2.6.4 Decision Trees . 46

2.6.5 Ensemble Learners . 47

2.6.6 Naive Bayes . 48

2.6.7 Support Vector Machine 49

2.6.8 Constricted Particle Swarm Optimization 50

2.6.9 Genetic Algorithm based Classifier System 51

2.6.10 Hierarchical Decision Rules 52

2.6.11 Learning Classifier Systems 53

2.6.12 Gene Expression Programming 55

ii

2.6.13 Decision Trees with Genetic Algorithm 57

2.6.14 Particle Swarm Optimization with Linear Discriminant Anal-

ysis . 58

2.6.15 Genetic Fuzzy System LogitBoost 59

2.6.16 Neural Net Evolutionary Programming 60

2.6.17 Fitness-based Ensembles 61

2.7 Empirical Data Collection . 61

2.8 Data Preprocessing . 65

2.8.1 Descriptive Statistics . 65

2.8.2 Outlier Analysis . 67

2.8.3 Correlation based Feature Selection 67

2.9 Model Development and Validation 68

2.9.1 Ten-fold Cross Validation 69

2.9.2 Inter-release Validation & Cross-project Validation 69

2.10 Performance Measures . 71

2.11 Statistical Analysis of Results . 74

2.11.1 Friedman Test . 75

2.11.2 Wilcoxon Signed Rank Test 76

3 Software Change Prediction: A Systematic Review 79

3.1 Introduction . 79

3.2 Review Procedure . 81

3.3 Review Protocol . 82

3.3.1 Search Strategy . 82

3.3.2 Inclusion and Exclusion Criteria 83

3.3.3 Quality Criteria . 84

3.4 Review Results and Discussion . 86

3.4.1 Results specific to RQ1 . 87

iii

3.4.2 Results specific to RQ2 . 88

3.4.3 Results specific to RQ3 . 97

3.4.4 Results specific to RQ4 . 100

3.4.5 Results specific to RQ5 . 104

3.4.6 Results specific to RQ6 . 107

3.4.7 Results specific to RQ7 . 109

3.5 Discussion & Future Directions . 111

4 Analyzing Software Change in Open-source projects using Machine Learn-

ing Techniques 115

4.1 Introduction . 115

4.2 Research Background & Methodology 117

4.2.1 Independent and Dependent Variables 118

4.2.2 Data Collection . 119

4.2.3 Descriptive Statistics and Outlier Analysis 119

4.3 Result Analysis . 119

4.3.1 Univariate Analysis . 120

4.3.2 Multivariate LR Analysis 121

4.3.3 CFS Results . 123

4.3.4 Ten-Fold Cross Validation Results 123

4.3.5 Friedman Test Results . 126

4.3.6 Wilcoxon Test Results . 127

4.4 Response to RQ’s . 128

4.5 Discussion . 131

5 Analysis of Search-based Algorithms for Software Change Prediction 133

5.1 Introduction . 133

5.2 Review Background & Results . 136

5.2.1 Review Background . 136

iv

5.2.2 Results specific to RQ1 . 140

5.2.3 Results Specific to RQ2 144

5.2.4 Results specific to RQ3 . 151

5.2.5 Results specific to RQ4 . 153

5.2.6 Results specific to RQ5 . 157

5.2.7 Results specific to RQ6 . 160

5.2.8 Results specific to RQ7 . 162

5.2.9 Analysis of Review Results 165

5.3 Experimental Design & Framework 169

5.3.1 Independent and Dependent Variables 169

5.3.2 Framework of the Experiment 169

5.4 Experimental Results & Analysis 171

5.4.1 CFS Results . 171

5.4.2 Ten-Fold Cross Validation Results 172

5.4.3 Friedman Test Results . 177

5.4.4 Wilcoxon Test Results . 178

5.4.5 Analysis of Experiment’s Results 179

5.5 Discussion . 180

6 Software Change Prediction using Hybridized Techniques 185

6.1 Introduction . 185

6.2 Empirical Research Framework . 188

6.2.1 Independent and Dependent Variables 188

6.2.2 Empirical Data Collection 189

6.2.3 Experimental Design . 190

6.2.4 Hypothesis Evaluation using Statistical Tests 192

6.3 Results and Analysis . 193

6.3.1 Descriptive Statistics & Outlier Removal 194

v

6.3.2 CFS Results . 194

6.3.3 Results specific to RQ1 . 195

6.3.4 Results specific to RQ2 . 201

6.3.5 Results specific to RQ3 . 205

6.3.6 Results specific to RQ4 . 208

6.4 Comparison of Various Studies . 212

6.5 Discussion . 215

7 Ensemble Learners using Particle Swarm Optimization 217

7.1 Introduction . 217

7.2 Empirical Research Framework . 222

7.2.1 Independent and Dependent Variables 222

7.2.2 CPSO Technique . 222

7.2.3 Performance Measures as Fitness Functions 223

7.2.4 Validation Method used in Individual Classifiers 223

7.3 Proposed Ensemble Classifiers . 224

7.3.1 Majority Voting Ensemble Classifier 225

7.3.2 Weighted Voting Ensemble Classifier 226

7.3.3 Hard Instance Ensemble Classifier 227

7.3.4 Weighted Voting Hard Instance Classifier 230

7.4 Experimental Framework . 230

7.4.1 Empirical Data Collection 230

7.4.2 Feature Selection Technique 231

7.4.3 Performance Measures & Statistical Evaluation 232

7.4.4 ML Ensemble Classifiers 232

7.4.5 Candidates for Voting Ensemble 233

7.5 Results and Analysis . 235

7.5.1 Results specific to RQ1 . 235

vi

7.5.2 Results specific to RQ2 . 240

7.5.3 Analysis of Results . 248

7.6 Discussion . 250

8 Dynamic Selection of Fitness Function using Particle Swarm Optimiza-

tion 253

8.1 Introduction . 253

8.2 Empirical Research Framework . 257

8.3 ASOF Framework . 259

8.4 Experimental Framework . 264

8.4.1 Data Collection & Validation Framework 264

8.4.2 Performance Measures & Statistical Evaluation 265

8.4.3 Description of Baseline Techniques 266

8.5 Results and Analysis . 266

8.5.1 Results specific to RQ1 . 266

8.5.2 Results specific to RQ2 . 272

8.5.3 Results specific to RQ3 . 276

8.6 Discussion . 284

9 Software Bug Categorization using Change Impact and Maintenance Ef-

fort 287

9.1 Introduction . 287

9.2 Software Bug Categorization Framework 290

9.2.1 Overview of the Framework 291

9.2.2 Text Mining Module . 293

9.3 Research Methodology . 296

9.4 Analysis and Results . 297

9.4.1 Results specific to RQ1 . 297

9.4.2 Results specific to RQ2 . 301

vii

9.4.3 Results specific to RQ3 . 305

9.4.4 Results specific to RQ4 . 309

9.4.5 Analysis of Chapter’s Results 310

9.5 Discussion . 313

10 Software Change Prediction using Imbalanced Data 315

10.1 Introduction . 315

10.2 Imbalanced Learning Problem . 318

10.3 Empirical Research Framework . 319

10.3.1 Independent and Dependent Variables 320

10.3.2 Data Collection . 320

10.3.3 Performance Measures . 321

10.3.4 Statistical Tests . 322

10.4 Experimental Framework . 322

10.4.1 Data Preprocessing and Feature Selection 322

10.4.2 Approaches for Handling Imbalanced Data 322

10.4.3 Model Development and Evaluation 324

10.4.4 Hypothesis Evaluation using Statistical Tests 324

10.5 Research Methodology . 325

10.5.1 Resample with Replacement 326

10.5.2 Spread Subsample . 326

10.5.3 SMOTE . 326

10.5.4 MetaCost Learners . 327

10.6 Data Preprocessing Results . 328

10.7 Ten-fold Cross Validation Results 329

10.7.1 Results specific to RQ1 . 329

10.7.2 Results specific to RQ2 . 334

10.7.3 Results specific to RQ3 . 341

viii

10.8 Inter-Release Validation Results 342

10.8.1 Results specific to RQ1 . 342

10.8.2 Results specific to RQ2 . 344

10.8.3 Results specific to RQ3 . 345

10.9 Discussion . 346

11 Analyzing Evolution-based Metrics Suite & the Evolution Patterns of

Object-Oriented Metrics 349

11.1 Introduction . 349

11.2 Empirical Research Framework . 353

11.2.1 Dependent and Independent Variables 353

11.2.2 Data Collection . 355

11.3 Experimental Design . 357

11.3.1 Experimental Design Comparison with Elish & Al-Khiaty . 357

11.3.2 Hypothesis Investigated 358

11.3.3 Feature Selection & Performance Measures 359

11.4 Analysis and Results . 360

11.4.1 Results specific to RQ1 . 360

11.4.2 Results specific to RQ2 . 366

11.4.3 Results specific to RQ3 . 367

11.4.4 Results specific to RQ4 . 371

11.4.5 Analysis of Chapter’s Results 372

11.5 Comparison with Previous Studies 375

11.5.1 Comparison of Evolution Patterns of OO Metrics 376

11.5.2 Comparison of Change prediction Models Developed by Com-

bined Metric Suite . 377

11.6 Discussion . 378

ix

12 Conclusion 381

12.1 Summary of the Work . 381

12.2 Applications of the Work . 390

12.3 Future Directions . 391

Appendices 392

A Details of Datasets used in the Work 393

A.1 Dataset Details . 393

A.2 Descriptive Statistics . 395

B Key Parameters of Primary Studies in Review on Software Change Pre-

diction 397

B.1 Key Parameters of primary Studies 397

C Review of SBA for developing SEPM 404

C.1 Inclusion & Exclusion Criteria . 404

C.2 Quality Questions . 405

C.3 Data Collection from Different Sources 405

C.4 Year-wise Distribution of Primary Studies 406

C.5 Categories of SBA . 407

C.6 Dataset-wise Outliers for Effort Estimation & Defect Prediction . . 408

C.7 Threats in Application of SBA to SEPM 410

D Imbalanced Learning 414

D.1 Ten-fold Cross Validation Results using Sampling Approaches . . . 414

D.2 Ten-fold Cross Validation Results using MetaCost Learners 416

E Evolution Patterns of OO Metrics 420

E.1 Observed Median Values of OO metrics 420

x

References 422

Bibliography 423

Supervisor’s Biography 462

Author’s Biography 464

xi

List of Tables

2.1 OO Metrics depicting OO Characteristic 37

2.2 Independent Variables . 38

2.3 Data Analysis Techniques . 42

2.4 Confusion Matrix . 71

3.1 Quality Questions . 85

3.2 Primary Studies with Quality Score 85

3.3 Summary of Top Venues . 86

3.4 Feature Selection /Dimensionality Reduction Techniques 89

3.5 Significant OO Metrics reported in Literature 90

3.6 Study-wise Details of Datasets . 92

3.7 Datasets used for developing Change Impact Models 92

3.8 Sub-categories of ML Techniques 99

3.9 Accuracy Results of ML Techniques for Change-proneness Models . 102

3.10 AUC Results of ML Techniques for Change-proneness Models . . . 103

3.11 Wilcoxon Test Results of ML Techniques Comparison on Accuracy

measure . 105

3.12 Wilcoxon Test Results of ML Techniques Comparison on AUC measure105

3.13 Threats to Validity in Software Change Prediction Studies 109

3.14 Mitigation of Threats to Validity in Software Change Prediction Studies111

xiii

4.1 Univariate LR Results . 120

4.2 Multivariate LR Results of AOI (Backward LR) 121

4.3 Multivariate LR Results of Apollo (Backward LR) 121

4.4 Multivariate LR Results of AviSync (Backward LR) 122

4.5 Multivariate LR Results of DrJava (Backward LR) 122

4.6 Multivariate LR Results of DSpace (Backward LR) 122

4.7 Multivariate LR Results of Robocode (Backward LR) 122

4.8 Metrics selected after application of CFS 123

4.9 AUC Results using Ten-fold Cross Validation 124

4.10 G-Mean1 Results using Ten-fold Cross Validation 125

4.11 Balance Results using Ten-fold Cross Validation 125

4.12 Friedman Ranking of ML Techniques based on AUC Values 126

4.13 Wilcoxon Test Results based on AUC Values 127

5.1 Primary Studies with Quality Score 139

5.2 Results of SBA for Effort estimation models 154

5.3 Results of SBA for Defect prediction models 155

5.4 Statistical Tests for comparison of SBA 161

5.5 Metrics selected after application of CFS 172

5.6 Sensitivity & Specificity Median values of Ten-fold cross validation

models . 174

5.7 G-Mean1 & Balance Median values of Ten-fold cross validation models175

5.8 Friedman Ranking of SBA based on G-Mean1 & Balance Values . . 177

5.9 Wilcoxon Test Results . 178

6.1 Parameter Settings for SBA & HBT 192

6.2 Metrics selected after application of CFS 194

6.3 Friedman Ranking . 201

6.4 CPU Time and Mean Performance Measures of Different Techniques 209

xiv

6.5 Comparison Results . 213

7.1 Metrics Selected by CFS . 231

7.2 Validation Results of CPSO Fitness Variants 236

7.3 Complementarity Results of CPSO Fitness Variants 239

7.4 Validation Results of Ensemble Classifiers using G-Mean1 and Bal-

ance Values . 241

7.5 Friedman Ranks obtained by various Classifiers 242

7.6 Wilcoxon Test Results using G-Mean1 and Balance Values 243

7.7 Validation Results of ML Ensemble Classifiers using G-Mean1 and

Balance Values . 245

8.1 Dataset Details . 264

8.2 Validation Results of CPSO Fitness Variants 267

8.3 Friedman Test Results . 268

8.4 Complementarity of CPSO Fitness Variants 270

8.5 Wilcoxon test results for ASOF vs CPSO Fitness Variants 277

8.6 Validation Results of Fitness-based Voting Ensemble Classifiers . . 279

8.7 Wilcoxon test results for ASOF vs Fitness-based Voting Ensemble

Classifiers . 280

8.8 Wilcoxon test results for ASOF vs ML Ensemble Classifiers and LR

Technique . 283

9.1 Dataset Level Details . 293

9.2 AUC Values of SBC Models based on Maintenance Effort 299

9.3 Average Accuracy Values of SBC Models based on Maintenance Effort299

9.4 AUC Values of SBC Models based on Change Impact 302

9.5 Average Accuracy Values of SBC Models based on Change Impact . 302

xv

9.6 AUC Values of SBC Models based on Combined Effect of Mainte-

nance Effort and Change Impact 306

9.7 Average Accuracy Values of SBC Models based on Combined Effect

of Maintenance Effort and Change Impact 306

9.8 Wilcoxon test results for Comparing Combined Approach SBC mod-

els based on average AUC values 309

9.9 Wilcoxon test results for Comparing Combined Approach SBC mod-

els based on average Accuracy values 310

9.10 Wilcoxon test results for Comparing SBC models Level-wise 312

10.1 Dataset used for Inter-release Validation 321

10.2 Metrics Selected by CFS . 328

10.3 Accuracy Results using Different Sampling Methods 330

10.4 G-Mean1 Results using Different Sampling Methods 330

10.5 Balance Results using Different Sampling Methods 331

10.6 AUC Results using Different Sampling Methods 331

10.7 Friedman Results . 332

10.8 Wilcoxon Test Results on Sampling Methods Performance 333

10.9 Accuracy Results of MetaCost Learners using ML techniques 336

10.10G-Mean1 Results of MetaCost Learners using ML techniques 337

10.11Balance Results of MetaCost Learners using ML techniques 338

10.12AUC Results of MetaCost Learners using ML techniques 339

10.13Wilcoxon Test Results on Resample Method vs MetaCost Learners . 341

11.1 Evolution-based Metrics [1] . 354

11.2 Dataset Details . 356

11.3 Version specific Size metric trends 362

11.4 Version specific Cohesion Metric trends 363

11.5 Version specific Coupling metric trends 363

xvi

11.6 Version specific Inheritance metric trends 365

11.7 CFS Results for Contacts Dataset 366

11.8 CFS Results for Gallery2 Dataset 366

11.9 AUC & Accuracy Results for Contacts Dataset 368

11.10AUC & Accuracy Results for Gallery2 Dataset (4.0.4 & 4.1.2) . . . 368

11.11AUC & Accuracy Results for Gallery2 Dataset (4.2.2) 369

11.12Wilcoxon Test Results . 372

11.13Comparison Results using Accuracy 377

A.1 Details of Datasets . 393

A.2 Descriptive statistics range for Small-sized datasets 396

A.3 Descriptive statistics range for Medium-sized datasets 396

A.4 Descriptive statistics range for Large-sized datasets 396

B.1 Key Parameters of Primary Studies 398

C.1 Quality Questions . 405

C.2 SBA used for SEPM . 407

C.3 Conclusion Validity Threats in Primary Studies 410

C.4 Internal Validity Threats in Primary Studies 411

C.5 Construct Validity Threats in Primary Studies 412

C.6 External Validity Threats in Primary Studies 412

D.1 Recall Results using Different Sampling Methods 415

D.2 Precision Results using Different Sampling Methods 415

D.3 Recall Results of MetaCost Learners using ML techniques 417

D.4 Precision Results of MetaCost Learners using ML techniques 418

D.5 Cost Values of MetaCost Learners using ML Techniques 419

E.1 Median values of Size Metrics . 420

xvii

E.2 Median values of Cohesion Metrics 421

E.3 Median values of Coupling Metrics 421

xviii

List of Figures

1.1 Software Evolution Cycle . 9

1.2 Framework of Prediction model for determining Change-prone classes 14

1.3 Framework of Prediction model for determining Change impact of a

Software Bug . 15

2.1 Research Process . 34

2.2 GEP Gene . 56

2.3 Procedure for Data Collection . 62

2.4 Ten-fold Cross Validation . 70

2.5 External Validation . 70

3.1 Year-wise Distribution of Primary Studies 86

3.2 Product and Process Metrics Distribution 88

3.3 Software Repositories used for extracting Change Impact Data . . . 93

3.4 Validation Methods in Literature Studies 94

3.5 Performance measures in Literature Studies 96

3.6 Categories of Techniques . 98

3.7 Sub-categories of ML Techniques 99

3.8 Dataset-wise Accuracy Outliers of ML Techniques 101

3.9 Dataset-wise AUC Outliers of ML Techniques 102

xix

3.10 Wilcoxon Test results of ML Techniques Comparison based on Ac-

curacy measure . 106

3.11 Wilcoxon Test results of ML Techniques Comparison based on AUC

measure . 106

3.12 Statistical Tests used in Literature Studies 108

4.1 Research Methodology of Assessing Prediction Models 118

5.1 Distribution of studies based on SBA categorization (a) Effort esti-

mation (b) Defect prediction (c) Maintainability prediction (d) Change

prediction . 142

5.2 Validation Methods in Literature Studies using SBA 145

5.3 Distribution of primary studies according to number of runs 147

5.4 Performance measures for (a) Effort estimation (b) Defect prediction

(c) Maintainability prediction (d) Change prediction 149

5.5 Fitness functions of Effort estimation studies 152

5.6 Fitness functions of Defect prediction studies 152

5.7 Wilcoxon test results of SBA comparison based on MMRE values . 158

5.8 Wilcoxon test results of SBA comparison based on MMRE values . 159

6.1 Experimental Design for Evaluating Software Change Prediction Mod-

els . 190

6.2 Median Recall Values on 30 Runs of different techniques 195

6.3 Median PF Values on 30 Runs of different techniques 196

6.4 Median Balance Values of different techniques 197

6.5 Median G-Mean1 Values of different techniques 198

6.6 Median G-Mean3 Values of different techniques 199

6.7 Wilcoxon Test Results using Balance values 203

6.8 Wilcoxon Test Results using G-Mean1 values 203

xx

6.9 Wilcoxon Test Results using G-Mean3 values 204

6.10 CPU time statistics of different techniques 206

6.11 CPU time taken by different techniques 207

7.1 Basic Framework of the Proposed Ensemble Classifier 224

7.2 Nomenclature of Pseudocodes . 225

7.3 MVEC Pseudocode . 225

7.4 WVEC Pseudocode . 226

7.5 HIEC Pseudocode . 228

7.6 WVHIEC Pseudocode . 229

7.7 Number of pairs of fitness variants with varying diversities 239

7.8 Comparative Results of Proposed and ML Ensemble Classifiers using

G-Mean1 values . 246

7.9 Comparative Results of Proposed and ML Ensemble Classifiers using

Balance values . 246

8.1 Rules for creating training data of ASOF Framework 260

8.2 Diagrammatic Representation of ASOF Framework 261

8.3 Pseudocode of ASOF Framework 262

8.4 Validation Results of Classifiers with ASOF Framework 272

8.5 Rules of ASOF Framework on DrJava Dataset 274

8.6 G-Mean1 Values of ML Ensemble Classifiers, LR Technique and

ASOF Models . 281

8.7 Balance Values of ML Ensemble Classifiers, LR Technique and ASOF

Models . 282

9.1 Software Bug Categorization Framework 291

9.2 Sensitivity Values of (a) Top-10 (b) Top 25 (c) Top 50 and (d) Top

100 SBC Models based on Maintenance Effort 300

xxi

9.3 Sensitivity Values of (a) Top-10 (b) Top 25 (c) Top 50 and (d) Top

100 SBC Models based on Change Impact 304

9.4 Sensitivity Values of (a) Top-10 (b) Top 25 (c) Top 50 and (d) Top

100 SBC Models based on Combined effect of Maintenance Effort

and Change Impact . 308

10.1 Experimental Design for Developing Models using Imbalanced Data 323

11.1 Data Collection for Contacts 4.2.2: An Example 356

11.2 Mean values of Size Metrics . 361

11.3 Mean values of Cohesion Metrics 362

11.4 Mean values of Coupling Metrics 364

11.5 Classes exhibiting inheritance attributes 364

11.6 Average AUC values on (a) Contacts Dataset (b) Gallery2 Dataset for

all Techniques and Average Accuracy values on (c)Contacts Dataset

(d) Gallery2 Dataset for all Techniques 370

C.1 Data collection of Review Studies 406

C.2 Year-wise Distribution of Primary Studies using SBA for SEPM . . 406

C.3 Outliers for Effort Estimation Models according to Datasets (a) MMRE

(b) Pred (25) . 408

C.4 Outliers for Defect Prediction Models according to DataSets (a) Ac-

curacy (b) AUC (c) Sensitivity . 409

xxii

List of Publications

Papers Accepted/Published in International Journals

1. Ruchika Malhotra and Megha Khanna, “Dynamic Selection of Fitness Func-

tion for Software Change Prediction using Particle Swarm Optimization”, In-

formation and Software Technology. Accepted and published online (Impact

Factor: 2.627).

2. Ruchika Malhotra and Megha Khanna, “Particle Swarm Optimization-Based

Ensemble Learning for Software Change Prediction”, Information and Soft-

ware Technology, vol. 102, pp. 65-84, October 2018 (Impact Factor: 2.627).

3. Ruchika Malhotra and Megha Khanna, “Threats to Validity in Search-Based

Prediction Modeling for Software Engineering”, IET Software, vol. 12, no. 4,

pp. 293-305, August 2018 (Impact Factor: 0.733).

4. Ruchika Malhotra and Megha Khanna, “Prediction of Change Prone Classes

using Evolution- based and Object-Oriented Metrics”, Journal of Intelligent

and Fuzzy Systems, vol. 34, pp. 1755-1766, March 2018 (Impact Factor:

1.261).

5. Ruchika Malhotra and Megha Khanna, “An Empirical Study to Evaluate the

Relationship of Object-Oriented Metrics and Change Proneness”, International

xxiii

Arab Journal of Information Technology, vol. 15, no. 6, pp. 1016-1023,

November 2018 (Impact Factor: 0.724).

6. Ruchika Malhotra and Megha Khanna, “An Empirical Study for Software Change

Prediction using Imbalanced Data”, Empirical Software Engineering, vol. 22,

no. 6, pp. 2806-2851, December 2017 (Impact Factor: 3.275).

7. Ruchika Malhotra and Megha Khanna, “An Exploratory Study for Software

Change Prediction in Object-Oriented Systems using Hybridized Techniques”,

Automated Software Engineering Journal, vol. 24, no. 3, pp. 673-717, Septem-

ber 2017 (Impact Factor: 2.625).

8. Ruchika Malhotra, Megha Khanna and Rajeev R. Raje “On the Application

of Search-based Techniques for Software Engineering Predictive Modeling: A

systematic Review and Future Directions”, Swarm and Evolutionary Compu-

tation, vol. 32, pp. 85-109, February 2017 (Impact factor: 3.893).

9. Ruchika Malhotra and Megha Khanna, “The Ability of Search-Based Algo-

rithms to Predict Change-Prone Classes”, Software Quality Professional Jour-

nal, ASQ, vol. 17, no. 1, pp. 17-31, December 2014.

Papers Accepted/Published in International Conferences

10. Ruchika Malhotra and Megha Khanna, “Software Change Prediction using

Voting Particle Swarm Optimization based Ensemble Classifier”, Genetic and

Evolutionary Computation (GECCO 2017), pp. 311-312, Berlin, Germany,

July 2017.

11. Ruchika Malhotra and Megha Khanna, “Common Threats to Software Qual-

ity Predictive Modeling Studies using Search-based Techniques”, International

xxiv

Conference on Advances in Computing, Communications and Informatics (ICACCI

2016), pp. 568-574, Jaipur, Rajasthan, Septemebr 2016.

12. Ruchika Malhotra and Megha Khanna, “An Empirical Evaluation of Perfor-

mance of Machine Learning Techniques on Imbalanced Software Quality Data”,

Proceedings of 18th International Conference on Information Technology and

Computer Science, International Journal of Computer, Electrical, Automation,

Control and Information Engineering, vol. 10, no. 4, pp. 562-570, Venice,

Italy, April 2016.

13. Ruchika Malhotra and Megha Khanna, “Software Engineering Predictive Mod-

eling using Search-based Techniques: Systematic Review and Future Direc-

tions”, North American Search Based Software Engineering Symposium (NAS-

BASE 2015), pp. 1-16, Michigan, USA, February 2015.

14. Ruchika Malhotra and Megha Khanna, “Examining the Effectiveness of Ma-

chine Learning Algorithms for Prediction of Change Prone Classes”, Inter-

national Conference on High Performance Computing and Simulation (HPCS

2014), pp. 635-642, Bologna, Italy, July 2014.

15. Ruchika Malhotra and Megha Khanna, “A New Metric for Predicting Soft-

ware Change using Gene Expression Programming”, International Workshop

on Emerging Trends in Software Metrics (WETSoM 2014), pp. 8-14, Hyder-

abad, India, June 2014.

Papers Communicated in International Journals

16. Ruchika Malhotra and Megha Khanna, “Software Change Prediction: A Sys-

tematic Review and Future Research Directions”, Knowledge-Based Systems.

xxv

17. Ruchika Malhotra and Megha Khanna, “Analyzing Evolution Patterns of Object-

Oriented Metrics: A Case Study on Android Software”, International Journal

of Rough Sets and Data Analysis.

18. Ruchika Malhotra and Megha Khanna, “On the Applicability of Search Based

Algorithms for Software Change Prediction”,International Journal of System

Assurance Engineering and Management.

19. Ruchika Malhotra and Megha Khanna, “A Novel Framework for Software Bug

Categorization using Change Impact Levels and Maintenance Effort”, Journal

of Systems and Software.

xxvi

Abbreviations

AB Adaptive Boosting

ACDF Aggregated Change Density normalized by Frequency of Changes

ACO Ant Colony Optimization

AHF Attribute Hiding Factor

AIF Attribute Inheritance Factor

AIRS Artificial Immune Recognition System

AMC Average Method Complexity

AMSE Adjusted Mean Square Error

ANA Average Number of Ancestors

ANN Artificial Neural Network

ASOF Adaptive Selection of Optimum Fitness

ATAF Aggregated Change Size normalized by Frequency of Changes

AUC Area Under Receiver Operating Characteristic Curve

BG Bagging

BMMRE Balanced Mean Magnitude of Relative Error

BN Bayesian Networks

BOC Birth of a Class

Ca Afferent Coupling

CAM Cohesion Among Methods of a Class

CART Classification and Regression Tree

CBM Coupling Between Methods of a Class

xxvii

CBO Coupling Between Objects

CBR Case Based Reasoning

CC Changed Classes

Ce Efferent Coupling

CCB Change Control Board

CFS Correlation-based Feature Selection

CHD Change Density

CHO Change Occurred

CIS Class Interface Size

CK Chidamber and Kemerer

CKJM Chidamber and Kemerer Java Metrics

CLAMI Clustering, Labeling, Metric selection and Instance Selection

CLG Clonal Selection

CMS Configuration Management System

COF Coupling Factor

CPSO Constricted Particle Swarm Optimization

CR Cost Ratio

CS Class Size

CSB Changes Since Birth

CSBS Changes Since Birth normalized by Size

CVS Concurrent Versions System

DAC Data Abstraction Coupling

DAM Data Access Metric

DCC Direct Class Coupling

DCRS Defect Collection and Reporting System

DIT Depth of Inheritance Tree

DSC Design Size in Classes

xxviii

DT Decision Trees

DT-GA Decision Trees with Genetic Algorithms

ELM-PLY Extreme Machine Learning with Polynomial Kernel

EMRE Magnitude of Relative Error Relative to the Estimate

FCH First time Changes in a Class

FN False Negative

FP False Positive

FRCH Frequency of Changes

GA Genetic Algorithm

GA-ANN Genetic Algorithm- Artificial Neural Network

GA-Int Genetic Algorithm based classifier with Intervalar rules

GA-ADI Genetic Algorithm based classifier with Adaptive Discretization Intervals

GA-SVM Genetic Algorithm- Support Vector Machine

GEP Gene Expression Programming

GFS-AB Genetic Fuzzy System AdaBoost

GFS-LB Genetic Fuzzy System LogitBoost

GFS-MLB Genetic Fuzzy System Maxlogitboost

GFS-GP Fuzzy Learning based on Genetic Programming

GFS-SP GFS-GP with Grammar Operators and Simulated Annealing

GMDH Group Method of Data Handling

GUI Graphical User Interface

GP Genetic Programming

HIEC Hard Instance Ensemble Classifier

HBT Hybridized Techniques

HIDER Hierarchical Decision Rules

IC Inheritance Coupling

IH-ICP Information flow-based Inheritance Coupling

xxix

ICH Information flow-based Cohesion

ICP Internal Class Probability

ILP Imbalanced Learning Problem

IM Immunos

IQR Inter Quartile Range

IR Information Retrieval

KEEL Knowledge Extraction based on Evolutionary Learning

K-NN K-Nearest Neighbor

LAD Least Absolute Deviation

LB LogitBoost

LCA Last Change Amount

LCD Last Change Density

LCH Last Time Changes in a Class

LCOM Lack of Cohesion in Methods

LCC Loose Class Cohesion

LCS Learning Classifier System

LDA Linear Discriminant Analysis

LOOCV Leave-one-out Cross Validation

LR Logistic Regression

LSD Logarithmic Standard Deviation

MARE Mean Absolute Relative Error

MAE Mean Absolute Error

MFA Method of Functional Abstraction

MHF Method Hiding Factor

MIF Method Inheritance Factor

ML Machine Learning

MLP-BP MultiLayer Perceptron with Backpropagation

xxx

MLP-CG MultiLayer Perceptron with Conjugate Learning

MMRE Mean Magnitude of Relative Error

MdMRE Median Magnitude of Relative Error

MOA Measure of Aggression

MOOD Metrics for Object-Oriented Design

MOPSO Multi-Objective Particle Swarm Optimization

MPC Message Pass Coupling

MPLCS Memetic Pittsburgh Learning Classifier System

MSE Mean Square Error

MVEC Majority Voting Ensemble Classifier

NB Naive Bayes

NECM Normalized Expected Cost of Misclassification

NIH-ICP Non-Inheritance Information flow-based Coupling

NNEP Neural Net Evolutionary Programming

NNGE Non-nested Generalized Exemplars

NOA Number of Operations Added by a subclass

NOC Number of Children

NOH Number of Hierarchies

NOM Number of Methods

NOMA Number of Object/Memory Allocation

NOO Number of Operations Overridden

NOP Number of Polymorphic Methods

NPM Number of Public Methods

OO Object-Oriented

PD Probability of Detection

PF Probability of False Alarm

PSO Particle Swarm Optimization

xxxi

PSO-LDA Particle Swarm Optimization with Linear Discriminant Analysis

POF Polymorphism Factor

PUNN Product Unit Neural Network

QMOOD Quality Model for Object-Oriented Design

QS Quality Score

RBF Radial Basis Function

REP Reduces Error Pruning

RF Random Forests

RFC Response For a Class

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic Curve

RQ Research Question

RRSE Root Relative Square Error

SBA Search-based Algorithms

SBC Software Bug Categorization

SE Standard Error

SEM Standard Error of the Mean

SEPM Software Engineering Predictive Modeling

SLOC Source Lines Of Code

SLAVE Structural Learning Algorithm in a Vague Environment with Feature Selection

SMOTE Synthetic Minority Oversampling TEchnique

SIX Specialization Index

SPM Software Prediction Models

SUCS SUpervised Classifier System

SVM Support Vector Machine

TACH Total Amount of Changes

xxxii

TCC Tight Class Cohesion

TFIDF Term Frequency Inverse Document Frequency

TN True Negative

TP True Positive

TS Tabu Search

UCC Unchanged Classes

VAF Variance Accounted For

WCD Weighted Change Density

WFR Weighted Frequency of Changes

WCH Weighted Changes

WEKA Waikato Environment for Knowledge Analysis

WMC Weighted Methods of a Class

WVEC Weighted Voting Ensemble Classifier

WVHIEC Weighted Voting Hard Instance Ensemble Classifier

XCS X-Classifier System

xxxiv

Chapter 1

Introduction

1.1 Introduction

Software is the heartbeat of modern day technology. The software industry directly

or indirectly affects developments in all other fields, be it medical, engineering or

any other. Thus, it is important to assess and strengthen the need for a good quality

software product. This thesis is focuses on to the improvement of software quality

by developing models for analyzing software evolution. Planning of resources and

change management is crucial during software evolution to assure good quality soft-

ware products and satisfied customers. Software change prediction models, which

predict the change-prone classes in an Object-Oriented (OO) software are effective

methods for managing critical software resources during its evolution.

Prediction models for determining change-prone classes are developed with the

aid of classification techniques. Researchers have investigated the use of a number

of statistical and Machine Learning (ML) techniques for developing software change

prediction models [2–5]. But, more empirical studies are required to ascertain which

techniques give the best results in a specific scenario and to ascertain if there ex-

1

Introduction

ists a relationship between OO metrics and change-proneness attribute of a class.

Moreover, the use of Search-based Algorithms (SBA), a sub-class of ML techniques

is limited in the domain of change prediction. SBA are meta-heuristic techniques

which search for an optimal or near-optimal solution amongst a large population

of candidate solutions [6]. They are suitable for developing predictive models as

they are robust and can easily handle noisy data. Also, they can search for effec-

tive solutions by modeling performance measures as “fitness functions” [7]. We first

analyze the current state of literature, where SBA are used for ascertaining four spe-

cific software attributes namely software effort, defect-proneness, maintenance effort

and change-proneness. Furthermore, the thesis also investigates the use of several

SBA for developing software change prediction models. Another contribution of this

thesis is an investigation of hybridized algorithms, which combine a search-based

algorithm and an ML technique into a single approach for determining change-prone

classes in an OO software.

The research community consistently explores new methods and techniques for

developing better and effective prediction models. A promising approach for im-

provement of existing classifiers is ensemble methodology as it aggregates vari-

ous individual classifiers to provide stable results. In this thesis, we have investi-

gated the use of ensemble methodology by aggregating several fitness variants of a

search-based algorithm i.e. Constricted Particle Swarm Optimization (CPSO) using

weighted voting. To the best of our knowledge, no study has evaluated the use of

ensembles of SBA in the domain of software change prediction. Furthermore, we

have proposed a novel framework, Adaptive Selection of Optimum Fitness (ASOF),

which predicts the best fitness variant of CPSO (amongst seven fitness variants) for

a specific data point in order to determine its change-prone nature. The premise of

selecting different fitness variants corresponding to each data point is that it may

be the case that various subsets of a dataset may give best results with a different

2

Introduction

fitness function as compared to the use of only one fitness function over the entire

dataset. Thus, we propose using optimum fitness functions for different data points

of a dataset rather than selecting just a uniform fitness function for the entire dataset.

Another contribution of this thesis is the investigation of techniques for develop-

ing effective software change prediction models from imbalanced training data. In

practice, researchers might not be able to procure balanced training data with propor-

tionate number of change-prone and not change-prone classes. The use of sampling

techniques and metacost learners for developing software change prediction mod-

els solve the issue of obtaining impractical models yielded from imbalanced training

data.

In order to manage bugs effectively and correct them, categorization of bugs is an

essential activity. We are the first ones to categorize software bugs on the basis of its

change impact i.e. the number of classes modified to correct a specific software bug.

Additionally, we also categorize software bugs in accordance with the maintenance

effort required to correct them and due to the combined effect of change impact and

maintenance effort. It is important to categorize software bugs on the basis of main-

tenance effort and change impact so that a software developer can plan the bug fixing

regime. Bugs that are categorized as “high” according to maintenance effort, should

be allocated more maintenance resources for their correction as compared to “low”

category and “moderate” category bugs. On the other hand, stringent regression test-

ing should be performed for bugs which are categorized as “high” in accordance with

their change impact as larger number of classes are affected while correcting the bug.

Apart from structural characteristics of a class, its evolution history is also a crit-

ical factor in determining its change-prone nature. The evolution history may incor-

porate how the class has evolved over all the previous versions of the software. We

empirically validate the effectiveness of the evolution-based, OO metrics and their

combined metrics suite to determine the best predictors of change-prone classes. We

3

What is Software Quality?

also assess the evolution patterns of OO metrics in order to assess the changes in the

internal structure of a software during its evolution.

This chapter gives an introduction of the basic concepts involved in the thesis and

the motivation of the work. We first describe the concept of software quality and

the various attributes involved in it (Section 1.2). Next, we define software evolution

(Section 1.3) and how it is related to software quality (Section 1.4). A brief account

of various software metrics is provided in the subsequent section (Section 1.5). We

also discuss the need to develop prediction models for software evolution (Section

1.6). The remainder of the chapter discusses the state of existing literature (Section

1.7), objectives of the thesis (Section 1.8) and its organization (Section 1.9).

1.2 What is Software Quality?

According to the Institute of Electrical and Electronics Engineers (IEEE), software

quality is defined as [8]:

• “The degree to which a system, component, or process meets specific require-

ments.”

• “The degree to which a system, component, or process meets customer or user

needs or expectations.”

A software should meet all its desirable attributes, be it functional attributes such

as response time, graphical user interface design etc. or non-functional attributes

such as fault tolerance, extensibility etc. to be considered as a good quality software.

If a software fulfills its functional requirements, it implies it is fit for its intended

purpose. On the other hand, non-functional requirements are necessary to support

the effective delivery of functional requirements.

4

What is Software Quality?

Another aspect of quality relates itself to customer satisfaction. If a customer

is not satisfied with a product, it cannot be considered as a good quality product.

Delivery of a poor quality product might result in business losses and a bad reputation

for the organization.

Software quality also determines the “quality of design” and the “quality of con-

formance” [9]. The quality of design relates to the adequacy of software design.

An effective software design is important for developing a software with minimum

defects and high customer satisfaction. The quality of conformance relates to the

degree to which a software conforms to the developed design. Only adequately de-

signing the software is of no use if the software product does not conform to the

design blueprint.

1.2.1 Software Quality Attributes

Software quality can be determined in terms of various software quality attributes.

Some of the important software quality attributes are as follows [8]:

• Functionality: It refers to the degree to which a software is fit for its intended

purpose. It includes several sub-attributes like completeness, correctness, effi-

ciency, traceability and security.

• Usability: It refers to the degree to which a software is easy to work with. It

includes several sub-attributes like learnability, operability, user-friendliness,

installability and satisfaction.

• Testability: It refers to the degree to which a software can be operated to indi-

cate the faults. Verifiability and validatable are the sub-attributes incorporated

in this attribute.

5

What is Software Quality?

• Reliability: It refers to the degree to which a software is able to operate without

any failures. It includes robustness and recoverability as sub-attributes.

• Maintainability: It refers to the degree to which software defects can be iden-

tified, software may be modified during maintenance and its quality can be

improved. It includes agility, modifiability, readability and flexibility as sub-

attributes.

• Adaptability: It refers to the degree to which a software can adapt to varying

platforms and technologies. It includes portability and interoperability as sub-

attributes.

Apart from the above mentioned quality attributes, there are many other soft-

ware attributes related to the domain of software engineering. Developing models

to determine these attributes is known as Software Engineering Predictive Modeling

(SEPM). This thesis limits itself to four important software engineering attributes,

which are discussed below:

• Software Development Effort: This attribute estimates the effort required to

develop a specific software product [10]. The effort required can be approxi-

mated in terms of person hours or cost. Effort estimation is important as soft-

ware project managers require important information from past projects to plan

and analyze the effort required for project development [11]. Such knowledge

is critical for efficient allocation of human resources, so that products can be

delivered on time and within the planned budget.

• Defect-proneness: It is an attribute which encapsulates the probability of occur-

rence of a defect in a class/module, after the software has been released [12].

A class/module may be found as “defective” or “not defective” in the next ver-

sion of a software product. Identification of defect-prone classes, is important

6

What is Software Quality?

as the cost of correcting defects increases exponentially in later phases of the

software development cycle [8]. Thus, it is important for researchers to elimi-

nate defects as early as possible to ensure customer satisfaction.

• Maintainability: This quality attribute measures the ease with which a software

class or module can be modified and measures the effort required to evolve a

particular software class or module [8]. The effort required can be estimated in

terms of Source Lines of Code (SLOC). Since, the maintenance phase absorbs

60 to 70% of the total project resources [8], it is essential for software managers

to estimate maintenance effort in the early phases so that proper planning and

allocation can be done.

• Change-proneness: This attribute encapsulates the probability of occurrence

of a change in a class/module after the software has gone into operation [5].

Similar to defect-proneness, a class/module may be “change-prone” or “not

change-prone” in the next release of the software product. The determination

of change-prone nature of a class helps practitioners in efficient resource allo-

cation. These classes need more attention in the early phases of development

so that minimal changes get carried to the next stage. Such steps would ensure

an efficient and maintainable software product.

Defect-proneness and change-proneness are binary attributes while maintainabil-

ity and software development effort are continuous attributes. Another important

software attribute is change impact levels. This attribute predicts the level of change

impact of a software bug i.e. (“low”, “moderate” or “high”), which is estimated by

the number of classes impacted while correcting a software bug. It is important to

assess the attribute in order to manage resources during bug correction and removal.

7

What is Software Evolution?

1.3 What is Software Evolution?

Software evolution is crucial as organizations have invested huge amounts of money

in their software. These organizations are extremely dependent on these software

systems for critical business processes. The Research Institute in Software Evolution

defines it as:

“the set of activities, both technical and managerial, that ensures that software

continues to meet its organizational and business objectives in a cost effective way”

Software evolution is an ongoing process which persists throughout the lifecycle

of a product. Delivering a software system successfully to its customers only puts

an end to the development process, however software evolution, which involves con-

stantly changing the software after its deployment is inevitable. It is mandatory for

a software system to change in order to remain useful. A change could be because

of an existing defect, changes in user expectations, technological advancements or

business changes [5]. Thus, change is important in order to consistently improve the

performance of the software system.

Organizations spend a large amount of money in the maintenance and upkeep of

their software systems as these systems are important assets for their growth and busi-

ness. As a consequence, organizations invest more money and resources on maintain-

ing existing systems than development of new systems. The costs involved in chang-

ing a software are a huge part of an organization’s budget [8]. Since changing and

maintaining a system is expensive, we need to manage and plan changes properly.

1.3.1 Software Evolution Cycle

In order to manage and implement a change, a systematic series of steps are followed

[9]. These steps are depicted in Figure 1.1.

8

Software Quality and Software Evolution

Figure 1.1: Software Evolution Cycle

Initially, a change is requested by a customer, management or any other stake-

holder. The requested change is then analyzed by the Change Control Board (CCB)

to evaluate the cost, time and resources required to implement it. The implications

of the requested change are also assessed. If found suitable, the requested change

is approved by the CCB and the developers are asked to implement it. On the other

hand, if the change is not found appropriate, the CCB denies its implementation and

the person who requested the change is notified. After a change is implemented, the

software is validated to evaluate if it is in accordance with what was requested. Other

portions of the software which are affected by the change are also investigated to

assess if the change has not led to introduction of any new errors and the software is

functioning appropriately.

1.4 Software Quality and Software Evolution

As already discussed, a software system continuously evolves. However, continuous

changes in a software may lead to degradation of software quality. This is because

9

Software Metrics

with continuous evolution, the size and complexity of the software consistently in-

creases. It is difficult to maintain a larger and complex software as developers may

not have sufficient resources to focus on all parts of the software. Moreover, a change

may affect various portions of a software. It may be the case that a software devel-

oper may not be able to foresee all the implications of a change and new errors could

be introduced in the software product, leading to a poor quality software product.

Thus, it is important to focus on maintaining quality of a software product during its

evolution.

Resource management and maintenance of software quality during evolution is

an important area of research. Software managers are constantly looking for meth-

ods and practices which assure effective quality products. As software resources are

a constraint, early prediction of problematic parts of a software is useful so that more

resources can be allocated to such parts. The change-prone parts of a software can be

considered as problematic as they are prime sources of tentative defects and probable

changes in a software. Early identification of such parts may help software managers

in effectively dispersing the allocated resources as they need larger number of re-

sources than the other parts. Moreover, early error detection and thereby its removal

from such parts of a software ensures cost-effective product management, as the cost

to correct an error increases exponentially with each phase of the software develop-

ment lifecycle [13]. Thus, early identification of change-prone parts of a software is

an effective method for managing software quality during evolution.

1.5 Software Metrics

According to Tom DeMarco, “You can’t control what you can’t measure” [14]. Mea-

suring structural characteristics of a software system is important to determine the

quality of a software product. They can be used for continuous inspection of a soft-

10

Software Metrics

ware to assist software developers in improving its quality. We can also use software

metrics to develop quality models which predict important quality attributes such as

defect-proneness and change-proneness.

Software metrics can be broadly categorized in accordance with the programming

paradigm: a) the traditional programming paradigm, which primarily deals with al-

gorithms and functional decomposition and b) the OO paradigm which focuses on

identification of objects, their characteristics and method definitions. Since, the OO

software paradigms are quite different from traditional procedural paradigms, it ne-

cessitates the need for a different set of metrics for OO software as traditional metrics

fail to capture concepts like “inheritance” and “polymorphism” which are unique to

OO paradigm. Henderson [15] states the following two differences in traditional and

OO paradigms of software design:

• The coding and maintenance phases of the traditional paradigm require greater

effort than OO paradigm.

• The OO paradigm focuses more on the earlier stages of software development

(analysis and design).

1.5.1 Overview of existing OO Metric Suites

A number of OO metric suites have been proposed in the literature. Some of the most

commonly used OO metric suites are discussed in this section.

Chidamber and Kemerer (CK) [16] introduced a metrics suite which consists of

Weight Methods per Class (WMC), Depth of Inheritance Tree (DIT), Number Of

Children (NOC), Coupling Between Object classes (CBO), Response For a Class

(RFC) and Lack of Cohesion in Methods (LCOM) metrics. The CK metrics are

analyzed to assess their usefulness for practicing managers and have been used suc-

cessfully by a number of empirical studies [17].

11

Software Metrics

Li and Henry [18] proposed a metric suite which consists of Data Abstraction

Coupling (DAC), Message Pass Coupling (MPC) and Number of Methods (NOM).

They also introduced two size metrics namely SIZE1 and SIZE2.

Lorenz and Kidd [19] proposed the following OO metrics (Pressman, 2000):

Class Size metrics (CS), Number of Operations (methods) Overridden by a subclass

(NOO), Number of Operations Added by a subclass (NOA), Number of Public Meth-

ods (NPM) and Specialization Index (SIX).

Metrics for Object Oriented Design (MOOD) [20] are used to measure OO pro-

grams based on of the following software quality indicators: Attribute Hiding Factor

(AHF), Method Hiding Factor (MHF), Method Inheritance Factor (MIF), Attribute

Inheritance Factor (AIF), Coupling Factor (COF), and Polymorphism Factor (POF).

Bieman and Kang [21] defined two cohesion metrics namely Tight Class Cohe-

sion (TCC) and Loose Class Cohesion (LCC).

Briand et al. [22] gave a suite of 18 metrics that measured different types of

interaction between classes. These metrics may be used to guide software developers

about which type of coupling affects maintenance cost and reduces reusability. Two

coupling metrics namely Afferent Coupling (Ca) and Efferent Coupling (Ce) were

proposed by Martin [23].

Lee et al. [24] differentiate between inheritance-based and non-inheritance-based

coupling by the corresponding measures: Non-Inheritance Information flow based

Coupling (NIH-ICP) and Information flow-based Inheritance Coupling (IH-ICP).

They also introduced Information flow-based coupling metric which was the sum of

NIH-ICP and IH-ICP. In order to measure cohesion they also introduced information

flow based cohesion (ICH) metric.

Bansiya and Davis [25] proposed the Quality Model for Object-Oriented Design

(QMOOD) metrics suite, which includes Design Size in Classes (DSC), Number

of Hierarchies (NOH), Average Number of Ancestors (ANA), Data Access Metric

12

Developing Prediction Models for Software Evolution

(DAM), Direct Class Coupling (DCC), Cohesion among Methods of a Class (CAM),

Measure of Aggression (MOA), Method of Functional Abstraction (MFA), Number

of Polymorphic Methods (NOP), Class Interface Size (CIS) and Number of Methods

(NOM).

Tang et al. [26] proposed Average Method Complexity (AMC), Inheritance Cou-

pling (IC), Number of Object/Memory Allocation (NOMA) and Coupling Between

Methods of a Class (CBM) metrics.

1.6 Developing Prediction Models for Software Evo-

lution

In order to effectively manage the evolution of a software it is important to develop

models which predict different aspects of software evolution. It is crucial for man-

agers to identify and predict which parts of a software are likely to change and what

effort would be expended in maintaining these parts. Software change prediction

models aid software project managers in strategizing allocation of limited software

resources such as time, cost and effort. A manager should allocate more resources

to change-prone classes as they need to be stringently verified and tested to ascer-

tain that changes have been incorporated efficiently and no new errors have been

introduced [2, 3]. This would lead to cost effective and high quality products as

we can estimate changes in the early phases of software development life cycle and

develop plans for handling them effectively. Also, constant monitoring of change-

prone classes results in detection of defects as early as possible so that corrective

actions can be planned appropriately [5, 27, 28]. Software practitioners can also plan

refactoring activities on the identified change-prone classes so that future changes to

these classes may not cause ripple effects [1]. In this thesis, we develop models for

13

Developing Prediction Models for Software Evolution

Figure 1.2: Framework of Prediction model for determining Change-prone classes

a) determining change-prone classes in an OO software and b) determining change

impact of a software bug.

Predicting change-prone components involves understanding the relationship be-

tween the software system internal structural attributes and change. These structural

attributes (metrics) can be quantified with the help of a number of software metrics

(OO metrics) which are indicators of different attributes of a software like coupling,

cohesion, polymorphism, size etc. Figure 1.2 depicts the framework of a change

prediction model. First, historical data is extracted from software repositories. The

extracted data is a set of data points which are change-prone (CP) or not change-prone

(NCP). The data is used for training the model, where each data point contains a set

of OO metrics which are predictors and a dependent variable (CP or NCP). Relevant

metrics which are not redundant or noisy are extracted from the training data. The

prediction models are developed with the aid of various classification techniques (sta-

tistical, ML, SBA, hybridized), which learn from historical software data and develop

a prediction model. The developed model is validated and predicts the occurrence of

change in future versions or yet unseen instances of the software product.

14

Developing Prediction Models for Software Evolution

Evaluating the impact of a change is also critical, so that software practitioners

can pay focused attention to parts which are impacted by a change. The impact

of change of a software bug can be estimated by extracting the unstructured data

present in the form of bug reports in the software repositories (Figure 1.3). Textual

data from software bug reports can be extracted along with change history of previous

modifications in the software. This change history incorporates the number of classes

affected by a change and the number of lines of code required to make modifications.

By analyzing the number of classes impacted while correcting a bug report, one can

estimate its impact. Thus, the training data consists of the textual descriptions of

bug reports and the category of change impact (low, medium or high) depending on

the number of classes, impacted while correcting a specific bug report. The models

developed are binary in nature, which predict if a new bug report would have a High

impact (H) or a Not High impact (NH) as shown in Figure 1.3. An NH impact means

either low impact or medium impact. Similarly, models for determining low impact

or not low impact and moderate impact or not moderate impact can be developed.

Figure 1.3: Framework of Prediction model for determining Change impact of a
Software Bug

15

Literature Survey

In order to mine data from textual descriptions, the training instances should be

processed by the text-mining module. The text mining module consists of three main

steps: pre-processing the training data, extracting relevant features and creation of

a vector space model. Thereafter, Top-K words are extracted from bug descriptions

and prediction model is developed with the help of a classification technique. The

developed model can predict the impact of a new software bug on the basis of its

textual description. Software Bug Categorization (SBC) models, which identify the

level of a software bug on the basis of its bug reports in accordance with the mainte-

nance effort required to correct them and its change impact can help software project

managers in effective planning of limited resources.

1.7 Literature Survey

As discussed, the evolution of a software is critical for the success of a software prod-

uct. Researchers and practitioners have been working hard to optimize the processes

and other facets related to software evolution. A comprehensive study of the existing

literature with respect to various elements and processes which require improvement

during software evolution is crucial. This would aid in identification of gaps and

provides motivation to work on different aspects of this area.

We first discuss the various software metrics that have been used for ascertain-

ing change-prone classes. These metrics were either OO metrics or evolution-based

metrics which have been proposed by Elish et al. [1]. We next discuss the mod-

els that have been developed in literature for optimizing software evolution. These

models were further divided into two categories, one which focuses on identification

of change-prone classes in a software and the other which focuses on identification

of change impact of a change request. The software change prediction models have

been further investigated in detail with respect to the categories of classification tech-

16

Literature Survey

niques which have been used in literature, the investigation of ensemble methods for

classification and the development of models from imbalanced training data.

1.7.1 Software Metrics

Software metrics encapsulate various characteristics of a software product such as

its internal structure in terms of OO properties or evolution characteristics. These

metrics are effective in determining the change-prone nature of classes.

OO Metrics

In order to develop software change prediction models, studies in literature have

extensively used several OO metrics as predictors. A study by Zhou et al. [29]

investigated the confounding effect of the size of a class on the predictive ability of

OO metrics to determine change-prone nature of a class in an OO software. The

study analyzed the effect of three size metrics on the capability of 55 OO metrics,

which encapsulated the coupling, cohesion and the inheritance characteristics of a

software. Their results were validated on two versions of the Eclipse software dataset

and indicated the existence of the confounding effect of class size on the relationship

between OO metrics and change-proneness. They found that class size tends to over-

estimate the existing relationship between OO metrics and change-proneness.

Lu et al. [28] investigated 17 inheritance metrics, 7 size metrics, 18 cohesion

metrics and 20 coupling metrics to explore their ability to predict change-prone na-

ture of an OO class. In order to do so, they used statistical meta-analysis techniques

and evaluated the results on 102 software systems, developed in Java language. Ac-

cording to their results, the inheritance metrics were worst indicators of change in a

class. The size metrics were found to have moderate capability followed by the cou-

pling and cohesion metrics. Studies by Koru and Liu [2] and Koru and Tian [3] also

assessed the effectiveness of several OO design metrics, which were representative

17

Literature Survey

of size, coupling, inheritance and cohesion characteristics for ascertaining change-

prone nature of a class. The open-source systems used by these studies included

KOffce, Mozilla and Open Office.

Giger et al. [30] analyzed the capability of OO metrics proposed by Chidamber

and Kemerer [16], along with centrality measures from social network analysis to

predict software change. The models developed by them, successfully enlisted change-

prone files in the order of their change-prone capability. Eski and Buzluca [27] vali-

dated CK metrics [16] and the QMOOD metrics suite [25] to detect change-proneness

in three open-source software datasets. Their study confirmed the capability of the

investigated metrics suites for determining change-prone classes of a software. Ro-

mano and Pinzger [4] evaluated the CK metrics suite [16], a set of metrics to estimate

the complexity and usage of interfaces and two external cohesion metrics for ascer-

taining change-prone java interfaces. Their results indicate that the use of Interface

Usage Cohesion metric may improve the prediction of change-prone java interfaces.

Malhotra and Khanna [5] and Malhotra and Bansal [31] have also validated the use of

several OO design metrics for predicting change-prone classes in open-source soft-

ware. These studies confirm the predictive capability of the investigated OO metrics.

Evolution-based Metrics

Apart from OO metrics, certain studies assessed the effectiveness of evolution-

based metrics, which encapsulate the history of changes in a class as predictors of

software change. A study by Tsantalis et al. [32] proposed the prediction of probabil-

ity of change in OO systems by proposing two main sources of change in a class: in-

ternal and external. The external sources of change, referred to those changes which

were initiated in a class because of changes in other classes. These were categorized

in accordance with three axes namely inheritance axis, reference axis and depen-

dency axis. The internal sources of change referred to all possible sources of change

18

Literature Survey

that originated from the class itself. The study validated their results on two datasets

JMol and JFlex. It found that the proposed model improved the prediction accuracy

for ascertaining change-prone classes.

Another key study, which took into account evolution characteristics of a class,

while predicting change-proneness was conducted by Elish and Al-Khiaty [1]. They

proposed sixteen evolution-based metrics, which encapsulated history of changes in a

class and evaluated these to ascertain the change-prone nature of a class in the future

versions of the software product. The study was conducted using two open-source

datasets and ascertained the effectiveness of four possible scenarios of metric combi-

nations for ascertaining an OO class’s change-prone nature. These scenarios included

the use of only evolution-based metrics, the use of only OO metrics, the combination

of OO and evolution-based metrics and the use of Internal Class Probability (ICP) of

change metric, proposed by Tsantalis et al. [32]. The findings of Elish and Al-Khiaty

[1] indicated the superiority of the combined metrics suite, which consisted of both

OO and evolution-based metrics for determining change-prone classes. However,

more studies are needed to confirm their findings and provide generalized results.

1.7.2 Evolution-based Studies

The exponential growth in technology, presence of defects and expanding set of user

requirements necessitates software evolution.

Software Change Prediction

We first summarize the various modeling techniques used in literature for identi-

fying change-prone classes. Furthermore, we discuss ensemble methodology, which

can be used to propose new modeling techniques in the domain of software change

prediction. We also assess whether literature studies have investigated methods for

effective learning through imbalanced training data in the domain of software change

19

Literature Survey

prediction.

Classification Techniques for Software Change Prediction

A wide category of classification techniques are available. Studies in literature

have investigated the use of traditional statistical techniques for determining software

change. These include studies by Elish and Al-Khiaty [1], Zhou et al. [29] and Lu

et al. [28]. Elish et al. [1] used Logistic Regression (LR) to create software change

prediction models using two open-source datasets, VSSPlugin and Peersim, while

Zhou et al. [29] and Lu et al. [28] used linear regression. However, the most popular

category of methods seemed to be ML techniques. Studies by Koru and Tian [3] and

Koru and Liu [2] assessed the use of tree-based models for ascertaining the change-

prone nature of classes. Giger et al. [30] investigated the use of Bayesian Network

(BN) and Neural networks on two open-source datasets developed in Java language

to output files which can be potentially change-prone. Romano and Pinzger [4] also

assessed the use of Support Vector Machine (SVM), apart from BN and Neural net-

works for determining change-prone Java interfaces. Sharma et al. [33] developed

software change prediction models using Naive Bayes (NB), SVM, Decision Trees

(DT), extreme learning machine and several other ML techniques and three ensem-

ble classifiers. They also used the statistical technique, LR. Studies by Malhotra and

Bansal [31] and Malhotra and Khanna [5] assessed several ML techniques such as

Bagging (BG), Random Forests (RF), NB, Adaptive Boosting (AB), J48, LogitBoost

(LB), etc., along with the statistical technique LR for evaluating change-prone nature

of classes in an OO software. These studies indicated that the performance of ML

techniques were found comparable to that of the statistical technique, LR.

Apart from the statistical and ML techniques, a new category of techniques, SBA

have been assessed recently for ascertaining software change and modification ef-

fort. Azar [34] used Genetic Algorithm (GA) to determine “syntactic changes” in

class methods or insertion/removal of class methods in an OO class. In another

20

Literature Survey

study, Azar and Vybihal [35] investigated the capability of Ant Colony Optimization

(ACO) to assess the same. A recent study by Bansal [36], analyzed the effectiveness

of SBA and their hybridized counter-parts for determining change-prone classes in

OO software. The above mentioned studies, support the use of SBA and their hy-

bridizations in this domain. It may also be noted that their use has also been widely

investigated in the domain of software defect prediction. Some of the prominent lit-

erature studies which assess the use of these algorithms for determining defect-prone

parts of a software include De Carvalho et al. [37], Harman et al. [38], Ferrucci et

al. [39], Xia et al. [40] and Hosseini et al. [41]. However, in order to draw gener-

alized conclusions and to determine the effectiveness of wide category of SBA and

their hybridizations, more empirical studies are required, specifically for determining

change-prone classes in a software.

Software Change Prediction using Ensemble Learners

Ensemble learning is an effective methodology for improving the performance of

individual classifiers, if the constituent classifiers are found to be accurate and diverse

[42–44]. As discussed earlier, Malhotra and Khanna [5], Malhotra and Bansal [31]

and Bansal [36] have investigated the use of ML ensemble classifiers like BG, AB,

LB and RF. Sharma et al. [33] and Elish et al. [45] investigated three ensemble

learning methodologies namely Best-in-Training, Majority Voting and Non-linear

Ensemble Decision Tree Forest. However, researchers have not investigated the use

of SBA as constituents of ensembles.

An interesting characteristic of SBA is the change in the results of prediction

models with the use of different fitness functions [46–49]. Di Martino et al. [46]

investigated the use of different fitness functions of GA, when GA was used for opti-

mizing the parameters of SVM, while predicting defect-prone classes in a software.

The study confirmed the change in the results of the classification model, with the

change of fitness function. Another study by Ferrucci et al. [47] observed the vari-

21

Literature Survey

ation in results due to change of fitness function, when Genetic Programming (GP)

was used for estimating software effort. A study by Aslam [49] ascertained that the

results of binary classification varied due to the choice of different fitness functions.

Bhowan et al. [48] improved the results of GP on unbalanced datasets by proposing

the change of fitness function. However, none of these studies ascertained the effect

of variation of a fitness function in the domain of software change prediction.

Previous studies in the literature have used various approaches to combine multi-

ple classifiers to correctly predict defect-prone classes in a software. Software defect

prediction is a related area of change prediction. A study by Petric et al. [50] used

four ML techniques which were aggregated using the weighted accuracy and diver-

sity technique to obtain better performing defect prediction models. Panichella et al.

[51] proposed an approach named as CODEP (COmbined DEfect Predictor) for com-

bining several ML techniques to improve cross-project defect prediction. A study by

Zhang et al. [52] combined six ML techniques using seven composite procedures to

perform effective cross-project defect prediction. Aljamaan and Elish [53], Misirh et

al. [54] and Laradji et al. [55] also combined multiple ML techniques for the purpose

of software defect prediction. A study by Di Nucci et al. [56] proposed a framework

for predicting a different ML technique for a particular instance of a dataset on the

basis of its structural characteristics. However, there has been no study which pre-

dicts the optimum fitness variant of a search-based algorithm for a particular instance

in the dataset.

Software Change Prediction using Imbalanced Data

Effective learning through imbalanced training data, where the number of classes

belonging to a specific category are highly disproportionate as compared to the ones

belonging to the other category is a well-recognized research problem. Various stud-

ies have addressed this problem for software defect prediction through the use of

various sampling approaches, use of several cost-sensitive learners, use of ensemble

22

Literature Survey

learners, use of active-learning and kernel-based methods and many other proposed

approaches. We discuss some of these prominent studies in the area of defect predic-

tion. Shatnawi [57] investigated a widely used oversampling method, Synthetic Mi-

nority Oversampling Technique (SMOTE) for developing defect prediction models

from imbalanced data using three classifiers. Seliya and Khoshgoftaar [58] investi-

gated six different cost-sensitive learning techniques, which were three cost-sensitive

boosting techniques, meta-cost classifiers, weighted techniques and random under-

sampling on 15 software datasets for developing defect prediction models using im-

balanced training data. Liu et al. [59] proposed a two-stage cost-sensitive learning

technique for software defect prediction. The technique used cost-sensitive informa-

tion at two stages, feature selection as well as classification. A study by Rodriguez et

al. [60] compared cost-sensitive, sampling methods, hybrid techniques and ensem-

bles to deal with imbalanced datasets. The study performed empirical validation us-

ing 12 imbalanced datasets. The results advocated the use of different pre-processing

steps for dealing with imbalanced data to enhance the performance of software defect

prediction models. Arar and Ayan [61] proposed a cost-sensitive neural network us-

ing artificial bee colony algorithm for developing effective defect prediction models

from imbalanced data. Though, these studies investigated the use of various meth-

ods for imbalanced data learning, all of them developed software defect prediction

models. A related study by Tan et al. [62] classified changes as “buggy” or “clean”.

The study used four sampling techniques namely SMOTE, resampling with replace-

ment, resampling without replacement and spread subsample for building efficient

models from imbalanced data. As it can be seen, there is a huge gap in literature with

respect to analyzing approaches for imbalanced learning, while developing software

change prediction models. Similar to defect prediction, the number of change-prone

classes in the training data is much lower than not change-prone classes. Inappropri-

ate learning from such data may lead to higher classification errors while determining

23

Literature Survey

change-prone classes. Thus, there is an urgent need to evaluate various approaches

for handling imbalanced data while developing software change prediction models.

Software Change Impact

Various studies in literature have investigated change impact analysis using static

program analysis[63, 64], dynamic program analysis [65] or by using a hybrid of

both [66]. Literature studies have also mined version histories to estimate the impact

of a change. These version histories could be specific to the software [67] or could

be independent of the software for which change impact analysis is to be done [68].

Another popular approach for investigating the change impact of an incoming

change request has been the use of Information Retrieval (IR) techniques, which an-

alyze the textual information available in the change request or in other program en-

tities. A study by Canfora and Cerulo [69] analyzed the impact analysis of a change

request by predicting a list of impacted files. IR algorithms were used to find the

similarity between new change request and various source code entity descriptors.

Antoniol et al. [70] mapped the maintenance request to its starting impact set us-

ing textual information present in source code and other high level documents of a

software. Gethers et al. [71] proposed an integrated approach for change impact

analysis which included mining of previous source code commits, dynamic analysis

of execution data and IR from the textual data of the change request. A study by

Zanjani et al. [72] used interaction as well as commit histories to find the change

impact of an incoming change request using its textual description. Initially, a corpus

of previously resolved change requests was built, which was queried with the incom-

ing change request to obtained a ranked list of impacted source code entities. These

studies indicate that the textual information of change requests can be successfully

used as a predictor for estimating change impact sets.

Only very few studies have analyzed effort as an ordinal variable. Recent studies

24

Objectives of the Thesis

by Jindal et al. [73, 74], categorized software bugs on the basis of maintenance

effort required to correct them. They extracted relevant attributes from bug reports

and classified bugs into four categories, viz., the ones requiring “very low”, “low”,

“medium” and “high” maintenance effort for correction. Studies by Basgalupp et al.

[75, 76] measured maintenance effort in terms of hours. However, they transformed

these numeric values to nominal by transforming the data into low effort, medium

effort and high effort equally. Balogh et al. [77] predicted “modification effort”,

which was analyzed as a function of weighted count of modifications and the net

development time of these modifications. The dependent variable was then assigned

low, medium and high values equally. However, to the best of our knowledge, there is

no study in literature with respect to analyzing the change impact levels of a software

change request or a bug report using IR techniques.

1.8 Objectives of the Thesis

1.8.1 Vision

Improving software quality by managing the software evolution process using effi-

cient prediction models for ascertaining software quality attributes (change-proneness

and change impact levels).

1.8.2 Focus

The focus of the thesis is to envisage methods which help in assessing and improving

the various aspects involved in developing software change prediction models for

determination of change-prone classes. The aspects analyzed in this work include

(1) evaluation of existing diverse categories of classification techniques; (2) proposal

25

Objectives of the Thesis

of new classification techniques based on ensemble methodology; (3) creation of

efficient models from imbalanced datasets; (4) assessment of trends of various OO

metrics in an evolving software and analysis of different set of predictor metrics,

which encapsulate evolution characteristics. We also analyzed the change impact

levels of software bugs using their textual descriptions.

1.8.3 Goals

A summary of the goals investigated in this work is provided below:

1. To evaluate and compare various data analysis techniques (statistical, ML,

search-based and hybridized) for software change prediction.

• With a large number of available classification techniques, which have

different abilities and characteristics, it is important to conduct studies to

evaluate their capability in the domain of software change prediction.

• Such studies can be used by researchers and practitioners as guides for

selection of an appropriate technique in a certain context.

2. To propose new modeling techniques based on ensemble methodology and as-

certain their effectiveness for developing software change prediction models.

• Modeling techniques based on ensemble methodology are known to de-

velop stable and robust models, which improve the capability of their

constituent algorithms. Such techniques can be used by practitioners and

researchers to develop software change prediction models with improved

accuracy as they are based on diverse constituent algorithms.

3. To investigate the use of methods for developing practical software change

prediction models from imbalanced training data.

26

Objectives of the Thesis

• In general, software datasets have low percentage of change-prone classes

as compared to not change-prone classes. Such training sets when used

for developing prediction models may produce models which are not able

to correctly identify change-prone classes as they were deficient in the

training data.

• Thus, studies should be conducted to examine methods that can lead to

creation of effective models even from imbalanced data.

4. To perform software bug categorization and assign levels to bugs on the basis

of their change impact values and/or the maintenance effort required to correct

them.

• Software testers and maintenance personnel need to prioritize resources

as they are always a constraint. One method to do so is to assign levels

to software bugs on the basis of their descriptions. These levels are al-

located on various bug characteristics such as its change impact and the

maintenance effort required while correcting a software bug. Resources

can then be allocated on the basis of predicted levels.

5. To analyze the trends of OO metrics over various releases of an evolving soft-

ware and to evaluate the use of evolution-based metrics as predictors for deter-

mining change-prone classes in a software.

• OO metrics encapsulate various design characteristics of a class, such as

its dependency on other classes, its cohesiveness, its size as well as its

reusability. We need to conduct studies which analyze the progression of

these metrics when a software evolves so that software practitioners can

understand the effects of evolution on the software’s internal structure and

proper steps can be taken if the internal structure of a software degrades.

27

Organization of the Thesis

• Apart from OO metrics, other metrics which encapsulate evolution his-

tory of a class may be used as predictors for determining change. We

need to perform experiments to evaluate the best set of predictors.

1.9 Organization of the Thesis

This section discusses the organization of the thesis. Chapter 1 presents a basic

introduction of the work and motivation of the thesis. Chapter 2 describes the re-

search methodology followed in the subsequent chapters. Chapter 3 presents a re-

view of existing studies in the domain of software change prediction, which identifies

current trends and research gaps. Chapter 4 presents the construction of software

change prediction models using ML techniques. Chapter 5 analyzes the capability

of SBA for developing software change prediction models. Subsequently, Chap-

ter 6 analyzes the capability of Hybridized techniques (HBT) for developing models

to ascertain the change-prone nature of classes and compares them with SBA and

ML/statistical techniques. Chapter 7 proposes four classification techniques based

on ensemble methodology for software change prediction, while Chapter 8 proposes

a framework for dynamically allocating a fitness function to each data point in the

training set. SBC models on the basis of a bug’s change impact and maintenance ef-

fort have been evaluated in Chapter 9. Chapter 10 discusses sampling methods and

cost-sensitive learners for developing efficient change prediction models, when the

training dataset is imbalanced. Chapter 11 analyzes evolution-based metrics as pre-

dictors for determining software change. Finally, Chapter 12 states the conclusion

of the thesis.

Chapter 1: This chapter states the basic concepts of software quality, its various

attributes and software evolution. The relationship between software quality and

software evolution is also discussed. A literature survey of previous studies is also

28

Organization of the Thesis

included in the chapter. The chapter also states the objectives of the thesis.

Chapter 2: This chapter describes in detail the research methodology followed

in the thesis. A brief description of the predictor variables, classification algorithms,

validation methods, statistical tests and the datasets used in the work is provided. The

pre-processing steps before model development are also explained. It also summa-

rizes the performance measures used to evaluate the developed models.

Chapter 3: This chapter reviews 34 primary studies, which develop prediction

models for ascertaining change-prone nature of a class or which determine change

impact of an incoming software change request. Research Questions (RQs) have

been formulated that summarize the empirical evidence with respect to predictors,

experimental settings, categories of data analysis algorithms, predictive performance

of ML techniques, statistical tests and possible threats to validity in these studies.

The chapter also discusses the literature gaps in the domain.

Chapter 4: This chapter deals with construction of software change prediction

models using 11 ML techniques (C4.5, RF, Multilayer Perceptron with Backprop-

agation (MLP-BP), MLP with Conjugate learning (MLP-CG), Group Method of

Data Handling (GMDH), AB, LB, NB, BG, SVM, Classification and Regression

Tree (CART)) on six open-source datasets. The results of ML techniques are also

compared with the statistical technique, LR. The performance of the investigated

techniques have been compared statistically using different performance measures.

Chapter 5: This chapter first reviews 91 primary studies from January 1992 to

December 2017, which have used SBA in the domain of SEPM. The studies were re-

stricted to four software attributes: software effort, defect-proneness, maintainability

and change-proneness. The capability of SBA used in literature have been assessed

and the chapter summarizes the trends with regard to the use of SBA for SEPM.

Thereafter, the chapter analyzes the capability of several SBA (CPSO, Genetic Al-

gorithm Based Classifier Algorithm with adaptive discretization intervals (GA-ADI),

29

Organization of the Thesis

Genetic Algorithm Based Classifier with Intervalar rules (GA-Int), Memetic Pitts-

burgh Learning Classifier System (MPLCS), X-Classifier System (XCS), SUpervised

Classifier System (SUCS), Hierarchical Decision Rules (HIDER) and Gene Expres-

sion Programming (GEP)) for developing change prediction models. The results have

been empirically validated using 14 open-source datasets (Eclipse, PMD, Subsonic,

Simutrans, Frinika, Jmeter, Celestia, Glest, Apollo, AVISync, AOI, DSpace, DrJava

and Robocode). The performance of the developed models have been assessed using

G-mean1 and Balance performance measures. The capability of the investigated SBA

is also compared with a traditional statistical method Linear Discriminant Analysis

(LDA), and ML techniques (C4.5, SVM, CART and MLP-CG).

Chapter 6: This chapter evaluates the effectiveness of four hybridized versions

of SBA (Decision Trees with Genetic Algorithms (DT-GA), Particle Swarm Opti-

mization with Linear Discriminant Analysis (PSO-LDA), Neural Net Evolutionary

Programming (NNEP) and Genetic Fuzzy System Logitboost (GFS-LB)) for con-

structing software quality models which predict the change-proneness attribute of

a class. Six application packages of Android dataset have been used for empirical

validation. Apart from evaluating their capabilities, the chapter also assesses the

CPU time taken by these techniques. Furthermore, a comparison with 6 SBA and

5 ML/statistical techniques (C4.5, SVM, CART, ML-CG, LDA) is conducted on the

basis of predictive capability and CPU time. The trade-off between CPU time and

predictive performance of all the investigated techniques is also performed.

Chapter 7: This chapter proposes four classification algorithms based on ensem-

ble methodology, namely, Majority Voting Ensemble Classifier (MVEC), Weighted

Voting Ensemble Classifier (WVEC), Hard Instance Ensemble Classifier (HIEC) and

Weighted Voting Hard Instance Ensemble Classifier (WVHIEC). The proposed clas-

sifiers were built by aggregating the votes of seven fitness-based CPSO classifiers.

The votes of constituent classifiers were given appropriate weights based on their ac-

30

Organization of the Thesis

curate predictions or the ability to predict “hard instances”. The capabilities of the

four proposed classifiers were compared with their constituent classifiers and with

four ML ensemble techniques (RF, BG, AB and LB). Ten open-source datasets have

been used for empirical validation.

Chapter 8: This chapter proposes that different fitness functions might be used

for various subsets of a dataset, rather than a uniform fitness function for the entire

dataset, while using a search-based algorithm such as CPSO for predicting change-

proneness. A novel framework named ASOF for predicting a dynamic fitness func-

tion for each instance of the dataset is validated. The framework predicts one amongst

the seven investigated CPSO fitness variants, viz. accuracy based CPSO variant, pre-

cision based CPSO variant, G-mean1 based CPSO variant, G-mean2 based CPSO

variant, Balance based CPSO variant, F-measure based CPSO variant or G-measure

based CPSO variant for predicting change-prone nature of an OO class. The de-

cision of the framework is based on structural characteristics of an OO class. The

ASOF framework is empirically validated on 15 popular open-source datasets and

the results are statistically evaluated. The results of the proposed framework are also

compared with nine baseline techniques.

Chapter 9: This chapter proposes categorization of software bugs into three dif-

ferent levels (low, moderate and high) on the basis of two bug characteristics: main-

tenance effort and/or change impact. The chapter first ascertains the effectiveness of

SBC models developed using 6 classification techniques (MLP-BP, LB, NB, BG, RF,

LR) for categorizing software bugs on the basis of a) their maintenance effort; b) their

change impact values and c) the product or maintenance effort and change-impact.

Thereafter, the three categories of models are compared amongst themselves using

Area Under Receiver Operating Characteristic Curve (AUC) and accuracy values.

Chapter 10: This chapter focuses on investigation of methods for developing

effective software change prediction models from imbalanced datasets. The chap-

31

Organization of the Thesis

ter first evaluates the capabilities of three sampling methods (SMOTE, Resampling

with replacement, Spread Subsample) and MetaCost learners when used with six

ML techniques (MLP-BP, NB, RF, AB, BG, LB) for dealing with unbalanced data.

Thereafter, the best sampling method amongst the three investigated sampling meth-

ods is compared with MetaCost learners. The models are developed using both ten-

fold cross-validation and inter-release validation on three Android application pack-

ages (Bluetooth, MMS, Calendar) and three Apache datasets (IO, Net, Log4j). The

chapter evaluates the obtained results using traditional performance measures such

as accuracy, sensitivity and precision as well as stable performance measures.

Chapter 11: This chapter first provides an overview of the trends of OO met-

rics corresponding to four dimensions viz. coupling, inheritance, size and cohesion.

Thereafter, the chapter focuses on evaluating the best set of predictors for determining

change-prone nature of classes in an OO software. The chapter ascertains the suit-

ability of a new category of metrics, namely, evolution-based metrics proposed by

Elish and Al-Khiaty [1]. It evaluates three other scenarios for prediction of change-

prone classes, i.e. the use of only OO metrics, the use of combined metric suite which

includes OO metrics and evolution-based metrics and the use of ICP metric proposed

by [32]. The classification techniques used in the chapter include LR, MLP-BP, LB,

AB, BG, RF and NB.

Chapter 12: This chapter summarizes the conclusion of the work performed and

lists few directions for future work.

32

Chapter 2

Research Methodology

2.1 Introduction

In order to achieve our objectives and perform reliable experiments, we need to fol-

low a systematic procedure. Research methodology is the well-defined sequence of

steps that are required for conducting effective empirical experiments. This chapter

explicitly states the overview of the research process and the methodology followed

in the thesis. The chapter is organized as follows: Section 2.2 states the research

process for conducting empirical experiments. Section 2.3 states the definition of the

research problem, while section 2.4 states the literature survey conducted in order

to provide an overview of the existing literature. Section 2.5 defines the dependent

and independent variables used in the experiments conducted in subsequent chap-

ters. Section 2.6 describes the functioning of the various data analysis techniques

used in the thesis along with their parameter settings. Section 2.7 illustrates the pro-

cess of empirical data collection while section 2.8 describes the data preprocessing

steps. Section 2.9 discusses model development and validation. Thereafter, the per-

formance measures (Section 2.10) and statistical tests (Section 2.11) are discussed.

33

Research Process

2.2 Research Process

Research process systematically summarizes the steps conducted to investigate a re-

search problem at hand. An illustration of the various steps of the research process,

which are followed in the subsequent chapters of this thesis is provided in Figure 2.1.

These steps are further elaborated into subsequent sections.

Figure 2.1: Research Process

2.3 Definition of Research Problem

To begin our research, we need to specifically state and define the research problem.

The problem at hand is specified in the form of RQs. The main objective of con-

34

Literature Survey

ducting a research experiment is to find answers to the investigated RQ’s. The RQ’s

addressed in the current thesis are stated below:

1. What is the existing state (current trends and research gaps) of available litera-

ture studies in the domain of software change prediction?

2. What is the performance of different categories of classification techniques

(statistical, ML, SBA and HBT) for developing software change prediction

models?

3. Which methods can be used by the research community and software prac-

titioners for developing effective change prediction models from imbalanced

data?

4. What framework can be used to assign a change impact level to a software bug

on the basis of its description?

5. What are the best set of predictors for determining the change-prone nature of

a class in an OO software?

2.4 Literature Survey

A survey of existing related studies is essential to understand the problem. It also pro-

vides us with information about the extent to which the research problem has been

investigated by previous studies. Various researchers in the past have developed mod-

els for predicting change-prone nature of a class [1–5, 27–31, 33–35, 78]. The stud-

ies successfully establish the relationship between OO metrics and change-proneness

attribute of classes. Furthermore, the studies confirm the effective use of change pre-

diction models in various commercial and open-source software datasets. Software

practitioners can use these models for efficient resource allocation of limited project

35

Define Variables

resources such as its budget, effort and time to the identified change-prone classes so

that good quality software products are delivered. Therefore, it has been established

in literature that developing effective change prediction models is an essential and

crucial activity for improving software quality.

2.5 Define Variables

In order to develop prediction models, we need to define two types of variables i.e.

the dependent variable and the independent variable. The dependent variable (target

variable) is the software attribute we would like to predict. It depends on the set

of predictors (independent variables) and varies with the variation in the predictors.

This thesis explores two dependent variables i.e. change-proneness and change im-

pact levels. On the other hand, the independent variables are the predictors which

are capable of predicting the dependent variable and are independent in nature, i.e.

they are stand-alone and are not affected by the other factors/variables that we are

analyzing. We intend to develop models which can study the change in the inde-

pendent variables and predict the dependent variable. We explore three categories of

independent variables in this thesis namely OO metrics, evolution-based metrics and

set of relevant words from textual content of bug descriptions.

2.5.1 Object-Oriented Metrics

Relevant literature reveals wide use of OO metrics for developing models for de-

fect prediction, maintainability prediction or change prediction. These metrics are

representatives of various characteristics of a software such as coupling, reusability

through inheritance, cohesion, size etc. as shown in Table 2.1. It is important to

monitor and comprehend these metrics in order to gain a better understanding and

36

Define Variables

effectively administer and supervise a software product.

Table 2.1: OO Metrics depicting OO Characteristic

OO Characteristic Definition OO Metrics
Coupling Coupling represents the interdependence of a class on other

classes.

CBO, RFC, Ca, Ce, IC,

CBM
Cohesion Cohesion signifies the strength of the relationship between a

class’s methods and its data members.

LCOM, CAM, LCOM3

Inheritance Inheritance signifies the characteristics of a descendant class

by which it inherits properties of its ancestor class.

NOC, DIT, MFA

Size This characteristic signifies the size of a class in terms of

number of methods, number of source code lines and so on

WMC, NPM, SLOC,

AMC
Composition This characteristic represents the re-usability of a user-

defined class as an instance of another class. It is commonly

referred to as has-a relationship.

MOA

Encapsulation This characteristic signifies the hiding of irrelevant informa-

tion about an object in order to reduce complexity and in-

crease efficiency.

DAC

The OO metrics used in the thesis are summarized below:

• The CK metrics suite [16], as discussed in Chapter 1 consists of six OO met-

rics, WMC, NOC, DIT, CBO, LCOM and RFC. The CK metrics suite has been

widely used for predictive modeling tasks in literature studies [1, 30, 79–82].

• We also analyze the QMOOD metrics suite, which includes MOA, DAM,

MFA, NPM and CAM. This metrics suite has been previously validated by

Eski and Buzluca [27] and Olague et al. [83] for change prediction and defect

prediction tasks respectively.

• Metrics proposed by Martin [23] for coupling (Ca and Ce) are also analyzed

in the thesis. Other metrics evaluated in the thesis are AMC, SLOC, LCOM3

(proposed by Henderson [15]), IC and CBM.

37

Define Variables

Table 2.2: Independent Variables

OO Metric Acronym Definition Source
Lack of Cohesion

amongst Methods

LCOM It represents a count of pairs of methods of a spe-

cific class that does not share any of the class’s

members and are hence not related.

[16]

Coupling Between

Objects

CBO It represents the number of coupled classes to a

specific class.

[16]

Weighted Methods of

a Class

WMC It is the sum of all method complexities. A com-

plexity value 1 is allocated to each method, thus

it is a representative of number of a class’s meth-

ods.

[16]

Response For a Class RFC It estimates the number of methods which re-

spond if a specific class receives a message.

[16]

Depth of Inheritance

Tree

DIT It represents the maximum level of the class in

the inheritance tree.

[16]

Number of Children NOC It counts the number of immediate subclasses. [16]
Cohesion Amongst

Methods

CAM It estimates the connectivity amongst class meth-

ods on the basis of their parameter list. A sum-

mation of different parameter types used by all

methods of a class is divided by the product of

total count of methods of a class and the total

number of different parameter types.

http://www.

scitools.

com/features/

metrics.php

Lack of Cohesion

amongst Methods 3

LCOM3 It is computed as:

(1
v

∑v
i=1 λ(vi))−m
1−m

where m: no. of methods; v: no. of attributes; λ

(v): No. of methods that access variable v

[15]

Afferent Coupling Ca It represents the count of classes using a specific

class (fan-in) . It can also be termed as export

coupling.

[23]

Efferent Coupling Ce It represents the classes which are used by a spe-

cific class (fan-out). It can also be termed as im-

port coupling.

[23]

Measure of functional

Abstraction

MFA It is computed as the ratio of inherited methods

to the total number of accessible methods of a

class.

http://www.

scitools.

com/features/

metrics.php

38

http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php

Define Variables

OO Metric Acronym Definition Source
Average Method

Complexity

AMC It computes the average number of java byte

codes as a representative of method size.

http://www.

scitools.

com/features/

metrics.php

Number of Public

Methods

NPM It counts the number of public methods of a

class.

http://www.

scitools.

com/features/

metrics.php

Source Lines of Code SLOC It counts the number of lines in the java binary

code of the class.

http://www.

scitools.

com/features/

metrics.php

A detailed definition of these metrics is provided in Table 2.2. The primary rea-

son for selection of these OO metrics is that they have been conventionally used

and are widely accepted for predictive modeling tasks in the software engineering

community [1, 27, 30, 79–83]. However, there have been only few studies which

evaluate the change-proneness attribute on the basis of OO metrics. But, a related

area with change-proneness prediction is prediction of defect-prone classes. Accord-

ing to a review conducted by Radjenovic et al. [84] on 106 defect prediction studies,

the most commonly used OO metric suite was the CK metrics suite. Moreover, the

study claims that the popularity of CK metric suite has been “evenly distributed over

the years and there is no sign that this will change in future”. Thus, this thesis also

uses the CK metrics suite for determining change-prone classes. Moreover, an exten-

sive study by Lu et al. [28] evaluated 62 OO metrics for determining change-prone

classes and found coupling, cohesion and size metrics like CAM, LCOM, CBO and

SLOC to be effective predictors of change. Eski and Buzluca [27] used CK as well

as QMOOD metric suite for predicting change and found them to be efficient predic-

tors of change. Therefore, we use an effective group of OO metrics for determining

change-prone classes.

39

http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php
http://www.scitools.com/features/metrics.php

Define Variables

2.5.2 Evolution-based Metrics

Apart from OO metrics which are representative of the design of a class, other metric

suites which quantify alternative dimensions may be useful for improving the accu-

racy of change prediction models. One such metrics suite is evolution-based metrics

suite, which is proposed by Elish and Al-Khiaty [1]. The evolution-based metrics

suite quantifies the release by release history of changes in a class. These metrics

are representative of evolution characteristics of a class over all its previous releases

and are important in order to understand the progression and change-prone nature of

a class. The detailed description of these metrics is present in Chapter 11.

2.5.3 Bug Descriptions

In order to analyze the changes required to correct a specific software bug, we need

to assess the corresponding bug descriptions. The bug descriptions can be extracted

from bug reports. Software bug reports can be obtained from change logs, which

are present in version control systems such as Git. The textual contents of the bug

descriptions (unstructured data) are mined to retrieve the top-k words (structured

data), which act as independent variables for analyzing the change impact of a bug.

The process of extracting relevant words from textual descriptions of bug reports is

described in Chapter 9.

2.5.4 Dependent Variables

In this thesis, we aim to develop models to predict two dependent variables: change-

proneness and change impact levels.

• Change-Proneness: This attribute predicts whether a specific module/class of

software will evolve, i.e., require changes after the software product goes into

40

Selection of Data Analysis Methods

its operational phase. It is a binary attribute which predicts whether a mod-

ule/class is change-prone or not. In order to comprehend the change-prone na-

ture of a class, we analyze two different versions of the same software, say an

old version and a more recent new version. A class is termed as change-prone

if certain SLOC have been added, deleted or modified in the corresponding

class, in the new version of the software as compared to the old version, other-

wise it is termed as not change-prone. Previous studies have also characterized

the change-proneness dependent variable in the same way [5, 28]. Taking into

account the change in SLOC is a practical measure for determining the binary

variable change-proneness.

• Change Impact Levels: This attribute predicts the level of change impact in-

troduced while correcting a software bug. The predicted level depends on the

number of classes affected during correction of a software bug. It is an ordinal

variable with three possible values: “low”, “moderate” and “high”. It should be

noted that the number of classes impacted is a continuous variable. We convert

this continuous variable into ordinal variable by binning the values into three

equal sized categories according to their empirical distribution [73, 85].

2.6 Selection of Data Analysis Methods

In this thesis, we have used several statistical techniques, ML techniques, SBA and

HBT for developing prediction models. Statistical techniques are traditional algo-

rithms that model the underlying relationship between predictors and the target vari-

able using mathematical equations. ML techniques learn from historical data to

model the relationships between the independent and the dependent variables and

predict the outcome of future instances. SBA are effective in solving optimization

41

Selection of Data Analysis Methods

problems. HBT combine the advantages both i.e. statistical / ML techniques along

with SBA to provide a single algorithm for classification. Apart from these, we also

proposed fitness-based ensemble classifiers. Table 2.3 states the techniques explored

in the thesis belonging to each category.

Table 2.3: Data Analysis Techniques

Category Techniques
Statistical LR, LDA
ML Techniques Decision Trees (C4.5, CART), Ensemble Learners (BG, AB, LB, RF), Multilayer Percep-

tron (Back-propagation (MLP-BP) and Conjugate Learning (MLP-CG), GMDH), NB,

SVM
SBA CPSO, Genetic Algorithm based Classifier System (GA-Int and GA-ADI), HIDER,

Learning Classifier Systems (XCS, SUCS, MPLCS), GEP
HBT DT-GA, PSO-LDA, GFS-LB, NNEP
Fitness-based Ensem-

ble Classifiers

MVEC, WVEC, HIEC, WVHIEC, ASOF

We now state a brief description of all the data analysis techniques used in the

thesis.

2.6.1 Logistic Regression

LR is used to estimate the percent of variance in the dependent variable due to the

independent variables [86]. There are two types of LR analysis, a) Univariate & b)

Multivariate. While the univariate LR analysis is used to find the relationship of each

independent variable with the dependent variable, multivariate LR analysis is used

to develop models using the complete set of independent variables. The multivariate

LR analysis aids in construction of prediction models to determine the dependent

variable. As multivariate LR models use a number of independent variables, there

are two methods for selecting specific independent variables: forward selection and

backward elimination [86]. The forward selection procedure selects a variable at each

step to be included in the model. On the contrary, the backward elimination model

42

Selection of Data Analysis Methods

initially starts with all the variables, and then eliminates one variable at a time until

the desired model is obtained. This thesis uses the backward elimination method.

The formula for univariate LR analysis is defined as follows:

Odds =
p

1− p
(2.1)

Here, p is the probability of a class being change-prone. The formula is derived

as the simple logistic model is based on the linear relationship between a numeri-

cal predictor variable and the natural logarithm (ln) of an event (a class detected as

change-prone).The equation for simple logistic model is defined as follows:

ln(Odds) = α + βx (2.2)

Here, x is the predictor variable, α corresponds to y-intercept and β corresponds to

the slope. From (2.1) and (2.2), we get the univariate formula:

p =
ef(x)

1 + ef(x)
(2.3)

where f(x) = α+β. Hence, the univariate formula can be extended to the multivari-

ate formula as follows:

p =
eα+β1x1+β2x2+...+βnxn

1 + eα+β1x1+β2x2+...+βnxn
(2.4)

where, xi, 1 ≤ i ≤1 are predictor variables.

The following statistics are reported for each significant metric:

• Maximum likelihood estimation (MLE) and coefficients (βi): MLE is a well-

known method for estimating the coefficients of a model. The likelihood func-

tion (L) estimates the probability of observing the set of target values. The

43

Selection of Data Analysis Methods

MLE method aims to find the coefficient values, such that the log of likelihood

function is maximized. A large coefficient value indicates higher impact of the

predictors on the target variable [86].

• Odds Ratio (OR): It is computed using βi. The formula is as follows:

OR = eβi (2.5)

where β is the coefficient. It is computed as the ratio of the probability of the

occurrence of an event (a class is change-prone), over the probability of non-

occurrence of an event. An ‘odds ratio’ with a value of three indicates that the

target variable is increased three times when there is one unit increase in the

predictor variable [86].

• Statistical significance (Sig.): It is a determinant of the significance of the co-

efficient. A larger significance value indicates lower impact of the predictor

variables on the target variable. Statistical significance is computed using two-

tailed p-value, obtained using the Wald test (W). It is the ratio of the coefficient

of a predictor variable to its standard error (SE) [86].

2.6.2 Linear Discriminant Analysis

LDA is a technique which can be used for allocating classification labels to a set

of instances by using a number of predictors. LDA uses training data to build a

set of determinant functions, which are linear functions of predictor variables. The

following equation depicts a determinant function (di):

di = wi1x1 + wi2x2 ++ wijxj + bi (2.6)

44

Selection of Data Analysis Methods

Here wij represent discriminant coefficients; xj represent the predictor variables, bi

is a constant for discriminant function i; i = 1 to k for a k-class problem. The determi-

nant functions are used for predicting the classification label of an unknown instance.

For a k-class problem, i.e. a problem in which an instance can be allocated one of the

k-classes; k determinant functions are computed for each instance with an unknown

label. The determinant function of a class ’i’, which obtains the highest value for the

unknown instance is allocated as its label. In case of predicting change-prone nature

of classes, the value for k is 2.

2.6.3 Multilayer Perceptron

Multilayer Perceptron (MLP) are artificial neural networks which map a set of inputs

from the input layer to the desired set of outputs using a number of hidden layers

[87]. They are feedforward networks which simulate the biological neurons. MLP

training with backpropagation (MLP-BP) is the most common mechanism, where

two passes take place i.e. forward and backward through the network. In the forward

pass, the inputs are applied and the output is produced, which is the actual response

of the network. During the process, the synaptic weights of the network are adjusted.

The backward pass propagates the error signal through the network which is the

difference of actual output and the desired output. The weights of the network are

again readjusted so that the actual response becomes closer to the desired response.

The parameter settings for MLP-BP used in the thesis are default parameter settings

of the Waikato Environment for Knowledge Analysis (WEKA) tool [88]. A learning

rate of 0.3, momentum of 0.2 and a validation threshold of 20 are the parameters used

for MLP-BP.

MLP-CG is a feedforward neural network which also uses the backpropagation

algorithm to adjust the weights. However, there is a slight modification. The direc-

45

Selection of Data Analysis Methods

tion of movement in the backpropagation algorithm is the negative of the gradient of

error. Though, it is effective in obtaining minimum error, but fast convergence may

not be possible.The conjugate gradient algorithm is used for performing search along

conjugate directions. This leads to faster convergence as compared to backpropaga-

tion algorithm.

GMDH is a polynomial self-organizing network. The connections between the

neurons and the number of layers in the GMDH network is not fixed and is optimized

to achieve the best accuracy without overfitting. THE GMDH performs inductive

procedure, which selects the best among complicated polynomial nodes by means

of an external criterion. The process of finding the best solution in GMDH involves

analyzing various subsets of the base function (also called partial models). There is

a gradual increase in the number of these partial models to find a structure whose

complexity is optimal and which satisfies the minimum value of the external criteria.

This process is called self-organization of models. The parameters used for GMDH

are 20 as the upper limit of network layers and a maximum polynomial order of 16.

2.6.4 Decision Trees

DT predict the label of instances by cataloging the instances down the tree, from

the root node to the leaf node. An instance is traversed down the tree on the basis

of values of its features (predictors). The leaf node of a decision tree provides the

classification label of the instance. A DT identifies the most significant predictor that

provides the best split on the basis of the training instances. Different decision trees

vary on the basis of the splitting criteria they use. DT build accurate and efficient

models which are easily interpretable. The DT can be easily converted into rules.

This thesis uses two DT: C4.5 and CART. The splitting criteria used by C4.5 is gain

ratio and the splitting criteria used by CART is Gini index.

46

Selection of Data Analysis Methods

The parameter settings for C4.5 decision tree method include confidence factor

of 0.25, two instances per leaf and prune factor as true. The parameter settings for

CART involves using a maximum tree depth of 90.

2.6.5 Ensemble Learners

Ensemble learners use an aggregation of multiple models to output correct and ro-

bust responses. This thesis uses four ML ensembles: BG, AB, LB and RF. All four

techniques create several modified training samples from the original training data to

create several models. The final output is produced after aggregating the results of

all the created individual models.

BG, also known as bootstrap aggregating is a technique which constantly im-

proves the developed classification models by creating a number of versions of the

training set. Breiman [89] proposed creating bootstrap duplicates of the training data.

The training sets are created with replacement. Therefore, a new function is trained

for each one of the training set. In order to predict a class, the result of majority

is output. The parameter settings for BG technique include Reduces Error Pruning

(REP) tree as the classifier, a bag size percent of 100 and 10 iterations.

AB is an ensemble technique which uses the concept of boosting. The algorithm

provides a weighted sum of various weak learners to construct an output which is of

an efficient boosted classifier. The initial step involves providing equal weights to all

the classifiers [88]. However, with each iteration, the weights are adjusted in such

a manner that the algorithm focuses on the hard to learn examples to improve the

efficiency of the boosted classifier. The parameter settings for AB used in the thesis

are decision stump classifier, 10 iterations and a weight threshold of 100.

LB is another boosting method. The LB technique uses AB technique for additive

model and applies the cost function of the LR technique [90]. The LB parameters

47

Selection of Data Analysis Methods

used in the thesis are 10 iterations, 100 as weight threshold, decision stump classifier

and a likelihood threshold of −1.79.

RF is a collection of decision trees at the training stage [91]. It predicts the label

of a particular instance by taking the mode of all the individual decision trees which

are created randomly. This property helps in overcoming the overfitting characteristic

of a DT. We used a RF of 100 decision trees in this work.

2.6.6 Naive Bayes

NB is a probabilistic classifier which captures the relationship between the predictors

and the target variable. It is based on the assumption that various predictors are

conditionally independent and uses Bayes theorem [92]. If X is the set of predictor

variables and Y is the target variable, Bayes theorem can be defined by the following

formula:

P (Y |X) =
P (X|Y)P (Y)

P (X)
(2.7)

Here, P (X|Y) denotes the posterior probability or class conditional probability. It

represents the probability that X predictors are observed given that the target class is

Y. P (Y) is the prior probability of Y, which denotes any previous knowledge about

the chance that class Y is observed. P (X) represents the evidence i.e. the given

set of predictors. During the training phase of NB, one needs to learn all poste-

rior probabilities for all possible combinations of predictors (X) and target (Y). This

information is extracted from the training data. With the aid of these posterior prob-

abilities, an instance with unknown label may be classified by finding the target class

Y’, which would maximize the posterior probability P (Y ′|X ′). For example, if we

are given a test record with binary dependent variable: “change-prone” and “not

change-prone”, we compute the posterior probabilities of P (“Change− prone”|X)

48

Selection of Data Analysis Methods

and P (“Not Change − prone”|X), based on the information extracted from train-

ing data. In case the value of P (“Change − prone”|X) is greater than the value of

P (“Not Change − prone”|X), the record is classified as “Change-prone” or else

as “Not Change-prone”. The parameter settings used for NB techniques is kernel

estimator and supervised discretization.

2.6.7 Support Vector Machine

SVM is a classifier used for predicting the label of binary target variable. Each data

point is represented by an n-dimensional vector. A data point could belong to only

one of the possible target class. A linear SVM separates the two categories of data

points with the help of a hyperplane [93]. However, it may be noted that there may

be many hyperplanes that correctly segregate a given group of training data points.

In such a scenario, the SVM technique chooses the hyperplane which achieves the

maximum separation by selecting the hyperplane which has the largest margin. The

“margin” is defined as the summation of the shortest distance from the separating

hyperplane to the nearest data point of both categories. Such a hyperplane is chosen

as it is likely to generalize better and correctly predict “unseen” data points (test data

points).

It may be the case that the data points may not be “linearly-separable”. In such a

scenario, kernel function may be used to separate non-linear data. The kernel func-

tion aids the transformation of data into a higher dimensional space to make the

separation easy. This thesis uses the polynomial kernel function for separating data.

The parameter settings for SVM method include a c value of 100, an ε value of 0.001,

degree of 1, γ value of 0.01 and v value of 0.1.

49

Selection of Data Analysis Methods

2.6.8 Constricted Particle Swarm Optimization

CPSO is a variant of the Particle Swarm Optimization (PSO) algorithm. PSO is based

on the premises that an intelligent optimization solution can be achieved by collective

behavior without any centralized control [94]. Thus, PSO looks for solutions in a

distributed manner.

A PSO algorithm needs to keep track of three global conditions, i.e., a) the tar-

get or the function, which needs to be optimized; b) the global best (gbest), which

represents the best value obtained by any particle in the solution space so far; and

c) the stopping criteria, which states the number of iterations after which the algo-

rithm should stop, if the target value could not be attained. Also, each particle in

the PSO algorithm would contain a) the required data, which is representative of a

possible solution; b) the velocity value, which indicates the extent to which the data

can be modified; and c) the best solution i.e. the best value of the particle obtained

so far (pbest). Thus, a PSO algorithm surveys the search space looking for the most

favorable region.

The velocity (vt) of each particle at time t is updated in each iteration in accor-

dance with pbest, gbest, current position (xt−1) and current velocity (vt−1). However, it

is important to avoid search space explosion while looking for the optimum solution.

Clerc and Kennedy [95] suggested that the use of proper constriction coefficients

in order to do so. Thus, proper use of constriction coefficients (δ) of the PSO algo-

rithm, i.e. the use of CPSO can help in controlling the exploration versus exploitation

bias. Apart from the constriction coefficient, the algorithm uses two other parame-

ters: cognitive parameter (c1) and social parameter (c2). The cognitive parameter is

responsible for updating a particle’s position in accordance with its local best, while

the social parameter is responsible for updating a particle’s position in accordance

with the global best. The following equations are representative of the update in

50

Selection of Data Analysis Methods

velocity of a particle and the position of the particle:

vt = δ(vt−1 + c1(pbest − xt−1) + c2(gbest − xt−1)) (2.8)

xt = xt−1 + vt (2.9)

This work uses the following CPSO parameters for model development: 25 particles,

0.1 as convergence radius, 2.05 as maximum weights for c1 and c2, a maximum of 0.1

uncovered instances, 0.73 as δ, 0.1 as the threshold for indifference and a convergence

platform of width 30. The fitness function used by the CPSO classifier is the product

of sensitivity and specificity. These are performance measures which are explained

in Section 2.10.

2.6.9 Genetic Algorithm based Classifier System

Genetic Algorithm Based Classifier System (GAssist) uses GA for evolution of in-

dividuals which are representatives of the complete solution [96]. A chromosome in

a GA is representative of a classification rule, which is codified in the form of a bit

array. The genes of a chromosome are representative of attributes.

In order to represent real valued attributes, one needs to perform discretization

using proper number of intervals. Hence, the bits represent a discretization interval.

The traditional method used in GA is a set of rules where the antecedent is defined by

a prefixed finite number of intervals to handle real-valued attributes. Hence, the capa-

bility of these systems is dependent on the right selection of the intervals. Therefore,

we require a rule representation with adaptive discrete intervals. In GA-ADI, the in-

tervals are split and merged throughout the evolution process. The fitness evaluation

of individuals is done according to the proportion of correctly classified instances.

On the contrary, GA-Int uses intervalar rules.

51

Selection of Data Analysis Methods

The parameters used for GA-ADI and GA-Int in this work include 500 iterations,

4,5,6,7,8,10,15,20,25 as intervals for uniform discretization, 2 strata, 12 minimum

rule deletions and 4 as size penalty of minimum rules. The fitness function for both

the algorithms was the square of accuracy. The accuracy performance measure is

defined in Section 2.10.

2.6.10 Hierarchical Decision Rules

HIDER performs multiple runs of an evolutionary algorithm to formulate a set of

rules. Once the rules are defined, they are used to classify new instances [97]. It may

be noted that one must apply rules in the order they are obtained. Hence, HIDER pro-

duces a hierarchical set of rules. In accordance with the hierarchy, an instance whose

label is unknown will be classified by the kth rule only when the conditions of k-1

preceding rules are not matched by the instance. The rules are obtained sequentially

until the space is totally covered. When a new rule is formed, all training instances

that match the antecedent of the rule are deleted. The initial rules obtained by the

HIDER algorithms are the ones which cover more instances. Thereafter, the number

of predictors needed to test the remaining set of rules decreases. This thesis uses the

following parameter settings for HIDER: 100 as population size, 100 generations,

a mutation probability of 0.5, an extreme mutation probability of 0.05, a crossover

percentage of 80 and a penalty factor of 1. The fitness function used by HIDER is

defined as follows:

Fitness Function = 2(Num1 − Error(r)) +G(r) + Coverage(r) (2.10)

Here, Num1 represents the total number of instances processed by the rule, Error

denotes the error produced when an instance is not in the same class but is covered

52

Selection of Data Analysis Methods

by the rule. Coverage denotes the search space which is covered by a rule.

2.6.11 Learning Classifier Systems

A Learning Classifier System (LCS) is an adaptive system that is trained to perform

the best action given a set of inputs. While “input” is the set of predictors in the

classification context, “actions” corresponds to the predicted class label. An LCS

consists of several “condition-action rules”. For a particular set of input, an LCS

may find several rules which match the current input. Some of the matched rules

might be advocating a specific class label for the input, while other matched rules

might advocate some other class label. Thus, LCS computes, for each possible class

label, an average of the predictions of the classifiers advocating that class label, and

then chooses the label with the largest average. The prediction average is weighted

by its fitness. When the LCS predicts the class label with the largest average predic-

tion, the environment returns some amount of payoff (P). This payoff might be used

to alter the predictions in the training stage of LCS. Besides its prediction, each clas-

sifier maintains an estimate (Q) of the error of its predictions. The fitness of LCS is

adjusted by moving it closer to the inverse of error. With each iteration, high fitness

classifiers are reproduced over less accurate ones and the “offspring” are modified by

genetic operators such as mutation and crossover.

XCS uses a niche genetic algorithm with reinforcement learning where an ap-

propriate reward is given for each action by the system. The algorithm evolves as

a population of classifiers, where each classifier consists of a rule and parameters

for estimating the quality of the rule [98]. The GA in XCS is applied to the action

sets, rather than over all the population. First, it selects two parents from the actual

action set with probability proportional to fitness. Then, the parents are crossed and

mutated. The resulting offspring are introduced into the population. The parameter

53

Selection of Data Analysis Methods

settings used for XCS is this thesis are 1,00,000 explores, a population size of 6,400,

a crossover probability of 0.8, two-point crossover type, a mutation probability of

0.04, free mutation, roulette wheel selection, δ = 0.1, θmna = 2, GA subsumption

as true, θsub = 50.0, θga = 50.0, α = 0.1, β = 0.2, θdel = 50.0, 0.4 as size of tour-

nament, 10.0 as initial prediction, 0.0 as initial prediction error, 0.25 as reduction of

prediction error, 0.01 as initial fitness value, µ = 10.0, r = 1.0, m = 0.1. The fitness

function used by XCS is the inverse function of the error which can be calculated

according to the following formula [99]:

Error = 1/Reward(|Reward−Predcl|∗Probcl(c)+|θ−Predcl|∗(1−Probcl(c)))

(2.11)

Here Predcl denotes the prediction of the classifier and Probcl(c) denotes the proba-

bility of correct classification.

SUCS is designed for supervised environments. For SUCS, the training is per-

formed where each training instance is associated with a class. This is different from

XCS where reinforcement learning is performed. When an instance with input x is

presented during training, a match set is formed which consists of those classifica-

tion rules whose conditions match with the input x. All the classifiers in the match

set are divided into sets C or !C. All the classifiers in the match set which predict

the correct known class for input x (provided during training) are allocated to set C,

and all others to !C. In the testing phase, when an instance with input x is presented,

the system needs to predict the associated class. The predicted class is computed by

the weighted vote of all the classifiers in the match set. The weights are allocated in

accordance with fitness. The GA in SUCS is only applied to the correct set C . SUCS

selects two classifiers from set C with probability proportional to fitness and applies

crossover and mutation [98]. The parameter settings used for SUCS are same as the

parameter settings for XCS. The fitness function for SUCS is as follows, where v is

54

Selection of Data Analysis Methods

a constant:

Fitness Function = (
Number of Correct Classifications

Number of matches for a rule
)
v

(2.12)

A Pittsburg approach involves rule sets rather than individual rules. Memetic refers to

a combination of population based global search (an evolutionary algorithm) along

with cultural evolution in the search cycle (local refinement). MPLCS hybridizes

GAssist with local search algorithms such that it edits the classical rule set wise

operator so as to obtain the smallest set of rules that yield the maximum accuracy

while training [100]. The rule set wise operator evaluates all the candidate rules,

selects the parent rules and generates the offspring. This operator is integrated in the

crossover stage of GAssist. The parameters used for MPLCS in this work are 750

iterations, 0.05 as local search probability, 0.1 as rule set-wise crossover probability,

4 as the size of penalty rules and 5 rule ordering repetitions. The fitness function for

MPLCS is defined as follows:

Fitness Function = Exception Bits+Wt. ∗ Theory bits (2.13)

Here,Wt. assigns the weight for adjustment of exception and theory bits, Theorybits

symbolize the length of all classification rules which are alive and Exception bits

symbolize all examples which are wrongly classified or not classified at all.

2.6.12 Gene Expression Programming

According to Candida Ferreira, the GEP algorithm is similar to GA in terms of find-

ing an efficient solution in a vast search space of candidate solutions [101]. Both the

algorithms constantly improve their solutions with the help of various operators like

mutation, selection, recombination etc. However, there is a dissimilarity in the rep-

55

Selection of Data Analysis Methods

resentation of the candidate solutions for both the algorithms, while both the GA as

well as the GEP algorithm use chromosomes whose length is fixed throughout, in the

GEP algorithm the chromosomes are later represented as optimal expression trees

[101]. Ferreira adapted this system in order to incorporate a diverse range of mu-

tation, crossbreeding, transposition and recombination operators whose application

does not inhibit efficient translation of the chromosome into an accurate expression

tree. Thus, the advantage of the GEP algorithm is two-fold, a) at the initial stage

chromosomes are simple, linear and small objects which are easily handled while

performing various transitions and operations b) performing any operation on the

chromosome would lead to an accurate and precise expression tree [101]. These

specific traits make the GEP algorithm highly adaptable, efficient and fast.

A gene in the GEP algorithm consists of two parts, head and tail. Figure 2.2

demonstrates a GEP gene for the expression ((m + n) / (o * r)). The gene expression

tree can be encoded in Karva language by listing the nodes from the highest level to

the lowest level and from left to right [101]. The gene in Figure 2.2 can be encoded

as “/+*mnor”, where “/+*” is the head part and “mnor” is the tail part. A GEP

chromosome is composed of one or more genes of equal length. A linking function

is used to combine genes if required.

Figure 2.2: GEP Gene

The GEP algorithm starts with an arbitrary generation of the chromosomes. Each

chromosome of the population is evaluated by ascertaining its fitness function. The

56

Selection of Data Analysis Methods

best candidates are selected according to their fitness by performing the roulette

wheel selection. After selecting the good chromosomes, we perform reproduction by

applying the GEP operators (replication, mutation, transposition and recombination)

to produce new candidates with better traits. Thereafter, we prepare the chromo-

somes for the next generation and repeat the steps until a fixed number of iterations

or until we get the best solution from the population.

This thesis uses GEP with the following parameters: a population size of 50,

4 genes per chromosome, a gene head length of 8, 500 simplification generations,

addition as linking function, maximum generations of 2000, 0.04 as mutation rate,

0.1 as transposition rate, 0.3 as recombination rate and a fitness function of “number

of correct hits with penalty”.

2.6.13 Decision Trees with Genetic Algorithm

DT algorithms have a bias towards generality i.e. they are well suited for formulat-

ing rules that cover a large number of instances (large disjunct), but does not form

appropriate rules that are suitable for covering small number of instances (small dis-

junct). On the other hand, GA are robust and flexible search algorithms which tend to

cope with attribute interaction better than most rule induction algorithms. GA do not

get trapped in local minima and are more suitable for finding rules that cover small

number of instances.

DT-GA is a hybridized technique that combines the advantages of the base algo-

rithms. Although each rule that covers small number of instances covers just a few

examples, the set of all such rules may cover a large number of examples. Hence,

it is important that both types of rules, those which cover large instances and those

which cover small instances should not be ignored.

DT-GA performs training in two phases. In the first phase, C4.5 algorithm is run

57

Selection of Data Analysis Methods

and the resultant tree is converted into a set of rules. The second phase uses a GA

to discover rules covering small number of instances [102]. This thesis uses DT-GA

parameter settings as 2 instances per leaf, a confidence of 0.20, 10 as the threshold

for considering small disjuncts, 50 generations for GA, 200 chromosomes in the

population, a crossover probability of 0.7 and a mutation probability of 0.01. The

fitness function is the product of Sensitivity and Specificity performance measures

which are explained in Section 2.10.

2.6.14 Particle Swarm Optimization with Linear Discriminant

Analysis

PSO-LDA is a hybridized SBA, which uses PSO for feature selection and LDA for

model development. The reason behind such a hybridization is that LDA often suffers

from the small sample size problem when the number of dimensions of the data is

much greater than the number of data points. PSO is used to select the beneficial

features and to enhance the classification accuracy of LDA. PSO is a powerful meta-

heuristic technique which is capable of dealing with two conflicting objectives, i.e.

maximizing the classification performance and minimizing the number of features.

Hence it is capable of efficient feature selection.

The architecture of PSO-LDA first involves data pre-processing. Normalization

is performed and the range of each predictor is scaled to [0,1]. In case, an instance has

missing values, it is removed. Thereafter, each particle in the PSO algorithm is rep-

resentative of the solution i.e. the selected subset of predictors. The training dataset

along with the selected predictors is used in building the LDA classifier model. After

training the discriminant functions with the help of training data, the classification

accuracy is computed using the testing data. The local best and global best is com-

puted for each particle on the basis of fitness values. In case the termination criteria

58

Selection of Data Analysis Methods

are fulfilled, the algorithm stops otherwise the next iteration continues.

The parameters used for PSO-LDA are 400 as the upper limit of iterations, 150

non-improving iterations, 0.8 as cognition learning factor, 1.2 as social learning fac-

tor, an inertia weight of 0.5 and 15 particles. The fitness function is the accuracy

performance measure, which is discussed in section 2.10.

2.6.15 Genetic Fuzzy System LogitBoost

GFS-LB is a hybridized technique which uses Genetic Fuzzy Rule Learning for gen-

erating classification rules and the LB technique for combining the set of weak rules

into a strong classifier. Fuzzy rule base can be compared to a weighted combination

of weak hypotheses. LB combines low quality classifiers with a voting scheme to

produce a classifier better than any of its components.

A fuzzy rule assigns a class label to an instance with a specific confidence. Given

a particular set of predictors, a fuzzy rule outputs the class label and a number rep-

resenting the degree of confidence of the classification. While boosting fuzzy rules,

a single fuzzy rule can be fit on a set of weighted examples. The algorithm is repet-

itively performed for each rule in the base. The LB algorithm computes the number

of votes each rule is assigned and recomputes the weight of each instance if a new

rule is added to the base.

The Fuzzy classifier rules are developed using genetic learning in three stages.

The first stage is called “fuzzy rule generation” in which a population of several can-

didate fuzzy rules evolve [103]. These rules correctly classify the training instances.

Out of these rules, the one with the largest covering degree is added to the inter-

mediate rule base. In the second stage, all the training examples are re-weighted in

accordance with how well they are classified according to the new rule. The process

is repeated in iterations until the desired number of rules are obtained or a specific

59

Selection of Data Analysis Methods

classification accuracy has been obtained.

The parameters used for GFS-LB in this thesis are 5 labels and 25 rules in the

base. The fitness of a fuzzy rule is computed as the squared error between the desired

output and the logistic transform of the classifier’s output. A detailed description is

provided by [103].

2.6.16 Neural Net Evolutionary Programming

NNEP is a hybrid technique which uses an evolutionary algorithm to design the struc-

ture and optimize the weights of a product unit. A Product Unit Neural Network

(PUNN) is a feed-forward neural network which computes the weighted product,

where each input is raised to a power determined by a variable weight [104]. Such

units can learn polynomial terms. However, the error surface of PUNN is extremely

convoluted as small changes in exponents might result in large changes in the total

error surface. Hence, training of such networks becomes difficult.

Classical neural network training algorithms assume a fixed architecture. How-

ever, it is very difficult to know beforehand what the most suitable structure of the

network for a given problem will be. An evolutionary algorithm can be used to design

a nearly optimal neural network architecture of PUNN’s because error surface associ-

ated with neural networks has numerous local optima and plateaus. This justifies the

use of an evolutionary algorithm to design the topology of the network and to train

its corresponding weights [105]. The evolutionary process determines the number of

basis functions, associated coefficients and corresponding exponents in the model for

PUNN’s. The evolutionary algorithm begins a search with the initial population of

PUNNs. In each iteration, the population is subject to population-update along with

the use of replication and mutation operators.

The parameters used by NNEP are 6 hidden nodes and 200 generations. The

60

Empirical Data Collection

fitness function used by NNEP is as follows, where l(θ) is the Hessian matrix for

error function:

Fitness Function =
1

1 + l(θ)
(2.14)

2.6.17 Fitness-based Ensembles

SBA search for an optimum solution with the help of a fitness function. These

functions dictate the search process of an SBA. However, literature studies [46–49]

have ascertained that a variation in fitness function varies the result of the devel-

oped model. As ensemble learning techniques are robust and effective, we propose

an ensemble of different fitness-variants of a search-based algorithm. The detailed

description of the proposed fitness-based ensembles is provided in Chapters 7 and 8.

2.7 Empirical Data Collection

Data for empirical validation may be collected from industrial software, open-source

software or academic systems. Over the last few years, there has been a paradigm

shift, where the most common software datasets used for empirical validation have

been open-source datasets. The primary reasons for their popularity are ease of avail-

ability, cost-effectiveness, abundant support and ease of customization. This thesis

evaluates several open-source datasets, whose source code could be easily down-

loaded. We first describe the process of data collection and list the datasets used in

the thesis along with their characteristics.

We followed four main steps for data collection which are depicted in Figure 2.3.

In order to collect data, we need two releases of a software, a previous release and a

recent release. The source code of the releases was downloaded from either http:

//googlesource.com or http://sourceforge.net. The four steps are

61

http://googlesource.com
http://googlesource.com
http://sourceforge.net

Empirical Data Collection

explained in detail below:

Figure 2.3: Procedure for Data Collection

1. Computation of OO Metrics: OO metrics are extracted from the previous re-

lease of the software. As already discussed, these metrics are representative

of various OO characteristics like size, cohesion, inheritance etc. The met-

rics are computed with the help of two basic tools, i.e. either Understand

for Java or Chidamber and Kemerer Java Metrics (CKJM) tool. The Under-

stand for java tool is available at https://scitools.com and the CKJM

tool can be downloaded from http://gromit.iiar.pwr.wroc.pl/

p_inf/ckjm/metric.html. It may be noted that while the Understand

for Java tool computes metrics from source code, the CKJM computes metrics

from bytecode of compiled Java files. The tools may give metrics at method

level or for anonymous classes. However, we remove these metrics to obtain

62

https://scitools.com
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html

Empirical Data Collection

only “class level” metrics.

2. Preprocess Previous and Recent Releases: In this step, we preprocess both

the releases of the software to extract the common classes in both releases.

All classes which were present in the previous release but were deleted in the

recent release and all the classes which were newly added in the recent release

and were not present in the previous release are removed. Each common class

extracted in this step will represent a data point.

3. Computation of Change Statistics and ALTER: For each common class ex-

tracted in the previous step, we compute change statistics. Change statistics

include the SLOC inserted, SLOC deleted and SLOC modified in a class when

it progressed from previous release to recent release. We also compute the total

SLOC changes according to the following rules [5, 29]:

• Each inserted SLOC or deleted SLOC is counted as one SLOC change.

• Each modified SLOC is counted as two SLOC changes, a deletion fol-

lowed by an insertion.

After computing the total SLOC changes, we derive the ALTER variable. It is

a binary variable with two outcomes: “Yes” and “No”. An ALTER variable is

designated as “Yes”, if the total SLOC changes are greater than zero, otherwise

it is designated as “No”. In other words, an ALTER variable as “Yes” signifies a

“change-prone” class and an ALTER variable as “No” signifies a “not change-

prone” class. The computation of change statistics is done with two different

methods, which are stated as follows:

• With the aid of Defect Collection and Reporting System (DCRS) Tool

[106], which was developed by undergraduate students of Delhi Tech-

nological University. The tool was developed in Java language and is

63

Empirical Data Collection

used for collecting data from open-source repositories which use GIT as

the version control system. The DCRS tool analyzes the source code

of an open-source software by extracting change-logs. A change record

contains change information such as an identifier, commit timestamp, de-

scription of the change and a file listing of all the files which are modified

including the lines of changed code. Change statistics are extracted from

change logs. It may be noted that the DCRS tool also incorporates CKJM

tool for OO metrics computation.

• With the aid of “diff” command for differentiating between source files

and computing the change statistics. Common class files i.e. the ones

which have the same name in both the releases are compared with “diff”

command. As a result of the command change statistics are returned. In

order to use “diff” command, Configuration Management System (CMS)

tool was used [107]. It may be noted that if change statistics were com-

puted using CMS tool, we used Understand for Java tool for OO metrics

computation.

4. Assembling OO metrics and ALTER into Data points: In the final step, we

combine the OO metrics computed in Step 1 and the ALTER variable computed

in Step 3 to formulate data points for each common class. A data point is the

culmination of OO metrics and change statistics for a specific class.

This thesis uses several open-source software datasets, which belong to varied

domains. The primary objective for selecting datasets from varied domains was to

obtain generalized results. Moreover, the open-source nature of the datasets increases

the replicability of the results. Appendix A.1 states the various datasets along with

the analyzed versions, the number of classes and the percentage of changed classes

in each dataset. It also states the function of software datasets. It may be noted

64

Data Preprocessing

that three software datasets (Celestia, Glest and Simutrans) were developed in C++

language, while all other datasets were developed in Java programming language.

2.8 Data Preprocessing

We first analyze the descriptive statistics of various metrics of each dataset. Next,

we identify the outliers in each corresponding dataset. It is important for effective

model development to remove all the outliers from the data. Also, it is important to

eliminate noisy and redundant features to develop a good prediction model using a

feature selection method.

2.8.1 Descriptive Statistics

We report the descriptive statistics of each dataset corresponding to each OO met-

ric. This step helps in evaluating the characteristics of each dataset. We report the

following descriptive statistics:

• Minimum (Min.): This statistic reports the minimum value obtained by any

class for a specific metric.

• Maximum (Max.): This statistic reports the maximum value obtained by any

class for a specific metric.

• Mean: This statistic reports the average value obtained by all the classes in

a particular dataset for a specific metric. It is a measure of central tendency

which is computed by dividing the total value of all the elements in the dataset

by the total number of elements in the dataset.

• Median: This statistic reports the midpoint of the frequency distribution of all

65

Data Preprocessing

the classes in a particular dataset for a specific metric. It is a better representa-

tive of central tendency than mean, if the dataset has an outlier.

• Standard Deviation (SD): It is a measure of dispersion in the dataset. A low

value for standard deviation indicates that data points lie close to the mean.

However, a higher value of standard deviation indicates that the data points are

dispersed and spread out.

The datasets analyzed in the thesis (mentioned in Appendix A.1) are grouped

into three categories (“small”, “medium” and “large”) according to the number of

data points they contain. Datasets containing up to 200 data points are allocated to

“small-sized” category, those having data points in the range 201-500 are allocated

as “medium-sized”, while those having data points greater than 500 are designated

as “large-sized” datasets. We summarize the descriptive statistics observed for each

category of datasets by stating the range of values for each statistic in Appendix

A.2 (Table A.2-A.4). Thereafter, we summarize the following observations after

analyzing the descriptive statistics:

• The class size of different datasets ranged from 2-1,972 SLOC for small-sized

datasets, 1-8,8858 SLOC for medium-sized datasets, 1-6,764 SLOC for large-

sized datasets.

• The median DIT and NOC values indicate that the inheritance attribute was not

much used in the software systems (Median DIT: 0.00-2.00 (for all datasets),

Median NOC: 0.00 (small-sized), 0.0-4.0 (medium-sized) and 0.0-3.0 (large-

sized)).

• The maximum LCOM values in the datasets was high (upto 11,628 for small-

sized, upto 31,375 for medium-sized, upto 8,128 for large-sized) indicating

low cohesion in software datasets.

66

Data Preprocessing

2.8.2 Outlier Analysis

According to Barnett and Lewis [108], “an outlying observation, or outlier, is one that

appears to deviate markedly from other members of the sample in which it occurs”.

A critical step in data preprocessing involves outlier analysis. In order to provide

unbiased results, we effectively identified and removed all the outliers from each

dataset respectively. The outliers were identified using Inter Quartile Range (IQR)

filter of the WEKA tool [88], which is based on the IQR metric. The IQR metric is

computed as the difference between the upper quartile (Q3) and the lower quartile

(Q1). A data point will be considered an outlier, if any of its independent variable

value is an outlier i.e. if the value of any of the OO metric mentioned is an outlier.

The computation of IQR metric and outliers is defined as follows:

IQR = Q3 −Q1 (2.15)

An OO class is considered an outlier if any one of the following conditions hold for

any of the class’s independent variable (x′s). Here, Extreme Values Factor (EVF) is

6.0 and Outlier Factor (OF) is 3.0, the default values in WEKA tool.

Q3 +OF ∗ IQR < x ≤ Q3 + EV F ∗ IQR (2.16)

Q1 − EV F ∗ IQR ≤ x < Q1 −OF ∗ IQR (2.17)

2.8.3 Correlation based Feature Selection

The final step of this phase involves use of Correlation based Feature Selection (CFS)

method in order to eliminate noisy and redundant independent variables from each

dataset. According to Hall [109], the CFS method helps in identifying those inde-

pendent variables which are highly correlated with the change (i.e. the dependent

67

Model Development and Validation

variable) in the class but not amongst each other. The set of independent variables

extracted after application of the CFS method are important as they help in reducing

the dimensionality of datasets. The CFS method evaluates an exhaustive possible

combination of OO metrics, to select the best subset of OO metrics for change pre-

diction in each corresponding dataset. It may be noted that there is no single best

technique for selecting features in a dataset [110, 111]. A study by Hall and Holmes

[111], evaluated six attribute selection methods on 15 datasets and confirmed that

though there is no best method for attribute selection, the CFS method shows good

results. Furthermore, an extensive review conducted by Malhotra [17] of 64 defect

prediction studies from 1991 to 2013 points out that CFS was the most commonly

used feature selection in those studies. Since a large number of studies in literature

have successfully applied the CFS method for feature selection [5, 37, 112] while

developing predictive models using ML techniques, we use this method.

2.9 Model Development and Validation

This thesis develops software change prediction models in order to identify change-

prone nature of classes in future and yet unseen releases of the software. The predic-

tion models learn from historical data of a project to identify which classes are likely

to change in future releases. The models are developed using supervised learning

and use various data analysis techniques as discussed in Section 2.6. The training

data for the model consists of both the independent variables and the class labels

(“change-prone” or “not change-prone”). The data analysis technique helps in learn-

ing the model. After the model is constructed, it is validated. The validation data is

such that only the value of independent variables are provided to the model and the

model is supposed to predict a label. The predicted label is matched with the actual

label to ascertain the performance of the model. There are various ways to validate

68

Model Development and Validation

a predicted model. The validation methods used in the thesis are described in the

subsections below.

2.9.1 Ten-fold Cross Validation

This is a type of within project validation as the training data as well as the testing

data is derived from within the project. This validation method functions by per-

forming division of all the data points of a specific dataset into ten subsets [113]. The

method then performs ten iterations by using nine subsets for training and the tenth

subset for validation until we use each of the ten subsets once for validation purpose.

We use ten-fold cross validation technique as it reduces validation bias [37, 114].

Figure 2.4 depicts the ten-fold cross-validation method.

2.9.2 Inter-release Validation & Cross-project Validation

Inter-release validation and Cross-project validation are termed as external project

validation as the data used for training is obtained from a different release/ soft-

ware and the data used for testing is obtained from some other release or some other

software project. For developing models using inter-release validation, we train the

model using a specific release of the dataset and validate the model on another re-

lease of the same dataset. It should be noted that outliers are only removed from the

training datasets while developing inter-release validation models. In case of cross-

project validation, the training data belongs to a specific dataset, while the testing

data is extracted from altogether a different project. This approach is cost-effective

as it leads to availability of large validation data where validation data specific to the

project may be limited or scarce in nature [115, 116]. Figure 2.5a depicts the process

of inter-release validation while Figure 2.5b depicts cross-project validation.

69

Model Development and Validation

Figure 2.4: Ten-fold Cross Validation

Figure 2.5: External Validation

70

Performance Measures

2.10 Performance Measures

The performance of prediction models with binary outcomes can be evaluated with

the help of 2 X 2 confusion matrix shown in Table 2.4.

Table 2.4: Confusion Matrix

Observed

Predicted

Change-prone Not Change-prone

Change-prone True

Positive (TP)

False

Negative (FN)

Not Change-prone False

Positive (FP)

True

Negative (TN)

Various performance measures can be defined in terms of this binary variable confu-

sion matrix. The matrix has four terms: True Positives (TP) that determine the count

of change-prone classes which are correctly identified by the predictor; True Nega-

tives (TN) that determine the count of not change-prone classes which are correctly

identified by the predictor; False Positives (FP) that account for incorrectly identified

change-prone classes that are actually not change-prone in nature and False Nega-

tives (FN) that account for incorrectly identified not change-prone classes that are

actually change-prone in nature.

The various performance measures used in this thesis are defined as follows:

• Accuracy: It is defined as the percentage of correct predictions of change-prone

71

Performance Measures

and not change-prone classes.

Accuracy =
TP + TN

TP + FP + FN + TN
∗ 100 (2.18)

• Sensitivity: It is defined as the percentage of correctly predicted change-prone

classes amongst actual change-prone classes. It is also commonly known as

Recall or True Positive Rate (TPR) or Probability of Detection (PD).

Sensitivity =
TP

TP + FN
∗ 100 (2.19)

• Specificity: It is defined as the percentage of correctly predicted not change-

prone classes amongst actual not change-prone classes. It is also commonly

known as True Negative Rate.

Specificity =
TN

TN + FP
∗ 100 (2.20)

• Precision: It is defined as the percentage of correct change-prone classes

amongst total predicted change-prone classes.

Precision =
TP

TP + FP
∗ 100 (2.21)

• False Positive Rate: It is defined as the percentage of not change-prone classes

that are incorrectly predicted as change-prone amongst actual not change-prone

classes. It is also commonly known as Probability of False Alarm (PF).

PF =
FP

TN + FP
∗ 100 (2.22)

72

Performance Measures

• G-Mean1: It is defined as the geometric mean of sensitivity and specificity .

G−Mean1 =

√
TP

TP + FN
∗ TN

TN + FP
(2.23)

• G-Mean2: It is defined as the geometric mean of sensitivity and precision .

G−Mean2 =

√
TP

TP + FN
∗ TP

TP + FP
(2.24)

• G-Mean3: It is defined as the geometric mean of positive accuracy (Precision)

as well as negative accuracy (Negative Predictive Value).

G−Mean3 =

√
TP

TP + FP
∗ TN

TN + FN
(2.25)

• F-measure: It is defined as the harmonic mean of sensitivity and precision.

F −measure = 2 ∗ Sensitivity ∗ Precision
Sensitivity + Precision

(2.26)

• G-measure: It is defined as the harmonic mean of sensitivity and 100-PF.

G−measure = 2 ∗ Sensitivity ∗ (100− PF)
Sensitivity + (100− PF)

(2.27)

• Balance: It depicts the Euclidean distance between a pair of (Sensitivity, PF)

to that of an optimal value of Sensitivity =1 and PF=0.

Balance = 1−

√
(0− (PF

100
)2)(1− (Sensitivity

100
)2)

2
(2.28)

73

Statistical Analysis of Results

• AUC: Receiver Operating Characteristic (ROC) represents a plot between 1-

specificity values on the x-axis and recall values on the y-axis. A model is

considered favorable if it has higher area under the ROC curve. AUC is robust

in handling skewness in class distributions and the unequal cost of misclassifi-

cation errors [117].

A good change prediction model will have higher values for each of the discussed

performance measures. Previous studies in literature have criticized the use of tra-

ditional performance evaluators like accuracy and precision when evaluating models

using imbalanced datasets [110, 118, 119] . However, a number of studies in litera-

ture have discussed the favorability of using other robust performance measures for

assessing models developed using imbalanced data. Studies by Harman et al. [38],

Kubat and Matwin [120] and He and Garcia [118] support the use of G-Mean1 as

a performance measure for imbalanced datasets. Certain other studies by Menzies

et al. [121] and Li et al. [122] advocate Balance performance measure as an effi-

cient evaluator. Moreover, studies by Lessmann et al. [123], Shatnawi [57] and He

and Garcia [118] propose the use of ROC analysis, where AUC can be used as an

effective indicator for evaluating models developed using imbalanced data.

2.11 Statistical Analysis of Results

In order to assess and validate various hypothesis of the thesis, we use Friedman

statistical test which is followed by Wilcoxon signed rank post-hoc test. These tests

are non-parametric and thus can be effectively used without much inconvenience as

they do not depend on a number of assumptions of underlying data such as data

normality, homogeneity of variances etc., which are mandatory for parametric tests

[124]. Moreover, as reported by Lessmann et al. [123], very few studies evaluate the

74

Statistical Analysis of Results

results statistically while comparing various developed models. Thus, it is important

to conduct statistical analysis to strengthen the conclusion validity of the study.

2.11.1 Friedman Test

Friedman test is used to rank the performance of k techniques over multiple datasets

[125]. It is based on the assumption that the performance measures of techniques

computed over different datasets are independent of each other. The Friedman test

hypothesis can be stated as follows:

• Null Hypothesis (H0): The performance of different techniques is not statisti-

cally different from each other.

• Alternate Hypothesis (Ha): The performance of different techniques is signifi-

cantly different from each other.

The Friedman test is based on chi-square statistic (χ2), which can be computed as

follows:

• Step 1: For a specific dataset, sort the performance values of all the techniques

in descending order. Allocate ranks to each technique on the basis of perfor-

mance on the specific dataset. Rank ’1’ is designated to a technique with the

best performance and rank ’k’ is designated to the technique with worst per-

formance. In case two techniques have equivalent performance on the dataset,

assign average of the ranks that would have been assigned to the techniques.

• Step 2: Compute the total of ranks allocated to each technique on all

the datasets. The total ranks allocated to each technique is denoted by

R1, R2, R3,Rk.

75

Statistical Analysis of Results

• Step 3: Compute χ2 statistic according to the following formula:

χ2 =
12

nk(k + 1)

k∑
i=1

R2
i − 3n(k + 1) (2.29)

Here, Ri is the rank total of ith technique and n is the number of total datasets.

The degrees of freedom of Friedman test is k − 1. If the computed Friedman

statistic is in the critical region, we reject the null hypothesis and conclude

that the performance of different techniques is significantly different from each

other. We compute Friedman test statistic at α = 0.05.

2.11.2 Wilcoxon Signed Rank Test

This test is used either as a post-hoc test after the results of Friedman test are found

significant or as an independent test to compare the pairwise performance of two

techniques. The test is applicable only in the case when two different techniques are

evaluated on the same set of datasets [126]. The Wilcoxon test hypothesis can be

stated as follows:

• Null Hypothesis (H0): The performance of the two compared techniques is not

statistically different from each other.

• Alternate Hypothesis (Ha): The performance of the two compared techniques

is significantly different from each other.

In order to conduct the test, we first compute the differences among the related pair of

values of both the techniques. The resulting differences are ranked on their absolute

values. The ranks are allocated in accordance with the following rules.

• Remove the pairs where the difference amongst both the techniques is zero.

The number of reduced pairs is denoted as nr.

76

Statistical Analysis of Results

• Assign a rank of ’1’ to the smallest absolute difference and so on to all the nr

pairs.

• In case of a tie, an average of tied ranks is allocated.

Next, two variables R+ and R− are computed. R+ is computed as the sum of ranks

where the difference is positive (i.e. the first technique outperforms the second tech-

nique), while R− is computed as the sum of ranks where the difference is negative

(i.e. the second technique outperforms the first technique). Next, we compute the Z

statistic as follows:

Z =
Q− 1

4
nr(nr + 1)√

1
24
nr(nr + 1)(2nr + 1)

(2.30)

Here Q is the minimum of R+ and R−. If the Z statistic is in the critical region with

a specific level of significance, then we reject the null hypothesis. This means that

the performance of the two compared techniques are significantly different from each

other. We compute Wilcoxon test statistic (Z) at α = 0.05. The Wilcoxon test was

performed with Bonferroni correction to remove family-wise error. With Bonferroni

correction, a p-value is considered significant only if it is less than c (α value divided

by the total number of comparisons performed).

In order to evaluate the practical significance of obtained results, we also report the

effect size of the Wilcoxon test for significant cases. The effect size was computed

according to the following formula [127]:

Effect Size =
Z√

2 ∗Number of Matched Pairs
(2.31)

As indicated by Cohen [128], an effect size value of 0.1 is considered small, 0.3 is

considered medium and 0.5 is assumed to be large.

77

Chapter 3

Software Change Prediction: A

Systematic Review

3.1 Introduction

Change is crucial in any software to modify and upgrade it according to changing

requirements and technological advancements. It is important for software practi-

tioners to analyze the impact of a proposed change or predict change-prone classes

in order to efficiently plan resource allocation during testing and maintenance phases

of a software. Moreover, correct identification of change-prone classes in the early

phases of software development life cycle helps in developing cost-effective, good

quality and maintainable software. Developers become aware of the parts of a soft-

ware product which would require more effort and thus can optimize the available

resources to the fullest.

The existing literature with respect to software change prediction may be broadly

categorized as a) development of prediction models which ascertain the change-prone

nature of a class/module or b) the assessment of change impact of an incoming soft-

79

Introduction

ware change request. We need to systematically summarize and review the current

state of existing literature in order to ascertain the current trends in this domain. In

order to do so, we perform a systematic review of existing studies in the domain of

software change prediction. We investigate the following RQ’s:

• RQ1: Which predictors are useful for developing software change prediction

models?

• RQ2: What experimental settings are used while developing software change

prediction models?

– RQ2.1: Which techniques have been used for feature selection or dimen-

sionality reduction while developing software change prediction models?

– RQ2.2: What are the characteristics of datasets used for developing soft-

ware change prediction models?

– RQ2.3: What are the various validation methods used for developing soft-

ware change prediction models?

– RQ2.4: Which performance measures have been used for developing

software change prediction models?

• RQ3: What are the various categories of data analysis techniques used for

developing software change prediction models?

– RQ3.1: Which is the most popular category of data analysis technique

used for developing software change prediction models?

– RQ3.2: What are the various ML techniques used for developing software

change prediction models?

• RQ4: What is the predictive performance of ML techniques used for develop-

ing software change prediction models?

80

Review Procedure

• RQ5: What is the comparative performance of ML techniques for developing

software change prediction models?

• RQ6: Which statistical tests have been used for validating the results of soft-

ware change prediction models?

• RQ7: What threats to validity exist while developing software change predic-

tion models?

– RQ7.1 What are the various categories of threats which exist while devel-

oping software change prediction models?

– RQ7.2 What steps are required to mitigate the threats while developing

software change prediction models?

The review would also help in identification of research gaps and will provide

future guidelines to researchers and practitioners. The aim of the review is to sys-

tematically summarize the empirical evidence reported in literature with respect to

various metrics, datasets, data analysis techniques, performance measures, validation

methods and statistical tests used for software change prediction.

The chapter is organized as follows: Section 3.2 describes the review procedure

and the stages involved in conducting the review. Section 3.3 states the review pro-

tocol. Section 3.4 states the answers to each of the investigated RQ. Finally, section

3.5 discusses the future directions. The results of the chapter are communicated as

[129]

3.2 Review Procedure

According to the guidelines advocated by Kitchenham et al. [130], a review is con-

ducted in three fundamental stages. These stages are reportedly planning, conducting

81

Review Protocol

and reporting. The foremost step of the planning stage is to evaluate the necessity of

the review. As already discussed, the aim of the review was to assess and summarize

the empirical evidence in the domain of software change prediction. It intends to pro-

vide an overview of existing literature in the domain and would scrutinize possible

future directions. Once the need of the review is assessed, the planning stage involves

formation of RQs. Thereafter, a review protocol is formulated. The protocol includes

a detailed search strategy. The search strategy consists of the list of possible search

databases one intends to scrutinize, the search string and the criteria for including

and excluding the extracted studies. Apart from the search strategy, the protocol also

includes the criteria for assessing the quality of the candidate studies, the procedure

for collecting the relevant data from the primary studies and synthesis of the collected

data. The second stage involves the actual execution of the review protocol. In this

stage, all the relevant literature studies are extracted, scrutinized and the relevant data

is obtained. The final stage of the review reports the results of the investigated RQs.

The RQs are answered on the basis of the data extracted from primary studies.

3.3 Review Protocol

The review protocol includes the search strategy, inclusion and exclusion criteria

and the quality criteria for assessing the collected candidate studies. The following

sections describe the review protocol followed.

3.3.1 Search Strategy

In order to design our search terms, we divided the explored RQs into comprehensive

logical units. Moreover, terms were identified from paper titles, keywords and ab-

stracts. Thereafter, all equivalent terms and synonyms were compiled using Boolean

82

Review Protocol

OR, while distinguishable search terms were aggregated using Boolean AND. The

period of the search was chosen from January 2000 to December 2017. The search-

string for extracting candidate studies is as follows:

(“software product” OR “open source project” OR “software application” OR

“software system” OR “software quality”) AND (“change” OR “evolution” OR “main-

tenance”) AND (“impact” OR “prediction” OR “proneness” OR “classification” OR

“classifier” OR “empirical” OR “request”) AND (“machine learning” OR “statisti-

cal” OR “search-based” OR “evolutionary” OR “data analysis”)

We searched a number of prominent search-databases such as SCOUPUS, Wiley,

SpringerLink, IEEExplore, and ACM digital library. We also searched the reference

lists of the extracted studies. As a result of this comprehensive effort, we identified

79 relevant studies. These studies were then subjected to the inclusion and exclusion

criteria, as indicated in 3.3.2.

3.3.2 Inclusion and Exclusion Criteria

We use the following inclusion and exclusion criteria for selecting or rejecting a

study based on the RQs. After applying the inclusion and exclusion criteria, we get

37 candidate studies.

Inclusion Criteria

All studies which determine the binary change-proneness attribute of a class/module

or determine class stability with the aid of software metrics were included. We also

included studies which used IR techniques for analyzing the change impact of a

change request. Literature studies which reported and compared various data analy-

sis techniques amongst themselves for developing software change prediction models

were also included.

83

Review Protocol

Exclusion Criteria

Studies which were based on predicting other dependent variables such as fault-

proneness, maintenance effort, maintainability, change-count, amount of changes etc.

were excluded. Also, studies which predict ordinal dependent variables for change-

proneness such as low, medium, high etc. were not included as a part of the review.

Review studies, poster papers, PhD dissertations and studies with little or no empir-

ical analysis were excluded. In case a conference paper was extended in a journal,

only the journal version of the paper was included. Studies which used only design

patterns or code smells for determining change-prone nature of a class /module were

removed.

Also, studies which assessed the change-impact using IR techniques from only

the source code and not the change request were removed. Studies which used IR

techniques for only bug-localization were excluded.

3.3.3 Quality Criteria

It is important to analyze the significance and contribution of each selected study

in answering the various RQs. The 37 candidate studies were further assessed to

evaluate their quality, according to the quality questions presented in Table 3.1. Each

candidate study was given a Quality Score (QS) by aggregating the grades scored

by a specific study on the basis of the 10 quality questions stated in Table 3.1. For

each quality question, a study could be allocated three possible scores of 0 (No), 0.5

(Partly) and 1(Yes). Table 3.1 also lists the percentage of candidate studies acquiring

a grade of “Yes”, “Partly” and “No”. All the studies whose QS was less than 5 (50%

of the total quality score) were rejected. We rejected three studies [131–133]. After

this step, a total of 34 literature studies were selected, which were termed as primary

studies of our review. Relevant data pertaining to RQs was extracted from these

84

Review Protocol

studies and the obtained results are reported in Section 3.4.

Table 3.1: Quality Questions

Q# Quality Questions Yes Partly No
Q1 Are the objectives of the research /research questions clear and concise? 100% 0% 0%
Q2 Are the predictor variables clearly defined and described? 76% 19% 5%
Q3 Are the number and magnitude of datasets analyzed suitable? 70% 27% 3%
Q4 Does the study use feature selection /dimensionality reduction techniques? 32% 8% 60%
Q5 Are the data analysis techniques clearly defined and described? 57% 11% 32%
Q6 Is there any comparative analysis amongst various models /techniques? 73% 8% 19%
Q7 Are the performance measures clearly specified? 81% 14% 5%
Q8 Did the study perform statistical hypothesis testing? 46% 3% 51%
Q9 Does the study validate the proposed approach? Are the validation methods appropriate? 75% 3% 22%
Q10 Is there a description of threats to validity of research? 41% 8% 51%

Table 3.2: Primary Studies with Quality Score

Study

No.

Study QS Study

No.

Study QS

CP1 Liu & Khoshgoftaar 2001 [134] 6.5 CP18 Malhotra & Khanna 2015 [135] 8.5
CP2 Khoshgoftaar et al. 2003 [136] 6.5 CP19 Bansal 2017 [36] 9.5
CP3 Tsantalis et al. 2005 [32] 8 CP20 Catolino et al. 2017 [137] 8
CP4 Sharafat & Tahvildari 2008 [138] 5.5 CP21 Elish et al. 2017 [139] 8
CP5 Azar 2010 [34] 6.5 CP22 Kumar et al. 2017a [33] 8
CP6 Han et al. 2010 [140] 6 CP23 Kumar et al. 2017b [141] 9
CP7 Azar & Vybihal 2011 [35] 7.5 CP24 Kumar et al. 2017c [142] 7
CP8 Eski & Buzluca 2011 [27] 5 CP25 Malhotra & Jangra 2017 [143] 9
CP9 Lu et al. 2011 [28] 7 CP26 Yan et al. 2017 [144] 9.5
CP10 Romano & Pinzger 2011 [4] 8 CI1 Antoniol et al. 2000 [70] 5.5
CP11 Giger et al. 2012 [30] 8 CI2 Canfora & Cerulo 2005a [145] 5
CP12 Elish et al. 2013 [1] 9.5 CI3 Canfora & Cerulo 2005b [146] 6
CP13 Malhotra & Khanna 2013 [5] 9 CI4 Canfora & Cerulo 2006 [69] 6
CP14 Malhotra & Bansal 2014 [147] 6 CI5 Gethers et al. 2012 [71] 8
CP15 Malhotra & Khanna 2014 [148] 9 CI6 Asl & Kama 2013 [149] 6.5
CP16 Marinescu 2014 [150] 7 CI7 Dit et al. 2014 [151] 5
CP17 Elish et al. 2015 [45] 6 CI8 Zanjani et al. 2014 [72] 9.5

Table 3.2 lists all the primary studies with a specific allocated study number and

its QS. All change-proneness prediction studies are allocated a number prefixed by

”CP” and all software change impact studies are allocated a number prefixed by ”CI”.

According to quality analysis, the top scoring studies were CP12, CP19, CP26 and

CI8. Also, the most popularly cited studies were CI3, CI5, CP10 and CP13.

85

Review Results and Discussion

3.4 Review Results and Discussion

This section states the results of the review. It may be noted that 53% of the 34

primary studies were published in various conferences and symposiums, while 44%

of the studies were extracted from peer-reviewed journals, one study was published as

a technical report. Table 3.3 states the most popular journal and conference venues. It

may be noted that 76% of the studies developed change-proneness prediction models.

Eight studies assessed the software change impact of a change request.

Table 3.3: Summary of Top Venues

Name Venue Type Studies(%)
International Conf. on Mining Software Repositories Conference 9%
International Conf. on Advances in Computing, Communication and Informatics Conference 9%
International Conf. on Software Engineering Conference 6%
Information and Software Technology Journal 6%

Conf. means Conference

Figure 3.1: Year-wise Distribution of Primary Studies

A year-wise distribution of all the 34 primary studies is given in Figure 3.1. Ac-

cording to the figure, the most number of studies were published in 2017. Also, there

is a surge in the number of studies since the year 2009.

We state the predictors, datasets, data analysis techniques, performance measures,

86

Review Results and Discussion

validation method and the statistical test used with respect to each of the 34 primary

studies in Appendix B.1.

3.4.1 Results specific to RQ1

This RQ determines the various predictors which have been used in literature for

developing software change prediction models. The predictors with respect to each

study are summarized in Appendix B.1.

Change-proneness: An analysis of change-proneness prediction literature studies

reveals that both product as well as process metrics have been used for develop-

ing prediction models. Figure 3.2 depicts a pie chart which states the percentage of

change-proneness prediction studies using a specific category of metrics. According

to the figure, it can be seen that 88% of the studies used product metrics. These

metrics are generally source code design metrics, which depict the structural charac-

teristics of a class such as its size, inheritance, cohesiveness etc. Many such metric

suites which characterize the OO properties of class have been proposed in literature

such as CK metrics suite [16], QMOOD metrics suite [25], Lorenz & Kidd metrics

suite [19], Li & Henry metrics suite [18] and many others. We found that the CK

metrics suite was the most commonly used OO metrics suite in literature studies.

Apart from the CK metric suite, the SLOC metric (a measure of class size) has also

been frequently used. Only 12% of change-proneness prediction studies used process

metrics. While CP12 and CP21 used evolution-based metrics which characterize the

evolution history of a class, CP20 used metrics which attempt to capture the complex-

ity of the development process. It may be noted that CP12 and CP21 advocated the

combination of both process as well as product metrics for determining change-prone

nature of a class.

We also analyzed the granularity level over which these metrics were collected.

87

Review Results and Discussion

Figure 3.2: Product and Process Metrics Distribution

Three studies (CP1, CP2 and CP11) collected file-level metrics, one study each col-

lected OO metrics at interface level (CP10) and method level (CP4). However, all

other studies analyzed class-level metrics. It may also be noted that certain studies

(CP5, CP7, CP9, CP22, CP23, CP24), analyzed a large number of OO metrics with

respect to different dimensions (cohesion, coupling, size and inheritance) in order to

obtain generalized results.

Change Impact: We extracted eight primary studies from literature which have

attempted to determine the change impact of a software change request using IR

techniques. An analysis of these studies indicate that IR techniques may be applied to

a variety of textual data in the software repositories, be it source code, requirements

and design documents or other free text for change impact analysis. Apart from

this, studies have also proposed using commit histories, developer interactions and

dynamic execution traces to aid the determination of impacted entities by a change

request.

3.4.2 Results specific to RQ2

This RQ explores the various experimental settings i.e. the feature selection or di-

mensionality reduction methods, the characteristics of datasets used for empirical

88

Review Results and Discussion

validation, the validation methods and the performance measures used by software

change prediction studies.

Feature Selection & Dimensionality Reduction Techniques (RQ2.1)

Literature studies use feature selection or dimensionality reduction techniques to

aid the development of effective software change prediction models. We analyzed

these studies to determine the most commonly used methods.

Change-proneness: An analysis of 26 primary studies which developed change-

proneness prediction models revealed that only 46% of them used either a feature

selection or a dimensionality reduction technique. The commonly used techniques

and the corresponding studies which use them are listed in Table 3.4.

Table 3.4: Feature Selection /Dimensionality Reduction Techniques

Feature Selection /Dimensionality Reduction Study Numbers
CFS CP13, CP15, CP18, CP19, CP25
Univariate Analysis CP22, CP23, CP25
Principal Component Analysis (PCA) CP12, CP21
Multivariate Regression with forward and backward selection CP3, CP13, CP23

According to Table 3.4, the most commonly used feature selection technique was

CFS. Apart from the techniques listed in Table 3.4, other literature studies used sev-

eral other miscellaneous methods (Best-first search (CP12), Gain Ratio (CP22), T-test

(CP23), GA (CP24), Metric Violation Score (CP26)). Apart from feature selection,

several studies performed correlation analysis to investigate whether the predictors

used are correlated with change-proneness attribute (CP8, CP9, CP10, CP11, CP12,

CP13, CP19, CP22, CP23).

Certain studies in literature reported specific OO metrics as significant predictors

of change-prone nature of a class. These metrics were selected after application of

feature selection or dimensionality reduction techniques. Since, in RQ1 we reported

that majority of studies used the CK metrics suite and the SLOC metric, we state

the studies which report these metrics as significant indicators of change-proneness

89

Review Results and Discussion

(Table 3.5). According to the table, a majority of the studies reported metrics which

characterize size attribute (SLOC & WMC) and the ones which characterize coupling

attribute (CBO & RFC) as significant indicators of change-proneness. Moreover, it

may be noted that the inheritance attribute metric, DIT was only reported significant

by one study and there was no study which indicated NOC as significantly related to

change-proneness. These findings are similar to those of Lu et al. [28].

Table 3.5: Significant OO Metrics reported in Literature

Metric Acronym OO Attribute Study Numbers
SLOC Size CP4, CP8, CP15, CP18, CP19, CP22, CP25
WMC Size CP8, CP15, CP18, CP21, CP23, CP25
CBO Coupling CP8, CP15, CP18, CP21, CP22, CP23, CP25
RFC Coupling CP8, CP13, CP15, CP19, CP21, CP22
LCOM Cohesion CP21, CP22
DIT Inheritance CP21

Change Impact: In terms of change impact, only one literature study (CI8) re-

ported singular value decomposition for dimensionality reduction. Thus, we could

not get enough literature data to draw any conclusive results.

Dataset Characteristics (RQ2.2)

In order to perform empirical validation, literature studies have used a number

of datasets. This question explores the characteristics of these datasets which in-

cludes their nature (public /private), size, percentage of change and other attributes.

Software datasets used by literature studies can be broadly categorized into public

/open-source datasets or private /commercial datasets. Table B.1 (Appendix B.1)

depicts the datasets used in each primary study.

Change-proneness: We categorized the datasets in change-proneness prediction

studies and found that only 8% of these studies used commercial /private datasets.

All other change-proneness prediction studies used open-source datasets, which are

publicly available. This trend was observed as commercial datasets are difficult to

obtain. Therefore, researchers tend to validate their results on datasets that are open-

90

Review Results and Discussion

source and easily available in software repositories.

We also investigated the language used to develop the datasets, which are used for

empirical validation for change-proneness prediction. Only three studies (CP1, CP2,

CP18) used datasets developed using the C++ language. CP15 used four datasets

developed in Java language and two datasets developed in C++ language. It may be

noted that all other studies used datasets developed in Java language.

The datasets used in literature for change-proneness prediction are of varying

sizes and with different percentage of change-prone classes. For each study, we

analyzed the minimum and maximum size of datasets in terms of number of data

points (Table 3.6). We also state the minimum and maximum percentage of change

in the datasets used by these studies (Table 3.6).

It is also important to evaluate whether the datasets used for developing models

are imbalanced in nature. As already discussed, a dataset is said to be imbalanced if

it has a disproportionate number of change-prone and not change-prone classes. We

state the number of datasets which were found to be imbalanced for a specific study

(Table 3.6). As it is more important to determine the change-prone classes correctly,

one should have sufficient number of change-prone classes in a dataset. We term

a dataset as imbalanced if it has less than 40% of change-prone classes. Table 3.6

depicts all these details of the datasets for each specific study. Studies from which

relevant information could not be extracted are not shown in the table.

According to the information shown in Table 3.6, the size of datasets used in

literature for change-proneness prediction varies from 18-2,845 data points. There-

fore, literature studies have analyzed small sized, moderately sized and large-sized

datasets for developing change-proneness prediction models. It may also be noted

that the percentage of change found in these datasets varies from 1% - 97%. How-

ever, in a majority of the studies 25%-100% of datasets analyzed were imbalanced in

nature. Researchers should take active steps to develop effective prediction models

91

Review Results and Discussion

from such imbalanced datasets.

Table 3.6: Study-wise Details of Datasets

Study Number
Number of Data Points Percentage of Change

Number of Imbalanced Datasets (%)Minimum Maximum Minimum Maximum
CP1 —- 1,211 —- 24% 1 (100%)
CP2 —- 1,211 —- 24% 1 (100%)
CP3 58 169 25% 50% 1 (50%)
CP4 —- 58 —- 25% 1 (100%)
CP5 18 2,737 —- —- —-
CP6 44 62 —- —- —-
CP7 18 958 —- —- —-
CP8 38 693 —- —- —-
CP9 38 2,845 —- —- —-
CP10 25 165 —- —- —-
CP11 98 788 —- —- —-
CP12 36 170 4% 91% 10 (50%)
CP13 254 657 10% 52% 2 (67%)
CP14 607 2,786 1% 97% 3 (25%)
CP15 108 510 18% 66% 3 (33%)
CP17 36 60 —- —- —-
CP18 108 510 45% 66% None (0%)
CP19 685 756 24% 33% 2 (100%)
CP21 36 170 4% 78% 5 (38%)
CP23 1,507 1,524 7% 16% 5 (100%)
CP24 83 1,943 30% 68% 3 (30%)
CP25 348 434 4% 30% 2 (100%)
CP26 53 3,150 8% 94% 8 (57%)

Note: ”—-” indicates the corresponding information was not found in the study.

Change Impact: With respect to change impact studies, the most commonly used

datasets are stated in Table 3.7. Only 25% of the studies (CI1, CI6) used private

/commercial datasets. All other studies used publicly available open-source datasets

which were extracted from software repositories.

Table 3.7: Datasets used for developing Change Impact Models

Dataset name Study Numbers
Firefox CI2, CI3, CI4
ArgoUML CI4, CI5, CI7
KCalc CI3, CI4
Kpdf CI3, CI4
Kspread CI3, CI4

Figure 3.3 depicts the number of studies which extracted datasets from specific

92

Review Results and Discussion

software repositories for developing change impact models. These repositories were

Bugzilla, CVS and Subversion (SVN).

Figure 3.3: Software Repositories used for extracting Change Impact Data

Validation Methods (RQ2.3)

Studies in literature have used various validation methods for developing soft-

ware change prediction models which can be broadly categorized into within-project

validation methods and cross-project validation methods. Models developed using

within-project validation use training and testing data of the same software project.

The model is generally trained using the data obtained from the previous versions

of the same project and is validated on the later versions. On the contrary, in cross-

project validation, the prediction model is trained using data from one project (say

Project A) and is validated on another project (Project B). Cross-project validation

is useful in case historical data of the same software project is not available. The

validation methods used by a specific study are mentioned in Table B.1 (Appendix

B.1).

Change-proneness: Figure 3.4 depicts the most commonly used validation meth-

ods in change-proneness prediction studies. An analysis of the figure reveals that

majority of studies used within-project validation. Within-project validation can be

93

Review Results and Discussion

performed using either hold-out validation, K-fold cross validation or Leave-one-out

Cross Validation (LOOCV), which are described below:

Figure 3.4: Validation Methods in Literature Studies

• LOOCV: For a dataset having N instances, this method requires N iterations.

In each iteration, all data points except one is used for training the model. The

remaining data point is used for validating the developed model. It is ensured

that all data points are used at least once for validating the developed model.

Only one study (CP17) used LOOCV.

• K-fold Cross Validation: In this method, the whole dataset is divided into K

parts. It is ensured that the partitions are nearly equal in size. The rest of

the process is similar to ten-fold cross validation method explained in Section

2.9.1. The most frequently used value for K is 10. Only one literature study

used K=20 (CP23). It may be noted that K-fold cross-validation is the most

popular method for validating change-proneness prediction models.

• Hold-out Validation: This method randomly partitions the available data points

into testing and training. One of the most common ratio used for partitioning

94

Review Results and Discussion

is 75:25. In such a case, 75% of data points are used while training and the

developed model is validated on the remaining 25% of data points. However,

the method has high variability due to random division of training and test sets.

The points which make the training and test sets may affect the performance of

the developed model. Only four studies used hold-out validation.

Apart from within-project validation, cross-project validation was used by five

change-proneness prediction literature studies (CP14, CP18, CP24, CP25, CP26).

We found that k-fold cross validation is the most popular validation method as it

averages the results obtained over several partitions, and reduces variance. As a

result, the data is not sensitive to partitioning as in the case of hold-out validation.

This gives an accurate estimate of the performance of the developed model.

Change Impact: Literature studies which proposed models to assess the change

impact of a change request using IR techniques did not specifically mention the vali-

dation method. Only CI8 mentioned that it validated the proposed approach by using

90% of the data for training and 10% for testing (Hold-out validation). It may be

noted that the other studies also performed validation as they mentioned the use of

datasets but the method used by them is not specified.

Performance Measures (RQ2.4)

The developed software change prediction models in literature studies are as-

sessed using various performance measures. This RQ investigates the most com-

monly used performance measures. The performance measures used by each specific

study are stated in Table B.1 (Appendix B.1).

Change-proneness: Figure 3.5 states the most commonly used performance mea-

sures in change-proneness prediction studies. The definitions of these measures have

already been stated in Chapter 2. According to the figure, the most commonly used

measure is accuracy. However, in case of imbalanced datasets, accuracy is not an

95

Review Results and Discussion

appropriate measure [110, 118, 152] . Even if the percentage of correctly predicted

change-prone classes are very few, accuracy values can be high as the performance

measure is not sensitive to class distributions. On the contrary, the AUC measure is

effective as it takes into account both recall and 1-specificity. Researchers should use

an appropriate performance measure to yield unbiased results. Selection of an appro-

priate performance measure is vital to strengthen the conclusion validity of the study.

Apart from the measures shown in Figure 3.5, there were several other performance

measures (Type I error, Type II error, Overall misclassification error, False positive

ratio, False negative ratio, Goodness of fit, J-index, G-measure, G-mean, Change

cost, cost ratio), which were used by only one or two studies.

Figure 3.5: Performance measures in Literature Studies

Change Impact: Recall and Precision along with their variants have been used

by 75% of literature studies which determine the change impact of a change request.

The definition of Recall and Precision in terms of IR is stated below:

• Recall: It is defined as the ratio of correctly predicted impacted documents over

the number of all impacted documents for a change request in the document

set.

96

Review Results and Discussion

• Precision: It is defined as the ratio of correctly predicted impacted documents

over the number of all predicted documents.

3.4.3 Results specific to RQ3

Prediction models are developed with the help of data analysis techniques. The data

analysis techniques used by each study is stated in Table B.1 (Appendix B.1). These

techniques can be broadly categorized into statistical or ML. We first investigate the

most popular category of techniques for developing software change prediction mod-

els.

Popular Category of Data Analysis Techniques (RQ3.1)

Certain studies in literature used only a specific category of techniques i.e. only

statistical or only ML, while certain others used more than one category of tech-

niques.

Change-proneness: Figure 3.6 depicts the number of change-proneness predic-

tion studies using the various categories of techniques. A new category of technique

i.e. ensemble techniques were used by certain studies (CP17, CP22, CP24), which

were ensemble of several base learning techniques. For instance, CP17 used an en-

semble of SVM, MLP, LR, GP and K-means techniques which were aggregated using

majority voting. According to figure 3.6, ML techniques are the most popular cat-

egory of techniques, followed by the statistical techniques. The advantage of ML

techniques over statistical techniques is that they do not require any prior assump-

tions about the underlying relationships between predictors and the target variable.

Out of the 26 studies, which predict change-prone classes /modules, three studies did

not use any specific technique but predicted classes using a certain set of equations

(CP4), by using a combined rank list (CP8) or by using random effect meta-analysis

model (CP9).

97

Review Results and Discussion

Figure 3.6: Categories of Techniques

Change Impact: Table B.1 (Appendix B.1) lists the data analysis techniques used

by each study for determining the change-impact of a software change request. Only

three studies listed their data analysis techniques. CI6 used Breadth-first search, CI7

used association rules and CI8 used K-nearest Neighbor (K-NN) algorithm. Due to

the scarcity of studies, we could not obtain any conclusive results with respect to the

popularity of data analysis techniques.

ML Techniques used for Software Change Prediction (RQ3.2)

With respect to change-proneness prediction studies, ML techniques can be fur-

ther divided into several categories. It may be noted that only one change-impact

study used an ML technique i.e K-NN.

The division of ML techniques has been done according to various ML cate-

gories discussed by Malhotra [17]. Table 3.8 states the various sub-categories of ML

techniques which are used by change prediction studies. These sub-categories are

DT, Bayesian algorithms, SVM, ML Ensembles, Neural Networks and SBA. Other

remaining algorithms were grouped into a miscellaneous category.

98

Review Results and Discussion

Table 3.8: Sub-categories of ML Techniques

Sub-category ML Techniques
DT C4.5, J48
Bayesian NB, BN
SVM SVM, SVM with Linear Kernel, SVM with Polynomial Kernel, SVM with Sigmoid Ker-

nel, Least-Square SVM
Neural Networks MLP, Radial Basis Function (RBF), GMDH, Extreme ML (Linear, Polynomial and RBF

kernels)
ML Ensemble RF, AB, BG, LB
SBA GP, Decision Tree-GP, ACO, Artificial Immune Recognition System (AIRS), Immunos99,

Clonal Selection (CLG), CPSO, HIDER, MPLCS, SUCS, Fuzzy Learning based on

Genetic Programming Grammar Operators and Simulated Annealing (GFS-SP), Fuzzy

Learning based on Genetic Programming (GFS-GP), Genetic Fuzzy System Adaboost

(GFS-AB), GFS-LB, Genetic Fuzzy System Maxlogitboost (GFS-MLB), NNEP, Struc-

tural Learning Algorithm in a Vague Environment with Feature Selection (SLAVE)
Miscellaneous K-NN, K-Means, Non-nested Generalized Exemplars (NNGE)

Figure 3.7: Sub-categories of ML Techniques

We further analyzed the percentage of primary studies which used a specific cate-

gory of ML techniques amongst the studies which used an ML technique for software

change prediction (Figure 3.7). It may be noted that neural networks is the most pop-

ular category of ML techniques which are used by 55% of studies. Neural networks

are capable of modeling complex non-linear relationships and are adaptive in nature

making them suitable for change prediction tasks. The next popular category of tech-

99

Review Results and Discussion

niques is SBA, used by 45% of studies. It is a subclass of ML techniques, which have

recently gained popularity. SBA are self-optimizing techniques, which are capable of

dealing with noisy and imprecise data. ML ensemble techniques, which form several

classification models using variants of training set and use voting scheme to combine

these models are the next popular category of techniques used by 35% of studies.

3.4.4 Results specific to RQ4

The predictive capability of various ML techniques investigated in the literature

should be assessed so as to ascertain the effectiveness of change-proneness prediction

models developed using them. In order to do so, we state the values of popular perfor-

mance measures of the developed software change prediction models. However, we

need to generalize our results and avoid any bias. This was done by reporting the re-

sults of models developed by those techniques which were validated by using at least

three different datasets and by at least two of the primary studies. This would forbid

a technique which exhibits exceptional performance only in a certain study or only

by using certain datasets to be declared as a superior one. We analyze the statistics in

accordance with the datasets. However, it may be the case that the performance of a

technique varies due to its application on a specific dataset. Thus, we remove outlier

values in accordance with the investigated datasets. We also report the median values

to reduce biased results. The following rules were observed while extracting various

statistics. The rules are chosen so that optimum values attained by a technique may

be reported. This is important as the performance of an ML technique is dependent

on its internal parameter settings.

• If a specific study develops models on the same dataset more than once with

different experimental settings, we choose the best performance measure val-

ues obtained by the technique.

100

Review Results and Discussion

• In case there is more than one study which develops models using the same

dataset and the same technique, we use the best of performance measure value

reported in all the studies.

Change-proneness: According to RQ2.4, the most commonly used performance

measures by change-proneness prediction studies are accuracy and AUC. Various

datasets have been used in literature for developing software change prediction mod-

els which are stated in Table B.1 (Appendix B.1). Figure 3.8 depicts the dataset-wise

outliers of different ML techniques with respect to accuracy measure. According to

the figure, the Jmeter dataset was an outlier for both BG and RF techniques, showing

lower accuracy values than all other investigated datasets. Two outliers were found

with respect to MLP technique (Hibernate and Junit) and one with respect to C4.5

technique (PeerSim). Figure 3.9 depicts the dataset-wise outliers of different ML

techniques with respect to AUC measure. According to the figure, AB, BG and MLP

techniques were found to have one outlier each depicting lower AUC values.

Figure 3.8: Dataset-wise Accuracy Outliers of ML Techniques

A good change prediction model exhibits higher values of accuracy and AUC

measures. Table 3.9 and 3.10 presents the comparative results of the change pre-

diction models developed using ML techniques for the accuracy and AUC measure

101

Review Results and Discussion

Figure 3.9: Dataset-wise AUC Outliers of ML Techniques

respectively. The tables report the minimum, maximum, mean, median and stan-

dard deviation values along with the count of datasets from which the statistics were

extracted, after removing the outliers.

As depicted in Table 3.9, the majority of ML techniques (except K-means, LB

and SVM) depicted mean accuracy values in the range 60-75%. The RF technique

depicted the best mean accuracy value of 74.59%. With respect to median accuracy

values, the best median values were depicted by NNEP, RF, BG and HIDER tech-

niques of 74% each. As depicted in Table 3.10, with respect to AUC, the majority of

ML techniques (except K-means, LB, RBF and SVM) depicted a mean AUC value in

the range 0.63-0.79. The AB technique depicted the highest mean AUC value of 0.79.

The best median AUC values were depicted by NB and BG techniques of 0.79 each,

followed closely by the RF technique (0.77). These results indicate effectiveness of

ML techniques in determining change-prone nature of classes/ modules.

Table 3.9: Accuracy Results of ML Techniques for Change-proneness Models

ML Tech. Count Minimum Maximum Mean Median S.D.
AB 9 60.00 82.28 70.69 70.00 7.61
BG 7 72.96 80.05 76.00 74.00 3.06
C4.5 11 63.86 77.33 70.98 70.80 3.19
GFS-SP 3 69.00 75.00 72.00 72.00 3.00

102

Review Results and Discussion

ML Tech. Count Minimum Maximum Mean Median S.D.
HIDER 3 71.00 76.00 73.67 74.00 2.52
K-Means 16 26.99 91.17 54.51 56.91 19.35
LB 16 6.92 92.38 55.16 58.43 26.87
MLP 31 8.22 92.38 66.71 73.33 19.40
NB 3 57.77 65.00 60.59 59.00 3.87
NNEP 3 72.00 76.00 74.00 74.00 2.00
RF 15 68.42 81.85 74.59 74.00 3.64
RBF 24 6.38 92.29 62.40 72.75 25.51
SVM 17 6.38 92.29 53.15 60.33 29.07

Tech. indicates Technique; S.D. indicates Standard Deviation

Table 3.10: AUC Results of ML Techniques for Change-proneness Models

ML Tech. Count Minimum Maximum Mean Median S.D.
AB 7 0.73 0.88 0.79 0.76 0.06
BG 11 0.64 0.88 0.78 0.79 0.07
C4.5 4 0.55 0.80 0.65 0.63 0.12
K-Means 16 0.11 0.70 0.40 0.34 0.17
LB 19 0.12 0.88 0.51 0.50 0.21
MLP 34 0.17 0.88 0.63 0.69 0.19
NB 13 0.66 0.90 0.78 0.79 0.06
RBF 16 0.12 0.63 0.41 0.42 0.16
RF 11 0.6 0.87 0.75 0.77 0.07
SVM 25 0.11 0.88 0.57 0.53 0.25

Tech. indicates Technique; S.D. indicates Standard Deviation

It may be noted that the RF, BG, AB techniques belong to the ensemble category

of ML techniques. Therefore, their effective predictive capability is a result of ag-

gregation of results of several base models. This leads to stable and robust models.

It may also be noted that the SBA (NNEP and HIDER) also exhibit good accuracy

results. SBA are effective in optimizing the accuracy of the developed change pre-

diction models. This category of ML techniques needs to be further explored as their

results are promising. The statistics reported in Table 3.9 and 3.10 reveal that the

use of ML techniques for change-proneness prediction tasks should be encouraged

as they yield effective results.

Change Impact: As only one study used an ML technique for determining the

change impact of change request, we did not yield conclusive results with respect to

predictive capability of ML techniques for predicting change impact.

103

Review Results and Discussion

3.4.5 Results specific to RQ5

This section compares the performance of different ML techniques amongst them-

selves and with statistical techniques used for developing software change prediction

models. The comparative performance was evaluated dataset-wise and we followed

the same rules as discussed in RQ4. Furthermore, Wilcoxon signed rank test was

performed with α =0.05 to statistically evaluate the comparison results.

Change-proneness: We compared the performance of 12 ML techniques namely,

MLP, BG, AB, RF, RBF, SVM, C4.5, K-Means, LB, HIDER, GFS-SP and NNEP

amongst each other and with LR. LR is chosen as it is the most common statistical

technique used in software change prediction literature. The other ML techniques

were chosen as they are commonly used in literature and sufficient data could be

collected for comparison purposes of these techniques with other ML techniques

(i.e., used by at least two primary studies and on three datasets).

Table 3.11 and Table 3.12 reports the results of the Wilcoxon signed rank test

when different techniques are compared amongst each other and with the LR tech-

nique according to accuracy and AUC performance measures respectively. The sym-

bols used in the table represent whether the performance of the technique stated in

the row is significantly superior (↑ ∗), significantly inferior (↓ ∗), superior but not

significantly (↑), inferior but not significantly (↓) or equivalent (=), when compared

with the technique stated in the column. According to Table 3.11, the MLP technique

shows significantly better performance than LR, SVM and C4.5 techniques in terms

of accuracy measure. The performance of MLP technique is equivalent to K-means

technique and worse but not significantly, when compared with the AB technique.

MLP’s accuracy performance is better than RF, RBF and LB techniques but not sig-

nificantly.

104

Review Results and Discussion

Ta
bl

e
3.

11
:W

ilc
ox

on
Te

st
R

es
ul

ts
of

M
L

Te
ch

ni
qu

es
C

om
pa

ri
so

n
on

A
cc

ur
ac

y
m

ea
su

re

Te
ch

ni
qu

e
M

L
P

B
G

A
B

R
F

L
R

R
B

F
SV

M
C

4.
5

K
-M

ea
ns

L
B

H
ID

E
R

G
FS

-S
P

N
N

E
P

M
L

P
—

-
↓
∗

↓
↑

↑
∗

↑
↑
∗

↑
∗

=
↑

N
C

N
C

N
C

B
G

↑
∗

—
-

↑
↑

↑
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
A

B
↑

↓
—

-
=

↑
N

C
N

C
N

C
N

C
↑

↓
↓

↓
R

F
↓

↓
=

—
-

↑
∗

↓
N

C
N

C
N

C
N

C
N

C
N

C
N

C
R

B
F

↓
N

C
N

C
↑

N
C

—
-

↑
↑*

↓
N

C
N

C
N

C
N

C
SV

M
↓
∗

N
C

N
C

N
C

↓
N

C
—

-
N

C
↓

↓*
N

C
N

C
N

C
C

4.
5

↓
∗

N
C

N
C

N
C

N
C

↓
∗

N
C

—
-

N
C

N
C

N
C

N
C

N
C

K
-M

ea
ns

=
N

C
N

C
N

C
N

C
↑

↑
N

C
—

-
N

C
N

C
N

C
N

C
L

B
↓

N
C

↓
N

C
N

C
N

C
↑
∗

N
C

N
C

—
-

N
C

N
C

N
C

H
ID

E
R

N
C

N
C

↑
N

C
N

C
N

C
N

C
N

C
N

C
N

C
—

-
↑

↓
G

FS
-S

P
N

C
N

C
↑

N
C

N
C

N
C

N
C

N
C

N
C

N
C

↓
—

-
↓

N
N

E
P

N
C

N
C

↑
N

C
N

C
N

C
N

C
N

C
N

C
N

C
↑

↑
—

-
“↑
∗”

m
ea

ns
si

gn
ifi

ca
nt

ly
be

tte
rr

es
ul

ts
an

d
“↑

”
m

ea
ns

be
tte

rb
ut

no
ts

ig
ni

fic
an

tr
es

ul
ts

“↓
∗”

in
di

ca
te

s
si

gn
ifi

ca
nt

ly
w

or
se

re
su

lts
an

d
“↓

”
m

ea
ns

w
or

se
bu

tn
ot

si
gn

ifi
ca

nt
re

su
lts

“=
”

in
di

ca
te

s
th

e
eq

ui
va

le
nt

pe
rf

or
m

an
ce

;“
N

C
”

in
di

ca
te

s
re

qu
is

ite
co

m
pa

ri
so

n
da

ta
co

ul
d

no
tb

e
ex

tr
ac

te
d

“—
-”

in
di

ca
te

s
th

e
te

ch
ni

qu
es

ca
nn

ot
be

co
m

pa
re

d
w

ith
its

el
f

Ta
bl

e
3.

12
:W

ilc
ox

on
Te

st
R

es
ul

ts
of

M
L

Te
ch

ni
qu

es
C

om
pa

ri
so

n
on

A
U

C
m

ea
su

re

Te
ch

ni
qu

e
M

L
P

N
B

SV
M

B
G

A
B

R
F

L
R

L
B

R
B

F
C

4.
5

K
-M

ea
ns

M
L

P
—

-
↓

↑
↓

↓
↓

↓
↓

↑
↑

↑
N

B
↑

—
-

↓
N

C
N

C
N

C
N

C
N

C
N

C
N

C
N

C
SV

M
↓

↑
—

-
N

C
N

C
N

C
↓

N
C

↓
N

C
↓

B
G

↑
N

C
N

C
—

-
↑

↑
↑

↑
N

C
N

C
N

C
A

B
↑

N
C

N
C

↓
—

-
↓

↑
=

N
C

N
C

N
C

R
F

↑
N

C
N

C
↓

↑
—

-
↑

↑
N

C
N

C
N

C
L

B
↑

N
C

N
C

↓
=

↓
↓

—
-

N
C

N
C

N
C

R
B

F
↓

N
C

↑
N

C
N

C
N

C
N

C
N

C
—

-
N

C
↓

C
4.

5
↓

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

—
-

N
C

K
-M

ea
ns

↓
N

C
↑

N
C

N
C

N
C

N
C

N
C

↑
N

C
—

-
Sy

m
bo

ls
sa

m
e

as
Ta

bl
e

3.
11

105

Review Results and Discussion

The Wilcoxon test results according to AUC measure depicted in Table 3.12 show

that there was no technique which was significantly better or worse than the other

compared technique. The BG and RF techniques showed better AUC performance

than four other techniques including LR but not significantly. The MLP technique

also depicts better AUC values than four other compared techniques.

Figure 3.10: Wilcoxon Test results of ML Techniques Comparison based on Accu-
racy measure

Figure 3.11: Wilcoxon Test results of ML Techniques Comparison based on AUC
measure

Figure 3.10 and 3.11 summarizes the comparison results stated in Table 3.11 and

106

Review Results and Discussion

3.12 respectively. According to Figure 3.10, the BG, MLP, K-Means and NNEP

seems to be the best ML techniques according to accuracy measure as they are better

than most other compared techniques. SVM and C4.5 seem to be the worst tech-

niques on the basis of accuracy. Similarly, according to Figure 3.11 the RF technique

seems the best according to AUC values as it depicts better AUC values than all

other compared techniques. The BG and K-means techniques also show effective

AUC values as compared to other techniques. The C4.5 technique seems to show the

worst comparative performance on the basis of AUC.

It may be noted from the results of Table 3.11 and 3.12 that four ML techniques

depicted better accuracy results than the statistical technique, LR. Only one tech-

nique (SVM) showed poor accuracy results than LR. With respect to AUC, three

ML techniques were found better than LR. This indicates that the performance of

ML techniques is comparable to that of the statistical technique, LR. However, more

studies need to be conducted for an extensive comparison of various ML techniques

with that of LR.

Also, as a number of columns in Table 3.11 and 3.12 have the value “NC”, where

sufficient data is not available in literature for comparing the performance of ML

techniques, more studies are needed which compare the performance of different

ML techniques with each other on the basis of different performance measures.

Change Impact: As there was only one study which used an ML technique for

determining the change impact, we could not evaluate the comparative performance

of ML techniques in this domain.

3.4.6 Results specific to RQ6

Statistical verification of a study’s results is important in order to yield reliable con-

clusions. However, only 47% of primary studies used statistical tests for validating

107

Review Results and Discussion

their results. The tests used by each study are listed in Table B.1 (Appendix B.1).

These tests can be broadly categorized as parametric tests or non-parametric tests.

Figure 3.12: Statistical Tests used in Literature Studies

Change-proneness: Fourteen primary studies which predicted change-prone na-

ture of a class /module statistically validated their results. Out of these 14 studies,

71% of studies used non-parametric tests, while the others used parametric tests.

This is because parametric tests require complete information about the population

and require specific assumptions, such as the data normality to be true before the

application of these tests. Although, these properties make parametric tests more

powerful, they are difficult to use as compared to the non-parametric tests which do

not require any assumptions with respect to the population and are simple and easy

to understand. Figure 3.12 states the number of studies using the most commonly

used statistical tests. These tests were the Wilcoxon signed rank test, Friedman test

and T-test. The most popular test was Wilcoxon signed rank test. Certain other tests

(ANOVA, Nemenyi, Proportion, Cliff’s) were used by one study each.

Change Impact: Only two studies statistically evaluated their results, while deter-

mining the change impact of a software change request using IR techniques. While

one study used the parametric test ANOVA (CI8), the other used non-parametric

Wilcoxon signed rank test (CI5).

108

Review Results and Discussion

3.4.7 Results specific to RQ7

This RQ states the various probable threats to empirical studies which develop soft-

ware change prediction models using data analysis techniques. There are various

probable sources of threats to a study which mitigate the validity of the obtained re-

sults. A researcher should carefully analyze the probable sources of threats in the

design phase of an experiment so that proper experimentation set up can be provided

and should also list these threats in the study so that the readers can comprehend the

limitations of the research results. We extracted the threats from the primary studies

of the review, which have a separate section for “Threats to Validity” or “Limita-

tions”.

Categories of Threats (RQ7.1)

The probable threats to software change prediction studies are categorized into

four dimensions namely conclusion validity threats, internal validity threats, con-

struct validity threats and external validity threats. Table 3.13 states the various

threats corresponding to each category along with the studies which state them. It

may be noted that we state only those threats which are mentioned in at least two or

more primary studies. Threats specific to a study’s experimental design are omitted

to yield unbiased results.

Table 3.13: Threats to Validity in Software Change Prediction Studies

Threat

No.

Category Threat Description (Study Numbers)

T1 Conclusion Absence of appropriate statistical tests for validating study’s results. (CP10, CP16, CP20)
T2 Internal Omittance of other important variables that can act as predictors or may affect the pre-

dictors. (CP3, CP11)
T3 Internal Does not account for the confounding effect of other variables such as class size or other

project and human factors (such as developer experience, application domain etc.) on the

relationship between dependent and independent variables. (CP9, CP10, CP26, CI8)
T4 Internal Does not account for the “causal effect” of the independent variables on the dependent

variable. (CP12, CP13, CP15, CP19, CP25)

109

Review Results and Discussion

Threat

No.

Category Threat Description (Study Numbers)

T5 Internal Does not account for different rules or thresholds for computing the dependent and the

independent variables. (CP9, CP10, CP20, CP25, CP26)
T6 Construct The type of change i.e. whether it is corrective, adaptive, perfective or preventive is not

taken into account. (CP9, CP12, CP13, CP19, CP25, CP26)
T7 Construct OO metrics may not be accurate representatives of the OO concepts they propose to

measure. (CP9, CP12, CP13, CP15, CP19, CP25)
T8 Construct Independent variables (OO metrics) may not be correctly collected. (CP9, CP11, CP12,

CP13, CP16, CP19)
T9 External Obtained results may be specific to a certain domain i.e. all validated datasets belonging

to the same domain. (CP3, CP10, CP11, CP12, CP15, CP20, CP22, CI5, CI6)
T10 External Obtained results may not be validated on datasets of appropriate size or number of

datasets. (CP9, CP10, CP12 CP13, CP15, CP16, CP19, CP20, CP25, CP26, CI8)
T11 External Obtained results may not be easily replicated. (CP10, CP16)
T12 External Obtained results may not be validated on industrial datasets. (CP13, CP15, CP23)
T13 External Obtained results may not be validated on datasets developed using different programming

languages. (CP15, CP16, CP20, CP25, CP26, CI5)

As stated in Table 3.13, we found one conclusion validity threat, four internal

validity threats, three construct validity threats and five external validity threats. It

may be noted that T11 was also referred to as “Reliability threat” in two studies.

Mitigation of Threats (RQ7.2)

This RQ explores how the various threats identified in RQ7.1 are addressed by

the primary studies. We state the steps suggested by primary studies to mitigate the

corresponding threats in Table 3.14. The table states the mitigation of only those

threats, whose mitigation could be extracted from primary studies. The threats which

were only mentioned in the “Threats to Validity” section of primary studies (T2 and

T6), but could not be mitigated by the study or whose mitigation was not suggested

are not stated in the table.

Researchers should incorporate these steps (Table 3.14), while designing the ex-

perimental set-ups of their study in order to ensure reliable results. Also, several

studies should be performed with different size, category, domain and other dataset

110

Discussion & Future Directions

characteristics to obtain generalized results in the domain of software change predic-

tion.

Table 3.14: Mitigation of Threats to Validity in Software Change Prediction Studies

Threat

No.

Threat Mitigation

T1 The results of a study should be validated using proper statistical tests. In case the underlying data

does not fulfill the assumptions of a parametric statistical test, non-parametric statistical tests may

be used.
T3 The confounding effect of variables may be evaluated by first building a univariate regression

model of the confounding variable C on each independent variable X. Thereafter, subtract the

predicted values by the regression model from X to obtain a new variable X’. Now, C does not

have a confounding effect on X’.
T4 Controlled experiments should be carried out where only one specific predictor variable should

be varied while keeping all other variables constant to determine the “causal” effect of predictor

variables.
T5 Additional thresholds or rules may be used to determine the impact of these on dependent and the

independent variables.
T7 OO metrics which are commonly used in literature and have been validated by previous studies

may be used.
T8 The tools used for collecting independent and dependent variables should be manually verified

to ascertain their correctness. The use of public datasets, which have been verified by previous

studies also mitigate the threat.
T9 The results should be validated on datasets belonging to different domains.
T10 The results should be validated on datasets of appropriate size and on an appropriate number of

datasets.
T11 The use of open-source datasets enhances the replicability of the study. Furthermore the tools used

to implement the approach should be available. The steps conducted in the experiment should be

clearly presented to ease replicated experiments.
T12 The results should be validated on industrial datasets or datasets whose characteristics are similar

to industrial datasets.
T13 The results should be validated on datasets developed using different programming languages.

3.5 Discussion & Future Directions

An extensive systematic review was performed to analyze the current state of ex-

isting literature in the domain of software change prediction and to further identify

111

Discussion & Future Directions

research gaps in this domain. We selected 34 primary studies to answer the various

RQs. 26 of these studies developed change-proneness prediction models, while eight

others attempt to determine the change impact of a software change request using IR

techniques. After taking into account the result discussions specific to each RQ in

section 3.4, we propose the following future directions.

• The product metrics especially the CK metrics suite have been widely used in

literature studies for developing models which predict change-prone nature of

a class. However, the use of process metrics and the combination of product

and process metrics is limited in this domain. Studies should be conducted

to assess the capability of only process metrics as well as both process and

product metrics as predictors of software change.

• Majority of studies in literature have analyzed OO metrics at class level. More

studies should be performed which evaluate OO metrics at method level.

• There are very few (only eight) studies which determine the change impact of a

software change request using IR techniques. Furthermore, no study has eval-

uated the change impact levels (low, moderate or high) of a software change

request using IR techniques. More studies should be conducted by researchers

to determine change impact or change impact levels of a software change re-

quest using IR techniques.

• Feature selection /dimensionality reduction techniques have been used by only

46% of change-proneness prediction studies or only 12% of change-impact

studies. More studies should examine significant predictors using feature se-

lection techniques in order to develop effective prediction models.

• Most of the datasets used by change-proneness studies or change impact stud-

ies were open-source in nature. However, more studies should be conducted to

112

Discussion & Future Directions

validate commercial datasets to yield practical and generalized results.

• It was observed that 25% - 100% of datasets in a majority of the change-

proneness studies were imbalanced in nature (had less than 40% of changed

classes). Researchers in future should evaluate methods to develop effective

models from imbalanced datasets as correct identification of change-prone

classes is crucial. This would aid developers in prioritizing their resources

effectively during maintenance and testing phases of a software development

lifecycle.

• Within project validation has become a common standard while validating

software change-proneness prediction models. However, studies in the future

should explore more use of cross-project validation. Other validation methods

such as inter-release validation and temporal validation may also be investi-

gated in this domain. Furthermore, change impact studies should properly state

and clarify the validation techniques for easy replication and verification.

• Apart from accuracy, the use of AUC is prominent in literature for evaluat-

ing change-proneness prediction models. Performance measures such as AUC,

G-mean and Balance should be used by researchers in future as they give a

realistic estimate of the performance of models which are developed from im-

balanced datasets.

• It was observed that a majority of studies used ML techniques and these tech-

niques are effective in the domain of software change prediction. However,

more studies should be conducted which assess and compare the effectiveness

of statistical and ML techniques for software change prediction. Also, more

researchers should explore the use of ensemble of techniques as an alternative

to other data analysis techniques for developing software change prediction

113

Discussion & Future Directions

models.

• It was found that few SBA (HIDER and NNEP) exhibited effective accuracy

results. However, more studies which investigate the effectiveness of SBA

in the domain of software change prediction are required to yield conclusive

results about their capability. Studies should be conducted to evaluate the ef-

fectiveness of SBA and compare their performance with other established ML

and statistical techniques.

• The results indicate that a majority (51%) of studies did not use any statistical

tests for verifying the obtained results. Hence, future studies should statisti-

cally evaluate the significance of their results.

• Researchers should take into account the various possible “Threats to Validity”,

while designing their experiments to yield effective and reliable results.

114

Chapter 4

Analyzing Software Change in

Open-source projects using Machine

Learning Techniques

4.1 Introduction

Managing change in the early stages of a software development lifecycle is an effec-

tive strategy for developing a good quality software at low costs. In order to manage

change, software practitioners use software quality models which can efficiently pre-

dict change-prone classes and hence guide developers in the appropriate distribution

of limited resources. However, to develop change prediction models, it is important

to evaluate the existence of a relationship between OO software metrics of a class and

its change-proneness attribute. This chapter conducts experiments to validate this re-

lationship and identifies OO metrics, which are significant indicators of change in a

class. Furthermore, the chapter examines the effectiveness of eleven ML techniques

115

Introduction

for developing software change-proneness prediction models on six OO software

datasets. We also compare the performance of ML techniques with the widely used

statistical technique, LR. This chapter investigates the following research questions:

• RQ1: Does the relationship between OO metrics & change-proneness attribute

of a class exists?

• RQ2: Are ML techniques effective in ascertaining change-prone classes in an

OO software?

• RQ3: What is the comparative performance of ML and statistical techniques

for developing change prediction models?

The motivation for RQ1 is the importance of developing software change predic-

tion models. It is necessary for a software system to change progressively in order

for it to remain useful and functional during its entire lifecycle. Therefore, a pri-

mary challenge for software practitioners is to understand and maintain these chang-

ing software systems effectively. Software change prediction models which identify

change-prone classes of a software would help in efficient maintenance of such sys-

tems as more resources may be assigned to change-prone classes. This would help

in the development of better quality software products as these classes are proba-

ble sources of defects and enhancements. Thus, stringent testing activities on such

classes would result in less number of changes and defects in the future. Litera-

ture studies develop software change prediction with the help of various OO met-

rics [15, 16, 20] which measure inheritance, coupling, cohesion, size and other OO

attributes. We need to first validate the relationship between OO metrics and soft-

ware change and thereafter determine OO metrics which are significant predictors of

change-prone classes.

ML techniques have been successfully applied in various other domains of soft-

ware engineering like defect prediction [17, 37, 114], effort prediction [10, 153] and

116

Research Background & Methodology

maintainability prediction [45, 154]. Thus, RQ2 intends to analyze the effectiveness

of these techniques for the determination of change-prone classes. Also, different

ML techniques work differently and may yield contrasting results on various software

datasets. Thus, it is important to evaluate a number of ML techniques for the task of

software change prediction. This chapter investigates RF, BG, AB, LB, C4.5, CART,

NB, MLP-BP, MLP-CG, GMDH and SVM techniques for determining change-prone

classes in an OO software.

RQ3 is motivated by the fact that the basic structure and functioning of ML tech-

niques is quite different from the traditional statistical techniques. Also, as noted

in Chapter 3, more studies are required which compare the effectiveness of ML and

statistical techniques for determining change-prone classes. Thus, we statistically

compare the performance of ML and the statistical technique, LR in the domain of

software change prediction.

This chapter is organized as follows: Section 4.2 states the research background

and the research methodology. Section 4.3 states the results of the chapter. Section

4.4 discusses the response to the investigated RQ’s, while section 4.5 states the key

findings of the chapter. The results of the chapter are published in [155, 156].

4.2 Research Background & Methodology

This section first states the variables used in the study and then explains the research

methodology. The research methodology followed in the chapter is diagrammatically

represented in Figure 4.1.

Six open-source datasets are collected using the data collection procedure ex-

plained in Chapter 2 (Section 2.7). The descriptive statistics of the collected datasets

are analyzed and outlier analysis is done. Univariate analysis is conducted in order

to find the relationship between each OO metric and change-proneness attribute of

117

Research Background & Methodology

Figure 4.1: Research Methodology of Assessing Prediction Models

a class for each dataset. Multivariate LR analysis is conducted to analyze the com-

bined effect of independent variables on change-prone nature of classes. Redundant

and noisy variables are eliminated using CFS method. The metrics found significant

(with univariate analysis and CFS) are used to develop models which predict change-

prone nature of a class. We use ML techniques and the statistical technique, LR and

the models are developed using ten-fold cross validation. The performance of the

developed models are assessed using AUC, G-Mean1 and Balance measures. The

developed models are compared statistically with Friedman test and Wilcoxon test.

4.2.1 Independent and Dependent Variables

The independent variables used in the study are six CK metrics [16] and the SLOC

metric. The CK metric suite comprises of six popularly used metrics (RFC, DIT,

NOC, WMC, LCOM and CBO). For detailed description of these OO metrics refer

to section 2.5.1 (Chapter 2). The choice of CK metrics suite has been motivated by

118

Result Analysis

the fact that it has been widely used for predictive modeling tasks [1, 17, 30, 80, 81]

in literature. The dependent variable analyzed in this chapter is change-proneness.

4.2.2 Data Collection

The chapter uses six open-source datasets, as there has been a paradigm shift where

open-source software have been highly appreciated by both the developers and users.

Developers appreciate open-source software because of the large community sup-

port, while the users appreciate it because of its ability to customize features. Thus,

it is important to examine the effectiveness of change-proneness prediction mod-

els on open-source datasets to support and enhance their development process and

quality. The six open-source datasets of the chapter are AOI (2.7-2.9.2), Apollo (0.1-

0.2), AviSync (1.1-1.2), DrJava (r4668-r5686), DSpace (1.6.0-1.8.1) and Robocode

(1.7.2.2-1.7.4.4). The details of these datasets can be referred from Appendix A.

4.2.3 Descriptive Statistics and Outlier Analysis

The descriptive statistics of each of the six investigated datasets for each independent

variable were analyzed as mentioned in Chapter 2 (Section 2.8.1).

We also analyzed the outliers using IQR filter of WEKA tool [88]. We found

24 outliers in AOI dataset, 13 in Apollo dataset, 2 in AviSync dataset, 30 in Dr-

Java dataset, 12 in DSpace dataset and 18 in Robocode dataset. These outliers were

removed before further analysis.

4.3 Result Analysis

This section states the univariate LR results, multivariate LR results, feature selection

results and the ten-fold cross validation results of the developed change-proneness

119

Result Analysis

prediction models.

4.3.1 Univariate Analysis

The results of univariate LR analysis are depicted in Table 4.1. It provides the statis-

tical significance (p-value) for each metric in all the six datasets. All the metrics with

a significance value of less than 0.05 are shown in bold and are significantly related

to change-proneness in the corresponding dataset.

Table 4.1: Univariate LR Results

Dataset CBO NOC RFC SLOC DIT LCOM WMC
AOI < 0.001 0.194 < 0.001 < 0.001 0.049 < 0.001 < 0.001
Apollo < 0.001 0.905 0.001 0.102 0.938 0.022 0.002
AviSync 0.005 0.399 0.090 0.003 0.005 0.602 0.014
DrJava < 0.001 0.307 0.094 < 0.001 0.002 < 0.001 < 0.001
DSpace < 0.001 0.074 0.001 < 0.001 0.328 < 0.001 < 0.001
Robocode < 0.001 0.965 0.519 < 0.001 0.004 < 0.001 < 0.001

In AOI dataset, all metrics except NOC were found significant for predicting

change-prone nature of classes. For Apollo dataset, four out of seven metrics were

found significantly related to change-proneness at a threshold level of 0.05. However,

the NOC metric, the SLOC metric and the DIT metric were found insignificant on

the basis of univariate analysis for Apollo dataset. The univariate results of AVISync

dataset show CBO, SLOC, DIT and WMC as significant metrics at a threshold value

of 0.05. The metrics which were insignificant for the AVISync dataset were NOC,

RFC and LCOM. The metrics found significant in DrJava dataset were CBO, SLOC,

DIT, LCOM and WMC. For DSpace dataset, the univariate results indicated that the

NOC and DIT metrics are insignificant. The NOC and RFC metrics were found

insignificant in the Robocode dataset.

The cumulative results indicate that CBO and WMC are significant indicators

of change-prone nature of a class as they were found significant in each of the six

120

Result Analysis

datasets. The SLOC and LCOM metrics were chosen as significant predictors in five

out of six datasets. The NOC metric is not a significant change predictor as it was

not selected in any of the six datasets.

4.3.2 Multivariate LR Analysis

A multivariate LR analysis is used to analyze the combined effect of OO metrics on

the change-proneness of a class. Multicollinearity depicts the extent to which the

effect of a variable can be predicted by other variables in the analysis [82]. The con-

ditional number for the models on all the datasets is below 30 indicating tolerable

multicollinearity. We use backward elimination method for the generation of mul-

tivariate LR model. Tables 4.2-4.7 provide the coefficient (B), standard error (SE),

statistical significance and odds ratio for the metrics which are included in the multi-

variate model for each of the six datasets used in the chapter.

Table 4.2 indicates that CBO, SLOC and DIT metrics are included in the mul-

tivariate change prediction model of AOI dataset. According to Table 4.3, only the

CBO metric was selected for inclusion in the multivariate change-proneness model

for Apollo dataset. However, the multivariate LR model on the AVISync dataset

included DIT and WMC for the model development as shown in Table 4.4.

Table 4.2: Multivariate LR Results of AOI (Backward LR)

Metric Name B SE Significance Odds Ratio
CBO 0.076 0.022 0.001 1.079
SLOC 0.003 0.001 < 0.000 1.003
DIT -0.354 0.176 0.045 0.702
Constant -1.482 0.292 < 0.001 0.227

Table 4.3: Multivariate LR Results of Apollo (Backward LR)

Metric Name B SE Significance Odds Ratio
CBO 0.117 0.029 < 0.001 1.124
Constant -1.706 0.241 < 0.001 0.182

121

Result Analysis

Table 4.4: Multivariate LR Results of AviSync (Backward LR)

Metric Name B SE Significance Odds Ratio
DIT -0.478 0.255 0.061 0.620
WMC 0.083 0.033 0.007 1.086
Constant -0.567 0.178 0.404 0.567

Table 4.5: Multivariate LR Results of DrJava (Backward LR)

Metric Name B SE Significance Odds Ratio
CBO 0.160 0.036 < 0.001 1.173
LCOM 0.013 0.003 < 0.001 1.013
WMC 0.026 0.010 0.008 1.027
Constant -1.636 0.215 < 0.001 0.195

Table 4.6: Multivariate LR Results of DSpace (Backward LR)

Metric Name B SE Significance Odds Ratio
CBO 0.253 0.067 < 0.001 1.287
SLOC 0.019 0.005 < 0.001 1.019
LCOM 0.016 0.005 0.003 1.016
WMC -0.055 0.029 0.059 0.946
Constant -2.188 0.371 < 0.001 0.112

Table 4.7: Multivariate LR Results of Robocode (Backward LR)

Metric Name B SE Significance Odds Ratio
CBO 0.048 0.028 0.081 1.050
SLOC 0.003 0.001 0.040 1.003
LCOM 0.014 0.005 0.011 1.014
Constant -2.428 0.322 < 0.001 0.088

Table 4.5 states that CBO, LCOM and WMC metrics were selected using Back-

ward LR for developing multivariate change-proneness prediction model on DrJava

dataset. Multivariate LR results (Table 4.6) on DSpace dataset indicates inclusion

of CBO, SLOC, LCOM and WMC metrics. According to Table 4.7, CBO, SLOC

and LCOM metrics were selected for inclusion in the multivariate change-proneness

prediction model for Robocode dataset.

122

Result Analysis

4.3.3 CFS Results

The results on each dataset after application of CFS method are depicted in Table

4.8. The CBO metric was selected in all the six datasets. In five out of six datasets,

WMC and SLOC metrics were selected for developing change-proneness prediction

models. The LCOM metric was selected by three datasets. The RFC metric was

selected by both Apollo and DrJava datasets. The NOC and DIT metrics were se-

lected by only one dataset each. This indicates less use of the inheritance metrics

(NOC and DIT) while developing models for predicting change-prone classes. The

results of CFS are different for each dataset as the selected metrics are dependent on

dataset characteristics and the change statistics. Similar results have been observed

by previous literature studies [5, 36, 37].

Table 4.8: Metrics selected after application of CFS

Dataset Metrics Selected
AOI CBO, SLOC, LCOM, WMC
Apollo CBO, RFC, SLOC
AviSync CBO, DIT, WMC
DrJava CBO, NOC, RFC, SLOC, LCOM, WMC
DSpace CBO, SLOC, WMC
Robocode CBO, SLOC, LCOM, WMC

4.3.4 Ten-Fold Cross Validation Results

Software change-proneness prediction models were developed using eleven ML tech-

niques (RF, BG, AB, LB, C4.5, CART, NB, MLP-BP, MLP-CG, GMDH and SVM)

and the statistical technique, LR. The specific details of each ML technique are men-

tioned in Chapter 2 (Section 2.6). It may be noted that the OO metrics selected after

application of the CFS method are used for developing change-proneness prediction

models using ML techniques. The metrics which were significant with univariate

analysis were selected for model prediction using the LR method.

123

Result Analysis

Table 4.9 states the ten-fold cross validation results using AUC measure on the

six datasets used in the chapter. The technique whose model exhibited the best AUC

result in each dataset is depicted in bold.

Table 4.9: AUC Results using Ten-fold Cross Validation

ML Technique AOI Apollo AviSync DrJava DSpace Robocode
RF 0.82 0.76 0.80 0.77 0.79 0.73
BG 0.79 0.64 0.76 0.78 0.82 0.74
AB 0.75 0.71 0.84 0.75 0.84 0.69
LB 0.77 0.71 0.81 0.77 0.83 0.70
C4.5 0.59 0.58 0.72 0.72 0.79 0.71
CART 0.69 0.56 0.69 0.70 0.78 0.68
NB 0.71 0.64 0.75 0.77 0.78 0.75
MLP-BP 0.75 0.63 0.78 0.80 0.82 0.72
MLP-CG 0.72 0.67 0.75 0.79 0.81 0.75
GMDH 0.73 0.67 0.55 0.78 0.82 0.74
SVM 0.79 0.74 0.72 0.79 0.82 0.67
LR 0.76 0.67 0.73 0.79 0.82 0.74

According to Table 4.9, the models developed using the RF technique exhibited

the best AUC values of 0.82 and 0.76 in AOI and Apollo datasets respectively. The

models developed using the AB technique and the LB technique with AUC values

of 0.84 and 0.83 respectively, gave the best AUC values in AviSync and DSpace

datasets. The model developed using the MLP-BP technique with an AUC value

of 0.80 is the best one for DrJava dataset, while the model developed using the NB

technique exhibited the highest AUC value of 0.75 on the Robocode dataset. It may

be noted that though the models developed using the LR technique exhibited com-

petitive AUC values, they were not the best on either of the six datasets. The AUC

values exhibited by a majority of models developed using the ML techniques were

in the range of 0.60-0.84. This indicates an effective performance of ML techniques

for developing change-proneness prediction models.

The G-Mean1 and Balance values of ten-fold cross validation results of change-

proneness prediction models developed using the ML techniques and the LR tech-

nique are depicted in Table 4.10 and Table 4.11 respectively. The models depicting

124

Result Analysis

the best performance measure values in each dataset are depicted in bold. According

to the tables, the models developed using the RF technique exhibited the highest G-

Mean1 values on AOI, Apollo and AviSync datasets and the highest Balance values

on AOI and Apollo datasets.

Table 4.10: G-Mean1 Results using Ten-fold Cross Validation

ML Technique AOI Apollo AviSync DrJava DSpace Robocode
RF 0.72 0.60 0.72 0.72 0.71 0.57
BG 0.68 0.48 0.69 0.72 0.75 0.61
AB 0.52 0.40 0.72 0.68 0.75 0.60
LB 0.62 0.39 0.68 0.72 0.75 0.59
C4.5 0.40 0.21 0.61 0.71 0.75 0.53
CART 0.58 0.31 0.63 0.69 0.76 0.60
NB 0.57 0.45 0.59 0.59 0.65 0.53
MLP-BP 0.57 0.24 0.60 0.74 0.78 0.57
MLP-CG 0.53 0.31 0.62 0.74 0.76 0.59
GMDH 0.54 0.38 0.42 0.73 0.75 0.53
SVM 0.50 0.00 0.58 0.73 0.77 0.44
LR 0.55 0.29 0.62 0.72 0.51 0.48

Table 4.11: Balance Results using Ten-fold Cross Validation

ML Technique AOI Apollo AviSync DrJava DSpace Robocode
RF 70.11 58.39 71.07 71.86 70.16 55.03
BG 64.47 47.17 66.78 71.53 74.27 56.81
AB 49.16 41.26 72.09 68.38 74.73 57.88
LB 58.75 41.08 67.35 71.54 74.07 55.46
C4.5 41.14 32.34 60.24 70.57 73.69 51.53
CART 56.85 36.41 63.20 69.35 75.55 57.52
NB 54.22 44.96 57.82 55.45 61.92 50.39
MLP-BP 53.81 33.35 57.40 73.26 77.22 52.77
MLP-CG 50.59 36.44 57.84 74.11 75.79 54.82
GMDH 51.68 40.28 43.29 72.55 73.01 50.59
SVM 48.01 29.29 55.06 71.25 76.71 43.54
LR 52.05 35.42 60.81 71.80 77.33 46.81

According to Table 4.10, other models which exhibited the highest G-Mean1

values on other datasets were developed using BG, AB, MLP-BP and MLP-CG

techniques. The best G-Mean1 values on all the datasets were in the range 0.60-

0.78, which demonstrates the capability of ML techniques for developing change-

proneness prediction models. With respect to Balance values (Table 4.11), apart

125

Result Analysis

from the model developed using the RF technique (AOI and Apollo datasets) and the

AB technique (AviSync and Robocode), the models developed using the MLP-CG

and LR techniques exhibited highest Balance values on DrJava and DSpace datasets.

Apart from Apollo dataset, majority of models developed using the ML techniques

on other datasets exhibited Balance values in the range of 50-70%.

4.3.5 Friedman Test Results

We analyzed a number of change-proneness prediction models using eleven ML tech-

niques and the LR technique on six open-source datasets. Though, there is a differ-

ence in the performance of the models developed using various techniques, we need

to assess whether the difference is statistically significant. In order to do so, we per-

form Friedman statistical test at α = 0.05. The details of the test are mentioned

Chapter 2. The Friedman test was conducted based on the AUC values, G-Mean1

values and Balance values of each model respectively.

Table 4.12: Friedman Ranking of ML Techniques based on AUC Values

ML Technique Mean Rank
RF 4.50
LB 4.67
LR, BG 5.00
AB 5.33
SVM 5.50
MLP-CG 5.67
MLP-BP 5.92
GMDH 7.00
NB 7.75
C4.5 10.17
CART 11.50

Table 4.12 states the mean ranks obtained by each technique after application of

Friedman test on AUC values. According to the results, the models developed using

the RF technique exhibited best AUC values as the RF technique obtained a mean

rank of 4.50. The second rank was given to the LB technique, which was closely

126

Result Analysis

followed by the LR and BG techniques. The CART technique was designated as

the worst technique with a mean rank of 11.50. The Friedman statistic value with

eleven degrees of freedom was calculated as 25.67. Furthermore, a p-value of 0.007

indicates that the results are true with a confidence interval of 95%. Thus, we reject

the null hypothesis of the Friedman test which states that all ML techniques and the

LR technique are behaviorally same. The techniques are significantly different in

their behavior. The results also indicate that certain ML techniques like RF and LB

perform better than the statistical technique LR.

We also computed Friedman test on G-Mean1 and Balance values. However, the

Friedman test results using these performance measures were not found significant.

4.3.6 Wilcoxon Test Results

As Friedman test results using AUC performance measure were found significant, we

conducted Wilcoxon signed rank post-hoc test to statistically compare the pairwise

performance of ML techniques and the statistical technique, LR.

Table 4.13: Wilcoxon Test Results based on AUC Values

Compared Pair Wilcoxon Test Output
LR vs RF ↓
LR vs LB ↓
LR vs BG ↓
LR vs AB ↓
LR vs SVM ↓
LR vs MLP-CG ↑
LR vs MLP-BP ↑
LR vs GMDH ↑
LR vs NB ↑
LR vs C4.5 ↑
LR vs CART ↑
↑: Not significantly better; ↓: Not significantly poor

The null hypothesis of Wilcoxon signed rank test is that the performance of LR

does not differ significantly when compared with the other investigated ML tech-

127

Response to RQ’s

niques (RF, BG, AB, LB, C4.5, CART, NB, MLP-BP, MLP-CG, GMDH and SVM),

using AUC values. The test was conducted at α = 0.05. The results of the test are

depicted in Table 4.13. The Wilcoxon output in the table is either stated as “↑” or

“↓”. “↑” indicates better results of the LR technique when compared with the stated

ML technique. “↓” indicates poor results of the LR technique when compared with

the stated ML technique. According to the results in Table 4.13, five ML techniques

(RF, LB, BG, AB and SVM) were found superior to LR, but not significantly. Other

compared ML techniques were found inferior, but again not significantly. Therefore,

the investigated hypothesis is accepted. This indicates that the performance of ML

techniques were comparable to the statistical technique, LR.

4.4 Response to RQ’s

This section discusses the answers to the investigated RQ’s of the chapter.

Response to RQ1

OO metrics which are representative of various OO attributes like coupling, co-

hesion, size etc. can be effectively used for predicting change-prone classes. This

chapter has evaluated a number of change prediction models which can efficiently

predict change-prone classes of a software product with OO metrics as the indepen-

dent variables. Moreover, we conducted univariate LR analysis and applied CFS

method to select OO metrics which are efficient predictors of change. Our results

indicate that the CBO metric, the SLOC metric and the WMC metric are good indi-

cators of change as these metrics were selected by a majority of the datasets using

both univariate LR analysis and the CFS method. While CBO is a coupling metric,

SLOC and WMC are size metrics. We also found that the inheritance metrics, DIT

and NOC were not efficient change predictors since NOC was not selected by any

128

Response to RQ’s

dataset using univariate LR analysis and DIT was selected in only one dataset us-

ing the CFS method. Similar results have been shown by Lu et al. [28], where they

found that the inheritance metrics were least effective while predicting change. Thus,

the experiments conducted in the chapter ascertains the existence of the relationship

between OO metrics and change-proneness attribute of a class.

Response to RQ2

This chapter evaluates a number of change prediction models which were devel-

oped using the ML techniques (RF, BG, AB, LB, C4.5, CART, NB, MLP-BP, MLP-

CG, GMDH and SVM). The performance capability of the models were evaluated

with a number of performance measures i.e. AUC, G-Mean1 and Balance. A ma-

jority of the models developed using the ML techniques yield good results i.e. AUC

values ranging from 0.60-0.84, G-Mean1 values ranging from 0.50-0.78 and Balance

values ranging from 40-74%. These results show that the ML techniques can be ef-

fectively used for developing good change prediction models. These models can be

used by the software industry and researchers to identify change-prone classes in the

early phases of software development life cycle. Determining change-prone classes

would help in planning effective resource usage during the maintenance and testing

phases of a software. It would further help in developing a better quality software by

rigorous verification activities of these change-prone classes.

Response to RQ3

The results of change prediction models developed using ML techniques and the

LR technique were found comparable. However, in certain cases, the results of the

models developed using ML techniques were better than change prediction models

developed using the LR technique. According to Balance values of the developed

change prediction models depicted in Table 4.11, only in the case of DSpace dataset,

the LR technique exhibited the best Balance values as compared to the investigated

129

Response to RQ’s

ML techniques. In all other seventeen cases (Table 4.9-4.11), where the best model

according to a specific performance measure (AUC, G-Mean1 or Balance) was ana-

lyzed, an ML technique exhibited the best performance. This indicates the superiority

of ML techniques for developing change-proneness prediction models.

In order to compare the performance of the ML techniques with the LR, we em-

ployed Friedman statistical test. The test ranks all the techniques (eleven ML and

one statistical) using performance measure values of the developed prediction mod-

els on the six open-source datasets used in the chapter. The Friedman test results

using G-Mean1 and Balance values were found insignificant. This indicates compa-

rable results of the models developed using the LR technique and the ML techniques.

However, the Friedman results using the AUC measure were found significant. The

best rank according to AUC values was allocated to the RF technique, followed by

the LB technique. Both RF and LB are ensemble techniques which provide stable

and effective results by training on different samples and then aggregating the out-

puts. The results of the Friedman statistical test were true for a confidence interval of

95%.

Furthermore, we conducted Wilcoxon signed rank test to pairwise compare the

performance of the LR technique with other investigated ML techniques for develop-

ing change prediction models. It was found that no pairwise comparison was found

significant. Though, RF, LB, BG, AB and SVM models were found better than LR,

but the statistical results were not significant. Similarly, the performance of all other

ML techniques was found inferior but not significantly. Thus, we reiterate that the

performance of the ML techniques is comparable to that of the LR technique for

developing change-proneness prediction models.

130

Discussion

4.5 Discussion

The aim of the chapter was to evaluate eleven ML techniques for their effectiveness

in predicting change-prone classes of an OO software. The empirical validation was

done using six open-source datasets. We further analyze and compare the perfor-

mance of the ML techniques with the statistical technique LR using the Friedman

and Wilcoxon signed rank statistical tests. Thus, the significance of this chapter

includes evaluation of an extensive set of ML techniques for change-proneness pre-

diction problem in OO datasets and the statistical comparison amongst all the ML

techniques and the statistical technique, LR. The important findings of the chapter

are as follows:

1. The chapter ascertains that there exists a relationship among OO metrics and

change-proneness attribute of a class. The CBO metric, the SLOC metric and

the WMC metric are efficient predictors of change and can be used for deter-

mining change-prone classes in an OO software.

2. The change prediction models developed using different ML techniques ex-

hibited mean AUC values in the range 0.68-0.78, mean G-Mean1 values in the

range 0.51-0.67 and mean Balance values in the range 54-66% over all the in-

vestigated datasets. This indicates their effectiveness in the domain of software

change prediction. Researchers and practitioners may use ML techniques for

identifying change-prone classes.

3. The performance of ML techniques were comparable and in some cases better

than statistical technique, LR, though not significantly. Thus, ML algorithms

are competitive with the LR technique while predicting software change and

can be used by the software industry to effectively plan resource allocation and

develop good quality software products.

131

Chapter 5

Analysis of Search-based Algorithms

for Software Change Prediction

5.1 Introduction

SEPM involves the construction of models, with the help of software metrics, for es-

timating quality attributes. Recently, the use of SBA have gained importance as they

help the developers and project managers in the identification of optimal solutions for

developing effective prediction models. SBA are meta-heuristic procedures, which

are capable of identifying an optimized solution from a large search space consist-

ing of potential solutions. The search process in a search-based algorithm is guided

by a fitness evaluator which ascertains the appropriateness of a specific solution [6].

The application of SBA for predictive modeling has been advocated by Harman and

Jones [157] and Harman [158], as these techniques are efficient in balancing con-

straints and conflicts. Moreover, they are also efficient in handling noisy, partially

inaccurate and incomplete datasets. Other advantages of SBA include their simple

problem solving approach and robustness [158, 159]. These algorithms avoid getting

133

Introduction

trapped in local optima and conduct the global search efficiently. Harman and Clark

[160] have argued that the performance measures, such as the classification accuracy,

can be used by SBA as fitness functions and hence, can be used to create software

prediction models (SPM).

Given the newly identified relationship between the SBA and predictive modeling

and the various advantages of SBA, this chapter has two main objectives:

1. Systematically study empirical evidence reported in literature about the use of

SBA for the development of SPM.

2. Evaluate the effectiveness of SBA for developing prediction models to deter-

mine change-prone classes in a software.

In order to achieve the first objective, we conduct an extensive review on the

use of SBA for SEPM, with a specific focus on: (1) software development effort

estimation, (2) defect-proneness prediction, (3) maintainability prediction, and (4)

change-proneness prediction. These attributes were selected, as according to a sur-

vey of empirical studies by Briand and Wust [161], some of the most common at-

tributes investigated in empirical studies were defect-proneness, the effort for var-

ious developmental activities and the number of changes or defects. However, to

structure our work, we selected two binary outcome variables (defect-proneness and

change-proneness) and two continuous outcome variables (development effort and

maintenance effort). It may be noted that effort, both before software development

and during maintenance is a crucial attribute which needs to be estimated by software

project managers so that proper planning and resource allocation can be performed.

The improper estimation may lead to unnecessary delays and dissatisfied customers.

Similarly, defects and changes need to be investigated so that project managers can

identify weak components of a software. Such weak components may be restruc-

tured or allocated more effort for developing effective software products. We evalu-

134

Introduction

ate SBA reported in the literature, for the four mentioned SEPM tasks, over a time

period from January 1992 to December 2017 by conducting a systematic review of

91 primary studies. Moreover, we also explore effective experimental setups and

methods followed in literature for using SBA in SEPM domain.

The review was conducted to summarize and assess empirical evidence associated

with primary studies regarding: (1) the context of SBA in SEPM; (2) the validation

techniques, number of runs to account for the stochastic nature and the performance

measures used for SEPM using SBA; (3) the use of different fitness functions for

SEPM; (4) the performance capabilities of SBA for SEPM; (5) the comparative pre-

dictive capabilities of SBA and the ML techniques; (6) the use of different tests to

statistically validate the comparative performance of various techniques and, (7) the

threats to validity encountered while using SBA for SEPM.

The second objective is addressed by performing an empirical experiment which

assesses the use of SBA for determining change-prone classes. As indicated in Chap-

ter 3, SBA exhibited effective results while developing change-proneness prediction

models. Moreover, we found that more empirical studies are required, which assess

and compare the effectiveness of SBA in this domain with other techniques. Thus,

we compare the performance of SBA with ML and statistical techniques. The perfor-

mance of eight SBA (CPSO, GA-ADI, GA-Int, GEP, HIDER, MPLCS, SUCS, XCS),

4 ML techniques (SVM, C4.5, CART, MLP-CG) and 1 statistical technique (LDA)

is evaluated on fourteen open-source datasets for developing models which predict

change-prone classes. It is essential to evaluate a number of algorithms as some al-

gorithms work well on or are well suited to certain datasets while they may not yield

good results on other datasets. Furthermore, it enhances the generalizability of the

experiment’s results. We also statistically evaluate and compare the performance of

the investigated techniques using Friedman and Wilcoxon tests.

It may be noted that we would address results specific to the first objective as “re-

135

Review Background & Results

view results” and the results specific to the empirical experiment (second objective)

as “experimental results”.

This chapter is organized as follows: Section 5.2 states the review background

and its results. It includes the details of the review and states the results specific to

each investigated RQ in the review. It also summarizes the current trends and pro-

vides future guidelines to researchers. Section 5.3 states the experimental design and

framework for conducting the empirical experiment. Section 5.4 states the results of

the empirical experiment and analyzes them. Finally, Section 5.5 states the discus-

sion of the chapter results. The results of the chapter are published in [162–164].

5.2 Review Background & Results

This section first states the background of the review i.e. the investigated RQ’s,

review procedure and the primary studies. Thereafter, the subsequent subsections

discuss the results corresponding to each RQ investigated in the review.

5.2.1 Review Background

In order to conduct the review, we follow a similar review procedure as discussed in

Chapter 3 (Section 3.2). The RQ’s investigated in the review are mentioned below:

• RQ1: What is the context of SBA in SEPM?

• RQ2: What experimental settings are used for SEPM, when SBA are used?

– RQ2.1: Which type of validation is performed for SEPM using SBA?

– RQ2.2: How many runs/executions have been performed in the experi-

ment to account for the stochastic nature of SBA for SEPM?

136

Review Background & Results

– RQ2.3: Which performance measures are used by experiments for ana-

lyzing the developed SPM?

• RQ3: Which fitness functions have been used by SBA for SEPM?

• RQ4: What is the predictive performance of a specific search-based algorithm

for SEPM tasks?

• RQ5: What is the comparative performance of the models predicted using SBA

and models predicted using ML techniques for SEPM?

• RQ6: Which statistical tests have been used to compare the predictive ability

of different SBA for SEPM?

• RQ7: What threats to validity exist in the application of SBA to SEPM? How

to mitigate the identified threats?

The search-string for extracting candidate studies is as follows:

(“software product” OR “open-source project” OR “software application” OR

“software system”) AND (“defect” OR “error” OR “fault” OR “bug” OR “effort”

OR “cost” OR “change” OR “maintenance effort” OR “maintainability”) AND (“es-

timation” OR “prediction” OR “proneness” OR “classification” OR “classifier” OR

“assessment” OR “empirical”) AND (“search-based” OR “meta-heuristic” OR “evo-

lutionary” OR “multi-objective”) AND (“local search” OR “tabu search” OR “hill

climbing” OR “simulated annealing” OR “genetic programming” OR “gene expres-

sion programming” OR “genetic algorithm” OR “ant colony optimization” OR “par-

ticle swarm optimization” OR “differential evolution” or “evolutionary program-

ming” OR “artificial immune system” OR “cuckoo search” OR “artificial bee colony”

OR “harmony search” or “hybrid” OR “memetic” OR “teaching-learning-based op-

timization”)

137

Review Background & Results

We searched a number of prominent search-databases such as SCOUPUS, Wi-

ley, SpringerLink, IEEExplore, and ACM digital library. Furthermore, important

search-based avenues that include a repository of Search Based Software Engineer-

ing publications (http://crestweb.cs.ucl.ac.uk/resources/sbse_

repository/repository.html) and proceedings of conferences such as Ge-

netic and Evolutionary Computation (GECCO) and Symposium on Search-Based

Software Engineering (SSBSE) were also explored. The period of the search of

candidate studies was chosen as January 1992 to December 2017 as the use of a

first search-based algorithm for a software engineering application was done in 1992

[165].

A total of 169 candidate studies were collected, which were first subjected to

inclusion and exclusion criteria, mentioned in Appendix C.1. After the application of

the criteria, a total of 112 studies were included. These studies were further assessed

to evaluate their quality, according to the quality questions stated in Appendix C.2.

Each literature study was given a QS by aggregating the grades scored by a specific

study on the basis of these 16 quality questions. For each quality question, a study

could be allocated three possible scores of 0 (No), 0.5 (Partly) and 1 (Yes). All the

studies with QS < 8 (50% of the total QS) were rejected. After this step, a total of 91

literature studies were selected, which were termed as primary studies of our review

(Table 5.1). The details of data collection procedure are listed in Appendix C.3.

Relevant data pertaining to RQs was extracted from these studies and the obtained

results are reported in subsequent sections.

Table 5.1 lists all the 91 primary studies with a specific allocated study number

and its QS. It may be noted that 47% of the studies developed effort estimation mod-

els (denoted by ES), 41% of the studies developed defect prediction models (denoted

138

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html

Review Background & Results

Table 5.1: Primary Studies with Quality Score

Study No. Study QS Study No. Study QS
ES1 Dolado & Fernandez 1998 [166] 11.5 DS4, CS2 Khoshgoftaar et al. 2003 [136] 11.5
ES2 Dolado 2000 [167] 13 DS5 Liu et al. 2004 [168] 9.5
ES3 Shukla 2000 [169] 12.5 DS7 De Carvalho et al. 2008 [170] 14
ES4 Burgess & Lefley 2001 [171] 13 DS8 Tsakonas & Dounias 2008 [172] 10
ES5 Dolado 2001 [173] 11 DS9 Vandecruys et al. 2012 [174] 12
ES6 Kirsopp et al. 2002 [175] 12.5 DS10 Catal & Diri 2009 [176] 14
ES7 Shan et al. 2002 [177] 12.5 DS11 Singh et al. 2009 [178] 11
ES8 Lefley & Shepperd 2003 [179] 12 DS12 Afzal 2010 [180] 13.5
ES9 Regolin et al. 2003 [181] 11.5 DS13 De Carvalho et al. 2010 [37] 15
ES10 Lokan 2005 [182] 11.5 DS14 Jin et al. 2010 [183] 10
ES11 Huang & Chiu 2006 [184] 12 DS15 Liu et al. 2010 [185] 13
ES12 Sheta 2006 [186] 9 DS16 Pendharkar 2010 [187] 10.5
ES13 Chiu & Huang 2007 [188] 12 DS17 Chiu 2011 [189] 10.5
ES14 Ahmed et al. 2008 [190] 8.5 DS18 Di Martino et al. 2011 [46] 11.5
ES15 Braga et al. 2008 [191] 11.5 DS19 Yu 2012 [192] 12
ES16 Huang et al. 2008 [193] 11.5 DS20 Rodriguez et al. 2012 [194] 11.5
ES17, DS6 Tsakonas & Dounias 2008 [195] 11 DS21 Sarro et al. 2012 [196] 13.5
ES18 Ferrucci et al. 2009 [197] 13.5 DS22 Can et al. 2013 [198] 8.5
ES19 Li et al. 2009a [199] 11 DS23 Canfora et al. 2013 [200] 15
ES20 Li et al. 2009b [201] 10.5 DS24 Abaei & Selamat 2014 [202] 12
ES21 Tsakonas & Dounias 2009 [203] 12 DS25 Harman et al. 2014 [38] 12.5
ES22 Ferrucci et al. 2010a [204] 14 DS26 Li et al. 2014 [205] 8.5
ES23 Ferrucci et al. 2010b [47] 13.5 DS27 Malhotra 2014 [206] 13
ES24 Ferrucci et al. 2010c [207] 12.5 DS28 Arar & Ayan 2015 [61] 14.5
ES25 Oliveira et al. 2010 [153] 14.5 DS29 Jin & Jin 2015 [208] 14
ES26 Sheta et al. 2010 [209] 9 DS30 Abdi et al. 2015 [210] 15
ES27 Alaa and Al-Afeef 2010 [211] 11 DS31 Afzal & Torkar 2016 [212] 14.5
ES28 Aljahdali 2010 [213] 10 DS32 Kumar & Rath 2016 [214] 11
ES29 Chavoya et al. 2010 [215] 11.5 DS33 Ryu & Baik 2016 [216] 14
ES30 Araujo al. 2012 [217] 11 DS34 Xia et al. 2016 [40] 16
ES31 Sarro et al. 2012 [218] 13 DS35 Ferrucci et al. 2017 [39] 16
ES32 Bardsiri et al. 2013 [219] 12.5 DS36 Hosseini et al. 2017 [41] 15.5
ES33 Barros et al. 2013 [220] 14 DS37 Mausa & Grbac 2017 [221] 14
ES34 Corazza et al. 2013 [222] 16 MS1 Baqais et al. 2014 [223] 8
ES35 Minku & Yao 2013a [224] 14 MS2 Malhotra & Chug 2014 [225] 10.5
ES36 Minku & Yao 2013b [226] 13 MS3 Kumar et al. [227] 10.5
ES37 Dan 2013 [228] 8 MS4 Jain et al. 2016 [229] 10
ES38 Bardsiri et al. 2014 [230] 14.5 CS3 Azar 2010 [34] 13
ES39 Azzeh et al. 2014 [231] 9.5 CS4 Azar & Vybihal 2011 [35] 11.5
ES40 Sarro et al. 2016 [232] 15.5 CS5 Marinescu 2014 [150] 10.5
ES41 Benala & Mall 2017 [233] 14.5 CS6 Malhotra & Khanna 2014 [148] 13.5
ES42 Murrillo-Morera et al. 2017

[234]

15 CS7 Malhotra & Khanna 2015 [135] 12

ES43 Wu et al. 2017 [235] 9.5 CS8 Elish et al. 2015 [45] 9
DS1 Hochman et al. 1996 [236] 9 CS9 Bansal 2017 [36] 13.5
DS2 Hochman et al. 1997 [237] 13 CS10 Kumar et al. 2017 [141] 11
DS3, CS1 Liu et al. 2001 [134] 12

139

Review Background & Results

by DS) and 11% of the studies developed models to predict change-proneness (de-

noted by CS). Only four studies developed maintainability prediction models (de-

noted by MS). Three studies assessed more than one software attribute. According to

Table 5.1, the best studies according to QS were ES34, DS34 and DS35. Researchers

might refer to these studies for designing effective experimental setups while using

SBA for SEPM. Also, the most popularly cited studies were ES4, DS10, ES20, ES16,

ES40 and DS34. A year-wise distribution of all the primary studies is discussed Ap-

pendix C.4.

5.2.2 Results specific to RQ1

It is important to first observe the various SBA used by literature studies for SEPM

and categorize them. Furthermore, the most prevalent category of SBA along with

the characteristics of SBA, which make them suitable in developing SEPM needs to

be assessed.

Categories of SBA used for SEPM

SBA which are used for developing SEPM can be categorized into four broad

categories: Local Search, Evolutionary, Swarm Intelligence and Hybrid.

A local search technique starts its search from a specific candidate solution and

explores only its neighbourhood to search for an optimal solution. Thus, the fitness

function of these techniques is locally optimized indicating the name local search. In

order to overcome local optima, these techniques may perform many solution restarts.

On the contrary, evolutionary techniques simulate biological evolution mechanisms.

They search for optimum solutions by application of various genetic operators such

as selection, reproduction, mutation and crossover on candidate solutions. Thus, the

population of solutions keeps evolving leading to globally optimal or near-optimal

solutions.

140

Review Background & Results

Swarm intelligence techniques are modeled on the basis of collective behaviour

of individual agents (candidate solutions) without any centralized control. An intel-

ligent solution is outcome by an interaction of these individual agents amongst each

other and with the provided environment. These agents follow a specific set of rules

and simulate natural behaviours such as bird flocking, immune systems, etc. Hybrid

category of techniques encompass SBA, which combine more than one approach into

a single unit. For instance, a search-based approach such as GA may be combined

with an ML technique such as Artificial Neural Network (ANN). The prime motive

of such approaches is to aggregate the strengths of both the constituent techniques to

provide a better approach.

Appendix C.5 states the various SBA used by the primary studies and the study

numbers that use them according to these categories. It may be noted from the table

that a wide variety of hybrid SBA are possible, which have been used by various

studies in the domain of SEPM.

Popularity of different SBA used for SEPM

Figure 5.1 depicts the percentage of studies which used a specific category of

SBA for effort estimation, defect prediction, maintainability prediction or change

prediction. We summarize the following trends from the figure:

• A majority of effort estimation studies (58%) used the evolutionary techniques

followed by the hybrid techniques (16%). The most commonly used evolution-

ary technique was GP, which was closely followed by GA.

• The most commonly used category of SBA for defect prediction were the hy-

brid techniques (43%). In addition, swarm intelligence techniques were used

in 27% of defect prediction studies. Evolutionary algorithms (mainly GP and

GA) were explored in 30% of the defect prediction studies.

141

Review Background & Results

• Maintainability prediction studies used either hybrid (75%) or evolutionary

(25%) techniques.

• A majority of change prediction studies (41%) evaluated the use of evolution-

ary techniques such as GP and GA. Only 38% of the studies used swarm intelli-

gence techniques for developing models. Other studies used hybrid techniques.

Figure 5.1: Distribution of studies based on SBA categorization (a) Effort estimation
(b) Defect prediction (c) Maintainability prediction (d) Change prediction

The observations indicate that the evolutionary category of techniques are the

most popular ones. Their favourableness is attributed to their simplicity and adapt-

ability with which they can incorporate change according to variation in environment.

Moreover, such techniques can be easily modeled to optimize more than one fitness

function, generating globally good quality acceptable solutions. The GP technique

is commonly used for developing effort estimation models, as it does not make pre-

assumptions about the distribution of underlying data and can efficiently operate on a

142

Review Background & Results

small portion of training set to generate effective rules [177, 183, 220]. Also, GP can

take into account whether the source of data is internal to an organization or outside

the organization by using appropriate multipliers, thus, building effective prediction

models [47].

The next most popular category of techniques was Hybrid. As discussed above,

these techniques encapsulate the strengths of their constituent techniques to provide

effective approaches for SEPM . Swarm intelligence techniques are efficient, as they

are based on collective behaviour and are easy to implement. However, they have not

been extensively explored for SEPM. These trends also show restricted use of local

search techniques for SEPM.

The local search techniques were the least popular of all, as they were only ex-

plored in effort estimation studies. Local search technique such as Hill climbing

needs many restarts to find globally optimal solutions [6]. The local search tech-

nique, Tabu Search (TS) though effective, requires the definition of problem-specific

memory-based strategies which are efficient. More advanced techniques came up

which could be the reasons for the unpopularity of these local search techniques.

Favourable characteristics of SBA

The general characteristics of SBA which make them suitable in the domain of

SEPM have been extracted from primary studies, which are mentioned as follows:

• SBA are typically suitable in scenarios when there is a large population of

candidate solutions (ES33). This is because they are capable of searching mul-

tiple regions of the search space in parallel for ascertaining optimum solutions

(ES25, DS15). This characteristic also ensures global optimum solutions as

candidate solutions at various regions of the search space are explored simul-

taneously, thus, avoiding local optima.

• SBA employ various performance measures as fitness functions to evaluate the

143

Review Background & Results

quality of candidate solutions. This specific characteristic make SBA ideal for

developing SPM as they can find a good solution by optimizing these perfor-

mance measures (ES23, ES31, ES34, DS31, DS25).

• Many SBA such as GA, GP and PSO do not require any pre-assumptions about

the training data. This characteristic makes them suitable candidates for devel-

oping prediction models from historical training data, as the data does not need

to follow specific assumptions (ES11, ES25, ES42, DS29, DS31).

• SBA are robust in nature and are effective in scenarios when inaccurate or noisy

training data is available (ES40, DS37, CS9).

• While developing SPM, researchers may need to optimize various conflicting

constraints to guarantee an effective solution. SBA with multiple objectives

are ideal for such situations (ES31, DS13, DS30, DS33).

• Hybrid SBA combine the advantages of all their constituent approaches into

one. Such approaches may provide better model accuracy, faster convergence,

comprehensibility etc. An ideal hybridization would be that of a specific ML

technique and a search-based algorithm. For instance, in Genetic Algorithm-

Support Vector Machine (GA-SVM), GA may be used for tuning the param-

eters of an ML technique such as SVM, where SVM is used for developing a

prediction model. Thus, such strengthened hybridized SBA are ideal for SEPM

(DS34, CS9).

5.2.3 Results Specific to RQ2

In order to effectively develop a SPM, it is important to analyze and explore various

experimental settings such as validation techniques, the number of runs to address the

stochastic nature of SBA and the performance measures used to assess the developed

144

Review Background & Results

SPM. This RQ explores the most commonly used experimental settings described in

the literature for SEPM using SBA.

Validation Technique (RQ2.1)

In order to develop a predictive model and assess its effectiveness, it is crucial to

use an efficient validation method. The most common validation methods used by

the primary studies were LOOCV, K-fold cross validation, hold-out cross validation

and cross-project validation. The K-fold cross validation is the most frequently used

method, which was used in about 52% of primary studies.

Figure 5.2: Validation Methods in Literature Studies using SBA

Figure 5.2 depicts the distribution of primary studies using different validation

methods, according to a specific quality attribute. These attributes are described

below:

Effort Estimation: The hold-out validation method was used in 40% of the effort

estimation studies, while the LOOCV method was used by 9% of the effort estimation

studies. Around 47% of the effort estimation studies used the K-fold cross validation

with K=3 or K=10.

Defect Prediction: As shown in Figure 5.2, 54% of defect prediction studies used

145

Review Background & Results

K-fold cross validation method. The K value was taken as 10 in all the defect predic-

tion studies except DS17 (K=3). Also, 35% of defect prediction studies use hold-out

validation. Only one study used the LOOCV method. It may be noted that 14% of

defect prediction studies also used cross-project validation.

Maintainability Prediction: Around 25% of maintainability prediction studies

used the ten-fold cross validation and LOOCV methods respectively. Other main-

tainability prediction studies did not mention their validation method.

Change Prediction: The majority (60%) of the change prediction studies used K-

fold cross validation technique (K=10). Three change prediction studies used hold-

out validation while only one change prediction study used cross-project method.

Although, the hold-out validation technique is used in a large number of stud-

ies, the most commonly used technique according to Figure 5.2 is ten-fold cross-

validation. This is because the hold-out validation technique exhibits higher variance

in results. For example, if we have a single hold-out set with 25% of data for test-

ing and 75% for training, the test set is relatively small and would lead to a lot of

variations in results due to different partitions of data for training and test sets. Since

ten-fold cross validation averages the results obtained over ten partitions, it reduces

variance and the data is not sensitive to partitioning. This gives an accurate estimate

of performance. However, a better scenario would be to perform repeated ten-fold

cross validation where the data is re-partitioned for every round to increase the num-

ber of estimates, before an average is obtained. The use of cross-project should also

be encouraged as it supports the generalizability of results.

Runs to account for stochastic nature of SBA (RQ2.2)

All the SBA are stochastic in nature. According to Ali et al. [238], it is essential

to perform 10 or more runs in order to effectively address the stochastic nature of the

SBA. Out of 91 primary studies, 62% of the studies explicitly mentioned that they

146

Review Background & Results

performed multiple runs for accounting for the stochastic nature of the SBA.

Figure 5.3: Distribution of primary studies according to number of runs

Figure 5.3 shows the percentage distribution of primary studies using different

number of runs to account for the stochastic nature of SBA. A detailed description of

the usage of different number of runs is as follows:

Effort Estimation: Around 70% of the effort estimation studies mentioned that

they accounted for the stochastic nature of SBA by performing multiple runs. Out of

these 70% studies, a majority (43%) of the studies performed 10-20 runs and 20%

of these studies performed 30 runs. Only one effort estimation study performed 50

runs. 7% of the effort estimation studies, which try and account for the stochastic

nature of SBA, used only 4-9 runs and 13% of these studies used 100 or more runs.

Defect Prediction: 59% of defect prediction studies mentioned that they per-

formed multiple runs to account for the stochastic nature of SBA. Out of these, 59%

of the studies, 41% of the studies used 30 runs and 50% of the studies used 10-20

runs. 50 runs and 100 or more runs were performed by one defect prediction study

each.

Maintainability Prediction: Only one maintainability prediction study mentioned

that it accounted for the stochastic nature of SBA by performing multiple runs. How-

147

Review Background & Results

ever, it did not mention the number of runs it performed.

Change Prediction: Only 40% of change prediction studies reported that they

performed multiple runs. Out of these studies, 50% of the studies conducted 10-20

runs, and the remaining 50% conducted 30 runs.

It should be noted that 38% of the primary studies do not explicitly mention

whether they performed multiple runs to account for the stochastic nature of SBA or

not.

Performance Measures (RQ2.3)

The performance and estimation accuracy of different SBA can be evaluated with

the help of various performance measures, which are used to assess the effectiveness

of the SPM developed by these techniques. Figure 5.4 shows the most frequently

used performance measures in effort estimation, defect prediction, maintainability

prediction and change prediction studies along with the percentage use of these mea-

sures. A detailed description of the usage of different performance measures for each

quality attribute is as follows:

Effort Estimation: Most of the effort estimation studies (81%) used the Mean

Magnitude of Relative Error (MMRE) as a performance evaluator for effort estima-

tion models. Around 67% of effort estimation studies used Pred (25) for assessing

the performance of the developed effort estimation models. Other commonly used

performance evaluators were the Median Magnitude of Relative Error (MdMRE),

Magnitude of Relative Error (MRE), Mean Square Error (MSE) and coefficient of

regression (R2). Around 47% of the effort estimation studies also used other miscel-

laneous performance evaluators such as the Adjusted Mean Square Error (AMSE),

Balanced Mean Magnitude Relative of Error (BMMRE), Root Relative Square Error

(RRSE), Magnitude of Relative Error Relative to the Estimate (EMRE), and Variance

Accounted For (VAF) amongst others. All these performance measures were used in

148

Review Background & Results

Figure 5.4: Performance measures for (a) Effort estimation (b) Defect prediction (c)
Maintainability prediction (d) Change prediction

very few studies and were thus clubbed into the miscellaneous category.

Defect Prediction: The most commonly used performance evaluators in defect

prediction studies were sensitivity and accuracy, used in 57% of studies each. Pre-

cision and AUC performance measures were used in 35% and 38% of the studies

respectively. Type I and Type II errors, misclassification rate, specificity, F-measure,

and PF were other commonly used performance measures. Some other performance

measures grouped under the miscellaneous category were G-mean, weighted accu-

racy, support, coverage, Balance, and Normalized Expected Cost of Misclassification

(NECM) amongst others.

Maintainability Prediction: As there are only four maintainability prediction

studies, it is difficult to find the most commonly used performance measures. Some

of the used performance measures are MRE, MMRE, Pred(25), Mean Absolute Rel-

ative Error (MARE), Root Mean Square Error (RMSE) and Mean Absolute Error

149

Review Background & Results

(MAE). Pred(30) and Standard Error of the Mean (SEM) were grouped under the

miscellaneous category performance evaluators.

Change Prediction: Accuracy was the most commonly used performance evalua-

tor in change prediction studies (80%). Other frequently performance measures were

sensitivity, precision, F-measure, AUC, Type I and Type II error rates and misclas-

sification rate. The G-measure, G-mean, j-index and specificity were grouped under

the miscellaneous category of performance evaluators for change prediction models.

It can be seen that as effort estimation and maintainability prediction are regres-

sion problems, they use a number of common performance measures such as MMRE

and Pred(25). While estimating effort, the most popular performance measures have

been different variants of relative errors such as MMRE, Pred (25) etc. However,

these measures have been recently criticized for their biased nature [239, 240]. Use

of performance measures such as standardized accuracy [241], which provides an

unbiased and realistic estimate of the developed effort estimation model should be

encouraged.

Also, it may be noted that Accuracy is a traditional performance measure used

by defect prediction as well as change prediction studies. It is easy to compute using

a confusion matrix. Apart from accuracy, certain other performance measures such

as sensitivity, precision, F-measure, specificity and PF can also be computed using

a confusion matrix. However, the use of accuracy and precision has been discour-

aged while evaluating a binary variable as the class imbalance problem needs to be

considered [118, 119, 242]. Recent studies advocate the use of stable performance

measures such as the AUC, and the G-Mean1 for evaluating models trained by im-

balanced datasets [17, 38, 121].

150

Review Background & Results

5.2.4 Results specific to RQ3

SBA evaluate the goodness of a number of solutions in order to search for an optimal

or near optimal solution. The fitness function is used to evaluate the efficiency of a

specific solution. Different studies use different fitness functions for evaluation that

are generally based on performance measures. This section gives a brief description

of the most commonly used fitness functions for effort estimation, defect prediction,

maintainability prediction and change prediction studies. 79% of primary studies

explicitly stated the fitness functions used for evaluating the goodness of a solution.

We summarize the trends of the evaluated fitness functions in primary studies with

respect to each investigated software attribute.

Effort Estimation: Figure 5.5 depicts the percentage of effort estimation studies

using a specific fitness function. According to the figure, MSE and MMRE were the

most commonly used fitness functions - 26% and 30% respectively. Other fitness

functions used were the MdMRE, VAF, Least Absolute Deviation (LAD) and certain

combinations of MMRE and Pred (25). A few studies (7%) used multi-objective fit-

ness functions to evaluate a solution. For example, Logarithmic Standard Deviation

(LSD), MMRE and Pred (25) were used collectively to evaluate the fitness of a so-

lution. Some studies used other miscellaneous functions, such as Pred (25) (ES12,

ES18) and MAE (ES37) amongst others.

Defect Prediction: Figure 5.6 shows the percentage of studies using a particular

fitness function for defect prediction. According to the figure, 16% of defect predic-

tion studies use accuracy and its variants as fitness functions. The misclassification

cost and its variants are also used for ascertaining the goodness of a defect prediction

model in 22% of the studies. The F-measure was used as fitness function in 14% of

studies. The multi-objective function of specificity and sensitivity, and the product of

specificity and sensitivity were each used by 8% of defect prediction studies. Other

151

Review Background & Results

Figure 5.5: Fitness functions of Effort estimation studies

Figure 5.6: Fitness functions of Defect prediction studies

fitness functions used for defect prediction studies were precision and sensitivity. A

number of defect prediction studies also used other miscellaneous fitness functions

such as the product of F-measure and G-Mean1, only G-Mean1, the mean absolute

percentage error, and the lift.

Maintainability Prediction: Only one maintainability study (MS3) specified its

fitness function which was the inverse of RMSE.

Change Prediction: Seven change prediction studies (70%) clearly stated the fit-

ness functions used by them while developing change prediction models. CS1 used

152

Review Background & Results

the misclassification costs for fitness purpose, while the CS2 used a multi-objective

fitness function which includes the tree size along with the misclassification cost for

evaluation. CS3 used Accuracy, J-index and average number of rules per rule set as

fitness criteria. CS4 used a function which reported the proportion of correct predic-

tions to incorrect predictions. CS5 used the absolute difference between actual and

predicted outcome as fitness. CS9 employed various fitness functions for the nine

SBA used in the study. CS10 also specified its fitness function.

It can be seen from the above discussion that a wide variety of performance mea-

sures have been employed as fitness functions for developing various SPM. However,

a researcher should explore a number of different performance measures for the same

search-based algorithm as fitness functions as a change in fitness function may lead

to a significant change in results [47]. Moreover, only 8% of primary studies used

multi-objective fitness functions; the use of multi-objective fitness functions should

be explored as it helps in creating balanced and stable models by optimizing several

constraints simultaneously.

5.2.5 Results specific to RQ4

The performance of different SBA is assessed by reporting the values of various

performance measures to ascertain their usefulness for developing SPM. To derive

generalized results, we follow the same rules as mentioned in section 3.4.4 (Chapter

3). We report the results dataset-wise after removing outliers (Appendix C.6).

Effort Estimation: As discussed in Section 5.2.3, MMRE and Pred (25) are the

most commonly used performance measures for assessing effort estimation models.

A good effort estimation model will have low MMRE values and high Pred (25) val-

ues. In order to analyze the predictive performance of different SBA, we extracted

the values of MMRE and Pred (25) on different datasets used in different effort es-

153

Review Background & Results

timation studies. Some of the most commonly used effort estimation datasets were

academic projects by Dolado, Desharnais dataset, Finnish dataset, NASA software

projects, ISBSG dataset, COCOMO dataset and IBM DP dataset amongst many oth-

ers. Figure C.3 (Appendix C.6) illustrates the outliers, associated with these two

performance evaluators, for different SBA when applied on different datasets. These

outliers were removed before further analysis.

Table 5.2: Results of SBA for Effort estimation models

SBA Count Performance

Measure

Min. Max Mean Median S.D.

TS
4 MMRE 0.21 0.75 0.48 0.47 0.22
4 Pred(25) 14.00 72.00 39.00 35.00 24.34

PSO
7 MMRE 0.01 0.64 0.40 0.39 0.22
6 Pred(25) 38.00 69.00 51.33 49.50 12.19

GA
10 MMRE 0.05 0.69 0.34 0.33 0.22
10 Pred(25) 30.00 98.00 73.53 77.50 22.66

GP
10 MMRE 0.09 1.58 0.54 0.48 0.38
16 Pred(25) 32.40 94.40 60.57 63.25 22.95

GA-SVM (Linear)
6 MMRE 0.09 0.66 0.32 0.29 0.21
6 Pred(25) 56.25 94.44 75.53 74.21 16.93

GA-SVM (RBF)
6 MMRE 0.09 0.45 0.28 0.30 0.14
6 Pred(25) 66.67 94.44 79.11 74.80 11.92

GA-ANN (RBF)
5 MMRE 0.12 0.33 0.23 0.19 0.09
6 Pred(25) 61.67 94.44 77.75 76.74 14.14

Table 5.2 describes the count of datasets, minimum (Min.), maximum (Max.),

mean, median and standard deviation (S.D.) values of the MMRE and Pred (25)

performance measures, after removing the outliers in order to reduce bias. According

to the table, the Genetic Algorithm- Artificial Neural Network (GA-ANN) technique

gave the best average MMRE value of 0.23, while the GA-SVM (RBF) gave the best

Pred (25) value of 79.11. The GP technique gave the worst MMRE average score

of 0.54, while the TS technique gave the worst Pred (25) value of 39. It may also

be noted that, the mean MMRE values of all the reported techniques range between

0.23-0.54. Also the mean Pred (25) values of the techniques, apart from the TS

technique, range between 50%-80%. The poor results of the TS technique could be

154

Review Background & Results

due to its local nature. Thus, the use of SBA is encouraging as the reported ranges

are close to the acceptable level (Pred (25) ≥ 75% and MMRE ≤ 0.25) for effort

estimation models as stated by Conte et al. [243].

Defect Prediction: As investigated, accuracy and sensitivity are the most com-

monly used performance measures for defect prediction studies. However, we also

use AUC, as it is a stable performance measure for evaluating models developed us-

ing imbalanced datasets. A number of datasets were used for developing defect pre-

diction models which included the telecommunication dataset, NASA datasets (CM1,

PC1, PC2, PC3, PC4, KC1 with modules, KC1 with classes, KC2, JM1, KC3, MW1)

which are publicly available in the PROMISE repository and various open-source

datasets such as Lucene, Ant, Camel, Tomcat, Jedit etc. Appendix C.6 presents the

outliers with respect to different SBA, when reported on different datasets.

Table 5.3: Results of SBA for Defect prediction models

SBA Count Performance

Measure

Min. Max Mean Median S.D.

MOPSO
5 Accuracy 77.79 84.81 81.60 80.90 3.05
6 AUC 0.72 0.85 0.78 0.78 0.05

AIRS1
6 Accuracy 71.67 89.40 81.20 81.46 6.36
4 Sensitivity 22.40 40.20 30.63 29.95 9.20
8 AUC 0.56 0.73 0.62 0.59 0.07

AIRS2
7 Accuracy 72.93 91.37 81.58 80.70 7.25
7 AUC 0.54 0.72 0.60 0.58 0.06

AIRS2P
7 Accuracy 71.98 91.86 82.42 82.02 7.27
7 AUC 0.54 0.71 0.61 0.58 0.06

CLG
7 Accuracy 69.42 92.31 82.53 82.50 7.71
6 AUC 0.49 0.62 0.53 0.52 0.05

IM1
5 Accuracy 59.17 69.74 64.41 64.82 4.23
7 AUC 0.64 0.73 0.69 0.70 0.03

IM2
5 Accuracy 70.91 93.06 84.15 84.55 7.61
7 AUC 0.50 0.74 0.57 0.50 0.11

GP
6 Accuracy 67.26 78.30 71.59 71.31 4.34
6 Sensitivity 59.67 75.44 68.79 69.30 6.10

GEP
3 Accuracy 69.30 99.11 85.84 89.10 15.17
3 Sensitivity 11.11 75 42.03 40.00 31.09
3 AUC 0.55 0.77 0.67 0.69 0.11

GA-SVM
9 Accuracy 35.00 89.00 59.93 61.50 16.52
9 Sensitivity 30.00 100.00 71.31 76.00 25.46

MOPSO: Multi-objective particle Swarm Optimization; IM: Immunos

155

Review Background & Results

A good defect prediction model exhibits higher values of accuracy, sensitivity or

AUC measures. Table 5.3 presents comparative results of the defect prediction mod-

els using the selected performance measures, after removing the outliers. It reports

the minimum (Min.), maximum (Max.), mean, median and standard deviation (S.D.)

values. According to the table, the GEP, GA-SVM and the Multi-Objective Particle

Swarm Optimization (MOPSO) techniques gave the best results using to the mean

accuracy (85.84%), the mean sensitivity (71.31%) and the mean AUC values (0.78)

respectively. Most of SBA (except Immunos1 (IM1) and GA-SVM) gave good per-

formance scores for the accuracy measure in the range 70%-85%. However, it can

be noted that only the performance of the models developed by the MOPSO and the

GEP techniques gave an acceptable value for the AUC measure in the range 0.7-0.8.

Since MOPSO uses a multi-objective fitness function, it provides effective results for

developing efficient defect prediction models.

Maintainability Prediction: Different SBA, such as the GA-ANN, NNEP and

other evolutionary fuzzy rule learning and evolutionary symbolic regression tech-

niques were used in different maintainability studies. Thus, we could not report the

cumulative statistics for these techniques. The MMRE values, for maintainability

prediction models developed using SBA, ranged between 0.25-0.39; while their Pred

(25) values ranged up to 60%. These values indicate an acceptable performance of

the SBA for developing maintainability prediction models.

Change Prediction: For change prediction studies, different studies used different

SBA, such as the GA, GP, ACO, AIRS, IM99 and MPLCS among others. Hence, the

statistics for the majority of techniques could not be reported. Only three SBA (GFS-

SP, HIDER and NNEP) were found to be evaluated in two studies and more than

three datasets. The predictive capability of these techniques are already discussed

in Section 3.4.4 (Chapter 3). Their mean accuracy values ranged from 72%-74%.

Most of the studies which evaluated SBA for change prediction found them to be

156

Review Background & Results

appropriate and their use was encouraged for SEPM.

5.2.6 Results specific to RQ5

This RQ investigates the comparative performance of different SBA amongst each

other and with other ML techniques used for developing SPM. It should be noted

that while comparing the performance of SBA, we analyzed the results dataset-wise.

Moreover, the rules for selection of techniques are same as in section 5.2.5. Wilcoxon

signed rank test with α = 0.05 was conducted to statistically evaluate the comparison

results.

Effort Estimation: We analyzed the performance of six SBA, namely, PSO, GA,

GP, GA-SVM with Linear Kernel (GA-SVM (Lin)), GA-SVM with RBF kernel (GA-

SVM (RBF)) and GA-ANN amongst themselves, and six other ML techniques ANN,

CART, Case Based Reasoning (CBR), SVM with Linear kernel (SVM-Lin), SVM

with RBF Kernel (SVM-RBF) and BG) for developing effort estimation models, ac-

cording to the MMRE values.

These techniques were selected as they are commonly used in literature and suffi-

cient data could be collected for comparison purposes for these techniques with other

SBA . Figure 5.7 summarizes the comparison results. According to the figure, the GP

technique, performed worse than all the techniques except two (ANN and CART).

The GA technique performed better than 7 other techniques. However, the results

were significant in only one case. Similarly, the PSO technique performed better

than two other compared techniques. The results show good performance of the GA

for developing effort estimation models as it was found better than most of the other

compared techniques. This could be due to strengths of GA technique which include

no assumptions about the underlying data, does not get trapped in local minima and

performs a simplified automatic search [153, 184, 186, 188]. The PSO technique is

157

Review Background & Results

also effective, because as compared to GA it has less number of parameters which

need adjustment. Similarly, the results of other SBA were also encouraging.

Figure 5.7: Wilcoxon test results of SBA comparison based on MMRE values

Defect Prediction: We analyzed the performance of nine SBA (MOPSO, AIRS1,

AIRS2, AIRS2P, CLG, IM1, IM2, GP and GA-SVM) amongst themselves and with

eight other ML techniques (BN, NB, RF, ANN, Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), C4.5, SVM, and Nearest Neighbor Algorithm

with Non-nested Generalized Exemplars (NNGE)) for developing defect prediction

models. Again, these techniques were chosen as they were evaluated by at least two

primary studies on three datasets. We compared the defect prediction models based

on accuracy and AUC values. The sensitivity values were not considered as very few

techniques (only three) could be compared using the sensitivity values.

Figure 5.8 summarizes the comparison results. As seen in this figure, the IM1

and GP were the worst SBA according to the accuracy values. On the other hand,

the IM2 and CLG were the worst SBA according to the AUC values. Our results are

in accordance with [202] where Immunos algorithms were not found effective for

158

Review Background & Results

Figure 5.8: Wilcoxon test results of SBA comparison based on MMRE values

large datasets. Since the use of accuracy has been criticized in the literature due to

the imbalanced nature of the datasets [118], we advocate the results obtained using

the AUC technique. Thus, the MOPSO technique is the best search-based algorithm

investigated in literature for developing defect prediction models, when evaluated

using AUC values.

Maintainability Prediction: As there are very few studies for maintainability pre-

diction, we did not have sufficient data to statistically compare the results of different

techniques. MS2 compared two evolutionary fuzzy algorithms with DT, ANN and

SVM and found the evolutionary fuzzy algorithms to be significantly better than most

of the compared techniques. The study MS3 compared the neuro-genetic approach

with the BN, ANN, regression tree and many other ML techniques. The approach

was found promising. MS4 compared an evolutionary technique for maintainability

prediction with Decision Table, BN, Radial Basis Network and sequential minimal

optimization.

Change Prediction: As there were few change prediction studies, it was difficult

159

Review Background & Results

to collect sufficient data for effective comparison. However, only Hider, GFS-SP and

NB were compared with AB as depicted in section 3.4.5 (Chapter 3). Though, these

SBA were found poorer to AB, the results were not significant.

Certain primary studies which reported a comparative analysis of SBA in the do-

main of software change prediction are discussed. CS2 compared a standard GP

approach with GP-based decision trees for developing change prediction models and

found that the GP-based decision trees are better. Study CS3 compared the GA tech-

nique with the C4.5 technique to develop change prediction models and evaluated it

on both balanced and unbalanced datasets. Their results indicate that the GA tech-

nique outperformed the C4.5 technique. CS4 statistically compared the ACO tech-

nique with the C4.5 technique for the change prediction and concluded that the ACO

technique provided significantly better results. CS6 evaluated the capability of three

swarm intelligence algorithms namely AIRS, IM99 and CLG with five ML tech-

niques. However, the ML techniques were found superior to the investigated SBA

(AIRS, IM99, CLG). Study CS7 compared six SBA, i.e., CPSO, HIDER, SUCS,

NNEP, MPLCS and GFS-SP with a number of ML techniques, such as ANN, BG

and RF, using the Friedman test. Although, the best performing technique was BG,

the SBA showed promising results in developing change prediction models. CS9

compared nine SBA with four ML techniques (AB, LB, NB, BN) using accuracy

and G-Mean3 performance measures. The study statistically evaluated the results

of a hybridized search-based algorithm PSO-LDA as best when compared with ML

techniques using Wilcoxon signed rank test.

5.2.7 Results specific to RQ6

It is important to statistically validate the comparative results of different techniques

in order to provide an effective support to the reported conclusions [244]. 51% of the

160

Review Background & Results

primary studies used statistical tests for comparison amongst different techniques.

Table 5.4 shows primary studies that have used various statistical tests.

Table 5.4: Statistical Tests for comparison of SBA

Statistical Test Study Identifier

T-test

ES2, ES3
DS2, DS12, DS15, DS19, DS32
MS2
CS6, CS10

Wilcoxon Signed Rank Test
ES18, ES22, ES23, ES24, ES31, ES34, ES35, ES36, ES38, ES40, ES41, ES42
DS7, DS13, DS23, DS25, DS30, DS34, DS35, DS36
CS4, CS9

Friedman Test

ES33, ES36, ES41
DS9, DS28, DS30
MS4
CS7

ANOVA Test ES10, ES29
Mann-Whitney U-test ES25

Nemenyi Test
ES33
DS36

McNemar’s Test DS17
Kruskal Wallis Test DS31, DS36
Proportion Test CS5
Wilcoxon Rank Sum Test DS33

A brief description of the use of different statistical tests is as follows:

Effort Estimation: Around 51% of effort estimation studies used a statistical test

for comparison amongst various techniques. The majority of the effort estimation

studies used the Wilcoxon signed rank test followed by the Friedman test, T-test and

ANOVA test. Some other tests used for statistical comparison in effort estimation

studies were the Mann-Whitney U-test and the post-hoc Nemenyi test.

Defect Prediction: 49% of defect prediction studies used statistical validation for

comparing different techniques. Eight defect prediction studies used the Wilcoxon

signed rank test, 5 studies used the T-test and three defect prediction study used the

Friedman test for statistical comparative analysis. Other used statistical tests were

McNemar’s test, Nemenyi test, Kruskal-Wallis test and Wilcoxon rank sum test.

Maintainability Prediction: Two maintainability prediction studies used statisti-

161

Review Background & Results

cal tests (T-test and Friedman test) for effective comparison of different techniques.

Change Prediction: 60% of change prediction studies used statistical tests for a

comparative analysis amongst different techniques. Two change prediction studies

each used the T-test and the Wilcoxon signed rank test. One change prediction study

each used the Friedman test and proportion test.

It may be observed that the majority of the studies use non-parametric statis-

tical test such as the Wilcoxon signed rank test, Friedman test, Mann-Whitney U

test, Proportion test, Kruskal-Wallis test and Nemenyi test as compared to paramet-

ric tests (T-test, ANOVA test and McNemar’s test). This trend is similar to the one

as observed in section 3.4.6 (Chapter 3), because parametric tests require stringent

assumptions before their application. The trends, reported in the primary studies,

also show that the T-test and the Wilcoxon signed rank test are the most commonly

used tests in literature, i.e., most of the studies try and evaluate pairwise comparisons

amongst different techniques. However, as the T-test requires large sample sizes and

normal distribution, most studies use the Wilcoxon test for pairwise statistical com-

parisons if the differences amongst pairs is non-normal. It should also be noted that

the Wilcoxon test can be used as a post-hoc test after the application of the Fried-

man test. This increases the number of studies, which choose it for the purpose of

statistical analysis.

5.2.8 Results specific to RQ7

This RQ focuses on the threats to validity involved in the development of SPM when

SBA are used. We list the probable sources of threats on four possible dimensions,

namely conclusion, internal, construct and external. These threats were primarily

extracted from the “Threats to Validity” sections of the primary studies which report

them. It may be noted that a study may report threats which are specific to a study’s

162

Review Background & Results

design. Thus, to avoid this bias in reporting of threats, we list threats which are

reported by more than one study. Furthermore, we also list the remedial actions

extracted from primary studies to mitigate the identified threats.

Conclusion Validity: These threats include all possible sources which may lead

to improper conclusions, such as an incorrect association between predictor and out-

come variables [9]. It is also termed as statistical conclusion validity. All the possible

conclusion validity threats along with their mitigation, which are extracted from pri-

mary studies are mentioned in Appendix C.7 (Table C.3). The appendix also states

the studies (SS) which mention the threats.

The various threats to conclusion validity include missing statistical verification

of results, use of improper statistical test without verifying its underlying assump-

tions, not accounting for the randomness of SBA and validation bias. Another im-

portant threat to SEPM studies is the absence of baseline benchmark or expert eval-

uation. It is extremely important in prediction studies to compare any new proposed

technique with respect to baseline benchmarks [245, 246]. Whigham et al. [246]

pointed out that there are many previous studies which propose complex estimation

approaches without comparing them with the basic ones. They found some of these

proposals to be in fact comparable with basic techniques, thus necessitating a base-

line comparison.

Internal Validity: All possible sources (extraneous variables) which may lead to a

change in the outcome variable but are not themselves predictor variables may indi-

cate a threat to internal validity [247]. All the identified internal validity threats, with

their corresponding mitigation are mentioned in Appendix C.7 (Table C.4). They in-

clude an absence of proper tuning of internal parameters of SBA, not performing data

cleaning steps and attribute selection and not accounting for the confounding effect

of extraneous variables.

According to Arcuri et al. [248], parameter tuning has a critical impact on the per-

163

Review Background & Results

formance of the SBA. Before developing models, a researcher should first check the

training data for any noise or inconsistency. Another possible threat is the existence

of noisy and superfluous attributes. Researchers have ascertained that better predic-

tion capability is achieved if such input attributes have been eliminated [109]. Lastly,

though not specifically related to the application of SBA, but all empirical studies

should mention extraneous attributes which could falsify the relationship between

independent and dependent variables. The table also states the remedies correspond-

ing to each threat, which are extracted from primary studies.

Construct Validity: Threat to construct validity exists, if the measures or metrics

adopted by the study do not effectively represent the concepts they symbolize [9].

The various construct validity threats include the improper selection of independent

variables and performance measures which pose a gap between theoretical and actual

concepts and improper data collection. The threats are listed in Table C.5 (Appendix

C.7) along with the studies that mention them and their corresponding remedies.

It is essential that the chosen independent variables are effective symbolizers of

the actual metrics which are capable of predicting the dependent variables. Improper

or incorrect independent variables will lead to erroneous models. Similarly, though a

wide variety of performance measures are available to ascertain the effectiveness of

the developed SPM, it is important to choose an effective indicator which is unbiased

and provides a realistic estimate. Lastly, human errors in data collection may lead to

misleading results if improper data is used for model training and evaluation. Thus,

this threat should be accounted.

External Validity : It assesses whether the results of the study are valid in sce-

narios that are not evaluated for in the conducted study. It assesses the generalizabil-

ity of the results [247]. The external validity threats are reported in Appendix C.7

(Table C.6), with their supporting studies (SS) and mitigation solution. Use of non-

industrial, small sized and small number of datasets or mono-language datasets are

164

Review Background & Results

the various sources which affect the external validity of the experiment. Furthermore,

if a study uses datasets extracted from software which belongs to a similar domain, a

threat to external validity exists. In case a study does not provide enough details for

replication, there is a possible threat to study’s external validity.

5.2.9 Analysis of Review Results

This section states the current trends found with respect to the application of SBA for

SEPM along with future guidelines to the researchers interested in the domain.

Current Trends: The trends with respect to the each investigated RQ is stated as

follows:

• According to the studies that we analyzed, the evolutionary techniques were the

most commonly used techniques for effort estimation and change prediction.

However, the hybrid SBA were the most commonly used techniques for the

defect prediction and maintainability prediction tasks. The trends indicate a

limited use of local search techniques for SEPM, which could be because the

local search techniques require considerable programming expertise, large set

up time, and are not appropriate for goals involving a large number of variables.

• The most commonly used validation method, for SEPM using SBA, was the

K-fold cross validation with a value of K=10. This method produces accurate

estimates of a model’s performance with low variance in results. A number

of studies, which accounted for the stochastic nature of SBA by performing

multiple runs, performed the number of runs between 10-20.

• In general, the most commonly evaluated and traditional performance measure

for the quality attributes which are binary in nature is accuracy. However, there

is a shift towards other stable performance measures such as the AUC, and the

165

Review Background & Results

G-Mean1. For variables which are continuous in nature, it is common to use

estimates of errors such as the MMRE, and the Pred (25) for evaluating the

performance of the developed model.

• The MSE and MMRE were the most commonly used fitness functions in effort

estimation studies. Similarly, the accuracy and its variants as well as various

combinations of Type I and Type II errors were the most commonly used fit-

ness functions in defect prediction studies. However, different change predic-

tion studies used different fitness functions for developing change prediction

models. It is important for researchers to appropriately select a fitness function

for achieving optimum results. This can be done by performing repeated stud-

ies which optimize different fitness functions for developing effective SPM and

comparing their results in order to choose an optimum fitness function. Also,

the use of multi-objective fitness functions should be explored as they help to

balance out various constraints. This is possible by maximizing or minimizing

more than one objective while developing SPM.

• For effort estimation tasks, a majority of SBA show an acceptable level of

predictive capabilities with the MMRE values ranging between 0.23 - 0.54 and

Pred (25) values ranging between 50 and 80. The predictive capability of SBA,

such as MOPSO, is good for defect prediction with accuracy values ranging be-

tween 70%-85% and the AUC values ranging between 0.7 and 0.8. The MMRE

values, for maintainability prediction models developed using SBA, were in the

range of 0.25-0.39 and the Pred(25) values were up to 60%. SBA exhibited an

acceptable performance for change prediction models as their mean accuracy

values ranged between 72% - 74%.

• The results of the Wilcoxon test indicate that the GA technique outperforms a

majority of other techniques when used for effort estimation tasks. However,

166

Review Background & Results

for the defect prediction tasks, the MOPSO technique works well. It outper-

formed most of the other SBA and the ML techniques when used with a ma-

jority of the datasets for defect prediction. Certain studies compared SBA with

other techniques for developing maintainability prediction and change predic-

tion models. The results of these studies support the use of SBA, as they per-

formed better than the other compared techniques for developing these models

in a majority of the studies. These results encourage the use of SBA as they are

robust, provide global optimum results and easily adapt to changing circum-

stances.

• Statistical tests were used by 51% studies for the comparison amongst different

techniques. The most frequently used test for comparing SPM using SBA was

the Wilcoxon signed rank test due to its non-parametric nature.

• We identified 18 threats, which exist in studies which use SBA for SEPM.

These threats were categorized into four dimensions viz. conclusion (5 threats),

internal (4 threats), construct (3 threats) and external (6 threats). General good

practices such as evaluating the statistical validity of the obtained results, use

of appropriate number and size of datasets for empirical validation and use of

other effective design parameters in a study can help in mitigation of most of

the identified threats. Therefore, researchers should first properly design their

experimental setups to reduce probable sources of threats.

Future Guidelines: Based on the results of the review, studies in the future should

incorporate the following guidelines for using SBA in the domain SEPM:

• As indicated in the results, only 5% of the total primary studies analyzed the

predictive capability of local SBA in the domain of SEPM. Therefore, there

is an urgent need for future studies to evaluate the effectiveness of these tech-

niques in this domain.

167

Review Background & Results

• According to the quality analysis, 20% of the studies did not completely state

the parameter settings and fitness functions used for developing models using

SBA. The specification of parameters and fitness function are very important

to perform repeated and replicated studies. Thus, future studies should clearly

describe the experimental settings in order to enable effective repeated appli-

cation of the work.

• According to the results, 44% of the studies do not specify whether they per-

formed multiple runs to account for the stochastic nature of SBA or did not

perform appropriate number of runs. Future studies should account for the

randomness of SBA by performing appropriate number of runs in order to pro-

duce accurate and repeatable results.

• Recent studies also advocate the use of other effective performance evaluators

like Standardized accuracy for continuous variables and AUC, G-Mean1, etc.

for binary variables. These performance measures are termed as stable since

they provide reliable results even when imbalanced software quality data is

available. Thus, future studies should incorporate multiple and stable perfor-

mance evaluators for developed models.

• According to the results, 11% of the studies do not compare the capabilities

of SBA with ML techniques and other SBA. Also, 28% of the studies does

not perform any baseline comparisons. However, there is an urgent need for

more studies to assess and evaluate the performance of SBA amongst each

other, with well-established ML techniques and to conduct baseline compar-

isons of proposed SBA. Although, our results advocate the use of SBA for

SEPM, comparative analysis is important to establish generalized results about

their effectiveness.

168

Experimental Design & Framework

• As a large number of studies (49%) did not use any statistical test for com-

parative analysis, future studies should statistically evaluate the significance of

their results.

5.3 Experimental Design & Framework

This section discusses the experimental design for performing the empirical experi-

ment, which evaluates the performance of eight SBA for developing change-proneness

prediction models. The models developed by SBA are also compared with those de-

veloped using 4 ML techniques and a statistical technique. This section explains the

variables used, the framework of the experiment, a description of the datasets along

with data collection method and the performance measures which are used to validate

the experimental results.

5.3.1 Independent and Dependent Variables

Similar to the experiments performed in Chapter 4, seven OO metrics were used as

the independent variables, which include the CK metrics suite [16] and the SLOC

metric. A detailed description of these metrics can be obtained from section 2.5.1

(Chapter 2). The dependent variable of the experiment is change-proneness.

5.3.2 Framework of the Experiment

The development of a prediction model involves a number of steps as discussed in

this section:

1. Data Collection: In order to perform the experiment, we validate fourteen

open-source datasets. These datasets include the six open-source datasets used

169

Experimental Design & Framework

in Chapter 4 along with eight others. The datasets investigated in the chap-

ter are AOI (2.7-2.9.2), Apollo (0.1-0.2), AviSync (1.1-1.2), Celestia (1.4.1-

1.6.1), DrJava (r4668-r5686), DSpace (1.6.0-1.8.1), Eclipse (2.0-2.1), Frinika

(0.2.0-0.6.0), Glest (1.0.10-3.2.2), Jmeter (2.8-2.9), PMD (3.9-4.3), Robocode

(1.7.2.2-1.7.4.4), Simutrans (111.3-112.3) and Subsonic (2.0-4.6). The charac-

teristics of each dataset can be referred from Appendix A.1.

2. Feature Selection: All the datasets obtained from step 1 undergo feature selec-

tion in order to obtain the most correlated features with the dependent variable

i.e. change-proneness. Feature selection is advantageous as it decreases di-

mensionality, leads to a reduction of execution time and boosts the accuracy of

prediction. We use the CFS method for doing so.

3. Training & Validation: Training and validation are two important processes for

the establishment of a prediction model. The training process incorporates a

classification technique (statistical, ML or SBA) to identify classification rules

which can effectively distinguish between change-prone and not change-prone

classes. The set of these rules forms the prediction model. The validation

process tests these rules to predict and identify change-prone and not change-

prone classes. The models were developed using eight SBA (CPSO, GA-ADI,

GA-Int, GEP, HIDER, MPLCS, SUCS, XCS), 4 ML techniques (SVM, C4.5,

CART, MLP-CG) and 1 statistical technique (LDA). The parameter settings

and fitness functions of each of the investigated technique may be referred

from Chapter 2 (Section 2.6). In order to validate the developed model, we

perform ten-fold cross validation.

4. Evaluation of Model’s Performance: In order to assess the performance of the

prediction model we evaluate four performance measures namely specificity,

170

Experimental Results & Analysis

sensitivity, G-Mean1 and Balance. According to Ali et al. [238], multiple iter-

ations (more than ten) are crucial for effectively handling the stochastic nature

of SBA. Therefore, the study develops change prediction models using 30 runs

and assesses the median values of the performance measures achieved over 30

runs. Reporting median values of 30 runs is a common practice in search-based

software engineering literature. A similar practice has been followed by Hos-

seini et al. [41], Ferrucci et al. [47], Ryu and Baik [216], Harman et al. [38]

and Canfora et al. [200]. Furthermore, the developed models are statistically

assessed using Friedman test and post-hoc Wilcoxon signed rank test.

It may be noted that the different techniques investigated in the experiment are

simulated in KEEL (Knowledge Extraction based on Evolutionary Learning) tool.

We used the default parameter settings of the KEEL tool, www.keel.es for each

technique. These parameter settings are mentioned in Section 2.6 (Chapter 2). Arcuri

and Fraser [249] advocate the use of default parameter settings as parameter tuning

is an expensive process. Moreover, parameter tuning may not yield significant result

improvement in all cases. Thus, the use of default parameters is a practical choice.

5.4 Experimental Results & Analysis

This section discusses the experimental results which evaluate the use of SBA for

determining change-prone classes and compares their results with other ML and sta-

tistical techniques.

5.4.1 CFS Results

Table 5.5 states the CFS results on eight datasets. It may be noted that we only state

the results of those eight datasets, which were not used in Chapter 4. The CFS results

171

www.keel.es

Experimental Results & Analysis

of the other six datasets used in Chapter 4 may be referred from Table 4.8 (Chapter

4).

Table 5.5: Metrics selected after application of CFS

Dataset OO Metrics Selected
Celestia RFC, SLOC
Eclipse CBO, SLOC, LCOM, RFC
Frinika CBO, RFC, SLOC
Glest RFC, SLOC, WMC
JMeter CBO, NOC, SLOC
PMD CBO, RFC, LCOM, SLOC
Simutrans CBO, RFC, SLOC
Subsonic CBO, RFC, SLOC

After analyzing the results obtained on application of the CFS method on different

datasets (Table 4.8 & Table 5.5) analyzed in this chapter, it was found that the CBO

metric and the SLOC metric are the most commonly selected OO metrics which

are highly correlated with change. Also, the RFC metric can be considered as a

secondary indicator of change as it was selected by the CFS method in 9 out of 14

software datasets.

5.4.2 Ten-Fold Cross Validation Results

The sensitivity and specificity values obtained by change prediction models are men-

tioned in Table 5.6. The values shown in the table are the median values of all the

30 runs executed for a specific technique on a particular dataset. According to the

table, the sensitivity values of the change prediction models of the Celestia dataset

ranged from 60.14%-93.24% and the specificity values ranged from 26.42%-75.47%.

The range of sensitivity and specificity values achieved on the DrJava dataset was

62.31%-76.88% and 61.58%-84.73% respectively. The change prediction models

developed on the DSpace dataset exhibited sensitivity and specificity values in the

range 78.05%-87.80% and 51.75%-75.44% respectively. The majority of change

172

Experimental Results & Analysis

prediction models developed on Simutrans, PMD and Glest datasets exhibited sen-

sitivity values in the range 47.62%-73.59%, 73.75%-88.42% and 70.42%-87.32%

respectively.

However, low sensitivity (0%-45%) values and high specificity (78%-98%) val-

ues were obtained in a majority of cases for change prediction models developed

using Apollo, Robocode and AOI datasets. This was observed as the datasets only

had 27%-30% change and thus the developed models could not learn well to accu-

rately predict change-prone classes. Similarly, high sensitivity (86.17%-100%) and

low specificity (0%-62.07%) values were observed on Subsonic dataset as only 24%

of not change-prone classes were available while training on the dataset. Therefore,

prediction models could not effectively learn the characteristics of not change-prone

classes. It can be seen from Table 5.6 that the specificity and sensitivity values ob-

tained by SBA models are comparable to that of ML models and LDA models.

Table 5.7 reports the median values (30 runs) of G-Mean1 (GM1) and Balance

(Bal.) performance measures obtained by change prediction models developed on

all the 14 datasets using all the investigated techniques. The table highlights the

technique which achieves the best performance in a particular dataset. According

to the table, the model which achieved the best values on the AOI dataset was de-

veloped using the MLP-CG technique and exhibited a G-Mean1 value of 0.71 and a

Balance value of 67.49. The models developed by MPLCS, SUCS and CPSO also

gave very good results with G-Mean1 and Balance values in the range 0.61-0.62

and 58.66-59.54 respectively. The MLP-CG technique also depicted best results on

Apollo dataset (G-Mean1: 0.59, Balance: 56.71). These results were followed by the

MPLCS technique (G-Mean1: 0.56, Balance: 53.42). Both CPSO and GA-Int

173

Experimental Results & Analysis
Ta

bl
e

5.
6:

Se
ns

iti
vi

ty
&

Sp
ec

ifi
ci

ty
M

ed
ia

n
va

lu
es

of
Te

n-
fo

ld
cr

os
s

va
lid

at
io

n
m

od
el

s

D
at

as
et

/S
BA

A
O

I
A

po
llo

Av
iS

yn
c

C
el

es
tia

D
rJ

av
a

D
Sp

ac
e

E
cl

ip
se

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

C
PS

O
46

.5
6

79
.5

4
26

.0
9

77
.0

5
70

.3
7

73
.9

1
85

.8
1

28
.3

0
63

.1
6

72
.4

1
86

.5
9

54
.3

9
83

.2
8

55
.2

7
G

A
-A

D
I

40
.4

6
91

.0
9

23
.1

9
91

.8
0

51
.8

5
73

.9
1

68
.9

2
59

.9
1

71
.3

6
66

.5
0

82
.3

2
69

.3
0

76
.2

2
69

.1
9

G
A

-I
nt

32
.0

6
92

.0
8

30
.4

3
86

.8
9

62
.9

6
84

.7
8

83
.1

1
55

.6
6

69
.3

5
73

.8
9

82
.9

3
66

.6
7

83
.8

3
60

.5
4

G
E

P
33

.5
9

92
.4

1
7.

25
93

.4
4

51
.8

5
84

.7
8

75
.6

8
61

.3
2

71
.8

6
68

.9
7

89
.6

3
63

.1
6

63
.2

3
80

.6
4

H
ID

E
R

28
.2

4
94

.0
6

8.
70

97
.8

1
37

.0
4

91
.3

0
81

.4
2

50
.0

0
67

.3
4

73
.8

9
82

.3
2

67
.5

4
81

.5
7

61
.8

7
M

PL
C

S
43

.5
1

88
.7

8
34

.7
8

90
.7

1
40

.7
4

82
.6

1
62

.1
6

73
.5

8
72

.8
6

67
.0

0
85

.3
7

65
.7

9
76

.3
2

69
.1

9
SU

C
S

43
.1

3
87

.3
0

14
.4

9
92

.3
5

44
.4

4
80

.4
3

69
.5

9
59

.4
3

64
.3

2
73

.8
9

86
.5

9
63

.1
6

77
.8

5
66

.2
2

X
C

S
35

.1
1

91
.7

5
2.

94
96

.7
2

55
.5

6
89

.9
6

89
.1

9
29

.7
2

71
.5

7
73

.8
9

87
.8

0
51

.7
5

93
.0

4
29

.7
9

SV
M

29
.7

2
94

.0
6

0.
00

10
0.

00
37

.0
4

91
.3

0
72

.3
0

46
.2

3
62

.3
1

84
.7

3
78

.0
5

75
.4

4
71

.6
3

74
.6

7
C

4.
5

16
.7

9
97

.6
9

4.
35

97
.2

7
48

.1
5

78
.2

6
78

.3
8

69
.8

1
68

.8
4

72
.4

1
85

.3
7

65
.7

9
82

.2
3

62
.9

5
C

A
R

T
42

.7
5

78
.8

8
10

.1
4

96
.1

7
70

.3
7

56
.5

2
60

.1
4

75
.4

7
76

.8
8

61
.5

8
81

.1
0

71
.0

5
79

.1
7

64
.9

9
M

L
P-

C
G

54
.9

6
90

.7
6

40
.5

8
85

.2
5

51
.8

5
60

.8
7

75
.0

0
46

.2
3

70
.3

5
71

.4
3

87
.8

0
66

.6
7

80
.8

4
63

.9
2

L
D

A
29

.0
1

92
.4

1
11

.5
9

95
.0

8
37

.0
4

82
.6

1
93

.2
4

26
.4

2
67

.8
4

70
.9

4
80

.4
9

74
.5

6
75

.7
3

67
.2

5

D
at

as
et

/S
BA

Fr
in

ik
a

G
le

st
Jm

et
er

PM
D

R
ob

oc
od

e
Si

m
ut

ra
ns

Su
bs

on
ic

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

Se
ns

.
Sp

ec
.

C
PS

O
75

.2
0

48
.7

6
84

.5
1

32
.4

3
80

.5
0

39
.2

6
91

.5
1

17
.4

4
40

.5
8

78
.6

8
10

.8
2

91
.4

0
88

.3
0

24
.1

4
G

A
-A

D
I

57
.0

9
72

.7
3

70
.4

2
75

.6
8

76
.2

5
44

.4
5

77
.2

2
61

.6
3

39
.1

3
92

.3
9

64
.5

0
77

.7
8

90
.4

3
55

.1
7

G
A

-I
nt

62
.9

9
66

.9
4

77
.4

6
70

.2
7

85
.5

0
37

.7
8

79
.5

4
69

.7
7

44
.9

3
89

.8
5

65
.3

7
74

.5
5

92
.5

5
37

.9
3

G
E

P
71

.6
5

64
.4

6
78

.8
7

78
.3

8
87

.0
0

33
.3

3
83

.4
0

63
.9

5
31

.3
8

90
.3

6
61

.4
7

79
.5

7
86

.1
7

55
.1

7
H

ID
E

R
67

.7
2

66
.9

4
87

.3
2

59
.4

6
94

.5
0

26
.6

7
85

.3
3

63
.3

7
17

.3
9

96
.4

5
61

.9
0

76
.7

0
91

.4
9

31
.0

3
M

PL
C

S
56

.6
9

71
.4

9
71

.8
3

75
.6

8
77

.5
0

43
.7

0
79

.5
4

62
.2

1
39

.1
3

89
.8

5
64

.0
7

79
.2

1
86

.1
7

62
.0

7
SU

C
S

62
.9

9
70

.2
5

81
.6

9
67

.5
7

78
.0

0
44

.4
5

81
.4

7
72

.0
9

37
.6

8
87

.8
2

50
.2

2
84

.2
3

87
.2

3
48

.2
8

X
C

S
70

.8
7

56
.2

0
95

.7
7

14
.8

7
93

.5
0

8.
89

87
.6

0
53

.4
9

42
.0

3
90

.3
6

60
.6

1
80

.6
5

10
0.

00
0.

00
SV

M
53

.5
4

76
.8

6
80

.2
8

91
.8

9
95

.5
0

5.
93

73
.7

5
73

.2
6

20
.2

9
95

.4
3

54
.1

1
86

.0
2

91
.4

9
24

.1
4

C
4.

5
70

.8
7

63
.6

4
77

.4
6

67
.5

7
90

.5
0

27
.4

1
80

.6
9

69
.7

7
31

.8
8

88
.3

2
64

.5
0

72
.7

6
88

.3
0

48
.2

8
C

A
R

T
79

.5
3

38
.8

4
83

.1
0

59
.4

6
90

.5
0

29
.6

3
88

.4
2

57
.5

6
42

.0
3

84
.2

6
73

.5
9

62
.3

7
90

.4
3

34
.4

8
M

L
P-

C
G

59
.0

6
66

.9
5

80
.2

8
75

.6
8

79
.0

0
39

.2
6

76
.8

3
73

.2
6

37
.6

8
93

.9
1

65
.3

7
78

.1
4

89
.3

6
44

.8
3

L
D

A
51

.9
7

77
.6

9
95

.7
7

2.
70

93
.5

0
10

.3
7

76
.8

3
65

.1
2

23
.1

9
94

.9
2

47
.6

2
88

.5
3

10
0.

00
0.

00
Se

ns
.i

nd
ic

at
es

Se
ns

iti
vi

ty
&

Sp
ec

.i
nd

ic
at

es
Sp

ec
ifi

ci
ty

174

Experimental Results & Analysis

Ta
bl

e
5.

7:
G

-M
ea

n1
&

B
al

an
ce

M
ed

ia
n

va
lu

es
of

Te
n-

fo
ld

cr
os

s
va

lid
at

io
n

m
od

el
s

D
at

as
et

/S
BA

A
O

I
A

po
llo

Av
iS

yn
c

C
el

es
tia

D
rJ

av
a

D
Sp

ac
e

E
cl

ip
se

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

C
PS

O
0.

61
59

.5
4

0.
45

45
.2

7
0.

72
72

.0
9

0.
49

48
.3

2
0.

68
67

.4
6

0.
69

66
.3

8
0.

68
66

.2
3

G
A

-A
D

I
0.

60
57

.3
6

0.
46

45
.3

8
0.

62
61

.2
8

0.
64

63
.6

4
0.

69
68

.8
3

0.
76

74
.9

5
0.

73
72

.4
8

G
A

-I
nt

0.
54

51
.6

3
0.

51
49

.9
4

0.
73

71
.6

9
0.

68
66

.4
5

0.
72

71
.5

3
0.

74
73

.5
2

0.
71

69
.8

5
G

E
P

0.
56

52
.7

3
0.

26
34

.2
5

0.
66

64
.2

9
0.

68
67

.6
9

0.
70

70
.3

8
0.

75
72

.9
4

0.
72

71
.4

4
H

ID
E

R
0.

52
49

.1
1

0.
29

35
.4

2
0.

58
55

.0
6

0.
64

62
.5

3
0.

71
70

.4
3

0.
75

73
.8

6
0.

71
70

.0
6

M
PL

C
S

0.
62

59
.2

8
0.

56
53

.4
2

0.
58

56
.3

3
0.

69
68

.5
1

0.
70

69
.7

9
0.

75
73

.6
9

0.
73

72
.5

2
SU

C
S

0.
61

58
.6

6
0.

37
39

.3
0

0.
60

58
.3

5
0.

64
64

.1
5

0.
69

68
.7

4
0.

74
72

.2
8

0.
72

71
.4

4
X

C
S

0.
57

53
.8

3
0.

17
31

.3
3

0.
70

67
.2

5
0.

50
49

.3
1

0.
73

72
.7

1
0.

67
64

.8
1

0.
53

50
.1

1
SV

M
0.

50
48

.0
1

0.
00

29
.2

9
0.

58
55

.0
6

0.
58

57
.2

3
0.

73
71

.2
5

0.
77

76
.7

1
0.

73
73

.1
0

C
4.

5
0.

40
41

.1
4

0.
21

32
.3

4
0.

61
60

.2
4

0.
74

73
.7

4
0.

71
70

.5
7

0.
75

73
.6

9
0.

72
70

.9
4

C
A

R
T

0.
58

56
.8

5
0.

31
36

.4
1

0.
63

62
.8

0
0.

67
66

.9
0

0.
69

68
.2

9
0.

76
75

.5
5

0.
72

71
.2

0
M

L
P-

C
G

0.
71

67
.4

9
0.

59
56

.7
1

0.
56

56
.1

3
0.

59
58

.0
7

0.
71

70
.8

9
0.

77
74

.9
0

0.
72

71
.1

1
L

D
A

0.
52

49
.5

1
0.

33
37

.3
9

0.
55

53
.8

1
0.

50
47

.7
5

0.
69

69
.3

5
0.

77
77

.3
3

0.
71

71
.1

7

D
at

as
et

/S
BA

Fr
in

ik
a

G
le

st
Jm

et
er

PM
D

R
ob

oc
od

e
Si

m
ut

ra
ns

Su
bs

on
ic

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

G
M

1
B

al
.

C
PS

O
0.

60
58

.8
8

0.
53

50
.9

8
0.

56
55

.0
0

0.
40

41
.3

1
0.

57
55

.3
6

0.
31

36
.6

5
0.

46
45

.7
2

G
A

-A
D

I
0.

64
63

.2
1

0.
73

72
.9

2
0.

58
57

.2
5

0.
69

68
.4

5
0.

60
56

.6
2

0.
71

70
.3

9
0.

71
67

.5
9

G
A

-I
nt

0.
65

64
.9

1
0.

74
73

.6
2

0.
57

54
.8

2
0.

74
74

.1
9

0.
64

60
.4

0
0.

70
69

.6
1

0.
59

55
.8

0
G

E
P

0.
68

67
.8

6
0.

79
78

.6
2

0.
54

51
.9

7
0.

73
71

.9
4

0.
54

51
.3

5
0.

71
69

.1
6

0.
69

66
.8

3
H

ID
E

R
0.

68
67

.7
4

0.
74

70
.7

2
0.

50
48

.0
0

0.
74

72
.1

0
0.

41
41

.5
3

0.
69

68
.4

2
0.

53
50

.8
6

M
PL

C
S

0.
63

62
.5

6
0.

74
74

.4
3

0.
58

57
.1

3
0.

70
69

.6
1

0.
59

56
.3

6
0.

71
70

.6
5

0.
73

71
.4

5
SU

C
S

0.
64

63
.1

7
0.

76
74

.5
8

0.
58

57
.4

5
0.

77
76

.3
1

0.
58

55
.1

0
0.

65
63

.0
7

0.
65

62
.3

3
X

C
S

0.
63

62
.8

0
0.

37
39

.7
2

0.
29

35
.4

1
0.

68
65

.9
6

0.
62

58
.4

4
0.

70
68

.9
6

0.
00

29
.2

9
SV

M
0.

64
63

.3
0

0.
86

84
.9

2
0.

24
33

.4
0.

74
73

.5
0

0.
44

43
.5

4
0.

68
66

.0
8

0.
47

46
.0

2
C

4.
5

0.
67

67
.0

5
0.

72
72

.0
7

0.
50

48
.2

3
0.

75
74

.6
4

0.
53

51
.1

3
0.

69
68

.3
6

0.
65

62
.5

0
C

A
R

T
0.

56
54

.4
0

0.
70

68
.9

4
0.

52
49

.7
9

0.
71

68
.8

9
0.

60
57

.5
2

0.
68

67
.4

9
0.

56
53

.1
8

M
L

P-
C

G
0.

62
62

.4
2

0.
78

77
.8

6
0.

56
54

.5
6

0.
75

74
.9

8
0.

59
55

.7
2

0.
71

71
.0

4
0.

63
60

.2
7

L
D

A
0.

64
62

.5
5

0.
16

31
.1

4
0.

31
36

.4
6

0.
71

70
.3

9
0.

47
45

.5
7

0.
65

62
.0

8
0.

00
29

.2
9

G
M

1
in

di
ca

te
s

G
-M

ea
n1

&
B

al
.i

nd
ic

at
es

B
al

an
ce

175

Experimental Results & Analysis

obtained optimum results on AviSync dataset with G-Mean1 values of 0.72 and 0.73

respectively and Balance values of 72.09 and 71.69 respectively. The change predic-

tion models developed using the C4.5 technique obtained the best results on Celestia

dataset. The next best results on Celestia dataset were given by the MPLCS technique

(G-Mean1: 0.69, Balance: 68.51), followed by the GEP and GA-Int techniques. For

DrJava dataset, the XCS technique gave optimum results with a G-Mean1 value of

0.73 and a Balance value of 72.71. The LDA technique obtained the best results on

only one dataset i.e. DSpace with a G-Mean1 value of 0.77 and a Balance value

of 77.33. The SVM technique obtained the best results on both Eclipse and Glest

datasets. These results were closely followed by those obtained by the GA-ADI

technique (G-Mean1: 0.73, Balance: 71.25) on the Eclipse dataset.

As depicted in Table 5.7, the best prediction models on Frinika were developed

using the GEP technique (G-Mean1: 0.68, Balance: 67.86). Similarly, the best

change prediction models on Robocode and Subsonic datasets were developed using

the GA-Int technique and the MPLCS technique respectively. The SUCS technique

obtained the best results on both Jmeter and PMD datasets with G-Mean1 values of

0.58 and 0.77 respectively. Though, an ML technique (MLP-CG) obtained the best

change prediction results on Simutrans dataset (G-Mean1: 0.71, Balance: 71.04),

these results were closely followed by MPLCS, GA-ADI, and GEP techniques.

According to the results in Table 5.7, it was observed that the model giving the

best validation results in seven of the fourteen software datasets was the one devel-

oped using a search-based algorithm. Moreover, wherever models developed by the

SBA did not give the best validation results, they performed fairly well and the results

were competent to those obtained by ML and the statistical techniques. Moreover,

the classification models developed using the SBA gave good G-Mean1 and Balance

values. These results clearly assert effective use of SBA for predicting change-prone

classes in a software.

176

Experimental Results & Analysis

5.4.3 Friedman Test Results

In order to ascertain the cumulative performance of different techniques used in the

chapter on the fourteen datasets, we use Friedman test to assign ranks to each tech-

nique on the basis of median values (obtained on 30 runs) of the G-Mean1 and Bal-

ance performance measures. Table 5.8 states the average rankings of all the tech-

niques as obtained by Friedman test in brackets. According to Table 5.8, the MPLCS

technique was declared as the best technique with a ranking of 4.96 and 4.82 re-

spectively with G-Mean1 and Balance performance measures. The second rank was

obtained by the GA-Int and MLP-CG techniques according to Balance values and

vice-versa according to G-Mean1 values. The worst performing technique was LDA

according to the Friedman test results.

Table 5.8: Friedman Ranking of SBA based on G-Mean1 & Balance Values

SBA ranks using G-Mean1 SBA ranks using Balance
MPLCS (4.96) MPLCS (4.82)
MLP-CG (5.14) GA-Int (5.14)
GA-Int (5.18) MLP-CG (5.21)
GA-ADI (5.32) GA-ADI (5.29)
GEP (5.61) GEP (5.75)
SUCS (6.29) SUCS (6.25)
C4.5 (6.89) C4.5 (7.04)
CART (7.54) CART (7.50)
SVM (7.68) SVM (7.75)
HIDER (7.89) HIDER (8.39)
XCS (9.04) XCS (8.89)
CPSO (9.57) CPSO (9.14)
LDA (9.89) LDA (9.82)

The Friedman statistic has 12 degrees of freedom and was computed as 34.83

with a p-value of less than 0.001 when Friedman test was conducted on G-Mean1

values. Similarly, a chi-square value of 32.66 and a p-value of 0.001 was obtained

when Friedman test was conducted on Balance values. This means that the Friedman

statistic is true at a significance level of 0.05 and there are considerable differences

177

Experimental Results & Analysis

amongst various techniques. Thus, we reject the null hypothesis of the Friedman

test and conclude that the techniques have different behavioral attributes and perform

significantly different from each other for developing change prediction models.

5.4.4 Wilcoxon Test Results

As the results obtained by Friedman test were significant, thus we need to ascertain

the pairwise differences amongst the performances of different techniques for devel-

oping change prediction models. In order to do so, we used Wilcoxon signed rank test

with Bonferroni correction. The median values of 30 runs of G-Mean1 and Balance

measures of all the investigated datasets were compared and the test was performed

at a significance level of 0.05. The null hypothesis of the Wilcoxon test states that

the performance of change prediction model developed using the MPLCS technique

does not differ significantly from the performance of the change prediction models

developed using other investigated techniques, when evaluated using the G-Mean1

or Balance performance measures.

Table 5.9: Wilcoxon Test Results

Compared Pair Using G-Mean1 Using Balance
MPLCS vs CPSO ↑ (0.006) ↑ (0.008)
MPLCS vs GA-ADI ↑ (0.222) ↑ (0.187)
MPLCS vs GA-Int ↑ (0.833) ↑ (0.638)
MPLCS vs GEP ↑ (0.593) ↑ (0.307)
MPLCS vs HIDER ↑ (0.045) ↑ (0.026)
MPLCS vs SUCS ↑ (0.258) ↑ (0.096)
MPLCS vs XCS ↑ (0.028) ↑ (0.022)
MPLCS vs SVM ↑ (0.116) ↑ (0.096)
MPLCS vs C4.5 ↑ (0.208) ↑ (0.208)
MPLCS vs CART ↑ (0.035) ↑ (0.301)
MPLCS vs MLP-CG ↓ (0.875) ↓ (0.826)
MPLCS vs LDA ↑ (0.006) ↑ (0.006)

↑: Not significantly better; ↓: Not significantly poor

Table 5.9 states the results obtained by the Wilcoxon test. The table uses two

symbols: “↑” indicates MPLCS is better than the other compared technique, but not

178

Experimental Results & Analysis

significantly. “↓” indicates MPLCS is worse than the other compared technique,

but not significantly. According to the results of the Wilcoxon test shown in Table

5.9, it can be clearly seen that the MPLCS technique is better than all the other

investigated techniques except the MLP-CG technique. However, these results were

not significant in any case. Thus, we accept the null hypothesis and conclude that the

results of MPLCS technique are comparable to other investigated techniques.

5.4.5 Analysis of Experiment’s Results

The results stated in previous sections indicate good performance of SBA for devel-

opment of classification models which identify change-prone classes in a software

dataset. We also analyzed the average of median G-Mean1 and average of median

Balance values obtained by the investigated techniques on all the datasets. The best

average G-Mean1 value was obtained by the MPLCS technique (a search-based al-

gorithm) with a value of 0.67. The performance of the MPLCS technique was closely

followed by the GA-Int and the MLP-CG technique, with average G-Mean1 values

of 0.66 each. It may be noted that the average G-Mean1 values of the other SBA

were found comparable with the other evaluated ML techniques. The worst perfor-

mance in terms of average G-Mean1 values was depicted by the LDA and the XCS

techniques.

The average Balance values again established the superiority of the MPLCS tech-

nique (Mean Balance: 65.41) along with the MLP-CG technique (Mean Balance:

65.15). The GA-ADI (Mean Balance: 64.31), GA-Int (Mean Balance: 64.85), SUCS

(Mean Balance: 63.21) and HIDER (Mean Balance: 59.70) techniques also show

comparable mean Balance values with the other investigated ML techniques. The

worst performers were LDA and XCS techniques. These results support the applica-

tion of SBA for predicting change-prone classes.

179

Discussion

The results of Friedman test indicate the MPLCS technique as the best for de-

veloping change prediction models followed by the GA-Int and the MLP-CG tech-

niques. However, the worst rank was achieved by the LDA technique. The MPLCS

technique is effective as its fitness function is based on the minimum description

length principle [250]. This principle helps in developing effective rule sets for clas-

sification which are aimed at maximizing the accuracy of the classifier along with a

decrease in complexity of the rules formed. Thus, this technique provides effective

change prediction models in most of the datasets. Furthermore, according to the re-

sults of the Wilcoxon test, the change prediction models developed using the MPLCS

technique were better than all the investigated techniques (except MLP-CG), but not

significantly. This indicates that the MPLCS technique is effective and comparable

to all the other techniques explored in the study. In fact, it yields better results in

some cases when compared with other techniques.

5.5 Discussion

The goal of the chapter was two-fold: a) to systematically summarize empirical evi-

dence with respect to the use of SBA for SEPM in literature studies and b) to ascertain

the predictive capability of SBA for developing change-proneness prediction models.

In order to assess empirical evidence reported in literature, we conducted a sys-

tematic review of 91 primary studies which use SBA for predictive modeling in the

domain of software effort estimation (43 studies), defect-proneness prediction (37

studies), maintainability prediction (4 studies) and change-proneness prediction (10

studies). After analyzing the 91 primary studies, we conclude that SBA can be used

in three ways for SEPM: a) for performing feature selection, b) for deciding the

weights, structure or parameters of other techniques, or c) for developing predictive

models. The results of the review advocate the use of SBA for SEPM tasks. Af-

180

Discussion

ter taking into account the current trends (Section 5.2.9), we propose the following

future work for researchers who intend to use SBA for SEPM:

• Future work should explore and assess SBA for developing software effort esti-

mation, defect prediction and especially maintainability prediction and change

prediction models as we found only limited studies which use SBA in these

domains. However, as the results of the review encourage the use of SBA, a

large number of studies should be carried out for ascertaining the capability of

these techniques.

• Apart from prediction accuracy, future work should focus on other aspects for

evaluation of SBA. These aspects may include the cost effectiveness of the

developed models, their comprehensibility, and their generalization capabil-

ity. These evaluators would help in an effective and thorough evaluation of the

capabilities of any search-based algorithm. Future work should focus on de-

veloping intuitive models for predicting various software attributes using SBA.

• Future work should evaluate the run-time consumed by SBA for SEPM tasks

and explore alternatives for reducing it. Recent studies [251, 252] propose the

use of parallel or cloud-based search-based software engineering for effective

implementation of SBA. These implementations may lead to significant reduc-

tion in the running time for model development. Thus, active exploration and

evaluation of such alternatives which will overcome the shortcomings of SBA

and can aid in their efficient application to SEPM tasks should be undertaken.

• Future work should incorporate a number of other validation techniques such as

inter-release validation, cross-project validation or temporal validation, which

reduce validation bias and evaluates the developed models in real and practical

scenarios.

181

Discussion

• The fitness function of a search-based algorithm plays a crucial role in its per-

formance. A change in fitness function leads to variation in results. Thus,

proper specification of fitness functions is important for researchers to perform

repeated studies. Also, future studies should evaluate different fitness functions

and especially explore multi-objective fitness functions to determine their suit-

ability and achieve optimum results.

• Future work should focus on the careful design of experiments which use SBA

for SEPM tasks by taking into account the various threats to the validity to the

results of the study. These threats include conclusion, internal, construct and

external validity threats. Such a practice would lead to an effective application

of SBA for predictive modeling tasks and would yield practical and reliable

results which can be used by the software industry.

In order to investigate the applicability of SBA for software change prediction we

performed an empirical study using fourteen open-source datasets. We used an ef-

fective experimental setup for our experiment by (a) investigating eight SBA (CPSO,

GA-ADI, GA-Int, GEP, HIDER, MPLCS, SUCS, XCS) and comparing their results

with 4 ML and one statistical technique; (b) completely specifying the parameter

settings and fitness functions of the investigated techniques to aid replicability; (c)

reporting median values after performing 30 runs to account for the stochastic nature

of SBA; (d) using stable and robust performance measures (G-Mean1 and Balance)

in order to yield reliable results; (e) using fourteen datasets belonging to different do-

mains and of appropriate size, which were developed using Java and C++ languages

to increase the generalizability of the obtained results and (f) statistically evaluating

the results using Friedman and Wilcoxon tests to strengthen the conclusion validity.

This experimental design was in line with the recommended guidelines obtained by

the review (Section 5.2.9).

182

Discussion

The primary results of the empirical study indicate that the MPLCS technique, a

search-based algorithm outperformed all the other investigated statistical techniques,

ML techniques and SBA as it secured the highest rank after application of Friedman

statistical test. The validation results obtained by the MPLCS technique were closely

followed by the GA-Int technique and the MLP-CG technique. Furthermore, the

result of Wilcoxon test indicate that the performance of the MPLCS technique was

better than the majority of the other techniques explored in the study, though not

significantly. The superior performance of the MPLCS technique could be attributed

to its effective fitness function which tries to balance the complexity as well as the

accuracy of the rule set obtained for classifying change-prone classes.

The results clearly indicate better or in some cases comparable performance of

SBA when compared with statistical and ML techniques. Hence, this empirical ex-

periment approves of development of prediction models using SBA for identification

of change-prone classes in OO systems. Such models can be effectively used and

adapted by the software industry for application on current OO software projects, so

that change-prone classes can be effectively determined.

183

Chapter 6

Software Change Prediction using

Hybridized Techniques

6.1 Introduction

A wide array of classification techniques are available to develop effective soft-

ware quality models which include statistical techniques, ML techniques and SBA

amongst many others. Lately, a number of researchers in literature have advocated

the use of SBA in the domain of SEPM [6, 157–159, 253, 254]. These techniques

help in the identification of optimal solutions for a specific problem by testing the

goodness of a large number of possible solutions. As indicated in Chapter 5, an ex-

tensive review of literature studies which use SBA for SEPM provides evidence of

their effectiveness in this domain. Although, the results of Chapter 5 indicate that

the evolutionary category of SBA are the most popular ones, there is an urgent need

to evaluate the capabilities of HBT in the domain of SEPM. These techniques are

another category of SBA, which combine SBA with ML techniques into a single ap-

proach. HBT may produce better results as they combine the advantages of both ML

185

Introduction

techniques and SBA [255]. Incorporating the use of SBA as part of a larger system,

may also lead to improvement in predictive performance and the time required for

model development. Grosan and Abraham [256] recognized the importance of HBT

and stated that their use would pave the way for generating optimal solutions. In

predictive modeling, the combination of ML techniques and SBA may increase the

speed of convergence of models under development. These characteristics of HBT

motivate us to analyze their effectiveness in the domain of software change predic-

tion. Furthermore, we also compare the performance of HBT with other categories of

SBA, ML techniques and statistical techniques for predicting change-prone classes.

In order to investigate the effective application of SBA and HBT for determina-

tion of change-prone classes, we follow a generalized and repeatable approach in this

chapter, similar to the one followed in Chapter 5. The approach includes providing

the complete description of parameter settings and fitness functions and accounting

for the stochastic nature of these techniques using multiple (30) runs. Moreover, the

chapter provides statistical evidence for comparison amongst different techniques,

which strengthens the obtained results. Furthermore, we evaluate both the CPU time

as well as the predictive performance of a specific technique for model development.

Hence, the chapter explores a trade-off between both these dimensions as they are

critical parameters for a technique’s selection. We compare and analyze the capabil-

ity of 15 techniques (4 HBT, 6 SBA and 5 ML/statistical techniques) in this chapter

for developing change-proneness prediction models. The HBT investigated in the

chapter are NNEP, GFS-LB, DT-GA and PSO-LDA. Five of the SBA analyzed in the

chapter were evolutionary techniques (XCS, SUCS, MPLCS, GA-ADI and HIDER),

while one of them was a swarm intelligence technique (CPSO). We compared the

performance of these HBT and SBA with the statistical technique LDA and four ML

techniques (SVM, CART, MLP-CG and C4.5).

We investigate the following RQs in this chapter:

186

Introduction

• RQ1: What is the comparative performance of HBT with SBA, SBA with ML

/statistical techniques and HBT with ML/ statistical techniques for prediction

of change-prone classes?

• RQ2: Which is the best hybridized technique for development of change pre-

diction models? Which techniques perform statistically better or worse than

the best chosen hybridized technique?

• RQ3: What is the comparative CPU time taken by change prediction models

developed using different HBT vs SBA, SBA vs ML/ statistical techniques and

HBT vs ML/ statistical techniques?

• RQ4: Is there any trade-off between the CPU time and predictive performance

of different HBT, SBA and ML/ statistical techniques?

RQ1 aims to provide empirical evidence about the predictive capability of differ-

ent SBA, HBT and ML/statistical techniques for the development of efficient change

prediction models. The predictive capability of each category of techniques is com-

pared with each other. We perform empirical validation on six application packages

of open-source Android dataset.

We investigate RQ2 as it is important to statistically assess and establish results,

which support and advocate the use of an effective technique for the development

of change prediction models. We use Friedman statistical test on Balance, G-Mean1

and G-Mean3 values, in order to determine the technique exhibiting best predictive

capabilities. Furthermore, we perform pairwise comparisons of all the other tech-

niques with the best technique. This helps in evaluating which pairs of techniques

are statistically significantly different than the chosen best technique using Wilcoxon

signed rank test with Bonferroni correction.

The motivation for RQ3 is that CPU time for model prediction and validation is a

187

Empirical Research Framework

crucial factor for the selection of an appropriate technique. Thus, we evaluate various

techniques according to the CPU time consumed for model prediction and validation.

We investigate RQ4 as an effective technique would be the one that exhibits good

predictive capability and simultaneously takes low CPU time for model prediction

and validation. A technique, which performs very well but consumes a lot of CPU

time, may be less favorable over a moderately performing technique that takes very

low CPU time.

The chapter is organized as follows: Section 6.2 states the experimental design,

while Section 6.3 states the data preprocessing results. Section 6.4 states the results

specific to each RQ. A comparison of previous chapter results and the results of pre-

vious literature studies is presented in Section 6.5. Section 6.6 provides a discussion

of the overall findings of the chapter. The results of the chapter are published in

[257].

6.2 Empirical Research Framework

We first present the various design considerations of the chapter followed by the

experimental design.

6.2.1 Independent and Dependent Variables

The independent variables used in the chapter are 18 OO metrics. These OO metrics

have been successfully used in previous studies for predictive modeling tasks [1, 27,

45, 79, 83] and are thus effective. The OO metrics include the CK metrics suite [16]

(DIT, NOC, RFC, WMC, CBO and LCOM), five metrics of the QMOOD metrics

suite [25] (MOA, DAM, MFA, CAM and NPM), afferent and efferent coupling (Ca

& Ce) metrics [23] along with AMC, SLOC, LCOM3 [15], IC and CBM metrics.

188

Empirical Research Framework

The dependent variable analyzed in this chapter is change-proneness. The detailed

description of dependent and independent variables may be referred from Chapter 2.

6.2.2 Empirical Data Collection

This chapter analyzes six packages of Android OS, a popular mobile operating sys-

tem for empirical validation. Around 70% of smart phones in the market use Android

as a preloaded OS. The open-source nature of Android increases the replicability of

the study. Android forms a unique niche in the operating system market, but the re-

sults of the chapter are also generalizable to iOS, Windows and Unix as they belong

to the domain of operating systems. Moreover, the wide use of Android aids the ex-

ternal validity of the results as they can be effectively used in similar scenarios. The

data used in the chapter is collected by analyzing two versions of Android system:

Ice Cream Sandwich and Jelly beans.

It was noted that the source code for Android OS was available under many appli-

cation packages, rather than a single package. The various available application pack-

ages include packages for a number of functions such as libraries, kernel, or native

applications. We investigated Bluetooth (4.3.1-4.4.2), Contacts (4.3.1-4.4.2), Calen-

dar (4.3.1-4.4.2), Gallery2 (4.2.2-4.3.1), MMS (2.3.7-4.0.2) and Telephony (4.4.2-

4.3.1) application packages. The six Android packages investigated were selected as

a representative of Android application as they contained an appropriate number of

data points i.e. classes which are required for developing effective change prediction

models [1]. Secondly, the selected application packages had sufficient and gener-

ally varying degree of percentage of change-prone classes i.e. 19% − 63%, which

would help in developing appropriate prediction models and ascertaining the accu-

racy of these models when developed using varying degrees of change [1]. Certain

other application packages such as “Desk Clock” and “Email” were also evaluated

189

Empirical Research Framework

as candidates for the study between the two Android OS versions but were not found

suitable as they did not meet the above criteria. The details of the six application

packages can be obtained from Appendix A. These datasets were collected with the

aid of the DCRS tool.

6.2.3 Experimental Design

Figure 6.1 depicts the diagrammatic representation of the experimental design used

in the chapter, which is described in detail as follows:

Figure 6.1: Experimental Design for Evaluating Software Change Prediction Models

• Data Preprocessing & Feature Selection: We first analyze the descriptive statis-

tics of OO metrics of each dataset. Next, all the outliers of each of the six

datasets were identified and removed using IQR filter. Finally, as suggested

by Hall [109], we use the CFS method to effectively select the best predictor

metrics out of the eighteen OO metrics used in the chapter.

• Model Prediction & Validation: Next, we develop change prediction mod-

els using all the techniques on the six datasets using ten-fold cross validation

method. The method was selected as it reduces validation bias [37, 114]. We

190

Empirical Research Framework

run each technique 30 times in order to account for the randomness of SBA

and HBT [38, 200].

• Performance Evaluation: The results of change prediction models developed

by various techniques are evaluated using recall, PF, Balance, G-Mean1 and

G-Mean3 measures. An extensive review by Malhotra [17] reveals that a large

number of studies (67% and 32% respectively) report recall and PF values in-

stead of reporting the actual number of FPs and FNs. In order, to make our

results comparable, we use the above performance measures. Furthermore, it

is also important to account for imbalance in a dataset, when evaluating the

prediction model which learns from it. Therefore, we use G-Mean1, G-Mean3

and Balance measures as they are stable and robust. They yield a reliable esti-

mate of the model’s performance. We further use the Friedman and Wilcoxon

signed rank test with Bonferroni correction in order to statistically analyze the

results.

We also evaluate the CPU time of a particular technique as it is an important

indicator for evaluating the effectiveness of a technique. The CPU time is

compared with the predictive capability of a technique in order to analyze the

trade-off between both of them.

We used the KEEL tool www.keel.es for simulation of the 15 techniques in-

vestigated in the chapter. In order to effectively tune the parameters of each tech-

nique used in the chapter, a number of variations of different parameters were in-

vestigated before selecting the optimum parameters for each technique relative to

Android datasets. The parameter settings for each of the investigated SBA and HBT

are mentioned in Table 6.1. The fitness functions used for SBA and HBT were the

default ones, which are mentioned in Chapter 2.

191

www.keel.es

Empirical Research Framework

Table 6.1: Parameter Settings for SBA & HBT

SBA/ HBT Parameter Settings
GFS-LB Number of label: 5; Number of rules: 25.
DT-GA Instances per leaf: 2; Confidence: 0.20; Threshold for considering small disjunct: 10; Number of total

generations for GA: 50; No. of chromosomes in the population: 200; Crossover Probability: 0.7;

Mutation Probability: 0.01.
NNEP Hidden Nodes: 6; Transfer: Product Unit; Generations: 200.
PSO-LDA Maximum Number of Iterations: 400; Number of non-improving iterations: 150; Cognition learning

factor: 0.8; Social learning factor: 1.2; Inertial weight (w): 0.5; Number of particles: 15.
HIDER Population Size: 100; Number of Generations: 150; Mutation Probability: 0.3; Cross Percent: 70; Ex-

treme Mutation Probability: 0.06; Prune Examples Factor: 0.05; Penalty Factor: 2; Error Coefficient:

0.
GA-ADI Number of Iterations: 500; Number of strata: 2; Rule deletion min rules: 14; Size penalty min rules:

4; Number of intervals for uniform discretization: 4, 5, 6, 7, 8, 10, 15, 20, 25.
CPSO No. of Particles: 25; Convergence Radius: 0.1; Weights Upper limit: 1.05; Max Uncovered Instances:

0.1; Indifference Threshold: 0.2; Constriction Coefficient: 0.83; Convergence Platform Width: 35.
MPLCS No. of Iterations: 700; Size of Penalty Rules: 3; Probability of local search: 0.03; Probability of

Rule Set-Wise (RSW) Cross-over: 0.2; No. of parents in RSW Crossover: 10; No. of Rule Ordering

Repetitions: 5.
XCS Number of explores: 1,00,000; Population size: 6,400; α = 0.1; β = 0.2; δ = 0.1; µ = 10.0;

θga = 50.0; θmna = 2; θdel = 50.0; initial prediction: 10.0; initial fitness: 0.01; initial prediction

error: 0.0; prediction error reduction: 0.25; GA subsumption: false; Type of Selection: Roulette Wheel

Selection; Tournament size: 0.4; Type of Crossover: 2 point; Crossover Probability: 0.8; Type of

Mutation: Free; Mutation probability: 0.03; r = 1.0; m = 0.1.
SUCS Number of explores: 70,000; Population Size: 8,400; α = 0.1; β = 0.2; δ = 0.1; µ = 10.0;

θdel = 50.0;initial prediction: 10.0; initial fitness: 0.01; initial prediction error: 0.0; prediction error

reduction: 0.25; GA subsumption: true; θsub = 500.0; Type of Selection: Tournament; Tournament

size: 0.4; Type of Crossover: 2 point; Crossover Probability: 0.8; Type of Mutation: Free; Mutation

probability: 0.06; θga = 50.0; r = 0.6; m = 0.1.

6.2.4 Hypothesis Evaluation using Statistical Tests

In order to ascertain the best hybridized technique (RQ2), we investigate the follow-

ing hypothesis using Friedman test and Wilcoxon signed rank test.

Hypothesis investigated using Friedman Test

Friedman test is used to test the following hypothesis (H0, H1 and H2). The

predictive capability of all the 15 investigated techniques are assessed using Balance,

192

Results and Analysis

G-Mean1 and G-Mean3 values in order to determine the best hybridized technique.

Alternate Hypothesis H0/ H1/ H2: The developed models for software change

prediction using the various investigated techniques of the chapter are significantly

different from each other with respect to Balance/ G-mean1/ G-Mean3 values.

Hypothesis investigated using Wilcoxon Signed Rank Test

In case the results of Friedman test are found significant, depicting a specific

technique X with the best predictive capability, we conduct a post-hoc Wilcoxon test

with Bonferroni correction. Pairwise comparisons are performed amongst all the in-

vestigated techniques and technique X (best technique) using Balance, G-Mean1 and

G-Mean3 performance measures. The investigated hypothesis is stated as follows:

Alternate Hypothesis H3/ H4/ H5: The change prediction models developed using

technique X are significantly different with respect to Balance/ G-Mean1/ G-Mean3

values from the change prediction models developed using technique A.

In the above hypothesis, technique A represents all the other investigated tech-

niques except X (best ranked technique according to Friedman test). In case, the

PSO-LDA technique is the best technique established by the results of the Friedman

test, then technique A represents the other 14 techniques investigated in the chapter

apart from the PSO-LDA technique.

6.3 Results and Analysis

This section describes the descriptive statistics, outlier removal and feature selection

results. Thereafter, we state the results specific to each RQ and their corresponding

answers.

193

Results and Analysis

6.3.1 Descriptive Statistics & Outlier Removal

We analyzed the descriptive statistics of all the datasets used in the chapter. We

found that the inheritance attribute was not much used in the investigated datasets as

the mean NOC and mean DIT metric values are low. The range of mean NOC values

was 0.64-1.00 and that of mean DIT value was 0.00-0.37. However, the datasets were

found to exhibit high mean values for LCOM in the range of 104.74-709.05.

The Bluetooth application package was found with 7 outliers. Similarly, the Con-

tacts, Calendar, Gallery2, MMS and Telephony datasets were detected with 12, 6, 43,

22 and 37 outliers respectively, which were removed before further analysis.

6.3.2 CFS Results

As explained in experimental design, we use the CFS method for reducing the di-

mensionality of the input features except for model development using the PSO-LDA

technique. This is because the feature selection is already incorporated in the PSO-

LDA technique. Table 6.2 reports the metrics which were selected after application

of the CFS method on each dataset. As the SLOC metric and the CAM metric are

selected in five and four datasets respectively, they seem to be highly effective in

predicting change-prone classes.

Table 6.2: Metrics selected after application of CFS

Dataset Metrics Selected
Bluetooth SLOC, CAM, WMC, RFC
Contacts SLOC, DIT, NPM, CBO
Calendar CBO, Ce
Gallery2 SLOC, Ce, LCOM3, MOA, CAM
MMS SLOC, DAM, LCOM3, MOA, CAM, AMC
Telephony SLOC, MFA, WMC, LCOM3, CAM

194

Results and Analysis

6.3.3 Results specific to RQ1

The predictive capability of various techniques in the domain of software change pre-

diction is assessed by analyzing the performance of ten-fold cross validation models

developed using them. Figures 6.2-6.6 represent the median values of performance

measures (Recall, PF, Balance, G-Mean1 and G-Mean3) of 30 runs executed using

a specific technique. Each bar in the figures corresponds to the performance mea-

sure value of a specific technique (color grouped according to the category of the

technique) on a specific dataset. It may be noted that the dark gray bars depict the

HBT, the light gray bars depict SBA and the black colored bars are representative of

ML/statistical techniques.

Figure 6.2: Median Recall Values on 30 Runs of different techniques

The recall and PF values obtained by change prediction models developed by

the investigated techniques are illustrated in Figures 6.2-6.3. The change prediction

models on Contacts dataset obtained recall values in the range 50%-75%. Similarly,

the range of recall values on Calendar, Gallery2 and MMS datasets range from 0%-

42%, 21%-52% and 12%-65% respectively. It may be noted that high recall values

(72%-92%) were obtained on Telephony dataset. An analysis of Figure 6.2 depicts

195

Results and Analysis

Figure 6.3: Median PF Values on 30 Runs of different techniques

that the LDA technique obtained the best recall value on Bluetooth dataset, while

the CART technique obtained the best recall value on Contacts dataset. However,

the PSO-LDA technique, a hybridized technique obtained the best recall values on

four datasets (Calendar, Gallery, MMS and Telephony). An analysis of Figure 6.3

depicts PF values in the range 3%-100% on Bluetooth dataset, 17%-27% on Contacts

dataset, 0%-12% on Calendar dataset, 6%-27% on Gallery2 dataset, 3%-15% on

MMS dataset and 43%-51% on Telephony dataset. It was noted that SBA showed

the best PF values in four of the six investigated datasets.

Figure 6.4 illustrates the median Balance values of 30 runs for the change pre-

diction models developed using each investigated technique using the six datasets of

the chapter. The change prediction models developed by the PSO-LDA technique

exhibited the best cumulative Balance results. The median Balance values of the

PSO-LDA technique were in the range of 57% to 74% (Bluetooth: 67%, Contacts:

74%, Calendar: 57%, Gallery2: 64%, MMS: 75% and Telephony: 64%). We also

analyzed the Balance values for each category of techniques and found them to be

in the range of 40% to 80% for a majority of HBT, 40% to 70% for a majority of

SBA and 40% to 75% for ML /statistical techniques. According to the figure, the

196

Results and Analysis

Figure 6.4: Median Balance Values of different techniques

Balance values of HBT were found comparable to that of SBA, since both these sets

of techniques are capable of accomplishing a global search for optimum solution

by avoiding local maxima. While ML techniques such as CART and C4.5 exhib-

ited good Balance values, other ML techniques such as SVM exhibited low Balance

values than the HBT and SBA in four of the investigated datasets.

Figure 6.5 presents the median values of G-Mean1 measure for 30 runs on each

investigated dataset of the chapter. Though, the DT-GA technique depicted the best

G-Mean1 values on Bluetooth dataset (0.81), for all the other datasets, the models

197

Results and Analysis

Figure 6.5: Median G-Mean1 Values of different techniques

developed using the PSO-LDA technique depicted the best G-Mean1 values (Con-

tacts: 0.75, Calendar: 0.60, Gallery2: 0.67, MMS:0.78, Telephony: 0.68). Certain

techniques such as LDA on Bluetooth dataset and the SVM technique on Calendar

dataset, showed extremely poor G-Mean1 values as it was not defined on them. The

average of G-Mean1 values on all the datasets ranged from 0.41-0.56 for ML /statis-

tical techniques, 0.50-0.61 for SBA and 0.56-0.70 for HBT. It can be seen that the

performance of HBT were in most cases better than or equivalent to ML/statistical

techniques or SBA. The SVM technique depicted the worst average G-Mean1 values

198

Results and Analysis

in the majority of the datasets.

Figure 6.6: Median G-Mean3 Values of different techniques

The median G-Mean3 values of the models developed using the various tech-

niques are depicted in Figure 6.6. It was found that the G-Mean3 values of the change

prediction models developed using most of the HBT and SBA were in the range of

0.50 to 0.80, while that of ML /statistical techniques were in the range of 0.40 to 0.78.

The models developed by the PSO-LDA technique exhibited the best cumulative re-

sults, which were followed by the models developed by the NNEP technique. All

HBT exhibited better or equivalent performance in terms of G-Mean3 values, when

compared with the SBA and ML /statistical techniques.

199

Results and Analysis

Analysis of RQ1 Results

An analysis of the results discussed above indicates that the HBT depict better

predictive capabilities than SBA for developing change prediction models on the in-

vestigated datasets. Similarly, models developed by HBT like PSO-LDA, GFS-LB

and DT-GA outperform the models developed using the investigated ML /statistical

techniques. SBA were found to exhibit the best PF values on four of the six investi-

gated datasets. On comparing the change prediction models developed using the SBA

and ML/ statistical techniques, we found SBA such as GA-ADI, MPLCS and CPSO

developed better models than the investigated ML techniques. As the search of SBA

is global, they inherently avoid getting trapped in local maxima, thereby attaining

effective solutions.

The trends signify that the predictive capability of HBT are advantageous for

developing change prediction models. A hybridized technique benefits from the fa-

vorable properties of all its constituent techniques to improve the developed models.

For example, the DT-GA technique incorporates the effective pruning of DT along

with search process of the GA, which helps it to avoid local maxima and perform a

global search.

Answer to RQ1

The predictive performance of the investigated techniques in terms of the various

performance measures (Recall, PF, Balance, G-Mean1 and G-Mean3) signify that

the models developed by most of the HBT are superior to the ones developed by

the SBA and the ML /statistical techniques. However, while comparing SBA and

ML/statistical techniques, the SBA developed better change prediction models. As

HBT are influenced by the advantages of both its constituent techniques, the models

developed using them outperform the other investigated techniques.

200

Results and Analysis

6.3.4 Results specific to RQ2

The best hybridized technique was ascertained by Friedman test (hypothesis stated in

Section 6.2.4) [125]. As the test computes the mean ranks of techniques over all the

investigated datasets, we look for the technique obtaining the lowest Friedman rank

as the best one. The degrees of freedom for Friedman test is 14. It was evaluated on

the median Balance, G-Mean1 and G-Mean3 values of 30 runs for all the techniques

on all the six datasets. The hypothesis was evaluated at α = 0.05 level.

Table 6.3: Friedman Ranking

Based on Balance Values
Technique Mean Rank Technique Mean Rank Technique Mean Rank
PSO-LDA 1.83 CPSO 7.33 MPLCS, LDA 9.50
NNEP 6.00 C4.5 7.42 DT-GA 9.58
GFS-LB 6.07 GA-ADI 7.67 XCS 11.17
CART 6.67 HIDER 8.00 SVM 13.42
SUCS 7.08 MLP-CG 8.17

Based on G-Mean1 Values
Technique Mean Rank Technique Mean Rank Technique Mean Rank
PSO-LDA 1.17 GA-ADI 7.75 C4.5 9.25
SUCS 5.42 HIDER 7.83 LDA 9.50
NNEP 5.75 MLP-CG 8.00 MPLCS 9.92
GFS-LB 6.25 CART 8.83 XCS 11.00
CPSO 6.92 DT-GA 9.08 SVM 13.33

Based on G-Mean3 Values
Technique Mean Rank Technique Mean Rank Technique Mean Rank
PSO-LDA 2.83 DT-GA 8.00 SVM 9.58
NNEP 3.67 HIDER 8.08 XCS 9.75
C4.5 6.17 GA-ADI 8.58 MPLCS 10.08
LDA 6.17 SUCS 8.75 MLP-CG 10.33
GFS-LB 7.33 CART 9.50 CPSO 11.17

Table 6.3 states the Friedman mean ranks obtained by each technique. According

to the table, the PSO-LDA technique obtained the best rank in all the three cases.

Though, NNEP received second rank using Balance and G-Mean3 values, it ranked

third using G-Mean1 values indicating its effectiveness. The Friedman test results

are significant at α = 0.05 as the obtained p-value is 0.01 using Balance values

and 0.03 using G-Mean1 and G-Mean3 values each. The Friedman test statistic was

201

Results and Analysis

calculated as 28.30 using Balance values. Similarly, the test statistic was computed as

33.23 and 24.55 using G-Mean1 and G-Mean3 values respectively. Thus, we accept

alternate hypothesis H0, H1 and H2, which means that change prediction models

developed using different techniques perform significantly different from each other

when evaluated using the Balance, G-mean1 and G-Mean3 measures.

As the Friedman test yields significant results, showing PSO-LDA as the best

technique, we performed post-hoc Wilcoxon signed rank test with Bonferroni cor-

rection to evaluate pairwise differences amongst the performances of different tech-

niques at significance level α = 0.05. The set of hypothesis evaluated using Wilcoxon

test is stated in section 6.2.4. Here, technique X corresponds to the PSO-LDA tech-

nique. Figures 6.7, 6.8 and 6.9 report the pairwise comparison results of Wilcoxon

test after Bonferroni correction using the Balance, G-Mean1 and G-Mean3 values

respectively. The bars represent the number of datasets which achieve different sig-

nificance levels. The different colors of the bars indicate different significance levels.

It should be noted that the maximum number of datasets achieving a specific signif-

icance level would be six as we use six datasets in the chapter. The symbol “Sig.

Superior” indicates technique X is significantly superior to technique A on a dataset

D, while the symbol “Sig. Inferior” indicates that technique A significantly outper-

forms technique X on a dataset D. “Not Sig. Superior” symbol indicates technique

X outperforms technique A on dataset D but not significantly. Similarly, “Not Sig.

Inferior” indicates technique A outperforms technique X on dataset D but not sig-

nificantly. The Wilcoxon comparison was performed by comparing the performance

measures values of 30 runs.

According to Figure 6.7, the PSO-LDA technique significantly outperforms all

the other techniques on all the datasets except in five cases. Thus, the results of the

Wilcoxon test with Bonferroni correction accept the alternate hypothesis H3.

According to figure 6.8, the post-hoc Wilcoxon test using G-Mean1 values indi-

202

Results and Analysis

Figure 6.7: Wilcoxon Test Results using Balance values

Figure 6.8: Wilcoxon Test Results using G-Mean1 values

cates that the PSO-LDA technique significantly outperforms all the other techniques

on all the datasets except in one case, where DT-GA outperforms PSO-LDA. There

are no cases with “not significant” results. Thus, we reject the null hypothesis H4.

Figure 6.9 depicts the pairwise comparison results using the G-Mean3 measure.

203

Results and Analysis

The PSO-LDA technique significantly outperforms all the other techniques on all

the datasets except the Calendar dataset. Thus, the results indicate acceptance of the

alternate hypothesis H5.

Figure 6.9: Wilcoxon Test Results using G-Mean3 values

Analysis of RQ2 Results

As depicted by Friedman tests (based on Balance, G-Mean1 and G-Mean3 val-

ues), the PSO-LDA technique clearly outperformed the other investigated techniques.

The hybrid nature of PSO-LDA, which combines the PSO technique (a search-based

algorithm) for extracting all relevant and significant features, along with the LDA

(a statistical technique), yields a successful and effective classifier. Previous studies

by Lin et al. [258] and Huang and Dun [259] also advocate the use of PSO as an

effective feature selector. The PSO technique chooses an effective feature set by rep-

resenting a particle in the population of a D-dimensional space, where D represents

the number of features. The PSO technique, thereafter, computes the fitness (classifi-

cation accuracy) of each particle to evaluate whether the set of features is appropriate

204

Results and Analysis

for model development using LDA. It may be noted that in PSO-LDA, the LDA de-

velops models using only the features selected by the PSO. As the use of PSO as a

feature selector augments the predictive capability of the LDA technique [260], the

combination of PSO and LDA is favourable. In addition, the results of Wilcoxon

signed rank test also support the use of the PSO-LDA technique as it outperformed

the models developed using all the other investigated techniques, in a majority of the

cases (using Balance, G-Mean1 and G-Mean3 values).

Answer to RQ2

According to the results of Friedman tests, the change prediction models devel-

oped using the PSO-LDA technique, a hybridized technique obtained the best results.

Also, the change prediction models developed by the NNEP technique, another hy-

bridized technique obtained the next best results. The results of Wilcoxon tests as-

certained that the change prediction models developed using the PSO-LDA technique

were significantly improved as compared to the ones developed using the other inves-

tigated techniques. The PSO-LDA technique yields an effective combination of PSO,

a search-based algorithm for feature selection and the statistical technique, LDA for

model development.

6.3.5 Results specific to RQ3

As discussed in Section 6.1, it is important to evaluate the CPU time taken by the in-

vestigated techniques. Therefore, we consider the minimum (Min), maximum (Max)

and the mean CPU time (in seconds) taken by the investigated techniques to develop

change prediction models on all the six datasets of the chapter (Figure 6.10).

The results depicted in Figure 6.10 indicate that the NNEP technique is the slow-

est technique for developing change prediction models in terms of CPU time. How-

ever, the fastest techniques were the C4.5 and the LDA, with a mean CPU time of 13

205

Results and Analysis

Figure 6.10: CPU time statistics of different techniques

seconds each. The CPSO technique, a search-based algorithm depicted the least CPU

time (34 seconds) amongst SBA. It should be noted that the actual CPU time taken

by a technique is approximately 30 times the mean value depicted in Figure 6.10.

For instance, the NNEP technique took a mean time of 3,746 seconds for developing

change prediction on all the six investigated datasets. However, this time needs to be

multiplied by 30 (3,746 * 30 = 37,650 seconds) to get the actual mean time taken by

the NNEP technique in 30 runs.

We also analyzed the mean CPU time taken by a specific technique while devel-

oping change prediction models on a single dataset (Figure 6.11). Again, we note that

the slowest technique was NNEP (624 seconds). The C4.5 and the LDA techniques

were the fastest with a mean CPU time of approximately 2 seconds each. Other fast

techniques were CPSO (6 seconds) and DT-GA (10 seconds). The trend signifies

that the ML/statistical techniques are faster than SBA and HBT. The time taken by

the PSO-LDA hybridized technique (60 seconds) was comparable to that of the time

taken by certain ML techniques such as MLP-CG.

206

Results and Analysis

Figure 6.11: CPU time taken by different techniques

Analysis of RQ3 Results

After analysis of the mean CPU time for model development, we state the fol-

lowing observations:

• The ML techniques were faster as compared to the SBA and HBT for devel-

oping change prediction models. Researchers should explore alternatives like

parallel architecture, increasing the efficiency of hardware technology, cloud

computing etc. to overcome the issue of SBA and HBT, which take higher

CPU times for model development.

• Techniques which are hybrids of a fast ML/statistical technique generally take

lower mean CPU time than other HBT. For instance, PSO-LDA and DT-GA are

hybridized versions of fast techniques like LDA and C4.5, taking smaller CPU

times. On the contrary, the NNEP technique, which is a hybrid of a slower ML

technique, similar to MLP-CG, depicts a very poor CPU time performance.

Thus, hybridization of an ML technique which is itself time consuming (MLP-

CG with 78 seconds) with a search-based algorithm (evolutionary program-

ming) results in a hybridized technique i.e. NNEP, which takes very large CPU

207

Results and Analysis

time (624 seconds).

• In general, as SBA perform a global search, they consume large CPU times.

However, an exception was the CPSO technique as it consumed low CPU time

(6 seconds). This could be because of the use of constriction factor in CPSO,

which restricts the search-space explosion leading to effective convergence in

CPU time [95].

In terms of CPU time, the ML /statistical techniques outperform the HBT and

SBA. Also, the SBA were on an average slower in terms of CPU time than HBT.

Answer to RQ3

The analysis of the CPU time performance of the various investigated techniques

indicates that most of the ML/statistical techniques are efficient and fast. Certain

HBT, such as GFS-LB, PSO-LDA and DT-GA also show effective CPU times for

developing software change prediction models. This could be due to hybridization of

a fast ML technique with a search-based algorithm. The SBA were found slowest in

terms of CPU time as they take high CPU times. The only exception to this trend was

the CPSO technique, which takes low CPU time because of constriction coefficient.

6.3.6 Results specific to RQ4

The trade-off between CPU time and predictive performance was evaluated by an-

alyzing the mean CPU time and the mean performance measures values (Balance

G-Mean1 and G-Mean3) for HBT, SBA and ML/statistical techniques, which are de-

picted in Table 6.4. We consider a technique to be favorable if it exhibits low CPU

time and high predictive performance in terms of Balance, G-Mean1 and G-Mean3

measures.

208

Results and Analysis

Table 6.4: CPU Time and Mean Performance Measures of Different Techniques

Technique CPU Time Average Balance Average G-Mean1 Average G-Mean3
HBT

PSO-LDA 62.67 67.21 0.70 0.74
NNEP 624.33 55.09 0.56 0.73
GFS-LB 87.16 55.65 0.56 0.67
DT-GA 9.50 57.67 0.58 0.67

SBA
CPSO 5.67 59.19 0.61 0.62
XCS 451.00 49.92 0.50 0.56
SUCS 170.83 55.09 0.58 0.55
MPLCS 383.66 53.10 0.54 0.65
GA-ADI 134.66 54.43 0.55 0.67
HIDER 190.83 54.62 0.55 0.66

ML/ Statistical
C4.5 2.16 58.99 0.55 0.70
CART 13.83 56.51 0.52 0.61
LDA 2.16 52.44 0.49 0.67
MLP-CG 77.50 55.29 0.56 0.63
SVM 20.00 46.38 0.41 0.54

The results in Table 6.4 illustrate that all ML/statistical techniques except MLP-

CG are efficient with respect to CPU time. However, their predictive performance in

terms of Balance and G-Mean1 values was found poor than most of the investigated

HBT and certain SBA. The PSO-LDA and DT-GA techniques are HBT, which exhib-

ited effective Balance and G-Mean1 values and tolerable CPU times, when compared

with the majority of other investigated techniques. However, it was noted that though

the performance of the NNEP technique (in terms of Balance and G-Mean1 values)

is better or equivalent to most of the other techniques, it was found the slowest in

terms of CPU time. The mean Balance values of HBT range from 55%-67% and G-

Mean1 values from 0.56-0.70, indicating their predictive capability. It was also ob-

served that though SBA (except XCS) exhibit good performance in terms of Balance

and G-Mean1 values, they consume large CPU times. Only the CPSO technique, a

search-based algorithm was fast in terms of CPU time.

The mean G-Mean3 values observed from Table 6.4 indicate that the HBT exhibit

the best G-mean3 values. Moreover, their CPU time consumption is competitive, ex-

209

Results and Analysis

cept for the NNEP technique. The SBA depicted better G-Mean3 values than certain

ML/statistical techniques but lower G-Mean3 values than HBT. The C4.5 technique,

an ML technique showed effective results with a good G-Mean3 value of 59% and

an average CPU time of 2 seconds. It was noted that though the CPSO technique

was a fast technique, it gave poor G-Mean3 values. SBA such as XCS, SUCS and

the MPLCS techniques were found to consume higher CPU times and exhibit low

G-Mean3 values.

Analysis of RQ4 Results

We summarize few interesting observations after analyzing the trade-off between

CPU time and the predictive performance of the investigated techniques:

• As observed from Table 6.4, the HBT gave better predictive performance (in

terms of Balance, G-Mean1 and G-Mean3 values) than the other investigated

techniques in most of the cases. Change prediction models developed with the

aid of DT-GA and the PSO-LDA techniques gave effective values in terms of

both (predictive capability and CPU time).

• Effective change prediction models developed using various techniques are

beneficial in the efficient allocation of maintenance and testing resources. Thus,

techniques which give a very good predictive performance with moderate CPU

time such as PSO-LDA may also be used effectively as the average CPU time

is compensated by the cost and time saved by application of the change predic-

tion models developed by these techniques. However, techniques which take

large CPU time such as NNEP may be carefully selected, taking into account

the large CPU time required by them. We performed cost-benefit analysis in

order to evaluate the effectiveness of change prediction models developed us-

ing PSO-LDA, NNEP and C4.5 models on all the datasets. The effort gain was

210

Results and Analysis

calculated according to the following formula [261] [54]:

Effort Gain =
SLRT − LCPM

LRT
∗ 100 (6.1)

SLRT signifies the SLOC one needs to test if we perform Random Testing

(RT). It is computed as the product of recall and total SLOC of a dataset.

LCPM signifies the SLOC, one would test after application of Change Predic-

tion Model (CPM). The effort gain is representative of the effort reduced while

testing. A higher effort gain, indicates a better model. We found that the per-

centage effort gain was approximately between 40%-60% when we used HBT

(PSO-LDA and NNEP). This effort gain was a 20% increase from the scenario

when we used models developed using the ML technique (C4.5). Thus, we

note that though there is a trade-off between predictive performance and the

average CPU time taken for model development by a technique. We can still

use a specific technique if it balances out the project’s costs saved by it on

application of the change prediction model developed using the technique.

Thus, after analyzing the trade-off between CPU time and the performance mea-

sures (Balance, G-Mean1 and G-Mean3), we can conclude that the PSO-LDA, DT-

GA, C4.5 and even NNEP are effective techniques for developing change prediction

models. The DT-GA technique is comparable to the C4.5 technique in terms of

CPU time as well as predictive performance. Though, PSO-LDA technique takes

longer CPU time for model development, it is compensated by effective predictive

performance of the developed change prediction model. Furthermore, we note that

the NNEP technique may be carefully selected because though it gives an effective

percentage gain in the effort but takes a large amount of CPU time for model devel-

opment.

HBT can be used if they are capable of balancing out the CPU time performance

211

Comparison of Various Studies

and exhibit an effective effort gain ratio. SBA were found incapable of producing

models which could effectively compensate the time factor. The trade-off indicates

that though ML techniques are efficient in terms of CPU time, we should select an

ML technique which demonstrates high predictive capability in terms of various per-

formance measures.

Answer to RQ4

The analysis of the obtained results indicates the existence of a trade-off between

the CPU time needed for model development and the predictive performance of the

developed model. The ML/statistical techniques were found quite effective in terms

of CPU time, but they exhibited lower predictive capability and effort gain ratio as

compared to certain SBA and HBT. HBT such as PSO-LDA are capable of balancing

the trade-off between CPU time and predictive performance for developing change

prediction models. Even if PSO-LDA takes moderate CPU times, this time can be

compensated by the costs and time saved by effective application of the results of

change prediction models developed by it.

6.4 Comparison of Various Studies

In this section, we compare our results with literature studies and previous chapters

in terms of various performance measures (Recall, AUC, G-Mean1, G-Mean3 and

Balance). The values of different performance measures from various chapters and

studies are listed in Table 6.5. It may be noted that we report the median values of

each performance measure, obtained over all the investigated datasets in a chapter

or a study. Also, the values for only that technique or scenario is reported, which is

advocated as the best in a chapter or a study and where the model is developed using

source-code metrics. All the values, which could not be extracted are depicted by

212

Comparison of Various Studies

”–”.

Table 6.5: Comparison Results

Performance

Measure

Chapter 4

(RF)

Chapter 5

(MPLCS)

Chapter

6 (PSO-

LDA)

[4] (NB) [36]

(PSO-

LDA)

[137]

(LR)

[262]

(ELM-

PLY)

[144]

(CLAMI+)

Recall – 67.95 60.26 47.08 – 49.00 – –
AUC 0.781 – – 0.747 – 0.555 0.645 0.645
G-Mean1 0.715 0.700 0.698 – – – – –
G-Mean3 – – 0.770 – 0.735 – – –
Balance – 69.06 66.01 – – – – –

“–” means could not be extracted; ELM-PLY: Extreme Machine Learning with Polynomial Kernel
CLAMI+: Clustering, Labeling, Metric selection and Instance Selection proposed by [144]

As depicted in Table 6.5, the RF technique (a ML technique) was advocated as

the best in Chapter 4, the MPLCS technique, a search-based algorithm was the best

in Chapter 5 and the HBT, PSO-LDA showed optimum performance in the current

chapter. Amongst SVM, MLP and NB, the study by Romano and Pinzger [4] gave

the best values for prediction of change-prone Java interfaces with NB technique.

However, we extracted the values for models developed using only the OO metrics

because in all our previous chapters, we have explored OO metrics as independent

variables for determining change-prone nature of a class. The study by Bansal [36]

advocated the PSO-LDA technique. However, their results were only validated on

two open-source datasets and we report the median results on these two datasets.

The study by Catolino et al. [137] evaluated a number of different set of predic-

tors (entropy of changes, number of developers, structural and semantic scattering of

developers, evolution-based metrics and OO metrics) using the LR technique for de-

veloping change prediction models. We report the median results of the LR technique

on ten datasets investigated by Catolino et al. [137], when OO metrics were used as

predictors. Kumar et al. [262] evaluated ten different subsets of source code metrics

for determining the change-prone nature of a class using ten classification techniques.

We report the median values of the models created using these ten subsets of source-

213

Comparison of Various Studies

code metrics with Extreme Machine Learning with Polynomial Kernel (ELM-PLY),

as it was advocated as the best classification technique. Yan et al. [144] proposed

the use of CLAMI+ method for predicting change-prone classes on 14 open-source

datasets. We report the median values of the method on the investigated datasets.

According to the results shown in Table 6.5, the MPLCS technique, depicted the

best recall results, which were closely followed by the PSO-LDA technique. We have

already discussed that HBT are better off than SBA as they are faster and the trade-off

between the CPU time and predictive performance favors them. Thus, we advocate

the PSO-LDA technique. In terms of AUC performance measure, the results of RF

technique in Chapter 4 are superior to the ones investigated in other literature studies

[4, 137, 144, 262]. Though, G-Mean1 performance measure has not been reported in

literature studies pertaining to software change prediction, the G-Mean1 values for

each of the three chapters (Chapter 4-6) are comparable, depicting effective results

by each of the advocated technique in corresponding chapters. The G-Mean3 val-

ues obtained in this chapter, are more generalizable as we investigated six datasets

as compared to only two datasets by Bansal [36]. Also, they are better than those

reported by Bansal [36]. However, both studies (our current chapter results and the

results of Bansal[36])), advocate the effectiveness of the PSO-LDA technique in the

domain of software change prediction. Finally, though the results of Balance perfor-

mance measure are slightly better for the MPLCS technique, it takes much longer

CPU times as compared to the PSO-LDA technique. As shown in Table 6.4 (Section

6.4.4), the CPU time taken by the PSO-LDA technique was 62.67 seconds as com-

pared to the CPU time of 383.66 seconds taken by the MPLCS technique. Thus, we

favor the use of the PSO-LDA technique.

214

Discussion

6.5 Discussion

The chapter assessed the predictive capability of the HBT, SBA and the ML/statistical

techniques for developing efficient software change prediction models. In order to do

so, we selected four HBT, six SBA, four ML techniques and one statistical technique

to develop change prediction models on six Android datasets. The chapter used an

effective experimental set up which took into account the non-deterministic nature

of SBA and HBT, evaluated the statistical significance of results and provided ease

of replication (by stating complete parameter settings and fitness functions). More-

over, we also evaluated the CPU time taken by the investigated techniques for model

development.

The results of the chapter advocate the use of HBT over the other investigated

SBA and ML/statistical techniques for developing software change prediction mod-

els. The PSO-LDA technique, a hybridized technique exhibited the best performance

amongst all the investigated techniques. In terms of predictive capability, the SBA

were found superior to the investigated ML/statistical techniques. However, with

respect to the CPU time used for model development, we found the ML/statistical

techniques to be the fastest. These techniques were followed by some effective HBT

(DT-GA, GFS-LB). SBA and a few HBT (NNEP) were found to take high CPU time

for model development.

After analyzing the trade-off between CPU time and predictive capability, the

chapter recommends the use of HBT. The moderate CPU times taken by HBT for

model development can be compensated by the cost and time saved by the efficient

use of results of the change prediction models developed using them. As the chapter

investigates a wide array of techniques, it provides an insight to researchers and prac-

titioners for efficiently selecting modeling techniques for software change prediction.

215

Chapter 7

Ensemble Learners using Particle

Swarm Optimization

7.1 Introduction

Various researchers in literature have successfully established the association be-

tween OO metrics and change-prone nature of a class. The results of the previous

chapters also confirm this relationship. However, there is still an active need to ex-

plore effective classifiers for developing efficient change prediction models. Few

researchers have evaluated the capabilities of SBA, such as GA and PSO in order to

develop prediction models for software change [34–36]. Chapter 5 and Chapter 6

also ascertain the effectiveness of these algorithms in the domain of software change

prediction. Although SBA have been found effective in this domain, researchers have

been actively evaluating approaches which improve their performance.

Recent developments have ascertained that ensemble methodology can be used

to improve the prediction performance of individual classifiers. The methodology

involves the aggregation of outputs of a number of classifiers. The performance of

217

Introduction

individual classifiers is improved, if the constituent classifiers of the ensemble are ac-

curate and diverse [42–44, 263]. The accuracy of a constituent classifier may be de-

termined by its ability to correctly categorize the class of a software as change-prone

or not change-prone. However, the diversity of a group of classifiers is determined by

their errors. A set of classifiers is termed as diverse, if they have different predictions

for the same data point, i.e. their errors are not correlated. For instance, let us assume

a new data point which is actually change-prone in nature. A set of four classifiers

which make similar mistakes may result in a “not change-prone” prediction i.e. in-

correct prediction for the data point. Since, there is no diversity in the predictions of

the individual classifiers, an incorrect result will be output by the ensemble of these

classifiers as well. However, if the classifiers were diverse in nature, and there is a

scenario where three of the classifiers make correct predictions for a new data point

and only one predicts incorrectly, there is a chance that the result of their ensemble

may output the correct prediction, making it more accurate [42]. Thus, the diversity

of constituent classifiers is essential so that an improved resultant classifier can be

obtained by appropriately learning from diverse classifiers [43, 44].

Studies in literature have evaluated the use of ensemble methodology for ML

techniques. However, the use of SBA such as PSO using ensemble methodology has

not been explored. Thus, this chapter evaluates the use of ensemble learning using

various PSO variants as constituent learners to develop efficient software change pre-

diction models. Though, we could have used GA, a widely used SBA for our study,

we selected PSO as it has several advantages over GA. The advantages include a)

faster convergence of PSO as “crossover” and “mutation” operators are not present

in PSO and updates in PSO are done by the particle’s internal velocity, b) the capa-

bility of the PSO to memorize the current best particle which is then passed on to

particles in the next generation c) a lesser number of internal parameters which are

easily adjusted as compared to GA and d) lower influence in PSO due to modification

218

Introduction

in the problem dimensionality [210, 264–266].

The chapter proposes four different ensemble classifiers namely, Majority Voting

Ensemble Classifier (MVEC), Weighted Voting Ensemble Classifier (WVEC), Hard

Instance Ensemble Classifier (HIEC) and Weighted Voting Hard Instance Ensemble

Classifier (WVHIEC). The proposed classifiers were used for developing software

change prediction models. Each ensemble classifier consists of seven individual

PSO classifiers. The output of these classifiers is aggregated using weighted vot-

ing. The weights allocated to a classifier are based on their predictive capability

assessed by stable performance measures and their ability to correctly identify the

nature of classes which are commonly misclassified (hard instances). Each individ-

ual classifier learns from the same training data, but uses a different fitness function.

A fitness function of a search-based algorithm is used to guide the search for an opti-

mum solution amongst a multitude of candidate solutions [6]. Previous research has

ascertained that variation in the fitness function also leads to variation in the result of

a prediction model [46–49]. Thus, use of different fitness functions for PSO, results

in diversity of individual classifiers. Also, the PSO technique has been successfully

used by previous researchers for developing prediction models [37, 230, 267]. Cer-

tain other studies have used hybridized PSO along with other algorithms to yield

effective prediction models [183, 198, 268]. Thus, the successful use of PSO in clas-

sification tasks aids the accuracy of the individual PSO classifiers. Furthermore, it

should also be noted that this chapter uses the CPSO technique as a base algorithm. It

is an improved PSO technique as it uses constriction coefficients to restrict the possi-

ble explosion in the search space and provides faster convergence of PSO [95, 267].

This chapter evaluates and compares the performance of the four proposed en-

semble classifiers with a) individual fitness-based classifiers and b) four well-known

ML ensemble classifiers (RF, AB, BG and LB) for developing prediction models

which determine the change-prone classes in a software. The chapter empirically

219

Introduction

validates the results on datasets extracted from ten open-source software projects.

Six of these software projects are Android application packages and the other four

are widely used Apache software. The individual CPSO classifiers are based on seven

different fitness functions, which are widely used performance measures (Accuracy,

G-Mean1, G-Mean3, Balance, G-measure, F-measure and Precision) in the literature

for evaluating prediction models [17]. The use of performance measures as fitness

functions for SBA has been advocated by Harman and Clark [160].

Thus, the chapter investigates the following RQs:

RQ1. Are the CPSO fitness-based classifiers diverse and accurate?

This question ascertains whether the seven individual CPSO classifiers which are

based on seven different fitness functions would be effective as constituents for an

ensemble classifier.

RQ1a) What is the accuracy of CPSO classifiers when different fitness variants

are used? Does the accuracy vary with different fitness variants?

The accuracy of CPSO fitness-based classifiers is evaluated by developing soft-

ware change prediction models using ten-fold cross validation on ten open-source

datasets investigated in the chapter. We use G-Mean1 and Balance measures as per-

formance evaluators.

RQ1b) Are the investigated individual CPSO classifiers based on different fitness

variants diverse in nature?

The diversity of CPSO fitness-based classifiers is evaluated pairwise. For each

pair of CPSO fitness-based variants, we compute the percentage of correctly pre-

dicted change-prone classes by both the variants and by only a specific variant. These

metrics depict the complementarity amongst different fitness-based classifiers.

RQ2. What is the effectiveness of software change prediction models developed

using the proposed ensemble classifiers (MVEC, WVEC, HIEC and WVHIEC) when

compared with individual CPSO fitness-based classifiers and well-known ensemble

220

Introduction

classifiers?

This question evaluates the performance of the proposed voting ensemble clas-

sifiers for developing change prediction models. Furthermore, their performance is

compared with different individual fitness-based classifiers as well as with ML en-

semble classifiers using G-Mean1 and Balance performance measures.

RQ2a) What is the predictive performance of proposed ensemble classifiers vs

those developed using the seven individual fitness-based variant classifiers for devel-

oping software change prediction models?

The results of change prediction models developed using individual CPSO fitness-

based classifiers were evaluated in RQ1a. We compare their results with those of

proposed ensemble classifiers. Furthermore, we use Friedman and Wilcoxon test to

statistically evaluate the comparison results.

RQ2b) What is the predictive performance of proposed ensemble classifiers vs

those developed using well-known ML ensemble classifiers (RF, AB, BG and LB) for

developing prediction models which determine change-prone classes?

This question statistically compares the performance of proposed voting ensem-

ble classifiers with four well-known ML classifiers for developing effective software

change prediction models.

The chapter is organized in the following manner: Section 7.2 states the empiri-

cal research framework, while Section 7.3 explains the proposed ensemble classifiers

along with their pseudocode. Section 7.4 states the experimental framework which

includes the datasets used, feature selection techniques and other design considera-

tions of the chapter. Section 7.5 states the results of the investigated RQs and analyzes

them. Finally, Section 7.6 summarizes the findings of the chapter. The initial results

of the chapter were published in [269], which were further expanded and published

in [270].

221

Empirical Research Framework

7.2 Empirical Research Framework

This section states the predictors and the predicted variables used in the chapter.

The CPSO technique and the various fitness functions used in the chapter are also

mentioned.

7.2.1 Independent and Dependent Variables

This chapter uses OO metrics as predictors for determining software change. The

metrics examined in the chapter belong to the CK metrics suite [16]. The details of

the metrics suite can be referred from Chapter 2. Apart from the CK metrics suite, we

also use SLOC metric as an independent variable. The change-proneness attribute of

an OO class is the dependent variable investigated in the chapter.

7.2.2 CPSO Technique

The PSO technique simulates the “bird flocking” behaviour. The CPSO technique

is a variant of PSO, which uses proper constriction coefficients efficiently to avoid

the explosion of search space while searching for an optimum solution. The details

of the CPSO technique and the parameter settings can be referred from section 2.6.8

(Chapter 2).

The various fitness variants of the CPSO technique were implemented using the

Java language in the KEEL tool. We use the default parameter settings of the tool

for the CPSO technique in this chapter, which can be referred from Chapter 2. As

discussed in Chapter 5, Arcuri and Fraser [249] state that though, parameter settings

have a strong influence on the performance of an algorithm, it is an expensive process,

which may not always lead to significant improvement in results. Thus, the use of

“default” parameter settings is reasonable. Furthermore, it may be noted that the

222

Empirical Research Framework

aim of the chapter was to propose and evaluate the effectiveness of fitness-based

voting ensemble classifiers. We have used uniform parameter settings for ensemble

classifiers as well as individual CPSO fitness-based classifiers. We do not intend to

investigate the best parameter settings of different CPSO variants corresponding to

specific datasets, which may lead to overfitting or over-optimistic results. Therefore,

the use of default parameter settings is a practical choice for experiments conducted

in this chapter.

7.2.3 Performance Measures as Fitness Functions

Literature studies have advocated that various performance measures are ideal to be

employed as fitness functions [160]. This chapter investigates the use of seven dif-

ferent performance measures (Accuracy, G-Mean1, G-Mean3, Balance, G-measure,

F-measure and Precision) as fitness functions for the CPSO technique. A detailed

description of these performance measures is given in Chapter 2 (Section 2.10).

7.2.4 Validation Method used in Individual Classifiers

The proposed ensemble classifiers aggregate the outputs of the classification mod-

els developed using the individual CPSO fitness-based classifiers. Each individual

classifier uses ten-fold cross validation method [113] for model development. Fur-

thermore, since CPSO is stochastic in nature, we perform 30 runs for each of the

individual CPSO fitness-based classifier and report the median values. Furthermore,

we also report the mean values obtained by all the classifiers on each of the ten in-

vestigated datasets used in the chapter.

223

Proposed Ensemble Classifiers

7.3 Proposed Ensemble Classifiers

The chapter proposes four voting ensemble classifiers of seven different CPSO fit-

ness variants. The output of the individual CPSO fitness variants is aggregated using

votes. The description along with pseudocode of all the four ensemble classifiers is

presented in the following sections. Figure 7.1 shows the diagrammatic representa-

tion of the basic functioning of the proposed ensemble classifiers.

Figure 7.1: Basic Framework of the Proposed Ensemble Classifier

Here, each individual CPSO fitness variant either outputs a “yes” (change-prone)

vote or a “no” (not change-prone) vote for a corresponding instance (data point).

The ensemble classifier aggregates these “yes” and “no” votes for a data point and

outputs the results. The aggregation done by the ensemble classifier could be a simple

majority vote, i.e. output the result (“yes” or “no”), which is output by the majority

of constituent fitness variants or other proposed weighted voting as explained in the

following sections (7.3.1-7.3.4). For instance, in case of majority voting, if five of

the constituent classifiers output a “yes” for a data point, then the ensemble’s output

would be “yes” for the corresponding data point. The nomenclature used in the

pseudocodes is presented in Figure 7.2.

224

Proposed Ensemble Classifiers

Figure 7.2: Nomenclature of Pseudocodes

7.3.1 Majority Voting Ensemble Classifier

MVEC aggregates the output votes of each individual fitness variant corresponding

to a specific data point. It outputs the majority vote obtained for a corresponding data

point as the ensemble’s output. A pseudocode of the MVEC is shown in Figure 7.3.

Figure 7.3: MVEC Pseudocode

225

Proposed Ensemble Classifiers

Figure 7.4: WVEC Pseudocode

7.3.2 Weighted Voting Ensemble Classifier

WVEC first provides a weight to each fitness variant on a specific dataset, according

to the predictive capability of a fitness variant on all other datasets of the chapter.

The predictive capability is assessed by evaluating its performance in terms of G-

Mean1 and Balance values on all the other datasets. Thereafter, the vote of a specific

fitness variant is multiplied by its performance-rank and the majority vote obtained by

cumulating the votes of all the fitness variants is output as the WVEC output. It may

be noted that a better performing fitness variant is allocated a higher performance

rank. The pseudocode of the WVEC is shown in Figure 7.4.

226

Proposed Ensemble Classifiers

7.3.3 Hard Instance Ensemble Classifier

HIEC, like WVEC also provides a weight to each fitness variant on a specific dataset,

according to its ability to classify hard instances on all the other datasets. An instance

is termed as “hard to classify” if it was incorrectly classified by a majority of the

fitness variants and correctly classified by only one or two of the fitness variants. We

consider those instances as hard which are correctly predicted by very few, much

lesser than half of the individual fitness variants. Since, we are considering seven

fitness variants, instances which are correctly predicted by only one or two fitness

variants are considered “hard to classify”.

First, all “hard to classify” instances are identified in a dataset, then a Hard-ID

value is computed for each individual fitness variant on each dataset. It is calculated

by dividing the number of correctly predicted “hard to classify” instances of a specific

dataset by the total number of data points (instances) in the specific dataset. For

instance, in dataset A, there are 7 “hard to classify” instances, which are correctly

predicted by the Precision fitness variant. The total number of instances in this dataset

is 112. Thus, Hard-ID for Precision variant on dataset A is 7/112 = 0.062.

For a specific dataset, a classify rank is allocated to each fitness variant according

to the Hard-ID values on all the other datasets except the corresponding dataset. The

higher the values of Hard-ID a fitness variant obtains, the higher classify-rank is given

to it. Finally, the vote of a fitness variant is multiplied by its obtained classify-rank,

and the majority vote obtained by cumulating the votes of all the fitness variants is

output as the HIEC output for a data point in a specific dataset. Figure 7.5 shows the

pseudocode of HIEC.

227

Proposed Ensemble Classifiers

Figure 7.5: HIEC Pseudocode

228

Proposed Ensemble Classifiers

Figure 7.6: WVHIEC Pseudocode

229

Experimental Framework

7.3.4 Weighted Voting Hard Instance Classifier

WVHIEC provides weights to the CPSO fitness variants on two grounds, i.e. both on

the basis of performance (G-Mean1 and Balance values) and on the basis of ability

to classify “hard instances”. Thereafter, the vote of a fitness variant is multiplied

by its performance-rank as well as classify-rank, and the majority vote obtained by

cumulating the votes of all the fitness variants is output as the WVHIEC output. The

pseudocode of the WVHIEC is shown in Figure 7.6.

7.4 Experimental Framework

The following section states the datasets, the feature selection technique, the perfor-

mance measures and the statistical tests used in the chapter. The section also provides

a background of ML ensemble classifiers which were compared with the proposed

ensemble classifiers in the chapter. We also state the conditions, which were verified

for selecting an individual fitness variant as a constituent of the proposed ensemble

classifiers.

7.4.1 Empirical Data Collection

The datasets of the chapter were collected using the DCRS tool [106]. The chapter

uses six application packages (Calendar 4.0.4-4.1.2, Contacts 4.0.4-4.1.2, Gallery

4.1.2-4.2.2, Bluetooth 5.0.2-5.1.0, MMS 4.0.4-4.1.2 and Telephony 4.2.2-4.3.1) of

Android, a popularly used operating system for mobiles. Furthermore, the chapter

also uses data extracted from four popular Apache software (Apache Commons IO

1.3-1.4, Apache Commons Math 3.1.1-3.2, Apache Log4j 1.2.16-1.2.17 and Apache

Net 3.0-3.1). The details of data collection procedure can be referred from Chapter

230

Experimental Framework

2.

It should be noted that the allocation of weights in WVEC, HIEC and WVHIEC

ensemble classifiers in a specific dataset is dependent on all other datasets. However,

since we have investigated two categories of datasets, i.e. Android applications and

Apache datasets, we divided the datasets into two subsets for weight allocation de-

pending on their company i.e. Android datasets and Apache datasets. Therefore, the

individual classifier’s weights for a specific dataset depended on the performance of

individual classifiers on all other datasets of the same company. For instance, the

individual classifier’s weights for Android Bluetooth dataset were based on only five

other datasets, i.e. Calendar, Contacts, Gallery, MMS and Telephony. Similarly, the

individual classifier’s weights for Apache Net dataset were based on only three other

datasets, i.e. Commons Math, Commons IO and Log4j.

7.4.2 Feature Selection Technique

This chapter uses CFS method [109], a widely used method for feature selection in

ML applications as a feature selector. Table 7.1 states the OO metrics which resulted

after application of the CFS method on each dataset.

Table 7.1: Metrics Selected by CFS

Dataset Metrics Selected
Android Bluetooth WMC, SLOC, DIT, LCOM
Android Calendar DIT, SLOC
Android Contacts DIT, SLOC
Android Gallery WMC, SLOC, CBO
Android MMS WMC, SLOC
Android Telephony WMC, CBO, SLOC
Apache Commons IO CBO, LCOM
Apache Commons Math WMC, SLOC
Apache Log4j DIT, RFC, SLOC
Apache Net WMC, SLOC, RFC, NOC

231

Experimental Framework

7.4.3 Performance Measures & Statistical Evaluation

This study evaluates G-Mean1 and Balance performance measures for assessing the

developed change prediction models. Studies in literature have advocated the use of

these metrics as they are robust and stable to handle imbalanced datasets [118, 120,

121]. It may be noted that we use two of our investigated fitness functions (Section

7.2.3) as performance measures. Previous studies in the literature have also used the

practice of using the same performance measure both as a fitness function as well as

for validating the performance of a classifier [38, 40, 196].

The results of the chapter are statistically evaluated using two non-parametric

tests, i.e. Friedman test and Wilcoxon test. RQ2 evaluates the capabilities of all

the proposed ensemble classifiers along with individual fitness-variant classifiers as

well as ML ensemble classifiers for developing effective software change prediction

models. Friedman test is used in RQ2a for allocating mean ranks to each of the

investigated classifiers. These ranks are assigned on the basis of G-Mean1 and Bal-

ance values obtained by prediction models developed using them and are symbolic of

the capability of a classifier. A classifier obtaining a lower mean rank is better than a

classifier which attains a higher mean rank. Furthermore, a post-hoc Wilcoxon signed

rank test is performed in RQ2a to pairwise compare the capabilities of the proposed

ensemble classifiers with each of the seven individual classifiers. A Friedman test

was also performed in RQ2b to compare the performance of ML ensemble classifiers

with the proposed ensemble classifiers.

7.4.4 ML Ensemble Classifiers

The chapter compares the results of the proposed ensemble classifiers with four other

ML ensemble classifiers namely RF, AB, BG and LB. These classifiers were imple-

232

Experimental Framework

mented in the WEKA tool [88] and we use the default parameter settings of the

tool for these classifiers, which are mentioned in Chapter 2 (Section 2.6.5). Though,

change in default parameter settings might improve the performance of ML ensemble

classifiers, it is difficult to explore all possible options in the parameter space [271].

Moreover, a recent study by Tantithamthavorn et al. [271] found that parameter set-

tings of RF and LB had a relatively negligible impact on the performance of these

techniques. Moreover, the WEKA tool is known to use sensible default values for a

corresponding technique [272]. Thus, the choice of default parameters is reasonable

for our experiments. It may be noted that we have not tuned CPSO algorithm too,

as the process is costly, which does not ensure definite improvement in results. The

use of default parameter settings for both ML ensemble classifiers and the CPSO

algorithm ensures fair comparison amongst these techniques and does not introduce

optimistic bias.

7.4.5 Candidates for Voting Ensemble

It should be noted that all classifiers might not be good candidates for formulating

a voting ensemble. As indicated by Dietterich [42], two necessary conditions for a

classifier to be a part of an ensemble is its individual accuracy and its diversity with

other ensemble classifiers. In this chapter, we evaluated the following conditions

before individual classifiers were used for developing voting ensembles:

• The accuracy of each individual classifier was evaluated on the basis of G-

Mean1 and Balance values obtained by it on all the datasets. If in a majority

of the datasets (greater than or equal to five), the G-Mean1 values obtained by

an individual classifier is greater than or equal to 50% and the Balance values

obtained by the classifier is greater than or equal to 50%, we term the classifier

as accurate.

233

Experimental Framework

A rationale behind using 50% as a threshold for Balance values is as follows:

In practice, it is often found that datasets have uneven distribution, i.e., percent-

age of change-prone classes and that of not change-prone classes is skewed

[118, 121]. For such datasets, it is difficult to develop models which attain

high Balance values, since a high Balance value indicates a model which can

come close to achieving a recall value of 1 (correctly predict all change-prone

classes) and a PF value 0 (correctly determine all not change-prone classes).

However, a model is not capable of learning the characteristics of both change-

prone as well as not change-prone classes appropriately as there is an im-

balance present in the training data. The characteristics of classes (change-

prone or not change-prone), which are present in minority cannot be effectively

learned by the model. Therefore, we chose a threshold of 50% for Balance val-

ues, for designating an individual classifier as accurate. A similar threshold

was chosen by He et al. [115], for precision values, as it is difficult for a model

to attain higher values due to presence of an imbalance in the datasets. Further-

more, we investigated a number of related literature studies which have used

Balance as a performance measure for evaluating change prediction and defect

prediction models. The Balance values reported by Tosun et al. [273] were in

the range of 41-76%, those reported by Misirh et al. [54] were in the range of

34-86%. We reported Balance values in the range 30-75% in Chapter 6 and

Li et al. [122] reported them in the range 49-79%. However, the majority of

Balance values reported in these studies were above 50%. Thus, we use 50%

as a threshold for Balance measure for designating an individual classifier as

accurate. On similar grounds, we select the threshold for G-Mean1 values to

be 50%.

We also considered an individual classifier if it was found to have high ca-

234

Results and Analysis

pability to identify “hard” instances (refer section 7.3.3). In such cases, the

classifiers were accurate in terms of Hard-ID values (refer section 7.3.3).

• The diversity of a fitness variant classifier was adjudged by evaluating its unique-

ness to correctly identify change-prone classes which could not be identified

by other fitness variants. In cases, when a classifier is uniquely able to correctly

predict less than 10% of change-prone classes for all the datasets when com-

pared with all the other fitness variants, we drop the fitness variant indicating

low diverse nature.

7.5 Results and Analysis

This section states the answers to the RQ’s of the chapter and discusses the obtained

results.

7.5.1 Results specific to RQ1

The accuracy and diversity of all the seven CPSO fitness-based classifiers are as-

sessed by evaluating the performance of change prediction models developed using

them. We discuss in detail the results obtained by change prediction models devel-

oped using ten-fold cross validation using CPSO fitness-based classifiers.

Accuracy of CPSO fitness-based classifiers (RQ1a)

The accuracy in terms of G-Mean1 (GM1) and Balance (Bal.) values of the devel-

oped change prediction models on the investigated datasets of the chapter is presented

in Table 7.2. The table reports the median values of the 30 executions performed for

each of the CPSO fitness variant for each dataset. The mean values obtained by each

fitness variant over all the datasets is also stated in the table. We can also deduce

235

Results and Analysis

the fitness variant achieving the best value in a corresponding dataset (depicted in

bold values). However, it should be noted that we only designate a fitness variant

as best on a dataset if it attains good values both for G-Mean1 as well as Balance

performance measures. For instance, on Commons IO dataset, both the Accuracy

variant as well as the G-Mean1 variant gave the best results. The Accuracy variant

obtained the best Balance values (60.24), while the G-Mean1 variant obtained the

best G-Mean1 values.

Table 7.2: Validation Results of CPSO Fitness Variants

Dataset
Accuracy V. Precision V. G-Mean1 V. G-Mean3 V. F-measure V. G-measure V. Balance V.
GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal.

Bluetooth 0.72 70.46 0.61 59.45 0.74 71.52 0.63 60.60 0.70 69.17 0.71 69.46 0.68 64.98
Calendar 0.48 47.40 0.47 45.61 0.57 54.61 0.53 50.31 0.59 56.66 0.57 54.35 0.55 52.49
Contacts 0.62 60.50 0.58 57.41 0.67 66.79 0.47 46.30 0.63 62.97 0.53 52.09 0.66 65.37
Gallery 0.49 48.20 0.51 51.21 0.46 45.99 0.29 35.21 0.47 46.69 0.48 47.54 0.45 45.64
MMS 0.69 67.29 0.59 57.32 0.67 62.64 0.58 54.49 0.71 70.54 0.70 69.64 0.69 67.53
Telephony 0.55 51.62 0.58 58.44 0.58 55.75 0.31 36.24 0.53 50.92 0.47 45.46 0.56 53.45
IO 0.62 60.24 0.56 54.64 0.63 59.96 0.55 52.40 0.40 41.6 0.00 29.25 0.60 57.06
Math 0.59 54.32 0.59 54.32 0.59 54.32 0.59 54.32 0.59 54.32 0.59 54.32 0.59 54.32
Log4j 0.46 45.12 0.44 43.97 0.60 59.33 0.33 37.30 0.38 39.68 0.38 39.7 0.61 59.65
Net 0.62 60.62 0.39 40.55 0.63 62.64 0.64 64.10 0.63 62.54 0.63 63.05 0.66 65.72
Mean 0.58 56.58 0.53 52.29 0.61 59.35 0.49 49.07 0.56 55.51 0.51 52.49 0.61 58.62

V. indicates variant, GM1 indicates G-Mean1 & Bal. indicates Balance

Furthermore, we also made the following observations:

• The mean G-Mean1 values attained by CPSO fitness variants varied from 0.49-

0.61. Similarly, the variation in mean Balance values was in the range of 49.07-

59.35. These mean values indicate satisfactory performance of the investigated

CPSO fitness variants on all the datasets used in the chapter. Thus, the investi-

gated CPSO fitness-based variants are accurate.

• The results obtained by different CPSO fitness variants varied on each of the

corresponding datasets. For instance, the G-Mean1 values obtained by all the

fitness variants on the Log4j dataset were in the range of 0.33-0.61. Similarly,

the Balance values obtained by all the fitness variants, varied from 37.30-59.65.

236

Results and Analysis

The results of only one dataset, i.e. Commons Math was an exception to this

observation. As observed from values depicted in Table 7.2, there was no

change in the results obtained by any of the CPSO fitness variant.

• A specific fitness variant might obtain the best results on a specific dataset.

However, on the contrary the same variant might obtain poor results on some

other dataset. For instance, the F-measure variant attained the best results

on Calendar dataset (G-Mean1: 0.59, Balance: 56.66) and MMS dataset (G-

Mean1: 0.71, Balance: 70.54), but it obtained poor results on Commons IO

dataset (G-Mean1: 0.40, Balance: 41.60). This indicates that there may not

be a universal fitness variant which achieves best results on each dataset. The

performance of a specific fitness variant varies from dataset to dataset.

As the G-Mean1 and Balance values obtained by the fitness variants were in the

acceptable range (G-Mean1≥ 50% and Balance≥ 50%) in the majority of the cases,

we designate all classifiers as accurate, which can be used as candidates in voting

ensembles. From the above observations, we can also see the impact of a fitness

function on the results of the developed change prediction models using the CPSO

technique. The reason for such an observation is the role of the fitness function in

choosing optimum solution candidates. A fitness function guides the traversal for an

optimum solution through the search space of candidate solutions, thereby affecting

the results of the developed models. The discussions stated in this section confirm

the accuracy of the investigated CPSO fitness variants. The observations also indicate

that the accuracy of corresponding CPSO fitness-based classifiers differs due to the

choice of fitness functions.

Diversity of CPSO fitness-based classifiers (RQ1b)

The diversity amongst the CPSO fitness-based variants is assessed by analyzing

the complementarity amongst them. The complementarity is evaluated amongst a

237

Results and Analysis

pair of fitness variants. We compute three metrics for all corresponding pairs of fit-

ness variants: an intersection result and two difference results [56]. For a pair of

fitness variants (X1 and X2), we analyze the metrics described below. CCP corre-

sponds to correct change-prone classes:

X1 ∩X2 =
Number of CCP classes predicted by both X1 &X2

Number of CCP classes predicted by either or both X1 &X2

%

X1 −X2 =
Number of CCP classes predicted by X1 but not by X2

Number of CCP classes predicted by either or both X1 &X2

%

X2 −X1 =
Number of CCP classes predicted by X2 but not by X1

Number of CCP classes predicted by either or both X1 &X2

%

X1∩X2 represent the percentage of classes which are change-prone in nature and

are correctly identified by both the evaluated CPSO fitness variants. X1 − X2 and

X2−X1 represent the percentage of classes which are change-prone in nature, but are

correctly identified by either of the evaluated CPSO fitness variants. Table 7.3 depicts

the complementarity percentages amongst all pairs of the evaluated CPSO fitness

variants. However, because of space limitations, Table 7.3 presents the aggregated

results over all the ten datasets of the chapter. The notation used in the Table 7.3 is as

follows: Acc. indicates Accuracy, Pr. indicates Precision; GM1 indicates G-Mean1;

GM3 indicates G-Mean3, Fmes. indicates F-measure; Gmes. indicates G-measure

and Bal. indicates Balance.

According to Table 7.3, the results of the metric X1∩X2 are in the range of 64%-

85%. This indicates that 64%-85% of change-prone classes are overlapping and can

be correctly predicted by an arbitrary CPSO fitness variant. The cumulative results of

X1 −X2 and X2 −X1 metrics are in the range of 8%-36%, which represent the per-

238

Results and Analysis

centage of non-overlapping classes which are correctly predicted by only a specific

fitness variant. This indicates that the investigated CPSO fitness variants are diverse

in nature as we require the capabilities of a specific fitness variant for correctly deter-

mining these non-overlapping change-prone classes. An ensemble classifier which

aggregates the results of these CPSO fitness variant classifiers may yield improved

results if proper weights are allocated to the votes of individual constituent CPSO

fitness variants.

Table 7.3: Complementarity Results of CPSO Fitness Variants

Acc. V. Pr. V. GM1 V. GM3 V. Fmes. V. Gmes. V. Balance V.
I D1 D2 I D1 D2 I D1 D2 I D1 D2 I D1 D2 I D1 D2 I D1 D2

Acc. V. X X X
Pr. V. 67 15 18 X X X
GM1 V. 82 9 9 68 17 15 X X X
GM3 V. 70 15 15 71 16 13 64 18 18 X X X
FMes. V. 89 5 6 69 16 15 81 9 10 76 12 12 X X X
GMes. V. 80 9 11 67 17 16 75 12 13 81 9 10 89 5 6 X X X
Bal. V. 80 8 12 68 16 16 88 4 8 66 16 18 78 10 12 72 13 15 X X X

I: X1 ∩X2; D1: X1 −X2 ; D2: X2 −X1; X: No comparison possible; V.: Variant

Figure 7.7: Number of pairs of fitness variants with varying diversities

Figure 7.7 depicts the number of pairs which shows the cumulative results of

X1 −X2 and X2 −X1 in a particular range. It may be noted from the figure, that no

pair of fitness variants showed a cumulative non-overlapping percentage of classes

239

Results and Analysis

less than 10%. All the pairs, ranged in the categories of 11-40%. This indicates that

all pairs of fitness variants are diverse from each other. Thus, it is important to include

them as voting candidates in an ensemble. Moreover, the non-overlapping classes

cannot be ignored as an incorrect prediction of such a large number of classes would

lead to poor classification models. Therefore, using these diverse fitness variants

would improve the performance of the ensemble classifier.

Answer to RQ1

The investigated CPSO fitness variant classifiers are accurate for determining

change-prone classes with majority of G-Mean1 values in the range of 0.50-0.74

and Balance values in the range of 50-70% over all the ten evaluated datasets in the

chapter. The change prediction results of the CPSO fitness variants are also diverse

as 8-36% of change-prone classes are correctly predicted by only a specific fitness

variant. Thus, aggregation of these accurate and diverse CPSO fitness variants using

ensemble methodology should yield improved results for software change prediction.

7.5.2 Results specific to RQ2

We first evaluate the performance of change prediction models developed using the

proposed ensemble classifiers. The models developed using the proposed classi-

fiers were formulated by aggregating the votes of individual classifiers and providing

them with certain weights. These models are then compared to the individual CPSO

fitness-based classifiers and four well-known ensemble classifiers.

Proposed ensemble classifiers vs individual fitness-based variant classifiers (RQ2a)

The G-Mean1 (GM1) and Balance (Bal.) values obtained from the models devel-

oped using ensemble classifiers are depicted in Table 7.4. The following observations

can be made from Table 7.4:

240

Results and Analysis

• The majority of G-Mean1 and Balance values of the ensemble classifiers ranged

from 0.54-0.77 and 51.09-76.50% respectively on the investigated datasets.

This suggests the effectiveness of ensemble classifiers in developing software

change prediction models.

• Amongst the ensemble classifiers, in a majority of the cases, the highest G-

Mean1 values on a corresponding dataset was obtained by either the HIEC or

the WVHIEC models. Likewise, in the majority of the datasets, the highest

Balance values were obtained by the WVHIEC models and the HIEC models.

• In a majority of the datasets, the performance of the ensemble classifiers amongst

themselves differed by 0.0-0.8 in the case of G-Mean1 values and 0.0-7.52 in

the case of Balance values. However, it was observed that there was no differ-

ence in the results of the ensemble classifiers on Commons Math dataset. This

is because each of its constituent fitness variants obtained similar results. Thus,

providing different weights to similar performing constituent does not change

the results achieved by the ensemble classifiers.

Table 7.4: Validation Results of Ensemble Classifiers using G-Mean1 and Balance
Values

Dataset
MVEC WVEC HIEC WVHIEC

GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal.
Bluetooth 0.75 74.23 0.76 75.98 0.75 74.71 0.77 76.50
Calendar 0.55 52.29 0.57 54.35 0.57 54.61 0.57 54.35
Contacts 0.67 66.70 0.65 64.75 0.67 66.71 0.67 66.70
Gallery 0.48 47.81 0.48 47.81 0.50 49.64 0.50 49.64
MMS 0.72 71.93 0.71 70.40 0.75 74.37 0.71 70.84
Telephony 0.56 52.39 0.55 51.62 0.52 49.33 0.54 50.92
Commons IO 0.54 51.18 0.54 51.09 0.60 57.06 0.62 58.61
Commons Math 0.59 54.32 0.59 54.32 0.59 54.32 0.59 54.32
Log4j 0.38 39.71 0.36 38.87 0.36 38.88 0.36 38.87
Net 0.66 65.88 0.69 67.77 0.68 67.46 0.68 67.45
Mean Values 0.59 57.64 0.59 57.70 0.60 58.71 0.60 58.82

Furthermore, we compared the performance of the ensemble classifier models

241

Results and Analysis

amongst each other and with the individual fitness variants using the Friedman test

on G-Mean1 and Balance values. The Friedman test using G-Mean1 values obtained

a p-value of 0.006 and a chi-square value of 24.49 with 10 degrees of freedom, thus

indicating significant results with 95% confidence. The Friedman test results on Bal-

ance values were also significant with a p-value of 0.006, chi-square value of 24.75

and degrees of freedom as 10. The ranks obtained by the models developed using

various classifiers are depicted in Table 7.5.

Table 7.5: Friedman Ranks obtained by various Classifiers

Classifier Ranks using G-Mean1 Ranks using Balance
WVHIEC 4.10 4.20
HIEC 4.45 4.30
G-Mean1 Variant 4.80 4.65
MVEC 5.00 4.95
WVEC 5.20 5.40
Balance Variant 5.85 5.75
Accuracy Variant 6.25 6.15
F-measure Variant 6.60 6.80
Precision Variant 7.05 7.00
G-measure Variant 7.40 7.50
G-Mean3 Variant 9.30 9.30

The results presented in Table 7.5 show that the WVHIEC ensemble classifier

obtained the best Friedman rank using both G-Mean1 values and Balance values

for determining change-prone classes amongst all the ensemble classifiers and their

constituent fitness variants. The next best rank was allocated to HIEC in terms of both

G-Mean1 and Balance performance measures. The MVEC and WVEC classifier

obtained lower ranks than the G-Mean1 variant using both G-Mean1 and Balance

values.

It was observed that the majority of models developed using different fitness vari-

ants (except G-Mean1 fitness variant) were ranked lower than the proposed ensem-

ble classifiers in terms of both G-Mean1 and Balance performance measures. The

HIEC and the WVHIEC models obtained improved results in the majority of the

242

Results and Analysis

cases when compared with the constituent fitness variants. The G-Mean1 results of

the constituent classifiers were improved by 2-70% and the Balance results were im-

proved by 2-66% with the use of WVHIEC models in a majority of the cases. Similar

improvements were analyzed with the use of HIEC models. This observation sup-

ports the use of the proposed ensemble classifiers as they are effective in developing

change prediction models which are better than those developed by individual con-

stituent fitness variants. Thus, the ensemble methodology was effective in terms of

software change prediction using different CPSO fitness variants.

Table 7.6: Wilcoxon Test Results using G-Mean1 and Balance Values

Fitness Variant
G-Mean1 Values Balance Values

MVEC WVEC HIEC WVHIEC MVEC WVEC HIEC WVHIEC
Accuracy V. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Precision V. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
G-Mean1 V. ↓ ↓ = ↑ ↓ ↓ ↑ ↑
G-Mean3 V. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
F-measure V. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
G-measure V. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Balance V. ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

V. represents Variant

Moreover, since the Friedman results were significant, we performed a Wilcoxon

post-hoc test to pairwise compare the performance of the models developed using en-

semble classifiers with each of its constituent fitness variant. The test was conducted

on the basis of G-Mean1 and Balance values obtained by the classifiers on all the

datasets used in the study at a cut-off of 0.05. Table 7.6 depicts the Wilcoxon signed

rank test results using G-Mean1 and Balance performance measures. Three possible

symbols are used to denote the results. “↑” indicates that the model developed using

the ensemble classifier is superior to the model developed using the compared con-

stituent fitness variant but the result is not significant. “↓” indicates that the model

developed using the ensemble classifier is inferior to the model developed using the

compared constituent fitness variant but the result is not significant. “=” indicates

243

Results and Analysis

that the model developed using the ensemble classifier is equivalent to the model

developed using the compared constituent fitness variant.

According to the Wilcoxon test result conducted on G-Mean1 values (Table 7.6),

the models developed using the ensemble classifiers were better than the compared

constituent fitness variant in a majority of the cases. Similar results were seen using

Balance values. However, the results were not significant. It may be noted that

the G-Mean1 fitness variant gave better or equivalent results when compared with

the MVEC, WVEC and HIEC models but poor results than the WVHIEC models.

However, these results were again not significant. This is because the G-Mean1

variant is specifically effective in optimizing the performance measure i.e. G-Mean1,

thus it produces effective results in terms of G-Mean1.

The reason for better results depicted by the WVHIEC classifier is the criteria

for allocating weights to individual constituent classifiers. The WVHIEC classifier

provides weights to both attributes of a classifier i.e. its performance, which is ex-

amined on the basis of G-Mean1 and Balance values as well as its competence in

correctly determining the label of “hard” instances. Since, hard instances are in-

correctly predicted by the majority of individual classifiers, their correct prediction

leads to a considerable improvement in the performance of the developed model.

Moreover, the correct prediction of these “hard instances” is the reason for success-

ful performance of the HIEC classifier as it allocates weights to individual classifiers

only on the basis of their “hard” instance prediction capability. An instance, which is

not “hard” will be correctly predicted by even the MVEC classifier, which takes into

account the majority votes. However, the MVEC classifier will completely ignore

the “hard” instances. A similar reason is attributed to the slightly poor performance

of the WVEC classifier. Since, the classifier allocates weights in order to optimize

only the performance (G-Mean1 and Balance values), it ignores the ability of indi-

vidual classifiers to correctly identify certain instances well, which were incorrectly

244

Results and Analysis

predicted by most of the constituent variants.

We also performed a Wilcoxon test to compare the pairwise performance of

change prediction models developed by HIEC and WVHIEC with those developed

by other ensemble classifiers (MVEC and WVEC). According to the results obtained

by Wilcoxon test on G-Mean1 and Balance values, in a majority of the cases the

HIEC and WVHIEC classifiers were better than the MVEC and WVEC classifiers.

However, this superiority was not found to be significant. Moreover, the WVHIEC

classifier was found to be not significantly better than the HIEC classifier.

Proposed ensemble classifiers vs ML ensemble classifiers (RQ2b)

We first evaluate the performance of the change prediction models developed us-

ing ML ensemble classifiers RF, AB, BG and LB on the investigated datasets by

assessing their G-Mean1 (GM1) and Balance (Bal.) values. The models were devel-

oped using the ten-fold cross-validation method and the performance measure values

are depicted in Table 7.7.

Table 7.7: Validation Results of ML Ensemble Classifiers using G-Mean1 and Bal-
ance Values

Dataset
RF AB BG LB

GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal.
Bluetooth 0.75 73.71 0.67 65.95 0.66 65.17 0.63 60.19
Calendar 0.61 60.29 0.71 70.18 0.66 65.84 0.68 67.77
Contacts 0.57 55.74 0.55 53.02 0.62 61.02 0.59 56.89
Gallery 0.70 69.70 0.71 70.19 0.71 71.46 0.73 72.19
MMS 0.71 69.68 0.71 70.33 0.69 67.40 0.70 69.18
Telephony 0.51 51.07 0.59 57.39 0.54 52.84 0.56 54.09
Commons IO 0.69 67.33 0.68 67.97 0.68 66.30 0.70 69.13
Commons Math 0.59 54.72 0.59 54.32 0.59 54.32 0.59 54.32
Log4j 0.57 54.23 0.55 52.22 0.44 43.52 0.57 53.74
Net 0.73 72.40 0.76 76.20 0.76 75.20 0.72 71.15
Mean Values 0.64 62.89 0.65 63.78 0.64 62.31 0.65 62.87

The mean of G-Mean1 and Balance values over all the investigated datasets of

the study is reported. According to the table, the mean G-Mean1 values obtained by

RF, AB, BG and LB techniques are 0.64, 0.65, 0.64 and 0.65 respectively. Similarly,

245

Results and Analysis

the mean Balance values obtained by these ensemble classifiers were in the range

of 62.31-63.78. Thus, the ML ensemble classifiers were efficient in determining

change-prone classes as investigated by previous studies [5, 27, 30, 36].

Figure 7.8: Comparative Results of Proposed and ML Ensemble Classifiers using
G-Mean1 values

Figure 7.9: Comparative Results of Proposed and ML Ensemble Classifiers using
Balance values

We compared the G-Mean1 and Balance values obtained by the proposed en-

246

Results and Analysis

semble classifiers and the ML ensemble classifiers in Figures 7.8-7.9. According, to

Figure 7.8, the G-Mean1 values obtained by the proposed ensemble classifiers were

comparable to that of the ML ensemble classifiers and were in fact better than the ML

ensemble classifiers in few cases. However, the results of the proposed ensembles

were poorer than the results of ML ensemble classifiers in certain cases. According

to Figure 7.9, there was variation in the results of Balance values using the proposed

ensemble classifiers and the ML ensemble classifiers. In 3 out of 10 datasets, the

performance of the proposed ensemble classifiers was superior to ML ensemble clas-

sifiers. However, in 6 out of 10 datasets, the performance of ML ensemble classifiers

was better. We performed the Friedman test to evaluate whether this superiority is

statistically significant. The results of Friedman test using G-Mean1 and Balance

values were found to be not significant at the 0.05 cut-off with p-value of 0.174 and

0.643 respectively. This indicates that there is no statistical difference in the perfor-

mance of the proposed ensemble classifiers and ML ensemble classifiers. Thus, we

can deduce that the performance of the proposed ensemble classifiers were compara-

ble to that of the ML ensemble classifiers for prediction of change-prone classes.

Answer to RQ2

Software change prediction models developed using the proposed ensemble clas-

sifiers were effective as the models obtained acceptable G-Mean1 and Balance values

(Mean G-mean values: 0.59-0.60, Mean Balance values: 57.64-58.82). With the help

of statistical tests, it was ascertained that the results of individual fitness classifiers

were improved by the proposed ensemble classifiers. Also, the proposed ensemble

classifiers were found to be competent with the ML ensemble classifiers for deter-

mining change-prone classes.

247

Results and Analysis

7.5.3 Analysis of Results

The results of the study indicate the effectiveness of the proposed ensemble classifiers

in predicting software change. Furthermore, their performance was found superior

to individual CPSO fitness-based classifiers. The main cause of such a result is the

accuracy and diversity of individual classifiers which were used as constituents of

voting ensembles. Though, each fitness-based classifier gave accurate results, in or-

der to improve their accuracy it was necessary to correctly predict non-overlapping

change-prone classes. These classes were correctly predicted by only specific fitness

variants. This could be done only by allocating proper weights to predictions of in-

dividual classifiers so that they can output correct results for these non-overlapping

classes. This phenomenon enhanced the efficiency of the classification model as,

more number of classes were predicted correctly. Also, it should be noted that a spe-

cific fitness variant did not perform well for all the datasets. Thus, it was necessary to

use the ensemble of multiple fitness variants to attain improved results. The proposed

ensemble classifiers were also found competent with the ML ensemble classifiers for

predicting software change.

Amongst the proposed ensemble classifiers, the WVHIEC and HIEC classifier

models gave better results. This result can be attributed to the fact that the WVHIEC

model allocates weights to individual classifiers on the basis of both i.e. their accu-

racy (adjudged by G-Mean1 and Balance values) and their ability to correctly predict

“hard” instances. It allocates weights to individual classifiers in such a manner so

that both the accuracy as well as ability to predict “hard instance” capability is op-

timized. In WVHIEC, a classifier which has a moderate accuracy and a moderate

capability to predict “hard” instance, will be given higher weights than the classi-

fier which only has high accuracy but is incapable of predicting “hard instances”.

As “hard” instances are rarely predicted correctly, their correct prediction results in

248

Results and Analysis

substantial improvement of the developed prediction model resulting in its superior

performance. As discussed in section 7.5.1, 64-85% of classes can be correctly pre-

dicted by any arbitrary fitness variant classifier. It is the correct prediction of the

remaining non-overlapping classes, i.e. hard instances, which contributes to the su-

periority of the developed model. This is the reason for the HIEC model also to

do well. The MVEC model primarily focused on the majority vote, thus missing a

number of non-overlapping “hard” instances as they were incorrectly predicted by

a majority of fitness-based classifiers. The results of the WVEC classifier were not

that effective as the ensemble classifier allocated weights only on the basis of better

G-Mean1 and Balance values, ignoring the capability to predict “hard” instances.

However, the results of this chapter differ from our previous work [269], which

found the WVEC classifier as the best one. The reason for this difference in re-

sults is the change in procedure for weight allocation to votes of different individual

classifiers. In the previous study, the weights of WVEC, HIEC and WVHIEC were

allocated only on the basis of the performance of the individual classifiers on the

corresponding dataset. For instance, it was already known that fitness variant ’X’ ob-

tains the best G-Mean1 and Balance value on dataset ’A’. Since, the WVEC classifier

was allocated weights by already having the knowledge of the best fitness variant on

a specific dataset, it showed the best results. However, this was not proper as the

weights were allocated after the actual nature (change-prone or not change-prone)

of the classes was known. In a real life scenario, this is not practical. The weights

should be allocated without knowing the actual performance of the fitness variant

classifier on a specific dataset. Thus, in this study, we allocated weights on the basis

of the performance of a fitness variant on other datasets of the same company. For

instance, in order to allocate weights to fitness variants for developing a model on a

dataset A, we analyze the performance of all the fitness variants on all other datasets

of the same company except dataset A. Thus, here the allocated weights are a true

249

Discussion

representation of the actual capability of an individual fitness variant. Though the

WVEC model performed well in the current analysis too, its results were inferior to

than those obtained by the HIEC and WVHIEC models.

7.6 Discussion

The chapter proposes four ensemble classifiers namely MVEC, WVEC, HIEC and

WVHIEC to determine change-prone classes in an OO software. Each of the pro-

posed ensemble classifier uses seven fitness variants of CPSO. The individual fitness

variants of CPSO are each based on a different fitness function and learn together

from the same training set. The output of the fitness variants is aggregated by a

weighted voting method, where votes of each classifier are allocated weights on dif-

ferent parameters such as its accurate performance and ability to identify hard in-

stances. In order to empirically validate the performance of the proposed ensemble

classifiers, the chapter uses ten open-source datasets (six Android application pack-

ages and four Apache applications). The results of the chapter are statistically as-

sessed on the basis of two stable performance measures, i.e., G-Mean1 and Balance.

1. The seven investigated fitness variants were found to be accurate and diverse.

The constituent CPSO fitness variants were accurate as the mean G-Mean1 and

the mean Balance values obtained by them over all the investigated datasets in

the chapter were in the range of 0.51-0.61 and 52.29-59.35 respectively. The

diversity of the constituent CPSO fitness variants was adjudged by evaluating

the pairwise complementarity amongst them. It was found that 64-85% of the

correctly predicted change-prone classes were overlapping and could be pre-

dicted correctly by any arbitrary constituent CPSO fitness variant. However, in

order to correctly predict the non-overlapping change-prone classes, we require

250

Discussion

the capabilities of specific fitness variants, which are diverse in nature.

2. We evaluated whether the use of ensemble methodology obtains effective re-

sults for predicting change-prone classes using different fitness-based variants

of the CPSO technique. The results indicate improved performance of the

proposed ensemble classifiers over the individual fitness-based variant classi-

fiers. It was observed that there was an improvement of up to 70% and 66%

respectively in the G-Mean1 and Balance values obtained by the HIEC and

WVHIEC models. The improvement in the results was statistically evaluated

using Friedman test and was found to be significant. The reason for favourable

results of the proposed ensemble classifiers was the accuracy and diversity of

the constituent CPSO fitness-based variants. Their diversity would result in

an improved classifier by predicting higher number of correct change-prone

classes. The Wilcoxon test results depicted an improvement in G-Mean1 and

Balance performance measures using the HIEC and WVHIEC models, though

these results were not significant.

3. It was found that the HIEC and WVHIEC ensemble classifiers performed better

than the other proposed ensemble classifiers. The chapter also compared the

performance of MVEC, WVEC, HIEC and WVHIEC with four ML ensemble

classifiers (RF, AB, BG and LB). The results indicated that the performance

of the proposed ensemble classifiers were found comparable to that of the four

ML ensemble classifiers.

251

Chapter 8

Dynamic Selection of Fitness Function

using Particle Swarm Optimization

8.1 Introduction

The effective application of SBA in the domain of software change prediction has

urged researchers to continuously examine new approaches, which enhance the pre-

dictive capabilities of these techniques. One such approach i.e. ensemble of various

fitness variants has been explored in Chapter 7. We have investigated that the effec-

tiveness of SBA is highly dependent on the selection of an optimum fitness function

as the search for an effective solution in a search-based algorithm is guided by a fit-

ness function. Though researchers in the past have used SBA for developing change

prediction models [34–36], they have used only a single fitness function for the en-

tire dataset. However, this scenario does not take into consideration the possibility

that few instances of a dataset could be best predicted by a certain fitness function

while few others could be correctly predicted by a different fitness function. This

phenomenon could be true due to varied structural characteristics (design metrics) of

253

Introduction

the data instances, which may be effectively learned and predicted by different fit-

ness variants of the same technique (same technique using different fitness criteria).

Using a varied fitness function for subsets of a dataset could lead to a considerable

improvement in the performance of the developed prediction model as it would com-

bine the correct classifications of different fitness variants resulting in better models.

Thus, this chapter proposes an adaptive framework, namely Adaptive Selection of

Optimum Fitness (ASOF). The framework predicts a dynamic fitness function for

each specific instance of a dataset on the basis of its structural characteristics.

The motivation behind ASOF is the nature of SBA, as they search for an optimal

solution in the candidate solution space with the aid of a fitness function. The choice

of fitness function is critical as it ascertains the suitability of a candidate solution, de-

termining whether it is better or worse than the current solution [6]. Researchers in

the past have validated that the selection of a fitness function influences the results of

a prediction model [47, 49]. Similar observations were yielded by Chapter 7. There-

fore, the decision of selecting a specific fitness function is crucial. In accordance with

the above discussion, the aim of this chapter is to choose the best fitness function for

each data instance rather than the entire dataset. Therefore, a novel framework for

the adaptive selection of a dynamic optimum fitness function for each instance of the

dataset is proposed, while developing software change prediction models. The fitness

function is selected on the basis of structural characteristics of the corresponding data

sample.

The predictive models in this chapter are developed using the CPSO technique,

with seven different fitness functions to create individual fitness variants. The frame-

work predicts the best amongst seven fitness variants to be used for a corresponding

data sample. As discussed in Chapter 7, the choice of CPSO as a base technique

is motivated due to numerous advantages of PSO [210, 264, 265] and forbiddance

of search-space explosion [267]. Also, similar to Chapter 7, seven different fitness

254

Introduction

variants of CPSO were coded using seven performance measures namely Accuracy,

Balance, F-measure, G-Mean1, G-Mean2, G-measure and Precision. The coded fit-

ness variants were implemented in KEEL software tool. The chapter evaluates the

results on fifteen datasets collected from popular open-source software.

We proposed four ensembles of multiple fitness variants of CPSO in Chapter 7,

which were aggregated using weighted votes [270]. However, it should be noted that

the framework proposed in this chapter is distinct from the earlier one. In this chapter,

a specific individual fitness variant is output as the “best one” for each instance of

the dataset. Furthermore, instances which are correctly output by the same fitness

variant i.e. instances whose selected fitness function is same are then combined to

obtain their actual predictions by using the corresponding fitness variant. There is no

weighted voting involved as was done in the previous chapter.

We also perform an extensive comparison of the models developed using the

ASOF framework with those developed by individual CPSO fitness variants. The

chapter compares the results of ASOF with nine other baseline techniques. Eight

of the baseline techniques are ensemble classifiers as the ASOF technique is based

on ensemble methodology. Apart from ensemble classifiers, we also compared the

results with the LR technique as it has been used as an effective classifier for deter-

mining change-prone classes in literature [1, 5, 137].

Previous studies in literature have used various approaches to combine multiple

classifiers for correctly predicting defect-prone classes in a software [50–53, 55]. The

closest research to our work is a study performed by Di Nucci et al. [56]. They pro-

posed a unique classifier method for predicting the best ML technique amongst a set

of five ML techniques for a specific class (instance) of a dataset. The classifier bases

its decision according to structural characteristics of a class. All classes for which

a specific ML technique is output are aggregated and thereby, the model developed

by the specific ML technique is used for these corresponding classes. However, our

255

Introduction

work is different from the work done by Di Nucci et al. [56] as it is a first in propos-

ing a dynamic selection of an optimum fitness function of a search-based algorithm

for a specific class instance. The proposal is based on the premise that a dataset may

be partitioned with respect to the fitness variant classifiers which predict specific in-

stances well.

The chapter investigates the following RQs:

RQ1: What is the capability of software change prediction models developed

using different CPSO fitness variants?

The chapter develops change prediction models using datasets extracted from 15

popular open-source software with each of the seven CPSO fitness variants. The

results of the developed models were evaluated using G-Mean1 and Balance values.

RQ1a. Do the results of the developed software change prediction models using

the CPSO technique vary with change in fitness function? If yes, which is the best and

the worst CPSO fitness variant for developing software change prediction models?

Similar to Chapter 7, we first evaluate the results of the developed change predic-

tion models using different CPSO fitness variants using Friedman statistical test. We

ascertain the fitness variants, which give the best and the worst performing change

prediction models.

RQ1b. Are the results of software change prediction models developed using

different CPSO fitness variants complementary to each other?

This question evaluates the complementarity of the predictive capability of the

CPSO technique using seven different fitness variants. In order to do so, we ascer-

tain the percentage of classes that were correctly predicted by only a specific fitness

variant and the ones, which are correctly predicted by using an arbitrary fitness vari-

ant. This complementarity is evaluated pairwise amongst all the investigated CPSO

fitness variants.

RQ2: What is the predictive capability of software change prediction models

256

Empirical Research Framework

developed using the ASOF framework?

We assess the models developed using the ASOF framework on the 15 datasets

investigated in the chapter. This question ascertains whether the developed change

prediction models yield acceptable G-Mean1 and Balance values when within project

validation (ten-fold cross validation) is performed. Furthermore, the chapter evalu-

ates the rules of a developed model using the ASOF framework of a specific dataset

(training) and validates these rules on another dataset (test) to confirm its applicabil-

ity.

RQ3: Will the use of ASOF framework, yield better change prediction models

than those developed using a) individual CPSO classifiers using different fitness vari-

ants b) other fitness-based voting ensemble classifiers c) ML ensemble classifiers and

the LR technique?

This question statistically compares the performance of the models developed

using the ASOF framework with each of the seven independent fitness variants of

CPSO (using Friedman and post-hoc Wilcoxon test). Furthermore, the comparison

of fitness-based voting ensemble classifiers (MVEC, WVEC, HIEC, WVHIEC), four

ML ensemble classifiers (RF, BG, AB, LB) and the LR technique with ASOF models

was performed using Wilcoxon signed rank tests with Bonferroni correction.

The organization of the chapter includes the empirical framework (Section 8.2),

the proposed ASOF framework (Section 8.3), the design of the experiment (Section

8.4) and the answers to the RQ’s (Section 8.5). Section 8.6 reports the primary find-

ings of the chapter. The results of the chapter are communicated as [274].

8.2 Empirical Research Framework

This section includes a description of the chapter’s variables, the description of the

CPSO technique and the various fitness functions.

257

Empirical Research Framework

Independent and Dependent Variables: This chapter employs the use of the CK

metrics suite [16], along with SLOC metric as predictor variables for software change.

The definition and acronyms of the metrics are presented in Chapter 2 (Section 2.5.1).

CPSO Technique: The chapter uses CPSO as a base technique, whose description

and parameter settings can be referred from section 2.6.8 (Chapter 2). In line with

the discussion in Chapter 7 (Section 7.2.2), we use “default parameter settings” of

KEEL tool for CPSO. It may also be noted that the aim of the chapter was to assess

an optimum fitness function of CPSO corresponding to a class, based on its structural

characteristics. We do not intend to examine all possible parameters and tune them to

indicate the best results of CPSO algorithm corresponding to a dataset or to a specific

problem domain. Therefore, we use default parameters as a practical choice in all the

evaluated fitness variants of CPSO.

Fitness Functions: A fitness function is used as an approximator for “goodness”

of a solution, while searching for an optimum solution in a large search space of

candidate solutions. The chapter analyzes the use of seven different performance

measures (Accuracy, Precision, G-Mean1, G-Mean2, F-measure, Balance and G-

measure) as fitness functions for CPSO, which are described in Chapter 2 (Section

2.10). These fitness functions are same as the ones used in Chapter 7. However, we

replace the G-Mean3 variant of Chapter 7 with the G-Mean2 variant in this chapter

as the G-Mean3 variant provided the worst results using both G-Mean1 and Balance

performance measures in Chapter 7 (Section 7.5.2). We intend to choose better fitness

variants in order to provide effective prediction results.

It may be noted that a CPSO fitness variant uses a specific performance measure

as a fitness function i.e. the CPSO will look for candidate solutions in the search

space, which give optimal values for the specific fitness function. For instance, a

CPSO accuracy fitness variant will look for candidate solutions which have optimal

accuracy values. However, the G-Mean1 and Balance performance measures are

258

ASOF Framework

computed for analyzing the performance of a model developed by the CPSO accuracy

fitness variant by taking into account the number of TP, TN, FP and FN obtained by

the model on a particular dataset. These values (TP, TN, FP and FN) are then used

for evaluating the G-Mean1 and Balance values by the formulas given in Chapter 2

(Section 2.10).

8.3 ASOF Framework

The ASOF framework involves developing a predictor for outputting the optimum fit-

ness function based on the structural characteristics of a class. The structural charac-

teristics are quantified by OO metrics of the corresponding dataset. However, firstly

we need to prepare appropriate training data for the ASOF framework. In order to

so, we need to first evaluate the performance of individual CPSO fitness variants

models on a specific dataset. Thus, we create change prediction models on a cor-

responding dataset using each of the seven CPSO fitness variants. The technique

used to develop these individual models was ten-fold cross validation method [113].

Furthermore, since SBA i.e. fitness variants of the CPSO algorithm are stochastic

in nature, we perform 30 runs of each algorithm for developing change prediction

models [37, 257]. It may be noted that the ten-fold cross validation method and the

execution of 30 runs is a part of our approach as these steps are necessary to evaluate

the performance of CPSO fitness variant models and thereafter prepare the training

data of ASOF for a specific dataset.

Next, for each corresponding class of the training data of a specific dataset, we

will choose the best fitness function for the class. The “best” is indicated in terms

of performance, which is evaluated in terms of G-Mean1 and Balance values. The

rules for selecting the fitness variant are diagrammatically represented in Figure 8.1.

The first scenario (Figure 8.1: Case a) represents a case when there is no fitness

259

ASOF Framework

Figure 8.1: Rules for creating training data of ASOF Framework

variant which correctly identifies the true nature i.e. change-prone or not change-

prone nature of a class. In such a scenario, we select the fitness variant obtaining

highest values of G-Mean1 and Balance on the entire dataset. The rationale behind

260

ASOF Framework

choosing such a variant is that if we cannot choose a variant which correctly classifies

a specific class, we need to choose a fitness variant which performs minimum number

of such erroneous predictions. However, if there is only one fitness variant which

correctly determines the change-prone nature of a class (Figure 8.1: Case b), we

select that fitness variant for the corresponding instance. If there are multiple fitness

variants which correctly identify the change-prone nature of a class, we need to select

a fitness variant which obtains the best G-Mean1 and Balance values amongst these

fitness variants. All fitness variants which incorrectly predict the nature of a class do

not participate in this selection. This is formally stated in terms of Figure 8.1: Case

c. The training data for ASOF will consist of OO metrics for the corresponding class

and the selected fitness variant for that class.

Figure 8.2: Diagrammatic Representation of ASOF Framework

The next step after preparation of training data is the development of the ASOF

prediction model. We use the DT (C4.5) algorithm and ten-fold cross validation tech-

nique for doing so. The C4.5 technique is chosen as it is capable of formulating rules

according to the values of OO design metrics. It can successfully analyze the values

of different design metrics and formulate generalizations in the form of rules, i.e.,

which fitness variant should be used for a corresponding class with specific design

261

ASOF Framework

metric values. Figure 8.2 depicts the process of the ASOF framework. Thereafter,

when we need to ascertain the change-prone nature of a new data point, we ascertain

it with the model developed using the optimum fitness variant, which was outputted

by the ASOF prediction model.

Figure 8.3: Pseudocode of ASOF Framework

262

ASOF Framework

Figure 8.3 shows the pseudocode of the ASOF framework. According to the fig-

ure, for each dataset, ten-fold cross validation models are developed using each of the

investigated fitness variants. Thereafter, the values of G-Mean1 and Balance perfor-

mance measures are evaluated for each of these models. The next step is to allocate

the optimum fitness variant (Fitness-Op) to each training instance (data point) accord-

ing to rules depicted in Figure 8.1. In order to implement the rules, the pseudocode

evaluates the count-correct, count-incorrect and status of each instance of a dataset

i.e. we need to ascertain the number of fitness variants which correctly identify the

change-prone nature of an instance (count-correct) and the count of fitness variants,

which misclassify the change-prone nature of a class (count-incorrect). Furthermore,

we also need to determine whether a specific fitness variant correctly determines an

instance or not. This is determined by ascertaining the value of “status” of a fitness

variant with respect to a data point. A status value of “correct” indicates that the

change-prone nature of the data point was correctly predicted by the corresponding

fitness variant and a status value of “incorrect” indicates vice versa.

The Fitness-Op of a data point is allocated according to the rules specified in Fig-

ure 8.1. If the value of count-correct is zero, it represents Fig 8.1: case a. However, if

the value of count-correct is “1” Figure 8.1:case b is invoked. For all non-zero values

of count-correct greater than 1, Fig 8.1: case c is invoked. Therefore, by correctly

determining the Fitness-Op for a data point, we construct the training set for ASOF

(ASOF-Training Set). The ASOF-Training Set includes the OO metric values and

the corresponding Fitness-Op for each data point of a corresponding dataset. There-

after, the DT algorithm (C4.5) is used for creating the ASOF prediction model using

ten-fold cross validation.

In order to predict the change-prone nature of a new data point, we first use the

developed ASOF model of the corresponding datasets for predicting the optimum

fitness variant of the new data point according to its structural characteristics (OO

263

Experimental Framework

metrics). Finally, the model of the predicted fitness variant is used for ascertaining

the change-prone nature of the data point.

8.4 Experimental Framework

This section discusses the datasets used, feature selection, validation framework, per-

formance measures and the statistical tests used in this chapter. We also discuss the

baseline techniques, with which we compare the results of the models developed

using the ASOF framework.

8.4.1 Data Collection & Validation Framework

This chapter examines 15 popularly used software datasets, which belong to different

domains. Two versions of each dataset were analyzed and common classes between

both the versions were extracted. The OO metrics were computed for the initial

version of each of the dataset using Understand tool (http://scitools.com).

The details of data collection can be referred from section 2.7 (Chapter 2).

Table 8.1: Dataset Details

Dataset Name Versions Metrics Selected by CFS
Art Of Illusion (AOI) 2.7-2.9.2 CBO, SLOC, LCOM, WMC
Click 2.2.0-2.3.0 CBO, WMC, LCOM, SLOC
DrJava r4668-r5686 CBO, NOC, RFC, LOC, LCOM, WMC
Giraph 1.0-1.1 CBO, WMC, RFC, SLOC
Gora 0.4-0.5 CBO, WMC, SLOC, DIT, LCOM
Hama 0.5-0.6 CBO, WMC, SLOC
HyperSQL DB 2.3.3-2.3.4 CBO, NOC, SLOC, RFC, WMC
Jabref 3.1-3.2 CBO, SLOC, LCOM, DIT
Jmeter 1.4.1-2.9 CBO, NOC, SLOC
Jedit 5.0.0-5.1.0 CBO, WMC, SLOC
LogicalDoc 7.5-7.6 CBO, WMC, SLOC
Maven 3.3.3-3.3.9 CBO, SLOC, DIT
Phoenix 4.2-4.3 CBO, RFC, SLOC, LCOM, DIT
Subsonic 5.2-5.3 CBO, SLOC
Zookeeper 3.4.8-3.5.1 CBO, SLOC, LCOM, RFC, NOC

264

http://scitools.com

Experimental Framework

The names of the datasets and the specific versions that were investigated are

mentioned in Table 8.1. The characteristics of each dataset can be referred from

Appendix A. We performed feature selection using CFS method, whose results are

mentioned in Table 8.1.

The change prediction models using individual fitness variants, voting ensemble

classifiers and ML ensembles were developed using ten-fold cross validation tech-

nique, for reducing validation bias [37, 257]. However, ASOF was validated both

using ten-fold cross validation and cross-project validation.

8.4.2 Performance Measures & Statistical Evaluation

The chapter uses G-Mean1 and Balance as performance measures for evaluating the

results of the developed change prediction models. The reasons for choosing these

performance measures are similar to the ones discussed in Chapter 7 (Section 7.4.3).

The results of the study are statistically analyzed by using Friedman test [125]

and Wilcoxon signed rank test. Wilcoxon test was conducted to ascertain the com-

parative performance of the models developed using the ASOF framework with other

baseline models for each of the 15 datasets. The effect size was reported as Vargha

and Delaney’s statistic [275] for all the significant cases. The statistic (AXY) for

correlated samples was computed according to the following formula [275, 276]:

AXY =
Number of cases where X > Y + 0.5 ∗ (Number of cases where X = Y)

Total Number of cases
(8.1)

Here, the total number of cases represent the 15 datasets on which the compar-

isons are performed. While comparing model X and Y, we ascertain the number of

datasets on which model X performs better than model Y and the number of datasets

on which they perform equivalently (X = Y). As indicated by Vargha and Delaney

265

Results and Analysis

[275], an effect size value (AXY) of 0.56 is considered small, 0.64 is considered

medium and 0.71 is assumed to be large.

8.4.3 Description of Baseline Techniques

The models developed using the ASOF technique were compared with the following

baseline techniques:

Fitness-based Voting Ensemble Classifiers: The voting ensemble classifiers use

the approach similar to that of “validation and voting” [185]. We compare the results

with MVEC, WVEC, HIEC and WVHIEC techniques. The details of these fitness-

based voting ensemble classifiers can be referred from Chapter 7.

ML Ensemble Classifiers and LR Technique: Similar to chapter 7, RF, BG, AB

and LB are used for baseline comparison as they are ML ensemble classifiers. The

change prediction models are also compared with the ones developed using the LR

technique. The details of ML ensemble classifiers and the LR technique can be re-

ferred from Chapter 2. They were simulated in WEKA tool with default parameters

settings [88]. The reasons for choosing default parameters are similar to the ones

discussed in Section 7.4.4 (Chapter 7).

8.5 Results and Analysis

This section presents in detail the results of the chapter and also answers the RQs of

the chapter.

8.5.1 Results specific to RQ1

As discussed in Section 8.4.2, the change prediction models were assessed according

to their G-Mean1 (GM1) and Balance (Bal.) values, which are presented in Table 8.2.

266

Results and Analysis

The values shown in the table are median values of 30 runs of the CPSO technique

using ten-fold cross validation. For each dataset, change prediction models were

developed using seven CPSO fitness variants. The fitness variant attaining the best

results on a corresponding dataset (in terms of both G-Mean1 and Balance) is shown

in bold. The table also states the mean G-Mean1 and Balance values obtained by a

specific fitness variant over all the datasets. The mean G-Mean1 and Balance values

obtained by all the fitness variants were in the range of 0.46-0.58 and 47.21-57.51

respectively.

Table 8.2: Validation Results of CPSO Fitness Variants

Dataset
Accuracy V. Balance V. F-measure V. G-Mean1 V. G-mean2 V. G-mes. V. Precision V.
GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal. GM1 Bal.

AOI 0.63 62.07 0.65 65.44 0.64 63.07 0.60 59.92 0.62 61.48 0.63 62.08 0.51 49.52
Click 0.55 53.40 0.55 53.25 0.36 38.84 0.57 54.89 0.34 37.78 0.33 37.35 0.55 53.09
DrJava 0.66 65.91 0.66 65.67 0.62 61.62 0.66 65.82 0.61 60.87 0.60 60.20 0.63 62.83
Giraph 0.56 54.13 0.56 54.16 0.48 46.65 0.55 53.42 0.31 36.15 0.29 35.45 0.50 48.95
Gora 0.37 39.72 0.60 57.36 0.40 41.42 0.54 52.23 0.04 41.42 0.40 41.42 0.27 34.70
Hama 0.54 53.87 0.54 53.72 0.47 46.61 0.53 53.15 0.41 42.39 0.46 45.60 0.41 42.17
HyperSQL 0.68 67.23 0.68 67.85 0.67 66.67 0.69 68.24 0.65 63.14 0.68 67.19 0.50 49.02
JabRef 0.58 55.70 0.65 64.13 0.64 62.06 0.65 64.06 0.60 57.08 0.60 57.09 0.50 48.96
Jmeter 0.53 50.78 0.48 47.71 0.53 50.78 0.54 52.70 0.19 31.88 0.19 31.88 0.59 57.88
Jedit 0.58 55.35 0.51 50.53 0.56 53.74 0.37 39.60 0.56 53.71 0.56 53.74 0.47 46.72
Logicaldoc 0.57 55.40 0.52 50.86 0.53 51.24 0.54 53.02 0.45 44.27 0.48 46.50 0.24 33.60
Maven 0.69 68.42 0.70 70.15 0.68 67.51 0.65 63.51 0.68 67.83 0.68 67.13 0.56 54.22
Phoenix 0.59 58.36 0.62 61.22 0.47 46.70 0.58 56.87 0.26 34.10 0.35 38.4 0.40 41.74
Subsonic 0.64 60.90 0.48 47.47 0.62 59.03 0.55 53.08 0.62 59.24 0.65 61.9 0.55 51.95
Zookeeper 0.56 56.01 0.54 53.15 0.29 35.51 0.55 54.28 0.28 34.99 0.30 35.74 0.22 32.77
Mean 0.58 57.15 0.58 57.51 0.53 52.76 0.57 56.32 0.47 48.42 0.48 49.44 0.46 47.21

G-mes. indicates G-Measure, V. indicates variant, GM1 indicates G-Mean1 & Bal. indicates Balance
*The bold values depict the fitness variant which is best in terms of both G-Mean1 and Balance measures.

Variation in Results of CPSO Fitness Variants (RQ1a)

According to the results depicted in Table 8.2, we see that each fitness variant

gave different results on corresponding datasets. For instance, the G-Mean1 results

on Gora dataset varied from 0.27 to 0.60. Likewise, the Balance results on Maven

dataset varied from 54.12 to 70.15. It was also noted that though, a fitness variant

might obtain the most effective results on a specific dataset, it might obtain the worst

267

Results and Analysis

results on some other dataset. For instance, the Precision variant obtained the best

results on Jmeter dataset, however, it obtained the worst results on AOI, Gora, Hama,

HyperSQL, Logicaldoc, Maven and Zookeeper datasets.

Thus, similar to the observations in Chapter 7 (Section 7.5.1), we found that a

variation in fitness function of a technique leads to diversification of results on a cor-

responding dataset, when evaluated using G-Mean1 and Balance values. This phe-

nomenon is observed because the fitness function dictates the selection of optimum

candidates in the solution space.

Table 8.3: Friedman Test Results

Ranks Results using G-Mean1 Values Results using Balance Values
Rank 1 Balance Variant (2.67) Accuracy Variant (2.50)
Rank 2 Accuracy Variant (2.77) Balance Variant (2.67)
Rank 3 G-Mean1 Variant (3.00) G-Mean1 Variant (3.13)
Rank 4 F-measure Variant (3.93) F-measure Variant (3.93)
Rank 5 G-measure Variant (4.60) G-measure Variant (4.73)
Rank 6 G-Mean2 Variant (5.30) G-Mean2 Variant (5.30)
Rank 7 Precision Variant (5.73) Precision Variant (5.73)

Further, in order to assess the best and the worst fitness variants, we used Fried-

man test on G-Mean1 and Balance values at 0.05 significance level. The results of

the tests were found to be significant with a p-value of less than 0.001, a chi-square

value of 30.33 and 32.46 using G-Mean1 and Balance values respectively and with

six degrees of freedom. The ranks obtained by all the fitness variants are shown

in Table 8.3. The mean ranks allocated by the Friedman test is shown in parenthe-

sis. The fitness variants achieving lower ranks are better performing fitness variants

than the others. According to the results shown in the table, the best Friedman rank

according to G-Mean1 values was obtained by the Balance variant followed by the

Accuracy variant. However, the best Friedman rank using Balance values was ob-

tained by the Accuracy variant followed by the Balance variant. The ranks obtained

by other fitness variants were consistent when evaluated using either G-Mean1 and

268

Results and Analysis

Balance values. The worst fitness variant was Precision variant as it obtained the

lowest ranks both using G-Mean1 and Balance values.

It may be noted that we analyzed the performance of individual fitness variants

using G-Mean1 and Balance performance measures. Thus, it may seem a priori that

the best results should be obtained by fitness variants that optimize these performance

measures i.e. the G-Mean1 variant and the Balance variant. One might think that in-

cluding just these two fitness variants would be sufficient to build the ASOF model

as the performance of ASOF is only adjudged on the basis of G-Mean1 and Balance.

But this is not the case. We note that another fitness variant i.e. the Accuracy vari-

ant achieved good results. The Accuracy variant achieved better Friedman rank than

Balance variant, when the performance was evaluated using Balance measure. Sim-

ilarly, the Accuracy variant and the Balance variant obtained better Friedman ranks

than the G-Mean1 variant when the results were evaluated using G-Mean1 variant.

These results indicate that we could not have ignored fitness variants which optimize

other performance measures i.e. Accuracy variant, F-measure variant, G-measure

variant, G-Mean2 variant and Precision variant as it is possible that they could obtain

comparable or even better G-Mean1 and Balance metrics. The individual G-Mean1

fitness variant and the Balance fitness variant might converge to mid-optimum points

in a pre-mature fashion while optimizing the corresponding performance measures.

Thus, only choosing both G-Mean1 and Balance variants as constituents of the ASOF

and for validating the ASOF would lead to biased judgments. Although, there are

studies [38, 40, 196] in literature which have used the same performance measure,

both for validating the results as well as a fitness function. However, we use several

other constituent fitness variants to get reliable results. Furthermore, as we want to

obtain unbiased results we evaluate the performance using two performance mea-

sures (G-Mean1 and Balance), rather than just any one measure.

269

Results and Analysis

Answer to RQ1a

The results of the developed software change prediction models using CPSO are

influenced by the selection of fitness function, as it is crucial in choosing optimum

solution candidates. The Precision variant is the worst fitness variant and the Balance

and Accuracy variants are the top two variants as they obtained good values for both

G-Mean1 and Balance on all the investigated datasets.

Complementary Results of CPSO fitness variants (RQ1b)

We observe the pairwise complementarity amongst different fitness variants [56].

For each set of fitness variants (X1&X2), we compute the percentage of correctly pre-

dicted change-prone classes (CCP) by both the fitness variants (X1∩X2) and by only

one of the fitness variant (X1 −X2 and X2 −X1) by the formulas discussed in sec-

tion 7.5.1 (RQ1b). Table 8.4 states the corresponding complementarity percentages.

Due to space limitations, the percentages are obtained by aggregating the statistics of

all the datasets. The notations in table 8.4 are as follows: Acc. indicates Accuracy,

Pr. indicates Precision; GM1 indicates G-Mean1; GM2 indicates G-Mean2, Fmes.

indicates F-measure; Gmes. indicates G-measure and Bal. indicates Balance.

Table 8.4: Complementarity of CPSO Fitness Variants

Acc. V. Bal. V. Fmes. V. GM1 V. GM2 V. Gmes. V. Pr. V.
I D1 D2 I D1 D2 I D1 D2 I D1 D2 I D1 D2 I D1 D2 I D1 D2

Acc. V. X X X 69 20 11 80 10 10 75 12 13 75 12 13 77 11 12 70 16 15
Bal. V. X X X 72 14 14 79 10 11 70 15 15 70 15 15 68 16 16
Fmes.V. X X X 74 14 12 89 6 5 91 5 4 74 14 13
GM1 V. X X X 73 13 14 72 15 13 72 15 13
GM2 V. X X X 95 3 2 76 13 11
Gmes. V. X X X 76 12 12
Pr. V. X X X

I: X1 ∩X2; D1: X1 −X2 ; D2: X2 −X1; X: No comparison possible; V.: Variant

The results in Table 8.4 depict that the overlap of correctly classified change-

prone classes amongst any two variants ranges from 68% to 95% (X1∩X2), in a ma-

jority of the cases. Thus, any fitness variant is suitable for correct change prediction

270

Results and Analysis

of these overlapping (those which are correctly predicted by an arbitrary fitness vari-

ant) classes. However, in order to correctly predict the remaining non-overlapping

change-prone classes (those which are correctly predicted by a specific fitness vari-

ant), it is advisable to use the ability of specific fitness variants. These remaining

classes approximately account to 50-70% of actual change-prone classes. As noted

in Chapter 7, correct prediction of these non-overlapping change-prone classes can

lead to considerable improvement in the ability of change prediction model. It should

be noted that if even one of the fitness variant correctly classifies a class, it may be

correctly predicted by the model developed using the ASOF framework. Thus, the

use of multiple fitness variants would result in better predictive capability of the de-

veloped change prediction models.

We aim to optimize not just the performance measures but also want to find the

correct predictions for data points, which are generally misclassified by most of the

fitness variants. As discussed in Chapter 7, we call such instances as “hard instances”.

It is possible that an instance with certain structural characteristics might be wrongly

predicted by a majority of fitness variants but may be correctly predicted by only one

or two fitness variants. We want the ASOF model to learn correct fitness variants for

such instances too. Thus, in line with our discussion of RQ1a, we reiterate that it is

important to incorporate several fitness variants rather than just one or two.

Answer to RQ1b

The results of software change prediction models developed using multiple fitness

variants are complementary to each other. The models developed using the ASOF

framework can be improved by using complementary constituent fitness variants as

the ASOF framework might correctly predict a non-overlapping class even if it was

correctly predicted by only one of its constituent classifier.

271

Results and Analysis

8.5.2 Results specific to RQ2

The G-Mean1 and Balance values of the software change prediction models devel-

oped using the ASOF framework are illustrated in Figure 8.4. These results are

obtained using ten-fold cross validation. It may be noted from the figure that the G-

Mean1 values on all the datasets ranged from 0.55-0.69. The Balance values obtained

were in the range 53%-68%. These ranges are acceptable and confirm the predictive

capability of the models developed using the ASOF framework in successfully deter-

mining the change-prone classes.

Figure 8.4: Validation Results of Classifiers with ASOF Framework

It may be noted that in 12 out of 15 datasets, the Balance values of the models

developed using the ASOF framework were better than those achieved by the mod-

els developed using the Accuracy variant (best fitness variant according to Balance

values as discussed in section 8.5.1). Also, there was an improvement of 1%-32%

in the Balance values of these twelve datasets, when change prediction models were

developed using the ASOF framework rather than the accuracy fitness variant. Simi-

larly, the G-Mean1 values of the models developed using the ASOF framework were

better than those obtained by Balance fitness variant (best fitness variant according to

272

Results and Analysis

G-mean1 values as discussed in section 8.5.1) in 10 out of 15 datasets. The improve-

ment in G-Mean1 values was found in the range of 0.2%-34% in these ten datasets.

The reason for an improvement in the results of the ASOF models was the dy-

namic selection of fitness variant for each instance of the dataset. We demonstrate

this with an example of Zookeeper dataset. The Zookeeper dataset has 591 instances.

According to Table 8.2, the best fitness variant on the Zookeeper dataset was the ac-

curacy fitness variant. If we use the predictions of only the accuracy fitness variant

for the entire dataset, we obtain a TP value of 130, TN value of 214, an FN value

of 139 and an FP value of 108. This would result in a G-Mean1 value of 0.56 and a

Balance value of 56.01 (Table 8.2). On the contrary, when we use the ASOF model,

it predicts the accuracy fitness variant to be used for 511 instances, G-Mean1 fitness

variant to be used for 48 instances, Balance fitness variant to be used for 6 instances,

G-measure fitness variant to be used for 25 of its instances and the precision fitness

variant to be used for one instance. By using the predictions of the fitness variants

suggested by the ASOF model, we get a TP value of 192, a TN value of 240, an FN

value of 167 and an FP value of 82. Therefore, the G-Mean1 value is computed as

0.63 and the Balance value is computed as 62.50% by using the predictions of the

fitness variants as suggested by the ASOF model. This depicts an improvement of

12.5% and 11.6% respectively in G-Mean1 and Balance values. Therefore, by using

appropriate fitness functions for different instances of the dataset as compared to just

a single fitness function, the performance of the change prediction model improves.

Apart from evaluating the ten-fold cross validation results, we also assessed whether

the prediction of the ASOF models is effective when applied to another software

dataset (cross-project validation). This was done by extracting the rules generated

by C4.5 when an ASOF model was built on DrJava software dataset. A partial set

of these extracted rules is represented in the DT shown in Figure 8.5. Some exam-

ple rules for allocating optimum Fitness variant (Fitness-Op) to a data point DPk, as

273

Results and Analysis

represented in Figure 8.5 are as follows:

• IF LCOM> 26 AND RFC> 19 AND LCOM> 43 forDPk THEN Fitness-Op

(DPk) = Accuracy.

• IF LCOM > 26 AND RFC ≤ 19 AND CBO > 18 for DPk THEN Fitness-Op

(DPk) = Balance.

Figure 8.5: Rules of ASOF Framework on DrJava Dataset

We employed these generated rules on three other test datasets (Jedit, Logicaldoc

and Maven). As a result, according to the rules we partitioned the data points of

Jedit, LogicalDoc and Maven datasets into various subsets which should be evalu-

ated by different specific fitness variants. The change-prone nature of the data points

in a subset was ascertained using the models developed using the predicted fitness

variants. The validation results obtained on the Jedit dataset exhibited a G-Mean1

274

Results and Analysis

value of 0.39 and a Balance value of 40.78. It should be noted that these values

were better than models developed using only the G-Mean1 variant using ten-fold

cross validation on Jedit dataset. However, they were lower than the values obtained

from the models developed using all the other fitness variants (Accuracy, Balance,

G-Mean2, Precision, F-measure and G-measure variants) on Jedit dataset (Refer Ta-

ble 8.2). Similarly, the validation results (G-Mean1: 0.59, Balance: 57.12) on Maven

dataset were better than those obtained by only the Precision variant using ten-fold

cross validation. However, they were poorer than those obtained by all other inves-

tigated variants. These results advocate that the best approach would be to use the

training data of the same software dataset for developing change prediction models

using the ASOF framework. However, when Logicaldoc dataset was evaluated us-

ing rules extracted from DrJava dataset, we found a G-Mean1 value of 0.54 and a

Balance value of 52.64. It may be noted that these values were worse than only the

Accuracy variant and the G-Mean1 variant using ten-fold cross validation on Logi-

caldoc dataset. These values were better than all investigated fitness variants models

viz. Balance variant, G-Mean2 variant, F-measure variant, G-measure variant and

Precision variant. We therefore observe that the results using cross-project validation

are acceptable in certain cases.

A possible reason for poor results of ASOF model using cross-project validation

is that the structural characteristics of instances vary from one dataset to another.

Also, as discussed in section 8.5.1, the performance of different fitness variants varies

from dataset to dataset. A fitness variant which works best on a specific dataset may

be quite poor for another dataset. For a particular dataset, the ASOF model is trained

with specific structural characteristics and training data, which may change and may

not be applicable to another dataset. For instance, for the Jedit dataset, one obtains

a rule “IF CBO ≤ 12 for DPk THEN Fitness-Op (DPk) = Accuracy ”. However,

for Logicaldoc dataset, one obtains a rule “IF CBO ≤ 10 for DPk THEN Fitness-Op

275

Results and Analysis

(DPk) = Accuracy”. The rule obtained for AOI dataset is “IF CBO ≤ 7 for DPk

THEN Fitness-Op (DPk) =Balance ”. Therefore, the threshold value of the CBO

metric for allocating the fitness variant Accuracy is different in Jedit and Logicaldoc

datasets. Moreover, the rule for AOI dataset designates a Balance fitness variant

rather than an Accuracy fitness variant for all the data points with CBO values less

than 7. Such contradictory rules may lead to incorrect predictions when the ASOF

model trained on one dataset, may be applied to another dataset. Hence, resulting in

poor performance of the ASOF model.

Therefore, we conclude that the approach using ASOF framework works well for

within-project validation, but might not give the best results for a new project where

sufficient training data is not previously available.

Answer to RQ2

The results of the software change prediction models developed using the ASOF

framework are acceptable for effective prediction of change-prone classes (G-Mean1:

0.55-0.69, Balance: 53-68%). The ASOF models exhibit an improvement in G-

Mean1 and Balance results when evaluated using ten-fold cross validation on the

same project. However, the ASOF models are not the best choice for cross-project

validation.

8.5.3 Results specific to RQ3

In order to answer the RQ, we have divided the comparison results of models devel-

oped using ASOF into three sections as below.

Comparison of ASOF framework with individual CPSO fitness-based classifiers

We first performed Friedman tests for comparing the predictive capability of

change prediction models developed using the ASOF framework with individual

276

Results and Analysis

CPSO fitness variants using G-Mean1 and Balance values over all the datasets. The

test was conducted at α = 0.05. The Friedman test results were found significant us-

ing both G-Mean1 and Balance values, with a p-value of less than 0.001 in each case.

A Friedman statistic (chi-square) of 46.06 and 47.24 was obtained using G-Mean1

and Balance values respectively with seven degrees of freedom. The models devel-

oped using the ASOF framework achieved the best rank according to both G-Mean1

and Balance values. This indicates the superiority of the models developed using the

ASOF framework. Furthermore, we performed Wilcoxon post-hoc test using Bon-

ferroni correction at α = 0.05 on G-Mean1 and Balance values. The p-value should

be less than 0.007 for the Wilcoxon test to be significant after Bonferroni correction.

The results of the Wilcoxon test are presented in Table 8.5, with p-values in paren-

thesis. According to the table, in all the cases, the models developed using the ASOF

framework outperformed the fitness variant models. Moreover, in ten out of fourteen

cases, the superiority was significant. The primary reason for their improved perfor-

mance is the dynamic allocation of fitness function according to structural properties

of each class.

Table 8.5: Wilcoxon test results for ASOF vs CPSO Fitness Variants

ASOF vs Using G-Mean1 values Using Balance Values
Accuracy Variant ↑ (0.012) ↑ (0.009)
Balance Variant ↑ (0.088) ↑ (0.125)
F-measure Variant ↑* (0.001) [0.93] ↑* (0.001) [0.93]
G-Mean1 Variant ↑* (0.003) [0.87] ↑* (0.005) [0.80]
G-Mean2 Variant ↑* (0.001) [0.93] ↑* (0.001) [0.93]
G-measure Variant ↑* (0.001) [0.90] ↑* (0.001) [0.90]
Precision Variant ↑* (0.001) [1.00] ↑* (0.001) [1.00]
↑: Non-significant superiority of the ASOF model; ↑*: Significant superiority of the ASOF model)

We also computed the Vargha and Delaney’s statistic to estimate the effect size of

the Wilcoxon test as discussed in Section 8.4.2. The computed Vargha and Delaney’s

statistic is mentioned in square brackets for all the significant cases. As the statistic

ranged from 0.87-1.00 for all significant results in Table 8.5, we assume a large effect

277

Results and Analysis

size according to guidelines mentioned in Section 8.4.2.

One might notice that the comparison of models developed using the ASOF

framework are significantly different from the models developed using the G-Mean1

CPSO variant, especially using the G-Mean1 performance measure (Table 8.5). As

already discussed in Section 8.2, a G-Mean1 CPSO fitness variant will select a can-

didate solution, which would provide the “optimal” G-Mean1 value on the entire

dataset, i.e. a classification rule which when used gives the values of TP, TN, FP and

FN, which provide optimal G-Mean1 performance measure. However, as discussed

in section 8.5.1, an individual G-Mean1 fitness variant might converge with mid-

optimal values, which may not be the “best” as a termination condition might reach

before getting a solution with the “best” value or the constriction coefficient might

limit the “exploration”, which may result in a sub-optimal but not the “best” solution.

We may achieve a better “optimal” solution by the use of ASOF framework. Since,

the ASOF framework applies a combination of different CPSO fitness variants for

prediction, the number of TP, TN, FP and FN would be different from the “G-Mean1

fitness variant”. For instance, there may still be some instances which are classi-

fied as FP and FN by the “G-Mean1 fitness variant”, but may be correctly predicted

by some other fitness variant. Therefore, using other fitness variants might increase

the G-Mean1 value of the model developed using the ASOF framework leading to

significantly better results.

Comparison of ASOF framework with Fitness-based voting ensemble classifiers

We first ascertain the performance of the four fitness-based voting ensemble clas-

sifiers viz. MVEC, WVEC, HIEC and WVHIEC on the fifteen datasets investigated

in the study. The G-Mean1 and Balance values of the change prediction models de-

veloped using the mentioned fitness-based voting ensemble classifiers are depicted

in Table 8.6. We also restate the results of change prediction models developed us-

278

Results and Analysis

ing the ASOF framework for easy comparison. The values of the best model on

a corresponding dataset, with respect to G-Mean1 and Balance values individually

are depicted in bold. According to the table, the models developed using the ASOF

framework depicted the best Balance values in nine out of fifteen datasets. Further-

more, the ASOF models achieved the best G-Mean1 values in ten datasets. The mean

G-Mean1 and Balance values of fitness-based voting ensemble classifiers on all the

datasets ranged from 0.53-0.57 and 52.71-56.06 respectively. The mean G-Mean1

and Balance values of ASOF models were 0.62 and 60.24 respectively.

Table 8.6: Validation Results of Fitness-based Voting Ensemble Classifiers

Dataset
G-Mean1 Values Balance Values

MVEC WVEC HIEC WVHIEC ASOF MVEC WVEC HIEC WVHIEC ASOF
AOI 0.63 0.64 0.61 0.65 0.65 62.55 62.93 59.28 63.73 64.73
Click 0.52 0.55 0.56 0.55 0.56 49.44 52.77 53.56 53.29 54.48
DrJava 0.65 0.66 0.70 0.66 0.65 64.87 66.02 69.66 65.92 65.17
Giraph 0.49 0.55 0.56 0.59 0.56 47.46 52.57 53.78 56.12 53.45
Gora 0.37 0.37 0.27 0.34 0.55 39.81 39.72 34.66 37.96 52.55
Hama 0.45 0.45 0.50 0.56 0.55 45.31 45.46 49.68 55.86 54.63
HyperSQL 0.68 0.68 0.67 0.70 0.69 66.21 67.42 65.30 69.34 68.16
JabRef 0.61 0.64 0.64 0.66 0.68 58.30 61.64 61.99 65.03 67.32
Jmeter 0.51 0.52 0.53 0.54 0.59 49.22 49.74 51.13 51.65 58.81
Jedit 0.56 0.56 0.48 0.45 0.56 53.76 53.76 46.82 44.61 53.29
Logicaldoc 0.45 0.51 0.47 0.53 0.60 44.63 48.79 45.65 51.13 57.34
Maven 0.68 0.70 0.69 0.69 0.69 67.42 69.64 67.24 68.47 68.52
Phoenix 0.43 0.44 0.54 0.56 0.62 42.90 44.07 51.87 53.58 60.80
Subsonic 0.63 0.63 0.59 0.55 0.65 60.18 59.91 55.74 51.88 61.90
Zookeeper 0.35 0.50 0.50 0.53 0.63 38.58 48.57 48.96 52.35 62.50
Mean 0.53 0.56 0.55 0.57 0.62 52.71 54.87 54.35 56.06 60.24

*The bold values depict the best values for a corresponding dataset.

We also performed a Wilcoxon signed rank test at α = 0.05 to compare the pre-

dictive capability of the developed ASOF Framework models with the fitness-based

voting ensemble classifiers. The test was performed with Bonferroni correction. Af-

ter Bonferroni correction, the p-value should be less than 0.013. The results of the

test are stated in Table 8.7 with p-values depicted in parenthesis.

279

Results and Analysis

Table 8.7: Wilcoxon test results for ASOF vs Fitness-based Voting Ensemble Classi-
fiers

ASOF vs Using G-Mean1 values Using Balance Values
MVEC ↑* (0.001) [0.93] ↑* (0.001) [0.93]
WVEC ↑* (0.006) [0.80] ↑* (0.004) [0.80]
HIEC ↑* (0.005) [0.87] ↑* (0.002) [0.87]
WVHIEC ↑ (0.031) ↑ (0.023)
↑: Non-significant superiority of the ASOF model; ↑*: Significant superiority of the ASOF model)

According to the results, the prediction models developed using the ASOF frame-

work were better than all the other fitness-based voting ensemble classifiers using G-

Mean1 and Balance values, more so significantly in three cases (when compared with

MVEC, WVEC and HIEC). The effect size of all significant cases was computed us-

ing Vargha and Delaney’s statistic and was depicted in square brackets. According to

the guidelines discussed in section 8.4.2, the effect size was found to be large (0.80-

0.93). These observations advocate competency of the ASOF framework prediction

models with the compared fitness-based voting ensemble models. The reason for the

better performance of ASOF models could be due to use of dynamic fitness function,

which is varied on the basis of the structural characteristics of a class. It may be

noted that the WVHIEC models, which allocate weights to constituent fitness vari-

ants both on the basis of “performance” and the “ability to predict hard instances” are

comparable to the ASOF models. However, each of the four fitness-based ensemble

classifiers take into account the prediction models of all the seven constituent fitness

variant classifiers (Accuracy-variant, Balance variant, G-Mean1 variant, G-Mean2

variant, G-measure variant, F-measure variant and Precision variant), while predict-

ing an unknown instance. On the other hand, the ASOF model only refers to the

prediction of one fitness variant model, which is predicted by it for classifying an un-

known instance as change-prone or not change-prone. Therefore, the predictions of

ASOF models are faster than the WVHIEC models and the other three fitness-based

ensemble classifiers (MVEC, WVEC, HIEC), indicating its superiority.

280

Results and Analysis

Comparison of ASOF framework with ML ensemble classifiers & the LR technique

In order to compare the results of models developed using the ASOF framework

with the ML ensemble classifiers (RF, BG, AB and LB) and the LR technique, we

report the G-Mean1 and Balance values of the developed models in Figure 8.6 and

8.7 respectively. We repeat the results of ASOF models for ease of comparison. Ac-

cording to Figure 8.6, the ASOF model shows comparable results with the best ML

ensemble classifier or the LR technique in six datasets (DrJava, Giraph, Hama, Hy-

perSQL, Jmeter and Maven). In a majority of datasets (except Jedit), the difference

in G-Mean1 values of the ASOF models and the other compared models was no more

than 20%. In certain cases, the G-Mean1 values improved by 2-25% with the use of

ASOF models as compared to the other models. According to Figure 8.7, the ASOF

models depicted comparable Balance values with the best ML ensemble classifier or

the LR technique in four datasets (DrJava, Hama, Jmeter and Maven). In more than

50% of the cases, there was an improvement in the Balance values obtained using the

ASOF models, which ranged from 1-30%.

Figure 8.6: G-Mean1 Values of ML Ensemble Classifiers, LR Technique and ASOF
Models

281

Results and Analysis

Figure 8.7: Balance Values of ML Ensemble Classifiers, LR Technique and ASOF
Models

We further compared the results of ASOF models with ML ensemble classifiers

and the LR technique statistically using the Wilcoxon signed rank test at α = 0.05.

The test was performed with Bonferroni correction. The G-Mean1 and Balance val-

ues obtained by all the models (LR, RF, BG, AB and LB) on all the fifteen datasets

were compared pairwise with those obtained using ASOF models. The test results

are reported in Table 8.8. The obtained p-values are depicted in parenthesis. Accord-

ing to Table 8.8, the G-Mean1 results of ASOF models were superior to LR, BG,

AB and LB models and inferior to the RF model, but not significantly. Similarly, the

Balance results of ASOF models were better than four other models (LR, BG, AB

and LB) and only worse than RF. But these results were not significant. Thus, the

performance of change prediction models developed by the ASOF framework were

competent to that of models developed using ML ensemble classifiers and the LR

technique.

282

Results and Analysis

Table 8.8: Wilcoxon test results for ASOF vs ML Ensemble Classifiers and LR Tech-
nique

ASOF vs Using G-Mean1 values Using Balance Values
LR ↑ (0.256) ↑ (0.078)
RF ↓ (0.256) ↓ (0.281)
BG ↑ (0.865) ↑ (0.776)
AB ↑ (0.256) ↑ (0.233)
LB ↑ (0.820) ↑ (0.551)
↑: Non-significant superiority of the ASOF model; ↓: Non-Significant inferiority of the ASOF model)

The ML ensembles work by creating multiple models from the same training

data. The given training data is altered to create multiple training samples either by

giving weights to specific training instances or by creating bootstrap samples or by

other methods [89, 91]. Each ML ensemble technique aggregates multiple models.

We analyzed the mean G-Mean1 and Balance values obtained by the ML ensemble

classifiers along with the LR technique on all the 15 investigated datasets. The mean

G-Mean1 values of LR, RF, BG, AB and LB was 0.57, 0.64, 0.61, 0.56 and 0.60 re-

spectively. The mean Balance values were found to be 55.73 (LR), 62.87 (RF), 59.44

(BG), 55.82 (AB) and 58.60 (LB). We see that except the RF technique, the ASOF

technique obtained better mean G-Mean1 and mean Balance values (G-Mean1: 0.62,

Balance: 60.24) than all the other compared ML ensemble techniques and the LR

technique indicating the effectiveness of ASOF models. With respect to the RF tech-

nique, it may be noted that RF is one of the best ML technique advocated in literature

for developing defect prediction models (a related area of change prediction) [17].

However, there was only a difference of 3-4% in mean G-Mean1 and mean Balance

values of the ASOF and the RF models. Thus, the ASOF models depicted similar

results.

As discussed in section 8.3, in order to develop the ASOF prediction model,

we use the C4.5 technique, whose run time is comparable to that of ML ensemble

classifiers and the LR technique. However, the ASOF outputs only the best fitness

283

Discussion

variant. We need to refer to the model of the predicted fitness variant to determine

the “change-prone” or “not change-prone” nature of a data point. Thus, evaluation of

the actual nature of a data point might take a little longer than of the ML ensemble

classifiers. However, the difference in runtime is not significant.

Answer to RQ3

The results of change prediction models developed using the ASOF framework

are superior to the results of individual fitness variants models as the ASOF frame-

work allocates dynamic fitness function based on the structural characteristics of

each class. The ASOF framework models yielded superior G-Mean1 and Balance

results when compared to that of change prediction models developed using fitness-

based voting ensemble classifiers. They were found competent with change predic-

tion models developed using the investigated ML ensemble classifiers and the LR

technique.

8.6 Discussion

This chapter proposes a novel framework, namely ASOF, which predicts the opti-

mum fitness function for each instance of the training set based on its structural char-

acteristics (OO metrics). The output of the ASOF model is one of the seven possible

fitness functions (Accuracy, Balance, G-Mean1, G-Mean2, G-measure, F-measure

and Precision) explored in the chapter. Thereafter, software change prediction mod-

els which are developed using the CPSO technique by employing the fitness function

predicted by the ASOF model are used for predicting the change-prone nature of a

class. In order to perform empirical validation, the results are evaluated on 15 pop-

ular open source datasets using two stable performance measures i.e. G-Mean1 and

Balance. The key results of the chapter are as follows:

284

Discussion

1. The fitness function used by the CPSO technique influences the result of the de-

veloped software change prediction models. This is because a fitness function

dictates the selection of optimum solution candidates. Amongst the explored

fitness variants in the chapter, the Accuracy fitness variant and the Balance fit-

ness variants perform well. However, the Precision variant obtained the worst

results. The results of the chapter confirm the complementarity amongst differ-

ent fitness variants. It was found that though the majority (68-95%) of change-

prone classes are correctly predicted by an arbitrary fitness variant, the use of

specific fitness variants would improve the predictive capability of the ASOF

model by correctly identifying the non-overlapping change-prone classes.

2. The use of ASOF framework was successful in developing effective models for

determining change-prone classes. The developed models exhibited G-Mean1

and Balance values in the range of 0.55-0.69 and 53-66% respectively. The

ASOF framework is favorable in scenarios when the project is mature enough

and appropriate training data is available within the project as compared to a

cross-project training.

3. The use of ASOF framework yielded change prediction models which were

better than those developed using individual fitness variant’s models and the

fitness-based voting ensemble classifiers. The results of ASOF framework

models were found competent to those developed by ML ensemble classifiers.

Practitioners in the software industry and researchers can effectively use the re-

sults of the study for selecting an optimum fitness function while using a search-based

algorithm.

285

Chapter 9

Software Bug Categorization using

Change Impact and Maintenance

Effort

9.1 Introduction

Software practitioners often strive to achieve a “bug-free” software, but, this is a

myth. Stringent deadlines, intense complexity and deficient testing are prime reasons

for the presence of bugs in a software. The bugs generally get introduced during the

development or maintenance phase of the software development lifecycle and lead

to poor quality software products with unsatisfied customers. Therefore, software

maintenance activities, which remove these bugs and ensure the smooth functioning

of a software are mandatory [277]. However, it should be noted that maintenance

resources are always at constraint [5]. The software community requires to manage

these resources appropriately in order to deliver timely upgrades of the software.

287

Introduction

An effective method for managing maintenance resources, while removing software

bugs is Software Bug Categorization (SBC).

SBC aids in software maintenance activities, which focus on management of bugs

and thereby, their elimination. It involves cataloging of software bugs into different

levels on the basis of various bug attributes such as their criticality, priority etc. [278–

280]. With the aid of SBC, a software developer can take informed decisions while

handling a bug and planning its correction. This chapter proposes development of

SBC models, which assign levels (viz. “low”, “moderate” or “high”) to a software

bug. The levels are allocated on the basis of three aspects i.e., maintenance effort

required to correct a bug, its change impact and the combined effect of both of these.

The maintenance effort required to correct a software bug, estimates the SLOC which

are required to be added or deleted during bug correction. The change impact of

a bug is computed by the number of classes, which are modified while removing

the corresponding bug. It is important to categorize software bugs on the basis of

maintenance effort and change impact as a bug fixing regime is highly dependent on

them. A software developer who is aware that a specific bug belongs to “high” level

corresponding to its maintenance effort, will allocate more resources for correction of

such a bug as compared to those belonging to “low” and “moderate” levels. Similarly,

if a software professional is aware that a bug belongs to “high” level with respect to its

change impact, he will be more careful with regression testing after bug correction

and will execute a larger number of test cases as a higher number of classes are

affected while correcting the bug. Bugs which are allocated “high” level on the basis

of combined effect of the maintenance effort and change impact, need both, more

maintenance resources and stringent regression testing for their effective resolution.

It may be noted that literature studies have successfully categorized software bugs

on the basis of their criticality and priority [278–280]. Two recent studies by Jindal

et al. [73, 74], attempted to categorize bugs into different levels on the basis of their

288

Introduction

maintenance effort. However, to the best of our knowledge, no study till date has

evaluated bug categorization on the basis of its change impact. The existence of

this research gap was ascertained by the review conducted in Chapter 3. Thus, this

chapter is a pioneer in conducting experiments, which categorize bugs according to

their change impact values and the combined effect of maintenance effort and change

impact values into three corresponding levels (low, moderate and high).

In order to develop SBC models and correctly predict levels of a software bug,

we extract features (words) from the bug description which are present in the bug

report. These features are extracted using a text mining approach. This study is a

first in successfully identifying the change impact levels of a bug on the basis of

its description. The SBC models are developed using six classification techniques

namely RF, LR, LB, BG, MLP and NB. The experiments were conducted on five

application packages of the Android software (Calendar, Bluetooth, Browser, Camera

and MMS). We investigate the following RQs in this chapter:

RQ1: What is the accuracy of the model developed for SBC, which assigns levels

to a bug according to the maintenance effort required to correct it?

SBC models are developed which allocate a level (low, moderate or high) to each

bug on the basis of its maintenance effort using ten-fold cross validation. The main-

tenance effort is computed by summing up the SLOC required to be added or deleted

for bug removal. We develop SBC models using Top-10, Top-25, Top-50 and Top-

100 words with six classification techniques. The accuracy of the developed models

is adjudged using AUC, accuracy and sensitivity.

RQ2: What is the accuracy of the model developed for SBC, which assigns levels

to a bug according to the change impact of a bug?

SBC models are developed which allocate level to a bug on the basis of the num-

ber of classes that require modification to correct the bug (change impact). Similar

to RQ1, we develop models using Top-10, Top-25, Top-50 and Top-100 words with

289

Software Bug Categorization Framework

six classification techniques. The performance is evaluated using AUC, accuracy and

sensitivity performance measures.

RQ3: What is the accuracy of the model developed for SBC, which assigns lev-

els to a bug according to the combined effect of its maintenance effort and change

impact?

We develop models, which categorize a bug into any of the three levels (low,

moderate or high) on the basis of combined effect (product) of maintenance effort

and change impact. The details of the process are similar to RQ1 and RQ2.

RQ4: What is the comparative performance of the SBC models when levels are

allocated using the combined effect of maintenance effort and change impact with a)

maintenance effort and b) change impact?

The SBC models developed in RQ3 are compared with ones developed in RQ1

and RQ2 using Wilcoxon signed rank test on the basis of AUC values.

The developed SBC models can be successively used by software managers in

organizing maintenance and testing resources and improving software quality by de-

livering good quality products within the defined timeline .

The chapter is organized into five sections. Section 9.2 discusses in detail the

proposed SBC framework and the various steps involved in it. Section 9.3 discusses

the research methodology, while Section 9.4 states the results of the chapter with

respect to each RQ. Section 9.5 states the key findings of the experiments conducted

in the chapter. The results of the chapter are communicated as [281].

9.2 Software Bug Categorization Framework

This section discusses in detail the framework used for SBC. We first give an overview

of the framework and then discuss the steps performed in the text mining module.

290

Software Bug Categorization Framework

9.2.1 Overview of the Framework

The diagrammatic representation of the framework is provided in Figure 9.1. We

first extract the change logs available in Google’s GIT software repository https:

//android.googlesource.com for five application packages of Android op-

erating system so that their corresponding bug data may be analyzed. It must be

noted that two versions of each application package were analyzed to extract the

changes that have been performed in them. Data present in the change logs between

two versions will help in identifying the bugs, which have been corrected and their

characteristics. The five application packages and their corresponding versions were:

Android Bluetooth (4.1-4.4), Android Browser (2.3-4.0), Android Calendar (4.1-4.4),

Android Camera (2.3-4.0) and Android MMS (2.3-4.0).

Figure 9.1: Software Bug Categorization Framework

Next, we used the DCRS tool to generate defect reports from the extracted change

291

https://android.googlesource.com
https://android.googlesource.com

Software Bug Categorization Framework

logs [106]. Each defect report contains six fields: a) the name of the source code

class (Source File Changed), which is affected by bug removal; b) the ID of the

bug that has been removed (Defect-ID), c) the textual description of the bug (Defect

description); d) the number of SLOC inserted while removing a bug (SLOC Inserted);

the number of SLOC deleted during bug removal (SLOC Deleted) and e) the sum of

SLOC inserted or deleted for bug removal (Total SLOC changes).

In the next step, we perform text mining steps to extract important words from

textual descriptions of the bugs identified in the defect reports. A detailed description

of the text mining steps is provided in Section 9.2.2. As an output of these steps

we obtain Top-10, Top-25, Top-50 and Top-100 scoring words, which are used as

independent variables while creating SBC models. We also analyze the defect reports

and allocate levels to bugs on the basis of maintenance effort and change impact

characteristics for each software. It should be noted that the maintenance effort, the

number of classes impacted and their product (combined) are continuous variables.

We convert these continuous variables into ordinal variables by binning the values

into three equal sized categories according to their empirical distribution [85]. A

similar practice of dividing continuous data into three categories has been followed

by previous literature studies, which treat maintenance effort as an ordinal variable

[75–77, 262]. The three categories formed were “low”, “moderate” and “high”. Table

9.1 depicts the ranges of continuous values which are allocated to each level for a

particular dataset. It also mentions the number of data points allocated to each level

in a specific dataset. For instance, according to Table 9.1, all bugs which require [1-

6.5] SLOC for correction are allocated “low” level and there are 26 such data points

in Bluetooth dataset. Similarly, there are 54 bugs whose modification would affect

[1-1.5] classes and are designated “low” level in Bluetooth dataset. A data point

consists of the independent variables (Top-10/ Top-25/ Top-50/ Top-100 words) and

the allocated level (low/ moderate/ high) for a corresponding bug description.

292

Software Bug Categorization Framework

Table 9.1: Dataset Level Details

Dataset

Name
Level

Maintenance Effort Change Impact Combined
Range Data

Points

Range Data

Points

Range Data

Points

Bluetooth
Low [1-6.5] 26 [1-1.5] 54 [1-6.5] 25
Moderate (6.5-39] 27 (1.5-3.5] 15 (6.5-60.5] 27
High >39 26 >3.5 10 >60.5 27

Browser
Low [1-9.5] 199 [1-1.5] 328 [1-10.5] 193
Moderate (9.5-38.5] 196 (1.5-2.5] 110 (10.5-66.5] 200
High >38.5 191 >2.5 148 >66.5 193

Calendar
Low [1-7.5] 56 [1-1.5] 100 [1-8.5] 55
Moderate (7.5-37.5] 55 (1.5-2.5] 35 (8.5-45] 55
High >37.5 54 >2.5 30 >45 55

Camera
Low [1-14.5] 118 [1-1.5] 156 [1-19.5] 116
Moderate (14.5-54.5] 118 (1.5-2.5] 82 (19.5-117.5] 119
High >54.5 117 >2.5 115 >117.5 118

MMS
Low [1-7.5] 54 [1-1.5] 95 [1-9.5] 56
Moderate (7.5-30.5] 57 (1.5-2.5] 42 (9.5-53] 56
High >30.5 57 >2.5 31 >53 56

We next develop SBC models with six classification techniques using ten-fold

cross validation [113]. For each dataset, three SBC models (low level, moderate

level and high level) are developed using each classification technique. It should be

noted that each SBC model predicts a binary outcome ascertaining whether a bug

belongs to a specific level or not. For instance, all “low” level models ascertain

that whether a bug belongs to “low” level or “not low” level. Similarly, “moderate”

level and “high” level models determine whether a bug belongs to the corresponding

categories according to its textual description. Thereafter, the performance of the

developed SBC models is evaluated.

9.2.2 Text Mining Module

There are a series of steps performed in this module which can be primarily divided

into preprocessing tasks, feature selection and the creation of vector space model [9].

We discuss each of these tasks in detail.

Preprocessing: The primary aim of preprocessing is to decrease the size of a fea-

293

Software Bug Categorization Framework

ture space represented by the bug descriptions. This step involves tokenization, stop-

word removal and stemming [9, 282]. Tokenization includes conversion of individual

characters into well-defined tokens. In order to do so, all punctuation characters are

replaced with blanks, all non-printable escape characters are removed and all upper-

case alphabets are converted to lowercase. All the stop-words such as articles, verbs,

prepositions, conjunctions, nouns, pronouns, adjectives and adverbs are discarded in

stop-word removal step. Thereafter, stemming is performed. It involves removal of

all the words that have the same stem, while retaining the stem. For instance, words

like “display”, “displayed”, “displaying” and “displays” are removed while only the

word “display” is retained. As a result of preprocessing, a reduced set of words is

obtained.

Feature Selection: Though, the initial set of words is reduced after preprocessing,

we still need to choose an effective set of words for classification. We use infogain

measure for feature selection, which ranks all the words extracted from the prepro-

cessing step [9]. Thereafter, we extract the top K words based on their infogain ranks.

The concept of infogain is illustrated with the help of an example. For instance, a

dataset may have 35% of “low” level bugs, 25% of “moderate” level bugs and 40%

of “high” level bugs. The bug distribution D0 of the dataset would be with bugs, b(1)

= “low”, b(2) = “moderate” and b(3) = “high”. The corresponding frequencies are

f(1) = 0.35, f(2) = 0.25 and f(3)= 0.40. In order to encode bug distribution D0 i.e.

H(D0) can be defined below [283]:

p(b) =
f(b)∑
b∈D f(b)

(9.1)

H(D) = −
∑
b∈D

p(b)log2p(b) (9.2)

If S denotes the set of features, then the bits required for encoding a bug level are:

294

Software Bug Categorization Framework

H(D|S) = −
∑
s∈S

p(s)
∑
b∈D

p(b|s)log2p(b|s) (9.3)

A feature Si is ranked highest with respect to infogain, if it minimizes the encod-

ing required for the data, after the feature has been used. Therefore,

Infogain(Si) = H(D)−H(D|Si)

It should be noted that we assume that the most informative features are sufficient

to describe the corresponding bug reports for their categorization into different levels.

Creation of Vector Space Model: After features have been selected, we create

a vector space model, which includes all the defect reports in the form of a vec-

tor. Here, each defect report is represented in the form of the top-k selected fea-

tures (terms). Each of the features in a defect report (vector) is weighted using Term

Frequency- Inverse Document Frequency (TFIDF) approach. Term frequency refers

to the occurrence of a feature in a specific defect report, while document frequency

depicts the occurrence of a feature across all defect reports. A higher term frequency

indicates higher usage of a term in a specific defect report. On the contrary, if the

same term is present in many documents, it is less important due to its decreased

discriminative power. A feature is weighted in accordance with high term frequency

and the inverse of its document frequency. The TFIDF is defined as follows [9]:

TFIDF = Tpq ∗ log2(
ND

NDq

) (9.4)

Here, Tpq represents the frequency of qth term in pth defect report; ND is the total

number of defect reports and NDq is the total number of defect reports containing

qth term. Thereafter, we normalize the feature vectors, before they are passed on to

the classification techniques.

295

Research Methodology

9.3 Research Methodology

This section briefly states the classification techniques used for developing SBC mod-

els. We also state the performance measures and the statistical test used to assess and

compare the developed SBC models.

Classification Techniques: The chapter uses six classification techniques (RF, LR,

LB, BG, MLP and NB), which have been simulated in the WEKA tool [88]. The in-

vestigated techniques have been previously explored by researchers for developing

efficient prediction models [17, 123]. For each classification technique, we use de-

fault parameter settings of WEKA tool. The description of each classification tech-

nique and the parameter settings can be referred from Chapter 2 (Section 2.6).

Performance Measures: The chapter uses AUC for evaluating the SBC models

as it is considered as a stable performance measure [118, 284]. However, in order

to understand the meaning of AUC in terms of SBC models, we first need to de-

fine sensitivity and specificity. Similar to the specificity and sensitivity defined for

change-prone and not change-prone classes in Chapter 2 (Section 2.10), the sensitiv-

ity of a “high” level model is defined as the number of data points which are correctly

predicted to be “high”, amongst the total number of points which have been predicted

to belong to “high” level. The specificity of a “high” level model is defined as the

total number of data points which are correctly predicted to be of “not high” level,

amongst the total number of points which have been predicted to belong to “not high”

level. The sensitivity and specificity of “low” level and “moderate” level models are

defined similarly. AUC is a plot between (1-Specificity) on the horizontal axis versus

the sensitivity on the vertical axis [117]. A higher value of AUC indicates a preferred

prediction model.

We also analyze the accuracy for a developed SBC model. The accuracy of a

296

Analysis and Results

“high” level model is the ratio of correctly predicted “high” level and “not high”

level bugs amongst the total number of data points. A good prediction model will

have higher accuracy values than others. However, as already discussed accuracy is

not termed as a stable performance measure as it does not take into account the class

distribution of a dataset [118, 284].

Statistical Test: In order to answer RQ4 and compare the performance of the

developed SBC models using the combined approach with the other two approaches

we use Wilcoxon signed rank test with Bonferroni correction. The test performs

pairwise comparisons amongst SBC models. Furthermore, we also computed the

effect size of significant cases of Wilcoxon test as mentioned in Chapter 2 (Section

2.11.2).

9.4 Analysis and Results

This section presents the results of the chapter and answers each of the investigated

RQ.

9.4.1 Results specific to RQ1

Table 9.2 states the AUC values obtained by the developed SBC models for each of

the investigated classification technique (Tech.) on the five datasets used in the chap-

ter. All the AUC values which are greater than 0.7 are depicted in bold. The AUC val-

ues for “low level” SBC models ranged from 0.614-0.853, 0.583-0.698, 0.616-0.828,

0.584-0.747 and 0.540-0.750, while the AUC values of “moderate level” SBC models

were found to be in the range of 0.594-0.767, 0.542-0.671, 0.612-0.728, 0.577-0.724

and 0.549-0.680 in a majority of the cases in Bluetooth, Browser, Calendar, Camera

and MMS datasets respectively. The maximum AUC values for “high level” mod-

297

Analysis and Results

els were as high as 0.786, 0.727, 0.856, 0.799 and 0.715 respectively in Bluetooth,

Browser, Calendar, Camera and MMS datasets. These AUC values indicate that the

categorization of bugs into different levels according to the corresponding mainte-

nance effort required to correct them is acceptable and accurate.

We also assessed the average AUC values (AVG) obtained by all the classification

techniques, for a specific level and a dataset (depicted in italics). The best model

(Top-10, Top-25, Top-50 or Top-100) in a particular scenario with respect to average

AUC values is denoted in bold with gray cell color. It may be noted that in general,

the SBC models developed using Top-10 words gave lower average AUC values than

other models (Top-25, Top-50 and Top-100). This could be due to the fact that just

10 words may not be enough to identify the level of a bug report as the number of

predictors are very few. Moreover, it may be seen that in seven out of 15 cases, the

best average values were obtained by the Top-100 word models as they efficiently

learn the keywords required to appropriately distinguish a bug report. These models

are efficient in allocating a suitable level to a bug report based on the maintenance

effort required to correct it. In the other cases, Top-25 and Top-50 word models were

found more suitable.

Table 9.3 presents the average accuracy values obtained by all the SBC models

developed using the six classification techniques used in the chapter. The model

depicting the best average accuracy value is depicted in bold. It may be seen that the

majority of average accuracy values are greater than 60%. Furthermore, it may be

noted that the majority of Top 100 models depicted the best average accuracy values

at each level (low, moderate and high).

Figure 9.2 depicts the boxplots of sensitivity values obtained by Top-10, Top-25,

Top-50 and Top-100 SBC models for each level, for each of the investigated classi-

fication technique. The average sensitivity values on all the investigated datasets of

Top-10, Top-25, Top-50 and Top-100 models were 0.566, 0.601, 0.628 and 0.641

298

Analysis and Results

Ta
bl

e
9.

2:
A

U
C

V
al

ue
s

of
SB

C
M

od
el

s
ba

se
d

on
M

ai
nt

en
an

ce
E

ff
or

t

Te
ch

.
B

lu
et

oo
th

B
ro

w
se

r
C

al
en

da
r

C
am

er
a

M
M

S
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

LowLevel

B
G

0.
70

2
0.

63
4

0.
69

6
0.

67
6

0.
59

1
0.

63
3

0.
66

8
0.

68
1

0.
59

7
0.

73
0

0.
65

6
0.

67
9

0.
59

7
0.

49
4

0.
68

9
0.

68
8

0.
64

9
0.

72
3

0.
69

2
0.

71
1

L
B

0.
72

2
0.

72
5

0.
76

0
0.

61
4

0.
59

5
0.

62
1

0.
62

1
0.

60
3

0.
58

9
0.

76
0

0.
70

1
0.

69
1

0.
59

3
0.

62
6

0.
64

7
0.

61
1

0.
61

8
0.

68
9

0.
70

6
0.

65
2

L
R

0.
73

9
0.

66
1

0.
75

7
0.

76
1

0.
58

3
0.

62
7

0.
66

7
0.

67
2

0.
64

1
0.

79
9

0.
79

6
0.

79
7

0.
60

8
0.

65
6

0.
73

7
0.

66
3

0.
59

9
0.

68
8

0.
70

2
0.

61
3

M
L

P
0.

77
1

0.
74

1
0.

79
6

0.
72

4
0.

58
8

0.
64

2
0.

67
6

0.
69

3
0.

62
7

0.
81

1
0.

77
7

0.
78

1
0.

62
5

0.
66

6
0.

74
7

0.
73

0
0.

64
5

0.
70

6
0.

68
9

0.
75

0
N

B
0.

74
6

0.
78

0
0.

85
3

0.
76

1
0.

57
9

0.
59

1
0.

63
6

0.
66

0
0.

59
9

0.
78

0
0.

77
7

0.
82

8
0.

56
8

0.
62

9
0.

69
1

0.
67

9
0.

54
0

0.
70

4
0.

72
2

0.
74

4
R

F
0.

70
8

0.
77

5
0.

80
1

0.
78

3
0.

58
4

0.
60

6
0.

65
8

0.
69

8
0.

61
6

0.
78

4
0.

67
6

0.
76

4
0.

58
4

0.
63

3
0.

72
8

0.
74

1
0.

66
0

0.
72

5
0.

72
1

0.
72

9
AV

G
0.

73
1

0.
71

9
0.

77
7

0.
72

0
0.

58
7

0.
62

0
0.

65
4

0.
66

8
0.

61
2

0.
77

7
0.

73
1

0.
75

7
0.

59
6

0.
61

7
0.

70
7

0.
68

5
0.

61
9

0.
70

6
0.

70
5

0.
70

0

ModerateLevel

B
G

0.
59

4
0.

54
5

0.
48

9
0.

42
9

0.
55

6
0.

58
1

0.
59

4
0.

60
3

0.
62

9
0.

67
4

0.
53

3
0.

57
9

0.
57

7
0.

51
6

0.
62

9
0.

64
3

0.
62

7
0.

58
3

0.
62

0
0.

58
4

L
B

0.
60

5
0.

67
6

0.
63

6
0.

49
8

0.
54

4
0.

55
8

0.
58

2
0.

54
9

0.
61

5
0.

66
9

0.
60

3
0.

55
9

0.
59

5
0.

62
1

0.
66

0
0.

60
4

0.
58

7
0.

58
7

0.
61

1
0.

54
7

L
R

0.
69

7
0.

72
0

0.
65

4
0.

76
2

0.
53

0
0.

56
0

0.
63

1
0.

67
1

0.
63

4
0.

69
0

0.
68

0
0.

72
8

0.
59

5
0.

62
6

0.
69

5
0.

68
3

0.
56

8
0.

54
9

0.
58

0
0.

53
0

M
L

P
0.

65
7

0.
70

2
0.

65
6

0.
76

7
0.

54
2

0.
58

3
0.

63
5

0.
64

2
0.

61
2

0.
72

2
0.

69
4

0.
73

0
0.

63
5

0.
61

7
0.

68
9

0.
70

7
0.

57
4

0.
56

1
0.

64
2

0.
63

3
N

B
0.

68
2

0.
70

9
0.

74
2

0.
76

4
0.

53
3

0.
54

3
0.

56
0

0.
58

5
0.

62
7

0.
71

8
0.

72
3

0.
70

2
0.

60
4

0.
62

9
0.

67
2

0.
68

7
0.

57
3

0.
55

4
0.

56
6

0.
61

5
R

F
0.

63
6

0.
73

5
0.

66
7

0.
70

4
0.

54
8

0.
57

0
0.

59
6

0.
60

9
0.

63
9

0.
66

8
0.

57
9

0.
64

0
0.

58
6

0.
57

7
0.

67
9

0.
72

4
0.

57
7

0.
59

6
0.

68
0

0.
67

0
AV

G
0.

64
5

0.
68

1
0.

64
1

0.
65

4
0.

54
2

0.
56

6
0.

60
0

0.
61

0
0.

62
6

0.
69

0
0.

63
5

0.
65

6
0.

59
9

0.
59

8
0.

67
1

0.
67

5
0.

58
4

0.
57

2
0.

61
7

0.
59

7

HighLevel

B
G

0.
53

7
0.

55
4

0.
54

3
0.

54
9

0.
63

5
0.

68
4

0.
69

3
0.

69
7

0.
65

3
0.

76
7

0.
73

5
0.

71
1

0.
66

9
0.

50
1

0.
69

4
0.

71
5

0.
62

5
0.

66
2

0.
68

8
0.

67
3

L
B

0.
51

2
0.

62
0

0.
62

3
0.

58
0

0.
64

0
0.

67
0

0.
64

7
0.

62
8

0.
64

9
0.

76
9

0.
75

8
0.

64
1

0.
69

5
0.

72
7

0.
68

5
0.

66
2

0.
60

6
0.

67
8

0.
63

4
0.

63
2

L
R

0.
53

7
0.

60
2

0.
64

2
0.

73
3

0.
64

3
0.

66
5

0.
69

7
0.

64
9

0.
64

6
0.

75
3

0.
72

2
0.

75
4

0.
69

7
0.

75
2

0.
75

6
0.

71
8

0.
56

1
0.

56
2

0.
57

9
0.

53
4

M
L

P
0.

53
9

0.
70

5
0.

67
2

0.
78

6
0.

62
2

0.
66

0
0.

68
8

0.
72

7
0.

67
0

0.
77

4
0.

82
7

0.
80

4
0.

70
9

0.
74

6
0.

75
4

0.
79

9
0.

66
4

0.
63

2
0.

62
0

0.
68

0
N

B
0.

59
3

0.
75

5
0.

76
4

0.
71

3
0.

63
8

0.
66

2
0.

69
0

0.
69

8
0.

68
8

0.
84

6
0.

85
6

0.
84

6
0.

68
3

0.
75

4
0.

76
8

0.
75

2
0.

57
4

0.
67

8
0.

66
0

0.
71

5
R

F
0.

53
9

0.
67

2
0.

66
0

0.
68

5
0.

62
6

0.
66

7
0.

68
8

0.
70

5
0.

70
5

0.
81

2
0.

78
7

0.
79

0
0.

67
1

0.
70

1
0.

72
6

0.
76

5
0.

60
2

0.
67

6
0.

71
9

0.
71

5
AV

G
0.

54
3

0.
65

1
0.

65
1

0.
67

4
0.

63
4

0.
66

8
0.

68
4

0.
68

4
0.

66
9

0.
78

7
0.

78
1

0.
75

8
0.

68
7

0.
69

7
0.

73
1

0.
73

5
0.

60
5

0.
64

8
0.

65
0

0.
65

8
T

10
:T

op
10

;T
25

:T
op

25
;T

50
:T

op
50

;T
10

0:
To

p
10

0;
AV

G
:A

ve
ra

ge
A

U
C

va
lu

es
of

al
lm

od
el

s;
G

ra
y

C
el

ls
:B

es
tT

op
-K

m
od

el
fo

ra
sp

ec
ifi

c
le

ve
la

nd
fo

ra
sp

ec
ifi

c
da

ta
se

t

Ta
bl

e
9.

3:
A

ve
ra

ge
A

cc
ur

ac
y

V
al

ue
s

of
SB

C
M

od
el

s
ba

se
d

on
M

ai
nt

en
an

ce
E

ff
or

t

L
ev

el
B

lu
et

oo
th

B
ro

w
se

r
C

al
en

da
r

C
am

er
a

M
M

S
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

L
ow

62
.2

4
63

.5
0

70
.4

6
68

.1
4

54
.1

0
56

.9
4

59
.6

1
61

.9
2

55
.6

6
66

.1
6

66
.3

6
66

.7
7

55
.3

3
56

.7
5

65
.1

6
63

.8
8

55
.9

5
62

.9
0

66
.1

7
66

.3
7

M
od

er
at

e
56

.7
5

60
.3

4
58

.6
5

62
.6

6
51

.8
8

53
.0

1
55

.0
9

56
.0

0
56

.9
7

61
.9

2
59

.1
9

60
.1

0
55

.8
5

55
.9

0
60

.4
4

61
.7

1
54

.9
6

53
.2

7
56

.2
5

55
.3

6
H

ig
h

48
.5

2
58

.6
5

59
.0

7
64

.7
7

56
.6

8
60

.6
1

65
.0

2
62

.4
0

57
.5

8
68

.2
8

71
.1

1
68

.2
8

63
.4

1
63

.6
0

66
.6

2
68

.0
4

56
.0

5
61

.7
1

63
.2

9
64

.3
9

T
10

:T
op

10
;T

25
:T

op
25

;T
50

:T
op

50
;T

10
0:

To
p

10
0;

B
ol

d
co

nt
en

ts
:B

es
tT

op
-K

m
od

el
fo

ra
sp

ec
ifi

c
le

ve
la

nd
fo

ra
sp

ec
ifi

c
da

ta
se

t

299

Analysis and Results

Figure 9.2: Sensitivity Values of (a) Top-10 (b) Top 25 (c) Top 50 and (d) Top 100
SBC Models based on Maintenance Effort

respectively. The trends of sensitivity values depicted in the boxplots indicated their

increase in general, with the increase in the number of predictor variables. This is

possible as more number of predictor variables are able to effectively encapsulate the

textual description of bugs and correctly predict the appropriate level.

An analysis of the average values (AVG) of “low” level, “moderate” level and

“high” level models indicate that the “high” level SBC models obtained higher av-

erage AUC and accuracy values on three of the investigated datasets (Browser, Cal-

endar and Camera). As discussed earlier, it is essential to identify “high” level bugs

according to maintenance effort so that software managers can allocate appropriate

300

Analysis and Results

resources while correcting these bugs. This will lead to an effective software main-

tenance regime with optimized resource usage.

9.4.2 Results specific to RQ2

The AUC values of SBC models which categorize a bug in accordance with the num-

ber of classes, which will be impacted while correcting a corresponding software bug

are depicted in Table 9.4. The developed SBC models identify three specific levels al-

located to software bugs i.e. “low”, “moderate” or “high”. As mentioned earlier, the

SBC model developed for each level predicts a binary outcome, ascertaining whether

a bug belongs to a specific level or not on the basis of its bug report. We develop four

models at each level using different number of predictor variables (Top-10, Top-25,

Top-50 and Top-100) for each of the investigated classification technique. We depict

all AUC values with a value greater than 0.7 as bold in Table 9.4. According to the

table, the SBC models developed at “high” level obtained AUC values in the range

0.501-0.709, 0.522-0.624, 0.562-0.785, 0.644-0.730 and 0.510-0.835 in a majority of

the cases for Bluetooth, Browser, Calendar, Camera and MMS datasets respectively.

The SBC models at “low” level obtained maximum AUC values of 0.687, 0.622,

0.754, 0.721 and 0.668, while those at “moderate” level obtained maximum AUC

values of 0.651, 0.525, 0.764, 0.642 and 0.599 respectively for Bluetooth, Browser,

Calendar, Camera and MMS datasets. It may be noted that though most of these val-

ues (0.6-0.7) are accurate and acceptable, however, few SBC models obtained AUC

values in the range 0.3-0.4. These poor values were obtained as the models were

developed from highly imbalanced training data. For instance, in Browser dataset,

there were only 110 bugs with “moderate” level in the training data, while all other

476 bugs belonged to either “low” or “high” levels (Table 9.1). This means that while

developing binary models for “moderate” level, only 18% of the training instances

301

Analysis and Results
Ta

bl
e

9.
4:

A
U

C
V

al
ue

s
of

SB
C

M
od

el
s

ba
se

d
on

C
ha

ng
e

Im
pa

ct

Te
ch

.
B

lu
et

oo
th

B
ro

w
se

r
C

al
en

da
r

C
am

er
a

M
M

S
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

LowLevel

B
G

0.
58

7
0.

56
6

0.
46

8
0.

54
8

0.
56

2
0.

57
5

0.
60

3
0.

62
2

0.
55

6
0.

68
4

0.
67

5
0.

70
3

0.
59

6
0.

64
6

0.
66

7
0.

67
7

0.
63

1
0.

63
3

0.
66

5
0.

66
6

L
B

0.
53

8
0.

62
6

0.
50

3
0.

58
6

0.
56

1
0.

55
9

0.
57

1
0.

55
2

0.
60

5
0.

72
2

0.
74

8
0.

67
6

0.
60

6
0.

61
6

0.
65

8
0.

64
5

0.
64

0
0.

56
9

0.
60

5
0.

62
5

L
R

0.
47

6
0.

54
8

0.
56

1
0.

63
7

0.
54

9
0.

55
5

0.
57

6
0.

60
5

0.
51

6
0.

68
7

0.
69

9
0.

73
5

0.
61

9
0.

63
8

0.
64

8
0.

67
0

0.
63

1
0.

48
5

0.
59

7
0.

49
8

M
L

P
0.

48
1

0.
67

1
0.

55
6

0.
56

0
0.

56
4

0.
56

2
0.

60
4

0.
60

0
0.

58
7

0.
75

4
0.

75
4

0.
71

8
0.

62
8

0.
63

9
0.

64
9

0.
68

2
0.

64
2

0.
52

6
0.

58
0

0.
58

7
N

B
0.

55
3

0.
61

7
0.

56
7

0.
45

5
0.

55
7

0.
58

1
0.

57
4

0.
56

2
0.

53
3

0.
64

6
0.

68
2

0.
68

8
0.

62
1

0.
60

4
0.

67
1

0.
65

3
0.

66
8

0.
65

1
0.

66
8

0.
61

2
R

F
0.

49
1

0.
60

2
0.

52
9

0.
68

7
0.

54
4

0.
53

1
0.

57
4

0.
63

1
0.

56
1

0.
69

2
0.

72
0

0.
74

9
0.

59
6

0.
65

3
0.

70
3

0.
72

1
0.

61
8

0.
60

9
0.

64
1

0.
62

9
AV

G
0.

52
1

0.
60

5
0.

53
1

0.
57

9
0.

55
6

0.
56

1
0.

58
4

0.
59

5
0.

56
0

0.
69

8
0.

71
3

0.
71

2
0.

61
1

0.
63

3
0.

66
6

0.
67

5
0.

63
8

0.
57

9
0.

62
6

0.
60

3

ModerateLevel

B
G

0.
54

7
0.

61
1

0.
56

3
0.

59
1

0.
48

3
0.

47
0

0.
51

6
0.

53
4

0.
56

0
0.

62
5

0.
66

9
0.

66
2

0.
52

6
0.

55
9

0.
57

3
0.

58
5

0.
53

6
0.

54
9

0.
53

1
0.

56
6

L
B

0.
31

4
0.

56
3

0.
60

4
0.

48
7

0.
46

0
0.

47
9

0.
52

4
0.

46
2

0.
61

4
0.

64
1

0.
66

3
0.

57
4

0.
52

9
0.

57
2

0.
57

5
0.

59
0

0.
51

3
0.

54
6

0.
55

2
0.

59
9

L
R

0.
43

3
0.

49
9

0.
64

0
0.

58
4

0.
49

8
0.

49
0

0.
53

4
0.

50
0

0.
57

4
0.

62
4

0.
64

9
0.

63
3

0.
52

7
0.

58
1

0.
60

1
0.

64
2

0.
53

1
0.

52
2

0.
50

8
0.

54
0

M
L

P
0.

46
5

0.
65

1
0.

62
3

0.
54

2
0.

47
3

0.
48

1
0.

53
2

0.
52

5
0.

57
6

0.
76

4
0.

61
4

0.
64

9
0.

53
2

0.
57

6
0.

58
1

0.
58

2
0.

47
4

0.
50

0
0.

55
8

0.
59

3
N

B
0.

43
2

0.
55

6
0.

61
5

0.
56

4
0.

50
8

0.
48

5
0.

51
1

0.
48

7
0.

51
0

0.
54

9
0.

56
0

0.
55

1
0.

52
8

0.
50

1
0.

54
2

0.
53

9
0.

56
1

0.
58

2
0.

59
6

0.
57

1
R

F
0.

41
9

0.
61

9
0.

64
2

0.
60

9
0.

43
6

0.
47

3
0.

47
5

0.
50

1
0.

59
2

0.
64

4
0.

66
0

0.
62

5
0.

53
3

0.
56

9
0.

57
2

0.
60

9
0.

44
1

0.
46

3
0.

55
1

0.
54

5
AV

G
0.

43
5

0.
58

3
0.

61
5

0.
56

3
0.

47
6

0.
48

0
0.

51
5

0.
50

2
0.

57
1

0.
64

1
0.

63
6

0.
61

6
0.

52
9

0.
56

0
0.

57
4

0.
59

1
0.

50
9

0.
52

7
0.

54
9

0.
56

9

HighLevel

B
G

0.
56

7
0.

56
2

0.
50

1
0.

63
0

0.
54

6
0.

54
7

0.
60

5
0.

61
8

0.
60

7
0.

70
8

0.
71

3
0.

73
0

0.
64

4
0.

68
7

0.
68

5
0.

68
6

0.
63

2
0.

71
1

0.
71

6
0.

71
6

L
B

0.
43

8
0.

55
9

0.
49

9
0.

70
9

0.
58

1
0.

56
2

0.
57

9
0.

56
1

0.
57

5
0.

70
9

0.
70

2
0.

69
6

0.
64

5
0.

67
4

0.
69

6
0.

67
4

0.
67

1
0.

68
7

0.
64

4
0.

66
0

L
R

0.
43

0
0.

46
6

0.
54

3
0.

66
2

0.
56

1
0.

56
0

0.
59

3
0.

61
8

0.
59

8
0.

67
4

0.
65

4
0.

71
0

0.
66

5
0.

73
0

0.
72

3
0.

65
1

0.
62

4
0.

51
0

0.
61

6
0.

61
6

M
L

P
0.

44
7

0.
50

3
0.

59
2

0.
60

9
0.

59
3

0.
58

3
0.

63
4

0.
62

4
0.

58
4

0.
73

4
0.

73
8

0.
74

1
0.

65
6

0.
71

7
0.

69
8

0.
70

2
0.

67
7

0.
65

9
0.

66
7

0.
65

0
N

B
0.

42
4

0.
52

3
0.

64
6

0.
50

8
0.

57
4

0.
56

9
0.

60
0

0.
63

0
0.

61
5

0.
79

2
0.

78
4

0.
78

4
0.

66
8

0.
71

7
0.

70
9

0.
69

2
0.

61
7

0.
72

1
0.

79
2

0.
74

0
R

F
0.

54
8

0.
58

7
0.

55
0

0.
73

8
0.

56
2

0.
52

2
0.

56
9

0.
61

8
0.

56
2

0.
72

5
0.

76
0

0.
78

5
0.

63
7

0.
71

3
0.

69
9

0.
72

0
0.

58
8

0.
75

7
0.

81
1

0.
83

5
AV

G
0.

47
6

0.
53

3
0.

55
5

0.
64

3
0.

57
0

0.
55

7
0.

59
7

0.
61

2
0.

59
0

0.
72

4
0.

72
5

0.
74

1
0.

65
3

0.
70

6
0.

70
2

0.
68

8
0.

63
5

0.
67

4
0.

70
8

0.
70

3
T

10
:T

op
10

;T
25

:T
op

25
;T

50
:T

op
50

;T
10

0:
To

p
10

0;
AV

G
:A

ve
ra

ge
A

U
C

va
lu

es
of

al
lm

od
el

s;
G

ra
y

C
el

ls
:B

es
tT

op
-K

m
od

el
fo

ra
sp

ec
ifi

c
le

ve
la

nd
fo

ra
sp

ec
ifi

c
da

ta
se

t

Ta
bl

e
9.

5:
A

ve
ra

ge
A

cc
ur

ac
y

V
al

ue
s

of
SB

C
M

od
el

s
ba

se
d

on
C

ha
ng

e
Im

pa
ct

L
ev

el
B

lu
et

oo
th

B
ro

w
se

r
C

al
en

da
r

C
am

er
a

M
M

S
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

L
ow

48
.3

1
56

.5
4

51
.4

8
56

.5
4

52
.7

9
53

.2
4

56
.4

8
57

.1
4

51
.3

2
63

.2
3

64
.1

4
66

.1
6

56
.1

9
58

.0
2

63
.3

2
64

.4
0

59
.5

2
56

.5
5

61
.4

1
60

.1
2

M
od

er
at

e
43

.4
0

57
.1

7
59

.7
1

52
.9

6
49

.9
1

47
.8

9
51

.0
5

49
.3

5
51

.2
1

58
.4

9
56

.0
6

57
.6

8
52

.2
2

53
.6

4
54

.2
5

55
.8

1
49

.7
0

50
.3

0
51

.8
9

54
.3

7
H

ig
h

46
.8

4
54

.6
4

54
.8

5
64

.7
7

55
.5

8
53

.9
3

55
.5

5
57

.5
1

52
.6

3
64

.3
4

65
.9

6
69

.1
9

61
.4

0
65

.3
0

64
.9

2
64

.6
9

62
.8

0
64

.8
8

65
.9

7
67

.5
6

T
10

:T
op

10
;T

25
:T

op
25

;T
50

:T
op

50
;T

10
0:

To
p

10
0;

B
ol

d
co

nt
en

ts
:B

es
tT

op
-K

m
od

el
fo

ra
sp

ec
ifi

c
le

ve
la

nd
fo

ra
sp

ec
ifi

c
da

ta
se

t

302

Analysis and Results

were those of “moderate” category. The classification techniques were not able to

effectively learn the characteristics of bugs so that they could categorize them effi-

ciently into “moderate” level. This leads to poor AUC values. Similarly, the Blue-

tooth dataset had only 13% of “high” level bugs in the training data. This again leads

to SBC models with poor AUC performance.

We also analyzed the best model for a specific level (low, medium or high) for all

the investigated datasets using the average AUC values (AVG) obtained by the SBC

models with all the six classification techniques. The AVG values of the best model

are depicted in bold and with gray cell color. In seven cases, the Top-100 models

gave superior results than Top-10, Top-25 and Top-50 models. However, in three and

four cases each the Top-25 and Top-50 models also obtained the best average AUC

models indicating their suitability for identifying levels of a software bug on the basis

of change impact. It was interesting to note that in MMS dataset, the Top-10 word

model gave the best values for “low” category.

The average accuracy values of all the SBC models developed using the six clas-

sification techniques are depicted in Table 9.5. The best average accuracy value for

a specific dataset and for a specific level is depicted in bold. It may be noted that

the Top-100 models gave the best average accuracy values in ten out of fifteen cases.

However, the average accuracy values of a majority of cases were greater than 50%.

We also analyze the sensitivity values obtained by the developed SBC models,

which categorize bugs according to these change impact values. The values are de-

picted as boxplots in Figure 9.3. Similar to the trend observed in RQ1, the sensitiv-

ity values of the developed SBC models improved with the increase in the number

of predictor variables. The sensitivity values of Top-10 word models ranged from

0.333-0.677, while that of Top-100 models ranged from 0.400-0.774.

We also compared the average AUC and average accuracy values of SBC models

developed for identifying “low”, “moderate” and “high” levels of a software bug. It

303

Analysis and Results

Figure 9.3: Sensitivity Values of (a) Top-10 (b) Top 25 (c) Top 50 and (d) Top 100
SBC Models based on Change Impact

was found that the “high” level bugs were categorized with higher average AUC and

average accuracy values as compared to “low” and “moderate” level categories in a

majority of the cases. This indicates that the bugs which have high change impact

values can be identified effectively. Software managers may allocate more testing

resources while conducting regression testing after such bugs are corrected. This

is a precautionary measure to identify that no new errors may be introduced while

correcting such bugs as these bugs impact a large number of classes during their

correction.

304

Analysis and Results

9.4.3 Results specific to RQ3

SBC models were developed which allocated three possible levels (low, moderate or

high) to a bug in accordance with the product of a bug’s required maintenance effort

and its change impact values. The models used words from the bug description as

predictors and determined a binary outcome i.e. whether a bug belonged to a specific

level or not. Four different models were developed using each of the six classification

techniques of the chapter at each level using a varied number of predictors i.e. 10,

25, 50 and 100. Table 9.6 states the AUC results of the developed models. All AUC

values greater than 0.7 are depicted in bold. It can be seen from the table that the AUC

values of the “low” level models of Bluetooth, Browser, Calendar, Camera and MMS

datasets ranged from 0.620-0.830, 0.586-0.664, 0.577-0.814, 0.519-0.726 and 0.656-

0.798 respectively. The ranges of mean AUC values (AVG) obtained by “moderate”

level SBC models developed using all the classification techniques were 0.564-0.624

(Bluetooth), 0.541-0.595 (Browser), 0.583-0.680 (Calendar), 0.506-0.635 (Camera)

and 0.641-0.734 (MMS). Similarly, the mean AUC value ranges for “high” level

SBC models were 0.533-0.606, 0.609-0.667, 0.577-0.752, 0.638-0.735 and 0.625-

0.735 for the Bluetooth, Browser, Calendar, Camera and MMS datasets respectively.

The majority of obtained AUC values by the SBC models depicted in Table 9.6 were

acceptable.

Table 9.7 depicts the average accuracy values of all the SBC models developed

using the six classification techniques, with the best model in a specific scenario

depicted in bold. The accuracy values of the “low” level models ranged from 54.52-

71.03%, while that of the “moderate” level models ranged from 50.97-64.59%. The

range of accuracy values of “high” level models was 50.42-70.04%.

305

Analysis and Results
Ta

bl
e

9.
6:

A
U

C
V

al
ue

s
of

SB
C

M
od

el
s

ba
se

d
on

C
om

bi
ne

d
E

ff
ec

to
fM

ai
nt

en
an

ce
E

ff
or

ta
nd

C
ha

ng
e

Im
pa

ct

Te
ch

.
B

lu
et

oo
th

B
ro

w
se

r
C

al
en

da
r

C
am

er
a

M
M

S
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

LowLevel

B
G

0.
68

4
0.

62
0

0.
62

0
0.

54
9

0.
59

8
0.

62
4

0.
65

5
0.

66
1

0.
57

9
0.

71
7

0.
66

8
0.

69
0

0.
62

3
0.

63
9

0.
65

8
0.

64
5

0.
68

6
0.

71
7

0.
74

2
0.

74
0

L
B

0.
67

7
0.

74
2

0.
79

9
0.

67
6

0.
60

1
0.

63
5

0.
62

3
0.

59
3

0.
61

3
0.

76
1

0.
81

4
0.

75
1

0.
51

9
0.

61
7

0.
67

3
0.

63
9

0.
67

2
0.

73
0

0.
76

2
0.

67
2

L
R

0.
70

9
0.

70
6

0.
80

5
0.

75
8

0.
59

2
0.

63
1

0.
65

2
0.

64
0

0.
62

1
0.

77
3

0.
77

6
0.

72
0

0.
64

9
0.

66
9

0.
70

9
0.

65
3

0.
65

6
0.

71
7

0.
69

4
0.

73
3

M
L

P
0.

72
1

0.
70

5
0.

78
1

0.
73

0
0.

57
2

0.
61

4
0.

65
0

0.
62

5
0.

63
1

0.
77

5
0.

77
1

0.
76

4
0.

61
8

0.
64

9
0.

71
1

0.
72

6
0.

70
9

0.
73

5
0.

70
2

0.
77

4
N

B
0.

73
4

0.
72

7
0.

83
0

0.
75

9
0.

58
8

0.
61

1
0.

61
9

0.
62

7
0.

57
7

0.
76

1
0.

76
9

0.
75

9
0.

62
2

0.
62

4
0.

67
8

0.
66

0
0.

67
1

0.
75

4
0.

76
0

0.
77

5
R

F
0.

70
9

0.
74

9
0.

78
9

0.
78

6
0.

58
6

0.
60

0
0.

62
8

0.
66

4
0.

59
9

0.
76

3
0.

73
8

0.
75

5
0.

62
7

0.
64

2
0.

69
1

0.
70

4
0.

68
3

0.
74

7
0.

76
7

0.
79

8
AV

G
0.

70
6

0.
70

8
0.

77
1

0.
71

0
0.

59
0

0.
61

9
0.

63
8

0.
63

5
0.

60
3

0.
75

8
0.

75
6

0.
74

0
0.

61
0

0.
64

0
0.

68
7

0.
67

1
0.

68
0

0.
73

3
0.

73
8

0.
74

9

ModerateLevel

B
G

0.
62

6
0.

50
9

0.
51

0
0.

47
8

0.
53

9
0.

58
5

0.
60

2
0.

60
1

0.
59

8
0.

62
5

0.
60

0
0.

59
5

0.
51

0
0.

55
5

0.
60

8
0.

62
6

0.
63

4
0.

67
1

0.
66

5
0.

66
6

L
B

0.
58

1
0.

64
8

0.
60

9
0.

56
2

0.
55

3
0.

56
8

0.
58

1
0.

55
6

0.
56

9
0.

68
9

0.
75

2
0.

70
7

0.
47

3
0.

56
2

0.
63

3
0.

58
9

0.
65

0
0.

72
8

0.
73

5
0.

64
9

L
R

0.
63

7
0.

64
9

0.
54

3
0.

57
1

0.
55

7
0.

62
4

0.
62

2
0.

61
0

0.
62

5
0.

71
7

0.
73

3
0.

60
1

0.
52

4
0.

60
2

0.
62

4
0.

65
2

0.
61

8
0.

65
3

0.
74

2
0.

69
2

M
L

P
0.

59
3

0.
67

6
0.

54
1

0.
61

4
0.

53
2

0.
55

8
0.

59
7

0.
58

1
0.

61
2

0.
68

3
0.

69
7

0.
71

3
0.

52
9

0.
58

4
0.

66
7

0.
64

3
0.

65
0

0.
70

1
0.

75
1

0.
78

2
N

B
0.

60
3

0.
62

9
0.

61
2

0.
69

4
0.

54
3

0.
55

6
0.

56
4

0.
57

5
0.

51
5

0.
58

5
0.

66
0

0.
65

0
0.

50
9

0.
56

1
0.

59
5

0.
62

1
0.

66
6

0.
72

1
0.

76
1

0.
76

7
R

F
0.

57
9

0.
63

2
0.

56
6

0.
58

2
0.

52
4

0.
59

6
0.

60
2

0.
61

6
0.

57
9

0.
63

8
0.

63
6

0.
68

2
0.

48
9

0.
55

0
0.

64
5

0.
67

7
0.

62
7

0.
69

2
0.

75
0

0.
76

3
AV

G
0.

60
3

0.
62

4
0.

56
4

0.
58

4
0.

54
1

0.
58

1
0.

59
5

0.
59

0
0.

58
3

0.
65

6
0.

68
0

0.
65

8
0.

50
6

0.
56

9
0.

62
9

0.
63

5
0.

64
1

0.
69

4
0.

73
4

0.
72

0

HighLevel

B
G

0.
58

0
0.

60
5

0.
54

9
0.

51
4

0.
60

0
0.

63
8

0.
68

8
0.

70
0

0.
53

6
0.

63
1

0.
60

9
0.

58
9

0.
66

8
0.

71
8

0.
70

8
0.

71
3

0.
63

7
0.

71
0

0.
75

1
0.

73
9

L
B

0.
50

4
0.

61
1

0.
54

3
0.

48
4

0.
61

3
0.

64
8

0.
64

9
0.

62
2

0.
56

3
0.

76
1

0.
79

8
0.

72
4

0.
50

3
0.

71
6

0.
71

3
0.

68
1

0.
66

9
0.

32
7

0.
73

5
0.

69
0

L
R

0.
51

9
0.

51
6

0.
47

3
0.

60
1

0.
61

5
0.

67
3

0.
67

7
0.

63
4

0.
57

1
0.

75
5

0.
78

2
0.

65
7

0.
67

5
0.

75
5

0.
74

1
0.

69
8

0.
62

0
0.

55
9

0.
53

5
0.

64
6

M
L

P
0.

53
0

0.
61

6
0.

57
0

0.
62

9
0.

62
0

0.
60

7
0.

65
8

0.
66

0
0.

63
7

0.
76

9
0.

79
4

0.
77

1
0.

65
3

0.
75

1
0.

76
7

0.
74

3
0.

64
0

0.
67

8
0.

65
4

0.
73

5
N

B
0.

56
7

0.
67

5
0.

69
3

0.
63

5
0.

59
4

0.
61

9
0.

65
8

0.
66

6
0.

58
7

0.
77

6
0.

80
2

0.
79

9
0.

67
1

0.
75

0
0.

74
9

0.
73

6
0.

64
5

0.
75

2
0.

79
2

0.
80

9
R

F
0.

49
5

0.
61

4
0.

55
3

0.
63

7
0.

61
1

0.
62

0
0.

67
4

0.
70

1
0.

57
0

0.
69

3
0.

72
5

0.
72

9
0.

65
6

0.
71

7
0.

71
8

0.
75

2
0.

63
1

0.
72

5
0.

77
7

0.
79

1
AV

G
0.

53
3

0.
60

6
0.

56
4

0.
58

3
0.

60
9

0.
63

4
0.

66
7

0.
66

4
0.

57
7

0.
73

1
0.

75
2

0.
71

2
0.

63
8

0.
73

5
0.

73
3

0.
72

1
0.

64
0

0.
62

5
0.

70
7

0.
73

5
T

10
:T

op
10

;T
25

:T
op

25
;T

50
:T

op
50

;T
10

0:
To

p
10

0;
AV

G
:A

ve
ra

ge
A

U
C

va
lu

es
of

al
lm

od
el

s;
G

ra
y

C
el

ls
:B

es
tT

op
-K

m
od

el
fo

ra
sp

ec
ifi

c
le

ve
la

nd
fo

ra
sp

ec
ifi

c
da

ta
se

t

Ta
bl

e
9.

7:
A

ve
ra

ge
A

cc
ur

ac
y

V
al

ue
so

fS
B

C
M

od
el

sb
as

ed
on

C
om

bi
ne

d
E

ff
ec

to
fM

ai
nt

en
an

ce
E

ff
or

ta
nd

C
ha

ng
e

Im
pa

ct

L
ev

el
B

lu
et

oo
th

B
ro

w
se

r
C

al
en

da
r

C
am

er
a

M
M

S
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

T
10

T
25

T
50

T
10

0
T

10
T

25
T

50
T

10
0

L
ow

60
.1

3
62

.2
4

68
.5

7
67

.3
0

54
.5

2
57

.4
5

59
.2

7
59

.9
8

54
.7

5
66

.8
7

67
.9

8
66

.2
6

56
.1

9
57

.6
5

62
.8

4
62

.4
2

60
.7

2
65

.9
7

69
.8

4
71

.0
3

M
od

er
at

e
54

.6
4

56
.3

3
54

.4
3

56
.3

3
50

.9
7

54
.4

4
56

.0
3

56
.2

6
54

.8
5

59
.4

9
59

.4
9

60
.9

1
49

.3
9

53
.8

7
57

.6
0

59
.7

3
57

.6
4

61
.6

1
64

.5
9

64
.1

9
H

ig
h

50
.4

2
57

.1
7

54
.4

3
57

.1
7

56
.9

7
57

.4
0

63
.1

1
62

.0
0

52
.6

3
64

.6
5

64
.6

5
65

.0
5

60
.0

6
66

.0
5

67
.2

8
67

.0
0

57
.9

4
60

.2
2

66
.1

7
70

.0
4

T
10

:T
op

10
;T

25
:T

op
25

;T
50

:T
op

50
;T

10
0:

To
p

10
0;

B
ol

d
co

nt
en

ts
:B

es
tT

op
-K

m
od

el
fo

ra
sp

ec
ifi

c
le

ve
la

nd
fo

ra
sp

ec
ifi

c
da

ta
se

t

306

Analysis and Results

As investigated in RQ1 and RQ2, we analyzed the best model for a specific

dataset and a specific level (low, medium, high) using the average AUC values. The

best average AUC model for a particular scenario is depicted with gray cell color.

According to the analysis, the Top-50 models were found best in eight out of 15

cases, followed by the Top-25 models in four cases. The Top-100 word model was

designated as best in only three cases. These results indicate that it is not necessary

that the increase in predictor variables leads to an increase in AUC values. A lot of

variables may be representing redundant information in Top-100 models. This could

be a reason for the good performance of the Top-50 word models. However, in terms

of average accuracy values the Top-100 models were best in nine out of 15 cases,

followed by the Top-50 models in six cases. As literature studies have criticized

accuracy [118, 284] as an effective performance measure, we advocate the results

of Top-50 models in the scenario where SBC models are developed to predict the

combined effect of change impact and maintenance effort. It may also be noted that

Top-10 models were not found best in any case in terms of average AUC or average

accuracy values as the number of predictor variables were too few to encapsulate the

information found in bug reports for effective SBC.

The sensitivity values of the developed SBC models were also evaluated. They

are depicted as boxplots in Figure 9.4. The maximum sensitivity values obtained

by Top-10, Top-25, Top-50 and Top-100 word models were 0.679, 0.732, 0.768 and

0.768 respectively. Moreover, it was noted that there was an increase in sensitivity

values with the increase in the number of predictor variables. The average sensitivity

value of all the Top-10 word models at all levels using all the classification techniques

was computed as 0.557, while that of the Top-100 word model was computed as

0.629.

A comparison of average AUC values and average accuracy values (of all the in-

vestigated classification techniques) of the three categories of SBC models i.e. “low”,

307

Analysis and Results

Figure 9.4: Sensitivity Values of (a) Top-10 (b) Top 25 (c) Top 50 and (d) Top 100
SBC Models based on Combined effect of Maintenance Effort and Change Impact

“moderate” and “high” was conducted for Top-10, Top-25, Top-50 and Top-100 mod-

els. We found that in Bluetooth, Calendar and MMS datasets, the “low” level models

obtained higher average AUC and average accuracy values than “moderate” level

and “high” level models. However, in Browser and Camera datasets the “high” level

models obtained better average AUC and average accuracy models than the other two.

It is important to categorize “high” level bugs efficiently so that software managers

can effectively plan software bug regimes. Bugs belonging to “high” levels in ac-

cordance with the combined effect of maintenance effort and change impact should

be allocated sufficient resources. Also, stringent regression testing should be per-

308

Analysis and Results

formed after correction of such bugs. These activities would result in a cost-effective

software product with good quality.

9.4.4 Results specific to RQ4

In order to compare the performance of the developed SBC models we use Wilcoxon

signed rank test with Bonferroni correction. The test was conducted to compare the

pairwise performance of the SBC models which categorized bugs in accordance with

the combined approach with the other two SBC models (SBC models which catego-

rized according to change impact and SBC models which categorized according to

maintenance effort) at all the three levels (“low”, “medium” and “high”). We con-

duct the Wilcoxon test on average AUC values and average accuracy values obtained

by all the investigated classification techniques (BG, LB, LR, MLP, NB and RF)

for Top-25, Top-50 and Top-100 word models on all the five datasets of the chapter

(Bluetooth, Browser, Calendar, Camera and MMS). The hypothesis is evaluated at a

significance level of α = 0.05. It should be noted that we do not take into account

Top-10 word models as they were not very efficient in SBC categorization.

Table 9.8: Wilcoxon test results for Comparing Combined Approach SBC models
based on average AUC values

SBC Level Combined vs Maintenance Effort Combined vs Change Impact

Low ↑ (0.932) ↑* (0.001)

Medium ↓ (0.427) ↑* (0.003)

High ↓ (0.140) ↑ (0.074)

↑: Not significantly better; ↓: Not significantly poor; ↑*: Significantly better

The results of Wilcoxon test based on average AUC values is depicted in Table 9.8

with p-values depicted in parenthesis. It can be seen that the performance of the com-

bined approach SBC models was better than SBC models based on change impact in

all the three levels, more so significantly in two levels (low & moderate). Thus, SBC

309

Analysis and Results

models based on change impact were found poor than the combined approach SBC

models. The performance of combined approach SBC models was comparable to

SBC models based on maintenance effort as the difference was not found significant

at any level. The effect size of Wilcoxon test for significant cases was found to be

large (0.5-0.6), indicating the superiority of the combined approach as compared to

SBC models based on change impact.

Table 9.9: Wilcoxon test results for Comparing Combined Approach SBC models
based on average Accuracy values

SBC Level Combined vs Maintenance Effort Combined vs Change Impact

Low ↑ (0.842) ↑* (0.004)

Medium ↓ (0.865) ↑* (0.006)

High ↓ (0.088) ↑ (0.460)

↑: Not significantly better; ↓: Not significantly poor; ↑*: Significantly better

Table 9.9 presents the results of Wilcoxon signed rank test based on average ac-

curacy values. Similar to the Wilcoxon test results based on average AUC values,

the SBC models based on change impact were found significantly inferior to SBC

models based on combined approach for low and moderate levels. The effect size for

these significant cases was found to be large (0.5). The high level change impact SBC

models were found poorer than combined approach models but not significantly. It

may be noted that the results of combined approach SBC models were found compa-

rable to SBC models based on maintenance effort as the results were not significant

in either of the three cases.

9.4.5 Analysis of Chapter’s Results

The cumulative results of the chapter and the statistical analysis indicate that SBC

models using combined approach were comparable to SBC models when bugs were

allocated levels on the basis of maintenance effort. However, it should be noted that

310

Analysis and Results

combined models are more useful as they take into account both the maintenance

effort and change impact values. Thus, they aid in the planning of both developer

manpower as they are capable of forecasting levels of a bug on the basis of mainte-

nance effort, as well as tester’s effort as they are able to forecast bugs which influence

change in a large number of classes. A tester may focus his effort on executing test

cases for those classes which are affected by a change to ensure that the software is

functioning smoothly.

We also observed that the performance of combined SBC models were better than

the SBC models which categorized bugs in accordance with change impact values.

The primary reason for poor performance of SBC models based on change impact

values was the imbalanced nature of the training data. A careful analysis of Table

9.1 indicates that majority of software bugs in the training data of all the five datasets

belonged to “low” level (Bluetooth: 68%, Browser: 56%, Calendar: 61%, Cam-

era: 44%, MMS:56%), when they were allocated levels based on change impact.

This is because most of the software bugs were resolved by making modifications in

just one class. Thus, the classification techniques were not able to learn “moderate”

level and “high” level instances appropriately indicating slightly poor performance of

these developed SBC models as compared to other (based on combined approach or

maintenance effort) developed SBC models. It may be noted from Table 9.1 that the

training data for SBC models based on maintenance effort or the combined approach

have almost equal number of data points in all the three categories, indicating a more

balanced training data.

Another trend found while analyzing all the developed SBC models was that

the Top-10 models showed poor performance as compared to Top-25, Top-50 and

Top-100 models. In a majority of the cases, the average AUC and average accuracy

values of SBC models developed by all the classification techniques using Top-10

words were lesser than Top-25, Top-50 or Top-100 words. As discussed earlier, the

311

Analysis and Results

primary reason for such an outcome was the inability of Top-10 words to encapsulate

the required information for distinguishing the level of a bug based on its bug report.

On the other hand, both Top-50 and Top-100 models were found appropriate with

effective AUC values. The reason for the comparable performance of Top-50 and

Top-100 models could be redundancy in the predictors. There is a possibility that

Top-100 words may be representing redundant information in certain cases, which

was effectively encapsulated in just Top-50 words. In such cases, developing models

with Top-50 words is more practical.

We also performed a Wilcoxon signed rank test at a cut-off of 0.05 to compare all

the developed SBC models “level” wise. We compared the average AUC values and

average accuracy values of “high” level models obtained using Top-25, Top-50 and

Top-100 words for all the three discussed bug categorizing approaches with “low”

and “moderate” level models. This was done in order to ascertain which “level”

developed SBC models were most accurate. The Wilcoxon test results obtained are

depicted in Table 9.10 with p-values in parenthesis. According to the results in Table

9.10, the performance of “high” level models were better than the “low” level models

and significantly better than the “moderate” level models. This indicates that the

“high” level bugs are identified with higher accuracy and thus, such bugs should be

first determined and allocated appropriate maintenance and testing resources. Such a

practice would aid software managers is maintaining good quality software in a cost-

effective manner. Thereafter, the remaining resources should be distributed amongst

“low” level and “moderate” level bugs.

Table 9.10: Wilcoxon test results for Comparing SBC models Level-wise

Results High level vs Low level High level vs Moderate level

Based on average AUC values ↑ (0.484) ↑* (<0.001)

Based on average accuracy values ↑ (0.221) ↑* (<0.001)

↑: Not significantly better; ↑* : Significantly better

312

Discussion

9.5 Discussion

This chapter proposes a categorization framework for software bugs based on three

bug attributes, i.e. its maintenance effort, its change impact and the product of both

maintenance effort and change impact. Three binary models using each of the investi-

gated bug attributes are developed which are capable of predicting whether a software

bug belongs to “low” level or “not low” level, “moderate” level or “not moderate”

level, “high” level or “not high” level. The categorization is done by extracting rel-

evant features from bug reports. Four models are developed in each scenario using

Top-10, Top-25, Top-50 and Top-100 relevant features (words) for five application

packages of Android software. The SBC models are developed using six classifica-

tion techniques. Experimental results of the chapter are statistically evaluated using

AUC values and average accuracy values of the developed SBC models. The key

results of the chapter are as follows:

1. We summarize the results of average AUC values (average of SBC models de-

veloped using all the six classification techniques) of “high” level SBC mod-

els on all the datasets investigated in the chapter using Top-25, Top-50 and

Top-100 words as predictors. The SBC models based on maintenance effort

obtained average AUC values in the range 0.651-0.787 for all the datasets.

The majority of average AUC values of SBC models based on change im-

pact values were in the range 0.612-0.741. Average AUC values in the range

of 0.606-0.752 were obtained by the majority of “high” level SBC models,

which categorized bugs on the basis of combined effect of maintenance effort

and change impact. These trends indicate an acceptable capability of the de-

veloped SBC models. Similar trends were observed by “moderate” level and

“low” level SBC models.

313

Discussion

2. The accuracy (in terms of AUC values and average accuracy values) of the

combined approach SBC models were found to be statistically superior to SBC

models which categorized bugs according to change impact and comparable to

the SBC models based on maintenance effort.

3. The accuracy of “high” level models were found statistically superior to “mod-

erate” level and “low” level models when compared using average AUC and

average accuracy values.

Software managers can use the developed SBC models to predict “high” level

bugs in accordance with combined approach as they should be given larger percent-

age of maintenance resources and adequate testing resources. Software practitioners

can also efficiently plan bug fixing regimes as a bug, which is categorized “high”

in accordance with maintenance effort and “low” in accordance with change impact

values will focus on changes in few classes. Such bugs may require more developer

effort but low testing effort.

314

Chapter 10

Software Change Prediction using

Imbalanced Data

10.1 Introduction

A number of studies in the literature [1–3, 5, 27, 31] and previous chapters have val-

idated the use of various categories of techniques for determination of change-prone

classes on several datasets. In order to develop a useful change prediction model, a

learning technique requires an efficient training dataset, which has a sufficient num-

ber of both change-prone and not change-prone classes so that the model can effec-

tively learn to identify them. However, in the real world a number of datasets are

imbalanced in nature i.e. a majority of classes belong to a particular category, with

very few instances of the other category, which is generally of more interest (change-

prone classes in our case). This fact is ascertained from the observations in Chapter 3,

where it was found that 25-100% of datasets in the majority of change-proneness pre-

diction studies were imbalanced in nature. Learning from such imbalanced datasets

leads to higher misclassifications for the minority class. This is because of the lack of

315

Introduction

information available about the minority class. Such models are rarely of any practi-

cal use as the important change-prone classes are neglected and may not be properly

identified. This would lead to improper testing and maintenance plans as sufficient

resources would not be allotted to the unidentified change-prone classes leading to

poor quality software products. Moreover, such products would be costlier to main-

tain and manage and may not be completed under tight schedule deadlines. This

chapter deals with Imbalanced Learning Problem (ILP) while developing software

change prediction models. It may be noted that no study in literature has dealt with

this problem in the domain of software change prediction. We investigate two spe-

cific approaches for efficiently learning from imbalanced datasets: data sampling

approaches and cost-sensitive classification.

• Data Sampling Approach: The approach modifies the available training data so

that the classification technique is provided with adequate number of training

instances of both change-prone and not change-prone nature. This may involve

oversampling the minority class or undersampling the majority class to provide

a nearly uniform distribution. [285, 286].

• Cost-Sensitive Classification: The approach allocates weights to different mis-

classification errors in a manner that it reduces the cost of total mis-classifications

[286, 287].

Apart from these methodologies, this chapter also illustrates as to why stable

performance measures should be adopted while evaluating models developed from

imbalanced datasets. Thus, the RQ’s investigated in the chapter are mentioned below:

• RQ1a: Does the performance of different ML techniques in this chapter sig-

nificantly improve by using various sampling approaches for ILP in software

change prediction?

316

Introduction

• RQ1b: Which sampling method performs best amongst different sampling

methods analyzed in the chapter?

• RQ2: What is the effectiveness of different MetaCost learners for improving

learning through imbalanced data?

• RQ3: What is the comparative performance of the best sampling approach and

MetaCost learner for ILP?

In order to evaluate the above RQs, we empirically evaluate six widely used open-

source datasets using six ML techniques (AB, RF, BG, LB, NB, MLP). The ILP was

addressed by using three data sampling approaches (Resampling with replacement,

Synthetic Minority Oversampling Technique (SMOTE), Spread Subsample) and by

using MetaCost learners.

Furthermore, the chapter assesses the performance using several stable perfor-

mance measures like G-Mean1, AUC and Balance and also compares these stable

performance measures with traditional measures such as “accuracy”, “recall” and

“precision”. We develop change prediction models using ten-fold cross validation

and inter-release validation and statistically evaluate the obtained results.

The organization of the chapter is as follows: Section 10.2 discusses the ILP in

detail. Section 10.3 discusses the empirical research framework and Section 10.4

describes the experimental design. Section 10.5 states the research methodology.

Section 10.6 states and analyzes the results of the experiments conducted using ten-

fold cross validation and Section 10.6 discusses the results specific to each RQ using

inter-release validation. Section 10.7 state the key findings of the chapter. The results

of the chapter are published as [284].

317

Imbalanced Learning Problem

10.2 Imbalanced Learning Problem

ILP has been extensively explored in the literature where a dataset has highly dis-

proportionate number of examples of different categories of classes. We deal with

the imbalance problem where the categories of classes are binary i.e. change-prone

or not change-prone. In general, we find that there are low number of change-prone

classes in a dataset as compared to the number of not change-prone classes. The

reason for such an observation is that software datasets adhere to Pareto principle.

The principle states that the majority of defects and changes in a software dataset

originate from only 20% of classes or modules [3]. Therefore, it is essential to de-

velop models which correctly determine these critical change-prone classes as these

classes should be rigorously monitored and designed in the early stages of software

development. Such a practice would ensure that minimum number of defects and

changes propagate to later stages of software development, leading to a good quality

and cost-effective software product.

A classification model should be such that it identifies both change-prone as well

as not change-prone classes accurately. However, if the available training data is

deficient in the number of change-prone classes (i.e. imbalanced), the model may not

be able to accurately learn the characteristics of these classes. Such models may give

highly accurate predictions of not change-prone classes, but are unable to identify

a majority of the change-prone classes. These models are sometimes incorrectly

contemplated as good classification models as they may still exhibit good overall

accuracy rates. Such models are highly incompetent and would lead to erroneous

judgments and high losses for the software organization.

Let us analyze the discussed scenario with the aid of an example. Assume a

software dataset has 1000 data points, which either belong to the change-prone cate-

318

Empirical Research Framework

gory or the not change-prone category. However, the dataset is imbalanced with only

5% of classes belonging to the change-prone category. A classification model which

uses the discussed dataset for training would be biased with very low accurate pre-

dictions for change-prone classes ranging from 0-10%, but accurate predictions for

change-prone classes (close to 100%) [118]. If we assume 10% accuracy for change-

prone classes, only 5 out of 50 change-prone classes are accurately predicted. This

is unfavorable as change-prone classes require allocation of sufficient resources so

that they can be effectively designed, scrutinized, verified and tested. A low accu-

racy for such classes would mean negligence of these classes which would degrade

software quality as higher number of defects get propagated to later stages. Simi-

larly, if we had assumed that the prediction accuracy for not change-prone classes is

low, it would mean that a number of not change-prone classes are allocated ample

resources. However, these resources are wasted as they are not required for manag-

ing such classes. This would lead to overshooting of schedule deadlines and budget

overruns leading to a poor reputation of the software organization. Thus, it is crucial

for software practitioners to effectively handle ILP where both types of misclassifi-

cations are given equal importance so that good quality products are delivered within

the allocated time and budget.

10.3 Empirical Research Framework

This section states and explains the various design decisions of the conducted ex-

periments. It includes the variables used, data collection, performance measures and

statistical tests.

319

Empirical Research Framework

10.3.1 Independent and Dependent Variables

In order to develop change prediction models, we use eighteen metrics which repre-

sent various OO characteristics. These metrics are used to predict a software quality

attribute i.e. change-proneness (dependent variable). The metrics used are six met-

rics of CK metrics suite [16] (CBO, NOC, DIT, LCOM, WMC, RFC), certain metrics

from QMOOD metrics suite [25] (CAM, NPM, MOA, MFA, and DAM) , coupling

metrics by Matin [23] (Ca & Ce), and some other commonly used metrics SLOC,

LCOM3, CBM, AMC and IC. The details of these metrics are presented in Chapter

2 (Section 2.5.1).

10.3.2 Data Collection

The chapter uses three application packages of the Android dataset (Calendar, Blue-

tooth & MMS) and three common software developed by Apache (IO, Net, Log4j).

Both Android and Apache uses GIT as the version control system. The datasets of

the chapter are collected using the DCRS tool [106]. A number of studies in liter-

ature have analyzed imbalanced data of varying nature i.e. datasets which are ma-

jorly imbalanced, moderately imbalanced to datasets which are mildly imbalanced

[286, 288, 289]. This chapter uses datasets in which percentage of change-prone

classes is in the range of 6%-37%, indicating the use of highly imbalanced to moder-

ately imbalanced datasets for developing change prediction models. The open-source

nature of the selected datasets aids the replicability of the experiment. The wide use

of Android and Apache datasets enhances the external validity of the experiment as

the results of the chapter can be applied effectively in similar scenarios.

It may be noted that the chapter validates change prediction models using both

ten-fold cross validation and inter-release validation. The datasets used for develop-

320

Empirical Research Framework

ing ten-fold cross validation models are Android Calendar 4.3.1-4.4.2 and Android

Bluetooth 4.3.1-4.4.2 with 19% change each, Android MMS 2.3.7-4.0.2 with 30%

change, Apache IO 2.3-2.4 (6% change), Apache Net 3.0-3.1 (37% change) and

Apache Log4j 1.2.16-1.2.17 with 25% change. Table 10.1 reports the dataset ver-

sions used for training and validation for developing inter-release change prediction

models. The table also denotes the percentage of changed classes in each dataset

(shown in parenthesis). The details of the number of data points in each dataset can

be referred from Appendix A.

Table 10.1: Dataset used for Inter-release Validation

Dataset Name Versions for Training Versions for Validation
Apache Net 3.0-3.1 (29%) 3.1-3.2 (51%)
Apache IO 1.3-1.4 (30%) 1.4-2.0 (60%)
Apache Log4j 1.2.13-1.2.14 (6%) 1.2.16-1.2.17 (25%)
Android Bluetooth 4.3.1-4.4.2 (16%) 5.0.2-5.1.0 (30%)
Android Calendar 4.0.2-4.0.4 (35%) 4.0.4-4.1.2 (61%)
Android MMS 2.3.7-4.0.2 (27%) 4.1.2-4.2.2 (52%)

10.3.3 Performance Measures

Appropriate performance measures are required to assess classification models which

are developed using imbalanced datasets. Previously, literature studies have criticized

the use of traditional performance measures such as precision and accuracy [110,

118, 119] in a scenario, where imbalanced datasets are used for training. On the

other hand, the favorability of using robust performance measures which include

G-Mean1, Balance and AUC have been discussed by various studies [38, 57, 118,

120, 121, 123]. We use both traditional as well as robust performance measures for

evaluating the models developed from imbalanced datasets.

321

Experimental Framework

10.3.4 Statistical Tests

In order to investigate whether there is any significant difference amongst the per-

formance of different sampling methods (RQ1), we use Friedman test. In case the

Friedman test yields significant results, we use Wilcoxon test to determine the pair-

wise differences of different sampling methods. Similarly, the pairwise differences

amongst the MetaCost learners and the best sampling method is ascertained using

Wilcoxon test (RQ3).

10.4 Experimental Framework

We first discuss the experimental design of the chapter as depicted in Figure 10.1.

According to the figure, the experiment involves three phases, which are discussed in

detail in the following sections.

10.4.1 Data Preprocessing and Feature Selection

In order to evaluate dataset characteristics, we assess the descriptive statistics of all

the independent variables of the chapter. Thereafter, we identify outliers from each

dataset using the IQR filter implemented in the WEKA tool [88]. Finally, the CFS

method is used for identifying significant predictors from each dataset.

10.4.2 Approaches for Handling Imbalanced Data

In this phase, we either use sampling methods (Resample with replacement, SMOTE,

Spread Subsample) or MetaCost learners in order to provide effective training data

for developing classification models.

322

Experimental Framework

Fi
gu

re
10

.1
:E

xp
er

im
en

ta
lD

es
ig

n
fo

rD
ev

el
op

in
g

M
od

el
s

us
in

g
Im

ba
la

nc
ed

D
at

a

323

Experimental Framework

10.4.3 Model Development and Evaluation

This phase uses six ML techniques for model development. The developed models

are validated either using ten-fold cross validation [113] or by using inter-release

validation. In order to develop inter-release validation models, we remove outliers

only from the training datasets. The performance of the models are assessed using G-

Mean1, Balance and AUC measures (stable measures) as well as accuracy, recall and

precision (traditional measures). Furthermore, statistical analysis is also performed

to evaluate the performance of different approaches for handling imbalanced data.

10.4.4 Hypothesis Evaluation using Statistical Tests

This section states the hypothesis evaluated by using the statistical tests.

Hypothesis for Friedman Test: In order to evaluate whether the use of different

sampling methods improve the performance of various ML techniques for ILP we

use Friedman test to ascertain the following hypothesis (H0, H1, H2) in RQ1. These

hypothesis assess the performance of ML techniques based on G-Mean1, Balance

and AUC values.

Alternate Hypothesis H0 /H1 /H2: Change prediction models developed using var-

ious ML techniques, when assessed using G-Mean1 /Balance /AUC performance

measure, show significant differences when various sampling methods are used for

handling ILP as compared to the scenario when no sampling method is used.

Here, the sampling methods investigated were resampling with replacement method,

SMOTE and Spread subsample.

Hypothesis for Wilcoxon Signed Rank Test: If the Friedman test yielded signif-

icant results, showing X as the best sampling method, we would perform post-hoc

Wilcoxon signed rank test with Bonferroni correction in order to evaluate the pair-

324

Research Methodology

wise comparisons amongst the performances of X and other investigated sampling

methods in RQ1.

Alternate Hypothesis H3 /H4 / H5: Change prediction models developed using var-

ious ML techniques (MLP, RF, NB, AB, LB, BG) show significant differences in

performance measures (G-Mean1, Balance and AUC) when sampling method X is

used instead of other sampling method A for handling imbalanced datasets.

Here, sampling method A corresponds to all other sampling methods used in

the chapter except the best ranked sampling method X by the Friedman test. For

example, if Resampling with replacement (Sampling Method X) is the best ranked

sampling method according to Friedman test, then sampling method A corresponds

to SMOTE and Spread Subsample.

RQ3 compares the best sampling method X and MetaCost learners for ILP on

the basis of G-Mean1, Balance and AUC performance measures. We investigate the

following hypothesis in RQ3 using Wilcoxon test.

Alternate Hypothesis H6 /H7/ H8: Change prediction models developed using vari-

ous ML techniques show significant differences in performance measures (G-Mean1,

Balance and AUC) when sampling method X is used instead of MetaCost learners.

10.5 Research Methodology

The ML techniques used in the chapter include AB, RF, BG, LB, NB, MLP. The

details of these ML techniques can be referred from Chapter 2 (Section 2.6). We use

the default parameter settings of WEKA tool [88] for simulation. This section briefly

describes the three investigated sampling methods and the MetaCost learners.

325

Research Methodology

10.5.1 Resample with Replacement

This method randomly creates a number of samples from the training data. Similar

to the bootstrapping approach, the samples are drawn with replacement. The method

influences the original distribution of the training data by oversampling the minority

class instances. A uniform class distribution is achieved by increasing the number of

training instances of change-prone classes, which are exact duplicates of the instances

present in the earlier training set. As the training samples are created randomly with

replacement, a different training sample may result each time the method is applied.

In order to reduce this bias, we perform ten iterations of the method and report the

average results. It may be noted that we use a ratio of 1:1 to obtain a uniform dis-

tribution of both change-prone and not change-prone classes. Therefore, the dataset

obtained after application of this method is balanced.

10.5.2 Spread Subsample

It is an undersampling method which eliminates the instances of the majority class.

Once appropriate number of majority class instances are removed, a better and more

uniform spread of both the categories of classes is obtained [62]. We test several

ratios for the method which range from 1:1-10:1 for each dataset. The best ratio for a

corresponding dataset may be different as it depends on the percentage of imbalance

in the dataset.

10.5.3 SMOTE

SMOTE like resampling, is an oversampling method, which adds a number of minor-

ity class instances. However, the difference between SMOTE and resampling is the

method through which new minority class instances are added. While in resampling

326

Research Methodology

the added instances are exact duplicates of the original instances of the datasets, in

SMOTE artificial instances are created. The SMOTE method first obtains k-nearest

neighbors of a specific instance of the minority class [285]. We use a k value of 5.

Thereafter, we select some of these k-nearest neighbors on the basis of oversampling

percentage. An oversampling percentage of 400% would mean four out five neigh-

bors are selected. Next, one synthetic sample is created in the direction of each of the

selected neighbor. In order to create a synthetic sample, we first need to compute the

Euclidean distance between the original sample and its selected neighbor. Thereafter,

we multiply the Euclidean distance with a random number (between 0 and 1). The

result is then added to the original sample. Thus, by creating new artificial instances,

we generalize the decision boundaries of the minority class instances [285]. We in-

vestigate five oversampling ratios for each dataset (100, 200, 300, 400 and 500) and

select the ratio which gives the best results.

10.5.4 MetaCost Learners

We have already discussed in Section 10.2 that we need to minimize both types of

misclassification errors, one that mis-classifies a change-prone class and the other

that mis-classifies a not change-prone class. MetaCost learners are used for wrap-

ping a specific classification technique in another procedure which cost-sensitizes

it. If a specific class ’m’ is classified as ’n’, we say the cost of this classification

is C(m,n). The mechanism used by MetaCost learners in order to minimize condi-

tional risk (R(m|x)) is Bayes optimal prediction. The risk evaluates the cost which

is expected if we mis-classify a class x as the one belonging to category ’m’. The

P (m|x) depicted in equation 10.1 is the probability that the class m would belong to

’m’ category. The space of all the instances are divided into ’r’ regions. Each region

327

Data Preprocessing Results

signifies that class ’m’ is the optimal prediction of that region with respect to cost.

R(m|x) =
∑
n

P (m|x)C(m,n) (10.1)

The MetaCost learners are capable of modifying the training data such data they

belong to their optimal class. In order to do so, an ensemble of classifiers is used

along with voting. Each instance is allocated a label on the basis of probability

estimates and the votes received by it. This newly created training data is used by the

base classification technique to develop a cost-sensitive prediction model [58, 287].

10.6 Data Preprocessing Results

This section describes the results of data preprocessing and analyzes them.

After analyzing the descriptive statistics of the datasets used in the chapter, we

found that the inheritance was not much used in the datasets. Also, the datasets

exhibit significantly high LCOM values. Each dataset had varying class size in terms

of SLOC.

We also determined the outliers in each dataset and removed them. The outliers

in Calendar, Bluetooth and MMS datasets were 6, 7 and 22 data points respectively.

Apache IO and Apache Net datasets had 11 and 39 data points as outliers respectively.

Apache Log4j was detected with 65 data points as outliers.

Table 10.2: Metrics Selected by CFS

Dataset Metrics Selected
Apache Net LCOM3, NOC, WMC, SLOC
Apache IO LCOM3, NPM, AMC
Apache Log4j MOA, RFC, SLOC, AMC
Android Bluetooth WMC, RFC, SLOC, CAM
Android Calendar CBO, Ce
Android MMS DAM, MOA, LCOM3, SLOC, CAM, AMC

328

Ten-fold Cross Validation Results

The OO metrics selected by the CFS method on each dataset are depicted in

Table 10.2. The most commonly selected metric was SLOC, followed by AMC and

LCOM3.

10.7 Ten-fold Cross Validation Results

This section answers the three investigated RQs of the chapter with respect to ten-fold

cross-validation results.

10.7.1 Results specific to RQ1

Tables 10.3-10.6 and Appendix D.1 report the values of different performance mea-

sures when change prediction models were developed using different sampling meth-

ods on each investigated dataset of the chapter. The tables also state the scenario

where we do not use any sampling approach. As discussed in Section 10.5, we in-

vestigated different ratios and oversampling percentages for spread subsample and

SMOTE methods. However, we only state the best values obtained by these methods

for a specific dataset.

The results depicted in Table 10.3 show that the accuracy values obtained with-

out the use of any sampling method are higher when compared with the scenario

where sampling methods are used in IO and Calendar datasets. A similar trend was

observed for a few cases in the Log4j dataset. These trends are an indicator of the

ineffectiveness of the accuracy measure. It is a biased indicator, which does not take

into account the uneven class distributions [110, 118, 152]. In all other datasets, it

was observed that in a majority of the cases, the accuracy measure was improved with

the use of sampling methods. On analyzing the recall and precision results stated in

Appendix D.1, we noticed an increase in recall and precision values in the majority

329

Ten-fold Cross Validation Results
Ta

bl
e

10
.3

:A
cc

ur
ac

y
R

es
ul

ts
us

in
g

D
iff

er
en

tS
am

pl
in

g
M

et
ho

ds

M
L

Te
ch

.
N

et
M

L
Te

ch
.

IO
M

L
Te

ch
.

L
og

4j
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

A
B

78
.0

6
81

.7
5

76
.9

2
77

.1
1

A
B

81
.4

4
86

.5
8

82
.2

2
93

.0
5

A
B

74
.6

0
71

.2
7

82
.4

6
82

.4
6

R
F

94
.8

2
85

.1
9

75
.2

7
74

.6
3

R
F

98
.1

8
85

.7
1

86
.6

7
91

.4
4

R
F

88
.9

8
81

.1
4

79
.6

5
78

.6
0

B
G

88
.7

6
84

.9
2

76
.9

2
77

.6
1

B
G

94
.1

2
84

.8
5

88
.8

9
94

.6
5

B
G

85
.3

6
79

.1
7

81
.4

0
81

.4
0

L
B

87
.3

6
83

.6
0

75
.2

7
78

.1
1

L
B

88
.9

3
85

.7
1

82
.2

2
94

.1
2

L
B

79
.9

6
76

.3
2

82
.4

6
82

.8
1

N
B

72
.4

5
66

.4
0

74
.1

8
74

.1
3

N
B

74
.6

5
78

.7
9

84
.4

4
93

.5
8

N
B

67
.5

4
59

.2
1

78
.9

5
79

.6
5

M
L

P
88

.7
5

77
.7

8
77

.4
7

76
.6

2
M

L
P

81
.5

5
84

.8
5

88
.8

9
95

.7
2

M
L

P
77

.8
9

63
.8

2
84

.2
3

81
.4

0

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.
C

al
en

da
r

M
L

Te
ch

.
M

M
S

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
A

B
95

.2
3

78
.9

0
86

.9
6

75
.3

8
A

B
74

.4
5

56
.2

2
82

.5
6

85
.0

0
A

B
79

.5
9

85
.0

5
73

.1
0

69
.9

4
R

F
96

.6
2

82
.5

7
82

.6
1

78
.4

6
R

F
80

.1
7

76
.7

6
79

.0
7

83
.0

0
R

F
95

.7
2

89
.9

5
69

.6
6

71
.6

8
B

G
91

.0
8

80
.7

3
82

.6
1

83
.0

8
B

G
78

.0
4

69
.7

3
81

.4
0

83
.0

0
B

G
89

.8
8

87
.7

5
76

.5
5

78
.6

1
L

B
96

.6
1

86
.2

4
82

.6
1

78
.4

6
L

B
77

.8
6

74
.5

9
82

.5
6

85
.0

0
L

B
84

.3
4

85
.0

5
73

.1
0

73
.9

9
N

B
83

.8
5

78
.9

0
86

.9
6

83
.0

8
N

B
54

.6
2

55
.1

4
79

.0
7

81
.0

0
N

B
77

.8
6

78
.1

9
69

.6
6

70
.5

2
M

L
P

87
.0

9
81

.6
5

73
.9

1
83

.0
8

M
L

P
71

.0
3

51
.8

9
82

.5
6

85
.0

0
M

L
P

88
.4

3
86

.0
3

75
.1

7
75

.7
2

R
e.

S
in

di
ca

te
s

R
es

am
pl

e
w

ith
R

ep
la

ce
m

en
t,

Su
bS

.i
nd

ic
at

es
Su

bs
am

pl
e

&
N

Sa
m

p.
in

di
ca

te
s

N
o

Sa
m

pl
e

Ta
bl

e
10

.4
:G

-M
ea

n1
R

es
ul

ts
us

in
g

D
iff

er
en

tS
am

pl
in

g
M

et
ho

ds

M
L

Te
ch

.
N

et
M

L
Te

ch
.

IO
M

L
Te

ch
.

L
og

4j
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

A
B

0.
78

0.
76

0.
72

0.
72

A
B

0.
81

0.
75

0.
65

0.
51

A
B

0.
73

0.
70

0.
47

0.
49

R
F

0.
95

0.
83

0.
71

0.
66

R
F

0.
98

0.
75

0.
77

0.
51

R
F

0.
89

0.
81

0.
54

0.
49

B
G

0.
89

0.
82

0.
70

0.
70

B
G

0.
94

0.
69

0.
79

0.
30

B
G

0.
85

0.
79

0.
41

0.
43

L
B

0.
87

0.
80

0.
68

0.
71

L
B

0.
89

0.
74

0.
71

0.
52

L
B

0.
79

0.
76

0.
47

0.
51

N
B

0.
70

0.
69

0.
60

0.
54

N
B

0.
73

0.
52

0.
66

0.
52

N
B

0.
60

0.
52

0.
32

0.
37

M
L

P
0.

89
0.

73
0.

65
0.

61
M

L
P

0.
81

0.
62

0.
74

0.
52

M
L

P
0.

76
0.

63
0.

48
0.

41

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.
C

al
en

da
r

M
L

Te
ch

.
M

M
S

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
A

B
0.

95
0.

79
0.

87
0.

28
A

B
0.

73
0.

48
0.

42
0.

42
A

B
0.

79
0.

76
0.

72
0.

63
R

F
0.

97
0.

83
0.

83
0.

49
R

F
0.

80
0.

77
0.

41
0.

24
R

F
0.

96
0.

86
0.

60
0.

58
B

G
0.

91
0.

81
0.

83
0.

30
B

G
0.

77
0.

70
0.

34
0.

41
B

G
0.

90
0.

81
0.

69
0.

61
L

B
0.

97
0.

86
0.

83
0.

49
L

B
0.

77
0.

75
0.

42
0.

42
L

B
0.

84
0.

77
0.

70
0.

58
N

B
0.

80
0.

79
0.

87
0.

58
N

B
0.

41
0.

51
0.

52
0.

52
N

B
0.

77
0.

74
0.

70
0.

70
M

L
P

0.
86

0.
81

0.
74

0.
51

M
L

P
0.

68
0.

52
0.

42
0.

42
M

L
P

0.
88

0.
80

0.
67

0.
62

R
e.

S
in

di
ca

te
s

R
es

am
pl

e
w

ith
R

ep
la

ce
m

en
t,

Su
bS

.i
nd

ic
at

es
Su

bs
am

pl
e

&
N

Sa
m

p.
in

di
ca

te
s

N
o

Sa
m

pl
e

330

Ten-fold Cross Validation Results

Ta
bl

e
10

.5
:B

al
an

ce
R

es
ul

ts
us

in
g

D
iff

er
en

tS
am

pl
in

g
M

et
ho

ds

M
L

Te
ch

.
N

et
M

L
Te

ch
.

IO
M

L
Te

ch
.

L
og

4j
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

A
B

77
.1

0
72

.2
9

70
.3

5
70

.1
5

A
B

79
.4

9
71

.4
9

61
.2

1
48

.5
3

A
B

70
.8

2
45

.3
8

68
.8

4
46

.6
1

R
F

94
.4

5
81

.8
3

70
.5

0
63

.5
6

R
F

97
.5

6
71

.3
7

73
.9

5
48

.4
7

R
F

88
.6

5
51

.2
6

79
.8

8
47

.5
7

B
G

88
.4

7
80

.6
3

67
.5

1
67

.4
3

B
G

93
.1

6
63

.8
9

74
.2

0
35

.7
2

B
G

84
.6

1
41

.6
7

78
.7

5
42

.8
9

L
B

87
.1

1
78

.2
4

66
.0

3
68

.5
8

L
B

86
.9

6
70

.1
6

67
.2

6
48

.5
6

L
B

77
.8

5
45

.3
8

75
.8

3
47

.8
5

N
B

67
.6

7
66

.4
3

56
.3

9
51

.6
9

N
B

70
.5

2
49

.7
0

61
.3

7
48

.5
5

N
B

55
.8

0
36

.6
7

49
.9

8
39

.1
5

M
L

P
88

.5
4

70
.4

9
61

.3
0

57
.6

3
M

L
P

77
.6

2
56

.2
9

67
.8

6
48

.5
7

M
L

P
73

.4
5

45
.4

2
62

.3
8

41
.6

7

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.
C

al
en

da
r

M
L

Te
ch

.
M

M
S

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
A

B
94

.8
5

78
.8

6
85

.8
6

35
.2

4
A

B
71

.3
2

47
.4

7
41

.7
6

41
.7

6
A

B
76

.8
3

71
.8

0
71

.5
5

61
.7

6
R

F
96

.3
7

82
.5

3
82

.5
6

47
.9

8
R

F
79

.2
4

75
.5

9
41

.6
2

33
.4

4
R

F
95

.3
2

83
.4

5
58

.7
8

56
.2

6
B

G
89

.9
5

80
.5

9
82

.5
6

35
.7

0
B

G
76

.2
8

69
.8

3
37

.6
0

41
.7

1
B

G
89

.4
2

77
.9

4
67

.0
4

57
.5

7
L

B
96

.4
9

86
.2

2
82

.5
6

47
.9

8
L

B
75

.6
7

74
.2

0
41

.7
6

41
.7

6
L

B
83

.6
2

72
.8

7
68

.9
7

55
.4

6
N

B
76

.2
3

77
.4

8
85

.8
6

54
.7

0
N

B
43

.3
4

49
.7

3
49

.7
1

49
.7

3
N

B
76

.2
3

73
.2

5
70

.2
9

70
.4

2
M

L
P

85
.1

6
80

.1
1

73
.8

4
48

.4
2

M
L

P
66

.5
5

51
.8

8
41

.7
6

41
.7

6
M

L
P

87
.4

3
77

.6
5

64
.1

5
59

.8
7

R
e.

S
in

di
ca

te
s

R
es

am
pl

e
w

ith
R

ep
la

ce
m

en
t,

Su
bS

.i
nd

ic
at

es
Su

bs
am

pl
e

&
N

Sa
m

p.
in

di
ca

te
s

N
o

Sa
m

pl
e

Ta
bl

e
10

.6
:A

U
C

R
es

ul
ts

us
in

g
D

iff
er

en
tS

am
pl

in
g

M
et

ho
ds

M
L

Te
ch

.
N

et
M

L
Te

ch
.

IO
M

L
Te

ch
.

L
og

4j
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

A
B

0.
84

0.
87

0.
80

0.
78

A
B

0.
93

0.
87

0.
84

0.
66

A
B

0.
79

0.
78

0.
64

0.
66

R
F

0.
98

0.
92

0.
83

0.
80

R
F

1.
00

0.
92

0.
81

0.
67

R
F

0.
96

0.
88

0.
62

0.
61

B
G

0.
95

0.
90

0.
81

0.
78

B
G

0.
99

0.
89

0.
74

0.
67

B
G

0.
93

0.
85

0.
65

0.
68

L
B

0.
93

0.
87

0.
81

0.
79

L
B

0.
98

0.
88

0.
86

0.
70

L
B

0.
87

0.
82

0.
65

0.
68

N
B

0.
81

0.
81

0.
78

0.
78

N
B

0.
88

0.
82

0.
85

0.
72

N
B

0.
68

0.
62

0.
58

0.
62

M
L

P
0.

89
0.

85
0.

84
0.

77
M

L
P

0.
88

0.
85

0.
84

0.
74

M
L

P
0.

80
0.

69
0.

67
0.

67

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.
C

al
en

da
r

M
L

Te
ch

.
M

M
S

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
A

B
0.

96
0.

83
0.

83
0.

66
A

B
0.

80
0.

61
0.

46
0.

43
A

B
0.

87
0.

89
0.

78
0.

76
R

F
0.

97
0.

88
0.

89
0.

70
R

F
0.

87
0.

82
0.

55
0.

61
R

F
0.

98
0.

92
0.

78
0.

61
B

G
0.

95
0.

88
0.

89
0.

77
B

G
0.

84
0.

79
0.

54
0.

54
B

G
0.

96
0.

90
0.

82
0.

79
L

B
0.

96
0.

91
0.

83
0.

67
L

B
0.

84
0.

76
0.

47
0.

49
L

B
0.

91
0.

89
0.

82
0.

79
N

B
0.

91
0.

90
0.

95
0.

85
N

B
0.

59
0.

56
0.

56
0.

58
N

B
0.

82
0.

82
0.

79
0.

79
M

L
P

0.
87

0.
88

0.
77

0.
79

M
L

P
0.

75
0.

56
0.

51
0.

53
M

L
P

0.
90

0.
88

0.
79

0.
80

R
e.

S
in

di
ca

te
s

R
es

am
pl

e
w

ith
R

ep
la

ce
m

en
t,

Su
bS

.i
nd

ic
at

es
Su

bs
am

pl
e

&
N

Sa
m

p.
in

di
ca

te
s

N
o

Sa
m

pl
e

331

Ten-fold Cross Validation Results

of the cases when the datasets were balanced using sampling methods. The no sam-

pling scenario depicted low accuracy, recall and precision values.

An analysis of G-Mean1, Balance and AUC values depicted in Table 10.4-10.6

show improvement when a sampling method was used. The AUC values improved up

to 35% with the use of sampling methods, while the G-Mean1 and Balance measures

showed an improvement of up to 60% each.

Table 10.7: Friedman Results

Using G-Mean1 values
Dataset Rank I Rank II Rank III Rank IV p-value
Net Resample (1.00) SMOTE (2.00) Subsample (3.33) No Sample (3.67) 0.001
IO Resample (1.00) Subsample (2.33) SMOTE (2.75) No Sample (3.92) 0.001
Log4j Resample (1.00) SMOTE (2.00) Subsample (3.33) No Sample (3.67) 0.001
Bluetooth Resample (1.17) Subsample (2.25) SMOTE (2.58) No Sample (4.00) 0.002
Calendar Resample (1.50) SMOTE (2.17) Subsample (3.17) No Sample (3.17) 0.052
MMS Resample (1.00) SMOTE (2.00) Subsample (3.08) No Sample (3.92) < 0.001

Using Balance values
Dataset Rank I Rank II Rank III Rank IV p-value
Net Resample (1.00) SMOTE (2.00) Subsample (3.17) No Sample (4.00) 0.001
IO Resample (1.00) SMOTE (2.00) Subsample (3.17) No Sample (4.00) 0.001
Log4j Resample (1.00) SMOTE (2.00) No Sample (3.83) Subsample (3.67) 0.001
Bluetooth Resample (1.33) Subsample (2.17) SMOTE (2.50) No Sample (4.00) 0.004
Calendar Resample (1.50) SMOTE (1.92) No Sample (3.17) Subsample (3.42) 0.018
MMS Resample (1.00) SMOTE (2.00) Subsample (3.17) No Sample (3.83) 0.001

Using AUC values
Dataset Rank I Rank II Rank III Rank IV p-value
Net Resample (1.00) SMOTE (1.67) Subsample (3.00) No Sample (4.00) 0.001
IO Resample (1.33) SMOTE (2.00) Subsample (2.67) No Sample (4.00) 0.003
Log4j Resample (1.00) SMOTE (2.17) No Sample (3.00) Subsample (3.83) 0.001
Bluetooth Resample (1.33) SMOTE (2.33) Subsample (2.50) No Sample (3.83) 0.010
Calendar Resample (1.00) SMOTE (2.17) No Sample (3.00) Subsample (3.83) 0.001
MMS Resample (1.17) SMOTE (1.83) Subsample (3.17) No Sample (3.83) 0.001

Furthermore, we also analyze the improvement in the capabilities of ML tech-

niques for developing change prediction models by testing the hypothesis stated in

Section 10.4.4 using Friedman test. The sampling method obtaining the lowest rank

in a particular scenario is considered as the best one. The degrees of freedom for

Friedman test is 3 as we compare three sampling methods and the scenario where no

sampling method is used. The test was conducted at a cutoff of 0.05. It was conducted

332

Ten-fold Cross Validation Results

on the values of performance measures attained by the change prediction models de-

veloped using all the six ML techniques on a specific dataset. The Friedman test was

assessed individually on each of the investigated dataset of the chapter.

Table 10.7 states the Friedman test results with the mean ranks stated in paren-

thesis and the p-values, when assessed using G-Mean1, Balance and AUC values on

each dataset of the chapter. The results indicate that the best rank was obtained by

the resample with replacement method in all the six datasets. According to Friedman

test results, the no sampling scenario obtained the worst ranks in all the six datasets

using G-Mean1 values and in four datasets each using AUC and Balance values. The

Friedman test results were significant in 17 out of 18 cases. Since, the resample with

replacement method significantly outperformed the other scenarios, we accept the

alternate hypothesis H0, H1 and H2. The results favor the application of a sampling

method for developing change prediction models from imbalanced datasets.

As Friedman test results were found significant, we use post-hoc Wilcoxon test

with Bonferroni correction to perform pairwise comparisons amongst resample with

replacement method and the other sampling methods. The comparisons were per-

formed using G-Mean1, Balance and AUC performance measures at a cut-off of 0.05.

The test was evaluated on the results of all the ML techniques on all the investigated

datasets of the chapter.

Table 10.8: Wilcoxon Test Results on Sampling Methods Performance

Pair G-Mean1 Balance AUC
Resample with replacement vs SMOTE ↑* (<0.001) ↑* (<0.001) ↑* (<0.001)
Resample with replacement vs Spread Subsample ↑* (<0.001) ↑* (<0.001) ↑* (<0.001)

↑* represents that the results are significantly better

The Wilcoxon test results depicted in Table 10.8 indicate that the resample with

replacement method is significantly better than all the other investigated methods

(based on G-Mean1, Balance, AUC values). The p-values depicted in parenthesis in-

333

Ten-fold Cross Validation Results

dicate that the results are statistically significant. Thus, we reject null hypothesis H3,

H4 and H5 establishing the statistical superiority of the resample with replacement

method.

Answer to RQ1

The results indicate that the performance of different ML techniques improved

with the application of different sampling methods when evaluated using G-Mean1,

Balance or AUC values. The results of Friedman and Wilcoxon tests advocate the

resample with replacement method as the best sampling method. This is because it

increases the number of minority class instances through resampling without increas-

ing the number of total training instances (as in the case of SMOTE), or by removing

instances and losing information (as in the case of Spread Subsample).

10.7.2 Results specific to RQ2

We assess the performance of different MetaCost learners by evaluating the change

prediction models developed using them on the basis of G-Mean1, Balance and AUC

values. We also evaluated the scenario when no cost-sensitive approach was used.

We assess the total cost of mis-classifications of each model for each Cost Ratio

(CR) using the following formula:

Cost = (Cost of a FN prediction * No. of FN predictions) + (Cost of an FP prediction

* No. of FP predictions)

The chapter analyzes seven different CR’s (5, 10, 15, 20, 25, 30 and 50) on each

dataset. Table 10.9-10.12 states the values of accuracy, G-Mean1, Balance and AUC

measures obtained by change prediction models developed using AB, RF, BG, LB,

NB and MLP techniques on each dataset. The models were developed using differ-

ent CR’s and the “original” technique without any CR. The recall values, precision

values and the total cost of each ML technique on each dataset using various CR’s

334

Ten-fold Cross Validation Results

are mentioned in Appendix D.2.

Table 10.9 depict the accuracy values of MetaCost learners. According to the ta-

ble, the accuracy values of change prediction models decreased with the application

of MetaCost learners as compared to the “original” technique without any CR. As

discussed in Section 10.7.1, this observation was due to the biased nature of accuracy

measure, which makes it inappropriate for evaluating models developed using imbal-

anced datasets [110, 118, 152]. The accuracy measure only accounted for the large

number of not change-prone classes and neglected the low number of change-prone

classes. This fact can be confirmed from the low recall values depicted in Appendix

D.2 (Table D.3).

The G-Mean1 values with different CR’s are depicted in Table 10.10. A decrease

in G-Mean1 values was observed in two datasets in the majority of the cases (Cal-

endar and Log4j). However, there was an improvement in G-Mean1 values in three

datasets (Bluetooth, IO and Net). The G-Mean1 values were comparable in MMS

dataset. The decrease in G-Mean1 values can be explained as it is the geometric

mean of both specificity and recall. The use of cost-sensitive MetaCost learners re-

sults in improvement of recall values (correct prediction of change-prone classes).

However, this improvement might also result in reduction of correct predictions of

not change-prone classes, which may not be compensated well by the increase in

recall values as change-prone classes are fewer in number. This can be confirmed by

observing the decrease in precision values (Appendix D.2: Table D.4). This could be

a reason for decrease in overall G-Mean1 values in two datasets of the chapter.

The Balance results using different MetaCost learners are mentioned in Table

10.11. The application of MetaCost learners led to an improvement of Balance val-

ues. We found an improvement of up to 4% and 15% respectively on Balance values

of Net and Log4j datasets. Similarly, Balance values on IO, MMS, Bluetooth and

Calendar datasets improved up to 20%, 50%, 31% and 11% respectively.

335

Ten-fold Cross Validation Results
Ta

bl
e

10
.9

:A
cc

ur
ac

y
R

es
ul

ts
of

M
et

aC
os

tL
ea

rn
er

s
us

in
g

M
L

te
ch

ni
qu

es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

77
.1

1
64

.6
8

56
.2

2
54

.7
3

53
.7

3
52

.7
4

52
.7

4
52

.7
4

A
B

82
.4

6
56

.4
9

37
.5

4
18

.9
5

20
.0

0
20

.0
0

20
.0

0
20

.0
0

R
F

74
.6

3
68

.6
6

63
.6

8
61

.6
9

59
.7

0
58

.7
1

58
.7

1
60

.2
0

R
F

78
.6

0
62

.1
1

50
.8

8
45

.9
6

42
.8

1
41

.4
0

39
.3

0
32

.9
8

B
G

77
.6

1
63

.1
8

57
.2

1
55

.2
2

52
.7

4
39

.8
0

39
.8

0
29

.3
5

B
G

81
.4

0
64

.9
1

32
.2

8
20

.0
0

20
.0

0
20

.0
0

20
.0

0
20

.0
0

L
B

78
.1

1
63

.1
8

59
.7

0
55

.7
2

55
.2

2
52

.2
4

52
.2

4
31

.3
4

L
B

82
.8

1
65

.2
6

36
.8

4
22

.4
6

20
.0

0
20

.0
0

20
.0

0
20

.0
0

N
B

74
.1

3
76

.1
2

73
.6

3
66

.6
7

65
.1

7
61

.1
9

61
.1

9
60

.7
0

N
B

79
.6

5
64

.2
1

31
.9

3
23

.1
6

22
.4

6
22

.8
1

20
.7

0
21

.0
5

M
L

P
76

.6
2

66
.6

7
62

.1
9

52
.2

4
44

.7
8

38
.3

1
38

.3
1

31
.3

4
M

L
P

81
.4

0
61

.7
5

25
.2

6
20

.0
0

20
.0

0
20

.0
0

20
.0

0
20

.0
0

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

93
.0

5
89

.8
4

89
.3

0
85

.0
3

78
.0

7
77

.0
1

76
.4

7
69

.5
2

A
B

69
.9

4
56

.4
9

37
.5

4
18

.9
5

20
.0

0
20

.0
0

20
.0

0
20

.0
0

R
F

91
.4

4
86

.1
0

86
.1

0
83

.9
6

82
.8

9
81

.2
8

78
.6

1
75

.4
0

R
F

71
.6

8
62

.1
1

50
.8

8
45

.9
6

42
.8

1
41

.4
0

39
.3

0
32

.9
8

B
G

94
.6

5
91

.4
4

90
.3

7
86

.1
0

82
.8

9
75

.9
4

62
.0

3
16

.0
4

B
G

78
.6

1
64

.9
1

32
.2

8
20

.0
0

20
.0

0
20

.0
0

20
.0

0
20

.0
0

L
B

94
.1

2
91

.4
4

86
.1

0
81

.2
8

73
.2

6
70

.0
5

65
.7

8
44

.3
9

L
B

73
.9

9
65

.2
6

36
.8

4
22

.4
6

20
.0

0
20

.0
0

20
.0

0
20

.0
0

N
B

93
.5

8
77

.5
4

73
.2

6
72

.7
3

71
.1

2
69

.5
2

67
.9

1
64

.7
1

N
B

70
.5

2
64

.2
1

31
.9

3
23

.1
6

22
.4

6
22

.8
1

20
.7

0
21

.0
5

M
L

P
95

.7
2

92
.5

1
80

.7
5

71
.6

6
66

.3
1

64
.1

7
56

.1
5

47
.5

9
M

L
P

75
.7

2
61

.7
5

25
.2

6
20

.0
0

20
.0

0
20

.0
0

20
.0

0
20

.0
0

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

75
.3

8
76

.9
2

69
.2

3
67

.6
9

66
.1

5
64

.6
2

61
.5

4
55

.3
8

A
B

75
.0

0
82

.0
0

17
.0

0
16

.0
0

16
.0

0
17

.0
0

17
.0

0
17

.0
0

R
F

78
.4

6
81

.5
4

64
.0

6
63

.0
8

60
.0

0
58

.4
6

56
.9

2
55

.3
8

R
F

50
.0

0
68

.0
0

33
.0

0
31

.0
0

29
.0

0
26

.0
0

25
.0

0
23

.0
0

B
G

83
.0

8
76

.9
2

66
.1

5
61

.5
4

46
.1

5
26

.1
5

18
.4

6
16

.9
2

B
G

50
.0

0
74

.0
0

17
.0

0
17

.0
0

17
.0

0
17

.0
0

17
.0

0
17

.0
0

L
B

78
.4

6
73

.8
5

72
.3

1
63

.0
8

63
.0

8
55

.3
8

50
.7

7
44

.6
2

L
B

75
.0

0
78

.0
0

25
.0

0
18

.0
0

16
.0

0
16

.0
0

16
.0

0
17

.0
0

N
B

83
.0

8
84

.6
2

78
.4

6
76

.9
2

75
.3

8
75

.3
8

75
.3

8
75

.3
8

N
B

41
.6

7
73

.0
0

64
.0

0
34

.0
0

17
.0

0
17

.0
0

17
.0

0
17

.0
0

M
L

P
83

.0
8

75
.3

8
64

.6
2

56
.9

2
50

.7
7

47
.6

9
44

.6
2

33
.8

5
M

L
P

75
.0

0
73

.0
0

16
.0

0
17

.0
0

17
.0

0
17

.0
0

17
.0

0
17

.0
0

O
rg

.i
nd

ic
at

es
O

ri
gi

na
l;

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

336

Ten-fold Cross Validation Results

Ta
bl

e
10

.1
0:

G
-M

ea
n1

R
es

ul
ts

of
M

et
aC

os
tL

ea
rn

er
s

us
in

g
M

L
te

ch
ni

qu
es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

0.
72

0.
69

0.
62

0.
60

0.
59

0.
58

0.
58

0.
58

A
B

0.
49

0.
58

0.
47

0.
0

0.
0

0.
0

0.
0

0.
0

R
F

0.
66

0.
70

0.
68

0.
66

0.
65

0.
64

0.
64

0.
66

R
F

0.
49

0.
58

0.
55

0.
52

0.
49

0.
48

0.
47

0.
41

B
G

0.
70

0.
67

0.
62

0.
61

0.
58

0.
38

0.
38

0.
0

B
G

0.
43

0.
55

0.
40

0.
0

0.
0

0.
0

0.
0

0.
0

L
B

0.
71

0.
68

0.
65

0.
61

0.
61

0.
57

0.
57

0.
19

L
B

0.
51

0.
62

0.
46

0.
20

0.
0

0.
0

0.
0

0.
0

N
B

0.
54

0.
67

0.
73

0.
70

0.
70

0.
67

0.
67

0.
66

N
B

0.
37

0.
59

0.
40

0.
23

0.
21

0.
21

0.
13

0.
13

M
L

P
0.

61
0.

70
0.

68
0.

57
0.

48
0.

36
0.

36
0.

17
M

L
P

0.
41

0.
62

0.
26

0.
0

0.
0

0.
0

0.
0

0.
0

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

0.
51

0.
58

0.
65

0.
69

0.
66

0.
65

0.
65

0.
67

A
B

0.
63

0.
63

0.
91

0.
66

0.
65

0.
65

0.
64

0.
59

R
F

0.
51

0.
49

0.
63

0.
63

0.
62

0.
62

0.
61

0.
59

R
F

0.
58

0.
58

0.
69

0.
67

0.
93

0.
66

0.
66

0.
64

B
G

0.
30

0.
51

0.
65

0.
63

0.
62

0.
59

0.
58

0.
32

B
G

0.
61

0.
61

0.
68

0.
64

0.
63

0.
65

0.
64

0.
48

L
B

0.
52

0.
59

0.
63

0.
62

0.
58

0.
67

0.
65

0.
52

L
B

0.
58

0.
58

0.
68

0.
62

0.
59

0.
58

0.
57

0.
52

N
B

0.
52

0.
66

0.
77

0.
77

0.
76

0.
75

0.
74

0.
72

N
B

0.
70

0.
64

0.
70

0.
70

0.
69

0.
70

0.
70

0.
72

M
L

P
0.

52
0.

51
0.

72
0.

72
0.

73
0.

72
0.

67
0.

61
M

L
P

0.
62

0.
62

0.
68

0.
65

0.
65

0.
65

0.
66

0.
65

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

0.
28

0.
75

0.
71

0.
70

0.
69

0.
71

0.
69

0.
64

A
B

0.
42

0.
61

0.
11

0.
0

0.
0

0.
0

0.
0

0.
0

R
F

0.
49

0.
78

0.
70

0.
70

0.
67

0.
66

0.
65

0.
64

R
F

0.
24

0.
55

0.
42

0.
41

0.
39

0.
35

0.
33

0.
30

B
G

0.
30

0.
75

0.
72

0.
69

0.
56

0.
35

0.
18

0.
0

B
G

0.
41

0.
49

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

L
B

0.
49

0.
77

0.
72

0.
67

0.
67

0.
61

0.
58

0.
55

L
B

0.
42

0.
59

0.
33

0.
15

0.
0

0.
0

0.
0

0.
0

N
B

0.
58

0.
80

0.
76

0.
75

0.
74

0.
74

0.
78

0.
81

N
B

0.
52

0.
49

0.
56

0.
43

0.
0

0.
0

0.
0

0.
0

M
L

P
0.

51
0.

74
0.

71
0.

65
0.

62
0.

59
0.

57
0.

45
M

L
P

0.
42

0.
49

0.
10

0.
0

0.
0

0.
0

0.
0

0.
0

O
rg

.i
nd

ic
at

es
O

ri
gi

na
l;

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

337

Ten-fold Cross Validation Results
Ta

bl
e

10
.1

1:
B

al
an

ce
R

es
ul

ts
of

M
et

aC
os

tL
ea

rn
er

s
us

in
g

M
L

te
ch

ni
qu

es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

70
.1

5
67

.3
5

58
.5

4
55

.6
2

54
.6

2
53

.6
3

53
.6

3
53

.1
8

A
B

46
.6

1
57

.6
3

46
.2

6
29

.1
9

29
.2

9
29

.2
9

29
.2

9
29

.2
9

R
F

63
.5

6
70

.0
9

66
.4

2
64

.4
6

62
.4

1
60

.9
9

60
.9

9
61

.0
9

R
F

47
.5

7
58

.1
3

54
.8

3
51

.9
5

49
.1

8
48

.4
0

47
.0

0
42

.3
3

B
G

67
.4

3
65

.9
4

59
.9

9
57

.2
5

54
.4

3
39

.7
5

39
.7

5
29

.2
9

B
G

42
.8

9
55

.0
5

41
.5

3
29

.2
9

29
.2

9
29

.2
9

29
.2

9
29

.2
9

L
B

68
.5

8
65

.9
5

60
.9

9
56

.6
1

55
.6

7
53

.1
3

53
.1

3
31

.7
7

L
B

47
.8

5
61

.4
2

45
.7

4
32

.0
4

29
.2

9
29

.2
9

29
.2

9
29

.2
9

N
B

51
.6

9
65

.0
0

73
.4

1
69

.1
5

67
.5

3
63

.1
6

63
.1

6
62

.3
5

N
B

39
.1

5
58

.3
7

41
.6

3
33

.1
4

32
.5

2
32

.3
5

30
.4

9
30

.5
2

M
L

P
57

.6
3

69
.0

7
63

.4
7

53
.5

5
46

.1
0

38
.2

5
38

.2
5

31
.2

8
M

L
P

41
.6

7
62

.2
7

34
.2

4
29

.2
9

29
.2

9
29

.2
9

29
.2

9
29

.2
9

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

48
.5

3
54

.7
4

61
.0

2
66

.5
6

64
.7

5
64

.4
2

64
.2

4
66

.6
1

A
B

61
.7

6
61

.7
6

91
.3

3
61

.1
6

60
.6

0
59

.5
7

58
.4

4
54

.5
2

R
F

48
.4

7
48

.0
7

60
.6

0
60

.2
4

60
.0

4
59

.7
1

59
.0

8
58

.2
2

R
F

56
.2

6
56

.2
6

65
.4

7
62

.6
9

93
.0

0
62

.1
3

61
.5

7
58

.4
4

B
G

35
.7

2
48

.4
7

61
.1

3
60

.6
0

60
.0

4
58

.3
7

58
.3

3
37

.0
0

B
G

57
.5

7
57

.5
7

64
.3

6
59

.4
8

58
.9

2
59

.5
9

57
.9

1
45

.5
6

L
B

48
.5

6
54

.8
6

60
.6

0
59

.7
1

57
.5

7
66

.8
7

64
.7

5
52

.3
0

L
B

55
.4

6
55

.4
6

64
.1

4
58

.2
3

55
.0

0
54

.4
4

52
.8

4
48

.9
1

N
B

48
.5

5
64

.5
9

76
.8

2
76

.4
9

75
.4

7
74

.4
3

73
.3

9
71

.2
5

N
B

70
.4

2
63

.7
0

68
.4

3
68

.4
5

66
.8

6
67

.6
9

67
.6

9
69

.5
9

M
L

P
48

.5
7

48
.5

2
71

.2
5

72
.1

5
72

.3
2

70
.8

9
65

.3
8

59
.3

4
M

L
P

59
.8

7
59

.8
7

63
.4

0
61

.0
2

60
.6

0
60

.6
0

60
.6

9
59

.5
7

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

35
.2

4
75

.1
2

70
.5

5
69

.5
5

68
.5

2
69

.6
4

67
.2

5
62

.3
8

A
B

41
.7

6
57

.8
5

30
.0

2
29

.1
7

29
.1

7
29

.2
9

29
.2

9
29

.2
9

R
F

47
.9

8
77

.4
0

69
.0

8
68

.4
5

66
.0

4
64

.8
3

63
.6

1
62

.3
8

R
F

33
.4

4
54

.3
8

43
.2

3
42

.4
0

40
.7

4
38

.0
9

37
.2

7
35

.6
2

B
G

35
.7

0
75

.1
2

70
.8

3
67

.2
5

54
.9

2
38

.4
1

31
.6

1
29

.2
9

B
G

41
.7

1
48

.6
8

29
.2

9
29

.2
9

29
.2

9
29

.2
9

29
.2

9
29

.2
9

L
B

47
.9

8
76

.5
2

72
.4

7
66

.4
1

66
.4

1
60

.8
7

57
.4

1
53

.6
6

L
B

41
.7

6
57

.1
7

37
.2

5
30

.8
7

29
.1

7
29

.1
7

29
.1

7
29

.2
9

N
B

54
.7

0
78

.6
5

75
.9

3
75

.1
2

74
.2

8
74

.2
8

77
.6

1
79

.3
3

N
B

49
.7

3
48

.4
8

56
.0

6
44

.0
2

29
.2

9
29

.2
9

29
.2

9
29

.2
9

M
L

P
48

.4
2

74
.2

8
69

.6
4

63
.6

1
58

.9
0

56
.3

1
53

.7
2

44
.6

3
M

L
P

41
.7

6
48

.4
8

29
.6

5
29

.2
9

29
.2

9
29

.2
9

29
.2

9
29

.2
9

O
rg

.i
nd

ic
at

es
O

ri
gi

na
l;

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

338

Ten-fold Cross Validation Results

Ta
bl

e
10

.1
2:

A
U

C
R

es
ul

ts
of

M
et

aC
os

tL
ea

rn
er

s
us

in
g

M
L

te
ch

ni
qu

es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

0.
78

0.
79

0.
79

0.
71

0.
70

0.
72

0.
72

0.
76

A
B

0.
66

0.
62

0.
65

0.
50

0.
50

0.
50

0.
50

0.
50

R
F

0.
80

0.
79

0.
78

0.
75

0.
73

0.
73

0.
72

0.
72

R
F

0.
61

0.
58

0.
53

0.
52

0.
51

0.
51

0.
57

0.
49

B
G

0.
78

0.
76

0.
69

0.
66

0.
68

0.
63

0.
54

0.
50

B
G

0.
68

0.
60

0.
60

0.
50

0.
50

0.
50

0.
50

0.
50

L
B

0.
79

0.
78

0.
80

0.
79

0.
77

0.
78

0.
78

0.
50

L
B

0.
68

0.
65

0.
66

0.
60

0.
52

0.
52

0.
52

0.
52

N
B

0.
78

0.
78

0.
79

0.
79

0.
78

0.
79

0.
77

0.
75

N
B

0.
62

0.
61

0.
54

0.
60

0.
60

0.
60

0.
61

0.
62

M
L

P
0.

77
0.

76
0.

74
0.

75
0.

75
0.

53
0.

51
0.

30
M

L
P

0.
67

0.
70

0.
52

0.
36

0.
31

0.
30

0.
29

0.
29

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

0.
66

0.
63

0.
68

0.
71

0.
75

0.
75

0.
77

0.
76

A
B

0.
76

0.
66

0.
79

0.
79

0.
80

0.
80

0.
80

0.
80

R
F

0.
67

0.
64

0.
68

0.
70

0.
68

0.
67

0.
68

0.
69

R
F

0.
61

0.
52

0.
78

0.
73

0.
71

0.
71

0.
72

0.
74

B
G

0.
67

0.
71

0.
71

0.
66

0.
70

0.
70

0.
58

0.
51

B
G

0.
79

0.
56

0.
71

0.
72

0.
70

0.
70

0.
74

0.
61

L
B

0.
70

0.
68

0.
74

0.
73

0.
75

0.
73

0.
74

0.
70

L
B

0.
79

0.
61

0.
80

0.
76

0.
78

0.
78

0.
81

0.
78

N
B

0.
72

0.
76

0.
77

0.
77

0.
77

0.
77

0.
76

0.
74

N
B

0.
79

0.
62

0.
77

0.
78

0.
78

0.
78

0.
78

0.
78

M
L

P
0.

74
0.

68
0.

69
0.

79
0.

76
0.

79
0.

74
0.

73
M

L
P

0.
80

0.
54

0.
70

0.
71

0.
71

0.
71

0.
72

0.
75

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

0.
66

0.
76

0.
70

0.
74

0.
72

0.
73

0.
72

0.
69

A
B

0.
43

0.
66

0.
44

0.
47

0.
48

0.
50

0.
50

0.
50

R
F

0.
70

0.
78

0.
76

0.
80

0.
79

0.
77

0.
77

0.
76

R
F

0.
61

0.
52

0.
44

0.
47

0.
48

0.
49

0.
49

0.
48

B
G

0.
77

0.
77

0.
78

0.
73

0.
63

0.
48

0.
50

0.
50

B
G

0.
54

0.
56

0.
50

0.
50

0.
50

0.
50

0.
50

0.
50

L
B

0.
67

0.
78

0.
73

0.
76

0.
75

0.
66

0.
69

0.
69

L
B

0.
49

0.
61

0.
43

0.
46

0.
39

0.
50

0.
50

0.
51

N
B

0.
85

0.
87

0.
86

0.
87

0.
86

0.
86

0.
86

0.
87

N
B

0.
58

0.
62

0.
61

0.
54

0.
56

0.
59

0.
59

0.
59

M
L

P
0.

79
0.

81
0.

82
0.

81
0.

76
0.

78
0.

73
0.

66
M

L
P

0.
53

0.
54

0.
41

0.
42

0.
42

0.
42

0.
42

0.
42

O
rg

.i
nd

ic
at

es
O

ri
gi

na
l;

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

339

Ten-fold Cross Validation Results

The AUC results of MetaCost learners depicted in Table 10.12 exhibit that certain

CR’s showed an improvement of 2%, 5%, 23%, 5% and 5% respectively on each of

Log4j, IO, MMS, Bluetooth and Calendar datasets.

The results were statistically assessed using Friedman test on G-Mean1, Balance

and AUC values to ascertain the performance of different MetaCost learners as com-

pared to the “original” technique. The Friedman test results using MetaCost learners

were found significantly better that the “original” technique in three, five and six

datasets each using AUC, Balance and G-Mean1 values respectively. As we found

that the results using MetaCost learners were better that the “original” technique, in a

majority of the cases, these techniques are favorable for learning through imbalanced

data.

It was observed that each dataset gave the best results with a different CR. Also,

the cost of the model for each CR (Appendix D.2: Table D.5) was considered while

choosing the best CR for a specific dataset. A CR of 5 gave the best results on Net,

Log4j, Bluetooth and Calendar datasets. A CR=10 was evaluated as the best one for

the MMS dataset, while a CR=15 was the best one on IO dataset. Therefore, similar

to the recommendation of Seliya and Khoshgoftaar [58], we advocate that developers

should evaluate varied CR’s in order to assess the best MetaCost learners on specific

datasets.

Answer to RQ2

The analysis of the results indicate that MetaCost learners are effective in han-

dling ILP. The statistical analysis signify improved results with the application of

MetaCost learners as compared to the original technique. However, one may have

to evaluate varied CR’s in order to ascertain the best one for a specific dataset. The

application of a MetaCost learner with an effective CR leads to improvement in the

G-Mean1, Balance and AUC values of the developed change prediction model.

340

Ten-fold Cross Validation Results

10.7.3 Results specific to RQ3

The results of RQ1 indicate the resampling with replacement as the best sampling

method. We now assess the pairwise performance of the resample with replacement

method with the best MetaCost learner for each dataset. In order to do so, Wilcoxon

signed rank test is conducted using G-Mean1, Balance and AUC values of change

prediction models at a cut-off of α = 0.05. We conduct the test on each dataset

individually to test hypothesis H6, H7 and H8.

Wilcoxon test results are reported in Table 10.13 with its p-value (shown in paren-

thesis). According to the results, the Resample with replacement method signifi-

cantly outperformed the MetaCost learners in the majority of the cases (p-value <

0.05). Only in MMS and IO datasets for the Balance values and in MMS dataset

for the G-Mean1 values, the results are not significant. However, in these cases too,

the resample method showed better results than the corresponding MetaCost learner.

Thus, we accept the alternate hypothesis H6, H7 and H8. Therefore, the Resample

with replacement method is significantly better than the MetaCost learners.

Table 10.13: Wilcoxon Test Results on Resample Method vs MetaCost Learners

Dataset G-Mean1 Balance AUC
Net ↑* (0.046) ↑* (0.028) ↑* (0.027)
IO ↑* (0.046) ↑ (0.075) ↑* (0.027)
Log4j ↑* (0.028) ↑* (0.046) ↑* (0.028)
Bluetooth ↑* (0.028) ↑* (0.046) ↑* (0.027)
Calendar ↑* (0.046) ↑* (0.046) ↑* (0.046)
MMS ↑ (0.075) ↑ (0.075) ↑* (0.027)
↑* represents that the results are significantly better; ↑ represents results are better but not significantly

Answer to RQ3

On comparing resample with replacement (the best sampling method) with Meta-

Cost learners, we found that the sampling method develops better change prediction

models. These results were advocated by Wilcoxon signed rank test on G-Mean1,

341

Inter-Release Validation Results

Balance and AUC performance measures. The reason for better results using the

resampling method could be the equal ratio of change-prone and not change-prone

training instances provided by the method on each dataset. On the contrary, MetaCost

learners always need to cost-sensitize the results with different CR’s and achieve an

optimum balance between recall and correct prediction of not change-prone classes.

However, this balance may not be always as good as the equal ratio provided by the

resample with replacement method.

10.8 Inter-Release Validation Results

This section discusses the results of inter-release validation models which are de-

veloped using imbalanced datasets. For each dataset, we first develop models using

imbalanced training data of a specific version. Thereafter, these developed models

are validated on another version of the same dataset. The details of specific versions

of datasets for training and validation can be referred from Section 10.3.2.

In order to develop models, we remove outliers from training datasets. The per-

centage change reported in Table 10.1 is the one we obtain after conducting the outlier

removal step. All the other steps are the same as the ones discussed in Section 10.4.

The following subsections discuss the answers to the investigated RQs with respect

to the results of inter-release validation models.

10.8.1 Results specific to RQ1

The accuracy results of inter-release validation models improved with the applica-

tion of sampling methods in four of the investigated datasets. Though, the accuracy

values declined in Bluetooth and Log4j datasets, this can be attributed to the biased

nature of the accuracy measure, which makes it an ineffective evaluator for models

342

Inter-Release Validation Results

developed using imbalanced data [110, 118, 152]. We found that more number of

change-prone classes were correctly predicted when sampling methods were used

before model development. This trend was ascertained from the improvement in re-

call values. An analysis of precision values indicate a decrease in the obtained values

with the application of sampling methods. However, when we analyzed both recall

and precision collectively, we observed that in a majority of the cases, there was only

a decrease of 10% in precision values but there was an increase of 30% in recall val-

ues in certain cases. Thus, the decrease in precision values is not much as compared

to improvement of recall values. As discussed by Menzies et al. [119], predictive

models should attain both high precision and recall values, however, in order to op-

timize one of these measures, the other may have to be compromised especially for

imbalanced datasets with low number of positive (change-prone) instances. Also, a

certain decrease in precision values means that few resources might get wasted when

allocated to classes which are not change-prone but are predicted as change-prone

but critical change-prone classes will not be missed by software practitioners as the

models exhibit high recall values.

On the application of Friedman test on G-Mean1 values, we found that the re-

sults using inter-release validation showed positive improvement in all the cases, as

the “No Sample” scenario obtained poor ranks than the other investigated sampling

methods. These results were found significant on all the datasets except the Blue-

tooth dataset. Similar trends were observed when Friedman test was applied using

Balance and AUC values. Though the evaluated Balance results were found better

on all the six datasets, they were found statistically significant on only four datasets.

An analysis of AUC results also indicated their improvement with the application of

sampling methods. However, the results were found statistically significant on only

two datasets using Friedman test. Thus, we advocate the use of sampling methods

for providing balanced training data in order to develop effective change prediction

343

Inter-Release Validation Results

models using ML techniques. These models exhibit better G-Mean1, Balance and

AUC values.

In order to assess the best sampling method, we analyzed all the eighteen cases

of Friedman test (applied on six datasets each using G-Mean1, Balance and AUC

values). The resample with replacement method obtained the best rank in seven out of

these eighteen cases. Moreover, these ranks were significant in four cases. The inter-

release validation results were found comparable to ten-fold cross validation results

as Resample with replacement method is advocated as the best sampling method

amongst the investigated methods. We also observed that the subsample method was

designated as the best sampling method significantly in six cases. Therefore, we also

promote its use as a sampling method.

10.8.2 Results specific to RQ2

Similar to the case of ten-fold cross validation models, we evaluated the inter-release

validation results using seven CR’s, which were 5, 10, 15, 20, 25, 30 and 50. Also,

these results were compared with the “original” scenario when no cost-sensitive ap-

proach was applied. We observed an increase in the accuracy values of inter-release

validation models in only three datasets (Net, IO and MMS), with the use of Meta-

Cost learners. These trends were acceptable due to incompetency of accuracy values

for assessing change prediction models developed using imbalanced datasets. More-

over, there was a drastic improvement in recall values in five datasets. The precision

values depicted an improvement or were comparable in three datasets (Net, IO and

Calendar), while there was a decrease in precision values in other datasets. As we

discussed earlier, precision values may have to be compromised to achieve high recall

values [119].

An analysis of G-Mean1, Balance and AUC values indicate an improvement with

344

Inter-Release Validation Results

the application of MetaCost learners as compared to the “original” scenario. A sta-

tistical analysis was conducted using Friedman test at α = 0.05 on each dataset by

using G-Mean1, Balance and AUC values. It was found that the G-Mean1 and Bal-

ance results using a specific CR outperformed the “original” scenario significantly

in five datasets each. Similarly the AUC results using MetaCost learners were sig-

nificantly better in three datasets. Thus, these results support the use of MetaCost

learners for ILP.

Similar to ten-fold cross validation results, we found that the best results on a

specific dataset was obtained by a different CR (Net: CR=25, Log4j: CR=5, IO:

CR=5, Bluetooth: CR=10, MMS: CR=15 and Calendar: CR=5).

10.8.3 Results specific to RQ3

We compare the results of the best sampling method (resample with replacement)

with the MetaCost learners using inter-release change prediction models. The com-

parison was done using Wilcoxon test at α = 0.05 on the basis of G-Mean1, Balance

and AUC values. The Wilcoxon test results using G-Mean1 values indicate signifi-

cantly better results of the MetaCost learners on four datasets. However, in Calendar

dataset the G-Mean1 values of resampling method were better than the MetaCost

learner. However, these results were quite contradictory in the case of Balance val-

ues. In four out of six datasets, the Resample method performed better than the

MetaCost learners, but not significantly.

On analyzing the Wilcoxon test results on AUC values, we found that the resam-

ple method outperformed the MetaCost learners on five datasets. However, the results

were significant in only one dataset. The results of resample method and MetaCost

learner were found equivalent on the Net dataset.

The above discussed results indicate that though the Resample with replacement

345

Discussion

method is better than the MetaCost learners in a majority of the cases, the results are

not significant. Thus, we conclude that the results of the inter-release change pre-

diction models are comparable to that of the ten-fold cross validation models as the

Resample with replacement method could not significantly outperform the MetaCost

learners using G-Mean1, Balance and AUC values.

10.9 Discussion

The chapter developed and analyzed change prediction models using six imbalanced

software datasets. In order to deal with ILP, we used three data sampling methods

(Resample with replacement, Spread subsample and SMOTE) and MetaCost learn-

ers using seven different CRs. The change prediction models were developed using

six ML techniques. The developed models were validated using two approaches:

ten-fold cross validation and inter-release validation. The models were assessed us-

ing three unbiased and robust performance measures namely G-Mean1, Balance and

AUC. Moreover, the trend of traditional measures like accuracy, recall and precision

was also observed on models developed by using different techniques for imbalanced

learning. The main contribution of the chapter is to advocate the use of different

methods for handling imbalanced datasets as the use of such methods leads to vast

improvement in the results of the change prediction models. We also conducted sta-

tistical analysis of the obtained results to strengthen our findings. The key findings

of the chapter are reported as follows:

1. The performance of various ML techniques significantly improved after use of

different sampling methods. Moreover, the resample with replacement method

gave the best results when evaluated in terms of G-Mean1, Balance and AUC

performance measures. However, the other two sampling methods i.e. SMOTE

346

Discussion

and spread subsample also showed good results.

2. The use of MetaCost learners is yet another efficient way of handling ILP as

they sensitize the ML technique by providing different costs for different kinds

of misclassification errors so that the total overall cost of misclassification is

decreased and the performance of the developed change prediction model im-

proves. However, one should evaluate different CRs on a specific dataset to

identify the best CR that works well on it.

3. A comparative performance of the best sampling method i.e. resample with

replacement with the MetaCost learner having the most effective CR on all the

datasets reveals that the sampling method significantly outperforms the Meta-

Cost learners. The results were supported by both ten-fold cross validation

models and inter-release validation models, when evaluated on the basis of

G-Mean1, Balance and AUC performance measures. These results advocate

that providing effective training data using resampling is a better approach for

handling ILP rather than cost-sensitizing the learners.

Thus, the results of the chapter can be used by software practitioners and researchers

to develop effective change prediction models when faced with imbalanced datasets.

Moreover, such models can be developed using optimum costs.

347

Chapter 11

Analyzing Evolution-based Metrics

Suite & the Evolution Patterns of

Object-Oriented Metrics

11.1 Introduction

Evolution of a software is essential to keep it useful and functional. However, the

quality of an evolving software may degrade due to improper incorporation of changes.

In order to keep a track of software quality, one may assess the trends of OO design

metrics during evolution as these metrics are effective indicators of the structure of

classes, which are more prone to change in an OO software. Previous literature stud-

ies [4, 5, 27–29, 142] and previous chapters have proposed successful use of these de-

sign metrics to predict change-prone classes. Simply the prediction of change-prone

parts does not lead to software quality improvement. The essence of analyzing met-

rics during the evolution of a software is to outline a systematic plan which strength-

349

Introduction

ens its internal structure and prevents its degeneration. Furthermore, apart from OO

metrics, which are a category of product metrics, other process metrics should also

be evaluated for effective prediction of change-prone classes. This research gap was

analyzed from the review conducted in Chapter 3. Thus, we ascertain the capabil-

ity of evolution-based metrics suite, which quantifies the release by release history

of changes in a software by developing software change prediction models. These

metrics are representative of evolution characteristics of a class over all its previous

releases and are important in order to understand the progression and change-prone

nature of a class.

A recent study by Elish and Al-Khiaty [1] suggested the use of evolution-based

metrics for prediction of change-prone classes. Analyzing only the previous release

of a software, is not sufficient in order to understand how a system would evolve and

which are the possible classes which are likely to change in the forthcoming releases

of the software product [1]. As evolution-based metrics encompass evolution history

of how the class has evolved over all the previous releases of the software, they

represent a crucial and significant dimension. This dimension is not encapsulated by

OO design metrics. Hence, it is important to analyze both OO metrics along with

evolution-based metrics in order to develop competent change prediction models.

Also, it should be noted that it is not always necessary that evaluating and analyzing

different software dimensions such as change history and structural properties would

lead to a vast difference in the performance of developed models. However, even

a little improvement in the performance can effectively save a number of software

resources by proper planning and allocation.

Therefore, the current chapter has two main objectives:

• Analyze the evolution trends of 7 popular OO metrics, which depict four pri-

mary characteristics of a class in an OO software i.e. its reusability, its depen-

350

Introduction

dence on other classes, its cohesiveness and size.

• Evaluate the use of evolution-based metrics when used in conjunction with OO

metrics for prediction of change-prone classes.

In order to empirically validate the results, the chapter uses two application pack-

ages of the Android software namely Contacts and Gallery2. The experiments are

conducted over five versions (4.0.2-4.3.1) of the Android software.

With respect to the first objective, we examine the trends of CK metrics suite

[16], along with the SLOC metric. The CK metrics suite was chosen as it was found

to be the most popular metrics suite in literature for developing effective change pre-

diction models [5, 30, 31, 33, 36, 257, 284]. The seven investigated metrics were

categorized into four dimensions: size dimension (WMC and SLOC), cohesion di-

mension (LCOM), coupling dimension (CBO and RFC) and inheritance dimension

(DIT and NOC). In order to examine the trends, we extracted the classes which were

common to each of the five investigated versions (4.0.2-4.3.1) of the Android soft-

ware. These common classes were then divided into two categories i.e. Changed

Classes (CC) and Unchanged Classes (UCC) on the basis of whether a class had un-

dergone change in any of the five investigated versions or not. The characteristics

of both the categories of classes were examined to ascertain the generalized trends.

Furthermore, the actually changed classes in each consecutive version were also ob-

served on the basis of change in its metric values along each dimension. The change

in metric values were divided into three categories viz. “Constant”, “Increasing” and

“Decreasing”.

With respect to the second objective, the chapter explores the best possible met-

rics suite for prediction of change-prone classes and evaluates four possibilities: i)

Evolution-based metrics used in conjunction with OO metrics, ii) Only evolution-

based metrics iii) Only OO metrics and iv) Internal class probability of changes

351

Introduction

(ICP) metric in a class, for developing change prediction models. Similar to the

investigation of RQ1, the OO metrics used were CK metrics suite along with the

SLOC metric. The evolution-based metrics suite consists of sixteen metrics pro-

posed by Elish & Al-Khiaty [1]. We develop change prediction models using six

ML techniques (MLP, NB, RF, AB, BG, LB) and the statistical technique LR. Vari-

ous classification techniques were used so as to ascertain whether an effective metric

suite differs with a different classification technique or the performance of the metric

suite is consistent with different techniques. The performance of the models were

analyzed using accuracy and AUC performance measures. In order to determine the

best set of change-prone predictors, the comparative results of the change prediction

models developed in the chapter were statistically evaluated using Wilcoxon signed

rank test with Bonferroni correction. The RQs addressed in the chapter are:

• RQ1: What are the evolution trends of the investigated OO metrics with respect

to (i) size, (ii) cohesion, (iii) coupling and (iv) inheritance dimensions?

• RQ2: Which evolution-based metrics are appropriate predictors of change-

prone nature of a class?

• RQ3: What is the capability of the models developed using (i) combined met-

rics suite (evolution-based and OO) vs only evolution-based metrics, (ii) com-

bined metrics suite vs only OO metrics and (iii) combined metrics suite vs the

models developed using the ICP metric of a class?

• RQ4: Is the superiority of the combined metrics suite for determining change-

prone nature of a class statistically significant as compared to other metrics

suite?

RQ1 investigates the evolution trends of OO metrics with respect to four dimen-

sions (size, cohesion, coupling and inheritance). RQ2 evaluates the evolution-based

352

Empirical Research Framework

metrics, which are significant predictors of change in a class. RQ3 investigates the

comparative performance of combined metrics suite with three other scenarios i.e.

models developed using only the evolution-based metrics, models developed using

only the OO metrics and models developed using the ICP metric. RQ4 statistically

compares the performance of the combined metrics suite with the change prediction

models developed in the other three scenarios.

The organization of the chapter is as follows: Section 11.2 describes the empirical

research framework, while section 11.3 states the experimental design. Section 11.4

states the results and answers of each RQ. A comparison of the chapter’s results with

previous studies is stated in section 11.5. The key findings of the chapter are included

in Section 11.6. The results of the chapter are published as [290] and communicated

as [291].

11.2 Empirical Research Framework

This section states the dependent and independent variables and the data collection.

11.2.1 Dependent and Independent Variables

In order to answer RQ1, we only analyze the trends of CK metrics suite [16] and

the SLOC metric. However, in order to answer RQ2-RQ4, we need to develop

change prediction models. For developing such models, the dependent variable used

is change-proneness. The independent variables used for developing these models

can be divided into three categories: i) evolution-based metrics suite; ii) OO metrics

(CK metrics suite and the SLOC metric) and the iii) ICP metric. The definition of the

CK metrics suite and the SLOC metric can be referred from Section 2.5.1 (Chapter

2). We define the evolution-based metrics suite and the ICP metric in the following

353

Empirical Research Framework

sections.

Evolution-based Metrics Suite: A brief explanation of the various evolution-

based metrics used in the chapter is given in Table 11.1. They are explained in detail

by Elish and Al-Khiaty [1].

Table 11.1: Evolution-based Metrics [1]

Metric Name Acronym Definition
Birth Of a Class BOC This metric reports the release number when a specific class appears for the

first time.
Total Amount of

Changes

TACH This metric reports the number of added, deleted and twice the number of

changed lines between release v-1 and v of a software.
First Time Changes in

a Class

FCH This metric reports the release number when a specific class was first time

subjected to changes.
Last Time Changes in

a Class

LCH This metric reports the release number when a class was subjected to most

recent changes.
Change Occurred CHO This is a binary metric which has a value of 1 if the class was subject to

changes from release v-1 to v and 0 otherwise.
Frequency of Changes FRCH This reports the number of releases in which a class has been subjected to

changes.
Change Density CHD It is computed by dividing the total change size of a class (TACH) by the

size of the class (SLOC).
Weighted Changes WCH It is a weighted metric using TACH, which gives more weight to recent

changes. It is calculated as:
∑k

p+1 TACHv ∗ 2v−k

where p=BOC and less than k; where k is the current version.
Weighted Change

Density

WCD It is a weighted metric using CHD. It is calculated as:
∑k

p+1 CHDv∗2v−k

where p=BOC and less than k; where k is the current version.
Weighted Frequency

of Changes

WFR It is a weighted metric using CHO. It is calculated as:
∑k

2(v − 1)CHOv

where k is the current version.
Aggregated Change

Size normalized by

FRCH

ATAF In case FRCH=0, ATAF is 0. Otherwise it is calculated as:∑k
2 TACHv

FRCH
where k is the current version.

Last Change Amount LCA It reports the size of changes (TACH) in a class, when last time it was sub-

jected to changes. In case LCH is not equal to k or 0, this metric is equal to

TACHv , where r is the last time when the class was changed, otherwise it

is TACHk ,the change size of the current version(k).
Last Change Density LCD It reports the change density (CHD) in a class, when last time it was sub-

jected to changes. In case LCH is not equal to k or 0, this metric is equal to

CHDv , where r is the last time when the class was changed, otherwise it is

CHDk , the change density of the current version.

354

Empirical Research Framework

OO Metric Acronym Definition
Changes Since Birth CSB This metric reports the difference in size of the class between its current

version and between the version when the class first appeared.
Changes Since Birth

Normalized by Size

CSBS This metric is computed by dividing CSB by the size of the class when it

first appeared.
Aggregated Change

Density Normalized

by FRCH

ACDF In case FRCH=0, ACDF=0. Otherwise it is calculated as:∑k
2 CHDv

FRCH
where k is the current version.

ICP Metric: The ICP metric was proposed by Tsantalis et al. [32] and the metric

attempts to encapsulate evolution history of a class as it is calculated by the dividing

the total number of releases by the count of releases in which the class was present.

The evolution-based and ICP metrics are calculated for each class of the software

release by release. The OO metrics suite is calculated with the help of CKJM tool.

11.2.2 Data Collection

The datasets used in the chapter were collected using DCRS tool [106]. We inves-

tigated five versions of two application packages (Contacts & Gallery2). In order

to answer RQ1, the trends of various metrics were observed for only those common

classes which were existent in all the versions from version 4.0.2 to version 4.3.1

(Gallery:184, Contacts:156). The number of common classes in each application

package and the percentage of changed classes in consecutive versions of each pack-

age amongst the common classes are mentioned in Table 11.2. The table also states

the actual number of common classes which changed while progressing from one

version to another. For instance, 36 classes changed out of the common classes while

progressing from version 4.0.2-4.0.4. It should be noted that the “actual changed

classes” is a cumulative figure computed by analyzing both the application packages.

355

Empirical Research Framework

Table 11.2: Dataset Details

Dataset No. of Common Classes
Percentage Change

4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1
Gallery2 184 15.2 35.3 34.8 27.7
Contacts 156 5.1 42.3 10.9 8.3

Actual Changed Classes 36 131 81 64

In order to answer RQ2-RQ4, change prediction models were developed on the

investigated datasets. For each class in a dataset, both OO metrics and evolution-

based metrics are computed. The change-prone nature of a class is represented by

the “ALTER” (Chapter 2: Section 2.7) variable. For a class in version v, the OO

metrics are from version v and the evolution-based metrics are computed from all

previous versions till version v. A data point consists of OO metrics, evolution-based

metrics and the dependent variable “ALTER”. For example, in order to prepare data

for Contacts 4.2.2, evolution-based metrics are collected from all previous releases of

Contacts namely (Contacts 4.0.2, 4.0.4 and 4.1.2), the OO metrics are from Contacts

4.2.2 and the ALTER variable is calculated by computing the change from current

release i.e. Contacts 4.2.2 and next release i.e. Contacts 4.3.1 as shown in Figure

11.1.

Figure 11.1: Data Collection for Contacts 4.2.2: An Example

The first version of each dataset will not have any evolution-based metrics since

356

Experimental Design

there is no change history before the first version [1]. Thus, change prediction mod-

els cannot be developed for Contacts 4.0.2 and Gallery2 4.0.2. The details of the

investigated datasets can be referred form Appendix A.1.

11.3 Experimental Design

This section states the comparison of experimental design with a study performed by

Elish & Al-Khiaty [1]. We then state the hypothesis investigated in the chapter. We

also state the feature selection method, performance measures and the classification

techniques used for developing change prediction models. In order to answer RQ2-

RQ4, we have developed four models for each release of the software: a) Model I

which uses both evolution-based and OO metrics as predictors b) Model II which uses

only evolution-based metrics as predictors c) Model III which uses only OO metrics

as predictors and d) Model IV which uses the ICP metric as the only independent

variable.

11.3.1 Experimental Design Comparison with Elish & Al-Khiaty

With respect to RQ2-RQ4, the chapter is closely related to a study by Elish and Al-

Khiaty [1]. However, it is different and better in the following parameters:

• Elish and Al-Khiaty [1] only developed statistical prediction models, but this

chapter explores six other ML techniques.

• They used classification accuracy as a performance measure for change pre-

diction models but studies in literature have criticized the use of accuracy

[37, 115, 284]. However, AUC gives a realistic estimate of the developed mod-

els, which is used for performance comparison in this chapter.

357

Experimental Design

• Elish and Al-Khiaty [1] used only two open-source software (VSSPlugin and

PeerSim). However, this chapter empirically validates two application pack-

ages of Android software. Thus, the chapter’s results are highly generalizable

to similar domains which also strengthen its external validity.

11.3.2 Hypothesis Investigated

We investigated the following hypothesis both for RQ1 and RQ4.

Hypothesis for RQ1: For each of the four dimensions (size, cohesion, coupling and

inheritance), we formulate a set of hypothesis, which are assessed by analyzing the

trends of OO metrics. The hypothesis for RQ1 is as follows:

• H1 (WMC): Due to evolution in a software, class size in terms of the number

of methods in a class will increase.

• H2 (SLOC): Due to evolution in a software, class size in terms of SLOC will

increase.

• H3 (LCOM): Due to evolution in a software, cohesion in terms of LCOM val-

ues will decrease. As the software evolves, classes should be designed in a

manner to increase their cohesiveness. A lower value of LCOM indicates bet-

ter cohesiveness.

• H4 (CBO): Due to evolution in a software, coupling attribute in terms of CBO

values will decrease as a class with better design will have low export and

import coupling.

• H5 (RFC): Due to evolution in a software, coupling attribute in terms of RFC

will decrease as a better designed class will have a lower response set in terms

of the number of methods.

358

Experimental Design

• H6 (DIT): Due to evolution in a software, the inheritance attribute in terms of

DIT value will increase as more classes will be added in the hierarchy.

• H7 (NOC): Due to evolution in a software, the inheritance attribute in terms of

NOC value will increase as more classes should be derived from the previously

existent ones.

Hypothesis for RQ4: In RQ4, we statistically compare the pairwise performance of

Model I with the other three (Model II, Model III, Model IV) developed models,

using Wilcoxon test with Bonferroni correction.

Hypothesis based on AUC Values:

• H8/ H9/ H10 (AUC): The results obtained by change prediction models in

terms of AUC values developed using evolution-based metrics in conjunction

with OO metrics differs significantly when compared with the performance of

models developed using only evolution-based metrics/ only OO metrics/ only

the ICP metric.

Hypothesis based on Accuracy Values:

• H11 / H12 / H13 (Accuracy): The results obtained by change prediction models

in terms of Accuracy values developed using evolution-based metrics in con-

junction with OO metrics differs significantly when compared with the per-

formance of models developed using only evolution-based metrics/ only OO

metrics/ only the ICP metric.

11.3.3 Feature Selection & Performance Measures

CFS is used as a feature selection technique to develop competent change prediction

models [109]. The change prediction models were developed using ten-fold cross

359

Analysis and Results

validation technique [113] and were evaluated using AUC as well as Accuracy per-

formance measures. The models were developed using six ML techniques and the

statistical technique LR. A brief description of the techniques and the parameters

employed can be referred from Chapter 2 (Section 2.6).

11.4 Analysis and Results

The current section states the results of the conducted experiments and answers the

RQs explored in the chapter.

11.4.1 Results specific to RQ1

The trends of metrics were analyzed for all the four dimensions for both the investi-

gated application packages of the chapter. We now state the trends corresponding to

each metric dimension and evaluate the hypothesis mentioned in section 11.3.2. As

discussed in Section 11.1, the common classes were categorized into CC and UCC.

Also, those classes which actually changed between two specific consecutive ver-

sions were identified as having “Constant”, “Increasing” or “Decreasing” trends in

consecutive versions. A class is categorized as having a “Constant” trend if the value

of a specific metric does not change for the class while progressing from version A to

consecutive version B. A class trend is termed as “Increasing” if the value of a spe-

cific metric increased for the class while progressing from version A to consecutive

version B. Similarly, a “Decreasing” trend represents the decrease in metric value as

compared to the metric value observed in the version A than the metric value when

it was transferred to consecutive version B.

Trends of Size Metrics

Figure 11.2 depicts the mean values of WMC and SLOC metrics (size dimension)

360

Analysis and Results

over all the five versions (4.0.2-4.3.1) for CC and UCC. According to the figure,

it may be noted that the CC have higher mean values than UCC. For instance, in

Gallery2, the mean WMC values of CC (17) is greater than that of UCC (6). The

median values were also analyzed, which depicted a similar trend (Appendix E.1:

Table E.1). An analysis of SLOC metric values in Figure 11.2 indicates a difference

of 56%-63% in the mean SLOC values of CC and UCC.

Figure 11.2: Mean values of Size Metrics

We also observe the trend frequency of the two observed size metrics for all the

actual changed classes in consecutive versions. The number of classes depicting

“constant” (Const.), “increasing” (Inc.) and “decreasing” (Dec.) trends is depicted

in Table 11.3. A prominent trend for the SLOC metric was increase in class size as

53%, 48% and 65% of classes respectively in 4.0.2-4.0.4, 4.0.4-4.1.2 and 4.1.2-4.2.2

consecutive versions showed an “increasing” trend. The next popular trend for SLOC

metric was “constant” followed by the “decreasing” trend. An increase in class size,

may not always lead to increase in number of class methods (WMC). Thus, most

classes depicted a “constant” trend for WMC in versions 4.0.4-4.1.2 and 4.2.2-4.3.1,

followed by the “increasing trend”. However, the other two analyzed consecutive

versions depicted an “increasing” trend for WMC metric. Thus, according to the

361

Analysis and Results

above discussion, hypothesis H1 and H2 are accepted.

Table 11.3: Version specific Size metric trends

Size Metrics
4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.
WMC 18 16 2 51 49 31 24 47 10 41 15 8
SLOC 13 19 4 33 63 35 18 53 10 31 19 14

Trends of Cohesion Metrics

Figure 11.3: Mean values of Cohesion Metrics

In order to analyze the cohesive characteristics of the classes, the mean (Figure

11.3), median, minimum and maximum values of LCOM was examined over all the

two versions of the application packages. A lower value for LCOM is desired. It was

observed from Figure 11.3 that the UCC exhibited better cohesiveness as compared

to the CC using LCOM values. As shown in the figure, for Contacts application

package, the mean value of LCOM for UCC was 29. However, the mean LCOM

value for CC was found to be 136. The observation of median values also depicted a

large difference between LCOM value of CC and UCC (Appendix E.1).

The version specific trends of LCOM cohesion metric is depicted in Table 11.4. It

may be noted that a change in class may not always lead to a change in cohesion met-

362

Analysis and Results

ric values. Thus, “constant” trend is observed in a large number of classes. However,

we analyze the “increasing” and “decreasing” trends to evaluate the hypothesis and

observe how cohesion metrics change with evolution. A prominent trend in cohesion

metrics was increase in LCOM values (23-58%), in various consecutive versions of

the investigated application packages. Thus, hypothesis H3 is rejected.

Table 11.4: Version specific Cohesion Metric trends

Metric
4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.
LCOM 18 16 2 51 49 31 24 47 10 41 15 8

Trends of Coupling Metrics

The coupling dimension was categorized by two metrics viz. CBO and RFC.

Figure 11.4 represents the mean values of coupling metrics over all the investigated

versions (4.0.2-4.3.1) of the Android software. We also analyzed the median values,

the minimum and the maximum values of the coupling metrics obtained by classes

over all the five versions for both CC and UCC. After analyzing Figure 11.4, it was

observed that the mean values of coupling metrics are higher for CC as compared to

UCC in most of the cases. For instance, the mean CBO values of CC in Gallery2 and

Contacts was double the mean CBO values of UCC in these application packages.

Similarly, the median CBO values of CC were also greater than UCC in both the

application packages (Appendix E.1: Table E.3). A similar trend was shown by the

mean values of RFC coupling metric. This indicates that a class with higher coupling

values is prone to change in future versions.

Table 11.5: Version specific Coupling metric trends

Metrics
4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.
CBO 33 3 0 98 21 12 53 22 6 47 3 14
RFC 18 16 2 51 49 31 24 47 10 41 15 8

363

Analysis and Results

Figure 11.4: Mean values of Coupling Metrics

Table 11.5 states the trends of coupling metrics. According to the table, the ma-

jority (65-92%) of CBO metric values exhibited a “constant” trend. However, for the

RFC metric apart from the “constant” trend, the “increasing” trend was quite popular

(23-58%) in all the version specific trends. It may be noted that changes in a class

may not always lead to a change in RFC values. According to the discussed trends,

hypothesis H4 and H5 are rejected.

Trends of Inheritance Metrics

Figure 11.5: Classes exhibiting inheritance attributes

364

Analysis and Results

The inheritance attribute of classes was characterized by two metrics DIT and

NOC. Figure 11.5 depicts the percentage of classes which used any of the inheri-

tance attribute (i.e. have a non-zero value) in any of the two investigated versions.

According to the figure, all the classes used the DIT attribute in corresponding ap-

plication packages as all classes are descendant of the object class (Java language).

Therefore, we analyzed the percentage of classes with DIT value greater than 1, to

understand its actual usage. Figure 11.5 shows that 6% and 13% of classes exhibited

a DIT value of greater than 1 in Contacts and Gallery2 package respectively. The

NOC metric was rarely used by classes as very few classes depicted a non-zero value

(Gallery2:4%; Contacts:13%).

We also observed the minimum and maximum values obtained by the DIT and

NOC in both the datasets. It was found that the maximum values of inheritance

metrics are higher for CC as compared to UCC. The mean and median values of

inheritance metrics did not give much information as in the majority of the cases the

mean and median values of NOC was 0 and that of DIT was 1.

We analyzed the number of classes which depicted a non-zero NOC value and

a DIT value >1 for each application package for CC and UCC. The CC exhibited

greater NOC and DIT values than UCC. Also, most of the classes were found having

either one or two children. There were very few cases with classes having three or

more children. Similarly, there were certain number of classes having a DIT value of

1 or 2, but very few classes with a DIT value of three or more.

Table 11.6: Version specific Inheritance metric trends

Metrics
4.0.2-4.0.4 4.0.4-4.1.2 4.1.2-4.2.2 4.2.2-4.3.1

Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec. Const. Inc. Dec.
DIT 36 0 0 131 0 0 81 0 0 64 0 0
NOC 36 0 0 126 3 2 78 3 0 59 1 4

According to the trends observed by actual changed classes (Table 11.6) in con-

secutive versions, majority (92-100%) of them did not exhibit any change in inheri-

365

Analysis and Results

tance metric values and were “constant”. Only very few classes (2-6%) depicted an

“increasing” or “decreasing”. Thus, we reject hypothesis H6 and H7.

11.4.2 Results specific to RQ2

In order to ascertain evolution-based metrics, which are significant predictors of

change-prone nature of a class, we apply the CFS technique while developing Model

I and Model II. However, we also use the CFS technique while developing Model III,

whose results also stated in the section.

Table 11.7: CFS Results for Contacts Dataset

Release Number Model Selected Metrics

Contacts 4.0.4
Model I WMC, CBO, SLOC, TACH, CSB, CSBS
Model II TACH, CSB, CSBS
Model III SLOC

Contacts 4.1.2
Model I WMC, CBO, SLOC, TACH, ACDF
Model II TACH, LCH, CHD, CSB, ACDF
Model III WMC, CBO, SLOC

Contacts 4.2.2
Model I SLOC, WCD, ATAF
Model II WCD, ATAF
Model III SLOC

Contacts 4.3.1
Model I DIT, CBO, SLOC, BOC, TACH
Model II BOC, TACH
Model III DIT, CBO, SLOC

Table 11.8: CFS Results for Gallery2 Dataset

Release Number Model Selected Metrics

Gallery2 4.0.4
Model I WMC, CBO, RFC, SLOC, CHD, WCD, CSBS, ACDF
Model II CHD, WCD, LCD, CSBS
Model III WMC, CBO, SLOC

Gallery2 4.1.2
Model I WMC, CBO, SLOC, WCD, CSB, CSBS
Model II CHD, WCD, CSB, CSBS
Model III WMC, CBO, SLOC

Gallery2 4.2.2
Model I WMC, SLOC, TACH, LCA, LCD, CSB, CSBS
Model II TACH, LCA, LCD, CSB, CSBS
Model III WMC, SLOC

Gallery2 4.3.1
Model I WCD
Model II WCD
Model III WMC

Table 11.7 and 11.8 depict the CFS results on Contacts and Gallery2 package for

366

Analysis and Results

all the versions and for Model I, Model II and Model III. The results in the tables

depict TACH and CSBS as the most commonly used evolution-based metrics since

they were selected the most number of times. Other commonly used evolution-based

metrics were CSB and WCD. CHD, ATAF, LCA, LCD and ACDF were also used

in certain scenarios. The most commonly used OO metrics were SLOC, WMC and

CBO.

Thus, in accordance with CFS results TACH and CSBS metrics were useful pre-

dictors of change as they are selected in 8 out of 16 times for the development of

change prediction models. The CSB and WCD metrics are also used by several mod-

els for predicting change. Thus, these four evolution-based metrics are appropriate

for determining change in a class.

11.4.3 Results specific to RQ3

In order to answer this question, we first develop models using ten-fold cross valida-

tion technique. As discussed earlier, the models were evaluated using AUC as well

as accuracy (Acc.) performance measures. It may be noted that we do not develop

models for Gallery2 4.3.1, as in all the cases (Table 11.8), the CFS results yielded

only one metric. Thus, these models are not very realistic as they are all dependent

on only one metric.

Tables 11.9-11.11 show the AUC and accuracy (in percentage) values of the de-

veloped models on each release of Contacts and Gallery2 respectively using the seven

classification techniques. The best model in a particular scenario is highlighted in

bold whether it is Model I, Model II, Model III, or Model IV in terms of both AUC

and accuracy performance measures. It can be seen from the tables that Model I

is better in a majority of the cases in terms of AUC values. However, according to

accuracy values, both Model I and Model III show good results. As previously

367

Analysis and Results
Ta

bl
e

11
.9

:A
U

C
&

A
cc

ur
ac

y
R

es
ul

ts
fo

rC
on

ta
ct

s
D

at
as

et

Te
ch

.
C

on
ta

ct
s4

.0
.4

C
on

ta
ct

s4
.1

.2
M

od
el

I
M

od
el

II
M

od
el

II
I

M
od

el
IV

M
od

el
I

M
od

el
II

M
od

el
II

I
M

od
el

IV
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
L

R
0.

75
71

.6
0.

62
66

.9
0.

74
70

.0
0.

54
67

.5
0.

79
91

.4
0.

73
91

.4
0.

80
90

.7
0.

70
89

.8
M

L
P

0.
71

69
.4

0.
63

68
.8

0.
72

69
.1

0.
55

67
.5

0.
74

91
.7

0.
75

91
.7

0.
77

90
.1

0.
73

90
.7

N
B

0.
71

69
.1

0.
61

65
.6

0.
71

69
.7

0.
54

67
.5

0.
75

86
.4

0.
72

88
.6

0.
77

87
.7

0.
70

90
.7

R
F

0.
67

67
.5

0.
62

70
.7

0.
63

62
.5

0.
54

67
.5

0.
71

90
.1

0.
64

88
.9

0.
68

89
.8

0.
70

90
.7

A
B

0.
74

70
.3

0.
61

71
.0

0.
71

68
.1

0.
54

67
.5

0.
77

89
.8

0.
66

90
.7

0.
74

90
.4

0.
69

90
.7

B
G

0.
74

70
.7

0.
63

71
.9

0.
71

66
.6

0.
55

67
.5

0.
75

91
.0

0.
71

70
.7

0.
76

90
.4

0.
66

90
.7

L
B

0.
72

70
.3

0.
61

71
.0

0.
70

66
.2

0.
54

67
.5

0.
80

89
.2

0.
69

90
.1

0.
75

91
.0

0.
70

90
.7

Te
ch

.
C

on
ta

ct
s4

.2
.2

C
on

ta
ct

s4
.3

.1
L

R
0.

75
95

.6
0.

77
95

.9
0.

73
96

.0
0.

73
96

.3
0.

81
74

.3
0.

61
64

.9
0.

79
73

.8
0.

54
57

.4
M

L
P

0.
73

95
.9

0.
73

95
.9

0.
71

96
.3

0.
77

96
.3

0.
82

71
.3

0.
64

65
.3

0.
80

73
.8

0.
59

55
.4

N
B

0.
72

90
.3

0.
70

93
.3

0.
73

94
.7

0.
72

95
.2

0.
77

72
.8

0.
65

67
.8

0.
74

71
.8

0.
55

55
.0

R
F

0.
70

95
.0

0.
62

96
.2

0.
57

93
.9

0.
72

96
.3

0.
83

75
.7

0.
61

68
.3

0.
78

74
.8

0.
51

58
.4

A
B

0.
73

95
.9

0.
67

95
.9

0.
62

96
.3

0.
72

96
.3

0.
80

75
.2

0.
64

68
.3

0.
75

72
.3

0.
57

58
.4

B
G

0.
71

95
.9

0.
70

95
.9

0.
49

96
.3

0.
49

96
.3

0.
82

76
.2

0.
65

67
.3

0.
80

74
.3

0.
53

55
.9

L
B

0.
77

95
.9

0.
70

95
.3

0.
64

96
.0

0.
71

96
.3

0.
82

95
.2

0.
60

68
.3

0.
81

75
.7

0.
51

58
.4

Ta
bl

e
11

.1
0:

A
U

C
&

A
cc

ur
ac

y
R

es
ul

ts
fo

rG
al

le
ry

2
D

at
as

et
(4

.0
.4

&
4.

1.
2)

Te
ch

.
G

al
le

ry
2

4.
0.

4
G

al
le

ry
2

4.
1.

2
M

od
el

I
M

od
el

II
M

od
el

II
I

M
od

el
IV

M
od

el
I

M
od

el
II

M
od

el
II

I
M

od
el

IV
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
L

R
0.

76
77

.6
0.

61
77

.6
0.

74
76

.0
0.

57
78

.3
0.

75
72

.1
0.

73
71

.8
0.

51
49

.8
0.

57
57

.8
M

L
P

0.
74

77
.0

0.
65

76
.6

0.
74

78
.3

0.
63

78
.3

0.
73

71
.1

0.
73

71
.4

0.
52

53
.0

0.
59

57
.8

N
B

0.
73

77
.0

0.
62

78
.0

0.
69

75
.0

0.
57

78
.3

0.
70

64
.5

0.
76

65
.5

0.
38

47
.4

0.
57

57
.8

R
F

0.
75

73
.7

0.
62

73
.4

0.
75

76
.3

0.
58

78
.3

0.
79

71
.1

0.
78

75
.3

0.
78

72
.5

0.
57

70
.0

A
B

0.
74

79
.9

0.
64

77
.6

0.
72

78
.0

0.
57

78
.3

0.
81

72
.8

0.
74

72
.5

0.
76

71
.4

0.
56

57
.8

B
G

0.
71

78
.6

0.
63

74
.0

0.
71

78
.9

0.
59

76
.6

0.
77

72
.5

0.
78

73
.9

0.
80

73
.5

0.
58

56
.8

L
B

0.
77

80
.9

0.
60

77
.6

0.
72

78
.9

0.
57

78
.3

0.
81

71
.4

0.
77

75
.3

0.
77

72
.8

0.
56

57
.8

368

Analysis and Results

Table 11.11: AUC & Accuracy Results for Gallery2 Dataset (4.2.2)

Tech.
Gallery2 4.2.2

Model I Model II Model III Model IV
AUC Acc. AUC Acc. AUC Acc. AUC Acc.

LR 0.70 68.1 0.70 70.2 0.67 70.2 0.69 73.2
MLP 0.65 70.2 0.66 71.5 0.71 70.2 0.69 72.3
NB 0.63 69.8 0.59 69.8 0.62 67.7 0.69 72.3
RF 0.73 71.9 0.73 71.9 0.63 65.1 0.67 73.2
AB 0.75 71.1 0.74 70.6 0.66 68.5 0.69 73.2
BG 0.74 74.9 0.73 73.6 0.68 71.1 0.69 71.9
LB 0.76 71.1 0.72 75.3 0.66 66.4 0.67 73.2

discussed, accuracy is criticized as a performance measure [37, 118, 284], thus

we base our results primarily on AUC values.

According to AUC values shown in Tables 11.9-11.11, Model I, which is devel-

oped using evolution-based metrics in conjunction with OO metrics is better than

models developed using only OO metrics (Model III) in most of the cases. However,

models developed using only evolution-based metrics (Model II) are not that effi-

cient as they are not able to incorporate OO characteristics of a software. Also, the

models developed using the ICP metric only incorporate the change probability of a

class and do not quantify OO characteristics of the software. Majority of Model I’s

developed on different releases of Contacts and Gallery2 dataset have obtained AUC

values greater than 0.7 and accuracy values in the range of 70%-95%, which shows

that these models are practical and can be successfully used by the industry.

We also analyzed the average ten-fold cross validation results for different mod-

els (Model I, Model II, Model III & Model IV) developed in the chapter on all the

releases of each dataset.

Figures 11.6(a) and 11.6(b) depict the average AUC values obtained by models

developed using different classification techniques on all releases of Contacts and

Gallery2 datasets respectively. According to the figures, it can be observed that in

most of the cases the models developed using only OO metrics (Model III) shows

better results than Model II (only evolution-based metrics) and Model IV (only ICP

369

Analysis and Results

Figure 11.6: Average AUC values on (a) Contacts Dataset (b) Gallery2 Dataset for
all Techniques and Average Accuracy values on (c)Contacts Dataset (d) Gallery2
Dataset for all Techniques

metric). Models based only on OO metrics have been successfully used in litera-

ture and have been recommended by various researchers for predicting change-prone

classes [4, 5, 28–31, 36, 147]. However, it can be clearly seen that the average AUC

values obtained by Model I is higher than Model II, Model III and Model IV re-

spectively. On an average, there was an improvement of 6% and 3% respectively

on Gallery2 and Contacts dataset in the AUC values of models developed using the

combined metrics suite (Model I) as compared to the traditional OO metrics model

(Model III), which have been advocated in literature. This observation establishes

the superiority of the models developed using conjunction of evolution-based and

OO metrics from all other scenarios. This is because such a model incorporates both

the OO characteristics of a software as well as evolution history of a software and is

370

Analysis and Results

therefore highly capable in predicting change.

Figures 11.6(c) and 11.6(d) show the average accuracy values attained by change

prediction models developed using different classification techniques. It is observed

from Figure 11.6(c) that the average accuracy values of Model I are much higher than

the average accuracy values of Model II, Model III and Model IV on Contacts dataset.

Also, the average accuracy of Model III is higher than Model II and Model IV. How-

ever, the average accuracy values of Model I were comparable to that of Model II

on Gallery2 dataset (Figure 11.6(d)). Thus, on Gallery2 dataset, models developed

using only evolution-based metrics (Model II) also showed promising results. This

observation points out the capability of evolution-based metrics in predicting soft-

ware change.

Thus, overall we can deduce that Model I i.e. the models developed using both

OO metrics and evolution-based metrics depict better average AUC and accuracy

values when used for ascertaining software change. These models, which use both

evolution-based and OO metrics suite are powerful indicators and increase the ca-

pability of models which are only based on OO metrics or only based on evolution-

based metrics. Thus, these models are useful and can be used for efficient determi-

nation of change-prone classes by software practitioners.

11.4.4 Results specific to RQ4

This question statistically compares the pairwise performance of Model I with the

other three (Model II, Model III, Model IV) developed models, using Wilcoxon

signed rank test with Bonferroni correction at a significance value of 0.05. It was

validated using average AUC values and average accuracy values obtained on all the

releases by the models developed using each specific technique for the two investi-

gated datasets. The test evaluates the hypothesis stated in Section 11.3.2.

371

Analysis and Results

Table 11.12 shows the Wilcoxon test results on average AUC values and average

accuracy values with p-value denoted in parenthesis. According to the results, Model

I is found significantly superior to the other developed models. Moreover, Model I is

significantly better than Models II, III, IV. Thus, we reject Null Hypothesis (H8, H9

and H10).

Similarly, we also evaluate hypothesis H11, H12 and H13 stated in section 11.3.2

on the basis of average accuracy values. According to the results in Table 11.12,

Model I is superior to the Model III and Model IV significantly. Moreover, Model I

is superior to Model II too, but the results are not significant. Therefore, we accept

alternate hypothesis H12 and H13 but reject alternate hypothesis H11.

Table 11.12: Wilcoxon Test Results

Based on Average AUC Values Based on Average Accuracy Values
Model I vs Model II ↑* (0.001) ↑ (0.064)
Model I vs Model III ↑* (0.002) ↑* (0.004)
Model I vs Model IV ↑* (0.001) ↑* (0.002)

↑*: Significantly superior; ↑: Superior but not significantly

According to Table 11.12, the results of the Wilcoxon signed rank test were sig-

nificant in five out of six cases, which indicates that Model I which is developed by

using evolution-based metrics in conjunction with OO metrics performs significantly

better than all the other possible scenarios (Model II, Model III & Model IV) ex-

plored in the chapter. Thus, evolution-based metrics when used in conjunction with

OO metrics are effective metrics suite for change-proneness prediction.

11.4.5 Analysis of Chapter’s Results

The observations with respect to evolution trends of the OO metrics are stated below:

Observations with respect to Size Dimension

• The mean class size in terms of SLOC and WMC is much higher for CC as

372

Analysis and Results

compared to UCC. This indicates that classes tend to increase in size in terms

of SLOC and number of total methods.

• It was observed that during evolution, the most common trend was increase

in class size. Thus, it is rare that the addition of new functionality leads to a

decrease in class size.

Observations with respect to Cohesion Dimension

• The investigation of mean and median values of the LCOM metric indicates

poor cohesiveness of the CC when cohesion was evaluated using the LCOM

metric.

• Majority of the classes which evolved during the investigated versions of the

Android software did not exhibit any change in the values of their cohesion

metrics. However, changes made to a class during evolution may lead to in-

crease in LCOM values in the Android software.

Observation with respect to Coupling Dimension

• The analysis of mean and median of coupling metrics indicates that a class with

higher coupling values is prone to change in future versions as CC exhibited

higher coupling metric values.

• Majority of the classes did not exhibit any change in the values of their coupling

metrics. However, if there was a change in a class, there are higher chances of

increasing the dependency of a class on other classes during evolution.

Observations with respect to Inheritance Dimension

• As the investigated application packages were developed in Java language, all

the classes exhibit a DIT value of greater than one as all classes are derived

373

Analysis and Results

from the Java object class. However, the number of classes exhibiting a DIT

value of greater than one and a non-zero NOC value were low. This indicates

that inheritance is rarely used in the investigated datasets.

• An observation of DIT metric values indicates that there were few classes with

DIT values of 2 and 3 and hardly any classes with DIT value of 4 and 5. This

indicates that inheritance levels don’t go too deep in the investigated datasets.

Similarly, an observation of NOC values indicate few classes with three or

more children. Thus, classes in the investigated datasets rarely grow to large

breadths. Generally, they only have one or two children.

• An analysis of maximum and minimum values of inheritance metrics indicate

higher values exhibited by CC. This implies classes exhibiting higher inheri-

tance characteristics are more prone to changes during evolution of the soft-

ware.

• The trends observed by inheritance metrics indicate that 92-100% of classes

exhibited no change in their DIT and NOC values. Thus, it is rare that a change

due to evolution might affect inheritance attribute of a class.

With respect to the various change prediction models developed in the chapter, it

may be noted that the models developed using only evolution-based metrics confirm

the predictive capability of these metrics for predicting software change. The AUC

values obtained by Model III were generally in the range of 0.60-0.78. Similarly,

the accuracy values of such models ranged from 65%-95% in the majority of cases.

These observations support the capability of evolution-based metrics for software

change prediction. Moreover, TACH and CSBS evolution-based metrics are more ef-

fective than their other evolution-based counter-parts for prediction of change-prone

classes. This was indicated by the application of CFS method which eliminated noisy

374

Comparison with Previous Studies

and superfluous attributes.

However, several literature studies have supported the use of OO metrics (Model

III) for developing change prediction models [2, 3, 5, 27, 30, 31, 36, 257, 284].

The results of this chapter too, support the use of such models. The models de-

veloped using OO metrics were found competent and effective in predicting software

change. Though, both Model II and Model III gave effective change prediction mod-

els, this chapter statistically proves the superiority of the combined models (using

both evolution-based and OO metrics) as compared to using only evolution-based or

only OO metrics for change prediction. The prime reason for its superiority is the en-

capsulation of diverse characteristics by both sets of metrics. As both metric sets are

representative of different characteristics i.e version history and structural features,

the developed change prediction models are effective. Thus, researchers and software

practitioners in the future should use both these metric suites for developing superior

change prediction models. Such effective change prediction models would help in

better optimization of limited software project resources and good quality software

products.

It was also observed that Model IV gave the worst results. This is because model

IV was developed using only one metric (ICP), which encapsulated just one aspect

of evolution history. Using such a uniform and non-diverse predictor variable would

lead to poor prediction models as the model is unable to learn various software char-

acteristics which are necessary for predicting change.

11.5 Comparison with Previous Studies

This section states the comparison of the chapter’s results with previous studies. We

first report the comparison of evolution patterns of OO metrics and then those of

change prediction models developed in RQ2-RQ4.

375

Comparison with Previous Studies

11.5.1 Comparison of Evolution Patterns of OO Metrics

This section compares the evolution patterns of OO metrics as observed by us and

the ones which are reported by previous studies.

• A study by Lee et al. [24] rigorously analyzed the evolution of an open-source

system, JFreeChart. The results of the study report that the number of classes

i.e. the overall size of the software increases gradually with each release. Since,

this chapter only evaluates the trends of common classes, we cannot comment

on the increase in size of the software with respect to the number of classes.

However, it may be noted that the common CC tend to increase in size over

various releases of the software, rather than decrease.

• A study by Alenezi and Zarour [292] evaluated the “modularity” evolution of

two open-source software systems by analyzing OO metrics corresponding to

coupling, cohesion and complexity. They reported increasing LCOM metric

values in two open-source software datasets while analyzing cohesion metrics.

Our analysis also indicated the “increasing” trend to be popular for LCOM

metric.

• Nasseri et al. [293] investigated seven open-source software systems to assess

the patterns depicted by four inheritance metrics. Their study concluded that

software systems tend to increase in size by adding more number of new classes

i.e. “breadth-wise” rather than adding classes somewhere in the inheritance

hierarchy i.e. “depth-wise”. Similar to their results, we analyzed that most of

the classes exhibited either a DIT value of 1 or 2 indicating shallow inheritance

levels.

376

Comparison with Previous Studies

11.5.2 Comparison of Change prediction Models Developed by

Combined Metric Suite

As discussed in section 11.3.1, with respect to RQ2-RQ4, our experimental design

is an improvisation of the one followed by Elish and Al-Khiaty [1]. They proposed

the use of both evolution-based and OO metrics for determination of change-prone

classes. However, they used only a statistical method, LR. We performed an exten-

sion of their experiments by using six other ML techniques. Our results with LB

technique have shown improvement over Elish and Al-Khiaty [1] results (for Model

I, Model II and Model III). The results are compared using accuracy performance

measure as it was used by Elish and Al-Khiaty [1] for evaluating the models. Table

11.13 depicts the comparison of our results (developed using the LB technique) and

the results obtained by Elish and Al-Khiaty [1]. The best results in each case are

depicted in bold.

Table 11.13: Comparison Results using Accuracy

Prediction Models
Elish & Al-Khiaty [1] Our Results

VSSPlugin PeerSim Contacts Gallery2
Model I 80.5 83.8 87.7 74.5
Model II 80.0 80.2 81.2 76.1
Model III 77.2 81.2 82.2 72.7
Model IV 76.4 78.9 78.2 69.8

With respect to statistical significance also, our results slightly vary than those

which were obtained by Elish and Al-Khiaty [1]. As they assessed whether the

models developed using the combined metrics suite are significantly better in perfor-

mance than other metrics suite (Model II, Model III & Model IV) on two open-source

datasets namely VSSPLUGIN and Peersim using Wilcoxon test on accuracy values,

the results of their tests were not found significant. This could be due to the choice of

an inadequate performance measure i.e. accuracy. They concluded that the inclusion

377

Discussion

of evolution-based metrics increases the capability of OO metrics and gives an ef-

fective set of change predictors. However, these results were not found significantly

better than the usage of only the OO metrics. The results of this chapter significantly

prove the superiority of the combined metric suite over other possible combinations.

Our results were evaluated using AUC, a stable performance measure.

11.6 Discussion

This chapter analyzed the evolution patterns of seven OO metrics on two applica-

tion packages of the Android software. The OO metrics were categorized into four

dimensions corresponding to size, coupling, cohesion and inheritance. The metrics

for common classes in five versions (4.0.2, 4.0.4, 4.1.2, 4.2.2 and 4.3.1) of each ap-

plication package were evaluated and classes in each application package were cat-

egorized as CC or UCC. The trends of actual changed classes between consecutive

versions were categorized as “Constant”, “Increasing” or “Decreasing”. We observed

that the CC exhibited higher chances of increase in class size, higher coupling val-

ues and higher inheritance characteristics as compared to UCC. Moreover, the most

common trend of actual changed classes between consecutive versions was increase

in size metrics (WMC and SLOC), RFC coupling metric and LCOM cohesion metric

and no change in inheritance and other coupling metrics (CBO). We observed that

very few classes exhibited the inheritance attribute and classes which used inheri-

tance, did not exhibit deep inheritance levels or a large number of subclasses.

Another key objective of the chapter was to explore the capability of evolution-

based metrics when used in conjunction with OO metrics for ascertaining change-

prone nature of classes. Numerous prediction models were created release by release

for two application packages of the Android software. Four possible scenarios were

evaluated for predicting change-prone classes (i) use of combined evolution-based

378

Discussion

and OO metrics, (ii) use of solely evolution-based metrics (ii) use of solely OO met-

rics and (iv) use of the ICP metric. Also, the chapter evaluated the use of seven

classification techniques in order to determine change-prone nature of classes in an

OO software. Wilcoxon test was performed for statistical comparison. We found

that:

• TACH and CSBS are primary evolution-based metrics which are good indica-

tors of change-prone nature of a class as they were selected for construction of

most of the change prediction models after application of the CFS method.

• After analyzing the capability of the combined metrics suite, solely evolution-

based metrics, solely OO metrics and just the ICP metric, we concluded that

the performance of the models using both evolution-based metrics along with

OO metrics is better for developing change prediction models than all the other

scenarios. This is because the combined metric suite efficiently represents both

the OO properties of a class such as inheritance, cohesion etc. along with its

change history. Thus, it incorporates two separate dimensions (structural prop-

erties as well as evolution history) which help in the effective determination of

change-prone classes.

• The superiority of the combined metric model (both evolution-based and OO

metrics) is statistically confirmed with the help of Wilcoxon test on AUC values

and accuracy values. Hence, the chapter advocates the use of this combined set

of indicators for ascertaining change-prone classes in future studies.

Thus, this chapter recommends the use of combined metrics suite as predictors

for change-prone classes as it increases the capability of traditional models which

have been used in literature and use only OO metrics for change prediction.

379

Chapter 12

Conclusion

12.1 Summary of the Work

Software evolution is one of the most critical phases of a software lifecycle. An

existing software may no longer be useful if it is not capable of adapting itself to

modifying user requirements or changes in environmental conditions. These mod-

ifications may not just be superficial and may lead to drastic changes in the design

and structure of a software system. Thus, one has to ensure that the software qual-

ity does not degenerate with the introduction of modifications. The primary aim of

the work conducted in this thesis is to construct models which aid in the easy allo-

cation of constraint software resources during its evolution. This would ensure that

a cost-effective and maintainable software product is produced. Such good quality

products are reliable and would achieve high customer satisfaction. The thesis pro-

poses and analyzes several techniques to develop optimum models, which determine

the change-prone nature of a class in an OO software. These techniques range from

the well-known ML techniques, which are widely used in the domain of predictive

modeling to the recently explored SBA. As SBA were found effective in the domain

381

Summary of the Work

of predictive modeling, we also proposed ensembles of SBA for improved results.

The thesis also evaluates the use of different predictors apart from OO metrics to de-

termine change-prone classes. Moreover, the work conducted in the thesis examines

certain other aspects of software evolution, for instance evolution patterns of OO met-

rics and categorization of software bugs on the basis of its change impact. With the

aid of organized empirical experiments, which have been conducted rigorously, the

work conducted in the thesis is proven to be highly useful for software practitioners

and managers.

We first discussed the various steps performed in order to conduct methodical

and proper empirical experiments. A description of the various variables (both de-

pendent and independent) involved in the studies along with a specification of all the

classification techniques used in the thesis is presented. The characterization, ba-

sic functioning and parameter settings of each investigated classification technique

is mentioned. Thereafter, we also summarized the empirical data collection process

and the various datasets used in the thesis. We focus on open-source datasets for per-

forming the experiments conducted in the thesis as they are easily available, aid in

easy replication and generalization of results. Moreover, the open-source paradigm is

widely popular, aids better innovation, boasts of large community support, and devel-

ops cost-effective products. Thereafter, we categorize the datasets used in the work

on the basis of the number of data points into three categories (“small”, “medium”

and “large”). The descriptive statistics of each category of datasets is mentioned. We

also state other data pre-processing procedures (outlier analysis and feature selection)

used in the work. We also provide a description of the validation methods (internal

and external) and performance measures, which are used to assess the efficiency of

developed models. In order to strengthen the conclusion validity of the obtained re-

sults, we also conduct statistical analysis of the results obtained in each chapter. The

tests used in the thesis for this purpose are also explained.

382

Summary of the Work

To evaluate and assess the current state of literature in the domain of software

evolution, we performed a systematic literature review. We evaluated studies, which

either developed models to determine the change-prone nature of an OO class or the

studies which assess the change impact of a software change request. We found 34

primary studies in the period from January 2000 to December 2017. These studies

were analyzed to answer various RQs with respect to the type of predictors, exper-

imental settings, categories of various data analysis techniques used for developing

models, predictive performance of ML techniques (most popular category of data

analysis techniques found), the statistical tests used for results verification and the

threats encountered and addressed while setting up experiments. Apart from answer-

ing the RQs, we state a brief overview of the key parameters of all the 34 primary

studies in tabular form (Appendix B.1). It was found that a majority of change pre-

diction studies used product metrics for predicting change-prone nature of an OO

class. The ML techniques, especially their subcategory, SBA, were found effective

in developing change prediction models. However, we found a lack of studies (only

eight studies) which assessed the change impact of a change request on the basis of

its textual description.

We also identified several future directions in the domain. The use of process

metrics and the combination of process and product metrics should be explored for

determining software change. As the majority of datasets used in the literature stud-

ies were imbalanced in nature, methods should be evaluated for developing reliable

models from such datasets. Furthermore, more studies are required to empirically

verify, assess and compare the performance of various categories of data analysis

techniques. Moreover, the comparison results should be statistically assessed as 51%

of primary studies did not use any statistical test for proper verification of obtained

results.

While developing effective software change prediction models, we first need

383

Summary of the Work

to evaluate the relationship between the OO metrics and the dependent variable

“change-proneness”. Furthermore, we need to adjudge significant predictors of change

amongst the investigated OO metrics. In order to fulfill the above stated objectives,

we develop change prediction models using eleven ML techniques on six open-source

datasets. As investigated in the literature review, ML techniques are popular and ef-

fective in the domain of predictive modeling. These techniques are adaptive in nature,

do not need to be specifically programmed and easily learn from previous historical

data. The results evaluated using AUC, Balance and G-Mean1 performance measures

indicate the effectiveness of ML techniques (Mean AUC values: 0.68-0.78, Mean G-

Mean1 values: 0.51-0.67, Mean Balance value: 55-66), specifically the ones based

on ensemble methodology (RF, LB and BG). Moreover, the results of models devel-

oped using the ML techniques were found comparable and in certain cases better than

the statistical technique, LR, though not significantly. As effective change prediction

models were constructed, the chapter confirms the predictive capability of OO met-

rics for determining change-proneness attribute of a class. Also, the CBO, WMC and

SLOC metrics were evaluated as significant predictors of change.

As the results of models developed using ML techniques were found suitable, we

also explored the use of SBA, a sub-category of ML techniques for predicting change-

prone classes. However, we first analyzed the use of SBA in SEPM literature, specific

to four attributes (effort estimation, defect-proneness prediction, maintainability pre-

diction and change-proneness prediction). The review was conducted in order to

outline empirical evidence of their effectiveness and to assess the best practices and

experimental settings with regard to the use of SBA in SEPM literature. Though,

SBA were effectively used in SEPM literature, there were very few studies which

analyzed their use in the domain of maintainability prediction and software change

prediction. Thus, in order to bridge this gap, we performed an empirical study with

effective experimental setup (conduct multiple runs, use stable performance mea-

384

Summary of the Work

sures, completely specify parameter settings and fitness functions, perform rigorous

statistical evaluation) to develop change prediction models using eight SBA on four-

teen datasets. These developed models were compared with those of four ML tech-

niques and the statistical technique, LDA. The models developed using the MPLCS

technique, a search-based algorithm, obtained superior results than all the other in-

vestigated techniques, when assessed using Friedman test on G-Mean1 and Balance

values. The average G-Mean1 and Balance values of change prediction models de-

veloped using the MPLCS technique on all the fourteen investigated datasets were

0.67 and 65.41 respectively. The successful results of the models developed using

the MPLCS technique were attributed to the selection of its fitness function. The

fitness function of the MPLCS technique analyzed both the accuracy and the com-

plexity of the rule set. The pairwise comparisons of the models developed using

the MPLCS technique and the other investigated techniques was evaluated using the

Wilcoxon test. It was found that the models developed using the MPLCS technique

were better than most of the other compared techniques, though not significantly.

As both ML and SBA were found effective, we also explored HBT. These tech-

niques combined an ML/statistical technique with a search-based algorithm. The

idea was to investigate a preferred approach which combines the characteristics and

strengths of both its constituent techniques. HBT can be classified as a sub-category

of SBA. We assess the effectiveness of four HBT with eleven other techniques. These

eleven techniques included representatives of SBA, ML techniques and the statisti-

cal techniques. The evaluation was done in terms of both predictive performance

as well as CPU time taken to develop change prediction models. The hybridized

technique, PSO-LDA was a clear winner in terms of predictive performance. The

average Balance and G-Mean1 values of the models developed using the PSO-LDA

technique was 67.21 and 0.70 respectively. These results were also statistically sup-

ported by the use of Wilcoxon test, which conducted pairwise comparisons amongst

385

Summary of the Work

the models developed using the PSO-LDA technique and the other investigated tech-

niques. The results of the Wilcoxon test were found significant. Moreover, most of

the investigated HBT (DT-GA, PSO-LDA and GFS-LB) also fared well in terms of

CPU time consumption as they were only next to ML techniques. We also inves-

tigated the trade-off between CPU time and predictive performance of the models

developed using the various techniques and advocate the use of HBT for developing

change-proneness prediction models. Even if HBT take slightly longer CPU time, as

compared to the ML techniques, the time and costs saved by the application of the

change prediction models developed using these HBT compensated for it. We found

a 20% increase in the effort gain, with the application of models developed using the

HBT as compared to ML techniques.

The literature review conducted on software evolution also pointed out that few

recent studies have explored the use of an ensemble of techniques for predicting the

change-prone nature of a class. We also evaluated the use of ensembles of tech-

niques as they are proven to give improved results than individual classifiers [42–

44]. However, we pioneered in creating ensembles of SBA, by changing their fit-

ness function. We proposed four fitness-based ensemble classifiers namely MVEC,

WVEC, HIEC and WVHIEC by combining seven fitness variants of a search-based

algorithm, CPSO. We first evaluated whether the individual fitness variants can be

effective constituents of an ensemble. In order to do so, we adjudged the accuracy

and complementarity of the models developed using individual fitness variant clas-

sifiers. We further assessed the effectiveness of the proposed ensemble classifiers

and found the models developed using the HIEC and the WVHIEC techniques as

the ones which depicted the best results. An improvement of up to 70% and 66%

was found in the G-Mean1 and Balance values with the use of proposed HIEC and

WVHIEC models. Furthermore, these models were found comparable to traditional

ML ensemble classifiers.

386

Summary of the Work

The investigation of fitness-based ensembles revealed that the result of a search-

based algorithm is highly dependent on the selection of its fitness function. However,

a fitness function is generally selected on the basis of the performance of an algo-

rithm using the specific fitness function on the entire dataset. In this scenario, we

ignore an important aspect, which is that the structural characteristics of each data

point may be different. Therefore, a specific data point of the same dataset may give

better results with a different fitness variant, while other data points of the dataset

may give best results with other fitness variants. Thus, rather than selecting a single

fitness variant for an entire dataset, we explored a framework for selecting an op-

timum fitness function for each data point. We named this framework ASOF. The

framework predicts the best fitness variant on the basis of structural characteristics

(OO metrics) of a data point. Thereafter, the model of the fitness variant is used for

determining the change-prone nature of the specific data point. We assessed the per-

formance of the change prediction models developed using the proposed framework

and found them to be effective (G-Mean1: 0.55-0.69, Balance: 53-68%), when eval-

uated on fifteen popular open-source datasets. These models were further compared

with the individual fitness-variant classifiers and the four proposed ensemble classi-

fiers (MVEC, WVWC, HIEC, WVHIEC) and were found statistically superior in a

majority of cases. Furthermore, the models developed using the ASOF framework

were found competent to those developed using the LR technique and four traditional

ML ensemble classifiers (RF, BG, LB and AB).

We also develop SBC models to categorize software bugs into three categories

i.e. “low”, “moderate” and “high”. These categories are predicted on the basis of

bug description. The bugs are categorized on the basis of three bug attributes i.e.

maintenance effort (number of SLOC required to correct a specific software bug),

change impact (number of classes requiring change in order to correct the bug) and

the combined effect of both (product of maintenance effort and change impact). The

387

Summary of the Work

allocation of a level to software bugs would help managers and software testers in de-

ciding effective bug regimes and allocation of resources. The developed SBC models

are binary in nature i.e. they predict whether a bug belongs to “low” level or “not low”

level and so on. The SBC models were developed using six data analysis techniques

on five application packages of the Android software. For each category, four models

were developed using just Top-10 words, using Top-25 words, using Top-50 words

and by using Top-100 words. Though, models developed using the Top-10 words

were not that efficient, the other models depicted acceptable performance. Moreover,

the SBC models developed using the combined approach were found statistically bet-

ter than SBC models based only on change impact and comparable to SBC models

based on maintenance effort. It was also found that the models which categorized

bugs into “high” and “not high” level were superior to models which categorized

bugs into “moderate” and “not moderate” level or those which categorized bugs into

“low” and “not low” level.

As investigated in the review, methods to develop effective and reliable models

from imbalanced datasets should be explored. Such methods are important as mod-

els developed from imbalanced data may not be able to learn to distinguish minority

class instances well (as such instances are lower in number and the model may be

incapable of learning from just a few instances). This will lead to higher misclassifi-

cation errors and poor models. We explored the use of three data sampling methods

(Resample with replacement, SMOTE and Spread subsample) and a cost-sensitive

method (MetaCost learners) in order to address the ILP. The results were empiri-

cally validated using six datasets which were highly or moderately imbalanced. It

was found that the models developed after application of the Resample with replace-

ment method were superior to the other explored methods for addressing ILP. There

was an improvement of up to 60% each in G-Mean1 and Balance values and of up

to 35% in AUC values with the application of Resample with replacement method

388

Summary of the Work

while developing software change prediction models using imbalanced datasets. The

results were consistent using both ten-fold cross validation and inter-release vali-

dation. The Resample with replacement method achieved a uniform ratio of both

change-prone and not change-prone classes, attributing to its success. Moreover,

the pairwise comparison of the Resample method with the other investigated imbal-

anced learning methods using Wilcoxon test was found statistically significant in the

scenario of ten-fold cross-validation and comparable in the scenario of inter-release

validation. We also analyzed that the traditional performance measures such as ac-

curacy, precision and sensitivity are not very good indicators for evaluating models

developed using imbalanced datasets. Stable performance measures such as AUC,

G-Mean1 and Balance should be used for evaluating such models.

We also assessed the evolution patterns of OO metrics (CK metrics & SLOC) in

five consecutive versions (4.0.2-4.3.1) of Contacts and Gallery2 Android application

packages. The investigated metrics were divided into four dimensions namely size,

cohesion, coupling and inheritance. It was observed that the classes which changed

in the consecutive versions of the software exhibited trends of increase in class size

and coupling values. The LCOM values increased indicating poor cohesion. Also,

the increase in metric values of coupling values needs to be controlled as higher

coupling leads to higher complexity and ripple effects. However, there were very

few classes which exhibited non-zero values for inheritance metrics (NOC and DIT),

indicating that inheritance is less used in the systems.

In lieu of the investigated research gap to address process metrics and the com-

bination of process and product metrics, we investigated the use of evolution-based

metrics (process metrics) for determining change. These metrics were evaluated in-

dependently and in conjunction with CK metrics (product metrics) to determine the

change-prone nature of a class. The evolution-based metrics encapsulate the evolu-

tion history of a class, while the CK metrics are representative of a class’s design. It

389

Applications of the Work

was found that the models developed using the conjunction of evolution-based met-

rics and the CK metrics were superior to models developed using only the evolution-

based metrics or only the CK metrics on the two investigated application packages

of Android software (Contacts & Gallery2). We found a percentage improvement of

3-6% in the AUC values of the models developed using the combined metrics suite

over the ones developed using only the OO metrics. Moreover, this superiority was

confirmed using statistical tests. The prime reason for the effectiveness of the com-

bined metrics suite is that both sets of metric suites are representatives of different

dimensions i.e. structural (CK metrics) and evolution history (evolution-based). It

was also found that the TACH and CSBS evolution-based metrics were significant

predictors of change-prone classes.

12.2 Applications of the Work

The work conducted in the thesis can aid software practitioners and researchers in

the following ways:

Aid to Researchers

• Researchers can track and assess the metrics found significant (both OO and

evolution-based) in the work to efficiently predict change-prone classes.

• As multiple classification techniques are evaluated in the research work, it pro-

vides guidelines to researchers for selecting an appropriate modeling technique

for software prediction tasks.

• The work provides a well-defined & systematic approach for the development

of effective software change prediction models, which can be used for further

experiments or replication of existing experiments.

390

Future Directions

Aid to Software Practitioners

• Managers can plan cost-effective resource allocation for assessment & im-

provement of existing products and practices.

• Developers can pay focused attention to problematic change-prone classes and

re-design them suitably.

• Testers can perform rigorous testing, prioritize testing effort & design effective

bug solving regimes.

12.3 Future Directions

Although the work conducted in the thesis evaluates a wide category of classifica-

tion techniques and datasets, however, future studies may plan to replicate the ex-

periments on datasets belonging to varied application domains and developed using

other programming languages such as C# or Python. This would increase the gener-

alizability of the obtained results.

In future, researchers may also replicate the proposed fitness-based ensemble

classifiers and the ASOF framework using other SBA, such as GA or GP. The meth-

ods investigated for learning from imbalanced data may be evaluated further by using

SBA for classification. Such experiments can be conducted in order to generalize the

effectiveness of the investigated imbalanced learning methods.

Replication is important as it aids in addition of evidence, based on which re-

searchers and practitioners might make choices and plan their experiments. It also

helps in determining the applicability of results to other real-world scenarios or in-

dustrial settings. Therefore, future studies may replicate our experiments to yield

generalized conclusions.

391

Appendices

392

Appendix A

Details of Datasets used in the Work

This appendix states the details of the datasets used in the thesis along with their

descriptive statistics.

A.1 Dataset Details

We list the datasets used in the work along with their characteristics, which includes

the name, releases, number of data points, percentage of change and brief description

of the dataset (Table A.1).

Table A.1: Details of Datasets

Dataset

Name

Previous

Release

Recent

Release

Number

of

Classes

Changed

Classes(%)

Description

Art of Illu-

sion (AOI)

2.7 2.9.2 434 30% 3D modelling software.

Android

Bluetooth

4.3.1 4.4.2 72 19% Application package for Bluetooth services in

Android.5.0.2 5.1.0 112 29%

Android

Calendar

4.0.2 4.0.4 77 29%

Application package for Calendar in Android.4.0.4 4.1.2 78 62%

4.3.1 4.4.2 106 19%

393

Dataset Details

Dataset

Name

Previous

Release

Recent

Release

Number

of

Classes

Changed

Classes(%)

Description

Android

Contacts

4.0.2 4.0.4 324 6% Application package for contacts handling in

Android.4.0.4 4.1.2 331 36%

4.1.2 4.2.2 357 10%

4.2.2 4.3.1 375 4%

4.3.1 4.4.2 210 48%

Android

Telephony

4.2.2 4.3.1 249 63% Application package for telephonic conversation

in Android.

Android

Gallery2

4.0.2 4.0.4 305 10% Application package for handling Gallery

services in Android.4.0.4 4.1.2 310 26%

4.1.2 4.2.2 330 52%

4.2.2 4.3.1 374 41%

Android

MMS

2.3.7 4.0.2 195 30%
Application package for MMS services in

Android.
4.0.4 4.1.2 206 33%

4.1.2 4.2.2 223 52%

Apache

Click

2.2.0 2.3.0 436 62% A web-based application framework for Java Ex-

ecution Environment.

Apache IO

1.3 1.4 109 41%
Library of utilities to assist with developing IO

functionality.
1.4 2.0 266 89%

2.3 2.4 198 6%

Apache

Giraph

1.0 1.1 484 60% A graph processing software.

Apache Gora 0.4 0.5 222 18% A framework for in-memory data model.

Apache

Hama

0.5 0.6 270 44% A framework for distributed computing.

Apache Jme-

ter

2.8 2.9 335 60% A load testing tool by Apache.

Apache Log-

icalDoc

7.5 7.6 929 23% A document management system.

Apache

Maven

3.3.3 3.3.9 831 34% A build automation tool for Java.

Apache Log4j
1.2.13 1.2.14 296 9%

Utilities for asynchronous logging services.
1.2.16 1.2.17 350 25%

Apache

Math

3.1.1 3.2 1404 88% A library for mathematical and statistical compo-

nents.

Apache Net
3.0 3.1 240 36%

Implements client side of many protocols.
3.1 3.2 331 95%

394

Descriptive Statistics

Dataset

Name

Previous

Release

Recent

Release

Number

of

Classes

Changed

Classes(%)

Description

Apache

Phoenix

4.2 4.3 1101 42% A relational database engine.

Apache

Zookeeper

3.4.8 3.5.1 591 46% Software for enabling distributed connections.

Apollo 0.1 0.2 252 27% Editor and compiler for Java migration software.

AviSync 1.1 1.2 73 40% It is used for adjusting synchronization issues for

DivX AVI format audio/ video files.

Celestia 1.4.1 1.6.1 254 58% Software for 3D visualization of space.

DrJava 1.6.0 1.8.1 278 60% Software for managing digital assets.

DSpace r4668 r5686 402 50% A programming environment for Java which in-

cludes a program editor, debugger, unit testing

tool and an interactions pane for program eval-

uation.

Eclipse 2.0 2.1 4830 60% A toolset for software management.

Frinika 0.2.0 0.6.0 248 51% A complete music workstation software.

Glest 1.0.10 3.2.2 108 66% A real time 3D strategy game.

HyperSQL
2.3.0 2.3.1 510 41%

A multi-threaded relational database engine.
2.3.3 2.3.4 609 38%

JabRef 3.1 3.2 1062 34% A software for reference management.

Jedit 5.0.0 5.1.0 980 16% A text editor software.

PMD 3.9 4.3 431 60% A source-code analyzer.

Robocode 1.7.2.2 1.7.4.4 266 26% Programming game where one can develop a

robot battle tank.

Simutrans 111.3 112.3 510 45% A transport simulation game.

SubSonic
2.8 4.6 123 76%

A web-based media streamer.
5.2 5.3 332 22%

A.2 Descriptive Statistics

This section lists the descriptive statistics of the datasets. Table A.2 states the range

of descriptive statistics for “small-sized” datasets. There were 11 such datasets used

in the thesis. In each cell of the table we state the range of the statistic, i.e. the min-

395

Descriptive Statistics

imum value and the maximum value obtained while computing the statistic on each

of the 11 datasets. Similarly, Table A.3 and Table A.4 states the range of descriptive

statistics for thirty “medium-sized” and eleven “large-sized” datasets respectively.

Table A.2: Descriptive statistics range for Small-sized datasets

Metric Name
Min. Max Mean Median S.D.

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
CBO 0.00 0.00 10.00 45.00 1.14 6.00 1.00 3.00 1.98 7.96
DIT 0.00 1.00 1.00 5.00 0.72 2.26 0.00 2.00 0.00 1.33
NOC 0.00 0.00 0.00 19.00 0.00 0.56 0.00 0.00 0.00 2.32
RFC 0.00 3.00 44.00 154.00 8.20 18.83 6.00 14.00 8.12 22.96
SLOC 2.00 10.00 359.00 1,972.00 61.23 137.23 35.00 87.00 67.47 242.74
LCOM 0.00 1.00 95.00 11,628.00 41.95 407.65 15.00 85.00 30.29 1,394.47
WMC 0.00 2.00 60.00 153.00 7.65 17.63 5.00 11.00 8.2 22.99

Table A.3: Descriptive statistics range for Medium-sized datasets

Metric Name
Min. Max Mean Median S.D.

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
CBO 0.00 0.00 10.00 157.00 1.04 10.79 1.00 8.00 1.39 10.11
DIT 0.00 1.00 2.00 24.00 0.41 2.55 0.00 2.00 0.37 1.93
NOC 0.00 1.00 4.00 101.00 0.05 6.07 0.00 4.00 0.33 7.75
RFC 0.00 13.00 61.00 690.00 8.42 65.60 4.00 58.50 8.66 70.90
SLOC 1.00 8.00 100.00 8,858.00 47.23 867.00 30.00 107.00 39.59 483.20
LCOM 0.00 2.00 5.00 31,375.00 1.08 709.05 1.00 68.00 1.24 2,569.42
WMC 0.00 2.00 37.00 748.00 0.40 35.26 0.50 33.00 2.2 54.29

Table A.4: Descriptive statistics range for Large-sized datasets

Metric Name
Min. Max Mean Median S.D.

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.
CBO 0.00 0.00 24.00 166.00 1.43 14.94 1.00 11.00 2.41 15.11
DIT 0.00 1.00 3.00 34.00 0.22 2.14 0.00 2.00 0.49 1.96
NOC 0.00 0.00 12.00 155.00 0.18 5.19 0.00 3.00 0.87 7.14
RFC 0.00 13.00 129.00 2,240.00 10.20 255.20 6.00 94.00 13.37 332.80
SLOC 1.00 6.00 766.00 6,764.00 61.14 272.78 33.00 116.00 81.12 498.83
LCOM 0.00 0.00 100.00 8,128.00 29.47 174.20 0.00 69.00 30.97 2,615.40
WMC 0.00 1.00 2.00 699.00 0.17 36.89 0.00 32.00 0.39 57.04

396

Appendix B

Key Parameters of Primary Studies in

Review on Software Change

Prediction

This is an appendix to Chapter 3. It reports the key parameters investigated in the

software change prediction review conducted in Chapter 3.

B.1 Key Parameters of primary Studies

Table B.1 reports the key parameters of the review for each of the selected primary

study in Chapter 3. The table includes the study number allocated to a specific pri-

mary study, the set of predictors, the name and number of datasets, the classifica-

tion or modeling techniques used, the performance measures and the statistical tests.

These parameters are listed for each of the 34 primary studies, which were selected

in Chapter 3.

397

Key Parameters of primary Studies
Ta

bl
e

B
.1

:K
ey

Pa
ra

m
et

er
s

of
Pr

im
ar

y
St

ud
ie

s

St
ud

y

N
o.

Pr
ed

ic
to

rs
D

at
as

et
s

D
at

a
A

na
ly

si
sT

ec
hn

iq
ue

s
Pe

rf
or

m
an

ce
M

ea
-

su
re

s

Va
lid

at
io

n

M
et

ho
d

St
at

is
tic

al
Te

st

C
P1

N
O

C
I,

4
L

in
es

of
C

od
e

m
ea

-

su
re

s

W
in

do
w

s
ba

se
d

So
ft

-

w
ar

e
A

pp
lic

at
io

n
(V

LW
A

D
at

as
et

)

L
R

,G
P

Ty
pe

I
er

ro
r,

Ty
pe

II

er
ro

r,
O

ve
ra

ll
m

is
cl

as
-

si
fic

at
io

n
ra

te

H
ol

d-
ou

t
va

lid
a-

tio
n

—
-

C
P2

N
O

C
I,

4
L

in
es

of
C

od
e

m
ea

-

su
re

s

W
in

do
w

s
ba

se
d

So
ft

-

w
ar

e
A

pp
lic

at
io

n
(V

LW
A

D
at

as
et

)

G
P,

D
ec

is
io

n
tr

ee
ba

se
d

G
P

Ty
pe

I
er

ro
r,

Ty
pe

II

er
ro

r,
O

ve
ra

ll
m

is
cl

as
-

si
fic

at
io

n
ra

te

H
ol

d-
ou

t
—

-

C
P3

C
K

,
N

O
M

,
Pr

ob
ab

ili
ty

va
lu

es

re
la

te
d

to
hi

st
or

y,
Pr

ob
ab

ili
ty

of
C

ha
ng

e

JF
le

x,
JM

ol
L

R
A

cc
ur

ac
y,

R
ec

al
l,

Fa
ls

e
Po

si
tiv

e
R

at
io

,

Fa
ls

e
N

eg
at

iv
e

R
at

io
,

G
oo

dn
es

s
of

Fi
t

—
-

—
-

C
P4

A
ID

,
A

L
D

,
C

C
,

SL
O

C
,

N
O

P,

M
N

O
B

,M
PC

,N
O

LV
,N

IC

JF
le

x
N

on
-l

in
ea

r
sy

st
em

of
eq

ua
-

tio
ns

,
L

in
ea

r
sy

st
em

of
eq

ua
-

tio
ns

,D
ep

th
fir

st
se

ar
ch

gr
ap

hs
,

B
in

ar
y

de
pe

nd
en

ci
es

A
cc

ur
ac

y,
Fa

ls
e

Po
si

-

tiv
e

R
at

io
,F

al
se

N
eg

-

at
iv

e
R

at
io

—
-

—
-

C
P5

22
O

O
m

et
ri

cs
:

4
co

he
si

on

m
et

ri
cs

,
4

co
up

lin
g

m
et

ri
cs

,
7

in
he

ri
ta

nc
e

m
et

ri
cs

,7
si

ze
m

et
-

ri
cs

B
ea

n
B

ro
w

se
r,

E
jb

vo
y-

ag
er

,
Fr

ee
,

Ja
va

m
ap

pe
r,

Jc
he

m
pa

in
t,

Je
di

t,
Je

tty
,

Ji
gs

aw
,

Jl
ex

,
L

m
js

,
Vo

ji,
4

ve
rs

io
ns

of
JD

K

C
4.

5
D

ec
is

io
n

Tr
ee

,G
A

A
cc

ur
ac

y,
J-

In
de

x
Te

n-
fo

ld
—

-

C
P6

C
K

,
L

or
en

z
&

K
id

d
[1

9]
,

M
O

O
D

m
et

ri
cs

,B
D

M

Jfl
ex

(1
3

ve
rs

io
ns

)
St

ep
w

is
e

M
ul

tip
le

R
eg

re
ss

io
n

G
oo

dn
es

s
of

Fi
t

—
-

A
N

O
VA

398

Key Parameters of primary Studies

St
ud

y

N
o.

Pr
ed

ic
to

rs
D

at
as

et
s

D
at

a
A

na
ly

si
sT

ec
hn

iq
ue

s
Pe

rf
or

m
an

ce
M

ea
-

su
re

s

Va
lid

at
io

n

M
et

ho
d

St
at

is
tic

al
Te

st

C
P7

22
O

O
m

et
ri

cs
:

4
co

he
si

on

m
et

ri
cs

,
4

co
up

lin
g

m
et

ri
cs

,
7

in
he

ri
ta

nc
e

m
et

ri
cs

,7
si

ze
m

et
-

ri
cs

B
ea

n
B

ro
w

se
r,

E
jb

vo
y-

ag
er

,
Fr

ee
,

Ja
va

m
ap

pe
r,

Jc
he

m
pa

in
t,

Je
di

t,
Je

tty
,

Ji
gs

aw
,J

le
x,

Vo
ji

C
4.

5
D

ec
is

io
n

Tr
ee

,A
C

O
A

cc
ur

ac
y

Te
n-

fo
ld

W
ilc

ox
on

Si
gn

ed

R
an

k

C
P8

C
K

,Q
M

O
O

D
Y

ar
i

(3
ve

rs
io

ns
),

U
C

de
te

c-

to
r

(4
ve

rs
io

ns
),

JF
re

eC
ha

rt

(4
ve

rs
io

ns
)

C
om

bi
ne

d
R

an
k

L
is

t
M

ec
ha

-

ni
sm

H
it-

R
at

io
(R

ec
al

l)
,

C
ha

ng
e

C
os

t,
C

os
t

ra
tio

—
-

—
-

C
P9

62
O

O
m

et
ri

cs
:

18
co

he
si

on

m
et

ri
cs

,
20

co
up

lin
g

m
et

ri
cs

,

17
in

he
ri

ta
nc

e
m

et
ri

cs
,

7
si

ze

m
et

ri
cs

10
2

Ja
va

Sy
st

em
s

R
an

do
m

ef
fe

ct
m

et
a-

an
al

ys
is

A
U

C
—

-
—

-

C
P1

0
C

K
,

3
us

ag
e

m
et

ri
cs

,
3

co
m

-

pl
ex

ity
m

et
ri

cs
,

In
te

rf
ac

e
U

s-

ag
e

C
oh

es
io

n
m

et
ri

c

8
E

cl
ip

se
pl

ug
-i

n
pr

oj
ec

ts

an
d

2
H

ib
er

na
te

Sy
st

em
s

N
B

,S
V

M
,M

L
P

R
ec

al
l,

Pr
ec

is
io

n,

A
U

C

Te
n-

Fo
ld

W
ilc

ox
on

Si
gn

ed

R
an

k

C
P1

1
C

K
,7

N
et

w
or

k
ce

nt
ra

lit
y

m
ea

-

su
re

sf
ro

m
so

ci
al

ne
tw

or
k

an
al

-

ys
is

19
E

cl
ip

se
pl

ug
-i

n
pr

oj
ec

ts
,

A
zu

re
us

M
L

P,
B

N
R

ec
al

l,
Pr

ec
is

io
n,

A
U

C

Te
n-

Fo
ld

Fr
ie

dm
an

,

W
ilc

ox
on

Si
gn

ed

ra
nk

C
P1

2
C

K
,

16
E

vo
lu

tio
n-

ba
se

d
m

et
-

ri
cs

Pe
er

Si
m

(9
ve

rs
io

ns
),

V
SS

-

Pl
ug

in
(1

3
ve

rs
io

ns
)

L
R

A
cc

ur
ac

y
Te

n-
Fo

ld
W

ilc
ox

on
Si

gn
ed

R
an

k

C
P1

3
C

K
,

16
ot

he
r

cl
as

s-
le

ve
l

m
et

-

ri
cs

Fr
in

ik
a,

Fr
ee

M
in

d,
O

rD
ru

m
-

B
ox

L
R

,R
F,

M
L

P,
B

G
R

ec
al

l,
Sp

ec
ifi

ci
ty

,

A
U

C

Te
n-

Fo
ld

—
-

C
P1

4
C

K
,S

L
O

C
A

pa
ch

e
A

bd
er

a
(4

ve
rs

io
ns

),

A
pa

ch
e

PO
I

(4
ve

rs
io

ns
),

A
pa

ch
e

R
av

e
(4

ve
rs

io
ns

)

L
B

Pr
ec

is
io

n,
A

U
C

Te
n-

Fo
ld

,
C

ro
ss

-

pr
oj

ec
t

—
-

399

Key Parameters of primary Studies
St

ud
y

N
o.

Pr
ed

ic
to

rs
D

at
as

et
s

D
at

a
A

na
ly

si
sT

ec
hn

iq
ue

s
Pe

rf
or

m
an

ce
M

ea
-

su
re

s

Va
lid

at
io

n

M
et

ho
d

St
at

is
tic

al
Te

st

C
P1

5
C

K
,S

L
O

C
A

O
I,

H
yb

er
SQ

L
,

Jm
et

er
,

A
br

a,
C

el
es

tia
,G

le
st

B
G

,A
B

,R
F,

M
L

P,
A

IR
S,

Im
-

m
un

os
99

,C
lo

na
lS

el
ec

tio
n

A
cc

ur
ac

y,
A

U
C

Te
n-

Fo
ld

T-
te

st

C
P1

6
N

O
M

,D
IT

,R
FC

,N
O

C
,C

B
O

,

T
C

C
,S

L
O

C

A
rg

oU
m

L
,

Fi
nd

bu
gs

,
FO

P,

Fr
ee

C
ol

G
P

R
ec

al
l,

Pr
ec

is
io

n
—

-
Pr

op
or

tio
n

te
st

C
P1

7
C

K
Pe

er
Si

m
,V

SS
Pl

ug
in

L
R

,
M

L
P,

R
B

F,
SV

M
,

D
T,

G
E

P,
K

-m
ea

ns
,

E
ns

em
bl

e
of

M
od

el
s

(B
es

ti
n

tr
ai

ni
ng

,B
ag

-

gi
ng

,
B

oo
st

in
g,

M
aj

or
ity

Vo
t-

in
g,

N
on

-l
in

ea
r

D
ec

is
io

n
tr

ee

Fo
re

st
)

A
cc

ur
ac

y,
A

U
C

H
ol

d-
ou

t,
le

av
e-

on
e

ou
t

—
-

C
P1

8
C

K
,S

L
O

C
,N

O
M

,N
IV

,N
PM

,

N
IM

,N
O

A

Si
m

ut
ra

ns
,G

le
st

,C
el

es
tia

L
R

,R
F,

B
G

,M
L

P,
A

B
,C

PS
O

,

H
ID

E
R

,M
PL

C
S,

SU
C

S,
G

FS
-

SP
,N

N
E

P

A
cc

ur
ac

y,
A

U
C

,

Pr
ec

is
io

n,
Sp

ec
ifi

ci
ty

,

R
ec

al
l,

F-
m

ea
su

re
,

G
-m

ea
su

re

Te
n-

fo
ld

,
C

ro
ss

-

pr
oj

ec
t

Fr
ie

dm
an

C
P1

9
C

K
,S

L
O

C
A

pa
ch

e
R

av
e,

A
pa

ch
e

M
at

h
N

B
,

B
N

,
L

B
,

A
B

,
G

FS
-

A
B

,
G

FS
-L

B
,

G
FS

-M
ax

L
B

,

H
ID

E
R

,
N

N
E

P,
PS

O
-L

D
A

,

G
FS

-G
P,

G
FS

-S
P,

SL
AV

E

A
cc

ur
ac

y,
G

-m
ea

n
Te

n-
fo

ld
W

ilc
ox

on
Si

gn
ed

R
an

k

C
P2

0
E

nt
ro

py
of

ch
an

ge
s,

N
um

be
ro

f

de
ve

lo
pe

rs
,

St
ru

ct
ur

al
an

d
se

-

m
an

tic
sc

at
te

ri
ng

of
de

ve
lo

p-

er
s,

E
vo

lu
tio

n-
ba

se
d

m
et

ri
cs

,

O
O

m
et

ri
cs

A
rg

oU
M

L
,

A
pa

ch
e

A
nt

,

A
pa

ch
e

C
as

sa
nd

ra
,

A
pa

ch
e

X
er

ce
s,

at
un

es
,

Fr
ee

m
in

d,

Je
di

t,
Jf

re
ec

ha
rt

,
Jh

ot
dr

aw
,

Jv
lt

L
R

A
cc

ur
ac

y,
A

U
C

,

Pr
ec

is
io

n,
R

ec
al

l,

F-
m

ea
su

re

D
at

as
et

di
vi

de
d

in
to

3
m

on
th

sl
id

in
g

w
in

do
w

fo
r

tr
ai

ni
ng

an
d

te
st

in
g

W
ilc

ox
on

te
st

,

C
lif

f’
s

te
st

400

Key Parameters of primary Studies

St
ud

y

N
o.

Pr
ed

ic
to

rs
D

at
as

et
s

D
at

a
A

na
ly

si
sT

ec
hn

iq
ue

s
Pe

rf
or

m
an

ce
M

ea
-

su
re

s

Va
lid

at
io

n

M
et

ho
d

St
at

is
tic

al
Te

st

C
P2

1
C

K
,

16
E

vo
lu

tio
n-

ba
se

d
m

et
-

ri
cs

V
SS

Pl
ug

in
(1

3
ve

rs
io

ns
)

G
M

D
H

A
cc

ur
ac

y,
A

U
C

,

Pr
ec

is
io

n,
R

ec
al

l,

F-
m

ea
su

re

H
ol

d-
ou

t
—

-

C
P2

2
62

O
O

m
et

ri
cs

:
19

co
he

si
on

m
et

ri
cs

,
19

co
up

lin
g

m
et

ri
cs

,

17
in

he
ri

ta
nc

e
m

et
ri

cs
,

7
si

ze

m
et

ri
cs

E
cl

ip
se

L
R

,
N

B
,

E
xt

re
m

e
M

ac
hi

ne

L
ea

rn
in

g
(L

in
ea

r,
Po

ly
no

m
ia

l

&
R

B
F

ke
rn

el
s)

,
SV

M
(L

in
-

ea
r,

Po
ly

no
m

ia
l

&
Si

gm
oi

d

ke
rn

el
s)

,
E

ns
em

bl
es

of
Te

ch
-

ni
qu

es
(B

es
t

in
Tr

ai
ni

ng
,

M
a-

jo
ri

ty
Vo

tin
g)

A
cc

ur
ac

y,
A

U
C

Te
n-

fo
ld

—
-

C
P2

3
21

O
O

m
et

ri
cs

in
cl

ud
in

g
C

K

m
et

ri
cs

E
ba

y
Se

rv
ic

es
(5

ve
rs

io
ns

)
L

ea
st

Sq
ua

re
SV

M
(L

in
ea

r,

Po
ly

no
m

ia
l&

R
B

F
ke

rn
el

s)

A
cc

ur
ac

y,
F-

m
ea

su
re

Tw
en

ty
-f

ol
d

T-
te

st

C
P2

4
61

O
O

m
et

ri
cs

10
E

cl
ip

se
pl

ug
-i

ns
L

R
,

M
L

P,
R

B
F,

D
T,

R
F,

E
n-

se
m

bl
es

of
Te

ch
ni

qu
es

(B
es

t

in
Tr

ai
ni

ng
,

M
aj

or
ity

Vo
tin

g,

N
on

-L
in

ea
rD

ec
is

io
n

Tr
ee

Fo
r-

es
t)

A
cc

ur
ac

y,
Pr

ec
is

io
n,

R
ec

al
l,

F-
m

ea
su

re

Te
n-

fo
ld

,
C

ro
ss

-

pr
oj

ec
t

W
ilc

ox
on

Si
gn

ed

R
an

k

C
P2

5
13

O
O

m
et

ri
cs

in
cl

ud
in

g
C

K
A

O
I,

Sw
ee

tH
om

e
3D

L
R

,
R

F,
A

B
,

B
G

,
M

L
P,

N
B

,

B
N

,J
48

,N
N

G
E

R
ec

al
l,

Sp
ec

ifi
ci

ty
,

A
U

C

Te
n-

fo
ld

,
C

ro
ss

-

pr
oj

ec
t

T-
te

st

C
P2

6
10

O
O

m
et

ri
cs

in
cl

ud
in

g
C

K
,

L
i&

H
en

ry
,S

IZ
E

1

A
nt

,
A

nt
lr,

A
rg

ou
m

l,

A
zu

re
us

,F
re

ec
ol

,F
re

em
in

d,

H
ib

er
na

te
,

Jg
ra

ph
,

Jm
et

er
,

Js
to

ck
,

Ju
ng

,
Ju

ni
t,

L
uc

en
e,

W
ek

a

L
B

,
M

L
P,

R
B

F,
SV

M
,

K
-

m
ea

ns
,C

L
A

M
I,

C
L

A
M

I+

A
cc

ur
ac

y,
A

U
C

,
F-

m
ea

su
re

W
ith

in
pr

oj
ec

t,

C
ro

ss
-p

ro
je

ct

Fr
ie

dm
an

,
N

e-

m
en

yi

401

Key Parameters of primary Studies
St

ud
y

N
o.

Pr
ed

ic
to

rs
D

at
as

et
s

D
at

a
A

na
ly

si
sT

ec
hn

iq
ue

s
Pe

rf
or

m
an

ce
M

ea
-

su
re

s

Va
lid

at
io

n

M
et

ho
d

St
at

is
tic

al
Te

st

C
I1

C
ha

ng
e

re
qu

es
t,

So
ur

ce
co

de

co
m

po
ne

nt
s

L
ib

ra
ry

of
E

ffi
ci

en
t

D
at

a

Ty
pe

s
an

d
A

lg
or

ith
m

s

(L
E

D
A

)

—
-

R
ec

al
l,

Pr
ec

is
io

n
Pr

op
os

ed
ap

-

pr
oa

ch
va

lid
at

ed

—
-

C
I2

C
ha

ng
e

re
qu

es
t,

Fr
ee

te
xt

in

so
ft

w
ar

e
re

po
si

to
ry

K
ca

lc
,

K
pd

f,
K

sp
re

ad
,

Fi
re

-

fo
x

—
-

To
p

1
R

ec
al

l,
To

p
30

R
ec

al
l,

To
p

1
Pr

ec
i-

si
on

Pr
op

os
ed

ap
-

pr
oa

ch
is

va
li-

da
te

d

—
-

C
I3

C
ha

ng
e

re
qu

es
t,

So
ur

ce
Fi

le
s

K
ca

lc
,

K
pd

f,
K

sp
re

ad
,

Fi
re

-

fo
x

—
-

Pr
ec

is
io

n-
R

ec
al

l

C
ur

ve
s

Pr
op

os
ed

ap
-

pr
oa

ch
is

va
li-

da
te

d

—
-

C
I4

C
ha

ng
e

re
qu

es
t,

Fr
ee

te
xt

in

so
ft

w
ar

e
re

po
si

to
ry

G
ed

it,
Fi

re
fo

x,
A

rg
oU

M
L

—
-

R
ec

al
l,

Pr
ec

is
io

n
Pr

op
os

ed
ap

-

pr
oa

ch
is

va
li-

da
te

d

—
-

C
I5

C
ha

ng
e

re
qu

es
t,

So
ur

ce
C

od
e,

H
is

to
ri

ca
l

In
fo

rm
at

io
n,

D
y-

na
m

ic
ex

ec
ut

io
n

tr
ac

e

A
rg

oU
M

L
,

Ja
br

ef
,

Je
di

t,

M
uc

om
m

an
de

r

—
-

R
ec

al
l,

Pr
ec

is
io

n
Pr

op
os

ed
ap

-

pr
oa

ch
is

va
li-

da
te

d

W
ilc

ox
on

Si
gn

ed

R
an

k

C
I6

C
ha

ng
e

re
qu

es
t,

So
ur

ce

C
od

e,
C

ha
ng

e
Ty

pe
,

R
eq

ui
re

-

m
en

ts
an

d
D

es
ig

n
ar

te
fa

ct
s

O
n-

bo
ar

d
A

ut
om

ob
ile

Pr
oj

ec
t

B
re

ad
th

Fi
rs

tS
ea

rc
h

R
el

at
iv

e
E

rr
or

,
A

b-

so
lu

te
R

el
at

iv
e

E
rr

or
,

M
ea

n
m

ag
ni

tu
de

of

R
el

at
iv

e
E

rr
or

Pr
op

os
ed

ap
-

pr
oa

ch
is

va
li-

da
te

d

—
-

C
I7

Te
xt

ua
lly

si
m

ila
r

ch
an

ge
re

-

qu
es

t,
E

xe
cu

tio
n

tr
ac

e,
H

is
to

r-

ic
al

da
ta

of
co

-c
ha

ng
ed

en
tit

ie
s

A
rg

oU
M

L
A

ss
oc

ia
tio

n
R

ul
es

—
-

Pr
op

os
ed

ap
-

pr
oa

ch
is

va
li-

da
te

d

—
-

402

Key Parameters of primary Studies

St
ud

y

N
o.

Pr
ed

ic
to

rs
D

at
as

et
s

D
at

a
A

na
ly

si
sT

ec
hn

iq
ue

s
Pe

rf
or

m
an

ce
M

ea
-

su
re

s

Va
lid

at
io

n

M
et

ho
d

St
at

is
tic

al
Te

st

C
I8

C
ha

ng
e

re
qu

es
t,

D
ev

el
op

er
in

-

te
ra

ct
io

ns
an

d
co

m
m

it
hi

st
or

ie
s

of
so

ur
ce

co
de

M
yl

yn
K

-N
N

R
ec

al
l@

k,
Pr

ec
i-

si
on

@
k

Tr
ai

ni
ng

:
90

%
,

Te
st

:1
0%

A
N

O
VA

N
ot

e:
”—

-”
in

di
ca

te
s

th
e

co
rr

es
po

nd
in

g
in

fo
rm

at
io

n
w

as
no

tf
ou

nd
in

th
e

st
ud

y.

A
ID

:
A

cc
es

s
of

Im
po

rt
ed

D
at

a;
A

L
D

:
A

cc
es

s
of

L
oc

al
D

at
a;

B
D

M
:

B
eh

av
io

ra
l

D
ep

en
de

nc
y

M
ea

su
re

m
en

t;
C

C
:

C
yc

lo
m

at
ic

C
om

pl
ex

ity
;

M
N

O
B

:
M

ax
im

um
N

um
be

r
O

f

B
ra

nc
he

s;
N

IC
:N

um
be

r
of

Im
po

rt
ed

C
la

ss
es

,N
IM

:N
um

be
r

of
In

st
an

ce
M

et
ho

ds
;N

IV
:N

um
be

r
of

In
st

an
ce

V
ar

ia
bl

es
;N

O
C

I:
N

um
be

r
of

Ti
m

es
So

ur
ce

Fi
le

w
as

In
sp

ec
te

d;
N

O
LV

:

N
um

be
rO

fL
oc

al
V

ar
ia

bl
es

,N
O

P:
N

um
be

rO
fP

ar
am

et
er

s.

403

Appendix C

Review of SBA for developing SEPM

This is an appendix to the review of SBA conducted in Chapter 5.

C.1 Inclusion & Exclusion Criteria

The inclusion and exclusion criteria of the SBA review conducted is as follows:

• Inclusion Criteria: We included studies which used SBA for estimating the

four software attributes (effort estimation, defect prediction, maintainability

prediction and change prediction). Studies which evaluated and compared var-

ious SBA amongst themselves and with other ML techniques for developing

SPM were also included.

• Exclusion Criteria: We excluded studies which were based on predicting other

dependent variables such as reliability or defect count. Also review studies,

poster papers, PhD dissertations were excluded. In case a conference paper

was extended in a journal, only the journal version of the paper was included.

404

Data Collection from Different Sources

C.2 Quality Questions

Table C.1 lists the quality questions for assessing the 112 studies extracted after inclu-

sion and exclusion criteria. It also states the percentage of primary studies acquiring

a specific quality grade for each of the 16 quality questions.

Table C.1: Quality Questions

Q# Quality Questions Yes Partly No
Q1 Are the aims of the study clearly stated? 98% 2% 0%
Q2 Are the independent variables of the study properly reported? 79% 14% 7%
Q3 Are the size and number of datasets used by the study appropriate? 82% 18% 0%
Q4 Are the data sources and data collection procedure clearly described? 78% 18% 4%
Q5 Is the use of search-based algorithm and its selection justified in the study? 49% 40% 11%
Q6 Does the study use appropriate validation technique for model evaluation? 93% 1% 6%
Q7 Are the parameter settings and fitness functions of the SBA clearly reported? 81% 11% 8%
Q8 Does the study perform appropriate number of runs to account for the stochastic

nature of SBA?

56% 7% 37%

Q9 Are the performance measures used by the study clearly reported? 89% 9% 2%
Q10 Are the performance measures appropriate? 35% 19% 46%
Q11 Does the study perform a comparative analysis of the models predicted using dif-

ferent techniques (statistical vs search-based algorithm, ML vs search-based algo-

rithm or amongst SBA)?

87% 2% 11%

Q12 Does the study perform any comparison of SBA with baseline benchmarks? 58% 14% 28%
Q13 Does the study demonstrate the statistical comparison amongst two techniques with

the help of statistical tests?

51% 0% 49%

Q14 Are the limitations or threats to validity of the obtained results clearly reported? 31% 0% 69%
Q15 Is the research methodology used by the study repeatable? 58% 33% 9%
Q16 Does the study clearly report its findings? Do the findings relate to the aims of the

research?

91% 9% 0%

C.3 Data Collection from Different Sources

Figure C.1 depicts the details of the data collection procedure of the review. We cat-

egorize our sources into six parts A-F, which are depicted in the figure. The number

of studies collected from each source in each phase is represented in parenthesis.

405

Year-wise Distribution of Primary Studies

Figure C.1: Data collection of Review Studies

C.4 Year-wise Distribution of Primary Studies

A year-wise distribution of the 91 primary studies is given in Figure C.2. It may be

noted that most number of studies were published in 2010, but there are very few

studies before 2001. A possible cause for such a trend could be that the formal term

“Search Based Software Engineering” was formulated by Harman and Jones in 2001

[157], thus, leading to rise in the number of studies after 2001.

Figure C.2: Year-wise Distribution of Primary Studies using SBA for SEPM

406

Categories of SBA

C.5 Categories of SBA

Table C.2 states the various SBA used by the primary studies, along with the corre-

sponding study numbers according to four categories (Local, Evolutionary, Swarm

Intelligence and Hybrid).

Table C.2: SBA used for SEPM

Category SBA
Local Hill Climbing [ES19, ES6], Tabu Search [ES18, ES22, ES24].
Evolutionary GP [ES1, ES2, ES4, ES5, ES7, ES8, ES9, ES10, ES17, ES21, ES23, ES27, ES29, ES31, DS3, DS4,

DS5, DS8, DS12, DS15, DS37, CS5], GA [ES11, ES13, ES12, ES14, ES20, ES30, ES42, DS35, CS3,

CS10, MS4], Differential Evolution [ES28, ES41], MO Evolutionary Algorithm [ES36], MOGA [ES40,

DS23], MOGP [ES31, DS27], GEP [CS8, DS11, DS27], Harmonic Distance MO Evolutionary Algorithm

[ES35], Grammatical Evolution [ES33], MPLCS [CS7], SUCS [CS7], Parallel GA [DS35].
Swarm Intel-

ligence

PSO [ES27, ES26, ES32, ES38, ES43, DS14, DS17], MOPSO [ES39, DS7, DS13], Adaptive Dynamic

Mean PSO [DS14], CPSO [CS7], Distance Sorting based MOPSO [DS30], ACO [ES17, DS9, CS4],

AIRS1 [DS10, DS12, DS24, DS28, CS6], AIRS2 [DS10, DS24], AIRS2P [DS10, DS24], CLG [DS10,

DS24], IM1 [DS10, DS24], IM2 [DS10, DS24], IM99 [DS24, DS28, CS6], Clonal Selection Classifier

Algorithm [DS24].
Hybrid GA- ANN [ES3, ES25, DS1, DS2, MS1, MS2, MS3], GA-SVM [ES15, ES25, ES30, DS18, DS21,

DS22, DS25, DS32], GP-DT [DS4], Exhaustive Search- Probabilistic Neural Network [DS16], Simu-

lated Annealing- Probabilistic Neural Network [DS16], Evolutionary Programming with Least Square

SVM [DS19], Evolutionary Decision Rules for Subgroup Discovery [DS20], PSO-SVM [DS22], PSO-

ANN [ES37, DS29], GA-Fuzzy Logic [DS26], GA- Radial Basis Function [ES25, DS32], GA- Model

Trees [ES25], Artificial Bee Colony-ANN [DS28], Quantum PSO-ANN [DS29],Quantum PSO-SVM

[DS29], HS-NB [DS33], HS-LR [DS33], HS-DT [DS33], GP-NB [DS31], GP-C4.5 [DS31], GA-Grey

Relational Analysis [ES16], Tabu-Search-SVM [ES34], NNEP [CS7, CS9, MS2], Evolutionary Fuzzy

Rule Learning [MS2], Evolutionary Symbolic Regression Technique [MS2], HIDER [CS7, CS9], GFS-

LB [CS9], GFS-MLB [CS9], PSO-LDA [CS9], GFS-AB [CS9], GA-Ensemble Learning [DS34], GA

with LR [DS32], GA- Extreme Learning [DS34], GFS-GP [CS9], GFS-SP [CS9], Nearest-Neighbour-

GA [DS36].
MO: Multi-Objective; HS: Harmony Search, IM: Immunos; AIRS2P: AIRS2Parallel

407

Dataset-wise Outliers for Effort Estimation & Defect Prediction

C.6 Dataset-wise Outliers for Effort Estimation & De-

fect Prediction

Figure C.3: Outliers for Effort Estimation Models according to Datasets (a) MMRE
(b) Pred (25)

Figure C.3 depicts the dataset-wise outliers for MMRE and Pred(25) performance

measures corresponding to the effort estimation studies. According to the figure,

the GP technique obtained very high MMRE values on the ISBSG and COCOMO

datasets and GA-ANN technique obtained a very high MMRE value on the IBM DP

408

Dataset-wise Outliers for Effort Estimation & Defect Prediction

dataset.

Figure C.4: Outliers for Defect Prediction Models according to DataSets (a) Accu-
racy (b) AUC (c) Sensitivity

Figure C.4 depicts the dataset-wise outliers for Accuracy, AUC and Sensitivity

performance measures corresponding to defect prediction studies. As seen in the fig-

409

Threats in Application of SBA to SEPM

ure, the MOPSO, IM1 and GP had one outlier each according to accuracy values, and

the CLG and IM1 techniques also had one outlier each according to AUC values. The

Telecommunication dataset was an outlier for AIRS1 and GP technique according to

sensitivity values.

C.7 Threats in Application of SBA to SEPM

Table C.3 lists the conclusion validity threats extracted from the primary studies,

along with their supporting studies (SS). It states the possible cause of a threat in the

form of a question. If the answer to a corresponding question is “no”, the specific

threat exists in a study. Each identified conclusion validity threat is allocated a spe-

cific number. The table also states the mitigation of the identified conclusion validity

threats, which are extracted from the primary studies. Similarly, Tables C.4, C.5 and

C.6 states the internal validity threats, construct validity threats and the external va-

lidity threats respectively extracted from the primary studies of the review, with their

supporting studies (SS) and mitigation.

Table C.3: Conclusion Validity Threats in Primary Studies

Description & Supporting Studies
C1: Is there any statistical verification of the results?

Remedy: It is important for a study to use an effective statistical test to formally validate the hypothesis of the study.

SS: ES18, ES22, ES31, ES34, ES36, ES40, ES42, DS12, DS13, DS23, DS27, DS31, DS33, DS34, DS36, CS5.
C2: Does the study verify all the assumptions of the chosen statistical test?

Remedy: In case the study uses a parametric test, all the assumptions which are pre-requisites before application

of the test should be verified. However, a study may use non-parametric statistical test, which does not require any

pre-requisite assumptions on the underlying data.

SS: ES18, ES22, ES30, ES31, ES34, ES40, DS12, DS23, DS31, DS33, DS34, CS5.
C3: Does the study account for randomness of SBA?

Remedy: In order to account for randomness of SBA, they are required to be executed using multiple (at least 10)

runs [238]. The study should report either the average or the median of these multiple runs.

SS: DS21, DS23, DS33, DS35, DS36.

410

Threats in Application of SBA to SEPM

Description & Supporting Studies
C4: Do the results of the study take into account validation bias if any?

Remedy: The results of the study could be improper if validation bias is not accounted for. Thus, an appropriate

validation technique, such as ten-fold cross validation which takes into account multiple combinations of training

and testing data should be used. Other validation approaches such as cross-project scenario [40] are also effective.

SS: ES22, DS10, DS12, DS13, DS33.
C5: Does the study compare its result with an appropriate baseline benchmark or are the results evaluated

by experts?

Remedy: The results of the proposed search-based algorithm should either be evaluated by an expert or should be

compared with a baseline technique. The increased predictive performance of the proposed techniques is adjudged

in terms of added complexity with respect to the baseline technique.

SS: ES40, DS13, DS34.

Table C.4: Internal Validity Threats in Primary Studies

Description & Supporting Studies
I1: Does the study perform appropriate steps for tuning the parameters of SBA?

Remedy: The study should perform appropriate steps to tune the internal parameters of SBA so that optimum results

can be obtained. Parameter configurations which have been considered effective by previous studies may be used.

SS: ES10, ES36, ES42, DS15, DS20, DS35, DS36, DS37.
I2: Does the study take steps to effectively use inconsistent or noisy data?

Remedy: The study should use data cleansing techniques such as filters in order to effectively use inconsistent and

noisy data.

SS: ES42, DS10, DS15, DS31, DS34, DS36, DS37.
I3: Does the study use attribute selection methods to eliminate noisy and redundant attributes?

Remedy: The study should use attribute selection methods in order to reduce the number of independent attributes

and form an effective set of predictors. They help in elimination of noisy and redundant attributes.

SS: ES38, DS8, DS31, MS3.
I4: Does the study ensure that there is no confounding effect on the relationship between the independent and

the dependent variables due to extraneous attributes?

Remedy: In order to ensure that the confounding nature of an extraneous variable does not lead to misjudgment of

the relationship between the dependent and the independent variables, the extraneous variable should be controlled

and the effect of this variable’s presence should be studied on the relationship between the independent and the

dependent variables. However, such controlled experiments are difficult to perform in practice.

SS: DS12, DS27, DS30, DS37, CS8, CS10.

411

Threats in Application of SBA to SEPM

Table C.5: Construct Validity Threats in Primary Studies

Description & Supporting Studies
CT1: Does the study use effective representatives of the concepts which represent independent variables?

Remedy: The study should use well-established metrics in literature for representing independent variables as they

have been previously validated by literature studies. The use of well-known public datasets reduces this threat as the

metrics (independent variables) used by the datasets are already assessed for their effectiveness by previous studies.

SS: ES18, ES22, ES30, ES31, ES34, ES40, ES42, DS10, DS15, DS20, DS21, DS23, DS31, DS36, DS37, CS5,

CS6, CS9, MS3.
CT2: Does the study use performance measures which are effective representatives of the capability of the

developed models?

Remedy: The study should use efficient performance measures for assessing the developed models. For instance,

performance measures such as G-Mean1, Balance and AUC are efficient performance evaluators for defect prediction

and change prediction models. They give a realistic estimate of the developed model even if the class distribution

is imbalanced [117, 118]. Other metrics (such as accuracy, precision, recall) generally provide a biased optimistic

estimate which leads to misleading results.

SS: ES36, ES42, DS10, DS12, DS23, DS31, DS33, DS34, DS35, DS36, DS37.
CT3: Does the study take necessary steps in order to overcome human errors while data collection?

Remedy: The study should use well-known automated or semi-automated tools for collecting data. Moreover, the

use of public datasets which have already been verified by previous studies also reduces this risk.

SS: ES10, DS31, DS34, CS10, MS1.

Table C.6: External Validity Threats in Primary Studies

Description & Supporting Studies
ET1: Are the datasets used by the study real industrial datasets?

Remedy: The study should use real industrial datasets so that the practical relevance of the results can be assessed.

In case, industrial datasets could not be collected, datasets that resemble industrial projects or properties may be

used.

SS: ES10, ES18, ES22, ES34, DS10, DS12, DS13, DS15, DS20, DS21, DS31, DS34, DS36, DS37.
ET2: Are the datasets used in the study appropriate in number?

Remedy: The study should use multiple datasets for empirical validation so that the results are easily generalized.

SS: ES18, ES31, ES36, ES38, DS12, DS20, DS23, DS33, DS34, DS35, DS37, DS36, CS5, CS9, MS1.
ET3: Does the study use appropriately sized or varied sized datasets?

Remedy: The study should use medium or large sized datasets so that the results are practical and relevant. Also,

datasets with varying sizes should be evaluated to generalize the results.

SS: ES18, ES22, ES30, ES31, ES34, ES40, DS10, DS13, DS15, DS31, DS35.

412

Threats in Application of SBA to SEPM

Description & Supporting Studies
ET4: Are the datasets used in the study developed using different programming languages?

Remedy: The use of mono-language datasets for empirical validation decreases the generalizability of the results.

The effectiveness of the results can be increased by performing experiments on datasets developed using different

programming languages such as Java, C, C++ etc.

SS: DS15, DS21, DS36, CS5, CS6, MS3.
ET5: Do the datasets used in the study belong to different companies/domains or have different characteris-

tics?

Remedy: In order to validate the effectiveness of the results on different companies and domains and increase the

external validity of the results, it is important for the study to use datasets belonging to different companies/domains

or with datasets collected from projects exhibiting different characteristics.

SS: ES18, ES22, ES30, ES31, ES36, ES40, ES42, DS12, DS20, DS21, DS31, DS35, DS37, CS9.
ET6: Does the study provide proper details for replicability?

Remedy: If a study uses publicly available datasets, the replicability of the study increases. Also, the study should

specify the parameter settings and fitness functions of the employed techniques so that the results can be replicated

easily by the research community.

SS: ES36, DS31, DS37, CS5.

413

Appendix D

Imbalanced Learning

This is an appendix to the experiments conducted in Chapter 10.

D.1 Ten-fold Cross Validation Results using Sampling

Approaches

Tables D.1 and D.2 report the recall and precision values exhibited by the six ML

techniques on the six datasets of the chapter after application of three sampling meth-

ods (Resample with Replacement, SMOTE and Spread Subsample) and when no

sampling approach is used. An analysis of Table D.1 indicates extremely low re-

call values (5%-45%) in majority of the cases on all the datasets when no sampling

method is used. A similar trend was shown by precision values as indicated in Table

D.2. The table shows low precision values (14%-65%) in majority of the cases when

no sampling approach was used. These trends are a result of imbalanced data. As

the datasets have very few instances of change-prone classes, the models may not be

able to learn to distinguish them efficiently, this would result in low recall

414

Ten-fold Cross Validation Results using Sampling Approaches

Ta
bl

e
D

.1
:R

ec
al

lR
es

ul
ts

us
in

g
D

iff
er

en
tS

am
pl

in
g

M
et

ho
ds

M
L

Te
ch

.
N

et
M

L
Te

ch
.

IO
M

L
Te

ch
.

L
og

4j
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

A
B

80
.5

3
94

.0
7

61
.0

2
61

.0
2

A
B

88
.7

9
60

.0
0

45
.4

5
27

.2
7

A
B

61
.9

1
59

.2
1

22
.8

1
24

.5
6

R
F

94
.1

0
90

.6
8

62
.7

1
50

.8
5

R
F

99
.8

9
60

.0
0

63
.6

4
27

.2
7

R
F

87
.2

1
74

.1
2

31
.5

8
26

.3
2

B
G

87
.8

9
91

.5
3

55
.9

3
55

.9
3

B
G

97
.5

8
49

.0
9

63
.6

4
9.

09
B

G
81

.9
1

75
.0

0
17

.5
4

19
.3

0
L

B
87

.6
8

91
.5

3
54

.2
4

57
.6

3
L

B
94

.6
2

58
.1

8
54

.5
5

27
.2

7
L

B
71

.9
1

71
.4

9
22

.8
1

26
.3

2
N

B
56

.4
2

54
.6

6
38

.9
8

32
.2

0
N

B
71

.5
4

29
.0

9
45

.4
5

27
.2

7
N

B
37

.7
9

30
.2

6
10

.5
3

14
.0

4
M

L
P

89
.0

5
88

.5
6

45
.7

6
40

.6
8

M
L

P
94

.7
3

38
.1

8
54

.5
5

27
.2

7
M

L
P

64
.4

1
53

.5
1

22
.8

1
17

.5
4

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.
C

al
en

da
r

M
L

Te
ch

.
M

M
S

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
A

B
94

.4
8

80
.0

0
81

.8
2

9.
09

A
B

67
.4

6
78

.4
3

17
.6

5
17

.6
5

A
B

90
.6

9
96

.1
0

68
.0

9
51

.0
6

R
F

98
.2

8
83

.6
4

81
.8

2
27

.2
7

R
F

77
.2

7
67

.6
5

17
.6

5
5.

88
R

F
97

.2
1

95
.7

4
44

.6
8

40
.4

3
B

G
87

.9
3

78
.1

8
81

.8
2

9.
09

B
G

74
.5

5
68

.6
3

11
.7

6
17

.6
5

B
G

92
.2

1
96

.1
0

55
.3

2
40

.4
3

L
B

97
.5

9
85

.4
5

81
.8

2
27

.2
7

L
B

78
.7

3
67

.6
5

17
.6

5
17

.6
5

L
B

88
.6

0
95

.3
9

61
.7

0
38

.3
0

N
B

66
.5

5
70

.9
1

81
.8

2
36

.3
6

N
B

22
.3

6
30

.3
9

29
.4

1
29

.4
1

N
B

86
.5

1
83

.6
9

72
.3

4
70

.2
1

M
L

P
81

.1
5

89
.0

9
72

.7
3

27
.2

7
M

L
P

56
.7

3
51

.9
6

17
.6

5
17

.6
5

M
L

P
93

.2
3

93
.6

2
51

.0
6

44
.6

8
R

e.
S

in
di

ca
te

s
R

es
am

pl
e

w
ith

R
ep

la
ce

m
en

t,
Su

bS
.i

nd
ic

at
es

Su
bs

am
pl

e
&

N
Sa

m
p.

in
di

ca
te

s
N

o
Sa

m
pl

e

Ta
bl

e
D

.2
:P

re
ci

si
on

R
es

ul
ts

us
in

g
D

iff
er

en
tS

am
pl

in
g

M
et

ho
ds

M
L

Te
ch

.
N

et
M

L
Te

ch
.

IO
M

L
Te

ch
.

L
og

4j
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

A
B

75
.6

3
80

.1
4

65
.4

5
61

.0
2

A
B

76
.9

7
78

.5
7

71
.4

3
37

.5
0

A
B

81
.5

0
78

.0
3

68
.4

2
66

.6
7

R
F

95
.0

3
86

.2
9

61
.6

7
57

.6
9

R
F

96
.5

3
75

.0
0

77
.7

8
27

.2
7

R
F

89
.5

8
86

.2
2

48
.6

5
44

.1
2

B
G

88
.4

6
85

.3
8

67
.3

5
63

.4
6

B
G

91
.0

2
79

.4
1

87
.5

0
10

0.
00

B
G

86
.7

2
81

.8
2

62
.5

0
61

.1
1

L
B

85
.9

5
83

.7
2

64
.0

0
64

.1
5

L
B

84
.8

2
76

.1
9

66
.6

7
50

.0
0

L
B

84
.0

2
79

.1
3

68
.4

2
68

.1
8

N
B

79
.7

6
86

.5
8

67
.6

5
61

.2
9

N
B

76
.3

5
61

.5
4

83
.3

3
42

.8
6

N
B

87
.2

3
71

.8
8

40
.0

0
47

.0
6

M
L

P
87

.4
6

78
.5

7
75

.0
0

66
.6

7
M

L
P

74
.5

0
95

.4
5

10
0.

00
10

0.
00

M
L

P
86

.1
1

67
.4

0
10

0.
00

62
.5

0

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.
C

al
en

da
r

M
L

Te
ch

.
M

M
S

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
R

e.
S

SM
O

TE
Su

b.
S

N
Sa

m
p.

R
e.

S
SM

O
TE

Su
b.

S
N

Sa
m

p.
A

B
94

.8
3

78
.5

7
90

.0
0

14
.2

9
A

B
76

.3
8

57
.5

5
75

.0
0

75
.0

0
A

B
81

.5
7

84
.4

2
57

.1
4

45
.2

8
R

F
94

.5
9

82
.1

4
81

.8
2

33
.3

3
R

F
80

.1
6

87
.3

4
42

.8
6

50
.0

0
R

F
95

.7
9

90
.3

0
53

.8
5

47
.5

0
B

G
92

.0
3

82
.6

9
81

.8
2

50
.0

0
B

G
78

.2
1

74
.4

7
66

.6
7

50
.0

0
B

G
90

.1
3

87
.4

2
66

.6
7

67
.8

6
L

B
95

.0
4

87
.0

4
81

.8
2

33
.3

3
L

B
76

.2
2

83
.1

3
75

.0
0

75
.0

0
L

B
84

.9
8

84
.8

6
58

.0
0

52
.9

4
N

B
95

.9
4

84
.7

8
90

.0
0

50
.0

0
N

B
52

.7
0

72
.0

9
45

.4
5

41
.6

7
N

B
79

.5
4

84
.5

9
52

.3
1

47
.1

4
M

L
P

89
.5

6
77

.7
8

72
.7

3
50

.0
0

M
L

P
76

.3
9

56
.9

9
75

.0
0

75
.0

0
M

L
P

85
.3

7
87

.1
3

64
.8

6
56

.7
6

R
e.

S
in

di
ca

te
s

R
es

am
pl

e
w

ith
R

ep
la

ce
m

en
t,

Su
bS

.i
nd

ic
at

es
Su

bs
am

pl
e

&
N

Sa
m

p.
in

di
ca

te
s

N
o

Sa
m

pl
e

415

Ten-fold Cross Validation Results using MetaCost Learners

and precision values. However, in majority of cases when any sampling approach

was used, the recall values ranged from 55%-98% (Table D.1), indicating a positive

improvement in the correct prediction of change-prone classes. Similarly, the preci-

sion values too showed a positive improvement as they ranged from 70%-96% in the

majority of the cases (Table D.2).

D.2 Ten-fold Cross Validation Results using MetaCost

Learners

Table D.3 and D.4 report the recall and precision values obtained on application of

all the six ML techniques on each dataset of the chapter, with the use of different

CR’s and without any cost-sensitive learning (“original”). There was a sharp in-

crease in recall values in all the datasets with the use of MetaCost learners. This is

because the MetaCost learners were used in such a way so as to penalize the clas-

sifier for FN predictions. With low FN predictions, the recall increases. This was

done as the datasets were highly imbalanced with few change-prone classes. Thus, it

was important to increase recall rates to achieve a balanced classifier. However, one

should be careful that apart from recall, the precision values should also be consid-

ered. As shown in Table D.4, there is decrease in precision values in majority of the

cases. This is a concerning factor as increase in recall should not mean that a number

of not change-prone classes are incorrectly classified as change-prone. One should

achieve an optimum balance between recall and precision. It should be a researcher’s

objective that both change-prone and not change-prone classes should be correctly

identified. For example, result of CR=5 in Bluetooth and MMS datasets show com-

parable precision values. Table D.5 reports the cost of the model for each CR ratio,

which was considered while choosing the best CR ratio for a specific dataset.

416

Ten-fold Cross Validation Results using MetaCost Learners

Ta
bl

e
D

.3
:R

ec
al

lR
es

ul
ts

of
M

et
aC

os
tL

ea
rn

er
s

us
in

g
M

L
te

ch
ni

qu
es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

61
.0

2
83

.0
5

89
.8

3
96

.6
1

96
.6

1
96

.6
1

96
.6

1
98

.3
1

A
B

24
.5

6
59

.6
5

87
.7

2
94

.7
4

10
0.

00
10

0.
00

10
0.

00
10

0.
00

R
F

50
.8

5
74

.5
8

83
.0

5
84

.7
5

86
.4

4
89

.8
3

89
.8

3
96

.6
1

R
F

26
.3

2
52

.6
3

63
.1

6
66

.6
7

64
.9

1
66

.6
7

68
.4

2
73

.6
8

B
G

55
.9

3
79

.6
6

86
.4

4
91

.5
3

93
.2

2
10

0.
00

10
0.

00
10

0.
00

B
G

19
.3

0
43

.8
6

89
.4

7
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

L
B

57
.6

3
83

.0
5

94
.9

2
96

.6
1

98
.3

1
96

.6
1

96
.6

1
98

.3
1

L
B

26
.3

2
56

.1
4

85
.9

6
96

.4
9

10
0.

00
10

0.
00

10
0.

00
10

0.
00

N
B

32
.2

0
52

.5
4

72
.8

8
81

.3
6

88
.1

4
91

.5
3

91
.5

3
93

.2
2

N
B

14
.0

4
50

.8
8

78
.9

5
92

.9
8

92
.9

8
96

.4
9

96
.4

9
98

.2
5

M
L

P
40

.6
8

79
.6

6
94

.9
2

94
.9

2
94

.9
2

10
0.

00
10

0.
00

10
0.

00
M

L
P

17
.5

4
63

.1
6

98
.2

5
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

27
.2

7
36

.3
6

45
.4

5
54

.5
5

54
.5

5
54

.5
5

54
.5

5
63

.6
4

A
B

51
.0

6
59

.6
5

87
.7

2
94

.7
4

10
0.

00
10

0.
00

10
0.

00
10

0.
00

R
F

27
.2

7
27

.2
7

45
.4

5
45

.4
5

45
.4

5
45

.4
5

45
.4

5
45

.4
5

R
F

40
.4

3
52

.6
3

63
.1

6
66

.6
7

64
.9

1
66

.6
7

68
.4

2
73

.6
8

B
G

9.
09

27
.2

7
45

.4
5

45
.4

5
45

.4
5

45
.4

5
54

.5
5

90
.9

1
B

G
40

.4
3

43
.8

6
89

.4
7

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00

L
B

27
.2

7
36

.3
6

45
.4

5
45

.4
5

45
.4

5
63

.6
4

63
.6

4
63

.6
4

L
B

38
.3

0
56

.1
4

85
.9

6
96

.4
9

10
0.

00
10

0.
00

10
0.

00
10

0.
00

N
B

27
.2

7
54

.5
5

81
.8

2
81

.8
2

81
.8

2
81

.8
2

81
.8

2
81

.8
2

N
B

70
.2

1
50

.8
8

78
.9

5
92

.9
8

92
.9

8
96

.4
9

96
.4

9
98

.2
5

M
L

P
27

.2
7

27
.2

7
63

.6
4

72
.7

3
81

.8
2

81
.8

2
81

.8
2

81
.8

2
M

L
P

44
.6

8
63

.1
6

98
.2

5
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

9.
09

72
.7

3
72

.7
3

72
.7

3
72

.7
3

81
.8

2
81

.8
2

81
.8

2
A

B
17

.6
5

41
.1

8
94

.1
2

94
.1

2
94

.1
2

10
0.

00
10

0.
00

10
0.

00

R
F

27
.2

7
72

.7
3

80
.0

0
81

.8
2

81
.8

2
81

.8
2

81
.8

2
81

.8
2

R
F

5.
88

41
.1

8
70

.5
9

82
.3

5
82

.3
5

76
.4

7
76

.4
7

76
.4

7

B
G

9.
09

72
.7

3
81

.8
2

81
.8

2
81

.8
2

81
.8

2
90

.9
1

10
0.

00
B

G
17

.6
5

29
.4

1
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00

L
B

27
.2

7
81

.8
2

72
.7

3
72

.7
3

72
.7

3
72

.7
3

72
.7

3
81

.8
2

L
B

17
.6

5
41

.1
8

88
.2

4
94

.1
2

94
.1

2
94

.1
2

94
.1

2
10

0.
00

N
B

36
.3

6
72

.7
3

72
.7

3
72

.7
3

72
.7

3
72

.7
3

81
.8

2
90

.9
1

N
B

29
.4

1
29

.4
1

47
.0

6
70

.5
9

10
0.

00
10

0.
00

10
0.

00
10

0.
00

M
L

P
27

.2
7

72
.7

3
81

.8
2

81
.8

2
90

.9
1

90
.9

1
90

.9
1

90
.9

1
M

L
P

17
.6

5
29

.4
1

88
.2

4
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

O
rg

.i
nd

ic
at

es
O

ri
gi

na
l;

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

417

Ten-fold Cross Validation Results using MetaCost Learners
Ta

bl
e

D
.4

:P
re

ci
si

on
R

es
ul

ts
of

M
et

aC
os

tL
ea

rn
er

s
us

in
g

M
L

te
ch

ni
qu

es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

61
.0

2
44

.5
5

39
.2

6
39

.0
4

38
.5

1
38

.0
0

38
.0

0
38

.1
6

A
B

66
.6

7
25

.1
9

22
.6

2
19

.1
5

20
.0

0
20

.0
0

20
.0

0
20

.0
0

R
F

57
.6

9
47

.8
3

43
.7

5
42

.3
7

41
.1

3
40

.7
7

40
.7

7
42

.2
2

R
F

44
.1

2
27

.0
3

23
.2

3
21

.9
7

20
.5

6
20

.4
3

20
.1

0
19

.2
7

B
G

63
.4

6
43

.1
2

39
.5

3
38

.8
5

37
.6

7
32

.7
8

32
.7

8
29

.3
5

B
G

61
.1

1
26

.8
8

21
.4

3
20

.0
0

20
.0

0
20

.0
0

20
.0

0
20

.0
0

L
B

64
.1

5
43

.3
6

41
.7

9
39

.5
8

39
.4

6
37

.7
5

37
.7

5
29

.7
4

L
B

68
.1

8
30

.1
9

22
.1

7
20

.0
7

20
.0

0
20

.0
0

20
.0

0
20

.0
0

N
B

61
.2

9
60

.7
8

53
.7

5
46

.1
5

45
.2

2
42

.5
2

42
.5

2
42

.3
1

N
B

47
.0

6
28

.1
6

19
.8

2
19

.7
8

19
.6

3
20

.1
5

19
.7

1
20

.0
0

M
L

P
66

.6
7

46
.0

8
43

.4
1

37
.5

8
34

.1
5

32
.2

4
32

.2
4

29
.9

5
M

L
P

62
.5

0
29

.0
3

20
.9

0
20

.0
0

20
.0

0
20

.0
0

20
.0

0
20

.0
0

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

37
.5

0
25

.0
0

26
.3

2
20

.6
9

14
.2

9
13

.6
4

13
.3

3
11

.6
7

A
B

45
.2

8
45

.2
8

87
.7

6
39

.4
7

39
.1

3
38

.9
8

38
.3

3
36

.2
2

R
F

27
.2

7
14

.2
9

20
.0

0
17

.2
4

16
.1

3
14

.7
1

12
.8

2
11

.1
1

R
F

47
.5

0
47

.5
0

41
.9

0
40

.0
0

89
.8

0
39

.6
4

39
.2

9
38

.3
3

B
G

10
0.

00
27

.2
7

29
.4

1
20

.0
0

16
.1

3
11

.3
6

8.
33

6.
02

B
G

67
.8

6
67

.8
6

41
.1

2
38

.4
6

38
.1

4
39

.5
0

38
.5

2
32

.6
4

L
B

50
.0

0
30

.7
7

20
.0

0
14

.7
1

10
.2

0
11

.8
6

10
.4

5
6.

54
L

B
52

.9
4

52
.9

4
40

.5
7

37
.2

9
36

.0
0

35
.7

1
36

.5
1

33
.5

8

N
B

42
.8

6
13

.9
5

15
.7

9
15

.5
2

14
.7

5
14

.0
6

13
.4

3
12

.3
3

N
B

47
.1

4
47

.1
4

42
.8

6
43

.0
1

41
.6

7
42

.8
6

42
.8

6
45

.6
5

M
L

P
10

0.
00

33
.3

3
17

.9
5

13
.7

9
12

.8
6

12
.1

6
10

.1
1

8.
57

M
L

P
56

.7
6

56
.7

6
40

.9
1

38
.9

4
39

.1
3

39
.1

3
39

.6
6

38
.9

8

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

O
rg

.
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

14
.2

9
40

.0
0

32
.0

0
30

.7
7

29
.6

3
30

.0
0

28
.1

3
25

.0
0

A
B

76
.3

8
46

.6
7

16
.3

3
16

.1
6

16
.1

6
17

.0
0

17
.0

0
17

.0
0

R
F

33
.3

3
47

.0
6

27
.5

9
29

.0
3

27
.2

7
26

.4
7

25
.7

1
25

.0
0

R
F

80
.1

6
24

.1
4

16
.2

2
17

.5
0

17
.0

7
15

.6
6

15
.4

8
15

.1
2

B
G

50
.0

0
40

.0
0

31
.0

3
28

.1
3

21
.4

3
16

.3
6

16
.1

3
16

.9
2

B
G

78
.2

1
26

.3
2

17
.0

0
17

.0
0

17
.0

0
17

.0
0

17
.0

0
17

.0
0

L
B

33
.3

3
37

.5
0

34
.7

8
27

.5
9

27
.5

9
23

.5
3

21
.6

2
20

.9
3

L
B

76
.2

2
36

.8
4

17
.0

5
16

.4
9

16
.1

6
16

.1
6

16
.1

6
17

.0
0

N
B

50
.0

0
53

.3
3

42
.1

1
40

.0
0

38
.1

0
38

.1
0

39
.1

3
40

.0
0

N
B

52
.7

0
25

.0
0

22
.8

6
16

.4
4

17
.0

0
17

.0
0

17
.0

0
17

.0
0

M
L

P
50

.0
0

38
.1

0
30

.0
0

25
.7

1
24

.3
9

23
.2

6
22

.2
2

19
.2

3
M

L
P

76
.3

9
25

.0
0

15
.4

6
17

.0
0

17
.0

0
17

.0
0

17
.0

0
17

.0
0

O
rg

.i
nd

ic
at

es
O

ri
gi

na
l;

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

418

Ten-fold Cross Validation Results using MetaCost Learners

Ta
bl

e
D

.5
:C

os
tV

al
ue

s
of

M
et

aC
os

tL
ea

rn
er

s
us

in
g

M
L

Te
ch

ni
qu

es

M
L

Te
ch

.

N
et

M
L

Te
ch

.
L

og
4j

C
R

5
C

R
10

C
R

15
C

R
20

C
R

25
C

R
30

C
R

50
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

11
1

14
2

11
9

13
1

14
3

15
3

14
4

A
B

21
6

24
1

27
3

22
8

22
8

22
8

22
8

R
F

12
3

16
3

20
3

23
3

22
7

25
7

17
8

R
F

21
6

32
9

42
0

54
3

62
3

69
5

92
6

B
G

12
2

15
8

16
0

17
1

12
1

12
1

14
2

B
G

22
8

24
7

22
8

22
8

22
8

22
8

22
8

L
B

11
4

10
8

11
7

10
9

14
4

15
4

18
7

L
B

19
9

25
2

24
9

22
8

22
8

22
8

22
8

N
B

16
0

19
7

22
1

20
3

19
8

22
3

27
5

N
B

21
4

30
2

27
5

29
7

26
8

28
4

27
4

M
L

P
11

5
10

3
13

8
16

8
12

4
12

4
13

8
M

L
P

19
3

22
2

22
8

22
8

22
8

22
8

22
8

M
L

Te
ch

.
IO

M
L

Te
ch

.

M
M

S

C
R

5
C

R
10

C
R

15
C

R
20

C
R

25
C

R
30

C
R

50
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

47
74

98
13

6
16

3
18

9
25

3
A

B
14

4
46

99
11

0
97

10
4

13
1

R
F

58
80

11
4

14
6

17
9

21
4

34
0

R
F

16
1

91
11

1
65

14
2

15
8

12
4

B
G

48
72

11
0

14
6

18
9

21
6

20
6

B
G

14
9

93
10

2
11

3
72

75
97

L
B

44
80

11
9

16
4

15
2

18
0

30
0

L
B

16
1

10
3

11
9

12
0

13
1

11
0

14
1

N
B

62
68

79
92

10
5

11
8

16
4

N
B

15
7

13
2

15
8

19
6

18
1

20
6

30
0

M
L

P
46

72
95

10
1

11
5

14
0

19
6

M
L

P
14

6
85

11
4

11
0

12
0

10
0

12
2

M
L

Te
ch

.
B

lu
et

oo
th

M
L

Te
ch

.

C
al

en
da

r

C
R

5
C

R
10

C
R

15
C

R
20

C
R

25
C

R
30

C
R

50
C

R
5

C
R

10
C

R
15

C
R

20
C

R
25

C
R

30
C

R
50

A
B

27
47

63
79

71
83

12
7

A
B

58
92

98
10

3
83

83
83

R
F

24
41

52
64

75
86

12
7

R
F

72
11

2
11

1
12

8
17

0
19

1
27

3

B
G

27
40

53
73

96
82

54
B

G
74

83
83

83
83

83
83

L
B

25
45

66
81

10
1

11
9

13
4

L
B

62
93

96
10

3
10

8
11

3
83

N
B

22
41

57
73

88
74

65
N

B
75

11
7

13
6

83
83

83
83

M
L

P
28

41
56

51
58

65
92

M
L

P
75

10
2

83
83

83
83

83

C
R

X
X

in
di

ca
te

s
C

os
tR

at
io

X
X

419

Appendix E

Evolution Patterns of OO Metrics

This is an Appendix to Chapter 11, which analyzes the evolution patterns of OO

metrics.

E.1 Observed Median Values of OO metrics

Tables E.1, E.2 and E.3 respectively state the median values of metrics analyzed for

size, cohesion and coupling dimensions respectively over all the five investigated

versions (4.0.2-4.3.1) of Android software for CC and UCC. As stated in Chapter 11,

the trends were analyzed in Gallery2 and Contacts package.

As observed in table E.1, the median values of size metrics depict higher values

for CC as compared to UCC. For instance, the median WMC for CC was 13 in the

Gallery2 package, while it was only 6 for UCC. The trends were similar for both the

metrics in both the investigated application packages.

Table E.1: Median values of Size Metrics

Application package WMC (CC) WMC (UCC) SLOC (CC) SLOC (UCC)
Gallery2 13 6 83 33
Contacts 10 5 67 30

420

Observed Median Values of OO metrics

As depicted in table E.2, there was a large difference in the median LCOM values

of UCC (15) for the Gallery2 application package as compared to the LCOM values

of CC (78). Similar trend was observed in Contacts application package.

Table E.2: Median values of Cohesion Metrics

Application package LCOM (CC) LCOM (UCC)
Gallery2 78 15
Contacts 45 10

As depicted in table E.3, the CC exhibited higher coupling values than the UCC

in both the application packages.

Table E.3: Median values of Coupling Metrics

Application package CBO (CC) CBO (UCC) RFC (CC) RFC (UCC)
Gallery2 3 2 14 7
Contacts 1 0 11 6

421

Bibliography

[1] M. O. Elish and M. Al-Rahman Al-Khiaty, “A suite of metrics for quantifying

historical changes to predict future change-prone classes in object-oriented

software,” Journal of Software: Evolution and Process, vol. 25, no. 5, pp.

407–437, 2013.

[2] A. G. Koru and H. Liu, “Identifying and characterizing change-prone classes

in two large-scale open-source products,” Journal of Systems and Software,

vol. 80, no. 1, pp. 63–73, 2007.

[3] A. G. Koru and J. Tian, “Comparing high-change modules and modules with

the highest measurement values in two large-scale open-source products,”

IEEE Transactions on Software Engineering, vol. 31, no. 8, pp. 625–642,

2005.

[4] D. Romano and M. Pinzger, “Using source code metrics to predict change-

prone java interfaces,” Proceedings of the 27th IEEE International Conference

on Software Maintenance (ICSM), pp. 303–312, 2011.

[5] R. Malhotra and M. Khanna, “Investigation of relationship between object-

oriented metrics and change proneness,” International Journal of Machine

Learning and Cybernetics, vol. 4, no. 4, pp. 273–286, 2013.

423

Bibliography

[6] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based software

engineering: Techniques, taxonomy, tutorial,” Empirical Software Engineer-

ing and Verification, vol. 7007, pp. 1–59, 2012.

[7] M. Harman and J. Clark, “Metrics are fitness functions too,” Proceedings of

the 10th International Symposium on Software Metrics, pp. 58–69, 2004.

[8] Y. Singh and R. Malhotra, Object-oriented software engineering. PHI Learn-

ing Pvt. Ltd., 2012.

[9] R. Malhotra, Empirical research in software engineering: concepts, analysis,

and applications. CRC Press, 2016.

[10] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review

of machine learning based software development effort estimation models,”

Information and Software Technology, vol. 54, no. 1, pp. 41–59, 2012.

[11] E. N. Regolin, G. A. de Souza, A. R. Pozo, and S. R. Vergilio, “Exploring

machine learning techniques for software size estimation,” Proceedings of the

23rd International Conference of the Chilean Computer Science Society, pp.

130–136, 2003.

[12] R. Malhotra, “An empirical framework for defect prediction using machine

learning techniques with android software,” Applied Soft Computing, vol. 49,

pp. 1034–1050, 2016.

[13] K. Aggarwal and Y. Singh, Software Engineering. New Age International

(P) Limited, 2008. [Online]. Available: https://books.google.co.in/books?id=

ISh5PwAACAAJ

[14] T. DeMarco, Controlling software projects: Management, measurement, and

estimates. Prentice Hall PTR, 1986.

424

https://books.google.co.in/books?id=ISh5PwAACAAJ
https://books.google.co.in/books?id=ISh5PwAACAAJ

Bibliography

[15] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.

Prentice-Hall, Inc., 1995.

[16] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented de-

sign,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476–

493, 1994.

[17] R. Malhotra, “A systematic review of machine learning techniques for soft-

ware fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518, 2015.

[18] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,”

Journal of Systems and Software, vol. 23, no. 2, pp. 111–122, 1993.

[19] M. Lorenz and J. Kidd, Object-oriented software metrics: a practical guide.

Prentice-Hall, Inc., 1994.

[20] F. B. e Abreu and W. Melo, “Evaluating the impact of object-oriented design

on software quality,” Proceedings of the 3rd International Software Metrics

Symposium, pp. 90–99, 1996.

[21] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented sys-

tem,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. SI, pp. 259–

262, 1995.

[22] L. C. Briand, J. W. Daly, and J. K. Wust, “A unified framework for coupling

measurement in object-oriented systems,” IEEE Transactions on software En-

gineering, vol. 25, no. 1, pp. 91–121, 1999.

[23] R. C. Martin, Agile software development: principles, patterns, and practices.

Prentice Hall, 2002.

425

Bibliography

[24] Y.-S. Lee, “Measuring the coupling and cohesion of an object-oriented pro-

gram based on information flow,” Proceedings of the International Conference

on Software Quality, pp. 81–90, 1995.

[25] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design

quality assessment,” IEEE Transactions on Software Engineering, vol. 28,

no. 1, pp. 4–17, 2002.

[26] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-

oriented metrics,” Proceedings of the International Software Metrics Sympo-

sium, pp. 242–249, 1999.

[27] S. Eski and F. Buzluca, “An empirical study on object-oriented metrics and

software evolution in order to reduce testing costs by predicting change-prone

classes,” Proceedings of the IEEE Fourth International Conference on Soft-

ware Testing, Verification and Validation Workshops (ICSTW), pp. 566–571,

2011.

[28] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, “The ability of object-oriented

metrics to predict change-proneness: a meta-analysis,” Empirical Software

Engineering, vol. 17, no. 3, pp. 200–242, 2012.

[29] Y. Zhou, H. Leung, and B. Xu, “Examining the potentially confounding effect

of class size on the associations between object-oriented metrics and change-

proneness,” IEEE Transactions on Software Engineering, vol. 35, no. 5, pp.

607–623, 2009.

[30] E. Giger, M. Pinzger, and H. C. Gall, “Can we predict types of code changes?

an empirical analysis,” Proccedings of the 9th IEEE Working Conference on

Mining Software Repositories (MSR), pp. 217–226, 2012.

426

Bibliography

[31] R. Malhotra and A. J. Bansal, “Predicting software change in an open source

software using machine learning algorithms,” International Journal of Re-

liability, Quality and Safety Engineering, vol. 20, no. 6, pp. 1 350 025–1–

1 350 025–14, 2013.

[32] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting the proba-

bility of change in object-oriented systems,” IEEE Transactions on Software

Engineering, vol. 31, no. 7, pp. 601–614, 2005.

[33] L. Kumar, S. K. Rath, and A. Sureka, “Empirical analysis on effectiveness of

source code metrics for predicting change-proneness,” Proceedings of the 10th

Innovations in Software Engineering Conference, pp. 4–14, 2017.

[34] D. Azar, “A genetic algorithm for improving accuracy of software quality pre-

dictive models: a search-based software engineering approach,” International

Journal of Computational Intelligence and Applications, vol. 9, no. 02, pp.

125–136, 2010.

[35] D. Azar and J. Vybihal, “An ant colony optimization algorithm to improve

software quality prediction models: Case of class stability,” Information and

Software Technology, vol. 53, no. 4, pp. 388–393, 2011.

[36] A. Bansal, “Empirical analysis of search based algorithms to identify change

prone classes of open source software,” Computer Languages, Systems &

Structures, vol. 47, pp. 211–231, 2017.

[37] A. B. De Carvalho, A. Pozo, and S. R. Vergilio, “A symbolic fault-prediction

model based on multiobjective particle swarm optimization,” Journal of Sys-

tems and Software, vol. 83, no. 5, pp. 868–882, 2010.

427

Bibliography

[38] M. Harman, S. Islam, Y. Jia, L. L. Minku, F. Sarro, and K. Srivisut, “Less is

more: Temporal fault predictive performance over multiple hadoop releases,”

International Symposium on Search Based Software Engineering, pp. 240–

246, 2014.

[39] F. Ferrucci, P. Salza, and F. Sarro, “Using hadoop mapreduce for parallel ge-

netic algorithms: A comparison of the global, grid and island models,” Evolu-

tionary Computation, pp. 1–33, 2017.

[40] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Massively

compositional model for cross-project defect prediction,” IEEE Transactions

on software Engineering, vol. 42, no. 10, pp. 977–998, 2016.

[41] S. Hosseini, B. Turhan, and M. Mäntylä, “A benchmark study on the effec-

tiveness of search-based data selection and feature selection for cross project

defect prediction,” Information and Software Technology, 2017.

[42] T. G. Dietterich, “Ensemble methods in machine learning,” Proceedings of the

International Workshop on Multiple Classifier Systems, pp. 1–15, 2000.

[43] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier ensem-

bles and their relationship with the ensemble accuracy,” Machine Learning,

vol. 51, no. 2, pp. 181–207, 2003.

[44] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Runeson, “Auto-

mated bug assignment: Ensemble-based machine learning in large scale indus-

trial contexts,” Empirical Software Engineering, vol. 21, no. 4, pp. 1533–1578,

2016.

[45] M. O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on pre-

428

Bibliography

dicting software maintainability using ensemble methods,” Soft Computing,

vol. 19, no. 9, pp. 2511–2524, 2015.

[46] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “A genetic algorithm

to configure support vector machines for predicting fault-prone components,”

Proceedings of the International Conference on Product Focused Software

Process Improvement, pp. 247–261, 2011.

[47] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Genetic programming for ef-

fort estimation: an analysis of the impact of different fitness functions,” Second

International Symposium on Search Based Software Engineering (SSBSE), pp.

89–98, 2010.

[48] U. Bhowan, M. Johnston, and M. Zhang, “Developing new fitness functions in

genetic programming for classification with unbalanced data,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2,

pp. 406–421, 2012.

[49] M. W. Aslam, “Selection of fitness function in genetic programming for binary

classification,” Proceedings of the Science and Information Conference (SAI),

pp. 489–493, 2015.

[50] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, “Building an en-

semble for software defect prediction based on diversity selection,” Proceed-

ings of the 10th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, p. 46, 2016.

[51] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect prediction

models: L’union fait la force,” Proceedings of the IEEE Conference on Soft-

429

Bibliography

ware Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),

pp. 164–173, 2014.

[52] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical study of classifier com-

bination for cross-project defect prediction,” Proccedings of the IEEE 39th

Annual Computer Software and Applications Conference (COMPSAC), vol. 2,

pp. 264–269, 2015.

[53] H. I. Aljamaan and M. O. Elish, “An empirical study of bagging and boosting

ensembles for identifying faulty classes in object-oriented software,” Proc-

ceedings of the IEEE Symposium on Computational Intelligence and Data

Mining, pp. 187–194, 2009.

[54] A. T. Mısırlı, A. B. Bener, and B. Turhan, “An industrial case study of classifier

ensembles for locating software defects,” Software Quality Journal, vol. 19,

no. 3, pp. 515–536, 2011.

[55] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using

ensemble learning on selected features,” Information and Software Technol-

ogy, vol. 58, pp. 388–402, 2015.

[56] D. Di Nucci, F. Palomba, R. Oliveto, and A. De Lucia, “Dynamic selection

of classifiers in bug prediction: An adaptive method,” IEEE Transactions on

Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp. 202–212,

2017.

[57] R. Shatnawi, “Improving software fault-prediction for imbalanced data,” Pro-

ceedings of the International Conference on Innovations in Information Tech-

nology (IIT), pp. 54–59, 2012.

430

Bibliography

[58] N. Seliya and T. M. Khoshgoftaar, “The use of decision trees for cost-sensitive

classification: an empirical study in software quality prediction,” Wiley Inter-

disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 5,

pp. 448–459, 2011.

[59] M. Liu, L. Miao, and D. Zhang, “Two-stage cost-sensitive learning for soft-

ware defect prediction,” IEEE Transactions on Reliability, vol. 63, no. 2, pp.

676–686, 2014.

[60] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C. Riquelme, “Prelim-

inary comparison of techniques for dealing with imbalance in software defect

prediction,” Proceedings of the 18th International Conference on Evaluation

and Assessment in Software Engineering, p. 43, 2014.

[61] Ö. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive neural

network,” Applied Soft Computing, vol. 33, pp. 263–277, 2015.

[62] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for im-

balanced data,” Proceedings of the 37th International Conference on Software

Engineering, pp. 99–108, 2015.

[63] M. Acharya and B. Robinson, “Practical change impact analysis based on

static program slicing for industrial software systems,” Proceedings of the 33rd

International Conference on Software Engineering, pp. 746–755, 2011.

[64] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more efficient static

software change impact analysis method,” Proceedings of the 8th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, pp. 84–90, 2008.

431

Bibliography

[65] H. Cai and R. Santelices, “A comprehensive study of the predictive accuracy

of dynamic change-impact analysis,” Journal of Systems and Software, vol.

103, pp. 248–265, 2015.

[66] M. C. O. Maia, R. A. Bittencourt, J. C. A. de Figueiredo, and D. D. S. Guer-

rero, “The hybrid technique for object-oriented software change impact analy-

sis,” Proceedings of the 14th European Conference on Software Maintenance

and Reengineering (CSMR), pp. 252–255, 2010.

[67] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version his-

tories to guide software changes,” IEEE Transactions on Software Engineer-

ing, vol. 31, no. 6, pp. 429–445, 2005.

[68] H. Abdeen, K. Bali, H. Sahraoui, and B. Dufour, “Learning dependency-based

change impact predictors using independent change histories,” Information

and Software Technology, vol. 67, pp. 220–235, 2015.

[69] G. Canfora and L. Cerulo, “Fine grained indexing of software repositories

to support impact analysis,” Proceedings of the International Workshop on

Mining software Repositories, pp. 105–111, 2006.

[70] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Identifying the start-

ing impact set of a maintenance request: A case study,” Proceedings of the

Fourth European Software Maintenance and Reengineering, pp. 227–230,

2000.

[71] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact anal-

ysis for managing software changes,” Proceedings of the 34th International

Conference on Software Engineering, pp. 430–440, 2012.

432

Bibliography

[72] M. B. Zanjani, G. Swartzendruber, and H. Kagdi, “Impact analysis of change

requests on source code based on interaction and commit histories,” Proceed-

ings of the 11th Working Conference on Mining Software Repositories, pp.

162–171, 2014.

[73] R. Jindal, R. Malhotra, and A. Jain, “Mining defect reports for predicting soft-

ware maintenance effort,” Proceedings of the International Conference on Ad-

vances in Computing, Communications and Informatics (ICACCI), pp. 270–

276, 2015.

[74] R. Jindal, R. Malhotra, and A. Jain, “Predicting software maintenance effort

using neural networks,” Proceedings of the 4th International Conference on

Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Fu-

ture Directions), pp. 1–6, 2015.

[75] M. P. Basgalupp, R. C. Barros, T. S. da Silva, and A. C. de Carvalho, “Software

effort prediction: A hyper-heuristic decision-tree based approach,” Proceed-

ings of the 28th Annual ACM Symposium on Applied Computing, pp. 1109–

1116, 2013.

[76] M. P. Basgalupp, R. C. Barros, and D. D. Ruiz, “Predicting software main-

tenance effort through evolutionary-based decision trees,” Proceedings of the

27th Annual ACM Symposium on Applied Computing, pp. 1209–1214, 2012.

[77] G. Balogh, A. Z. Vegh, and A. Beszedes, “Software development modification

effort enhanced by a genetic algorithm,” Symposium on Search based Software

Engineering (MSR), pp. 1–6, 2012.

[78] J. M. Bieman, D. Jain, and H. J. Yang, “Oo design patterns, design structure,

433

Bibliography

and program changes: an industrial case study,” Proceedings of IEEE Interna-

tional Conference on Software Maintenance, pp. 580–589, 2001.

[79] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty classes us-

ing object-oriented design metrics,” Journal of Systems and Software, vol. 56,

no. 1, pp. 63–75, 2001.

[80] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” IEEE Transactions on

Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

[81] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, and G. Antoniol, “Design

evolution metrics for defect prediction in object oriented systems,” Empirical

Software Engineering, vol. 16, no. 1, pp. 141–175, 2011.

[82] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-oriented

metrics for predicting fault proneness models,” Software Quality Journal,

vol. 18, no. 1, pp. 3–35, 2010.

[83] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical

validation of three software metrics suites to predict fault-proneness of object-

oriented classes developed using highly iterative or agile software develop-

ment processes,” IEEE Transactions on Software Engineering, vol. 33, no. 6,

pp. 402–419, 2007.

[84] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault pre-

diction metrics: A systematic literature review,” Information and Software

Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[85] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software productivity and

434

Bibliography

effort prediction with ordinal regression,” Information and Software Technol-

ogy, vol. 47, no. 1, pp. 17–29, 2005.

[86] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regres-

sion. John Wiley & Sons, 2013, vol. 398.

[87] S. Haykin and N. Network, “A comprehensive foundation,” Neural networks,

vol. 2, no. 2004, p. 41, 2004.

[88] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The weka data mining software: an update,” ACM SIGKDD explorations

newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[89] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–

140, 1996.

[90] J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression: a

statistical view of boosting (with discussion and a rejoinder by the authors),”

The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[91] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,

2001.

[92] K. P. Murphy, “Naive bayes classifiers,” University of British Columbia,

vol. 18, 2006.

[93] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, no. 3, pp. 273–297, 1995.

[94] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”

Proceedings of the Sixth International Symposium on Micro Machine and Hu-

man Science, pp. 39–43, 1995.

435

Bibliography

[95] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and con-

vergence in a multidimensional complex space,” IEEE Transactions on Evo-

lutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[96] J. Bacardit and J. M. Garrell, “Evolving multiple discretizations with adaptive

intervals for a pittsburgh rule-based learning classifier system,” Genetic and

Evolutionary Computation Conference, pp. 1818–1831, 2003.

[97] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Evolutionary learning of

hierarchical decision rules,” IEEE Transactions on Systems, Man, and Cyber-

netics, Part B (Cybernetics), vol. 33, no. 2, pp. 324–331, 2003.

[98] E. Bernadó-Mansilla and J. M. Garrell-Guiu, “Accuracy-based learning clas-

sifier systems: models, analysis and applications to classification tasks,” Evo-

lutionary Computation, vol. 11, no. 3, pp. 209–238, 2003.

[99] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “How xcs evolves ac-

curate classifiers,” Proceedings of the 3rd Annual Conference on Genetic and

Evolutionary Computation, pp. 927–934, 2001.

[100] J. Bacardit and N. Krasnogor, “Performance and efficiency of memetic pitts-

burgh learning classifier systems,” Evolutionary computation, vol. 17, no. 3,

pp. 307–342, 2009.

[101] C. Ferreira, “Gene expression programming: a new adaptive algorithm for

solving problems,” Complex Systems, vol. 13, no. 2, pp. 87–129, 2001.

[102] D. R. Carvalho and A. A. Freitas, “A hybrid decision tree/genetic algorithm

method for data mining,” Information Sciences, vol. 163, no. 1-3, pp. 13–35,

2004.

436

Bibliography

[103] J. Otero and L. Sánchez, “Induction of descriptive fuzzy classifiers with the

logitboost algorithm,” Soft Computing, vol. 10, no. 9, pp. 825–835, 2006.

[104] R. Durbin and D. E. Rumelhart, “Product units: A computationally power-

ful and biologically plausible extension to backpropagation networks,” Neural

Computation, vol. 1, no. 1, pp. 133–142, 1989.

[105] F. J. Martı́nez-Estudillo, C. Hervás-Martı́nez, P. A. Gutiérrez, and A. C.

Martı́nez-Estudillo, “Evolutionary product-unit neural networks classifiers,”

Neurocomputing, vol. 72, no. 1-3, pp. 548–561, 2008.

[106] R. Malhotra, N. Pritam, K. Nagpal, and P. Upmanyu, “Defect collection and

reporting system for git based open source software,” Proceedings of the In-

ternational Conference on Data Mining and Intelligent Computing (ICDMIC),

pp. 1–7, 2014.

[107] R. Malhotra and A. Agrawal, “Cms tool: calculating defect and change data

from software project repositories,” ACM SIGSOFT Software Engineering

Notes, vol. 39, no. 1, pp. 1–5, 2014.

[108] V. Barnett and T. Lewis, Outliers in statistical data. Wiley, 1974.

[109] M. A. Hall, “Correlation-based feature selection of discrete and numeric class

machine learning,” Proceedings of the 17th International Conference on Ma-

chine Learning, pp. 359–366, 2000.

[110] K. Gao, T. M. Khoshgoftaar, and A. Napolitano, “Combining feature subset

selection and data sampling for coping with highly imbalanced software data,”

Proceedings of the Software Engineering Knowledge Engineering Conference,

pp. 439–444, 2015.

437

Bibliography

[111] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques for

discrete class data mining,” IEEE Transactions on Knowledge and Data engi-

neering, vol. 15, no. 6, pp. 1437–1447, 2003.

[112] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and compre-

hensive investigation of methods to build and evaluate fault prediction mod-

els,” Journal of Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.

[113] M. Stone, “Cross-validatory choice and assessment of statistical predictions,”

Journal of the royal statistical society. Series B (Methodological), pp. 111–

147, 1974.

[114] G. J. Pai and J. B. Dugan, “Empirical analysis of software fault content and

fault proneness using bayesian methods,” IEEE Transactions on software En-

gineering, vol. 33, no. 10, pp. 675–686, 2007.

[115] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility

of cross-project defect prediction,” Automated Software Engineering, vol. 19,

no. 2, pp. 167–199, 2012.

[116] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect predic-

tion,” Proceedings of the 10th Working Conference on Mining Software Repos-

itories, pp. 409–418, 2013.

[117] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,

vol. 27, no. 8, pp. 861–874, 2006.

[118] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions

on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[119] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with pre-

cision: A response to” comments on’data mining static code attributes to learn

438

Bibliography

defect predictors’”,” IEEE Transactions on Software Engineering, vol. 33,

no. 9, pp. 637–640, 2007.

[120] M. Kubat, S. Matwin et al., “Addressing the curse of imbalanced training sets:

one-sided selection,” Proceedings of 14th International Conference on Ma-

chine Learning, pp. 179–186, 1997.

[121] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to

learn defect predictors,” IEEE Transactions on Software Engineering, no. 1,

pp. 2–13, 2007.

[122] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based software defect pre-

diction with active and semi-supervised learning,” Automated Software Engi-

neering, vol. 19, no. 2, pp. 201–230, 2012.

[123] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classi-

fication models for software defect prediction: A proposed framework and

novel findings,” IEEE Transactions on Software Engineering, vol. 34, no. 4,

pp. 485–496, 2008.

[124] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”

Journal of Machine Learning Research, vol. 7, no. Jan, pp. 1–30, 2006.

[125] M. Friedman, “A comparison of alternative tests of significance for the prob-

lem of m rankings,” The Annals of Mathematical Statistics, vol. 11, no. 1, pp.

86–92, 1940.

[126] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics bul-

letin, vol. 1, no. 6, pp. 80–83, 1945.

[127] J. Pallant, SPSS survival manual. McGraw-Hill Education (UK), 2013.

439

Bibliography

[128] J. Cohen, Statistical power analysis for the behavioral sciences. 2nd. Hills-

dale, NJ: erlbaum, 1988.

[129] R. Malhotra and M. Khanna, “Software change prediction: A systematic re-

view and future research directions,” Journal of Information and Processing

Systems, 2018.

[130] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-based software en-

gineering and systematic reviews. CRC Press, 2015.

[131] X. Zhu, Q. Song, and Z. Sun, “Automated identification of change-prone

classes in open source software projects.” Journal of Software, vol. 8, no. 2,

pp. 361–366, 2013.

[132] M. Lindvall, “Are large c++ classes change-prone? an empirical investiga-

tion,” Software: Practice and Experience, vol. 28, no. 15, pp. 1551–1558,

1998.

[133] M. Lindvall, “Measurement of change: stable and change-prone constructs

in a commercial c++ system,” Proceedings of Sixth International Software

Metrics Symposium, pp. 40–49, 1999.

[134] Y. Liu and T. M. Khoshgoftaar, “Genetic programming model for software

quality classification,” Proceedings of the International Symposium on High

Assurance Systems Engineering, pp. 127–136, 2001.

[135] R. Malhotra and M. Khanna, “Mining the impact of object oriented metrics for

change prediction using machine learning and search-based techniques,” Pro-

ceedings of the International Conference on Advances in Computing, Commu-

nications and Informatics (ICACCI), pp. 228–234, 2015.

440

Bibliography

[136] T. M. Khoshgoftaar, N. Seliya, and Y. Liu, “Genetic programming-based de-

cision trees for software quality classification,” Proceedings of the 15th IEEE

International Conference on Tools with Artificial Intelligence, pp. 374–383,

2003.

[137] G. Catolino, F. Palomba, A. De Lucia, F. Ferrucci, and A. Zaidman,

“Developer-related factors in change prediction: an empirical assessment,”

Proceedings of the 25th International Conference on Program Comprehen-

sion, pp. 186–195, 2017.

[138] A. R. Sharafat and L. Tahvildari, “Change prediction in object-oriented soft-

ware systems: A probabilistic approach,” Journal of Software, vol. 3, no. 5,

pp. 26–39, 2008.

[139] M. Al-Khiaty, R. Abdel-Aal, and M. O. Elish, “Abductive network ensembles

for improved prediction of future change-prone classes in object-oriented soft-

ware.” International Arab Journal of Information Technology, vol. 14, no. 6,

pp. 803–811, 2017.

[140] A.-R. Han, S.-U. Jeon, D.-H. Bae, and J.-E. Hong, “Measuring behavioral

dependency for improving change-proneness prediction in uml-based design

models,” Journal of Systems and Software, vol. 83, no. 2, pp. 222–234, 2010.

[141] L. Kumar, S. K. Rath, and A. Sureka, “Using source code metrics to pre-

dict change-prone web services: A case-study on ebay services,” IEEE Work-

shop on Machine Learning Techniques for Software Quality Evaluation (MaL-

TeSQuE), pp. 1–7, 2017.

[142] L. Kumar, R. K. Behera, S. Rath, and A. Sureka, “Transfer learning for cross-

project change-proneness prediction in object-oriented software systems: A

441

Bibliography

feasibility analysis,” ACM SIGSOFT Software Engineering Notes, vol. 42,

no. 3, pp. 1–11, 2017.

[143] R. Malhotra and R. Jangra, “Prediction & assessment of change prone classes

using statistical & machine learning techniques.” Journal of Information Pro-

cessing Systems, vol. 13, no. 4, pp. 778–804, 2017.

[144] M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, and D. Yang, “Automated change-

prone class prediction on unlabeled dataset using unsupervised method,” In-

formation and Software Technology, vol. 92, pp. 1–16, 2017.

[145] G. Canfora and L. Cerulo, “How software repositories can help in resolving

a new change request,” Proceedings of the Workshop on Empirical Studies in

Reverse Engineering, p. 99, 2005.

[146] G. Canfora and L. Cerulo, “Impact analysis by mining software and change

request repositories,” IEEE International Symposium on Software Metrics, pp.

1–9, 2005.

[147] R. Malhotra and A. J. Bansal, “Cross project change prediction using open

source projects,” Proceedings of the International Conference on Advances in

Computing, Communications and Informatics (ICACCI), pp. 201–207, 2014.

[148] R. Malhotra and M. Khanna, “Analyzing software change in open source

projects using artificial immune system algorithms,” Proceedings of the In-

ternational Conference on Advances in Computing, Communications and In-

formatics (ICACCI), pp. 2674–2680, 2014.

[149] M. H. Asl and N. Kama, “A change impact size estimation approach during

the software development,” Proceedings of the 22nd Australian Software En-

gineering Conference (ASWEC), pp. 68–77, 2013.

442

Bibliography

[150] C. Marinescu, “How good is genetic programming at predicting changes and

defects?” Proceedings of the 16th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing (SYNASC), pp. 544–548, 2014.

[151] B. Dit, M. Wagner, S. Wen, W. Wang, M. Linares-Vásquez, D. Poshyvanyk,

and H. Kagdi, “Impactminer: A tool for change impact analysis,” Proceedings

of the 36th International Conference on Software Engineering, pp. 540–543,

2014.

[152] C. G. Weng and J. Poon, “A new evaluation measure for imbalanced datasets,”

Proceedings of the 7th Australian Data Mining Conference, pp. 27–32, 2008.

[153] A. L. Oliveira, P. L. Braga, R. M. Lima, and M. L. Cornélio, “Ga-based method

for feature selection and parameters optimization for machine learning regres-

sion applied to software effort estimation,” Information and Software Technol-

ogy, vol. 52, no. 11, pp. 1155–1166, 2010.

[154] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Application of artificial

neural network for predicting maintainability using object-oriented metrics,”

Transactions on Engineering, Computing and Technology, vol. 15, pp. 285–

289, 2006.

[155] R. Malhotra and M. Khanna, “An empirical study to evaluate the relationship

of object-oriented metrics and change proneness,” International Arab Journal

of Information Technology, vol. 15, no. 6, pp. 1016–1023, 2018.

[156] R. Malhotra and M. Khanna, “Examining the effectiveness of machine learn-

ing algorithms for prediction of change prone classes,” Proceedings of the

International Conference on High Performance Computing & Simulation

(HPCS), pp. 635–642, 2014.

443

Bibliography

[157] M. Harman and B. F. Jones, “Search-based software engineering,” Information

and Software Technology, vol. 43, no. 14, pp. 833–839, 2001.

[158] M. Harman, “The relationship between search based software engineering and

predictive modeling,” Proceedings of the 6th International Conference on Pre-

dictive Models in Software Engineering, p. 1, 2010.

[159] M. Harman, “Why the virtual nature of software makes it ideal for search

based optimization,” International Conference on Fundamental Approaches

to Software Engineering, pp. 1–12, 2010.

[160] M. Harman and J. Clark, “Metrics are fitness functions too,” International

Symposium on Software Metrics, pp. 58–69, 2004.

[161] L. C. Briand and J. Wüst, “Empirical studies of quality models in object-

oriented systems,” Advances in Computers, vol. 56, pp. 97–166, 2002.

[162] R. Malhotra and M. Khanna, “The ability of search-based algorithms to predict

change-prone classes,” Software Quality Professional, vol. 17, no. 1, p. 17,

2014.

[163] R. Malhotra and M. Khanna, “Threats to validity in search-based predictive

modelling for software engineering,” IET Software, vol. 12, no. 4, pp. 293–

305, 2018.

[164] R. Malhotra, M. Khanna, and R. R. Raje, “On the application of search-based

techniques for software engineering predictive modeling: A systematic review

and future directions,” Swarm and Evolutionary Computation, vol. 32, pp. 85–

109, 2017.

[165] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Kara-

poulios, “Application of genetic algorithms to software testing,” Proceedings

444

Bibliography

of the 5th International Conference on Software Engineering and Applica-

tions, pp. 625–636, 1992.

[166] J. J. Dolado and L. Fernandez, “Genetic programming, neural networks and

linear regression in software project estimation,” Proceedings of the Inter-

national Conference on Software Process Improvement, Research, Education

and Training, pp. 157–171, 1998.

[167] J. J. Dolado, “A validation of the component-based method for software size

estimation,” IEEE Transactions on Software Engineering, vol. 26, no. 10, pp.

1006–1021, 2000.

[168] Y. Liu and T. Khoshgoftaar, “Reducing overfitting in genetic programming

models for software quality classification,” Proceedings of the International

Symposium on High Assurance Systems Engineering, pp. 56–65, 2004.

[169] K. K. Shukla, “Neuro-genetic prediction of software development effort,” In-

formation and Software Technology, vol. 42, no. 10, pp. 701–713, 2000.

[170] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz, “Predicting fault prone-

ness of classes trough a multiobjective particle swarm optimization algorithm,”

Proceedings of the 20th IEEE International Conference on Tools with Artifi-

cial Intelligence, pp. 387–394, 2008.

[171] C. J. Burgess and M. Lefley, “Can genetic programming improve software

effort estimation? a comparative evaluation,” Information and Software Tech-

nology, vol. 43, no. 14, pp. 863–873, 2001.

[172] A. Tsakonas and G. Dounias, “Predicting defects in software using grammar-

guided genetic programming,” Proceedings of the Hellenic Conference on Ar-

tificial Intelligence, pp. 413–418, 2008.

445

Bibliography

[173] J. J. Dolado, “On the problem of the software cost function,” Information and

Software Technology, vol. 43, no. 1, pp. 61–72, 2001.

[174] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Hae-

sen, “Mining software repositories for comprehensible software fault predic-

tion models,” Journal of Systems and software, vol. 81, no. 5, pp. 823–839,

2008.

[175] C. Kirsopp, M. Shepperd, and J. Hart, “Search heuristics, case-based reason-

ing and software project effort prediction,” Proceedings of the 4th Annual Con-

ference on Genetic and Evolutionary Computation, pp. 1367–1374, 2002.

[176] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets, and

feature selection techniques on software fault prediction problem,” Informa-

tion Sciences, vol. 179, no. 8, pp. 1040 – 1058, 2009.

[177] Y. Shan, R. I. McKay, C. J. Lokan, and D. L. Essam, “Software project effort

estimation using genetic programming,” Proceedings of the IEEE 2002 Inter-

national Conference on Communications, Circuits and Systems and West Sino

Expositions, pp. 1108–1112, 2002.

[178] Y. Singh, A. Kaur, and R. Malhotra, “Prediction of software quality model

using gene expression programming,” Proceedings of the International Con-

ference on Product-Focused Software Process Improvement, pp. 43–58, 2009.

[179] M. Lefley and M. J. Shepperd, “Using genetic programming to improve soft-

ware effort estimation based on general data sets,” Proceedings of the Genetic

and Evolutionary Computation Conference, pp. 2477–2487, 2003.

[180] W. Afzal, “Using faults-slip-through metric as a predictor of fault-proneness,”

446

Bibliography

Proceedings of the 17th Asia Pacific Software Engineering Conference

(APSEC’10), pp. 414–422, 2010.

[181] E. N. Regolin, G. A. de Souza, A. R. Pozo, and S. R. Vergilio, “Exploring

machine learning techniques for software size estimation,” Proceedings of the

23rd International Conference of the Chilean Computer Science Society, pp.

130–136, 2003.

[182] C. Lokan, “What should you optimize when building an estimation model?”

Proceedings of the 11th IEEE International Symposium Software Metrics,

p. 10, 2005.

[183] C. Jin, E.-M. Dong, and L.-N. Qin, “Software fault prediction model based on

adaptive dynamical and median particle swarm optimization,” Proceedings of

the Second International Conference on Multimedia and Information Technol-

ogy (MMIT), vol. 1, pp. 44–47, 2010.

[184] S.-J. Huang and N.-H. Chiu, “Optimization of analogy weights by genetic al-

gorithm for software effort estimation,” Information and Software Technology,

vol. 48, no. 11, pp. 1034–1045, 2006.

[185] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimization of soft-

ware quality modeling with multiple repositories,” IEEE Transactions on Soft-

ware Engineering, vol. 36, no. 6, pp. 852–864, 2010.

[186] A. F. Sheta, “Estimation of the cocomo model parameters using genetic algo-

rithms for nasa software projects,” Journal of Computer Science, vol. 2, no. 2,

pp. 118–123, 2006.

[187] P. C. Pendharkar, “Exhaustive and heuristic search approaches for learning

447

Bibliography

a software defect prediction model,” Engineering Applications of Artificial

Intelligence, vol. 23, no. 1, pp. 34–40, 2010.

[188] N.-H. Chiu and S.-J. Huang, “The adjusted analogy-based software effort

estimation based on similarity distances,” Journal of Systems and Software,

vol. 80, no. 4, pp. 628–640, 2007.

[189] N.-H. Chiu, “Combining techniques for software quality classification: An

integrated decision network approach,” Expert Systems with Applications,

vol. 38, no. 4, pp. 4618–4625, 2011.

[190] F. Ahmed, S. Bouktif, A. Serhani, and I. Khalil, “Integrating function point

project information for improving the accuracy of effort estimation,” Proceed-

ings of the Second International Conference on Advanced Engineering Com-

puting and Applications in Sciences, pp. 193–198, 2008.

[191] P. L. Braga, A. L. Oliveira, and S. R. Meira, “A ga-based feature selection

and parameters optimization for support vector regression applied to software

effort estimation,” Proceedings of the 2008 ACM symposium on Applied com-

puting, pp. 1788–1792, 2008.

[192] L. Yu, “An evolutionary programming based asymmetric weighted least

squares support vector machine ensemble learning methodology for software

repository mining,” Information Sciences, vol. 191, pp. 31–46, 2012.

[193] S.-J. Huang, N.-H. Chiu, and L.-W. Chen, “Integration of the grey relational

analysis with genetic algorithm for software effort estimation,” European

Journal of Operational Research, vol. 188, no. 3, pp. 898–909, 2008.

[194] D. Rodrı́guez, R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz, “Searching for

448

Bibliography

rules to detect defective modules: A subgroup discovery approach,” Informa-

tion Sciences, vol. 191, pp. 14–30, 2012.

[195] A. Tsakonas and G. Dounias, “Application of genetic programming in soft-

ware engineering empirical data modelling,” Proceedings of the International

Conference on Software and Data Technologies, pp. 295–300, 2008.

[196] F. Sarro, S. Di Martino, F. Ferrucci, and C. Gravino, “A further analysis on the

use of genetic algorithm to configure support vector machines for inter-release

fault prediction,” Proceedings of the 27th annual ACM symposium on applied

computing, pp. 1215–1220, 2012.

[197] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Using tabu search to esti-

mate software development effort,” International Workshop on Software Mea-

surement, pp. 307–320, 2009.

[198] H. Can, X. Jianchun, Z. Ruide, L. Juelong, Y. Qiliang, and X. Liqiang, “A

new model for software defect prediction using particle swarm optimization

and support vector machine,” Proceedings of the 25th Chinese Control and

Decision Conference (CCDC), pp. 4106–4110, 2013.

[199] Y.-F. Li, M. Xie, and T. Goh, “A study of mutual information based feature

selection for case based reasoning in software cost estimation,” Expert Systems

with Applications, vol. 36, no. 3, pp. 5921–5931, 2009.

[200] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and

S. Panichella, “Multi-objective cross-project defect prediction,” Proceedings

of the 2013 IEEE Sixth International Conference on Software Testing, Verifi-

cation and Validation, pp. 252–261, 2013.

449

Bibliography

[201] Y.-F. Li, M. Xie, and T. N. Goh, “A study of project selection and feature

weighting for analogy based software cost estimation,” Journal of Systems

and Software, vol. 82, no. 2, pp. 241–252, 2009.

[202] G. Abaei and A. Selamat, “A survey on software fault detection based on dif-

ferent prediction approaches,” Vietnam Journal of Computer Science, vol. 1,

no. 2, pp. 79–95, 2014.

[203] A. Tsakonas and G. Dounias, “Deriving models for software project effort es-

timation by means of genetic programming,” Proceedings of the International

Conference on Knowledge Discovery and Information Retrieval (KDIR), pp.

34–42, 2009.

[204] F. Ferrucci, C. Gravino, R. Oliveto, F. Sarro, and E. Mendes, “Investigating

tabu search for web effort estimation,” Proceedimgs of the 36th EUROMICRO

Conference on Software Engineering and Advanced Applications (SEAA), pp.

350–357, 2010.

[205] K. Li, C. Chen, W. Liu, X. Fang, and Q. Lu, “Software defect prediction using

fuzzy integral fusion based on ga-fm,” Wuhan University Journal of Natural

Sciences, vol. 19, no. 5, pp. 405–408, 2014.

[206] R. Malhotra, “Comparative analysis of statistical and machine learning meth-

ods for predicting faulty modules,” Applied Soft Computing, vol. 21, pp. 286–

297, 2014.

[207] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Estimating software devel-

opment effort using tabu search,” Proceedings of the International Conference

on Enterprise Information Systems, pp. 236–241, 2010.

450

Bibliography

[208] C. Jin and S.-W. Jin, “Prediction approach of software fault-proneness based

on hybrid artificial neural network and quantum particle swarm optimization,”

Applied Soft Computing, vol. 35, pp. 717–725, 2015.

[209] A. F. Sheta, A. Ayesh, and D. Rine, “Evaluating software cost estimation mod-

els using particle swarm optimisation and fuzzy logic for nasa projects: a com-

parative study,” International Journal of Bio-Inspired Computation, vol. 2,

no. 6, pp. 365–373, 2010.

[210] Y. Abdi, S. Parsa, and Y. Seyfari, “A hybrid one-class rule learning approach

based on swarm intelligence for software fault prediction,” Innovations in Sys-

tems and Software Engineering, vol. 11, no. 4, pp. 289–301, 2015.

[211] F. S. Alaa and A. Al-Afeef, “A gp effort estimation model utilizing line of code

and methodology for nasa software projects,” Proceedings of the 10th Inter-

national Conference on Intelligent Systems Design and Applications (ISDA),

pp. 290–295, 2010.

[212] W. Afzal and R. Torkar, “Towards benchmarking feature subset selection

methods for software fault prediction,” Computational intelligence and quan-

titative software engineering, pp. 33–58, 2016.

[213] S. Aljahdali, “Development of a software effort estimation model using differ-

ential evolution,” Journal of Electronics and Computer Science, vol. 12, no. 1,

pp. 1–8, 2010.

[214] L. Kumar and S. K. Rath, “Application of genetic algorithm as feature selec-

tion technique in development of effective fault prediction model,” Proceed-

ings of the International Conference on Electrical, Computer and Electronics

Engineering (UPCON), pp. 432–437, 2016.

451

Bibliography

[215] A. Chavoya, C. Lopez-Martin, and M. Meda-Campa, “Applying genetic pro-

gramming for estimating software development effort of short-scale projects,”

Proceedings of the International Conference on Information Technology: New

Generations (ITNG), pp. 174–179, 2011.

[216] D. Ryu and J. Baik, “Effective multi-objective naı̈ve bayes learning for cross-

project defect prediction,” Applied Soft Computing, vol. 49, pp. 1062–1077,

2016.

[217] R. D. A. Araújo, A. L. Oliveira, S. Soares, and S. Meira, “An evolutionary

morphological approach for software development cost estimation,” Neural

Networks, vol. 32, pp. 285–291, 2012.

[218] F. Sarro, F. Ferrucci, and C. Gravino, “Single and multi objective genetic pro-

gramming for software development effort estimation,” Proceedings of the

27th annual ACM symposium on Applied Computing, pp. 1221–1226, 2012.

[219] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A pso-

based model to increase the accuracy of software development effort estima-

tion,” Software Quality Journal, vol. 21, no. 3, pp. 501–526, 2013.

[220] R. C. Barros, M. P. Basgalupp, R. Cerri, T. S. da Silva, and A. C. de Carvalho,

“A grammatical evolution approach for software effort estimation,” Proceed-

ings of the 15th annual conference on Genetic and Evolutionary Computation,

pp. 1413–1420, 2013.

[221] G. Mauša and T. G. Grbac, “Co-evolutionary multi-population genetic pro-

gramming for classification in software defect prediction: An empirical case

study,” Applied Soft Computing, vol. 55, pp. 331–351, 2017.

452

Bibliography

[222] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes,

“Using tabu search to configure support vector regression for effort estima-

tion,” Empirical Software Engineering, vol. 18, no. 3, pp. 506–546, 2013.

[223] A. A. B. Baqais, M. Alshayeb, and Z. A. Baig, “Hybrid intelligent model for

software maintenance prediction,” Proceedings of the World Conference on

Engineering, 2014.

[224] L. L. Minku and X. Yao, “Software effort estimation as a multiobjective learn-

ing problem,” ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 22, no. 4, p. 35, 2013.

[225] R. Malhotra and A. Chug, “Application of evolutionary algorithms for soft-

ware maintainability prediction using object-oriented metrics,” Proceedings

of the 8th International Conference on Bioinspired Information and Commu-

nications Technologies, pp. 348–351, 2014.

[226] L. L. Minku and X. Yao, “An analysis of multi-objective evolutionary algo-

rithms for training ensemble models based on different performance measures

in software effort estimation,” Proceedings of the 9th International Conference

on Predictive Models in Software Engineering, p. 8, 2013.

[227] L. Kumar, D. K. Naik, and S. K. Rath, “Validating the effectiveness of object-

oriented metrics for predicting maintainability,” Procedia Computer Science,

vol. 57, pp. 798–806, 2015.

[228] Z. Dan, “Improving the accuracy in software effort estimation: Using artificial

neural network model based on particle swarm optimization,” Proceedings of

the IEEE International Conference on Service Operations and Logistics, and

Informatics (SOLI), pp. 180–185, 2013.

453

Bibliography

[229] A. Jain, S. Tarwani, and A. Chug, “An empirical investigation of evolution-

ary algorithm for software maintainability prediction,” Proceedings of the

IEEE Students’ Conference on Electrical, Electronics and Computer Science

(SCEECS), pp. 1–6, 2016.

[230] V. K. Bardsiri, D. N. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A flexible

method to estimate the software development effort based on the classification

of projects and localization of comparisons,” Empirical Software Engineering,

vol. 19, no. 4, pp. 857–884, 2014.

[231] M. Azzeh, A. B. Nassif, and S. Banitaan, “A better case adaptation method for

case-based effort estimation using multi-objective optimization,” Proceedings

of the 13th International Conference on Machine Learning and Applications,

pp. 409–414, 2014.

[232] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software effort

estimation,” Proceedings of the IEEE/ACM 38th International Conference on

Software Engineering (ICSE), pp. 619–630, 2016.

[233] T. R. Benala and R. Mall, “Dabe: Differential evolution in analogy-based soft-

ware development effort estimation,” Swarm and Evolutionary Computation,

vol. 38, pp. 158–172, 2018.

[234] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera, and M. Jenkins, “A

genetic algorithm based framework for software effort prediction,” Journal of

Software Engineering Research and Development, vol. 5, no. 1, p. 4, 2017.

[235] D. Wu, J. Li, and C. Bao, “Case-based reasoning with optimized weight de-

rived by particle swarm optimization for software effort estimation,” Soft Com-

puting, vol. 22, no. 16, pp. 5299–5310, 2018.

454

Bibliography

[236] R. Hochman, T. M. Khoshgoftaar, E. B. Allen, and J. P. Hudepohl, “Using

the genetic algorithm to build optimal neural networks for fault-prone module

detection,” Proceedings of the Seventh International Symposium on Software

Reliability Engineering, pp. 152–162, 1996.

[237] R. Hochman, T. M. Khoshgoftaar, E. B. Allen, and J. P. Hudepohl, “Evolu-

tionary neural networks: a robust approach to software reliability problems,”

Proceedings of the 8th International Symposium on Software Reliability Engi-

neering, pp. 13–26, 1997.

[238] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A systematic

review of the application and empirical investigation of search-based test case

generation,” IEEE Transactions on Software Engineering, vol. 36, no. 6, pp.

742–762, 2010.

[239] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation study of

the model evaluation criterion mmre,” IEEE Transactions on Software Engi-

neering, vol. 29, no. 11, pp. 985–995, 2002.

[240] W. B. Langdon, J. Dolado, F. Sarro, and M. Harman, “Exact mean absolute

error of baseline predictor, marp0,” Information and Software Technology,

vol. 73, pp. 16–18, 2016.

[241] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software

project estimation,” Information and Software Technology, vol. 54, no. 8, pp.

820–827, 2012.

[242] H. Zhang and X. Zhang, “Comments on” data mining static code attributes to

learn defect predictors”,” IEEE Transactions on Software Engineering, vol. 33,

no. 9, 2007.

455

Bibliography

[243] S. D. Conte, H. E. Dunsmore, and Y. Shen, Software engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., 1986.

[244] A. Arcuri and L. Briand, “A practical guide for using statistical tests to as-

sess randomized algorithms in software engineering,” Proceedings of the 4th

International Conference on Software Engineering (ICSE), pp. 1–10, 2011.

[245] M. Shepperd and S. MacDonell, “Evaluating prediction systems in software

project estimation,” Information and Software Technology, vol. 54, no. 8, pp.

820–827, 2012.

[246] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A baseline model for

software effort estimation,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 24, no. 3, p. 20, 2015.

[247] A. A. Neto and T. Conte, “A conceptual model to address threats to validity in

controlled experiments,” Proceedings of the 17th International Conference on

Evaluation and Assessment in Software Engineering, pp. 82–85, 2013.

[248] A. Arcuri and G. Fraser, “On parameter tuning in search based software en-

gineering,” International Symposium on Search Based Software Engineering,

pp. 33–47, 2011.

[249] A. Arcuri and G. Fraser, “Parameter tuning or default values? an empirical

investigation in search-based software engineering,” Empirical Software En-

gineering, vol. 18, no. 3, pp. 594–623, 2013.

[250] J. B. Peñarroya, “Pittsburgh genetic-based machine learning in the data mining

era: representations, generalization, and run-time,” Ph.D. dissertation, Univer-

sitat Ramon Llull, 2004.

456

Bibliography

[251] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, “A parallel genetic al-

gorithm based on hadoop mapreduce for the automatic generation of junit test

suites,” Proceedings of Fifth International Conference on Software Testing,

Verification and Validation (ICST), pp. 785–793, 2012.

[252] D. R. White, “Cloud computing and sbse,” International Symposium on Search

Based Software Engineering, pp. 16–18, 2013.

[253] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineer-

ing: Trends, techniques and applications,” ACM Computing Surveys (CSUR),

vol. 45, no. 1, p. 11, 2012.

[254] J. Clarke, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper et al., “Reformulating soft-

ware engineering as a search problem,” IEE Proceedings-software, vol. 150,

no. 3, pp. 161–175, 2003.

[255] R. Malhotra, “Search based techniques for software fault prediction: current

trends and future directions,” Proceedings of the 7th International Workshop

on Search-Based Software Testing, pp. 35–36, 2014.

[256] C. Grosan and A. Abraham, “Hybrid evolutionary algorithms: methodologies,

architectures, and reviews,” Hybrid Evolutionary Algorithms, pp. 1–17, 2007.

[257] R. Malhotra and M. Khanna, “An exploratory study for software change pre-

diction in object-oriented systems using hybridized techniques,” Automated

Software Engineering, vol. 24, no. 3, pp. 673–717, 2017.

[258] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, “Particle swarm optimiza-

tion for parameter determination and feature selection of support vector ma-

457

Bibliography

chines,” Expert Systems with Applications, vol. 35, no. 4, pp. 1817–1824,

2008.

[259] C.-L. Huang and J.-F. Dun, “A distributed pso–svm hybrid system with feature

selection and parameter optimization,” Applied Soft Computing, vol. 8, no. 4,

pp. 1381–1391, 2008.

[260] S.-W. Lin and S.-C. Chen, “Psolda: A particle swarm optimization approach

for enhancing classification accuracy rate of linear discriminant analysis,” Ap-

plied Soft Computing, vol. 9, no. 3, pp. 1008–1015, 2009.

[261] E. Arisholm and L. C. Briand, “Predicting fault-prone components in a java

legacy system,” Proceedings of the 2006 ACM/IEEE international symposium

on Empirical software engineering, pp. 8–17, 2006.

[262] L. Kumar and A. Sureka, “Using structured text source code metrics and ar-

tificial neural networks to predict change proneness at code tab and program

organization level,” Proceedings of the 10th Innovations in Software Engineer-

ing Conference, pp. 172–180, 2017.

[263] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–

1001, 1990.

[264] J. Kennedy and W. M. Spears, “Matching algorithms to problems: an exper-

imental test of the particle swarm and some genetic algorithms on the multi-

modal problem generator,” Proceedings of the IEEE World Congress on Com-

putational Intelligence, pp. 78–83, 1998.

[265] M. Abdelhalim and S.-D. Habib, “Particle swarm optimization for hw/sw par-

titioning,” Particle Swarm Optimization, 2009.

458

Bibliography

[266] R. Hassan, B. Cohanim, O. De Weck, and G. Venter, “A comparison of parti-

cle swarm optimization and the genetic algorithm,” Proceedings of the 46th

AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials

conference, p. 1897, 2005.

[267] T. Sousa, A. Silva, and A. Neves, “Particle swarm based data mining algo-

rithms for classification tasks,” Parallel Computing, vol. 30, no. 5-6, pp. 767–

783, 2004.

[268] R. Moussa and D. Azar, “A pso-ga approach targeting fault-prone software

modules,” Journal of Systems and Software, vol. 132, pp. 41–49, 2017.

[269] R. Malhotra and M. Khanna, “Software change prediction using voting parti-

cle swarm optimization based ensemble classifier,” Proceedings of the Genetic

and Evolutionary Computation Conference, pp. 311–312, 2017.

[270] R. Malhotra and M. Khanna, “Particle swarm optimization-based ensemble

learning for software change prediction,” Information and Software Technol-

ogy, vol. 102, pp. 65–84, 2018.

[271] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “Auto-

mated parameter optimization of classification techniques for defect prediction

models,” Proceedings of the 38th International Conference on Software Engi-

neering (ICSE), pp. 321–332, 2016.

[272] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2016.

[273] A. Tosun, B. Turhan, and A. Bener, “Validation of network measures as in-

dicators of defective modules in software systems,” Proceedings of the 5th

459

Bibliography

international conference on predictor models in software engineering, p. 5,

2009.

[274] R. Malhotra and M. Khanna, “Dynamic selection of fitness function for soft-

ware change prediction using particle swarm optimization,” Information and

Software Technology, 2018.

[275] A. Vargha and H. D. Delaney, “A critique and improvement of the cl common

language effect size statistics of mcgraw and wong,” Journal of Educational

and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[276] J. Ruscio and B. L. Gera, “Generalizations and extensions of the probability of

superiority effect size estimator,” Multivariate Behavioral Research, vol. 48,

no. 2, pp. 208–219, 2013.

[277] A. Elmishali, R. Stern, and M. Kalech, “An artificial intelligence paradigm for

troubleshooting software bugs,” Engineering Applications of Artificial Intelli-

gence, vol. 69, pp. 147–156, 2018.

[278] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing min-

ing algorithms for predicting the severity of a reported bug,” Proceedings of

the 15th European Conference on Software Maintenance and Reengineering

(CSMR), pp. 249–258, 2011.

[279] T. Menzies and A. Marcus, “Automated severity assessment of software de-

fect reports,” Proceedings of the IEEE International Conference on Software

Maintenance, pp. 346–355, 2008.

[280] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report pri-

ority using multi-factor analysis,” Empirical Software Engineering, vol. 20,

no. 5, pp. 1354–1383, 2015.

460

Bibliography

[281] R. Malhotra and M. Khanna, “A novel framework for software bug catego-

rization using change impact and maintenance effort,” Journal of Systems and

Software, 2018.

[282] F. Sebastiani, “Machine learning in automated text categorization,” ACM Com-

puting Surveys, vol. 34, no. 1, pp. 1–47, 2002.

[283] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” Proceedings

of the 28th International Conference on Software Engineering, pp. 361–370,

2006.

[284] R. Malhotra and M. Khanna, “An empirical study for software change predic-

tion using imbalanced data,” Empirical Software Engineering, vol. 22, no. 6,

pp. 2806–2851, 2017.

[285] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of Artificial Intelligence

Research, vol. 16, pp. 321–357, 2002.

[286] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera, “An insight into

classification with imbalanced data: Empirical results and current trends on

using data intrinsic characteristics,” Information Sciences, vol. 250, pp. 113–

141, 2013.

[287] P. Domingos, “Metacost: A general method for making classifiers cost-

sensitive,” Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 155–164, 1999.

[288] J. Van Hulse, T. M. Khoshgoftaar, A. Napolitano, and R. Wald, “Feature se-

lection with high-dimensional imbalanced data,” Proceedings of the IEEE In-

ternational Conference on Data Mining, pp. 507–514, 2009.

461

[289] Y. Liu, A. An, and X. Huang, “Boosting prediction accuracy on imbalanced

datasets with svm ensembles,” Proceedings of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pp. 107–118, 2006.

[290] R. Malhotra and M. Khanna, “Prediction of change prone classes using

evolution-based and object-oriented metrics,” Journal of Intelligent & Fuzzy

Systems, vol. 34, no. 3, pp. 1755–1766, 2018.

[291] R. Malhotra and M. Khanna, “Analyzing evolution patterns of object-oriented

metrics: A case study on android software,” International Journal of Rough

Sets and Data Analysis.

[292] M. Alenezi and M. Zarour, “Modularity measurement and evolution in object-

oriented open-source projects,” Proceedings of the International Conference

on Engineering & MIS, p. 16, 2015.

[293] E. Nasseri, S. Counsell, and M. Shepperd, “An empirical study of evolution

of inheritance in java oss,” Proceedings of the 19th Australian Conference on

Software Engineering, pp. 269–278, 2008.

Supervisor’s Biography

Dr. Ruchika Malhotra

Associate Head & Associate Professor
Discipline of Software Engineering

Department of Computer Science & Engineering
Delhi Technological University

Email: ruchikamalhotra@dtu.ac.in

Educational Qualifications:

Ph.D.(Information Technology), MCA, BIS(H)

Ruchika Malhotra is an Associate Professor in Discipline of Software Engineer-

ing, Department of Computer Science & Engineering, Delhi Technological Univer-

sity (formerly Delhi College of Engineering), Delhi, India. She is Associate Dean

in Industrial Research and Development, Delhi Technological University. he has

been awarded prestigious UGC Raman Postdoctoral Fellowship by the Indian gov-

ernment for pursuing postdoctoral research from the Department of Computer and

Information Science, Indiana University-Purdue University Indianapolis (2014-15),

Indianapolis, Indiana, USA. She received her master’s and doctorate degree in soft-

ware engineering from the University School of Information Technology, Guru Gob-

ind Singh Indraprastha University, Delhi, India. She was an Assistant Professor at

the University School of Information Technology, Guru Gobind Singh Indraprastha

University, Delhi, India. She has received IBM Faculty Award 2013. She is the re-

cipient of Commendable Research Award by Delhi Technological University for her

research in the year 2017 and 2018. She is the author of book titled “Empirical Re-

search in Software Engineering” published by CRC press and co-author of a book

on Object Oriented Software Engineering published by PHI Learning. Her research

interests are in software testing, improving software quality, statistical and adaptive

prediction models, software metrics and the definition and validation of software

metrics. Her h-index is 26 as reported by Google Scholar. She has published more

than 160 research papers in international journals and conferences.

Author’s Biography

Ms. Megha Ummat
Research Scholar

Department of Computer Science & Engineering
Delhi Technological University

Assistant Professor
Sri Guru Gobind Singh College of Commerce, University of Delhi

Email: meghakhanna@gmail.com

Educational Qualifications:

MCA (SE), B.Sc. (H) Computer Science

Megha Ummat is currently pursuing her doctoral degree from Delhi Technolog-

ical University. She is currently working as Assistant Professor in Sri Guru Gobind

Singh College of Commerce, University of Delhi. She completed her master’s degree

in software engineering in 2010 from the University School of Information Technol-

ogy, Guru Gobind Singh Indraprastha University, India. She received her graduation

degree in computer science (Hons.) in 2007 from Acharya Narendra Dev College,

University of Delhi. She is the recipient of Commendable Research Award by Delhi

Technological University for her research in the year 2017 and 2018. She was also

awarded the ”Research Incentive” for her research in the year 2018 by the Govern-

ing body of Sri Guru Gobind Singh College of Commerce. Her research interests

are in software quality improvement, applications of machine learning techniques in

change prediction, and the definition and validation of software metrics. Her h-index

is 7 as reported by Google Scholar. She has various publications in international

conferences and journals.

	List of Tables
	List of Figures
	List of Publications
	Abbreviations
	Introduction
	Introduction
	What is Software Quality?
	Software Quality Attributes

	What is Software Evolution?
	Software Evolution Cycle

	Software Quality and Software Evolution
	Software Metrics
	Overview of existing OO Metric Suites

	Developing Prediction Models for Software Evolution
	Literature Survey
	Software Metrics
	Evolution-based Studies

	Objectives of the Thesis
	Vision
	Focus
	Goals

	Organization of the Thesis

	Research Methodology
	Introduction
	Research Process
	Definition of Research Problem
	Literature Survey
	Define Variables
	Object-Oriented Metrics
	Evolution-based Metrics
	Bug Descriptions
	Dependent Variables

	Selection of Data Analysis Methods
	Logistic Regression
	Linear Discriminant Analysis
	Multilayer Perceptron
	Decision Trees
	Ensemble Learners
	Naive Bayes
	Support Vector Machine
	Constricted Particle Swarm Optimization
	Genetic Algorithm based Classifier System
	Hierarchical Decision Rules
	Learning Classifier Systems
	Gene Expression Programming
	Decision Trees with Genetic Algorithm
	Particle Swarm Optimization with Linear Discriminant Analysis
	Genetic Fuzzy System LogitBoost
	Neural Net Evolutionary Programming
	Fitness-based Ensembles

	Empirical Data Collection
	Data Preprocessing
	Descriptive Statistics
	Outlier Analysis
	Correlation based Feature Selection

	Model Development and Validation
	Ten-fold Cross Validation
	Inter-release Validation & Cross-project Validation

	Performance Measures
	Statistical Analysis of Results
	Friedman Test
	Wilcoxon Signed Rank Test

	Software Change Prediction: A Systematic Review
	Introduction
	Review Procedure
	Review Protocol
	Search Strategy
	Inclusion and Exclusion Criteria
	Quality Criteria

	Review Results and Discussion
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3
	Results specific to RQ4
	Results specific to RQ5
	Results specific to RQ6
	Results specific to RQ7

	Discussion & Future Directions

	Analyzing Software Change in Open-source projects using Machine Learning Techniques
	Introduction
	Research Background & Methodology
	Independent and Dependent Variables
	Data Collection
	Descriptive Statistics and Outlier Analysis

	Result Analysis
	Univariate Analysis
	Multivariate LR Analysis
	CFS Results
	Ten-Fold Cross Validation Results
	Friedman Test Results
	Wilcoxon Test Results

	Response to RQ's
	Discussion

	Analysis of Search-based Algorithms for Software Change Prediction
	Introduction
	Review Background & Results
	Review Background
	Results specific to RQ1
	Results Specific to RQ2
	Results specific to RQ3
	Results specific to RQ4
	Results specific to RQ5
	Results specific to RQ6
	Results specific to RQ7
	Analysis of Review Results

	Experimental Design & Framework
	Independent and Dependent Variables
	Framework of the Experiment

	Experimental Results & Analysis
	CFS Results
	Ten-Fold Cross Validation Results
	Friedman Test Results
	Wilcoxon Test Results
	Analysis of Experiment's Results

	Discussion

	Software Change Prediction using Hybridized Techniques
	Introduction
	Empirical Research Framework
	Independent and Dependent Variables
	Empirical Data Collection
	Experimental Design
	Hypothesis Evaluation using Statistical Tests

	Results and Analysis
	Descriptive Statistics & Outlier Removal
	CFS Results
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3
	Results specific to RQ4

	Comparison of Various Studies
	Discussion

	Ensemble Learners using Particle Swarm Optimization
	Introduction
	Empirical Research Framework
	Independent and Dependent Variables
	CPSO Technique
	Performance Measures as Fitness Functions
	Validation Method used in Individual Classifiers

	Proposed Ensemble Classifiers
	Majority Voting Ensemble Classifier
	Weighted Voting Ensemble Classifier
	Hard Instance Ensemble Classifier
	Weighted Voting Hard Instance Classifier

	Experimental Framework
	Empirical Data Collection
	Feature Selection Technique
	Performance Measures & Statistical Evaluation
	ML Ensemble Classifiers
	Candidates for Voting Ensemble

	Results and Analysis
	Results specific to RQ1
	Results specific to RQ2
	Analysis of Results

	Discussion

	Dynamic Selection of Fitness Function using Particle Swarm Optimization
	Introduction
	Empirical Research Framework
	ASOF Framework
	Experimental Framework
	Data Collection & Validation Framework
	Performance Measures & Statistical Evaluation
	Description of Baseline Techniques

	Results and Analysis
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3

	Discussion

	Software Bug Categorization using Change Impact and Maintenance Effort
	Introduction
	Software Bug Categorization Framework
	Overview of the Framework
	Text Mining Module

	Research Methodology
	Analysis and Results
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3
	Results specific to RQ4
	Analysis of Chapter's Results

	Discussion

	Software Change Prediction using Imbalanced Data
	Introduction
	Imbalanced Learning Problem
	Empirical Research Framework
	Independent and Dependent Variables
	Data Collection
	Performance Measures
	Statistical Tests

	Experimental Framework
	Data Preprocessing and Feature Selection
	Approaches for Handling Imbalanced Data
	Model Development and Evaluation
	Hypothesis Evaluation using Statistical Tests

	Research Methodology
	Resample with Replacement
	Spread Subsample
	SMOTE
	MetaCost Learners

	Data Preprocessing Results
	Ten-fold Cross Validation Results
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3

	Inter-Release Validation Results
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3

	Discussion

	Analyzing Evolution-based Metrics Suite & the Evolution Patterns of Object-Oriented Metrics
	Introduction
	Empirical Research Framework
	Dependent and Independent Variables
	Data Collection

	Experimental Design
	Experimental Design Comparison with Elish & Al-Khiaty
	Hypothesis Investigated
	Feature Selection & Performance Measures

	Analysis and Results
	Results specific to RQ1
	Results specific to RQ2
	Results specific to RQ3
	Results specific to RQ4
	Analysis of Chapter's Results

	Comparison with Previous Studies
	Comparison of Evolution Patterns of OO Metrics
	Comparison of Change prediction Models Developed by Combined Metric Suite

	Discussion

	Conclusion
	Summary of the Work
	Applications of the Work
	Future Directions

	Appendices
	Details of Datasets used in the Work
	Dataset Details
	Descriptive Statistics

	Key Parameters of Primary Studies in Review on Software Change Prediction
	Key Parameters of primary Studies

	Review of SBA for developing SEPM
	Inclusion & Exclusion Criteria
	Quality Questions
	Data Collection from Different Sources
	Year-wise Distribution of Primary Studies
	Categories of SBA
	Dataset-wise Outliers for Effort Estimation & Defect Prediction
	Threats in Application of SBA to SEPM

	Imbalanced Learning
	Ten-fold Cross Validation Results using Sampling Approaches
	Ten-fold Cross Validation Results using MetaCost Learners

	Evolution Patterns of OO Metrics
	Observed Median Values of OO metrics

	References
	Bibliography
	Supervisor's Biography
	Author's Biography

