'Omics' Data Analysis of Repurposed Drugs Entinostat and Tropicamide Against Dopamine Metabolism

A DISSERTATION

SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

IN

BIOINFORMATICS

Submitted by:

Ambika Dubey

2K17/BIO/01

Under the supervision of

Prof. Pravir Kumar

Department of Biotechnology Delhi Technological University (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

JUNE, 2019

Delhi Technological University (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, Ambika Dubey, 2K17/BIO/01 student of M.Tech Bioinformatics, hereby declare that the project Dissertation titled **"Omics Data Analysis of Repurposed Drugs Entinostat and Tropicamide Against Dopamine Metabolism"** which is submitted by me to the department of Biotechnology, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Master of Technology, is original and not copied from any source without paper citation. The work has not previously formed the basis for the award of any Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi

Date:

AMBIKA DUBEY

Department of Biotechnology DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled "Omics Data Analysis of Repurposed Drugs Entinostat and Tropicamide Against Dopamine Metabolism" which is submitted by Ambika Dubey, 2K17/BIO/01, Department of Biotechnology, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Master of Technology, is a record of the project work carried out by the student under my supervision. To the best of my knowledge this work has not been submitted in part of full for any Degree or Diploma to this University or elsewhere.

Place: Delhi

Date:

Prof. Pravir Kumar Supervisor Delhi Technological University Prof. Jai Gopal Sharma Head of Department Delhi Technological University

ACKNOWLEDGEMENT

At the time of submission of my M. Tech Dissertation, I would first like to thank GOD for giving me patience, strength, capability, and willpower to complete my work. Apart from our efforts, the success of this project depends largely on the encouragement and guidelines of many others. I, therefore, take this opportunity to express my gratitude to the people who have been instrumental in the successful completion of this project.

My initial thank is addressed to my mentor Prof. Pravir Kumar, Professor, Department of Biotechnology, Delhi Technological University, who gave me this opportunity to work in a project under him. It was his enigmatic supervision, constant encouragement and expert guidance which have enabled me to complete this work. I humbly seize this opportunity to express my gratitude to him.

I would also like to extend my sincere gratitude to Professor Jai Gopal Sharma for providing basic infrastructure and facilities.

I would like to extend my sincere gratitude to Dr. Rashmi Ambasta for her keen observation and continuous advice. Her thoughtful inputs on the project issues have been invaluable for the productive progress of the project. I extend my thanks to technical staff Mr. Jitender Singh and Mr. C.B. Singh who had been an aid whenever required. Lastly, I wish to extend my thanks to my family and friends who have supported and encouraged me through the entire process.

AMBIKA DUBEY 2K17/BIO/01

ABSTRACT

Background: Efficacy and effectiveness of the drugs in case of Alzheimer's disease (AD) as well as Parkinson's disease (PD) is quite challenging and rough path. The cost of manufacturing and approving a drug along with time makes the process of drug design and discovery intense, tiresome, non-profitable and extensive. After all these problems, when a drug finally reaches the clinical trials either it gets failed in the beginning itself otherwise eventually in the later phases which creates a huge economic burden to the manufacturers. All the approved drugs, aim at giving just the symptomatic-relief to the patients thus cannot eradicate the disorder completely during late onset/diagnosis and also have many side-effects. Therefore, it is inevitable to identify compounds aiming at disease-modification and not just relieving symptoms at an early stage. The best, profitable and less time-consuming process for the above is drug repositioning.

Methods: We generated a list of candidate drugs having the potential to cross blood-brain barrier for three overlapping gene targets extracted from different sources after functional annotation for both AD and PD, sorted by preprocessing of the original entrants. The final potentials were spotted through comparing gene-expression pattern of drugs with controls through Connectivity map (Cmap).

Results: The study highlighted two possible repurposed drugs entinostat and tropicamide to be used against three common targets of Alzheimer's and Parkinson's disease.

Keywords: Drug repositioning, Alzheimer's disease, Parkinson's disease, Connectivity map.

CONTENTS

CANDIDATE'S DECLARATION	ii						
CERTIFICATE	iii						
ACKNOWLEDGEMENT							
ABSTRACT							
CONTENTS	vi						
LIST OF FIGURES	viii						
LIST OF TABLES	ix						
LIST OF ABBREVIATIONS	х						
1. INTRODUCTION	1						
2. LITERATURE REVIEW	4						
3. MATERIALS AND METHODOLOGY	9						
4. RESULTS	14						
5. DISCUSSION AND CONCLUSION	27						
6. APPENDICES	30						
7. REFERENCES	57						

LIST OF FIGURES

S.NO.	NAME OF FIGURE	PAGE NO.						
FIGURE 1	Workflow of drug repositioning through 'omics' data.	9						
FIGURE 2	FIGURE 2 Gene-metabolite network of Alzheimer's disease							
FIGURE 3	Gene-metabolite network in case of Parkinson's disease.	15						
FIGURE 4	FIGURE 4 Graph showing important pathways from pathway analysis with the targets involved.							
FIGURE 5	Statistics of mapped drugs and the commons ones of main targets.	20						
FIGURE 6	Blood-brain barrier permeability scores of the drugs.	22						
FIGURE 7	Gene expression pattern of candidate targets with disease- specific controls.	24						
FIGURE 8	Gene expression pattern of candidate drugs with target- specific controls	25						

LIST OF TABLES

S.NO.	NAME OF TABLE	PAGE NO.						
TABLE 1	Functional enrichment analysis of 12 candidate genes using DAVID.	17						
TABLE 2	TABLE 2Top prioritized gene in both AD and PD.							
TABLE 3	All common drugs amid three targets with their e-scores and p-values along with their status as approved (yellow), experimental (brown), withdrawn (red), not given (green).							
TABLE T1	Genes for Alzheimer's disease present in more than two studies	30						
TABLE T2	TABLE T2 Genes for Parkinson's disease present in more than two studies							
TABLE T3	Drugs mapped for COMT gene	38						
TABLE T4	Drugs mapped for MAOA gene	42						
TABLE T5	Drugs mapped for MAOB gene	46						
TABLE T6	Common mapped drugs sorted by their permeability scores	49						
TABLE T7	Gene expression values of three targets with 14 candidate drugs with Alzheimer's-specific controls	50						
TABLE T8	Gene expression values of three targets with 14 candidate drugs with Parkinson's-specific controls	51						
TABLE T9	: Gene expression values of three targets with 14 candidate drugs with COMT-specific controls	53						
TABLE T10	Gene expression values of three targets with 14 candidate drugs with MAO-specific controls	55						

LIST OF ABBREVATIONS

AD	Alzheimer's Disease
PD	Parkinson's Disease
Стар	Connectivity Map
DEGs	Differentially Expressed Genes
NMDA	N- Methyl D-aspartate
Αβ	Beta-Amyloid
MAO	Mono-amine Oxidases
COMT	Catechol-O- methyltransferase
MPTP	1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine
GABA	Γ- aminobutyric acid
MAOA	Mono-amine oxidase form A
MAOB	Mono-amine oxidase form B
HPO	Human Phenotype Ontology
GWAS	Genome wide association studies
CTD	Comparative Toxicogenomics Database
HMDB	Human Metabolome Database
PSEA	Pathway-set Enrichment Analysis
BBB	Blood-Brain Barrier
ADME	Absorption Distribution Metabolism and Excretion
SVM	Support Vector Machine
DA	Dopamine
HDACi	Histone Deacetylase inhibitor

Chapter 1: Introduction

Today's medicine is tailored uniquely and categorically according to the stature of the patient. Because of new possibilities, emerging innovations and wearable technology this area of personalized medicine has become a hotspot for pharmacological research and economics. But, the burden of the cost of the processes, lengthy time and unexpected adverse events for predetermining drug is still a matter of concern and all these problems get multiplied when we talk about neurological disorders. A practical solution to combat these problems lies in the pipelines of pharmacological repositioning/repurposing. It is an escalator of strategic computational steps which help in repositioning the wheel of usage of an already approved drug. Thus, in order to improve productiveness and efficacy of modern drug discovery process drug personalizing and repositioning go hand in hand [1].

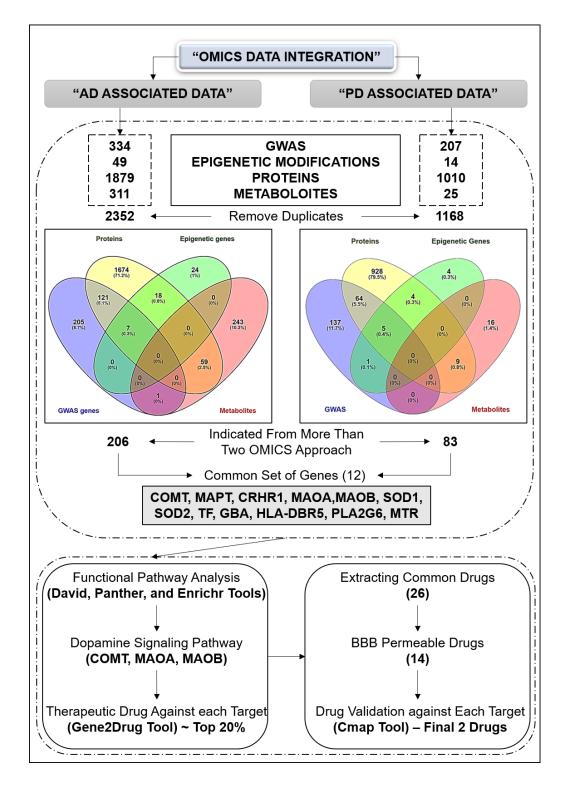
Neurological diseases have a wide impact not only on the patient and his care takers but also on the drug developers and the nation (economically). These diseases are multifaceted and age-related thus bound to get worsened slowly-slowly with the time. On the other hand, the drugs available up till now are just relieving from some of the symptoms, giving support for living life a little longer and not for complete eradication of the disease or its modification [2]. Neurological disorders are interlinked that means one symptom give rise to another sowing seeds for other type of dysfunctions to reside in sync. For example, Alzheimer's with Dementia or Parkinson's disease leading to cause Alzheimer's disease etc. There is an increase of 145% deaths due to Alzheimer's and related disorders. All these norms add up in increasing the difficulty level to treat the disease efficiently. Among all, Alzheimer's and Parkinson's diseases are most common and yet highly detrimental. Both the diseases have uncommon symptoms still if we highlight molecular pathogenesis both of them are vastly homogenous and have some mutual features relating to mitochondrial dysfunction, response to oxidative stress, aging of brain, accumulation of proteins, nature of interactions etc. Due to these intricating similarities, it is of much importance that we study this crosstalk so that we can target specific, important or novel pathways and multiple-targets at once taken in a combination with a drug [3]. Experiments have proven the above fact as more than 90% of the differentially expressed genes (DEGs) have been known to occur concurrently in both the disorders with similar upstream/downstream regulators [4].

Looking at the current scenario of rapid failure and huge economic loss as over thousands of compounds identified as candidate drug have failed to prove their worth as defined through the studies conducted in the field of drug development and discovery, all the research scholars and scientists have been compelled to rethink and improvise on the type of process chosen and kind of methodology followed to derive a novel compound as an effective therapeutic molecule. A variety of inhibitors, monoclonal antibodies, enhancers etc. have been identified as potential therapeutics along with their different scoring and validating tools but all have constantly failed to give the exact said results in live. The chief reasons for the above failure could be many foremost being; targeting wrong candidates. Second being, failure of the proposed compound to show promising effects in long run clinical trials too. Thirdly, lack of reliable, accurate and precise instruments with good sensitivity and specificity and standardized tests. Fourth can be lack of precise steps taken from starting till the end of the discovery and developmental processes. Lastly, delayed treatment because of which the compound may not get enough time to work or bind with the targets. All these points can be the reason for the failure of the potential compounds in different phases of clinical trials [5].

In order to avoid all the aforesaid cons and risk, drug repositioning can be a promising approach in order to get a safe and efficient drug for medical needs that too early and light on the pocket of developers. There are many advantages for using the repositioning approach, it eliminates the burden of selecting appropriate targets, drug's pharmacodynamics and pharmacokinetics properties, its toxicity and side-effects, testing on various models, patenting issues and lot more [6]. In this paper we have tried to reposition drugs computationally jotted from the databases towards some of the common identified targets of AD and PD and validated their effects through measuring their gene expression patterns with the ones already known.

Chapter 2: Review of Literature

There are more of symptomatic relieving drugs which have been approved, carrying some or the other side effects, variable response rates and tolerance but due to the lack of availability of significant medications, they are still being used. One class is of cholinesterase inhibitors in which Tacrine was first of them but causes liver toxicity. Next inhibitors discovered were Galantamine, Donepezil and Rivastigmine. Next and most popular one is a NMDA receptor blocker, Memantine which is normally well tolerated and have fewer side effects than others. These medicines are also prescribed in combination or alone depending upon its effects in treating mild to severe conditions of Alzheimer's disease. Other areas of the therapeutic remains anti-amyloid therapy in which betasecretase and gamma-secretase enzymes are involved, candidates of which are still under clinical trials. Tarenflurbil, has shown to lessen the levels of beta-amyloid (A β) but failed to show results in demonstrations. Immunizations have failed to get approved in the trials as showed no progression. Monoclonal antibodies gave almost similar results bapineuzumab showed none, solanezumab showed some and aducanumab showed best promising results in clinical trials [7]. For the proper functioning and a healthy brain, a defect free lysosomal system is must. Animal model studies of rapamycin proved to be a double-edged sword. It can only prevent plaques and tangles accumulation in early AD brain and is used on people with delayed dementia [8].


Shaking palsy, after Alzheimer's is the second most prevailing disease in relation with age. More common in males, peak in ages more than 90 years and can coexists with dementia and depression. Levodopa remained the most effective therapeutic since 1960's for this disorder. It is characterized by Lewy bodies formation, SNCA gene's duplication or triplication, mutation in glucocerebrosidase 1 mutation and high nitrate and oxidative stress. Conventional dopamine precursors in case of PD treatment are levodopa or L-DOPA whereas cabergoline, apomorphine, rotigotine, lisuride, pramipexol, bromocriptine, pergolide, amantadine are dopamine agonists. Selegiline and rasagiline are monoamine oxidase inhibitors. Entacapone and tolcapone are inhibitors for catechol-O- methyltransferase. These all are considered as anti-parkinsonian drugs. In terms of novel natural treatment for the disorder many compounds have been proposed which help in eliminating the risk of dopaminergic neurons as well as provide additional benefits of antiinflammation, anti-oxidant and neuroprotective effects. Among them, atremorine is the strongest with neuroprotective benefits. protects 1-methyl-4-phenyl-1,2,3,6 many It against tetrahydropyridine (MPTP) induced neurodegeneration. Many drugs have been identified on the basis of the conventional ones but still somehow the problem has yet not been eradicated completely. Dopaminergic drugs have been seen to overstimulate the neurotransmitter inclining the danger towards blood vessels in brain and heart. Therefore new found drugs must consider dopaminergic protection for reducing early neurodegeneration [9].

Drugs proven to be efficacious among the studies fail to prove their aforementioned efficacy during clinical trials. For example, quetiapine is an antipsychotic used in PD psychosis, has failed to prove its efficacy in several randomized, double-blind clinical trials. Dementia remains non-responsive towards it. Pimavanserin another antipsychotic drug, it proved to be helpful among the diseased patients but discontinuation happened due to increase number of adverse events among the people like hallucinations, nausea, urinary tract infections etc. another drug clozapine although did not showed ill motor functions but made prone to fatal agranulocytosis because of which utmost care and monitoring was necessary for the patients because of this incommodious monitoring this medicine was given only when patients failed to response to the above ones [10].

Catechol-O-Methyltransferase (COMT), catalyzes transfer of methyl group from neurotransmitters resulting in their degeneration. It interferes with memory and decision-making. Being an independent risk enhancer for AD, COMT in prefrontal cortex it regulates dopamine levels, impairment in which can cause severe problems. Present on chromosome number 22q11.21, it has myriad allelic variations [11] [12] out of which one of the most found variation in COMT is at position 158, when valine substitute methionine which increases the rate of catabolism of DA up to four times specifically in asian population [13]. Patients with variations in DNA methylation or excessive mutations in PARK2 gene in dopaminergic neurons during late on-set of Parkinson's disease have been seen to have increased levels of membrane- bound COMT gene. This upregulation may cause reduced levels of dopamine release causing disturbance in movements and Parkinson's disease [14]. In astrocytes, MAOB synthesizes γ - aminobutyric acid (GABA) alteration in the levels of which causes memory decline in case of Alzheimer's disease signifying first A β independent target for AD. It also regulates A β production in AD brain through γ -secretase [15]. Monoamine oxidases are responsible for deamination of various neurotransmitters as well as xenobiotics varying their concentration in brain (mostly) and other tissues. MAOA's inhibitors have known to work against depression and anxiety whereas MAOB's inhibitors for AD and PD [16], [17]. The two forms of MAO's are based on their specificity towards substrate as well as inhibitors. Localization of MAOA is in catecholaminergic neurons whereas that of MAOB is in serotonergic neurons of glial cells. MAOB 's activity is age-related giving proofs of its relation with such disorders [18].

There are numerous methods of drug repurposing which can be used to find the best solution of our problems. First strategy, systematic drug repurposing, it uses computer-assisted approaches for integrating and analyzing large information drawn from literature, treatments and trials. These approaches are classified into various sub-divisions like network-based techniques, bioinformatics, cheminformatics, signature-based techniques, 'omics' data mining and others. Second strategy is drug repurposing through cheminformatics which utilizes *in-silico* screening of the information from the already formed databases like DrugBank, these databases combine all the experimental and investigational research about a drug together, we can search about its mode of action, targets, similar compounds easily. Not only this it also provides validation status, type of drugs, pathways it is involved in and lot more. Third strategy of bioinformatics repositioning includes computer-aided linking of the drugs and proteins on the basis of similarity emphasizing on its binding sites and ligands. Different algorithms have been designed according to the need of the researcher in order to get best results. Fourth strategy is high-throughput literature analysis, automated literature mining is done in which large volumes of information is searched all together for validating the hypothesis made. Fifth strategy, is use of network-based approaches, simplifying query through analyzing relationships between compounds and targets on the basis of interactions, nodes and edges present at different levels. Sixth strategy, is signature-based repurposing, based on expression profiles of the genes sorted according to their scoring using various available tools like C-map. These scores are based on comparing of mRNA expression patterns or up/down regulation of the signatures etc. on different cell lines [19].

In order to establish similar method of causation among multiple diseases for treating them all with a similar type of drug can be made possible by identifying genetic profiles at phenotypic level using PheWAS data [20]. With the aim of repurposing drugs for rare diseases, Human Phenotype Ontology (HPO) is widely used for annotations of phenotypic aberrations, Monarch, another phenotypic resource helps in equating disease among species and self. CentoMD database links genotypes with phenotypes by using technique namely exome sequencing. Next Gen sequencing data is now a hotspot for analyzing publicly accessible variations for rare diseases [21]. There are two types of repositioning approaches namely, drug-centric and disease-centric methods both of them helps in target-driven repurposing coming under the topic of 'strategic repurposing'. For fulfilling the urgent urge of an acceptable and accurate computational validation technique that can be applied before doing any wet-lab experiments, a database known as Drugs of New Indications has been made with old and newer indications of about 237 drugs, still under development for release [22]. The vast amount of data and its multifaceted analysis determines the success rate for identification of the drug repurposed therefore among all the available methods knowledge-based and signature-based methods (C-map) for recycling of old drugs have proved to give the best results but still there are some challenges faced in existing repositioning pipeline [23].

Chapter 3: Materials and Methodology

Figure 1: Workflow of drug repositioning through 'omics' data.

1. Searching for potential anti-AD and anti-PD targets:

To get potential anti-AD and anti-PD targets, we collected data from various sources. Data to be collected was sub-portioned in four forms that is genes, proteins, metabolites and epigenetic changes. In order to extract information related to AD and PD associated genetic variations, we explored genome wide association studies (GWAS) catalog (https://www.ebi.ac.uk/gwas). PubMed IDs, initial sample size, name of the gene, its position and region of presence, SNPs, p-value, odd-ratios or beta value etc. were jotted down [24]. To get possible information about the related proteins, we searched for them in comparative toxicogenomics database (CTD) (http://ctdbase.org/) [25]. Data was grouped among following headers, protein name, uniport id, gene name, protein class, scores etc. Facts related to epigenetics for both the was compiled through literature search under headings such as protein name, PubMed ID, epigenetic modification, its regulation, its source, location and method. For metabolite's name, ID, source, its condition and concentration, age and sex [26]. All the above-mentioned data was gathered for both AD and PD which later on was filtered.

2. Data Filtration for accomplishing final set of targets:

Filtering of the targets was done according to the type of data we got from respective searches. Among them, only genes that were present in ≥ 2 metabolites, proteins and epigenetic variations were taken into final consideration. This work was done for both Alzheimer's and Parkinson's diseases disjointedly. Final genes were those that were common in both of these disorders.

3. Mapping gene-metabolites for AD and PD and visualizing the network:

Gene-metabolites related information was exported from HMDB database and Cytoscape software version 6.1 (<u>https://cytoscape.org/</u>) was used in order to construct the network for the same.

4. Pathway analysis and Functional Annotation:

In order to achieve precision amid the filtered data, the final common genes were then entered in Panther (http://pantherdb.org/); which contains information of about 15524 protein families and distinct Enrichr approximately 107627 (function) subfamilies and (https://amp.pharm.mssm.edu/Enrichr/) which contains 153 libraries, 302,225 terms and 19,977,890 lists analyzed [27]. Designed as an aid in high-throughput analysis, Panther classifies proteins and their genes. This classification is based on four fronts of families and sub-families, molecular function at biochemical level, biological processes at cell or organism level and last but not the least pathways specifying relations with neighboring interactome [28]. Functional annotation of the proposed targets was also done through DAVID (https://david.ncifcrf.gov/) tool giving p-value, false discovery rates differentiating all the targets amid all the biological processes [29].

5. Mapping core protein to existing drugs:

Taking advantage of the currently available genome-wide transcriptional data on Gene2drug (http://gene2drug.tigem.it/), helps in annotating pathways through assessing the effect of target gene through cellular mechanisms they are involved in thus, providing an essential and effective shortcut to drug discovery. It uses the method called as pathway-set enrichment analysis (PSEA). Gene expression profiles from connectivity map are converted to expression profiles and ranked according to their p-values of Kolmogorov-Smirnov statistic [30]. We entered our final filtered

core proteins in the dialog box and selected for all the biological pathways from the next one. The result page shows top 10% drugs prioritized by PSEA analysis. Enrichment score depicts the regulation that is "up or down" and p-value tells for extreme top and bottom ranks for the pathway. Smaller the rank, pathway is upregulated (at the top) whereas larger the rank, lower the profile and is down regulated. Files were exported for all of our target proteins and results were analysed. In order to cut-short the number of the drugs, we took top 10% drugs approximately 131 drugs according to their scores from all the targeted genes and found out the common ones amongst all.

6. Checking Blood-Brain permeability:

As the repurposed drugs are to be used for nervous system disorders blood-brain barrier (BBB) becomes a major concern. Therefore, we checked for this permeability through CBLigand (<u>https://www.cbligand.org/CCGS/</u>) tool. It aims at providing rapid identification of lead compounds and their targets, helps in drug discovery process, ADME profiling and lot more. It also contains an Alzheimer's disease related domain designed for its targets and pharmacology. The blood-brain barrier uses SVM and LiCABEDS algorithm [31]. Target Hunter identifies target molecules.

7. Mode of action of the drugs for repurposing:

For extraction of this knowledge we went to a unique database for bioinformatics and cheminformatics resource, Drug Bank. We got information on their ID, type (approved/ withdrawn/ investigational), their mode of action along with their enrichment scores and p-values from gene2drug.

8. Computational analysis of potential drug target and repositioned drugs:

In order to validate our candidate targets we used two tools namely ToppGene and ToppNet (<u>https://toppgene.cchmc.org/</u>). They prioritize the gene targets on the basis of functional similarity to training set and tropological features in protein-protein interaction networks respectively [32]. Among the training set we provided the high-risk well-known genes in AD and PD pathogenesis.

We also used Connectivity map (Cmap) tool (https://clue.io/cmap) in order to validate and analyze repurposed drugs. This tool uses transcriptional expression information to unravel relation between diseases, therapeutics and cells. Developed by Broad Institute, they used L1000 assay to generate expression profiles which are over 1 million. It can be used by biologists, chemist and pharmacologists in the areas of pathway analysis, structure-function relationship, drug discovery and many more [33] [17]. Here, with this tool we checked for the expression patterns of our filtered drugs with various sets of known drugs taken as control.

Chapter 4: Results

1. Mining of candidate AD and PD targets:

Extracting potential targets from four different sources made us analyze 344 GWAS genes for AD and 207 genes in case of Parkinson's disease. 1879 AD-related proteins and 1010 PD-related proteins from CTD database. 14 epigenetic (acetylation/ methylation) variations in brain in PD and 49 in case of AD among various regions in brain. 25 HMDB metabolites in case of Parkinson's and 311 that in Alzheimer's disease. After removing all the existing duplicates there were 2352 entries in case of AD and 1168 that in PD. 560 common targets were observed among the two diseases. Among all these genes/proteins, present in more than two AD/PD related metabolites when clubbed together came out to be 206 in Alzheimer's and 83 in Parkinson's disease. Among them common ones were sorted out and as a result we got 12 candidate genes for further studies. These genes were CRHR1, MAPT, MAOA, MAOB, TF, GBR, COMT, SOD1, SOD2, HLA-DBR5, PLA2G6 and MTR. Total 311 protein-metabolite interactions were indicated from the HMDB database. Yellow colored nodes indicate the proteins while the green colored nodes indicate the metabolites. Iron, Magnesium, Valine, L-dopa, Dihydroxybenzeneacetic acid were some of the AD-metabolites which interact with COMT, 1-methyl histamine was the one interacting with MAOB along with the zoomed-insert that shows metabolite dopamine (HMDB0000073) that interacts with all three targets of interest. While talking about PD, total of 25 protein-metabolite interactions were found in HMDB database. Out of which COMT interacted with Magnesium, S-Adenosylhomocysteine, 3-Methoxytyramine, Homovanillic acid and Vanylglycol whereas MAOA and MAOB were seen interacting with Serotonin, 1phenylethylamine and 3-methoxytyramine (HMDB0000022) as common with COMT as shown in the zoomed-inset.

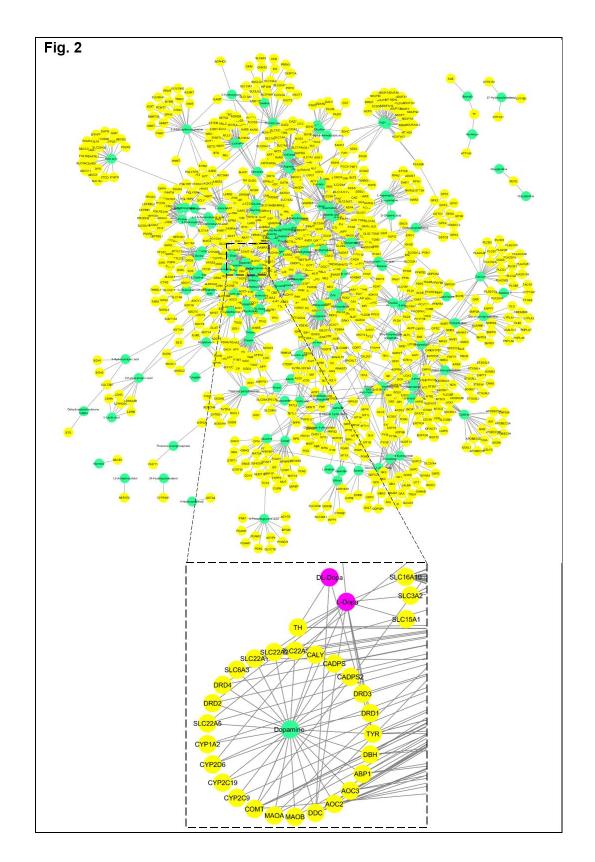


Figure 2: Gene-metabolite network of Alzheimer's disease.

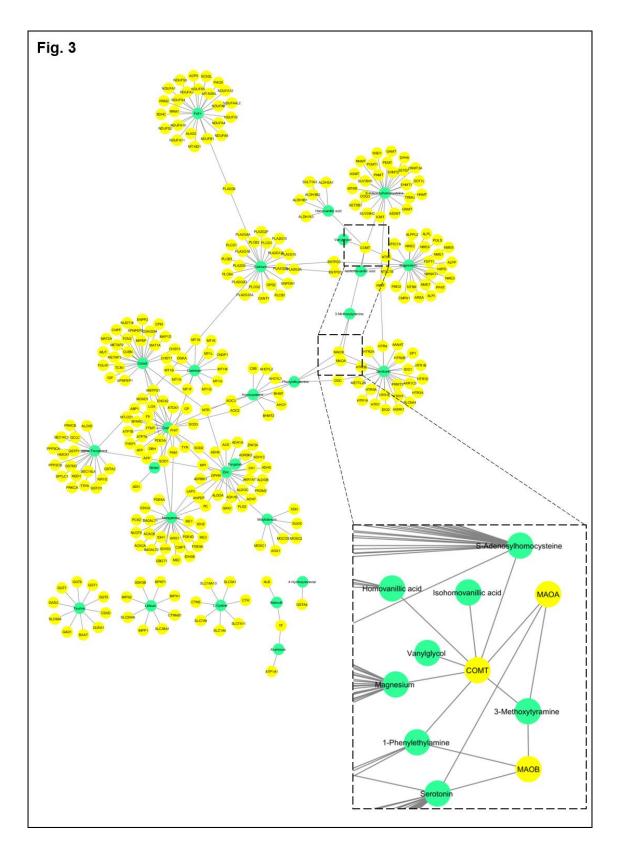


Figure 3: Gene-metabolite network in case of Parkinson's disease.

2. Identification of main candidate genes through enrichment analysis using DAVID and PANTHER:

These 12 gene targets went through pathway analysis through panther which provided the information on the pathways in which our query genes are involved in. 3 genes, COMT, MAOB and MAOA were pinned to be in two pathways that are dopamine receptor mediated signaling pathway and adrenaline and non-adrenaline biosynthesis pathway; rest of the genes remained unidentified in terms of common targeted pathways. DAVID tool was used for doing functional enrichment annotation of same 12 target genes. This tool gave information of pathways in which these genes are present based on the fold enrichment score, Benjamini and FDR values. False discovery rates ≤ 0.5 are considered important and the results have shown that only GO:0042420~dopamine catabolic process having three genes are significant are thus taken for further studies.

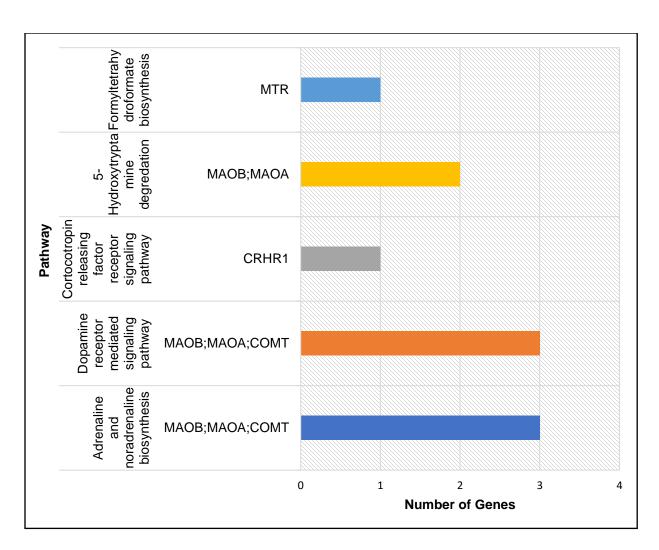


Figure 4: Graph showing important pathways from pathway analysis with the targets involved.

Table 1: Functional e	nrichment anal	ysis of 12 car	ndidate genes	using DAVID.
-----------------------	----------------	----------------	---------------	--------------

Term	Count	P-Value	Genes	List Total	Pop Hits	Pop Total	Fold Enrichment	Bonferroni	Benjamini	FDR
GO:0042420~dopamine catabolic process	3	3.90E-06	MAOA, MAOB, COMT	12	5	16792	839.6	9.39E-04	9.39E-04	0.00503 345
GO:0042135~neurotransmitter catabolic process	3	1.09E-05	MAOA, MAOB, COMT	12	8	16792	524.75	0.00262355	0.00131264	0.01407 798
GO:0050665~hydrogen peroxide biosynthetic process	3	1.40E-05	MAOB, SOD1, SOD2	12	9	16792	466.444444	0.00337067	0.00112482	0.01809 345
GO:0048678~response to axon injury	3	1.36E-04	MTR, SOD1, SOD2	12	27	16792	155.481481	0.03218126	0.00814427	0.17515 28

			_							
GO:0042493~response to drug	4	8.70E-04	MAOB, COMT, SOD1, SOD2	12	304	16792	18.4122807	0.18928792	0.04109998	1.11831 532
GO:0000303~response to superoxide	2	0.003271 5	SOD1, SOD2	12	5	16792	559.733333	0.54602663	0.12332546	4.14404 363
GO:0032496~response to lipopolysaccharide	3	0.004921 2	MAOB, COMT, SOD2	12	164	16792	25.597561	0.69545405	0.15620661	6.17313 222
GO:0010269~response to selenium ion	2	0.005229 7	MAOB, SOD2	12	8	16792	349.833333	0.71738217	0.1461139	6.54814 241
GO:0055114~oxidation- reduction process	4	0.005820 5	MAOA, MAOB, SOD1, SOD2	12	592	16792	9.45495495	0.75508199	0.14470996	7.26246 113
GO:0019430~removal of superoxide radicals	2	0.007835 2	SOD1, SOD2	12	12	16792	233.222222	0.84978919	0.17268648	9.66071 508
GO:0042554~superoxide anion generation	2	0.009135 6	SOD1, SOD2	12	14	16792	199.904762	0.89049663	0.18214705	11.1781 759
GO:0006801~superoxide metabolic process	2	0.013027 6	SOD1, SOD2	12	20	16792	139.933333	0.95758611	0.2315322	15.5803 51
GO:0051881~regulation of mitochondrial membrane potential	2	0.018195 3	SOD1, SOD2	12	28	16792	99.952381	0.98803114	0.28852784	21.1146 442
GO:0035774~positive regulation of insulin secretion involved in cellular response to glucose stimulus	2	0.018839 5	HLA- DRB5, PLA2G6	12	29	16792	96.5057471	0.98978231	0.27920645	21.7805 953
GO:0055072~iron ion homeostasis	2	0.019483 4	TF, SOD2	12	30	16792	93.2888889	0.99127736	0.27102964	22.4409 637
GO:0000302~response to reactive oxygen species	2	0.025260 7	SOD1, SOD2	12	39	16792	71.7606838	0.99790046	0.31980612	28.1405 989
GO:0001895~retina homeostasis	2	0.025900 7	TF, SOD1	12	40	16792	69.9666667	0.99820783	0.31065917	28.7476 336
GO:0006879~cellular iron ion homeostasis	2	0.028456 9	TF, SOD1	12	44	16792	63.6060606	0.99904862	0.32059171	31.1252 733
GO:0042542~response to hydrogen peroxide	2	0.032915 7	SOD1, SOD2	12	51	16792	54.875817	0.99968602	0.34592631	35.0980 93
GO:0006749~glutathione metabolic process	2	0.036089 1	SOD1, SOD2	12	56	16792	49.9761905	0.9998578	0.35783801	37.7956 808
GO:0008217~regulation of blood pressure	2	0.041777 4	SOD1, SOD2	12	65	16792	43.0564103	0.99996585	0.38721935	42.3737 707
GO:0032259~methylation	2	0.046808	MTR, COMT	12	73	16792	38.3378995	0.9999904	0.40853298	46.1613 965
GO:0007626~locomotory behavior	2	0.053685 9	SOD1, SOD2	12	84	16792	33.3174603	0.99999832	0.43909206	50.9688 725

GO:0007565~female pregnancy	2	0.056797 3	CRHR1, COMT	12	89	16792	31.4456929	0.99999924	0.44410578	53.0107 479
GO:0002576~platelet degranulation	2	0.065459 8	TF, SOD1	12	103	16792	27.171521	0.999999992	0.47932744	58.2896 613
GO:0045471~response to ethanol	2	0.066691 4	MAOB, SOD1	12	105	16792	26.6539683	0.999999994	0.47257891	58.9940 738
GO:0043524~negative regulation of neuron apoptotic process	2	0.083173 8	SOD1, SOD2	12	132	16792	21.2020202	1	0.53934408	67.4239 054

3. Identifying top rank genes amidst our potential targets:

The ToppNet scores of the genes in both the diseases prioritized COMT as the top ranked target based on interactions and enrichment score values. However, based on tropological features in protein-protein interaction networks it uses k-step Markov method for generating the scores.

	Rank	ID	Name	Interactant Count	Score		Rank	ID	Name	Interactant Count	Score
PD	1	1312	COMT	36	3.52E- 05	۸D	1	1312	COMT	36	2.95E- 05
rD	2	4128	MAOA	6	6.46E- 06	AD	2	4128	MAOA	6	4.29E- 06
	3	4129	MAOB	5	6.10E- 06		3	4129	MAOB	5	3.65E- 06

Table 2: Top prioritized gene in both AD and PD.

4. Mapping of potential drugs with our candidate targets:

Different drugs popped up ranked according to their e-scores and p-value from gene2drug, in order to be precise with our work we only took top 10% drugs approximately and ran-down the filter to search for the common drugs among all the three targets. Results showed us 26 main drugs common in all of our extracted genes. Information on which were gathered from drug bank, chEMBL and PubChem on their mode of action and their current status of approval.

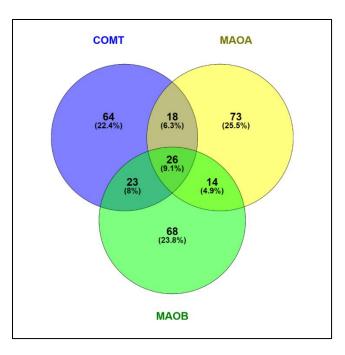


Figure 5: Statistics of mapped drugs and the commons ones of main targets.

Table 3: All common drugs amid three targets with their e-scores and p-values along with their status as approved (yellow), experimental (brown), withdrawn (red), not given (green).

	СОМТ		MA	OA	MA	OB		
DRUGS	E- Score	P- Value	E- Score	P- Value	E- Score	P- Value	Status	Role
5109870	0.6	3.97E- 05	0.59	1.43E- 02	0.59	1.43E- 02		NA
Azacitidine	0.77	3.38E- 08	0.87	5.63E- 05	0.79	3.05E- 05		antineoplastic agent
Tyrphostin AG825	0.72	3.31E- 07	0.6	1.32E- 02	0.61	2.27E- 03		ErbB2 inhibitor
Camptothecin	0.65	5.64E- 06	0.8	2.58E- 04	0.7	2.75E- 04		Antitumor
Alsterpaullone	0.64	8.72E- 06	0.85	7.45E- 05	0.67	5.88E- 04		NA
Trifluridine	0.64	1.13E- 05	0.6	1.34E- 02	0.69	4.11E- 04		Herpes simplex virus type 1 and 2
GW-8510	0.63	1.51E- 05	0.76	6.72E- 04	0.65	9.87E- 04		CDK2 inhibitor
Apigenin	0.61	2.78E- 05	0.85	8.82E- 05	0.56	7.14E- 03		NA

Luteolin	0.61	3.56E- 05	0.7	2.21E- 03	0.58	4.34E- 03	Anti-inflammatory agent
H-7	0.59	5.77E- 05	0.8	2.55E- 04	0.61	2.58E- 03	Protein Kinase Inhibitor
Irinotecan	0.58	8.15E- 05	0.78	3.68E- 04	0.56	6.88E- 03	colateral cancer
Tropicamide	0.57	1.25E- 04	0.59	1.44E- 02	0.57	6.25E- 03	Muscarinic
Doxorubicin	0.55	2.58E- 04	0.81	1.93E- 04	0.71	2.18E- 04	anthracycline antibiotic
Clemizole	0.52	6.87E- 04	0.57	2.30E- 02	0.53	1.41E- 02	H1 antagonist
Daunorubicin	0.51	9.25E- 04	0.78	4.12E- 04	0.8	2.01E- 05	antineoplastic agent
Sulfanilamide	0.51	9.73E- 04	0.58	1.76E- 02	0.52	1.54E- 02	Antibacterial
MS-275	0.5	1.09E- 03	0.63	8.06E- 03	0.58	5.01E- 03	Anticancer
Levothyroxine Sodium	0.5	1.19E- 03	0.75	7.45E- 04	0.53	1.31E- 02	Thyroid
Pirenzepine	0.49	1.50E- 03	0.67	3.91E- 03	0.6	3.20E- 03	Muscarinic acetylcholine receptor M1
Etamivan	0.48	1.85E- 03	0.6	1.42E- 02	0.55	8.67E- 03	NA
Norcyclobenza prine	0.48	2.00E- 03	0.69	2.54E- 03	0.57	5.95E- 03	muscle relaxant
Nomifensine	0.48	2.06E- 03	0.6	1.39E- 02	0.54	1.06E- 02	Antidepressive Agents
lohexol	-0.47	2.69E- 03	-0.69	2.60E- 03	-0.67	6.28E- 04	radiographic procedures
Thioguanosine	0.46	4.07E- 03	0.58	1.86E- 02	0.55	7.95E- 03	Antimetabolite
Canrenoic Acid	0.45	4.63E- 03	0.67	3.78E- 03	0.72	1.65E- 04	aldosterone antagonist
Mitoxantrone	0.44	5.44E- 03	0.85	8.26E- 05	0.85	8.26E- 05	antineoplastic agent

5. Checking for permeability in brain:

Blood-Brain barrier permeability was checked on CBLigand and threshold was set on 0.02 and scores were noted on the basis of which positive and negatively permeable were separated. Sulfanilamide with permeability score 0.277, GW-8510 with score 0.146, H-7 with score 0.12, Pirenzepine with score 0.106, Tropicamide with score 0.094, Alsterpaullone score 0.087, Norcyclobenzaprine with score 0.085, Nomifensine score 0.08, Tyrphostin AG825 and MS- 275 (MS-275 is the external ID used by companies for the product) or Entinostat with score 0.066, Clemizole with score 0.057, Etamivan score 0.049, Canrenoic Acid with score 0.033 and lastly with a score of 0.022 Apigenin were the positive ones.

Figure 6: Blood-brain barrier permeability scores of the drugs.

6. Computational analysis of repurposed drugs:

In order to analyze the above permeable drugs, we evaluated gene expression patterns of these signature drugs against different types of drugs taken as control. We gauged our drugs with two different sets of control, one control was according to the disease like memantine (Z score = -1.02 COMT, 0.45 MAOA, -0.38 MAOB) and galantamine (Z score = -0.27 COMT, -0.1 MAOA, 1.15 MAOB) for Alzheimer's disease, pramipexole (Z score = 0.82 COMT, 0.5 MAOA, -2.2 MAOB) and amantadine (Z score = -0.13 COMT, -1.14 MAOA, -0.2 MAOB) for Parkinson's disease. Second set was taken specific to the targets like tolcapone (Z score = -2.25 core =

-0.29) and entacapone (Z score = -0.02) for COMT and selegiline (Z score = -0.46 MAOA, - 0.19 MAOB) for MAOs. Out of all our available permeable candidates entinostat (MS-275) (Z score = -1.37 COMT, -1.02 MAOA, -0.95 MAOB) showed the significant downregulation of these genes better than the controls. Although, another drug tropicamide (Z score = -1.05 MAOA, -1.15 MAOB) gave better results for both mono-amine oxidases.

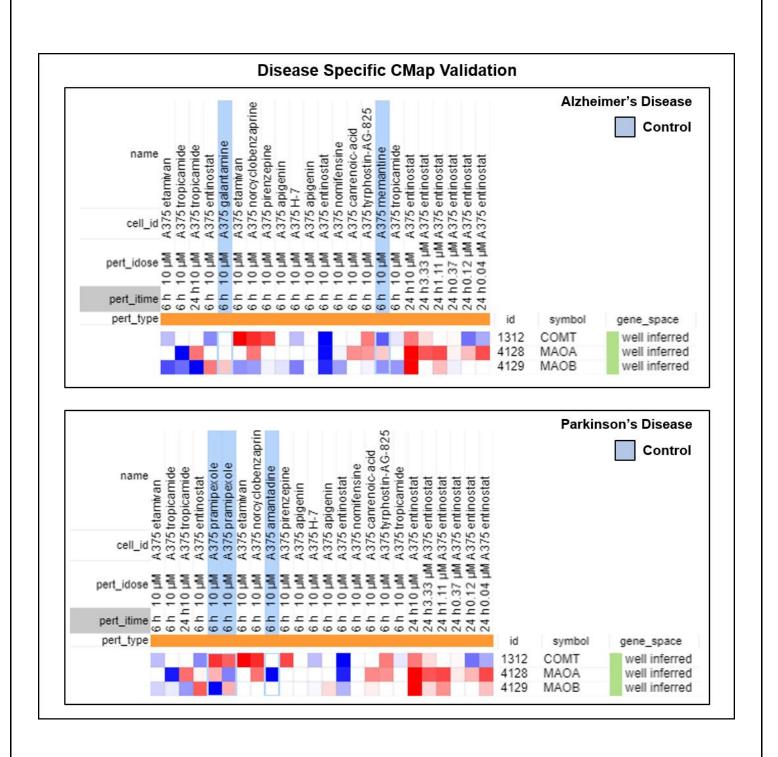


Figure 7: Gene expression pattern of candidate targets with disease-specific controls.

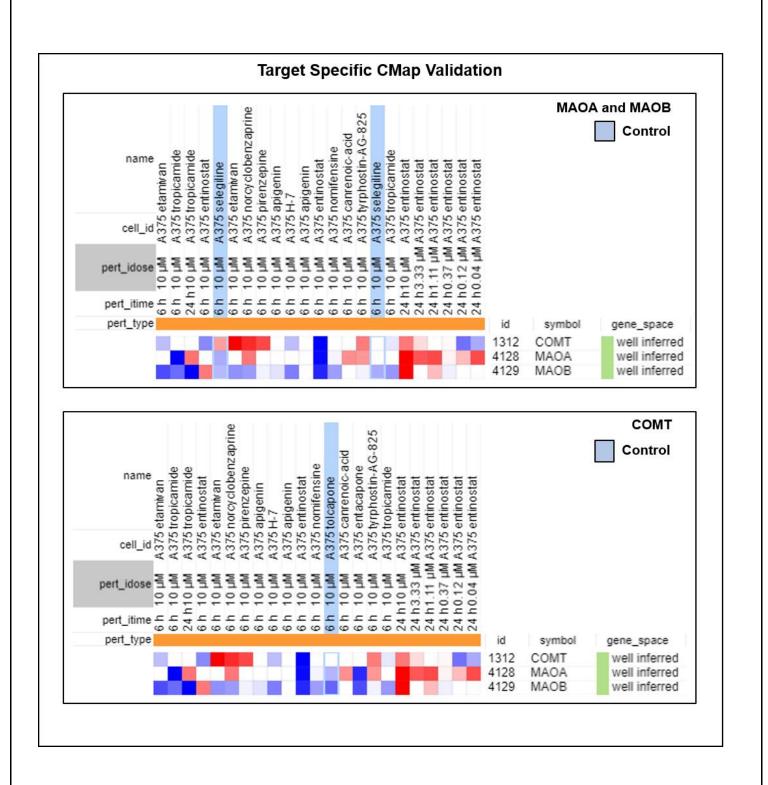


Figure 8: Gene expression pattern of candidate drugs with target-specific controls.

7. Determining Mode of Action of the Drugs:

Entinostat being an orally administered lipophilic mediator has been known to have variable pharmacokinetic properties with longer half-life of around 100hrs. Known for its part contrary to breast cancer, it is well-sustainable. It induces hyperacetylation among histones in specific gene sets, setting a break point in proliferation and differentiation of these cells finally leading them towards apoptosis [34] this unique mode of action of the drug gave an opportunity to look and make the most to discover and exploit area of its clinical activity. Even in case of estrogen-receptor positive breast cancer patients entinostat have shown well tolerated and safe results [35]. It targets specifically HDAC 1 and HDAC 3, this specific selectivity of targets makes it better drug than the broad-spectrum inhibitors and along with other targeted therapies it has shown boosted synergistic activity [36]. HDAC 3 has been known to regulate long term memory related activity negatively [37]. In Lung cancer studies, Entinostat has been connected to more sensitive response against high expression of SALL4 gene [38]. On the other hand, Tropicamide which is an antagonist for muscles in the eyes (muscarinic) and antisialorrheic [39] is proved to be efficient in Parkinson's disease with no major safety issues [40]. It dilates the pupil of the eye by blocking the receptor (M4 in brain) and thus prevents cycloplegia (near vision). It modulates potassium channels, inhibits adenylate cyclase [41]. Evidences suggests deposition of A β in eye leads to late onset of Alzheimer's disease progression in brain [42]. Another mechanism of action of tropicamide relates with parasympathetic and sympathetic nervous system symbolizing its working like an anticholinergic agent. Studies done shows that tropicamide inhibits parasympathetic promoting sympathetic or (adrenergic and nonadrenergic) drive making pupil to dilate. It acts similar to atropine which is an CNS stimulator [43].

Chapter 5: Discussion and Conclusion:

In current study, we have determined our candidate targets against whom drugs are to be repurposed. Epigenetic modifications, specifically methylation are well connected with Alzheimer's and Parkinson's diseases and these genetic variations can prove to control aging through modulating these epigenetic variations [44], [45], [46]. The approach of repurposing drugs has been seen to treat resistant disease well provide temporary diminution of disease or pain [47].

Overall, we had 3520 targets in both the diseases out of which only 560 are the common ones and overall 12 targets which are common as well as present in more than two studies in amid all the databases. Pathway analysis showed the occurrence of these targets in different pathways they follow. Among our targets, only 3 of them, COMT, MAOB, MAOA were involved in two pathways one being dopamine receptor mediated signaling pathway and another is adrenaline and non-adrenaline biosynthesis pathway as provided by panther pathway analysis. On the other hand, DAVID and Enricht tool also validated the same results prioritizing dopamine signaling pathway as the foremost process in AD, PD overlap. Dopamine is a dominant component of neurobiology. It regulates basic learning and performing of various tasks in day to day life. Among neuronal diseases, like Parkinson's disease the loss or reduction in dopamine levels results in impair motor function and increment in severity of the disease. Increasing DA transmission somehow within neurons is the basic treatment strategy for such diseases [48]. The ToppNet tool lined up the foremost target among them using tropological features of targets in PPI network. COMT had highest interaction count as well as score than the other two genes. This signifies that COMT gene combine more with the other proteins in PPI network as compared with MAO's which interacts more with each other, which along with COMT help in DA catabolism with aldehyde dehydrogenase [13].

The drugs sorted for these targets were ranked according to their p-value and enrichment scores which were top 10% approximately 131 drugs among which we had 26 common drugs for all three targets together which can be repurposed against them. As we are talking to identify a drug for brain related disorders blood-brain permeability remains an unneglected factor for which when we checked, conclude with 14 drugs which are permeable in brain and thus can be used for treating brain-related disorders. Out of them, Sulfanilamide used as an anti-bacterial drug showed the highest permeability to cross the brain-barrier on the other hand Canrenoic acid and Apigenin were the ones which can poorly cross the blood-brain barrier. Both Sulfanilamide and Canrenoic acid are approved drugs with their role as an anti-bacterial and aldosterone antagonist respectively but apigenin is still an experimental drug with an unspecified role.

Gene Expression profiling data analysis gave two important drugs with their repurposed role in treating aberrations in dopamine levels. Entinostat was favorable for all the three targets but in case of mono-amine oxidases, Tropicamide showed better results than that of Entinostat with time. Entinostat is a histone deacetylase inhibitor (HDACi) which is benzamide derivative and an anti-cancer drug with oral bioavailability, having property to cross blood-brain barrier and showing better results than the controls with a dose of 10μ m in six hours. This HDACi have been seen in improving behavioral adversities in case of AD in mouse models [49]. Adverse reactions depends on the dosage given [34]. In a study on Alzheimer's diseases, cerebral amyloidosis animal model MS-257 showed significant improvement in microglial activation, refined A β deposition and enhanced social behavior thus signifying the reach of the drug's activity in neurodegeneration [50]. It has been studied for increasing neuronal cell life by avoiding the formation of HDAC3 and REST complex at promoter region and enhancing the expression of sodium-calcium exchange during deprived milieus [37]. The combination of dopamine and entinostat have been seen in

refining behavior based on exposure and fear-inhibitory memory [51]. In case of tropicamide, an antimuscarinic antagonist [41] showed better results for mono-amine oxidases when seen over 24hrs. It is safe to use but have been seen causing blurred vision, hallucinations, headache, vomiting, nausea etc. as mentioned earlier about its role in enhancing sympathetic nervous system which is also known as adrenergic and non-adrenergic activity which relates to fear-flight and fight again the two pathways as shown by functional annotation of our main targets. . Entinostat is believed to lower down dopamine metabolism by downregulating COMT which is responsible for metabolizing dopamine present in circulation whereas Tropicamide showed better results with mono-anime oxidases which metabolize dopamine in mitochondria which if not corrected may lead to the formation of reactive oxygen species leading to increase in oxidative stress leading to mitochondrial dysfunction and apoptosis and also in increased protein misfolding and neuronal toxicity ultimately showing signs of Alzheimer's and Parkinson's disease [52], [53].

In conclusion, systemic analysis of 'Omics-data' revealed three targeted overlapping genes COMT, MAOA and MAOB in AD and PD involved in dopamine signaling pathway, which have to be downregulated by our repurposed drug in order to fight against cognitive impairments of these diseases. On the basis of their permeability into the brain, final 14 candidates were listed whose expression pattern were checked against both disease specific and target specific controls from which we got our final two drugs (Entinostat and Tropicamide) which shows their links to disturbances in dopamine metabolism through the approach of 'Omics' data usage in through the approach of drug repositioning.

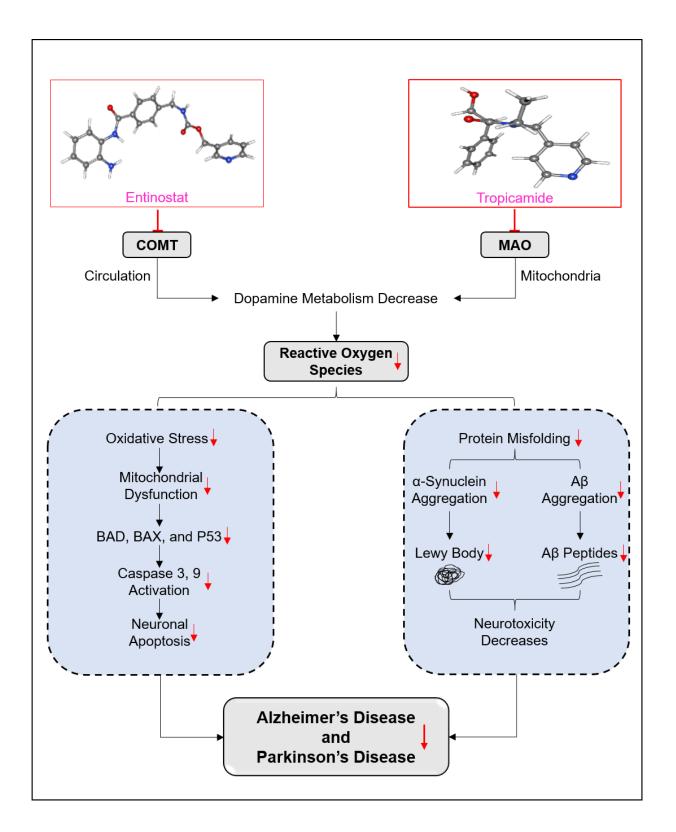


Figure 9: Possible signaling mechanism of the two resulting repurposed drugs Entinostat and Tropicamide in case of AD and PD.

Appendix

NAME	GWAS	GENES	EPIGENETIC GENES	METABOLITES
CDH1				
TIMP2				
COL25A1				
TFEB				
HDAC9				
SHANK2				
APOE				
TOMM40				
MTHFD1L				
PCDH11X				
FBXL7				
IL6				
PRRC2C				
FMN2				
CTNNA2				
MOBP				
STK32B				
AFF1				
ANKRD55				
CAMK4				
DMXL1				
MEGF10				
NKAIN2				
PDE7B				
BZW2				
EXOC4				
CSMD1				
ST18				
NCS1				
SPON1				
ARHGAP20				
SLC4A8				
CRADD				
ANO4				
GPC6				
MYO16				
CLMN				
GABRG3				
LIPC				
VAT1L				
SP6				

Table T1: Genes for Alzheimer's disease present in more than two studies:

		1	1
CACNA1G			
BCAS3			
TGM6			
PARVB			
BCAM			
EXOC3L2			
BCL3			
APOC1			
MS4A3			
FANCD2			
IL19			
GAB2			
OSBPL6			
PTPRG			
NR3C2			
SH3RF1			
FAT1			
KCNN2			
CDKAL1			
DST			
GRIN3A			
FARP1			
DCHS2			
VLDLR			
ST6GAL1			
CLU			
ZNF292			
ABCA1			
BIRC3			
GRIN2B			
TREM2			
PPP1R3B			
MMP3			
CR1			
PPP1R37			
SUCLG2			
SORL1			
GLIS3			
GRIN3B			
SLC2A9			
VSNL1			
ECHDC3			
NFIC			
FRMD4A			
IRF6			
TMEM106B			
CDC42SE2			
RAPGEF6			

		1	1 1
FNIP1			
ACSL6	-		
EPHA1	-		
TAS2R62P			
MS4A6E			
MS4A4A			
MS4A6A			
SLC24A4			
CRHR1			
MAPT			
PTK2B			
MS4A4E			
CD2AP			
CD33			
ABI3			
PLCG2			
BSG			
ATM			
HS3ST1			
SQSTM1			
TREML2			
NDUFAF6			
AP2A2			
SPPL2A			
TRIP4			
SCIMP			
ACE			
NME8			
ZCWPW1			
FERMT2			
CASS4			
HLA-DRB5			
HLA-DRB1			
AOX1			
BDNF			
ARC			
SERPINF1			
CDK5			
COX2			
SYP			
EGR1			
ANK1			
SPG7			
CRTC1			
FOS			
SERPINF2			
SLC2A1			
IGFBP7			

	1		1
RPL13			
SYT1			
HOMER1			
DUSP22			
ACHE			
BCHE			
CYP2D6			
MPO			
NOS3			
MAOB			
SOD2			
TF			
CHAT			
SOD1			
NOS2			
GSR			
COMT			
MAOA			
NOS1			
PKLR			
SDS			
ALDH2			
PLA2G4A			
TH			
PLA2G6			
PDE5A			
APRT			
CBS			
DBH			
DRD4			
GLUL			
TAT			
AC01			
DLD			
DRD1			
GAD1			
GBA			
ODC1			
PLD2			
PRDX6			
EHMT1	1		
ACO2			
AMD1			
AOC2			
ARG2			
DRD2			
DRD2 DRD3			
GPI			
UPI			

HDC			
HK1			
LDHA			
MPI			
MTR			
PNP			
OTC			
PC			
AOC3			
GPHN			
SLC7A9			
PADI4			
GDE1			
SRR			
NT5C1A			
BIN1			
PICALM			
ABCA7			
INPP5D			
MEF2C			
CELF1			
RIN3			

NAME	GWAS	GENES	EPIGENETIC GENES	METABOLITE
TCIM				
GBA				
MAPT				
MCCC1				
LAMP3				
SCARB2				
GAK				
SREBF1				
RAI1				
SLC41A1				
RIT2				
PRDM2				
PDE10A				
CRHR1				
HLA-DRB5				
STK39				
GCH1				
NUCKS1				
FAM47E				
BST1				
CCDC62				
SH3GL2				
NDUFAF2				
HLA-DRA				
SYT11				
ACMSD				
HIP1R				
DLG2				
SEMA5A				
DGKQ				
LHFPL2				
KLHDC1				
TPM1				
SLC45A3				
PM20D1				
SIPA1L2				
TMEM163				
TMEM175				

 Table T2: Genes for Parkinson's disease present in more than two studies:

MIR4697		
TMEM229B		
VPS13C		
STH		
SPPL2C		
KANSL1		
DDRGK1		
ITPKB		
STAB1		
BAP1		
CTSB		
BIN3		
SLC2A13		
WNT3		
TCEANC2		
MX2		
ZP3		
HTR2A		
LINC02210		
NSF		
CYP17A1		
CNNM2		
BORCS7		
ITGA8		
MMRN1		
STBD1		
INPP5F		
BCKDK		
PARK7		
PPARGC1A		
PRKAR2A		
TNKS2		
DDC		
MAOB		
MAOA		
SOD1		
SOD2		
PLA2G6		
COMT		
MTR		
TF		

LRRK2		
SNCA		
PARK16		
GPNMB		
STX1B		
FGF20		

Rank	Name	E-Score	P-Value
1	azacitidine	0.77	3.38E-08
2	cyanocobalamin	0.73	2.50E-07
3	tyrphostin_AG-825	0.72	3.31E-07
4	camptothecin	0.65	5.64E-06
5	antimycin_A	0.65	6.91E-06
6	alsterpaullone	0.64	8.72E-06
7	trifluridine	0.64	1.13E-05
8	GW-8510	0.63	1.51E-05
9	apigenin	0.61	2.78E-05
10	luteolin	0.61	3.56E-05
11	5109870	0.6	3.97E-05
12	H-7	0.59	5.77E-05
13	ursolic_acid	0.59	5.93E-05
14	ketoconazole	0.59	6.23E-05
15	strophanthidin	0.58	7.64E-05
16	irinotecan	0.58	8.15E-05
17	primaquine	0.57	1.16E-04
18	scopolamine	0.57	1.19E-04
19	triflupromazine	0.57	1.20E-04
20	tropicamide	0.57	1.25E-04
21	0175029-0000	0.56	1.53E-04
22	CP-319743	0.56	1.65E-04
23	propantheline bromide	0.56	1.79E-04
24	ginkgolide_A	0.56	1.91E-04
25	aminophenazone	0.55	2.37E-04
26	doxorubicin	0.55	2.58E-04
27	fluocinonide	0.55	2.60E-04
28	mianserin	0.55	2.67E-04
29	prilocaine	0.54	3.16E-04
30	cantharidin	0.54	3.30E-04
31	thioperamide	-0.54	3.33E-04
32	15(S)-15-methylprostaglandin_E2	0.54	3.47E-04
33	spectinomycin	0.54	3.52E-04
34	chenodeoxycholic_acid	0.54	3.59E-04
35	zomepirac	0.53	4.00E-04

Table T3: Drugs mapped for COMT gene:

36	Prestwick-1100	0.53	4.30E-04
37	pseudopelletierine	0.53	5.30E-04
38	5149715	0.52	5.72E-04
39	primidone	-0.52	6.30E-04
40	digoxin	0.52	6.39E-04
41	clemizole	0.52	6.87E-04
42	deferoxamine	0.51	7.45E-04
43	acetylsalicylic_acid	0.51	7.73E-04
44	cefotaxime	0.51	8.10E-04
45	8-azaguanine	0.51	9.03E-04
46	procyclidine	0.51	9.08E-04
47	daunorubicin	0.51	9.25E-04
48	16,16-dimethylprostaglandin_E2	0.51	9.55E-04
49	ciclopirox	0.51	9.55E-04
50	sulfanilamide	0.51	9.73E-04
51	moroxydine	0.5	1.01E-03
52	naringin	0.5	1.08E-03
53	MS-275	0.5	1.09E-03
54	bucladesine	0.5	1.11E-03
55	nisoxetine	0.5	1.13E-03
56	alpha-estradiol	0.5	1.16E-03
57	levothyroxine_sodium	0.5	1.19E-03
58	fludroxycortide	0.5	1.19E-03
59	quinethazone	0.5	1.24E-03
60	gefitinib	0.49	1.39E-03
61	medrysone	0.49	1.39E-03
62	sulconazole	0.49	1.42E-03
63	isocarboxazid	0.49	1.44E-03
64	midodrine	0.49	1.50E-03
65	trimethoprim	0.49	1.50E-03
66	pirenzepine	0.49	1.50E-03
67	epivincamine	0.49	1.65E-03
68	pheneticillin	-0.49	1.70E-03
69	lynestrenol	0.49	1.73E-03
70	etamivan	0.48	1.85E-03
71	yohimbic_acid	-0.48	1.86E-03
72	dexverapamil	0.48	1.92E-03
73	chlorhexidine	0.48	1.93E-03
74	cytochalasin_B	0.48	1.99E-03

75	norcyclobenzaprine	0.48	2.00E-03
76	nicergoline	0.48	2.03E-03
77	azacyclonol	0.48	2.06E-03
78	nomifensine	0.48	2.06E-03
79	cisapride	0.48	2.18E-03
80	mephenytoin	0.48	2.31E-03
81	BCB000039	0.47	2.38E-03
82	ceforanide	0.47	2.46E-03
83	alpha-ergocryptine	-0.47	2.49E-03
84	cefadroxil	0.47	2.57E-03
85	5114445	0.47	2.65E-03
86	iohexol	-0.47	2.69E-03
87	naringenin	0.47	2.72E-03
88	STOCK1N-28457	0.47	2.83E-03
89	prednisolone	-0.47	2.97E-03
90	nadolol	-0.47	3.05E-03
91	U0125	-0.47	3.08E-03
92	rescinnamine	0.47	3.13E-03
93	dienestrol	0.46	3.27E-03
94	deptropine	0.46	3.27E-03
95	salbutamol	0.46	3.42E-03
96	tiapride	0.46	3.53E-03
97	flunisolide	0.46	3.65E-03
98	famotidine	0.46	3.73E-03
99	minoxidil	0.46	3.90E-03
100	oxaprozin	0.46	3.92E-03
101	niclosamide	0.46	3.94E-03
102	citiolone	0.46	3.99E-03
103	bendroflumethiazide	0.46	4.04E-03
104	thioguanosine	0.46	4.07E-03
105	hydrocotarnine	0.46	4.11E-03
106	amrinone	0.45	4.31E-03
107	pirenperone	-0.45	4.33E-03
108	urapidil	0.45	4.41E-03
109	simvastatin	0.45	4.45E-03
110	canrenoic_acid	0.45	4.63E-03
111	gliclazide	0.45	4.68E-03
112	metixene	0.45	4.71E-03
113	acepromazine	0.45	4.75E-03

114	syrosingopine	0.45	4.81E-03
115	cyclopentolate	0.45	5.08E-03
116	gelsemine	-0.45	5.31E-03
117	alpha-yohimbine	-0.45	5.40E-03
118	ergocalciferol	0.44	5.42E-03
119	mitoxantrone	0.44	5.44E-03
120	flupentixol	0.44	5.69E-03
121	salsolinol	0.44	5.80E-03
122	dilazep	0.44	5.81E-03
123	maprotiline	-0.44	5.85E-03
124	latamoxef	0.44	5.87E-03
125	astemizole	0.44	5.88E-03
126	haloperidol	0.44	5.90E-03
127	tanespimycin	0.44	5.97E-03
128	5248896	0.44	6.22E-03
129	debrisoquine	-0.44	6.27E-03
130	etifenin	0.44	6.30E-03
131	tolnaftate	-0.44	6.35E-03

Rank	Name	E-Score	P-Value
1	azacitidine	0.87	5.63E-05
2	alsterpaullone	0.85	7.45E-05
3	mitoxantrone	0.85	8.26E-05
4	apigenin	0.85	8.82E-05
5	doxorubicin	0.81	1.93E-04
6	H-7	0.8	2.55E-04
7	camptothecin	0.8	2.58E-04
8	irinotecan	0.78	3.68E-04
9	daunorubicin	0.78	4.12E-04
10	N-acetylmuramic_acid	0.77	5.24E-04
11	thioperamide	-0.76	6.46E-04
12	GW-8510	0.76	6.72E-04
13	levothyroxine_sodium	0.75	7.45E-04
14	moroxydine	0.75	7.69E-04
15	latamoxef	0.75	8.05E-04
16	metacycline	0.74	9.15E-04
17	BCB000039	0.73	1.24E-03
18	procarbazine	-0.72	1.35E-03
19	bacampicillin	0.72	1.45E-03
20	alpha-yohimbine	-0.71	1.71E-03
21	antimycin_A	0.71	1.77E-03
22	lymecycline	0.71	1.77E-03
23	1,4-chrysenequinone	0.7	2.06E-03
24	equilin	0.7	2.06E-03
25	etofenamate	0.7	2.15E-03
26	luteolin	0.7	2.21E-03
27	estriol	0.7	2.29E-03
28	oxaprozin	0.7	2.34E-03
29	tolnaftate	-0.69	2.36E-03
30	cefaclor	-0.69	2.39E-03
31	norcyclobenzaprine	0.69	2.54E-03
32	iohexol	-0.69	2.60E-03
33	bromperidol	0.69	2.79E-03
34	16-phenyltetranorprostaglandin_E2	0.69	2.81E-03
35	Prestwick-981	-0.68	2.89E-03
36	pirenperone	-0.68	3.19E-03
37	picrotoxinin	0.67	3.46E-03

Table T4: Drugs mapped for MAOA gene:

38	isocorydine	-0.67	3.52E-03
39	quinpirole	-0.67	3.52E-03
40	canrenoic_acid	0.67	3.78E-03
41	cefapirin	0.67	3.80E-03
42	dilazep	0.67	3.86E-03
43	pirenzepine	0.67	3.91E-03
44	cefmetazole	-0.67	3.93E-03
45	naproxen	0.66	4.24E-03
46	homosalate	0.66	4.26E-03
47	lobelanidine	-0.66	4.26E-03
48	famotidine	0.66	4.41E-03
49	mefexamide	-0.66	4.59E-03
50	parthenolide	0.65	5.22E-03
51	etidronic_acid	0.65	5.31E-03
52	5707885	0.65	5.49E-03
53	homochlorcyclizine	-0.64	6.20E-03
54	betonicine	-0.64	6.27E-03
55	ginkgolide_A	0.64	6.31E-03
56	monastrol	0.64	6.63E-03
57	morantel	0.64	6.70E-03
58	finasteride	-0.64	7.04E-03
59	benzamil	-0.63	7.23E-03
60	liothyronine	0.63	7.27E-03
61	acetazolamide	0.63	7.43E-03
62	dipyridamole	0.63	7.55E-03
63	mycophenolic_acid	0.63	7.72E-03
64	chlorambucil	0.63	7.76E-03
65	lorglumide	0.63	7.76E-03
66	diloxanide	-0.63	7.89E-03
67	scriptaid	0.63	7.89E-03
68	MS-275	0.63	8.06E-03
69	pergolide	-0.63	8.15E-03
70	levomepromazine	-0.63	8.41E-03
71	thiostrepton	0.63	8.41E-03
72	etilefrine	-0.62	8.60E-03
73	biperiden	-0.62	8.88E-03
74	rolitetracycline	0.62	9.02E-03
75	sitosterol	0.62	9.26E-03
76	cycloserine	0.62	9.41E-03

77	zomepirac	0.62	9.41E-03
78	pancuronium_bromide	0.62	9.56E-03
79	phenindione	0.61	1.14E-02
80	reserpine	0.61	1.19E-02
81	8-azaguanine	0.6	1.21E-02
82	bisacodyl	0.6	1.23E-02
83	quinethazone	0.6	1.25E-02
84	droperidol	0.6	1.26E-02
85	metyrapone	0.6	1.29E-02
86	tyrphostin_AG-825	0.6	1.32E-02
87	trifluridine	0.6	1.34E-02
88	procainamide	0.6	1.36E-02
89	nomifensine	0.6	1.39E-02
90	etamivan	0.6	1.42E-02
91	5109870	0.59	1.43E-02
92	tropicamide	0.59	1.44E-02
93	napelline	0.59	1.44E-02
94	cefsulodin	0.59	1.45E-02
95	dimethadione	0.59	1.47E-02
96	hydrastinine	0.59	1.56E-02
97	5194442	0.59	1.56E-02
98	methacholine_chloride	0.59	1.56E-02
99	piromidic_acid	0.59	1.57E-02
100	spectinomycin	0.59	1.65E-02
101	omeprazole	0.59	1.66E-02
102	triamterene	-0.58	1.68E-02
103	Prestwick-864	0.58	1.69E-02
104	fludroxycortide	0.58	1.70E-02
105	etoposide	0.58	1.75E-02
106	chlorpropamide	-0.58	1.76E-02
107	sulfanilamide	0.58	1.76E-02
108	thioguanosine	0.58	1.86E-02
109	isometheptene	-0.58	1.88E-02
110	etacrynic_acid	0.58	1.89E-02
111	fisetin	0.58	1.89E-02
112	chlorcyclizine	-0.58	1.90E-02
113	tyrphostin_AG-1478	-0.58	1.90E-02
114	Prestwick-857	-0.58	1.92E-02
115	nafcillin	0.58	1.94E-02

116	amylocaine	0.58	1.97E-02
117	demecarium_bromide	-0.57	2.01E-02
118	labetalol	0.57	2.04E-02
119	betamethasone	-0.57	2.13E-02
120	altretamine	-0.57	2.16E-02
121	STOCK1N-35215	0.57	2.18E-02
122	timolol	-0.57	2.19E-02
123	heptaminol	-0.57	2.22E-02
124	butoconazole	0.57	2.27E-02
125	clemizole	0.57	2.30E-02
126	Prestwick-1084	0.56	2.34E-02
127	cephaeline	-0.56	2.38E-02
128	Y-27632	-0.56	2.44E-02
129	memantine	-0.56	2.45E-02
130	15-delta_prostaglandin_J2	0.56	2.50E-02
131	scopolamine	0.56	2.51E-02

Rank	Name	E-Score	P-Value
1	C-75	0.92	4.83E-07
2	daunorubicin	0.8	2.01E-05
3	azacitidine	0.79	3.05E-05
4	urapidil	0.76	5.81E-05
5	meropenem	0.75	7.70E-05
6	dienestrol	0.73	1.39E-04
7	trimethoprim	0.73	1.40E-04
8	talampicillin	0.72	1.62E-04
9	canrenoic_acid	0.72	1.65E-04
10	simvastatin	0.72	2.01E-04
11	doxorubicin	0.71	2.18E-04
12	camptothecin	0.7	2.75E-04
13	0175029-0000	0.7	3.35E-04
14	5253409	0.69	3.56E-04
15	chlortalidone	-0.69	4.11E-04
16	trifluridine	0.69	4.11E-04
17	citiolone	0.68	5.18E-04
18	flunisolide	0.68	5.18E-04
19	etiocholanolone	-0.68	5.32E-04
20	alsterpaullone	0.67	5.88E-04
21	iohexol	-0.67	6.28E-04
22	omeprazole	0.67	6.38E-04
23	prasterone	0.67	7.10E-04
24	aciclovir	-0.66	7.80E-04
25	remoxipride	0.66	8.71E-04
26	5109870	0.65	9.26E-04
27	fenbufen	0.65	9.39E-04
28	flupentixol	0.65	9.66E-04
29	GW-8510	0.65	9.87E-04
30	letrozole	0.65	9.95E-04
31	propylthiouracil	0.65	1.04E-03
32	ciclopirox	0.65	1.09E-03
33	F0447-0125	0.65	1.11E-03
34	emetine	-0.65	1.12E-03
35	picrotoxinin	0.64	1.30E-03
36	quipazine	-0.64	1.31E-03
37	alpha-estradiol	0.63	1.77E-03
38	finasteride	-0.63	1.79E-03
39	pararosaniline	0.62	2.08E-03
40	ebselen	0.62	2.11E-03
41	3-acetylcoumarin	0.62	2.13E-03
42	tyrphostin_AG-825	0.61	2.27E-03
43	flavoxate	0.61	2.29E-03
44	1,4-chrysenequinone	0.61	2.41E-03
45	ganciclovir	0.61	2.52E-03

Table T5: Drugs mapped for MAOB gene:

46	H-7	0.61	2.58E-03
47	dexverapamil	0.61	2.68E-03
48	Prestwick-1080	0.6	2.92E-03
49	hexylcaine	0.6	3.05E-03
50	STOCK1N-35215	0.6	3.07E-03
51	moxonidine	0.6	3.07E-03
52	oxamic acid	0.6	3.14E-03
53	pirenzepine	0.6	3.20E-03
54	propantheline_bromide	0.6	3.27E-03
55	hydrocotarnine	0.6	3.31E-03
56	quercetin	0.6	3.47E-03
57	ciprofibrate	0.59	3.53E-03
58	cyanocobalamin	0.59	3.56E-03
59	droperidol	0.59	3.57E-03
60	cephaeline	-0.59	3.80E-03
61	sulfamonomethoxine	-0.59	3.83E-03
62	decitabine	0.59	4.14E-03
63	luteolin	0.58	4.34E-03
64	diphenhydramine	-0.58	4.54E-03
65	atropine_methonitrate	-0.58	4.67E-03
66	ellipticine	0.58	4.07E-03
67	mitoxantrone	0.85	4.73E-03 8.26E-05
68	MS-275	0.85	5.01E-03
69	tiratricol	0.58	5.44E-03
70	CP-645525-01	0.57	5.83E-03
70	norcyclobenzaprine	0.57	5.95E-03
72	acepromazine	0.57	6.17E-03
73	tropicamide	0.57	6.25E-03
73	syrosingopine	0.57	6.27E-03
74	tolfenamic_acid	0.57	6.42E-03
76	corticosterone	0.57	6.46E-03
70	bucladesine	-0.56	6.53E-03
78		0.56	6.88E-03
78	irinotecan	-0.56	6.88E-03
80	oxamniquine	-0.56	
81	apigenin pizotifen	-0.56	7.14E-03 7.19E-03
82	natamycin	0.56	7.62E-03
83	eldeline	0.56	7.69E-03
84	thioguanosine	0.55	7.09E-03
85 86	primidone dexpropranolol	-0.55 0.55	8.20E-03 8.63E-03
86	etamivan	0.55	8.63E-03 8.67E-03
88	calmidazolium	0.55	8.69E-03
89	azathioprine	0.55	8.88E-03
90	pentolonium	0.55	9.07E-03
91	benzamil	-0.55	9.20E-03
92	Y-27632	-0.55	9.32E-03
93	rolitetracycline	0.55	9.35E-03

94	butoconazole	0.55	9.37E-03
95	phenoxybenzamine	0.55	9.63E-03
96	pempidine	0.54	9.93E-03
97	AG-012559	-0.54	9.98E-03
98	trifluoperazine	0.54	1.02E-02
99	bisoprolol	0.54	1.04E-02
100	carbenoxolone	0.54	1.04E-02
101	mepacrine	0.54	1.05E-02
102	nomifensine	0.54	1.06E-02
103	pipenzolate_bromide	0.54	1.09E-02
104	aminophenazone	0.54	1.12E-02
105	cinchonidine	0.54	1.12E-02
106	oxytetracycline	0.54	1.12E-02
107	piromidic_acid	0.54	1.13E-02
108	nocodazole	-0.54	1.15E-02
109	cisapride	0.54	1.15E-02
110	0297417-0002B	0.54	1.16E-02
111	paromomycin	-0.53	1.18E-02
112	ribostamycin	0.53	1.21E-02
113	trichlormethiazide	0.53	1.23E-02
114	acetylsalicylic_acid	0.53	1.29E-02
115	fasudil	0.53	1.31E-02
116	levothyroxine_sodium	0.53	1.31E-02
117	iobenguane	-0.53	1.35E-02
118	trimipramine	0.53	1.35E-02
119	rifabutin	0.53	1.41E-02
120	clemizole	0.53	1.41E-02
121	5707885	0.53	1.42E-02
122	strophanthidin	0.53	1.42E-02
123	trihexyphenidyl	-0.52	1.43E-02
124	mycophenolic_acid	0.52	1.44E-02
125	3-nitropropionic_acid	0.52	1.47E-02
126	5149715	0.52	1.48E-02
127	biotin	0.52	1.53E-02
128	sulfanilamide	0.52	1.54E-02
129	cefazolin	0.52	1.54E-02
130	verteporfin	0.52	1.55E-02
131	felbinac	-0.52	1.55E-02

DRUGS	BBB
Sulfanilamide	0.277
GW-8510	0.146
H-7	0.12
Pirenzepine	0.106
Tropicamide	0.094
Alsterpaullone	0.087
Norcyclobenzaprine	0.085
Nomifensine	0.08
Tyrphostin AG825	0.066
MS-275	0.066
Clemizole	0.057
Etamivan	0.049
Canrenoic Acid	0.033
Apigenin	0.022
Luteolin	0.003
Irinotecan	-0.011
Thioguanosine	-0.011
Levothyroxine Sodium	-0.027
Mitoxantrone	-0.029
Camptothecin	-0.037
Trifluridine	-0.051
Iohexol	-0.064
Azacitidine	-0.074
Doxorubicin	-0.287
Daunorubicin	-0.374

 Table T6: Common mapped drugs sorted by their permeability scores:

Table T7: Gene expression values of three targets with 14 candidate drugs with Alzheimer's-specific controls

ID				1312	4128	4129
Gene Symbol	Name	Dose	Time	COMT	MAOA	MAOB
Gene Space	Name	Dose	Ime	well inferred	well inferred	well inferred
CPC004_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	-0.66	0.11	-0.75
CPC005_A375_6H:BRD- A79672927-001-10-8:10	tropicamide	10 µM	6 h	0.05	-1.05	-0.58
CPC005_A375_24H:BRD- A79672927-001-10-8:10	tropicamide	10 µM	24 h	-0.32	0.74	-1.15
CPC013_A375_6H:BRD- K77908580-001-04-7:10	entinostat	10 µM	6 h	-0.85	0.26	1.54
CPC011_A375_6H:BRD- K49481516-004-14-2:10	galantamine	10 µM	6 h	-0.27	-0.1	1.15
CPC015_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	1.01	-0.01	-0.39
CPC016_A375_6H:BRD- K63165456-001-03-3:10	norcyclobenzaprin e	10 µM	6 h	0.85	0.73	-0.34
CPC015_A375_6H:BRD- K89375097-300-06-2:10	pirenzepine	10 µM	6 h	0.74	0.18	0.12
CPC014_A375_6H:BRD- K01493881-001-19-5:10	744	10 µM	6 h	244	0.17	0.04
CPC014_A375_6H:BRD- A55756846-001-16-2:10	H-7	10 µM	6 h	-0.65	0.17	-0.49
CPC014_A375_6H:BRD- K01493881-001-20-3:10	apigenin	10 µM	6 h	-0.32	0.07	0.67
CPC014_A375_6H:BRD- K77908580-001-05-4:10	entinostat	10 µM	6 h	-1.37	-1.02	-0.95
CPC020_A375_6H:BRD- A29644307-001-01-7:10	nomifensine	10 µM	6 h	-0.14	-0.21	-0.33
CPC018_A375_6H:BRD- K46556543-237-03-0:10	canrenoic-acid	10 µM	6 h	-0.37	0.64	0.53
CPC018_A375_6H:BRD- K87919739-001-03-4:10	tyrphostin-AG-825	10 µM	6 h	0.55	0.62	0.12
CPC020_A375_6H:BRD- A79803969-003-13-8:10	memantine	10 µM	6 h	-1.02	0.45	-0.38
CPC020_A375_6H:BRD- A79672927-001-15-7:10	tropicamide	10 µM	6 h	-0.5	0.22	-0.36
PCLB003_A375_24H:BRD -K77908580-001-04-7:10	entinostat	10 µM	24 h	0.55	1.14	2.18
PCLB003_A375_24H:BRD -K77908580-001-04-7:3.33	entinostat	3.33 µM	24 h	0.19	0.84	0.69
PCLB003_A375_24H:BRD -K77908580-001-04-7:1.11	entinostat	1.11 µM	24 h	-0.24	0.89	1.19
PCLB003_A375_24H:BRD -K77908580-001-04-7:0.37	entinostat	0.37 µM	24 h	0.08	0.3	0.11
PCLB003_A375_24H:BRD -K77908580-001-04-7:0.12	entinostat	0.12 µM	24 h	-0.94	0.49	0.44
PCLB003_A375_24H:BRD -K77908580-001-04-7:0.04	entinostat	0.04 µM	24 h	-0.73	0.88	0.85

Table T8: Gene expression values of three targets with 14 candidate drugs with

Parkinson's-specific controls

ID	Name	Dose	Time	1312	4128	4129
Gene Symbol				COMT	MAOA	MAOB
Gene Space				well inferred	well inferred	well inferred
CPC004_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	-0.66	0.11	-0.75
CPC005_A375_6H:BRD- A79672927-001-10-8:10	tropicamide	10 µM	6 h	0.05	-1.05	-0.58
CPC005_A375_24H:BRD- A79672927-001-10-8:10	tropicamide	10 µM	24 h	-0.32	0.74	-1.15
CPC013_A375_6H:BRD- K77908580-001-04-7:10	entinostat	10 µM	6 h	-0.85	0.26	1.54
CPC011_A375_6H:BRD- K06388322-001-05-8:10	pramipexole	10 µM	6 h	0.82	0.5	-2.2
CPC011_A375_6H:BRD- K06388322-003-07-0:10	pramipexole	10 µM	6 h	0.65	-0.67	0.96
CPC015_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	1.01	-0.01	-0.39
CPC016_A375_6H:BRD- K63165456-001-03-3:10	norcyclobenzaprine	10 µM	6 h	0.85	0.73	-0.34
CPC015_A375_6H:BRD- K70330367-003-03-8:10	amantadine	10 µM	6 h	-0.13	-1.14	-0.2
CPC015_A375_6H:BRD- K89375097-300-06-2:10	pirenzepine	10 µM	6 h	0.74	0.18	0.12
CPC014_A375_6H:BRD- K01493881-001-19-5:10	apigenin	10 µM	6 h	-0.36	0.17	0.04
CPC014_A375_6H:BRD- A55756846-001-16-2:10	H-7	10 µM	6 h	-0.65	0.17	-0.49
CPC014_A375_6H:BRD- K01493881-001-20-3:10	apigenin	10 µM	6 h	-0.32	0.07	0.67
CPC014_A375_6H:BRD- K77908580-001-05-4:10	entinostat	10 µM	6 h	-1.37	-1.02	-0.95
CPC020_A375_6H:BRD- A29644307-001-01-7:10	nomifensine	10 µM	6 h	-0.14	-0.21	-0.33
CPC018_A375_6H:BRD- K46556543-237-03-0:10	canrenoic-acid	10 µM	6 h	-0.37	0.64	0.53
CPC018_A375_6H:BRD- K87919739-001-03-4:10	tyrphostin-AG-825	10 µM	6 h	0.55	0.62	0.12
CPC020_A375_6H:BRD- A79672927-001-15-7:10	tropicamide	10 µM	6 h	-0.5	0.22	-0.36
PCLB003_A375_24H:BRD- K77908580-001-04-7:10	entinostat	10 µM	24 h	0.55	1.14	2.18
PCLB003_A375_24H:BRD- K77908580-001-04-7:3.33	entinostat	3.33 µM	24 h	0.19	0.84	0.69
PCLB003_A375_24H:BRD- K77908580-001-04-7:1.11	entinostat	1.11 µM	2.23536 E+11	-0.24	0.89	1.19

PCLB003_A375_24H:BRD- K77908580-001-04-7:0.37	entinostat	0.37 µM	24 h	0.08	0.3	0.11
PCLB003_A375_24H:BRD- K77908580-001-04-7:0.12	entinostat	0.12 µM	24 h	-0.94	0.49	0.44
PCLB003_A375_24H:BRD- K77908580-001-04-7:0.04	entinostat	0.04 µM	24 h	-0.73	0.88	0.85

Table T9: Gene expression values of three targets with 14 candidate drugs with COMT-specific controls

ID				1312	4128	4129
Gene symbol	Name	Dose	Time	COMT	MAOA	MAOB
Gene space	Iname	Dose	Time	well	well	well
-				inferred	inferred	inferred
CPC004_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	-0.66	0.11	-0.75
CPC005_A375_6H:BRD-		10.14	<u>(1</u>	0.05	1.05	0.50
A79672927-001-10-8:10	tropicamide	10 µM	6 h	0.05	-1.05	-0.58
CPC005_A375_24H:BRD-	tropicamide	10 µM	24 h	-0.32	0.74	-1.15
A79672927-001-10-8:10		10 μ111	211	0.32	0.71	1.10
CPC013_A375_6H:BRD- K77908580-001-04-7:10	entinostat	10 µM	6 h	-0.85	0.26	1.54
CPC015_A375_6H:BRD-						
K38055836-001-13-8:10	etamivan	10 µM	6 h	1.01	-0.01	-0.39
CPC016_A375_6H:BRD-	norcyclobenzaprine	10 µM	6 h	0.85	0.73	-0.34
K63165456-001-03-3:10	noreyclobellzaprine	10 μΜ	0 11	0.85	0.75	-0.54
CPC015_A375_6H:BRD-	pirenzepine	10 µM	6 h	0.74	0.18	0.12
K89375097-300-06-2:10	prioritoprito	10 μ	0.11			
CPC014_A375_6H:BRD- K01493881-001-19-5:10	apigenin	10 µM	6 h	-0.36	0.17	0.04
CPC014_A375_6H:BRD-						
A55756846-001-16-2:10	H-7	10 µM	6 h	-0.65	0.17	-0.49
CPC014_A375_6H:BRD-	apigenin	10 µM	6 h	-0.32	0.07	0.67
K01493881-001-20-3:10	upigeiiii	10 μ101	011	0.52	0.07	0.07
CPC014_A375_6H:BRD- K77908580-001-05-4:10	entinostat	10 µM	6 h	-1.37	-1.02	-0.95
CPC020_A375_6H:BRD-						
A29644307-001-01-7:10	nomifensine	10 µM	6 h	-0.14	-0.21	-0.33
CPC020_A375_6H:BRD-	tolcapone	10 µM	6 h	-0.29	-0.42	-0.62
K10852020-001-01-1:10	toicapone	10 μΜ	0 11	-0.29	-0.42	-0.02
CPC018_A375_6H:BRD-	canrenoic-acid	10 µM	6 h	-0.37	0.64	0.53
K46556543-237-03-0:10		•				
CPC020_A375_6H:BRD- K83636919-001-01-4:10	entacapone	10 µM	6 h	-0.02	-0.9	-0.74
CPC018_A375_6H:BRD-						
K87919739-001-03-4:10	tyrphostin-AG-825	10 µM	6 h	0.55	0.62	0.12
CPC020 A375 6H:BRD-						
A79672927-001-15-7:10	tropicamide	10 µM	6 h	-0.5	0.22	-0.36
PCLB003_A375_24H:BRD-		10 10	241	0.55	1.1.4	0.10
K77908580-001-04-7:10	entinostat	10 µM	24 h	0.55	1.14	2.18
PCLB003_A375_24H:BRD-	entinostat	3.33 µM	24 h	0.19	0.84	0.69
K77908580-001-04-7:3.33	CintilOstat	5.55 µW	2711	0.19	0.04	0.09
PCLB003_A375_24H:BRD-	entinostat	1.11 µM	24 h	-0.24	0.89	1.19
K77908580-001-04-7:1.11						
PCLB003_A375_24H:BRD-	entinostat	0.37 µM	24 h	0.08	0.3	0.11
K77908580-001-04-7:0.37		•				

PCLB003_A375_24H:BRD- K77908580-001-04-7:0.12	entinostat	0.12 µM	24 h	-0.94	0.49	0.44
PCLB003_A375_24H:BRD- K77908580-001-04-7:0.04	entinostat	0.04 µM	24 h	-0.73	0.88	0.85

Table T10: Gene expression values of three targets with 14 candidate drugs with MAO-specific controls

Id				1312	4128	4129
Gene symbol	Name	Dose	Time	COMT	MAOA	MAOB
Gene space		2 000	well inferred	well inferred	well inferred	
CPC004_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	-0.66	0.11	-0.75
CPC005_A375_6H:BRD- A79672927-001-10-8:10	tropicamide	10 µM	6 h	0.05	-1.05	-0.58
CPC005_A375_24H:BRD- A79672927-001-10-8:10	tropicamide	10 µM	24 h	-0.32	0.74	-1.15
CPC013_A375_6H:BRD- K77908580-001-04-7:10	entinostat	10 µM	6 h	-0.85	0.26	1.54
CPC011_A375_6H:BRD- K86434416-003-13-0:10	selegiline	10 µM	6 h	0.42	-0.46	-0.19
CPC015_A375_6H:BRD- K38055836-001-13-8:10	etamivan	10 µM	6 h	1.01	-0.01	-0.39
CPC016_A375_6H:BRD- K63165456-001-03-3:10	norcyclobenzaprine	10 µM	6 h	0.85	0.73	-0.34
CPC015_A375_6H:BRD- K89375097-300-06-2:10	pirenzepine	10 µM	6 h	0.74	0.18	0.12
CPC014_A375_6H:BRD- K01493881-001-19-5:10	apigenin	10 µM	6 h	-0.36	0.17	0.04
CPC014_A375_6H:BRD- A55756846-001-16-2:10	H-7	10 µM	6 h	-0.65	0.17	-0.49
CPC014_A375_6H:BRD- K01493881-001-20-3:10	apigenin	10 µM	6 h	-0.32	0.07	0.67
CPC014_A375_6H:BRD- K77908580-001-05-4:10	entinostat	10 µM	6 h	-1.37	-1.02	-0.95
CPC020_A375_6H:BRD- A29644307-001-01-7:10	nomifensine	10 µM	6 h	-0.14	-0.21	-0.33
CPC018_A375_6H:BRD- K46556543-237-03-0:10	canrenoic-acid	10 µM	6 h	-0.37	0.64	0.53
CPC018_A375_6H:BRD- K87919739-001-03-4:10	tyrphostin-AG-825	10 µM	6 h	0.55	0.62	0.12
CPC020_A375_6H:BRD- K86434416-003-14-8:10	selegiline	10 µM	6 h	-0.07	0.05	-0.25
CPC020_A375_6H:BRD- A79672927-001-15-7:10	tropicamide	10 µM	6 h	-0.5	0.22	-0.36
PCLB003_A375_24H:BRD- K77908580-001-04-7:10	entinostat	10 µM	24 h	0.55	1.14	2.18
PCLB003_A375_24H:BRD- K77908580-001-04-7:3.33	entinostat	3.33 µM	24 h	0.19	0.84	0.69
PCLB003_A375_24H:BRD- K77908580-001-04-7:1.11	entinostat	1.11 µM	24 h	-0.24	0.89	1.19

PCLB003_A375_24H:BRD- K77908580-001-04-7:0.37	entinostat	0.37 µM	24 h	0.08	0.3	0.11
PCLB003_A375_24H:BRD- K77908580-001-04-7:0.12	entinostat	0.12 µM	24 h	-0.94	0.49	0.44
PCLB003_A375_24H:BRD- K77908580-001-04-7:0.04	entinostat	0.04 µM	24 h	-0.73	0.88	0.85

References

- [1] Y. Y. Li and S. J. M. Jones, "Drug repositioning for personalized medicine," *Genome Medicine*. 2012.
- [2] E. M. Yimer, H. Z. Hishe, and K. B. Tuem, "Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review," *Front. Neurosci.*, 2019.
- [3] G. Ganguly, S. Chakrabarti, U. Chatterjee, and L. Saso, "Proteinopathy, oxidative stress and mitochondrial dysfunction: Cross talk in alzheimer's disease and parkinson's disease," *Drug Des. Devel. Ther.*, 2017.
- [4] J. Kelly, R. Moyeed, C. Carroll, D. Albani, and X. Li, "Gene expression meta-analysis of Parkinson's disease and its relationship with Alzheimer's disease," *Mol. Brain*, 2019.
- [5] D. Mehta, R. Jackson, G. Paul, J. Shi, and M. Sabbagh, "Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015," *Expert Opin. Investig. Drugs*, 2017.
- [6] C. G. Parsons, "CNS repurposing Potential new uses for old drugs: Examples of screens for Alzheimer's disease, Parkinson's disease and spasticity," *Neuropharmacology*. 2019.
- [7] R. Briggs, S. P. Kennelly, and D. O'Neill, "Drug treatments in Alzheimer's disease," *Clin. Med. J. R. Coll. Physicians London*, 2016.
- [8] J. M. Carosi and T. J. Sargeant, "Rapamycin and Alzheimer disease: a double-edged sword?," *Autophagy*, May 2019.
- [9] R. Cacabelos, "Parkinson's disease: From pathogenesis to pharmacogenomics," *International Journal of Molecular Sciences*. 2017.

- [10] R. B. Schneider, J. Iourinets, and I. H. Richard, "Parkinson's disease psychosis: presentation, diagnosis and management," *Neurodegenerative disease management*. 2017.
- [11] A. Serretti and P. Olgiati, "Catechol-O-Methyltransferase and Alzheimer's Disease: A Review of Biological and Genetic Findings," *CNS Neurol. Disord. - Drug Targets*, 2012.
- [12] W. J. Lukiw and E. I. Rogaev, "Genetics of aggression in Alzheimer's Disease (AD)," *Front. Aging Neurosci.*, 2017.
- [13] P. Bastos, T. Gomes, and L. Ribeiro, "Catechol-O-methyltransferase (COMT): An update on its role in cancer, neurological and cardiovascular diseases," in *Reviews of Physiology*, *Biochemistry and Pharmacology*, 2017.
- [14] N. Kuzumaki *et al.*, "Cell-specific overexpression of COMT in dopaminergic neurons of Parkinson's disease," *Brain*, vol. 142, no. 6, pp. 1675–1689, Apr. 2019.
- [15] J. H. Park *et al.*, "Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer's disease," *Sci. Adv.*, 2019.
- [16] B. Kumar *et al.*, "Dipropargyl substituted diphenylpyrimidines as dual inhibitors of monoamine oxidase and acetylcholinesterase," *Eur. J. Med. Chem.*, 2019.
- [17] J. Lamb *et al.*, "The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease," *Science* (80-.)., 2006.
- [18] M. Naoi and W. Maruyama, "Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease," *Expert Review of Neurotherapeutics*. 2009.
- [19] A. Talevi, "Drug repositioning: Current approaches and their implications in the precision

medicine era," Expert Rev. Precis. Med. Drug Dev., 2018.

- [20] P. Sun, J. Guo, R. Winnenburg, and J. Baumbach, "Drug repurposing by integrated literature mining and drug-gene-disease triangulation," *Drug Discovery Today*. 2017.
- [21] B. Delavan, R. Roberts, R. Huang, W. Bao, W. Tong, and Z. Liu, "Computational drug repositioning for rare diseases in the era of precision medicine," *Drug Discovery Today*. 2018.
- [22] Z. Liu *et al.*, "In silico drug repositioning-what we need to know," *Drug Discovery Today*.2013.
- [23] G. Jin and S. T. C. Wong, "Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines," *Drug Discovery Today*. 2014.
- [24] A. Buniello *et al.*, "The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019," *Nucleic Acids Res.*, 2019.
- [25] A. P. Davis et al., "The Comparative Toxicogenomics Database: Update 2019," Nucleic Acids Res., 2019.
- [26] D. S. Wishart *et al.*, "HMDB 4.0: The human metabolome database for 2018," *Nucleic Acids Res.*, 2018.
- [27] E. Y. Chen *et al.*, "Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool," *BMC Bioinformatics*, 2013.
- [28] P. D. Thomas *et al.*, "Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools," *Nucleic Acids Res.*,

vol. 34, no. suppl_2, pp. W645–W650, Jul. 2006.

- [29] B. T. B. Sherman, R. A. R. Lempicki, and D. W. Huang, "Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.," *Nucleic Acids Res.*, 2009.
- [30] F. Napolitano *et al.*, "Gene2drug: A computational tool for pathway-based rational drug repositioning," *Bioinformatics*, 2018.
- [31] H. Liu *et al.*, "AlzPlatform: An Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research," *J. Chem. Inf. Model.*, 2014.
- [32] J. Chen, E. E. Bardes, B. J. Aronow, and A. G. Jegga, "ToppGene Suite for gene list enrichment analysis and candidate gene prioritization," *Nucleic Acids Res.*, 2009.
- [33] A. Subramanian *et al.*, "A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.," *Cell*, 2017.
- [34] R. M. Connolly, M. A. Rudek, and R. Piekarz, "Entinostat: A promising treatment option for patients with advanced breast cancer," *Futur. Oncol.*, 2017.
- [35] D. A. Yardley *et al.*, "Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromata," *J. Clin. Oncol.*, 2013.
- [36] D. Trapani *et al.*, "Entinostat for the treatment of breast cancer," *Expert Opin. Investig. Drugs*, 2017.

- [37] S. A. Amin, N. Adhikari, S. Kotagiri, T. Jha, and B. Ghosh, "Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides," *European Journal of Medicinal Chemistry*. 2019.
- [38] K. J. Yong et al., "Targeting SALL4 by entinostat in lung cancer," Oncotarget, 2016.
- [39] S. P. Lloret, G. Nano, A. Carrosella, E. Gamzu, and M. Merello, "A double-blind, placebo-controlled, randomized, crossover pilot study of the safety and efficacy of multiple doses of intra-oral tropicamide films for the short-term relief of sialorrhea symptoms in Parkinson's disease patients," *J. Neurol. Sci.*, 2011.
- [40] S. Perez-Lloret, M. V. Rey, A. Pavy-Le Traon, and O. Rascol, "Emerging drugs for autonomic dysfunction in Parkinson's disease," *Expert Opin. Emerg. Drugs*, 2013.
- [41] A. J. Betz, P. J. McLaughlin, M. Burgos, S. M. Weber, and J. D. Salamone, "The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: Possible role of M4 receptors," *Psychopharmacology (Berl).*, 2007.
- [42] T. M. Shah, S. M. Gupta, P. Chatterjee, M. Campbell, and R. N. Martins, "Beta-amyloid sequelae in the eye: A critical review on its diagnostic significance and clinical relevance in Alzheimer's disease," *Molecular Psychiatry*. 2017.
- [43] S. A. Smith and S. E. Smith, "Evidence for a neuropathic aetiology in the small pupil of diabetes mellitus," *Br. J. Ophthalmol.*, 1983.
- [44] S. Horvath, "DNA methylation age of human tissues and cell types," *Genome Biol.*, 2013.
- [45] M. E. Levine, A. T. Lu, D. A. Bennett, and S. Horvath, "Epigenetic age of the pre-frontal

cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning," *Aging (Albany. NY).*, 2015.

- [46] S. Horvath and B. R. Ritz, "Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients," *Aging (Albany. NY).*, 2015.
- [47] M. E. Ebada, "Drug repurposing may generate novel approaches to treating depression," *Journal of Pharmacy and Pharmacology*. 2017.
- [48] J. A. Girault and P. Greengard, "The Neurobiology of Dopamine Signaling," in Archives of Neurology, 2004.
- [49] O. Teijido and R. Cacabelos, "Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases," *Int. J. Mol. Sci.*, 2018.
- [50] Z. Y. Zhang and H. J. Schluesener, "Oral administration of histone deacetylase inhibitor MS-275 Ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model," *J. Neuropathol. Exp. Neurol.*, 2013.
- [51] N. Whittle *et al.*, "Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction," *Transl. Psychiatry*, 2016.
- [52] Y. Imai and B. Lu, "Mitochondrial dynamics and mitophagy in Parkinson's disease:
 Disordered cellular power plant becomes a big deal in a major movement disorder,"
 Current Opinion in Neurobiology. 2011.
- [53] D. A. Patten, M. Germain, M. A. Kelly, and R. S. Slack, "Reactive oxygen species: Stuck in the middle of neurodegeneration," *Journal of Alzheimer's Disease*. 2010.