
1

CHAPTER1

INTRODUCTION

1.1 OVERVIEW

 As the advancement of technologies is at its peak, rising market strain has

driven cutting-edge microprocessors to enhance their performance with each passing year.

This progress rate is maintained and kept in flow by using micro-architectural

methodologies such as dynamic implementation and execution of designs and pipeline. But

the usage of these technologies provides decrementing returns, however, in the present fast

developing world, it is now more than ever necessary to use faster circuit techniques to

further increase performance [1].

 The circuit implementation of a logic function is done using 2N devices when

Static Complementary MOS (CMOS) logic has a fan-in of N. A range of methods have

been provided to decrease the amount of transistors that are needed to perform a particular

logic function, including pseudo-NMOS, dynamic logic, pass transistor logic etc. There

occurs static power dissipation when the functions are implemented using pseudo – NMOS

logic since it requires N+1 number of transistors in order to design a logic gate that has N

inputs [2]. An alternative logic type called dynamic logic is described in this report that

achieves a comparable outcome while avoiding the usage of static power.

 With the enhancement in the electronics industry, domino logic topology is

being actively utilized for the designing of enhanced speed and better performance micro-

controllers and microprocessors. The usage of domino logic enables to attain the adequate

timing objectives [3] [4]. Their improved performance and enhanced efficiency can be

attributed to factors such as reduced input capacitance, lower value of switching thresholds

2

and decreased use of logic gates to implement the design. However, a trade-off occurs

between power dissipation and speed. As the speed of a design is improved it leads to

enhanced power dissipation [5].

1.2 DYNAMIC LOGIC : PRINCIPLE

 The primary implementation of a N-type dynamic logic gate is depicted in

Fig. 1.1. From Fig. 1.1 it can be perceived that the implementation of PDN (pull-down

network) is exactly similar to that of the implementation done using complementary MOS

(CMOS). The operation of n-type dynamic logic gate is divided into two major phases:

1) Precharge

2) Evaluation

The mode of operation of the designed circuit is determined by the clock signal (CLK)

provided.

1) Precharge Mode

 When the clock input applied to the circuit is 0, i.e., CLK = 0, the PMOS

transistor (represented as Mp) precharges the output node (OUT) to a value VDD. Thus,

when clock input is 0, the pull-down path is disabled as the evaluate NMOS transistor

(represented as Me) is switched off. The evaluate transistor eliminates the consumption of

static power that occurs during the precharge period. This static power consumption occurs

when both the pull-down and pull-up devices are turned on simultaneously and as a result

static current flows between the supplies [6].

2) Evaluation Mode

 When the clock input applied to the circuit is 1, i.e., CLK = 1, the evaluation

transistor (Me) is in 'ON' state which implies that it is in operating condition whereas the

precharge transistor (Mp) is in switched 'OFF' state. The output value OUT is discharged

conditionally which depends upon the input values applied to the logic circuit as well as the

3

pull-down topology [7]. A low resistance path is created between OUT node and GND

when the pull-down network (PDN) is conducting which causes the output value to be

discharged to 0. However, if the inputs applied are such that the PDN is in conducting state,

the value that is contained by the load capacitance (CL) is the value that has been

precharged at the earlier state [8].

 During the evaluation mode of operation, GND is the only possible path that

exists as a connection between the output node and the supply voltage. As a result, it is not

possible to charge the output load capacitance once OUT have been discharged. This can be

done only when the subsequent precharge phase takes place [9]. Therefore, the input values

applied to the gates can make at most of one transition while in evaluation phase. While in

evaluation phase it might happen that when the pull-down network of the logic function is

in ‘off’ state, the output node enters into high impedance state [10]. Consequently, this

functionality of the dynamic circuit design is essentially different from the static equivalent

of the same logic function in which a low resistance path always exists between the output

node and one of the supply voltages.

 There are two output levels: Low output level VOL represented by GND and

High output level VOH represented by VDD. The Voltage Transfer Characteristics

parameters of dynamic logic circuits are extensively different from that of static CMOS

logic gates. It is not possible to apply pure static analysis to the dynamic logic gates

because in order to be functional dynamic circuits needs a periodic sequence of precharges

as well as evaluations [11] [12].

 During the evaluation phase, the pull-down network (PDN) of the dynamic

inverter becomes active in nature, which occurs in case the input signal applied to the gate

exceeds the threshold voltage of the NMOS pull-down transistor. As a result, the values of

switching threshold (VM), VIH and VIL of the logic gate are set equal to threshold voltage

(Vtn). This translates to a low value for the NML.

4

Figure 1.1 Dynamic Logic Circuit

1.3 SPEED AND POWER DISSIPATION IN DYNAMIC LOGIC

 The capability that makes the dynamic logic circuits so efficient and highly

used is the enhanced speed and reduction in implementation area. As the number of logic

elements being utilized for the implementation of the logic function is decreasing, it

signifies that the overall load capacitance of the circuit becomes much smaller. Some

unique characteristics of logic circuits come to light when the switching behavior of the

gate is analyzed [14]. After the end of precharge phase, the output is in high state. When the

applied input signal is low, no additional switching takes place. Thus, as a result, tpLH = 0.

The discharging of output load capacitance takes place when the pull-down circuit makes a

high-to-low transition. Thus, it can be concluded that tpHL is proportional to the load

capacitance (CL) and the current-sinking capabilities of pull-down network. However, the

use of the evaluation transistor presents an extra series resistance that leads to the slowing

of gate operation. However, if we eliminate the evaluation transistor, static power

dissipation will occur and performance would degrade [15] [16] [17].

5

 The precharge charge is basically determined by the time that the circuit takes for

charging the load capacitance (CL) through the PMOS precharge transistor. During the

charging of the load capacitance, it is not possible to utilize the logic being implemented by

gate. Most of the time, the digital system maybe implemented such that the precharge time

gets overlapped with the other logic design functions. Thus, while designing the dynamic

logic circuit, the designer must be careful about this “overlap zone” [18].

 At this point, dynamic logic design comes into light as it provides faster speed

and less power dissipation. Although dynamic logic has several advantages, it suffers from

“cascading issue” in extensive circuits [19]. There are two phases of functionality of

dynamic logic:

1) Precharge phase (Set-up phase): In this phase, irrespective of the input values applied,

output rises to an extremely high value. The load capacitance gets charged in this phase.

2) Evaluation Phase: In this phase, there exist a path between the GND and the output

terminal. This causes the load capacitance to be discharged.

 It might happen that the second logic gate of the dynamic logic design may

discharge prematurely. This condition comes into play when the first logic gate is in

precharge state.

 This condition causes the precharge state of the second logic gate to be used

up and it can’t be restored until the next clock cycle. Thus, error occurs. Therefore, to be

able to implement cascaded logic circuits, the one solution is Domino Logic. In domino

logic, a static inverter is inserted between the logic states [20].

6

1.4 DOMINO LOGIC CIRCUITS

 Domino logic topology is widely utilized in high-speed applications that are

used for the implementation of logic circuits having large fan-in. But the area where

domino logic circuits suffer is their vulnerability to unwanted noise. Domino logic circuits

have low switching threshold voltage that makes them more sensitive to noise [21]. This

low switching threshold voltage is equal to the threshold voltage of NMOS devices used for

the implementation of evaluation network of the domino logic. The substantial increment in

the noise with technology scaling severel affects the usefulness of domino logic topology

[22]. With the help of technology scaling, it is possible to scale down the supply voltage

which leads to the reduction in power dissipation.

 The main concern is to design a circuit that has improved performance. This

could be achieved by maintaining a high-drive current that can be attained by ensuring that

the threshold voltage is proportionately scaled. However, scaling of the threshold voltage

leads to a substantial increase in the sub threshold leakage current [23].

 As the technology is being scaled down, it leads to the exponential increase in

the leakage of evaluation NMOS transistors because of their lower threshold voltage.

Domino logic circuits offers a significant edge over the existing technology due to their

faster transitions and glitch-free operation. One of the most effective technology to

implement high speed logic functions is the execution of circuits using Domino Logic.

Domino logic is evolved from the dynamic logic technology and is based on the CMOS-

based implementation of logic function using either PMOS or NMOS transistors. It

provides a speed at least twice as faster than the corresponding static complementary MOS

(CMOS) logic. In domino logic, a single clock is used for the process of precharge and

evaluation of a cascaded implementation of dynamic logic blocks [24] [25].

https://www.thesaurus.com/browse/proportionately

7

1.4.1 Domino Logic: Principle

 Domino logic module is basically comprising of an. n-type dynamic logic with

a static inverter following it (Fig. 1.2). While operating in precharge phase, the output of

the n-type dynamic logic gate is charged up to VDD, and the output of the inverter is set to a

value of 0. During evaluation phase, the dynamic logic gate conditionally discharges, and

the output of the inverter makes a conditional transition from 0 to 1 [26]. If an assumption

is taken such that the inputs being applied to a Domino logic gate are the outputs of the

previous Domino logic gate , then it can be made sure that all the applied inputs are set to 0

at the end of the evaluation phase and the only transactions that takes place during

evaluation phase are 0 to 1 transitions.

 The inclusion of the static inverter in between the logic states provides with an

additional advantage of increased noise immunity. The enhanced noise immunity can be

attributed to the fact that the static inverter that is driving the fan-out of the logic gate has a

low impedance output [27]. The use of the buffer further decreases the load capacitance of

the output node of the dynamic circuit by providing separation between the internal and

load capacitances. Let us take into consideration the implementation of the cascaded

structure of Domino logic gates. In the precharge phase, all the inputs have been initially

set to 0. In the evaluation phase, the output of the. first domino logic block either stay in the

state 0 or makes a transition from 0 to 1, which in turns affects the output of the second

logic gate [28] [29]. This transition effect might ripple from one stage to another

throughout the chain, similar to a line of falling dominoes – hence given the name Domino

Logic Circuit. Domino CMOS has the following characteristics:

• Domino logic can be used for the implementation of only non-inverting logic

because each dynamic logic gate consists of a static inverter that has been inserted

between the two logic states. This situation is a major limiting factor for the rare

existence of pure domino logic design [30] [31].

8

• The logic functions implemented using Domino CMOS provides with very high

speed. There only exists a rising edge delay and tpHL equals to 0. The sizing of the

inverter can be done in order to meet the fan-out characteristics of the logic gate.

Also, the fan-out of the logic gate is already much smaller as compared to the

corresponding static CMOS implementation of the same logic design, as there exists

only one output load capacitance for a gate per fan-out [32].

 Due to the low input being applied while in precharge phase, it is a practical

approach to eliminate the evaluation transistor as this would lead to reduction in the clock

load and would increase pull-down drive. But eliminating the evaluation device would

result in extension of the precharge cycle which would further lead to the precharge to

ripple through the logic network as well [33]. Thus, the critical path of a logic circuit can be

signified as the time taken to precharge the logic circuit. Another issue that has been faced

in domino logic implementation of a function is the excess power dissipation that occurs

when both the pull-up and pull-down transistors are turned on. Therefore, it is vital to

always utilize evaluation devices.

Figure 1.2 Domino Logic Circuit

9

 From the Fig. 1.3, it can be seen that two functional inputs are controlled by a

clock signal, CLK. Domino logic topology is a clocked logic family, which shows that each

logic gate has a clock signal present.

Figure 1.3 A CMOS domino logic 2-input AND gate.

 When the clock signal becomes low, the evaluation node reaches a high state,

which causes the output of the gate to attain a low value. The time period for which the cell

is under operating condition when the input clock and the output are low is known as

precharge phase or cycle.

 The evaluation cycle is the phase when the applied input clock signal is high.

In the evaluation mode of operation, the output of the AND logic using domino circuit, is

capable of attaining a high value when both the applied inputs, A and B, are ‘1’, i.e., high.

The high inputs drive the evaluation node to a low value. The evaluation phase is the

functional operating phase in the domino logic cells. The precharge phase basically enables

the next evaluate phase to occur. The correct application of the clock signal ensures that the

critical path in domino logic cells only traverses through cells in the evaluate phase [34].

10

1.5 DOMINO LOGIC BUFFER

 Fig. 1.4 shows the design of a conventional clock-controlled domino logic

circuit. Domino topology has a dynamic N-type gate (pull-down network PDN) followed

by a static inverter.

Figure 1.4 Domino logic implementation

 Fig. 1.5 represents the implementation of a domino logic buffer. There are two

phases of operation, precharge phase and evaluation phase.

• During the precharge phase, the clock signal is in '0' state. The 0 input signal

 causes the PMOS (M1) transistor to be turned on thus precharging the dynamic

 node, Z.

• During the evaluation phase, the clock signal is pulsed high. The high input

 signal causes the NMOS (M2) transistor to be turned on.

 Thus, when the applied input signal (A) is low, the logic at the node Z is kept

high regardless of the present operating phase. However, when the applied input signal (A)

is high, the precharge and evaluation phase takes place.

11

 As depicted in the Fig. 1.5, when the circuit is in precharge phase, node Z

and node B will be charged up to VDD. The voltage at node OUT will dropdown to '0'. This

would lead to the propagation of the precharge phase value to the output of the buffer. This

precharge pulse propagation from node Z via the static buffer leads to higher power

dissipation. Moreover, the output state is not stable when the circuit is in precharge phase

as thus the cascading characteristics and performance of the domino logic is limited [35]

[36].

Figure 1.5 Domino buffer implementation

1.6 PSEUDO DYNAMIC BUFFER (PDB)

 The main drawback that degrades the performance of conventional domino

logic buffer is the precharge pulse propagation. The topology that overcomes this issue is

PDB-based implementation that has been illustrated in Fig. 1.6. In this buffer

implementation, the source of the buffer’s NMOS transistor M5 is connected to node B

instead of being connected to GND. By implementating a logic function using such

12

topology, the value present at node Z cannot propagate to the output node OUT during the

precharge phase of the gate. This happens because during precharge phase, the evaluation

transistor M2 is turned off. When the input logic A is low, the floating node Z is always in

high state and then, the output node OUT is kept low regardless of the operating phase [37]

[38]. On the other hand, if the input signal A is high, the precharge and evaluation phases

will lead to the following operational conditions:

• During the evaluation phase, node Z and node B gets discharged to GND, resulting

in enabling the PMOS transistor M4, while pulling up the output node voltage OUT

to VDD.

• During the precharge phase, node Z is charged upto VDD, followed by the voltage at

node B. Since the NMOS evaluation transistor M2 is disabled, the output node Z

is held high (same value as the previous evaluation phase).

Figure 1.6 Domino logic circuit using pseudo dynamic buffer.

13

1.7 FOOTED QUASI RESISTANCE (FQR) MODEL

 The major issue that occurs in PDB implementation is the cascading problem

at the output node, when the input signal applied makes a transition from logic l to logic 0.

Implementing logic functions using Footed Quasi Resistance (FQR) technique can

overcome this issue. The structure for FQR implementation is as shown in Fig. 1.7 [39].

 In this circuit, the logic function is being designed by using depletion PMOS

and NMOS, both of which are being driven by same input node Y. When the node Y is at

logic l logic 1, depletion PMOS is OFF thus making quasi resistance acting as open circuit,

which is same as in case of logic 0 at node Y but at this time depletion NMOS is OFF

which results same. This process can be explained as follows:

 When the input signal (A) being applied is logic 1, then in precharge mode of

operation, the node Y is connected to VDD and in evaluation phase it is connected to ground

which makes FQR work as PDB only.

 When the input signal (A) being applied is logic 0, the footed quasi resistance

functionality in evaluation and precharge phase can be explained as below:

• During precharge phase, both the transistors NM2 and NM5 are in cut-off condition

which will lead node Y to act as an open circuit. This happens due to the fact that

we are using depletion NMOS and PMOS in FQR which provides a path to

discharge the output parasitic capacitance.

• During evaluation phase, both the NMOS transistors, NM2 and NM5 are turned on

thus causing the output node to be at voltage 0.

14

Figure 1.7 Domino logic circuit using footed quasi resistance

1.8 AND GATE

 An AND gate is a digital logic gate which is provided with two or more input

signals and as a result produces a single output that performs AND operation. The output

would be high if all the applied inputs are high, i.e., logic '1'. The output would be low if

any of the applied input is low, i.e., logic '1'.

 Q = A.B (1.1)

 The AND gate basically performs multiplication operation which results in the

output of the gate to be '0', when either or all the applied inputs are '0'.

15

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

 Table 1.1 Truth Table of 2-Input AND Gate Figure 1.8.1 2-input AND Gate

The following characteristics can be derived from the AND gate:

• A.A = A

• 1.A = A

• 0.A = 0

• A.A' = 0

• A.B = B.A

• A.(B.C) = (A.B).C = A.B.C

1.9 OR GATE

 The OR gate is a digital logic gate which is provided with two or more input

signals and as a result produces a single output that performs OR operation. The output

would be low if all the applied inputs are low, i.e., logic '0'. The output would be high if

any of the applied input is high, i.e., logic '1'.

 Q = A+B (1.2)

 The OR gate basically performs addition operation which results in the output

of the gate to be '1', when either or all the applied inputs are '1'.

16

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

 Table 1.2 Truth Table of 2-Input OR Gate Figure 1.9.1 2-input OR Gate

The following characteristics can be derived from the AND gate:

• A+A = A

• 1+A = 1

• 0+A = A

• A+A' = 1

• A+B = B.A

• A+(B+C) = (A+B)+C = A+B+C

1.10 NAND GATE

 The NAND gate is basically a digital logic gate which is provided with two or

more input signals and as a result produces a single output that performs NAND operation.

The output would be low if all the applied inputs are high, i.e., logic '1'. The output would

be high if any of the applied input is low, i.e., logic '0'. It performs the complementary

operation of that is implemented by AND Gate. The output of the NAND gate would be ‘0’

only when exactly both the inputs applied is ‘l’. If any of the input is ‘0’, then the output is

also ‘1’.

17

 The logic or boolean expression represents that the operation that is being

executed by logic NAND is of logical addition and this operation is performed when the

inputs applied are being complimented.

 Q = (A.B)' (1.3)

 Figure 1.10 2-input NAND Gate

A B Q

0 0 1

0 1 1

1 0 1

1 1 0

Table 1.3 Truth Table of 2-Input NAND Gate

1.11 NOR GATE

 The NOR gate is a digital logic gate which is provided with two or more input

signals and as a result produces a single output that performs NOR operation. It performs

the reverse or complementary operation of OR Gate. The output would be high in case all

the inputs applied is low, i.e., logic '0'. The output would be low if any of the applied input

is high, i.e., logic ‘1’.

18

 The logic or boolean expression represents that the operation that is being

executed by logic NOR is of logical multiplication and this operation is performed when

the inputs applied are being complimented.

 Q = (A+B) ' (1.4)

Figure 1.11 2-input NOR Gate

A B Q

0 0 1

0 1 0

1 0 0

1 1 0

Table 1.4 Truth Table of 2-Input NOR Gate

1.12 XOR Gate

 XOR gate (also called as Exclusive OR) represents a digital logic gate. This

logic gate is provided with two or more inputs and thus produces one output that

implements exclusive disjunction. The output that results would be ‘1’ only when exactly

one of its input signals is ‘1’. If both the inputs applied to an XOR gate are ‘0’, or if both of

its inputs are ‘1’, then the resulting output would be ‘0’. However, in case that the inputs

being applied to the XOR gate is greater than two, then the functioning of the gate would

be determined by its implementation.

19

 As observed from a wide range of scenarios, XOR gate will result in an output

‘1’ in case the number of inputs ‘1’ applied is odd. Thus, the output of the XOR gate only

goes high when the inputs being applied to the logic gate are at different logic levels with

respect to each other.

 Q = (A ⊕ B) = A.B' + A'.B (1.5)

 Ex-OR logic gate can be designed by the strategic combination of standard

logic gates. These logic gates can be used for the implementation of complex design

systems. Ex-OR logic gate with two input signals basically represents a modulo two adder,

because it implements the addition of two binary numbers and hence are more complicated

to design and implement as compared to standard logic gates [40].

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Table 1.5 Truth Table of XOR Gate Figure 1.12 2-input Ex-OR Gate

 XOR gate is one of the most widely used arithmetic unit and it is used in many

VLSI applications such as microprocessors, adders, subtractors, shift registers etc. Design

of XOR gate using static CMOS requires a pull-up and pull-down network, which leads to

increased area requirement and higher power. Implementation of XOR gate using domino

CMOS requires reduced layout area due to the elimination of pull-up network [41]. As the

pull-up network in the design is eliminated, the parasitic capacitance at dynamic and output

node get reduced which provides the designer with enhanced speed for domino logic XOR

gate.

20

 Due to the increased speed and low area requirement of domino circuit

topology, it is used in various VLSI applications. Standard domino XOR gate inputs require

two phase signals, one is original and the other is inverted signal. Application of inverted

input consumes extra circuitry. This extra hardware not only increases the power

consumption but also deviates the performance of the domino XOR circuit [42].

 In conventional domino logic implementation, more power is dissipated. In

order to overcome this problem, Pseudo dynamic buffer based domino logic and footed

quasi resistance model has been introduced to implement the XOR circuit.

1.13 XNOR Gate

 XNOR gate (also called as Exclusive NOR) represents a digital logic gate.

This logic gate is provided with two or more inputs and thus produces one output that

implements exclusive disjunction. The output that results would be ‘0’ only when exactly

one of its input signals is ‘1’. If both the inputs applied to an XOR gate are ‘0’, or if both of

its inputs are ‘1’, then the resulting output would be ‘1’. However, in case that the inputs

being applied to the XOR gate is greater than two, then the functioning of the gate would

be determined by its implementation. While taking into consideration a vast range of

scenarios, it has been observed that XNOR gate will result in an output ‘1’ in case all inputs

applied are at same logic level.

 Q = (A⊕B)' = A.B + A'.B' (1.6)

21

A B Q

0 0 1

0 1 0

1 0 0

1 1 1

Table 1.6 Truth Table of XNOR Gate Figure 1.13 2-input XNOR Gate

1.14 HALF ADDER

 Adder is a combinational digital circuit which has been used for the

implementation of function of adding two numbers. The addition of two numbers

eventually results in a sum bit (SUM) and a carry bit (CARRY) as the output. Typically,

adders are realized to implement the addition of binary numbers, however they can also be

realized for executing addition operation for other formats such as BCD (binary coded

decimal), Excess-3 etc. Adder finds use in a wide range of other applications such as in

digital electronics like address decoding, table index calculation etc. [43].

 Half adder is a combinational arithmetic circuit that performs addition of two

input numbers and hence produces two outputs: sum bit (SUM) and a carry bit (CARRY).

Half adder is the simplest of all adder circuit, but it suffers from a major drawback. The

half adder can implement addition of only two input bits (A and B) and can take no action

if any carry is present as the input. Therefore, if a carry input is provided to the half adder,

then the input carry bit will be neglected and this poses a serious problem. This implies that

the process of binary addition is incomplete and hence it is known as half adder.

 SUM = (A⊕B) = A.B' + A'.B (1.7)

 CARRY = A.B (1.8)

22

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 Table 1.7 Truth Table of HALF ADDER Figure 1.14 HALF ADDER

1.15 HALF SUBTRACTOR

 In the process of binary subtraction, the process of subtracting two numbers is

similar to that of arithmetic subtraction. While subtracting two numbers in arithmetic

subtraction the base 2 number system is used whereas while performing binary subtraction,

binary numbers are being used for subtraction [44]. The resultant terms obtained are given

as the difference and borrow.

 Half subtractor is a combinational arithmetic circuit that implements the

operation of subtraction of two numbers and produces two outputs: a difference bit

(DIFFERENCE) and a borrow bit (BORROW).

 DIFFERENCE = (A⊕B) = A.B + A'.B (1.9)

 BORROW = A'.B (1.10)

23

A B DIFF Bout

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

Table 1.8 Truth Table of half subtractor Figure 1.15 Half Subtractor

1.16 1-BIT FULL ADDER

 Adder is a combinational digital circuit which has been used for the

implementation of function of adding numbers. In several computer systems and different

types of operating processors, adders are used for the calculation of addresses and to

perform other arithmetic functions. Typically, adders are realized to implement the addition

of binary numbers, however they can also be realized for executing addition operation for

other formats such as BCD (binary coded decimal), Excess-3 etc. [44].

 1-bit Full adder is a combinational arithmetic circuit which performs addition

of three input numbers and hence results in two outputs: a sum bit (SUM) and carry bit

(Cout). The full adder circuit has three inputs: A and B, and an input carry given as Cin. The

addition of these three inputs results in a sum bit (SUM) and an output carry (Cout).

 SUM = (A⊕B⊕Cin) (1.11)

 Cout = (A.B)+(B.Cin)+(A.Cin) (1.12)

24

Figure 1.16 1-bit Full Adder

 With the help of truth-table, the full adder logic can be implemented. From the

above equation, it can be derived that the SUM output is obtained by performing XOR

between the three input signals. The output carry, Cout will be true only under the condition

when any two of the three applied input signals are HIGH.

A B Cin SUM Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 1.9 Truth Table of Full Adder

 A 2-bit full adder is basically a ripple carry adder. In this logic

circuit two full adders are cascaded to execute the addition of 2-bit numbers. The output

carry generated from the first full adder acts as in input carry for the subsequent full adder.

25

Therefore, final carry is generated by the second full adder. As a result, we obtain two sum

bits (S1 and S2) and one carry bit (Co2) as the output.

Figure 1.17 2-bit Full Adder

1.17 1-BIT FULL SUBTRACTOR

 A full subtractor is a combinational logic function that executes the process of

subtracting one bit from the another. Subtraction is implemented between two bits:

minuend and subtrahend. While subtraction, the borrow that has generated from the

previous adjacent lower minuend bit is also taken into consideration. 1-bit full subtractor is

a combinational arithmetic circuit which performs addition of three input numbers and

hence results in two outputs: a difference bit (DIFF) and borrow bit (Bout). The full

subtractor circuit has three inputs: A and B, and an input borrow given as Bin.

 DIFF = (A⊕B⊕Bin) (1.13)

 Bout = A'Bin + A'B + BBin (1.14)

26

Figure 1.18 1-bit Full Subtractor

A B Bin DIFF Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Table 1.10 Truth Table of Full Subtractor

1.18 INCREMENTER

 Incrementing is a micro-operation which executes the operation of adding one

binary value to the applied input value. For example, if a 3-bit register has a value of 011,

then when incremented by one will result in a value of 100 as the output.

27

Figure 1.19 Implementation of A+1 State Figure 1.20 Implementation of B+1 State

PRESENT STATE NEXT STATE

A B (A+1) (B+1)

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 0

Table 1.11 Truth table for 2-bit Incrementer

1.19 DECREMENTER

 Decrementing is a micro-operation which executes the operation of

subtracting one binary value from the applied input value. For example, if a 3-bit register

has a value of 100, when this value is decremented by one, it will result in a value of 011 as

the output.

Figure 1.21 Implementation of A-1 State Figure 1.22 Implementation of B-1 State

28

PRESENT STATE NEXT STATE

A B (A-1) (B-1)

0 0 1 1

0 1 0 0

1 0 0 1

1 1 1 0

Table 1.12 Truth table for 2-bit decrementer

1.20 MOTIVATION

 Addition of static inverter is used in the domino logic circuit to eliminate the

logic 1 (in precharge phase) to logic 0 (in evaluation phase) transition. This elimination of

transition from logic 1 to logic 0 signifies that additional charging and discharging is

performed at the output capacitance of static inverter when it is in precharge phase and

meanwhile the output of its subsequent evaluation phase is logic 0, which causes significant

power dissipation.

 This problem is solved through various techniques, whereby the pseudo-

dynamic buffer model significantly reduces power dissipation and hence saves power.

However, in the PDB model we have logic 1 (in precharge) to logic 0 (in evaluation)

transition which results in faulty output when used for designing of cascaded circuits. As

compared to the PDB model, FQR topology solves the problems caused due to cascading.

Moreover, FQR model has a lower power dissipation as compared to domino logic model.

 In this work, various arithmetic logic functions are implemented by using the

above three techniques and their corresponding delay and power consumption is evaluated

using 180nm technology using VIRTUOSO CADENCE.

29

CHAPTER2

LITERATURE SURVEY

2.1 DYNAMIC LOGIC CIRCUITS

 As explained by J. M. Rabaey [45] dynamic logic circuits have several

advantageous features such as low device count, high speed, elimination of short circuit

power and glitch free operation. All these features enable dynamic logic circuits to be used

for wide range of applications in high speed, low power areas such as microprocessors,

digital signal processing, dynamic memories etc. Moreover, a dynamic logic unit that is

smaller than its static equivalent can also be designed.

 Dynamic logic circuits provide enhanced performance for higher fan-in and

complex logic circuit design. As the level of integration of design increases, lower power

dissipation and higher speed becomes imperative requirements for the design of logic

functions along with improved performance [46] [47] [48].

 During the digital implementation of high density and high-performance

circuits, it is imperative to reduce the circuit delay as well as the silicon area of the design.

In such implementations, dynamic logic circuits are significantly advantageous over static

logic circuits.

There are two phases of functionality of dynamic logic:

1) Precharge phase: In this phase, irrespective of the input values applied, output rises to an

extremely high value. The load capacitance gets charged in this phase.

30

2) Evaluation Phase: In this phase, there exist a path between the GND and the output

terminal. This causes the load capacitance to be discharged [49].

 The major issue faced while using dynamic logic is that the second logic gate

of the dynamic logic design may discharge prematurely, before arriving at the first gate

when the first logic gate is in precharge state. The occurrence of this operating condition

causes the precharge state of the second logic gate to be used up and it can’t be restored

until the next clock cycle. Therefore, to be able to implement cascaded logic circuits, the

one solution is Domino Logic. In domino logic, a static inverter has been inserted between

the logic states [50] [51].

2.2 Domino Logic Buffer

 As depicted in the Fig. 2.1, when the circuit is in precharge phase, node Z and

node B will be charged up to VDD. The voltage at node OUT will dropdown to '0'. This

would lead to the propagation of the precharge phase value to the output of the buffer. This

propagation of the precharge phase pulse from node Z through the static buffer leads to

high power consumption. Moreover, the output state is not stable when the circuit is in

precharge phase as thus the cascading characteristics and performance of the domino logic

is limited [52].

Figure 2.1 Timing diagram of the domino logic circuit [52]

31

 The conventional domino logic buffer illustrates the issue of performance

degradation which occurs due to the propagation of the precharge pulse inherent in domino

logic gates. The PDB-based implementation overcomes this problem using the circuit

structure shown in Fig. 2.2. In this buffer implementation, the source of the buffer’s NMOS

transistor M5 is connected to node B instead of being connected to GND. By implementing

a logic function using such topology, the value present at node Z cannot propagate to the

output node OUT during the precharge phase of the gate. This happens because during

precharge phase, the evaluation transistor M2 is turned off. When the input logic A is low,

the floating node Z is always in high state and then, the output node OUT is kept low

regardless of the operating phase. On the other hand, if the input signal A is high, the

precharge and evaluation phases will be executed [53] [54] [55].

2.3 FAULTY OUTPUT IN CASCADED CIRCUITS: PDB TOPLOGY

 Implementation of logic functions using PDB topology leads to a problem that

occurs when logic 0 is applied as input after logic l in evaluation phase. This condition

arises because the charge accumulated on the output parasitic capacitance in evaluation

phase ,when input A is logic l, does not have a discharge path in precharge phase when

input A is logic 0. The precharge pulse propagation is overcome by using PDB design

technique. However, it catches on a major problem: candid scrutiny of pseudo dynamic

buffer logic to design more complex boolean functions results in faulty output logic. The

issue can be best illustrated with the two cascaded pull down n-type pseudo dynamic buffer

circuits, as shown in Fig. 2.2. During the precharge phase (i.e., the precharge phase after

when logic is high in evaluation phase), the output of both buffers would be charged to

VDD. Now let us consider that the primary input signal (A) applied makes a transition from

logic l to logic 0. On the rising edge of the clock signal, the output O1 begins to discharge.

The final output O2 should be logic low as the expected input to the circuit now is logic

low. However, in practice, there is a small propagation delay for the input to discharge O1

to logic low. Therefore, the precharged voltage at node Z begins to discharge. By the time

O1 crosses the threshold voltage of the transistor Q7, the node voltage present at node Z

32

gets discharged through the transistors Q7 and Q8. This discharging makes the final output

as logic high. Thus, the correct logic level can't be retrieved due to the fact that PDB relies

on parasitic capacitance voltage. This situation leads to erroneous output logic in cascaded

PDB logic circuits. This problem arises because of logic high to logic low transition at

output which can be resolved by implementing logic functions using Footed Quasi

Resistance (FQR) technique [56] [57].

Figure 2.2 Cascaded Buffer using PDB Model

2.4 FOOTED QUASI RESISTANCE(FQR) MODEL

 As illustrated in the paper [39], the major issue that occurs in PDB

implementation is the cascading problem at the output node, when the input signal applied

makes a transition from logic l to logic 0. Implementing logic functions using Footed Quasi

Resistance (FQR) technique can overcome this issue. The structure for FQR

implementation is as shown in Fig. 1.7. In this circuit, the logic function is being designed

by using depletion PMOS and NMOS, both of which are being driven by same input node

Y. When the node Y is at logic l logic 1, depletion PMOS is OFF thus making quasi

resistance acting as open circuit, which is same as in case of logic 0 at node Y but at this

time depletion NMOS is OFF which results same [39].

33

CHAPTER3

STUDY AND SIMULATION

3.1 CHARACTERIZATION OF DOMINO LOGIC BUFFER

Domino logic operates in two phases:

(i) Precharge phase

(ii) Evaluation phase

 The above two operational phases can be esentially differentiated by the CLK

signal. In case the applied CLK signal is at logic 0, the PMOS transistor PM1 is turned ON

which allows the charging of the parasitic capacitance present at node X to VDD. This

mode of operation is precharge mode.

 When the applied CLK signal is at logic 1, the NMOS transistor NM5 is

turned ON. The voltage at node X depends on the value of the input signal applied. This

mode of operation is precharge mode. When the applied input signal, A, is logic 1 the node

voltages are as shown in the Fig. 3.2 for both, precharge and evaluation, phases. In

evaluation phase, the value which is present at the output node will get charged to Vdd

which will then discharge in precharge phase leading to precharge propagation at output

buffer. Therefore, this propagation of the precharge phase pulse from node Z through the

static buffer leads to high power consumption. This precharge pulse propagation can be

solved by using different techniques such as true single phase CLK model, pseudo dynamic

buffer.

 The VIRTUOSO schematic of domino logic Buffer is illustrated in Fig. 3.1.

The timing waveform of Domino Logic, when input logic A is logic 1 is shown in Fig. 3.2.

34

Figure 3.1 Virtuoso Schematic of Domino Logic Buffer

35

Figure 3.2 Timing Waveform of Conventional Domino Logic Buffer

36

3.2 CHARACTERIZATION OF PSEUDO DYNAMIC BUFFER DOMINO LOGIC

 In PDB model, the source of the NMOS transistor NM3 in output inverter is

connected to node Y instead of being connected to ground as shown in Fig. 3.3 For this

particular model, when input A is logic 1, evaluation and precharge will lead to following

case:

• During evaluation phase, node X will discharge to logic 0 which makes PMOS

transistor to turn ON and output parasitic capacitance charge to VDD.

• In precharge operational mode, output node X charges to a value of VDD as of node

Y which results in NMOS transistor NM3 to be turned OFF.

 The NMOS transistor NM3 operates as following in both the phases. In

precharge mode, previously source of NM3 is connected to GND. The presence of logic

high at node X leads to the NMOS transistor NM3 to switch ON because Vg-Vs (Vgs) is

greater than threshold voltage (Vth). In the PDB topology, the source of the NMOS

transistor NM3 is connected to node Y which causes the operation of the NMOs transistor

NM3 to depend on the value present at the node X. During the precharge phase, when the

CLK signal is low, transistor NM5 turns on thus causing the source of the NM3 transistor

to be connected to GND, similar to what happens in domino logic buffer topology.

However, when the CLK signal applied is high, the operation of the transistor NM3

depends upon both, voltage at node X and input logic applied for domino logic circuit [39].

 The VIRTUOSO schematic of pseudo domino logic Buffer is illustrated in

Fig. 3.3. The timing waveform of Pseudo Domino Logic, for logic 1 to logic 0 transition is

displayed in Fig. 3.4.

37

Figure 3.3 PDB Domino Logic Buffer Implementation

38

Figure 3.4 Timing Waveform of Pseudo Domino Logic

39

 Implementation of logic functions using PDB topology leads to a problem that

occurs when logic 0 is applied as input after logic l in evaluation phase which is shown in

Fig 3.3. This condition arises because output parasitic capacitance charge accumulated in

evaluation phase when input A is logic l does not have a discharge path in precharge phase

when input A is logic 0. Due to this, logic l to logic 0 transition is not a suitable input for

dynamic logic circuits.

 The precharge pulse propagation is overcame by using PDB design technique.

However, it catches on a major problem: pseudo dynamic buffer logic to design more

complex boolean functions results in faulty output logic. This situation leads to erroneous

output logic in cascaded PDB logic circuits. This problem arises because of logic high to

logic low transition at output which can be resolved by implementing logic functions using

Footed Quasi Resistance (FQR) technique.

3.3 CHARACTERIZATION OF FOOTED QUASI RESISTANCE MODEL

 When the input signal (A) being applied is logic 1, then in precharge phase,

the node Y is connected to VDD and in evaluation phase it is connected to ground which

makes footed quasi resistance work as PDB only. When the input signal(A) being applied is

logic 0, the footed quasi resistance functionality in evaluation and precharge phase can be

explained as below [39]:

• During precharge phase, both the transistors NM2 and NM5 are in cut-off condition

which will lead node Y to act as an open circuit. This happens due to the fact that

we are using depletion NMOS and PMOS in FQR which provides a path to

discharge the output parasitic capacitance.

• During evaluation phase, both the NMOS transistors, NM2 and NM5 are turned on

 thus causing the output node to be at voltage 0.

40

 The VIRTUOSO schematic of FQR Buffer is illustrated in Fig. 3.5. In Fig. 3.6

output voltage waveform is given where we can observe logic l to 1ogic 0 transition is

removed.

Figure 3.5 VIRTUOSO schematic of FQR Buffer

41

Figure 3.6 Timing Waveform of FQR Buffer

42

3.4 CHARACTERIZATION OF AND GATE

3.4.1 AND Gate using domino logic

 The VIRTUOSO schematic of AND Gate using domino logic is illustrated in

Fig. 3.7. The Timing Waveform of AND Gate, is illustrated in Fig. 3.8.

Figure 3.7 VIRTUOSO Schematic of AND Gate using domino logic

43

Figure 3.8 Timing Waveform of AND Gate

44

3.4.2 AND Gate using PDB logic

Figure 3.9 VIRTUOSO Schematic of AND Gate using PDB logic

The VIRTUOSO schematic of AND Gate using PDB logic is illustrated in Fig. 3.8.

45

3.4.3 AND Gate using FQR logic

Figure 3.10 VIRTUOSO Schematic of AND Gate using FQR Model

The VIRTUOSO schematic of AND Gate using FQR Model is illustrated in Fig. 3.10.

46

3.5 CHARACTERIZATION OF OR GATE

3.5.1 OR Gate using domino logic

Figure 3.11 VIRTUOSO Schematic of OR Gate using domino logic

47

The VIRTUOSO schematic of OR Gate using domino logic is illustrated in Fig. 3.11.

The Timing Waveform of OR Gate, is illustrated in Fig. 3.12.

Figure 3.12 Timing Waveform of OR Gate

48

3.5.2 OR Gate using PDB logic

Figure 3.13 VIRTUOSO Schematic of OR Gate using PDB logic

The VIRTUOSO schematic of OR Gate using PDB logic is illustrated in Fig. 3.13.

49

3.5.3 OR Gate using FQR logic

Figure 3.14 VIRTUOSO Schematic of OR Gate using FQR Model

The VIRTUOSO schematic of OR Gate using FQR Model is illustrated in Fig. 3.14.

50

3.6 CHARACTERIZATION OF NAND GATE

3.6.1 NAND Gate using domino logic

Figure 3.19 VIRTUOSO Schematic of NAND Gate using domino logic

51

The VIRTUOSO schematic of NAND Gate using domino logic is illustrated in Fig. 3.19.

Timing Waveform of NAND Gate, is illustrated in Fig. 3.20.

Figure 3.20 Timing Waveform of NAND Gate

52

3.6.2 NAND Gate using PDB logic

Figure 3.21 VIRTUOSO Schematic of NAND Gate using PDB logic

The VIRTUOSO schematic of NAND Gate using PDB logic is illustrated in Fig. 3.21.

53

3.6.3 NAND Gate using FQR logic

Figure 3.22 VIRTUOSO Schematic of NAND Gate using FQR logic

The VIRTUOSO schematic of NAND Gate using FQR logic is illustrated in Fig. 3.22.

54

3.7 CHARACTERIZATION OF NOR GATE

3.7.1 NOR Gate using domino logic

Figure 3.23 VIRTUOSO Schematic of NOR Gate using domino logic

55

The VIRTUOSO schematic of NOR Gate using domino logic is illustrated in Fig. 3.23.

Timing Waveform of NOR Gate, is illustrated in Fig. 3.24.

Figure 3.24 Timing Waveform of NOR Gate

56

3.7.2 NOR Gate using PDB logic

Figure 3.25 VIRTUOSO Schematic of NOR Gate using PDB logic

The VIRTUOSO schematic of NOR Gate using PDB logic is illustrated in Fig. 3.25.

57

3.7.3 NOR Gate using FQR logic

Figure 3.26 VIRTUOSO Schematic of NOR Gate using FQR logic

The VIRTUOSO schematic of NOR Gate using FQR logic is illustrated in Fig. 3.26.

58

3.8 CHARACTERIZATION OF XOR GATE

3.8.1 XOR Gate using domino logic

Figure 3.27 VIRTUOSO Schematic of XOR Gate using domino logic

59

The VIRTUOSO schematic of XOR Gate using domino logic is illustrated in Fig. 3.27. The

Timing Waveform of XOR Gate, is illustrated in Fig. 3.28.

Figure 3.28 Timing Waveform of XOR Gate

60

3.8.2 XOR Gate using PDB logic

Figure 3.29 VIRTUOSO Schematic of XOR Gate using PDB logic

The VIRTUOSO schematic of XOR Gate using PDB logic is illustrated in Fig. 3.29.

61

3.8.3 XOR Gate using FQR logic

Figure 3.30 VIRTUOSO Schematic of XOR Gate using FQR logic

The VIRTUOSO schematic of XOR Gate using FQR logic is illustrated in Fig. 3.30.

62

3.9 CHARACTERIZATION OF XNOR GATE

3.9.1 XNOR Gate using domino logic

Figure 3.31 VIRTUOSO Schematic of XNOR Gate using domino logic

63

The VIRTUOSO schematic of XNOR Gate using domino logic is illustrated in Fig. 3.31.

The Timing Waveform of XNOR Gate, is illustrated in Fig. 3.32.

Figure 3.32 Timing Waveform of XNOR Gate

64

3.9.2 XNOR Gate using PDB logic

Figure 3.33 VIRTUOSO Schematic of XNOR Gate using PDB logic

The VIRTUOSO schematic of XNOR Gate using PDB logic is illustrated in Fig. 3.33.

65

3.9.3 XNOR Gate using FQR logic

Figure 3.34 VIRTUOSO Schematic of XNOR Gate using FQR logic

The VIRTUOSO schematic of XNOR Gate using FQR logic is illustrated in Fig. 3.34.

66

3.10 CHARACTERIZATION OF XOR GATE

3.10.1 Half Adder using domino logic

Figure 3.35 VIRTUOSO Schematic of half adder using domino logic

The VIRTUOSO schematic of half adder using domino logic is illustrated in Fig. 3.35. The

Timing Waveform of half adder, is illustrated in Fig. 3.36.

67

Figure 3.36 Timing Waveform of half adder

68

3.10.2 Half Adder using PDB logic

Figure 3.37 VIRTUOSO Schematic of half adder using PDB logic

The VIRTUOSO schematic of half adder using PDB logic is illustrated in Fig. 3.37.

69

3.10.3 Half Adder using FQR logic

Figure 3.38 VIRTUOSO Schematic of half adder using FQR logic

The VIRTUOSO schematic of half adder using FQR logic is illustrated in Fig. 3.38.

70

3.11 CHARACTERIZATION OF HALF SUBTRACTOR

3.11.1 Half Subtractor using domino logic

Figure 3.39 VIRTUOSO Schematic of half subtractor using domino logic

71

The VIRTUOSO schematic of half subtractor using domino logic is illustrated in Fig. 3.39.

Timing Waveform of half subtractor, is illustrated in Fig. 3.40.

Figure 3.40 Timing Waveform of half subtractor

72

3.11.2 Half Subtractor using PDB logic

Figure 3.41 VIRTUOSO Schematic of half subtractor using PDB logic

The VIRTUOSO schematic of half subtractor using PDB logic is illustrated in Fig. 3.41.

73

3.11.3 Half Subtractor using FQR logic

Figure 3.42 VIRTUOSO Schematic of half subtractor using FQR logic

The VIRTUOSO schematic of half subtractor using FQR logic is illustrated in Fig. 3.42.

74

3.12 CHARACTERIZATION OF 1-BIT FULL ADDER

3.12.1 1-bit Full Adder using domino logic

Figure 3.43 VIRTUOSO Schematic of 1-bit full adder using domino logic

75

The VIRTUOSO schematic of 1-bit full adder using domino logic is illustrated in Fig. 3.43.

Timing Waveform of 1-bit full adder, is illustrated in Fig. 3.44.

Figure 3.44 Timing Waveform of 1-bit full adder

76

3.12.2 1-bit Full Adder using PDB logic

Figure 3.45 VIRTUOSO Schematic of 1-bit full adder using PDB logic

The VIRTUOSO schematic of 1-bit full adder using PDB logic is illustrated in Fig. 3.45.

77

3.12.3 1-bit Full Adder using FQR logic

Figure 3.46 VIRTUOSO Schematic of 1-bit full adder using FQR logic

The VIRTUOSO schematic of 1-bit full adder using FQR logic is illustrated in Fig. 3.46.

78

3.13 CHARACTERIZATION OF 2-BIT FULL ADDER

3.13.1 2-bit Full Adder using domino logic

Figure 3.47 VIRTUOSO Schematic of 2-bit full adder using domino logic

79

The VIRTUOSO schematic of 2-bit full adder using domino logic is illustrated in Fig. 3.47.

Timing Waveform of 2-bit full adder, is illustrated in Fig. 3.48.

Figure 3.48 Timing Waveform of 2-bit full adder

80

3.13.2 2-bit Full Adder using PDB logic

Figure 3.49 VIRTUOSO Schematic of 2-bit full adder using PDB logic

The VIRTUOSO schematic of 2-bit full adder using PDB logic is illustrated in Fig. 3.49.

81

3.13.3 2-bit Full Adder using FQR logic

Figure 3.50 VIRTUOSO Schematic of 2-bit full adder using FQR logic

The VIRTUOSO schematic of 2-bit full adder using FQR logic is illustrated in Fig. 3.50.

82

3.14 CHARACTERIZATION OF 1-BIT FULL SUBTRACTOR

3.14.1 1-bit Full Subtractor using domino logic

Figure 3.51 VIRTUOSO Schematic of 1-bit full subtractor adder using domino logic

83

The VIRTUOSO schematic of 1-bit full subtractor using domino 1ogic is illustrated in Fig.

3.51. Timing Waveform of 1-bit full subtractor, is illustrated in Fig. 3.52.

Figure 3.52 Timing Waveform of 1-bit full subtractor

84

3.14.2 1-bit Full Subtractor using PDB logic

Figure 3.53 VIRTUOSO Schematic of 1-bit full subtractor using PDB logic

The VIRTUOSO schematic of 1-bit full subtractor using PDB logic is illustrated in Fig.

3.53.

85

3.14.3 1-bit Full Subtractor using FQR logic

Figure 3.54 VIRTUOSO Schematic of 1-bit full subtractor using FQR logic

The VIRTUOSO schematic of 1-bit full subtractor using FQR logic is illustrated in Fig.

3.54.

86

3.15 CHARACTERIZAION OF INCREMENTER

3.15.1 Incrementer using domino logic

Figure 3.55 VIRTUOSO Schematic of incrementer using domino logic

The VIRTUOSO schematic of incrementer using domino logic is illustrated in Fig. 3.55.

Timing Waveform of incrementer, is illustrated in Fig. 3.56.

87

Figure 3.56 Timing Waveform of incrementer

88

3.15.2 Incrementer using PDB logic

Figure 3.57 VIRTUOSO Schematic of incrementer using PDB logic

The VIRTUOSO schematic of incrementer using PDB logic is illustrated in Fig. 3.57.

89

3.15.3 Incrementer using FQR logic

Figure 3.58 VIRTUOSO Schematic of incrementer using FQR logic

The VIRTUOSO schematic of incrementer using FQR logic is illustrated in Fig. 3.58.

90

3.16 CHARACTERIZATION OF DECREMENTER

3.16.1 Decrementer using domino logic

Figure 3.59 VIRTUOSO Schematic of decrementer adder using domino logic

The VIRTUOSO schematic of decrementer using domino logic is illustrated in Fig. 3.59.

Timing Waveform of decrementer, is illustrated in Fig. 3.60.

91

Figure 3.60 Timing Waveform of decrementer

92

3.16.2 Decrementer using PDB logic

Figure 3.61 VIRTUOSO Schematic of decrementer using PDB logic

The VIRTUOSO schematic of decrementer using PDB logic is illustrated in Fig. 3.61.

93

3.16.3 Decrementer using FQR logic

Figure 3.62 VIRTUOSO Schematic of decrementer using FQR logic

The VIRTUOSO schematic of decrementer using FQR logic is illustrated in Fig. 3.62.

94

3.17 ARITHMETIC LOGIC FUNCTIONS IMPLEMENTED

The following table represents the arithmetic logic functions implemented in this work.

ARITHMETIC LOGIC FUNCTION(S) OUTPUT

Transfer Input A A

Logical AND Gate A.B

Logical OR Gate A+B

Logical NAND Gate (A.B)'

Logical NOR Gate (A+B)'

Logical XOR Gate (A'.B)(AB')

Logical XNOR Gate (A'.B')(A.B)

Half Adder SUM = (A⊕B) = A.B' + A'.B

CARRY = A.B

Half Subtractor DIFFERENCE = (A⊕B) = A.B'+ A'.B

BORROW = A'.B

Full Adder SUM = (A⊕B⊕Cin)

Cout = (A.B)+(B.Cin)+(A.Cin)

Full Subtractor DIFF = (A⊕B⊕Bin)

Bout = A'Bin + A'B + BBin

Incrementer (Ai + Bi) +1

Decrementer (Ai + Bi) -1

Table 3.1 Arithmetic Logic Functions Implemented

95

CHAPTER 4

SIMULATION RESULTS AND ANALYSIS

 To evaluate and analyse the performance of all the arithmetic logic functions

implemented using domino logic, pseudo dynamic buffer logic and footed quasi resistance

model, we have used 180nm technology node in VIRTUOSO, Cadence.

4.1 DELAY EVALUATION AT DIFFERENT CLOCK FREQUENCIES

Clock Frequency (MHz) Delay(ns)

Domino PDB FQR

1000 0.12 0.61 0.89

500 0.21 0.86 1.15

250 1.86 1.89 2.16

100 4.27 4.9 5.11

Table 4.1 Delay evaluation at different clock frequencies

96

4.2 POWER DISSIPATION AT DIFFERENT CLOCK FREQUENCIES

Clock Frequency (MHz) 1000 500 250 100

Power in Domino (µW) 33.68 16.93 8.50 3.41

Power in PDB (µW) 18.83 9.45 4.76 1.92

Power in FQR (µW) 23.18 11.62 5.84 2.34

Power Saving (%)

(PDB Vs FQR)

-23.10 -22.96 -22.68 -21.87

Power Saving (%)

(Domino Vs FQR)

31.17 31.36 31.29 31.38

Table 4.2 Power dissipation at different clock frequencies

97

4.3 DELAY EVALUATION AT 180nm TECHNOLOGY

Arithmetic Functions Delay (ns)

Domino PDB FQR

Buffer 1.62 2.06 2.32

Logica1 AND Gate 3.08 3.12 3.32

Logica1 OR Gate 0.11 0.18 0.23

Logica1 NAND Gate 0.19 0.25 0.34

Logical NOR Gate 5.13 5.38 5.6

Logica1 XOR Gate 1.11 1.23 1.55

Logica1 XNOR Gate 5.01 5.16 5.47

Ha1f Adder 5.18 5.21 5.92

Ha1f Subtractor 5.03 5.19 5.45

1-Bit Fu11 Adder 2.57 3.59 4.17

2-Bit Fu11 Adder 3.45 3.99 4.29

Fu11 Subtractor 2.98 4.01 5.09

Incrementer 1.79 2.01 2.25

Decrementer 1.01 1.44 1.68

Table 4.3 Delay Analysis at 180nm

98

4.4 POWER DISSIPATION AT 180nm TECHNOLOGY

Arithmetic

Functions

Power(uW) Power Saving (%)

 Domino PDB FQR Domino Vs

FQR

PDB Vs

FQR

Buffer 15.63 8.74 10.75 31.22 -22.99

Logica1 AND Gate 3.93 2.88 3.38 13.99 -17.36

Logica1 OR Gate 4.57 1.88 2.15 42.95 -14.36

Logica1 NAND

Gate

4.45 2.09 2.43 45.39 -16.27

Logical NOR Gate 3.18 1.88 2.05 35.53 -9.04

Logica1 XOR Gate 5.75 3.47 3.97 30.96 -14.40

Logica1 XNOR

Gate

4.64 4.05 4.14 10.78 -2.22

Ha1f Adder 11.66 9.51 9.94 14.75 -4.52

Ha1f Subtractor 11.32 9.75 10.10 12.19 -3.59

1-Bit Fu11 Adder 34.69 20.3 21.06 39.29 -3.74

2-Bit Fu11 Adder 112.6 86.8 89.6 20.42 -3.22

Fu11 Subtractor 39.68 21.22 23.04 41.93 -8.57

Incrementer 7.07 5.18 5.45 22.91 -5.21

Decrementer 10.56 5.85 6.05 42.71 -3.42

Table 4.4 Power Dissipation Analysis at 180 nm

99

4.5 POWER-DELAY PRODUCT AT 180nm TECHNOLOGY

Arithmetic Functions Power-Delay Product (PDP)

Domino PDB FQR

Buffer 25.24 18.01 24.91

Logical AND Gate 11.92 8.96 11.22

Logical OR Gate 0.51 0.35 0.47

Logical NAND Gate 0.85 0.50 0.82

Logical NOR Gate 16.31 10.11 11.48

Logical XOR Gate 6.38 4.26 6.14

Logical XNOR Gate 23.25 20.89 22.64

Half Adder 60.39 49.50 58.84

Half Subtractor 56.93 50.61 55.04

1-Bit Full Adder 89.15 72.87 87.50

2-Bit Fu11 Adder 699.25 623.39 691.89

Full Subtractor 118.35 85.09 117.17

Incrementer 12.65 10.41 12.26

Decrementer 10.55 8.42 10.16

Table 4.5 Power-Delay Product at 180 nm

100

Figure 4.1 Bar graph for delay evaluation

Figure 4.2 Bar graph for power dissipation

101

4.6 AVERAGE AND STANDARD DEVIATION EVALUATION OF FULL ADDER

1-Bit Full Adder 2-Bit Full Adder

PDB FQR PDB FQR

0.778 0.535 0.878 0.577

0.722 0.536 0.874 0.550

0.761 0.563 0.854 0.542

0.760 0.505 0.843 0.556

0.793 0.544 0.860 0.553

0.822 0.532 0.873 0.562

0.784 0.534 0.876 0.561

0.765 0.521 0.838 0.549

0.746 0.541 0.856 0.544

0.758 0.556 0.842 0.539

MEAN = 0.7502 MEAN = 0.5398 MEAN = 0.8496 MEAN = 0.5518

SD = 0.0302 SD = 0.0223 SD = 0.03261 SD = 0.0113

Table 4.6 Average and Standard Deviation Evaluation

ARITHMETIC

FUNCTIONS

CORRELATION COEFFICIENT % SAVING

Domino Vs PDB Domino Vs FQR

Buffer 0.653 0.721 10.41

Logical AND 0.774 0.866 11.88

1-Bit Full Adder 0.884 0.995 12.56

2-Bit Full Adder 0.823 0.954 15.91

Table 4.7 Correlation Analysis

102

 As depicted in the Fig. 3.40 and Fig. 3.44, it can be inferred from the

timing waveforms of 1-bit full adder and 2-bit full adder that FQR implementation results

in ‘good 1’ and ‘poor 0’ when the output makes a transition from logic 1 to logic 0. Noise

Margin for logic ‘0’ should be high. Due to that, the noise margin for logic ‘1’ in PDB

implementation becomes significantly less, i.e., almost negligible. This results in faulty

output. Though, for FQR implementation the noise margin for logic ‘1’ has significant

scope to detect the input signal. Therefore, the functionality of a cascaded logic circuit is

better for FQR model.

 From the Table 4.6, it can be observed that a sample data is taken for the PDB

and FQR implementation of 1-bit full adder and 2-bit full adder. For the taken data values,

Mean and Standard Deviation has been evaluated. From the results, it can be observed that

the standard deviation for the PDB logic increases significantly for the cascading logic

function. This signifies that for the PDB logic, the ripples in the circuit enhances when

complex logic circuit is designed. Hence, it can be deduced that noise margin is negatively

affected which may further lead to faulty output.

 For FQR implementation, the standard deviation reduces for the logic designs

with multiple cascading stages. This causes less voltage transitions to propagate through the

logic circuit and hence provides reduced variation in the voltage level at the output of

multiple cascaded stages. Hence, even if the power consumed in FQR logic is higher than

that of PDB logic, FQR logic provides better results.

 From Table 4.7, the correlation of the FQR and PDB logic waveforms with

respect to the domino logic has been evaluated for buffer, logical AND gate, 1-bit full

adder, 2-bit full adder. The output of domino logic implementation of a function is

approximately ideal. The implementation of buffer, logical AND gate, 1-bit full adder and

2-bit full adder depicts increasing percentage of correlation by 15% which signifies that the

FQR waveform for a logic function is significantly identical to domino logic. Thus, from

the evaluated values it can be derived that the output of FQR topology is closer to the

domino logic model. Hence, FQR logic produces better output as compared to the PDB

logic for a complex logic function.

103

 In this work, two performances of the above circuits are analyzed: Delay and

Power dissipation. These performances and metrics are measured for all arithmetic logic

functions based on domino logic buffer model, pseudo dynamic buffer model and footed

quasi resistance model. Each of the designs is implemented to determine the optimal trade-

off between delay-power dissipation.

 From above evaluation, we can observe that Power Saving of Footed Quasi

Resistance Model Footed Quasi Resistance model (FQR) is less compared with PDB.

However, it is not beneficial to implement cascaded circuits using PDB if we want to avoid

compromising on power saving. The evaluation of the simulation results obtained, leads to

an observation that as the clock frequency is increased, the power dissipation as well as the

delay of the FQR model correspondingly increases as well. This implies that power saving

(%) for domino logic is increased with the rise in clock frequency. By above simulation

results we can observe that the FQR logic has less power dissipation of 29.58% as

compared to domino logic.

104

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

 The domino logic buffer suffers from the issue of precharge pulse

propagation. This problem is overcome by using PDB topology. Implementation of a logic

function using PDB topology eliminates precharge pulse propagation. However, PDB

technique poses a problem while designing of cascaded circuits to execute a logic function.

In this work, we used footed quasi resistance technique for implementing logic functions

since it is capable of resolving the problems due to cascading. However, there is one

drawback of this implementation: Increase in power dissipation. Even with increased power

dissipation, this technique allows the designer to implement cascaded designs. This

observation is drawn by analyzing the power dissipation and delay of domino logic, PDB,

and FQR logic models for implementation of different logic functions. To determine the

accurate results, the power consumption of domino logic is compared with that of PDB

topology and FQR topology. Thus, the Footed Quasi Resistance model exhibits power

trade-off to overcome the cascading issues of PDB domino logic.

 Footed quasi resistance topology can be further utilized to design an

Arithmetic Logic Unit (ALU) for implementing all the logic functions described in this

thesis. Experimental verification of the obtained results can be performed for logic circuits

having higher degree of cascading and complex logic designs.

105

REFERENCES

[1] Bokare, U. M., & Gaidhani, Y. A. (2017). Design of CMOS dynamic logic circuits

to improve noise immunity. 2017 International Conference on Communication and

Signal Processing (ICCSP).

[2] R.G.D.Jeyasingh, N.Bhat and B.Amrutur, "Adaptive Keeper Design for Dynamic

Logic Circuits Using Rate Sensing Teehnique," IEEE Trans. Very Large Seale

Integr.(VLSI) Syst., Feb. 2011.

[3] H. F. Dadgour and K. Banerjee, “A novel variation tolerant keeper architecture for

high-performance low-power wide fan in dynamic or gates,” IEEE Trans. Very

Large Scale (VLSI) Syst., vol. 18, Nov. 2010.

[4] F.Mendoza-Hernandez, M.Linares-Aranda, V. Champac, Noisetolerance

improvement in dynamic CMOS logic circuits. In: proceedings of the lEE circuits,

devices and systems, Dec 2006.

[5] L. Ding and P. Mazumder, “On circuit techniques to improve noise immunity of

CMOS dynamic logic,” IEEE Trans. Very Large Scale Integer. Syst., Sep. 2004.

[6] Tyler J. Thorp, Member, IEEE, Gin S. Yee, Member, IEEE, and Carl M. Sechen,

Fellow, IEEE, “Design and Synthesis of Dynamic Circuits”, IEEE

TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)

SYSTEMS, VOL. 11, NO.1, FEBRUARY 2003.

[7] R.H. Krambeck, C. M. Lee, H.-F.S. "Law,High-speed compact circuits with

CMOS",IEEE Journal of Solid-State Circuits, SC-17 (1982).

106

[8] G.Yee and C. Sechen, “Dynamic logic synthesis,” in Proc. IEEE Custom Integrated

Circuits Conf., May 1997.

[9] P. Larsson, and C. Svensson, "Noise in digital dynamic CMOS circuits," IEEE

Journal of Solid-State Circuits, vol. 29, June. 1994.

[10] V. Friedman and S. Liu, “Dynamic logic CMOS circuits,” IEEE J. Solid- State

Circuits, vol. SC-19, pp. 263–266, Apr. 1984. [8] G.Yee and C.Sechen, “Dynamic

logic synthesis,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997.

[11] M.W. Allah, M.H. Anis and M.l. Elmasry, "High speed dynamic logic circuits for

scaled-down CMOS and MTCMOS technologies" in Proc. IEEE Inter. Symp. Low

Power Electronics Design, July 2000.

[12] N. F. Goncalves and H. J. De Man, "NORA: A dynamic CMOS technique for

pipelined logic structures, IEEE J . Solid State Circuits, vol. SC-18, June 1983.

[13] J. Kuo, J. Lou, "Low-Voltage CMOS VLSI Circuits", Wiley interscience,

NewYork, 1999.

[14] Y. Lih, N. Tzartzanis and W. W. Walker, "A Leakage Current Replica Keeper for

Dynamic Circuits," in IEEE Journal of Solid-State Circuits, vol. 42, Jan. 2007.

[15] Y.Ji-Ren, I.Karlsson, C.Svensson, A true single-phase-clock dynamic CMOS

circuits technique, IEEE journal of solid state circuits 22, October1987.

[16] R. H. Krambeck, C. M. Lee and H. F. S. Law, "High-speed compact circuits with

CMOS,"IEEE Journal of Solid State Circuits, vol. 17, Jun. 1982.

[17] A. Alvandpour, R. K. Krishnamurthy, K. Soumyanath, and S. Y. Borkar, "A

conditional keeper technique for sub-130nm wide dynamic gates," in Proceedings of

Intertional Symposium on VLSI Circuits, 2001.

[18] M. Anis, Mohab H., Mohamed W. Allam, and Mohamed I. Elmasry. "Energy-

efficient noise-tolerant dynamic styles for scaled-down CMOS and MTCMOS

technologies." IEEE Transactions on Very Large Scale Integration (VLSI) Systems

107

10.2 (2002).

[19] M. H. Anis, M.W. Allam, and M. I. Elmasry, "High-speed dynamic logic styles for

scaled-down CMOS and MTCMOS technologies," in Proceedings of International

Symposium on Low- Power Electronics and Design, 2000.

[20] Atila Alvandpour,, Ram K. Krishnamurthy, K. Soumyanath and Shekhar Y.

Borkar, “A Sub-130-nm Conditional Keeper Technique”, IEEE Journal of solidstate

circuits, vol. 37, May 2002.

[21] Ankita Sharma , Divyanshu Rao and Ravi Mohan, “Design and Implementation of

Domino Logic Circuit in CMOS”, Journal of Network Communications and

Emerging Technologies (JNCET) Volume 6, Issue 12, December (2016) .

[22] A. Peiravi and M. Asyaei, “Robust low leakage controlled keeper by current-

comparison domino for wide fan-in gates, integration,” VLSI J., 2012.

[23] Shiksha and K. K. Kashyap, "High speed domino logic circuit for improved

performance," 2014 Students Conference on Engineering and Systems, Allahabad,

2014.

[24] Roy, K., Mukhopadhyay, S. and Mahmoodi-Meimand, H., 2003. Leakage current

mechanisms and leakage reduction techniques in deep sub-micrometer CMOS

circuits. Proceedings of the IEEE.

[25] Ravikumar, R., “Double Stage Domino Technique: Low-Power HighSpeed

Noise-tolerant Domino Circuit for Wide Fan-In Gates”. International Journal of

Engineering and Technology (IJET) Vol 8 No 3 Jun-Jul 2016 (2016).

[26] A. Peiravi and M. Asyaei, "Current-Comparison-Based Domino: New Low-

Leakage High-Speed Domino Circuit for Wide Fan-In Gates," in IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 21, May 2013.

[27] Rangari, A. V., & Gaidhani, Y. A. (2016). Design of comparator using Domino

Logic and CMOS Logic. 2016 Online International Conference on Green

Engineering and Technologies (IC-GET).

108

[28] A. Manikandan and J. Ajayan, “High Speed Low Power 64-Bit comparator

designed Using Current Comparison Based Domino Logic,” IEEE sponsored 2nd

international conference on electronics and communication systems (icecs ‘2015).

[29] D.Y.Ponomarev, G. Kueuk, O.Ergin, K. Ghose, "Energy Effieient Comparators for

Supersealar Datapaths", IEEE Trans. Computers, vol. 53, July 2004.

[30] Satwik Patnaik, Shruti Mehrotra “A Low-Power, Area Efficient Design Technique

for Wide Fan-in Domino Logic based Comparators” 2013 International Conference

on Circuits, Power and Computing Technologies [ICCPCT2013].

[31] F.Moradi, APeiravi and H.Mahmoodi, "A High Speed and Leakage Tolerant

Domino Logie for High Fan-in Gates," Proc. 15th ACM Great Lakes Symp. on

VLSI (GLSVLSI'05), 2005.

[32] H. Mahmoodi and K. Roy, “Diode-footed domino: A leakage-tolerant high fan-in

dynamic circuit design style,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51,

Mar. 2004.

[33] Sah, N., & Mittal, E. (2017). An improved domino logic. 2017 International

Conference on Energy, Communication, Data Analytics and Soft Computing

(ICECDS).

[34] Neha Vaish, Sampath Kumar V, “Energy efficient and high speed domino logic

circuits ” Int. Journal of Engineering Research and Applications, Vol. 5, Issue 4,

(Part -1) April 2015.

[35] David Van Campenhout, Trevor Mudge, Karem A. Sakallah, “Timing verification

of sequential domino circuits”, Proceeding of the 1996 IEEE/ACM International

Conference on Computer-Aided Design.

[36] Harris, D., & Horowitz, M. A. (1997). Skew-tolerant domino circuits. IEEE

Journal of Solid-State Circuits.

109

[37] Fang Tang, Amine Bermark,Zhouye Gu,"Low power dynamic logic design using

a pseudo dynamic buffer, INTEGRATION", the VLSI journal 45(2012) .

[38] Deepika Bansal, B P Singh, Ajay Kumar, “Comparative analysis of improved

Pseudo Domino logic”, 31st National convention of Electronics and

Telecommunication Engineers, October 2015.

[39] Thota Ravi Sankar, Sankit R. Kassa, R.K. Nagaria and Ankur Kumar,

“Performance Analysis of Footed Quasi Resistance Scheme for Low Power VLSI

Circuits”, 1st IEEE International Conference on Power Electronics. Intelligent

Control and Energy Systems (ICPEICES-2016).

[40] Wairya. S, Nagaria. R. K and Tiwari. S, 2012, “Comparative performance analysis

of XOR-XNOR function based high speed CMOS full adder circuits for low voltage

VLSI design”, International Journal of VLSI design and Communication Systems

(VLSICS), AIRCC Publication.

[41] Amit Kumar Pandey, Jayant Kumar Tiwari, Ram Awadh Mishra, “Design of New

Low Leakage Power Domino XOR Circuit”, International Journal of Computer

Applications (0975 – 8887) Volume 65– No.1, March 2013.

[42] Chowdhary. S. R, Banerjee. A, Roy. A and Saha. H, 2008, “A high speed 8

transistor full adder design using novel 3 transistor XOR gates”, International

Journal of Electrical and Computer Engineering,vol.3,no.12.

[43] S. Wairya, Himanshu Pandey, R. K. Nagaria and S. Tiwari, Member, IEEE,

"UItra low voItage high speed I-bit CMOS adder", Power, Control and Embedded

Systems (lCPCES), 20 I 0 International Conference.

[44] Navi, K., Kavehie, O., Rouholamini, M., Sahafi, A., & Mehrabi, S. (2007). A

Novel CMOS Full Adder. 20th International Conference on VLSI Design Held

Jointly with 6th International Conference on Embedded Systems (VLSID’07).

[45] J.M. Rabey , A Chandrakasan, and B. Nicolic, Digital Integrated Circuits, 2nd ed.,

Prentice Hall, 2003.

110

[46] H. Mahmoodi-Meimand and K. Roy, "Diode-footed domino: a leakage tolerant

high fan-in dynamic circuit design style," in IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 51, no. 3, March2004.

[47] Kumar, S., Singhal, S., Pandey, A. K., & Nagaria, R. K. (2013). Design and

simulation of low power dynamic logic circuit using footed diode domino logic.

2013 Students Conference on Engineering and Systems (SCES).

[48] V. Kursun, E.G. Friedman, Domino logic with variable threshold voltage keeper,

IEEE Transactions on VLSI Systems, 11 (6) (2003).

[49] Jinn-ShyanWang, Ching-RongChang, ChingweiYeh, Analysis and design of high-

speed and low-power CMOS PLAs, IEEE Journal of Solid-State Circuits 36 (8)

(2001).

[50] Meher, P., & Mahapatra, K. K. (2011). A high-performance circuit technique for

CMOS dynamic logic. 2011 IEEE Recent Advances in Intelligent Computational

Systems.

[51] Adarsh, C. S. D., Lakshmi, T. V., & Kamaraju, M. (2017). Implementation and

comparative analysis of double gate low power multiplexers using dynamic logic

styles. 2017 International Conference of Electronics, Communication and

Aerospace Technology (ICECA).

[52] Dadashi, A., Mirmotahari, O., & Berg, Y. (2016). Domino dual-rail, high-speed,

NOR logic, with 300mV supply in 90 nm CMOS technology. 2016 IEEE

International Symposium on Consumer Electronics (ISCE).

[53] Shinde, J. R., Salankar, S. S., & Shinde, S. J. (2016). Multi-objective optimization

domino techniques for VLSI circuit. 2016 International Conference on Advances in

Computing, Communications and Informatics (ICACCI).

[54] Salendra.Govindarajulu, Dr.T.Jayachandra Prasad, P.Rangappa, “Low Power,

Reduced Dynamic Voltage Swing Domino Logic Circuits”, Indian Journal of

Computer Science and Engineering Vol 1 No 2, 74-81, 2011.

111

[55] Vojin G. Oklobdziza and Robert K. Montoye “Design Performance Trad-Offs in

CMOS Domino Logic” IEEE Journal solid state circuiit VOL Sc12 No-2 April,

1986.

[56] Rajeev Kumar, Maneesh Kumar Singh, Vimal Kant Pandey, “Performance of low

power Domino Circuits using pseudo dynamic buffer”, IOSR Journal of VLSI and

Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014).

[57] Akurati, S. K., Angeline, A. A., & Bhaaskaran, V. S. K. (2017). ALU design

using Pseudo Dynamic Buffer based domino logic. 2017 International Conference

on Nextgen Electronic Technologies: Silicon to Software (ICNETS2).

