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CHAPTER1 

 

INTRODUCTION 

1.1 OVERVIEW 

   As the advancement of technologies is at its peak, rising market strain has 

driven cutting-edge microprocessors to enhance their performance with each passing year. 

This progress rate is maintained and kept in flow by using micro-architectural 

methodologies such as dynamic implementation and execution of designs and pipeline. But 

the usage of these technologies provides decrementing returns, however, in the present fast 

developing world, it is now more than ever necessary to use faster circuit techniques to 

further increase performance [1]. 

   The circuit implementation of a logic function is done using 2N devices when 

Static Complementary MOS (CMOS) logic has a fan-in of N. A range of methods have 

been provided to decrease the amount of transistors that are needed to perform a particular 

logic function, including pseudo-NMOS, dynamic logic, pass transistor logic etc. There 

occurs static power dissipation when the functions are implemented using pseudo – NMOS 

logic since it requires N+1 number of transistors in order to design a logic gate that has N 

inputs [2]. An alternative logic type called dynamic logic is described in this report that 

achieves a comparable outcome while avoiding the usage of static power.   

   With the enhancement in the electronics industry, domino logic topology is 

being actively utilized for the designing of enhanced speed and better performance micro-

controllers and microprocessors. The usage of domino logic enables to attain the adequate 

timing objectives [3] [4]. Their improved performance and enhanced efficiency can be 

attributed to factors such as reduced input capacitance, lower value of switching thresholds 
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and decreased use of logic gates to implement the design. However, a trade-off occurs 

between power dissipation and speed. As the speed of a design is improved it leads to 

enhanced power dissipation [5]. 

 

 

1.2 DYNAMIC  LOGIC : PRINCIPLE 

    The primary implementation of a N-type dynamic logic gate is depicted in 

Fig. 1.1. From Fig. 1.1 it can be perceived that the implementation of PDN (pull-down 

network) is exactly similar to that of the implementation done using complementary MOS 

(CMOS). The operation of n-type dynamic logic gate is divided into two major phases:  

1) Precharge  

2) Evaluation 

The mode of operation of the designed circuit is determined by the clock signal (CLK) 

provided. 

1) Precharge Mode 

   When the clock input applied to the circuit is 0, i.e., CLK = 0, the PMOS 

transistor (represented as Mp) precharges the output node (OUT) to a value VDD. Thus, 

when clock input is 0, the pull-down path is disabled as the evaluate NMOS transistor 

(represented as Me) is switched off. The evaluate transistor eliminates the consumption of 

static power that occurs during the precharge period. This static power consumption occurs 

when both the pull-down and pull-up devices are turned on simultaneously and as a result 

static current flows between the supplies [6]. 

2) Evaluation Mode 

   When the clock input applied to the circuit is 1, i.e., CLK = 1, the evaluation 

transistor (Me) is in 'ON' state which implies that it is in operating condition whereas the 

precharge transistor (Mp) is in switched 'OFF' state. The output value OUT is discharged 

conditionally which depends upon the input values applied to the logic circuit as well as the 



3 

 

pull-down topology [7]. A low resistance path is created between OUT node and GND 

when the pull-down network (PDN) is conducting which causes the output value to be 

discharged to 0. However, if the inputs applied are such that the PDN is in conducting state, 

the value that is contained by the load capacitance (CL) is the value that has been 

precharged at the earlier state [8]. 

    During the evaluation mode of operation, GND is the only possible path that 

exists as a connection between the output node and the supply voltage. As a result, it is not 

possible to charge the output load capacitance once OUT have been discharged. This can be 

done only when the subsequent precharge phase takes place [9]. Therefore, the input values 

applied to the gates can make at most of one transition while in evaluation phase. While in 

evaluation phase it might happen that when the pull-down network of the logic function is 

in ‘off’ state, the output node enters into high impedance state [10]. Consequently, this 

functionality of the dynamic circuit design is essentially different from the static equivalent 

of the same logic function in which a low resistance path always exists between the output 

node and one of the supply voltages. 

    There are two output levels: Low output level VOL represented by GND and 

High output level VOH represented by VDD. The Voltage Transfer Characteristics 

parameters of dynamic logic circuits are extensively different from that of static CMOS 

logic gates. It is not possible to apply pure static analysis to the dynamic logic gates 

because in order to be functional dynamic circuits needs a periodic sequence of precharges 

as well as evaluations [11] [12]. 

    During the evaluation phase, the pull-down network (PDN) of the dynamic 

inverter becomes active in nature, which occurs in case the input signal applied to the gate 

exceeds the threshold voltage of the NMOS pull-down transistor. As a result, the values of 

switching threshold (VM), VIH and VIL of the logic gate are set equal to threshold voltage 

(Vtn). This translates to a low value for the NML. 
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Figure 1.1 Dynamic Logic Circuit 

 

    

1.3 SPEED AND POWER DISSIPATION IN DYNAMIC LOGIC 

   The capability that makes the dynamic logic circuits so efficient and highly 

used is the enhanced speed and reduction in implementation area. As the number of logic 

elements being utilized for the implementation of the logic function is decreasing, it 

signifies that the overall load capacitance of the circuit becomes much smaller. Some 

unique characteristics of logic circuits come to light when the switching behavior of the 

gate is analyzed [14]. After the end of precharge phase, the output is in high state. When the 

applied input signal is low, no additional switching takes place. Thus, as a result, tpLH = 0. 

The discharging of output load capacitance takes place when the pull-down circuit makes a 

high-to-low transition.  Thus, it can be concluded that tpHL is proportional to the load 

capacitance (CL) and the current-sinking capabilities of pull-down network. However, the 

use of the evaluation transistor presents an extra series resistance that leads to the slowing 

of gate operation. However, if we eliminate the evaluation transistor, static power 

dissipation will occur and performance would degrade [15] [16] [17]. 
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  The precharge charge is basically determined by the time that the circuit takes for 

charging the load capacitance (CL) through the PMOS precharge transistor. During the 

charging of the load capacitance, it is not possible to utilize the logic being implemented by 

gate. Most of the time, the digital system maybe implemented such that the precharge time 

gets overlapped with the other logic design functions. Thus, while designing the dynamic 

logic circuit, the designer must be careful about this “overlap zone” [18].   

   At this point, dynamic logic design comes into light as it provides faster speed 

and less power dissipation. Although dynamic logic has several advantages, it suffers from 

“cascading issue” in extensive circuits [19]. There are two phases of functionality of 

dynamic logic: 

1) Precharge phase (Set-up phase): In this phase, irrespective of the input values applied, 

output rises to an extremely high value. The load capacitance gets charged in this phase. 

2) Evaluation Phase: In this phase, there exist a path between the GND and the output 

terminal. This causes the load capacitance to be discharged. 

   It might happen that the second logic gate of the dynamic logic design may 

discharge prematurely. This condition comes into play when the first logic gate is in 

precharge state. 

   This condition causes the precharge state of the second logic gate to be used 

up and it can’t be restored until the next clock cycle. Thus, error occurs. Therefore, to be 

able to implement cascaded logic circuits, the one solution is Domino Logic. In domino 

logic, a static inverter is inserted between the logic states [20]. 
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1.4 DOMINO LOGIC CIRCUITS 

   Domino logic topology is widely utilized in high-speed applications that are 

used for the implementation of logic circuits having large fan-in. But the area where 

domino logic circuits suffer is their vulnerability to unwanted noise. Domino logic circuits 

have low switching threshold voltage that makes them more sensitive to noise [21]. This 

low switching threshold voltage is equal to the threshold voltage of NMOS devices used for 

the implementation of evaluation network of the domino logic. The substantial increment in 

the noise with technology scaling severel affects the usefulness of domino logic topology 

[22]. With the help of technology scaling, it is possible to scale down the supply voltage 

which leads to the reduction in power dissipation. 

   The main concern is to design a circuit that has improved performance. This 

could be achieved by maintaining a high-drive current that can be attained by  ensuring that 

the threshold voltage is proportionately scaled. However, scaling of the threshold voltage 

leads to a substantial increase in the sub threshold leakage current [23]. 

   As the technology is being scaled down, it leads to the exponential increase in 

the leakage of evaluation NMOS transistors because of their lower threshold voltage. 

Domino logic circuits offers a significant edge over the existing technology due to their 

faster transitions and glitch-free operation. One of the most effective technology to 

implement high speed logic functions is the execution of circuits using Domino Logic. 

Domino logic is evolved from the dynamic logic technology and is based on the CMOS-

based implementation of logic function using either PMOS or NMOS transistors. It 

provides a speed at least twice as faster than the corresponding static complementary MOS 

(CMOS) logic. In domino logic, a single clock is used for the process of precharge and 

evaluation of a cascaded implementation of dynamic logic blocks [24] [25]. 
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1.4.1 Domino Logic: Principle 

   Domino logic module is basically comprising of an. n-type dynamic logic with 

a static inverter following it (Fig. 1.2). While operating in precharge phase, the output of 

the n-type dynamic logic gate is charged up to VDD, and the output of the inverter is set to a 

value of 0. During evaluation phase, the dynamic logic gate conditionally discharges, and 

the output of the inverter makes a conditional transition from 0 to 1 [26]. If an assumption 

is taken such that the inputs being applied to a Domino logic gate are the outputs of the 

previous Domino logic gate , then it can be made sure that all the applied inputs are set to 0 

at the end of the evaluation phase and the only transactions that takes place during 

evaluation phase are 0 to 1 transitions.  

   The inclusion of the static inverter in between the logic states provides with an 

additional advantage of increased noise immunity. The enhanced noise immunity can be 

attributed to the fact that the static inverter that is driving the fan-out of the logic gate has a 

low impedance output [27]. The use of the buffer further decreases the load capacitance of 

the output node of the dynamic circuit by providing separation between the internal and 

load capacitances. Let us take into consideration the implementation of the cascaded 

structure of Domino logic gates. In the precharge phase, all the inputs have been initially 

set to 0. In the evaluation phase, the output of the. first domino logic block either stay in the 

state 0 or makes a transition from 0 to 1, which in turns affects the output of the second 

logic gate [28] [29]. This transition effect might ripple from one stage to another 

throughout the chain, similar to a line of falling dominoes – hence given the name Domino 

Logic Circuit. Domino CMOS has the following characteristics: 

• Domino logic can be used for the implementation of only non-inverting logic 

because each dynamic logic gate consists of a static inverter that has been inserted 

between the two logic states. This situation is a major limiting factor for the rare 

existence of pure domino logic design [30] [31]. 
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• The logic functions implemented using Domino CMOS provides with very high 

speed. There only exists a rising edge delay and tpHL equals to 0. The sizing of the 

inverter can be done in order to meet the fan-out characteristics of the logic gate. 

Also, the fan-out of the logic gate is already much smaller as compared to the 

corresponding static CMOS implementation of the same logic design, as there exists 

only one output load capacitance for a gate per fan-out [32].  

    Due to the low input being applied while in precharge phase, it is a practical 

approach to eliminate the evaluation transistor as this would lead to reduction in the clock 

load and would increase pull-down drive. But eliminating the evaluation device would 

result in extension of the precharge cycle which would further lead to the precharge to 

ripple through the logic network as well [33]. Thus, the critical path of a logic circuit can be 

signified as the time taken to precharge the logic circuit. Another issue that has been faced 

in domino logic implementation of a function is the excess power dissipation that occurs 

when both the pull-up and pull-down transistors are turned on. Therefore, it is vital to 

always utilize evaluation devices. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Domino Logic Circuit 

 

 



9 

 

    From the Fig. 1.3, it can be seen that two functional inputs are controlled by a 

clock signal, CLK. Domino logic topology is a clocked logic family, which shows that each 

logic gate has a clock signal present. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.3  A CMOS domino logic 2-input AND gate. 

   When the clock signal becomes low, the evaluation node reaches a high state, 

which causes the output of the gate to attain a low value. The time period for which the cell 

is under operating condition when the input clock and the output are low is known as 

precharge phase or cycle.  

   The evaluation cycle is the phase when the applied input clock signal is high. 

In the evaluation mode of operation, the output of the AND logic using domino circuit, is 

capable of attaining a high value when both the applied inputs, A and B, are ‘1’, i.e., high. 

The high inputs drive the evaluation node to a low value. The evaluation phase is the 

functional operating phase in the domino logic cells. The precharge phase basically enables 

the next evaluate phase to occur. The correct application of the clock signal ensures that the 

critical path in domino logic cells only traverses through cells in the evaluate phase [34]. 
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1.5 DOMINO LOGIC BUFFER 

   Fig. 1.4 shows the design of a conventional clock-controlled domino logic 

circuit. Domino topology has a dynamic N-type gate (pull-down network PDN) followed 

by a static inverter.  

 

 

 

    

 

 

 

 

 

 

 

 

Figure 1.4 Domino logic implementation 

    Fig. 1.5 represents the implementation of a domino logic buffer. There are two 

phases of operation, precharge phase and evaluation phase. 

• During the precharge phase, the clock signal is in '0' state. The 0 input signal 

 causes the PMOS (M1) transistor to be turned on thus precharging the dynamic    

 node, Z.   

• During the evaluation phase, the clock signal is pulsed high. The high input 

 signal causes the NMOS (M2) transistor to be turned on. 

   Thus, when the applied input signal (A) is low, the logic at the node Z is kept 

high regardless of the present operating phase. However, when the applied input signal (A) 

is high, the precharge and evaluation phase takes place. 
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   As depicted in the Fig. 1.5, when the circuit   is in precharge phase, node Z 

and node B will be charged up to VDD. The voltage at node OUT will dropdown to '0'. This 

would lead to the propagation of the precharge phase value to the output of the buffer. This 

precharge pulse propagation from node Z via the static buffer leads to higher power 

dissipation. Moreover, the output state is not stable when the circuit is in precharge phase 

as thus the cascading characteristics and performance of the domino logic is limited [35] 

[36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Domino buffer implementation 

 

 

 

1.6 PSEUDO DYNAMIC BUFFER (PDB) 

   The main drawback that degrades the performance of conventional domino 

logic buffer is the precharge pulse propagation. The topology that overcomes this issue is 

PDB-based implementation that has been illustrated in Fig. 1.6. In this buffer 

implementation, the source of the buffer’s NMOS transistor M5 is connected to node B 

instead of being connected to GND. By implementating a logic function using such 
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topology, the value present at node Z cannot propagate to the output node OUT during the 

precharge phase of the gate. This happens because during precharge phase, the evaluation 

transistor M2 is turned off. When the input logic A is low, the floating node Z is always in 

high state and then, the output node OUT is kept low regardless of the operating phase [37] 

[38]. On the other hand, if the input signal A is high, the precharge and evaluation phases 

will lead to the following operational conditions: 

• During the evaluation phase, node Z and node B gets discharged to GND,  resulting 

in enabling the PMOS transistor M4, while pulling up the output node voltage OUT 

to VDD. 

• During the precharge phase, node Z is charged upto VDD, followed by the voltage at 

node B. Since the NMOS evaluation transistor M2 is disabled, the output  node Z 

is held high (same value as the previous evaluation phase). 

Figure 1.6 Domino logic circuit using pseudo dynamic buffer. 
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1.7 FOOTED QUASI RESISTANCE (FQR) MODEL 

   The major issue that occurs in PDB implementation is the cascading problem 

at the output node, when the input signal applied makes a transition from logic l to logic 0. 

Implementing logic functions using Footed Quasi Resistance (FQR) technique can 

overcome this issue.  The structure for FQR implementation is as shown in Fig. 1.7 [39]. 

   In this circuit, the logic function is being designed by using depletion PMOS 

and NMOS, both of which are being driven by same input node Y. When the node Y is at 

logic l logic 1, depletion PMOS is OFF thus making quasi resistance acting as open circuit, 

which is same as in case of logic 0 at node Y but at this time depletion NMOS is OFF 

which results same. This process can be explained as follows:   

   When the input signal (A) being applied is logic 1, then in precharge mode of 

operation, the node Y is connected to VDD and in evaluation phase it is connected to ground 

which makes FQR work as PDB only. 

    When the input signal (A) being applied is logic 0, the footed quasi resistance 

functionality in evaluation and precharge phase can be explained as below: 

• During precharge phase, both the transistors NM2 and NM5 are in cut-off condition   

which will lead node Y to act as an open circuit. This happens due to the fact that 

we  are using depletion NMOS and PMOS in FQR which provides a path to 

discharge the  output parasitic capacitance. 

• During evaluation phase, both the NMOS transistors, NM2 and NM5 are turned on 

thus causing the output node to be at voltage 0. 
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Figure 1.7 Domino logic circuit using footed quasi resistance 

 

 

1.8 AND GATE 

     An AND gate is a digital logic gate which is provided with two or more input 

signals and as a result produces a single output that performs AND operation. The output 

would be high if all the applied inputs are high, i.e., logic '1'.  The output would be low if 

any of the applied input is low, i.e., logic '1'.   

         Q = A.B       (1.1)   

   The AND gate basically performs multiplication operation which results in the 

output of the gate to be '0', when either or all the applied inputs are '0'. 
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A B Q 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 Table 1.1  Truth Table of 2-Input AND Gate    Figure 1.8.1 2-input AND Gate  

The following characteristics can be derived from the AND gate:  

• A.A = A 

• 1.A = A 

• 0.A = 0 

• A.A' = 0 

• A.B = B.A  

• A.(B.C) = (A.B).C = A.B.C 

 

 

1.9 OR GATE 

   The OR gate is a digital logic gate which is provided with two or more input 

signals and as a result produces a single output that performs OR operation. The output 

would be low if all the applied inputs are low, i.e., logic '0'.  The output would be high if 

any of the applied input is high, i.e., logic '1'. 

          Q = A+B      (1.2) 

   The OR gate basically performs addition operation which results in the output 

of the gate to be '1', when either or all the applied inputs are '1'. 
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A B Q 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

  Table 1.2  Truth Table of 2-Input OR Gate        Figure 1.9.1 2-input OR Gate  

The following characteristics can be derived from the AND gate: 

• A+A = A 

• 1+A = 1 

• 0+A = A 

• A+A' = 1 

• A+B = B.A  

• A+(B+C) = (A+B)+C = A+B+C 

 

 

1.10 NAND GATE 

   The NAND gate is basically a digital logic gate which is provided with two or 

more input signals and as a result produces a single output that performs NAND operation. 

The output would be low if all the applied inputs are high, i.e., logic '1'.  The output would 

be high if any of the applied input is low, i.e., logic '0'. It performs the complementary 

operation of that is implemented by AND Gate. The output of the NAND gate would be ‘0’ 

only when exactly both the inputs applied is ‘l’. If any of the input is ‘0’, then the output is 

also ‘1’. 
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   The logic or boolean expression represents that the operation that is being 

executed by logic NAND is of logical addition and this operation is performed when the 

inputs applied are being complimented.  

 

          Q = (A.B)'       (1.3) 

 

 

 

           Figure 1.10 2-input NAND  Gate  

 

A B Q 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

Table 1.3  Truth Table of 2-Input NAND Gate 

 

 

1.11 NOR GATE 

   The NOR gate is a digital logic gate which is provided with two or more input 

signals and as a result produces a single output that performs NOR operation. It performs 

the reverse or complementary operation of OR Gate. The output would be high in case all 

the inputs applied is low, i.e., logic '0'.  The output would be low if any of the applied input 

is high, i.e., logic ‘1’. 
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    The logic or boolean expression represents that the operation that is being 

executed by logic NOR is of logical multiplication and this operation is performed when 

the inputs applied are being complimented.  

         Q = (A+B) '        (1.4) 

 

 

Figure 1.11 2-input NOR Gate 

 

A B Q 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 

Table 1.4  Truth Table of 2-Input NOR Gate 

 

 

1.12 XOR Gate 

   XOR gate (also called as Exclusive OR) represents a digital logic gate. This 

logic gate is provided with two or more inputs and thus produces one output that 

implements exclusive disjunction. The output that results would be ‘1’ only when exactly 

one of its input signals is ‘1’. If both the inputs applied to an XOR gate are ‘0’, or if both of 

its inputs are ‘1’, then the resulting output would be ‘0’. However, in case that the inputs 

being applied to the XOR gate is greater than two, then the functioning of the gate would 

be determined by its implementation.  
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    As observed from a wide range of scenarios, XOR gate will result in an output 

‘1’ in case the number of inputs ‘1’ applied is odd. Thus, the output of the XOR gate only 

goes high when the inputs being applied to the logic gate are at different logic levels with 

respect to each other.  

       Q = (A ⊕ B) = A.B' + A'.B      (1.5) 

   Ex-OR logic gate can be designed by the strategic combination of standard 

logic gates. These logic gates can be used for the implementation of complex design 

systems. Ex-OR logic gate with two input signals basically represents a modulo two adder, 

because it implements the addition of two binary numbers and hence are more complicated 

to design and implement as compared to standard logic gates [40]. 

 

 

A B Q 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Table 1.5  Truth Table of XOR Gate     Figure 1.12 2-input Ex-OR Gate 

 

   XOR gate is one of the most widely used arithmetic unit and it is used in many 

VLSI applications such as microprocessors, adders, subtractors, shift registers etc. Design 

of XOR gate using static CMOS requires a pull-up and pull-down network, which leads to 

increased area requirement and higher power. Implementation of XOR gate using domino 

CMOS requires reduced layout area due to the elimination of pull-up network [41]. As the 

pull-up network in the design is eliminated, the parasitic capacitance at dynamic and output 

node get reduced which provides the designer with enhanced speed for domino logic XOR 

gate. 
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   Due to the increased speed and low area requirement of domino circuit 

topology, it is used in various VLSI applications. Standard domino XOR gate inputs require 

two phase signals, one is original and the other is inverted signal. Application of inverted 

input consumes extra circuitry. This extra hardware not only increases the power 

consumption but also deviates the performance of the domino XOR circuit [42]. 

   In conventional domino logic implementation, more power is dissipated. In 

order to overcome this problem, Pseudo dynamic buffer based domino logic and footed 

quasi resistance model has been introduced to implement the XOR circuit. 

 

 

1.13 XNOR Gate 

   XNOR gate (also called as Exclusive NOR) represents a digital logic gate. 

This logic gate is provided with two or more inputs and thus produces one output that 

implements exclusive disjunction. The output that results would be ‘0’ only when exactly 

one of its input signals is ‘1’. If both the inputs applied to an XOR gate are ‘0’, or if both of 

its inputs are ‘1’, then the resulting output would be ‘1’. However, in case that the inputs 

being applied to the XOR gate is greater than two, then the functioning of the gate would 

be determined by its implementation. While taking into consideration a vast range of 

scenarios, it has been observed that XNOR gate will result in an output ‘1’ in case all inputs 

applied are at same logic level.  

 

        Q = (A⊕B)' = A.B + A'.B'     (1.6) 
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A B Q 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

Table 1.6  Truth Table of XNOR Gate    Figure 1.13 2-input XNOR Gate 

 

1.14 HALF ADDER 

  Adder is a combinational digital circuit which has been used for the 

implementation of function of adding two numbers. The addition of two numbers 

eventually results in a sum bit (SUM) and a carry bit (CARRY) as the output. Typically, 

adders are realized to implement the addition of binary numbers, however they can also be 

realized for executing addition operation for other formats such as BCD (binary coded 

decimal), Excess-3 etc. Adder finds use in a wide range of other applications such as in 

digital electronics like address decoding, table index calculation etc. [43]. 

   Half adder is a combinational arithmetic circuit that performs addition of two 

input numbers and hence produces two outputs: sum bit (SUM) and a carry bit (CARRY). 

Half adder is the simplest of all adder circuit, but it suffers from a major drawback. The 

half adder can implement addition of only two input bits (A and B) and can take no action 

if any carry is present as the input. Therefore, if a carry input is provided to the half adder, 

then the input carry bit will be neglected and this poses a serious problem. This implies that 

the process of binary addition is incomplete and hence it is known as half adder.  

 

 

       SUM = (A⊕B) = A.B' + A'.B     (1.7) 

         CARRY = A.B      (1.8) 
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A B SUM CARRY 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

 

   Table 1.7  Truth Table of HALF ADDER    Figure 1.14 HALF ADDER 

 

 

1.15 HALF SUBTRACTOR 

   In the process of binary subtraction, the process of subtracting two numbers is 

similar to that of arithmetic subtraction. While subtracting two numbers in arithmetic 

subtraction the base 2 number system is used whereas while performing binary subtraction, 

binary numbers are being used for subtraction [44]. The resultant terms obtained are given 

as the difference and borrow. 

   Half subtractor is a combinational arithmetic circuit that implements the 

operation of subtraction of two numbers and produces two outputs: a difference bit 

(DIFFERENCE) and a borrow bit (BORROW). 

 

      DIFFERENCE = (A⊕B) = A.B + A'.B    (1.9)  

           BORROW = A'.B       (1.10) 
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A B DIFF Bout 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 

Table 1.8  Truth Table of half subtractor          Figure 1.15 Half Subtractor 

 

 

1.16 1-BIT FULL ADDER 

   Adder is a combinational digital circuit which has been used for the 

implementation of function of adding numbers. In several computer systems and different 

types of operating processors, adders are used for the calculation of addresses and to 

perform other arithmetic functions. Typically, adders are realized to implement the addition 

of binary numbers, however they can also be realized for executing addition operation for 

other formats such as BCD (binary coded decimal), Excess-3 etc. [44]. 

   1-bit Full adder is a combinational arithmetic circuit which performs addition 

of three input numbers and hence results in two outputs: a sum bit (SUM) and carry bit 

(Cout). The full adder circuit has three inputs: A and B, and an input carry given as Cin. The 

addition of these three inputs results in a sum bit (SUM) and an output carry (Cout). 

        SUM = (A⊕B⊕Cin )      (1.11) 

         Cout = (A.B)+(B.Cin)+(A.Cin)    (1.12) 
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Figure 1.16 1-bit Full Adder 

    With the help of truth-table, the full adder logic can be implemented. From the 

above equation, it can be derived that the SUM output is obtained by performing XOR 

between the three input signals. The output carry, Cout will be true only under the condition 

when any two of the three applied input signals are HIGH.  

 

A B Cin SUM Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

Table 1.9  Truth Table of Full Adder 

        A 2-bit full adder is basically a ripple carry adder. In this logic 

circuit two full adders are cascaded to execute the addition of 2-bit numbers. The output 

carry generated from the first full adder acts as in input carry for the subsequent full adder. 
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Therefore, final carry is generated by the second full adder. As a result, we obtain two sum 

bits (S1 and S2) and one carry bit (Co2) as the output. 

 

 

Figure 1.17 2-bit Full Adder 

 

1.17 1-BIT FULL SUBTRACTOR 

   A full subtractor is a combinational logic function that executes the process of 

subtracting one bit from the another. Subtraction is implemented between two bits: 

minuend and subtrahend. While subtraction, the borrow that has generated from the 

previous adjacent lower minuend bit is also taken into consideration.  1-bit full subtractor is 

a combinational arithmetic circuit which performs addition of three input numbers and 

hence results in two outputs: a difference bit (DIFF) and borrow bit (Bout). The full 

subtractor circuit has three inputs: A and B, and an input borrow given as Bin.  

        DIFF = (A⊕B⊕Bin )      (1.13) 

       Bout =  A'Bin + A'B + BBin     (1.14) 
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Figure 1.18 1-bit Full Subtractor 

 

A B Bin DIFF Bout 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

 

Table 1.10  Truth Table of Full Subtractor 

 

 

1.18 INCREMENTER 

   Incrementing is a micro-operation which executes the operation of adding one 

binary value to the applied input value. For example, if a 3-bit register has a value of 011, 

then when incremented by one will result in a value of 100 as the output. 
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Figure 1.19 Implementation of A+1 State      Figure 1.20 Implementation of B+1 State 

 

PRESENT STATE NEXT STATE 

A B (A+1) (B+1) 

0 0 0 1 

0 1 1 0 

1 0 1 1 

1 1 0 0 

 

Table 1.11  Truth table for 2-bit Incrementer 

 

 

1.19 DECREMENTER 

   Decrementing is a micro-operation which executes the operation of 

subtracting one binary value from the applied input value. For example, if a 3-bit register 

has a value of 100, when this value is decremented by one, it will result in a value of 011 as 

the output. 

 

 

 

 

 

Figure 1.21 Implementation of A-1 State       Figure 1.22 Implementation of B-1 State 
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PRESENT STATE NEXT STATE 

A B (A-1) (B-1) 

0 0 1 1 

0 1 0 0 

1 0 0 1 

1 1 1 0 

Table 1.12   Truth table for 2-bit decrementer 

 

1.20 MOTIVATION 

   Addition of static inverter is used in the domino logic circuit to eliminate the 

logic 1 (in precharge phase) to logic 0 (in evaluation phase) transition. This elimination of 

transition from logic 1 to logic 0 signifies that additional charging and discharging is 

performed at the output capacitance of static inverter when it is in precharge phase and 

meanwhile the output of its subsequent evaluation phase is logic 0, which causes significant 

power dissipation. 

   This problem is solved through various techniques, whereby the pseudo-

dynamic buffer model significantly reduces power dissipation and hence saves power. 

However, in the PDB model we have logic 1 (in precharge) to logic 0 (in evaluation) 

transition which results in faulty output when used for designing of cascaded circuits. As 

compared to the PDB model, FQR topology solves the problems caused due to cascading. 

Moreover, FQR model has a lower power dissipation as compared to domino logic model. 

   In this work, various arithmetic logic functions are implemented by using the 

above three techniques and their corresponding delay and power consumption is evaluated 

using 180nm technology using VIRTUOSO CADENCE. 
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CHAPTER2 

 

LITERATURE SURVEY 

2.1 DYNAMIC LOGIC CIRCUITS 

    As explained by J. M. Rabaey [45] dynamic logic circuits have several 

advantageous features such as low device count, high speed, elimination of short circuit 

power and glitch free operation. All these features enable dynamic logic circuits to be used 

for wide range of applications in high speed, low power areas such as microprocessors, 

digital signal processing, dynamic memories etc. Moreover, a dynamic logic unit that is 

smaller than its static equivalent can also be designed.   

    Dynamic logic circuits provide enhanced performance for higher fan-in and 

complex logic circuit design. As the level of integration of design increases, lower power 

dissipation and higher speed becomes imperative requirements for the design of logic 

functions along with improved performance [46] [47] [48].  

    During the digital implementation of high density and high-performance 

circuits, it is imperative to reduce the circuit delay as well as the silicon area of the design. 

In such implementations, dynamic logic circuits are significantly advantageous over static 

logic circuits. 

There are two phases of functionality of dynamic logic: 

1) Precharge phase: In this phase, irrespective of the input values applied, output rises to an 

extremely high value. The load capacitance gets charged in this phase. 
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2) Evaluation Phase: In this phase, there exist a path between the GND and the output 

terminal. This causes the load capacitance to be discharged [49]. 

    The major issue faced while using dynamic logic is that the second logic gate 

of the dynamic logic design may discharge prematurely, before arriving at the first gate 

when the first logic gate is in precharge state. The occurrence of this operating condition 

causes the precharge state of the second logic gate to be used up and it can’t be restored 

until the next clock cycle. Therefore, to be able to implement cascaded logic circuits, the 

one solution is Domino Logic. In domino logic, a static inverter has been inserted between 

the logic states [50] [51]. 

 

 

2.2 Domino Logic Buffer 

    As depicted in the Fig. 2.1, when the circuit is in precharge phase, node Z and 

node B will be charged up to VDD. The voltage at node OUT will dropdown to '0'. This 

would lead to the propagation of the precharge phase value to the output of the buffer. This 

propagation of the precharge phase pulse from node Z through the static buffer leads to 

high power consumption. Moreover, the output state is not stable when the circuit is in 

precharge phase as thus the cascading characteristics and performance of the domino logic 

is limited [52]. 

 

Figure 2.1 Timing diagram of the domino logic circuit [52] 
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    The conventional domino logic buffer illustrates the issue of performance 

degradation which occurs due to the propagation of the precharge pulse inherent in domino 

logic gates. The PDB-based implementation overcomes this problem using the circuit 

structure shown in Fig. 2.2. In this buffer implementation, the source of the buffer’s NMOS 

transistor M5 is connected to node B instead of being connected to GND. By implementing 

a logic function using such topology, the value present at node Z cannot propagate to the 

output node OUT during the precharge phase of the gate. This happens because during 

precharge phase, the evaluation transistor M2 is turned off. When the input logic A is low, 

the floating node Z is always in high state and then, the output node OUT is kept low 

regardless of the operating phase. On the other hand, if the input signal A is high, the 

precharge and evaluation phases will be executed [53] [54] [55]. 

 

 

2.3 FAULTY OUTPUT IN CASCADED CIRCUITS: PDB TOPLOGY 

    Implementation of logic functions using PDB topology leads to a problem that 

occurs when logic 0 is applied as input after logic l in evaluation phase. This condition 

arises because the charge accumulated on the output parasitic capacitance in evaluation 

phase ,when input A is logic l, does not have a discharge path in precharge phase when 

input A is logic 0. The precharge pulse propagation is overcome by using PDB design 

technique. However, it catches on a major problem: candid scrutiny of pseudo dynamic 

buffer logic to design more complex boolean functions results in faulty output logic. The 

issue can be best illustrated with the two cascaded pull down n-type pseudo dynamic buffer 

circuits, as shown in Fig. 2.2. During the precharge phase (i.e., the precharge phase after 

when logic is high in evaluation phase), the output of both buffers would be charged to 

VDD. Now let us consider that the primary input signal (A) applied makes a transition from 

logic l to logic 0. On the rising edge of the clock signal, the output O1 begins to discharge. 

The final output O2 should be logic low as the expected input to the circuit now is logic 

low. However, in practice, there is a small propagation delay for the input to discharge O1 

to logic low. Therefore, the precharged voltage at node Z begins to discharge. By the time 

O1 crosses the threshold voltage of the transistor Q7, the node voltage present at node Z 
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gets discharged through the transistors Q7 and Q8. This discharging makes the final output 

as logic high. Thus, the correct logic level can't be retrieved due to the fact that PDB relies 

on parasitic capacitance voltage. This situation leads to erroneous output logic in cascaded 

PDB logic circuits. This problem arises because of logic high to logic low transition at 

output which can be resolved by implementing logic functions using Footed Quasi 

Resistance (FQR) technique [56] [57]. 

Figure 2.2 Cascaded Buffer using PDB Model 

 

2.4 FOOTED QUASI RESISTANCE(FQR) MODEL 

   As illustrated in the paper [39], the major issue that occurs in PDB 

implementation is the cascading problem at the output node, when the input signal applied 

makes a transition from logic l to logic 0. Implementing logic functions using Footed Quasi 

Resistance (FQR) technique can overcome this issue. The structure for FQR 

implementation is as shown in Fig. 1.7. In this circuit, the logic function is being designed 

by using depletion PMOS and NMOS, both of which are being driven by same input node 

Y. When the node Y is at logic l logic 1, depletion PMOS is OFF thus making quasi 

resistance acting as open circuit, which is same as in case of logic 0 at node Y but at this 

time depletion NMOS is OFF which results same [39]. 
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CHAPTER3 

 

STUDY AND SIMULATION 

3.1 CHARACTERIZATION OF DOMINO LOGIC BUFFER 

Domino logic operates in two phases: 

(i) Precharge phase 

(ii) Evaluation phase 

    The above two operational phases can be esentially differentiated by the CLK 

signal. In case the applied CLK signal is at logic 0, the PMOS transistor PM1 is turned ON 

which allows the charging of the parasitic capacitance present at node X to VDD.  This 

mode of operation is precharge mode. 

    When the applied CLK signal is at logic 1, the NMOS transistor NM5 is 

turned ON. The voltage at node X depends on the value of the input signal applied. This 

mode of operation is precharge mode. When the applied input signal, A, is logic 1 the node 

voltages are as shown in the Fig. 3.2 for both, precharge and evaluation, phases. In 

evaluation phase, the value which is present at the output node will get charged to Vdd 

which will then discharge in precharge phase leading to precharge propagation at output 

buffer. Therefore, this propagation of the precharge phase pulse from node Z through the 

static buffer leads to high power consumption. This precharge pulse propagation can be 

solved by using different techniques such as true single phase CLK model, pseudo dynamic 

buffer. 

    The VIRTUOSO schematic of domino logic Buffer is illustrated in Fig. 3.1. 

The timing waveform of Domino Logic, when input logic A is logic 1 is shown in Fig. 3.2. 
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Figure 3.1 Virtuoso Schematic of Domino Logic Buffer 
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Figure 3.2 Timing Waveform of Conventional Domino Logic Buffer 
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3.2 CHARACTERIZATION OF PSEUDO DYNAMIC BUFFER DOMINO LOGIC 

    In PDB model, the source of the NMOS transistor NM3 in output inverter is 

connected to node Y instead of being connected to ground as shown in Fig. 3.3 For this 

particular model, when input A is logic 1, evaluation and precharge will lead to following 

case:  

• During evaluation phase, node X will discharge to logic 0 which makes PMOS 

transistor to turn ON and output parasitic capacitance charge to VDD.  

• In precharge operational mode, output node X charges to a value of VDD as of node 

Y which results in NMOS transistor NM3 to be turned OFF. 

    The NMOS transistor NM3 operates as following in both the phases. In 

precharge mode, previously source of NM3 is connected to GND. The presence of logic 

high at node X leads to the NMOS transistor NM3 to switch ON because Vg-Vs (Vgs) is 

greater than threshold voltage (Vth). In the PDB topology, the source of the NMOS 

transistor NM3 is connected to node Y which causes the operation of the NMOs transistor 

NM3 to depend on the value present at the node X. During the precharge phase, when the 

CLK signal is low, transistor NM5 turns on thus causing the source of the NM3 transistor 

to be connected to GND, similar to what happens in domino logic buffer topology. 

However, when the CLK signal applied is high, the operation of the transistor NM3 

depends upon both, voltage at node X and input logic applied for domino logic circuit [39]. 

    The VIRTUOSO schematic of pseudo domino logic Buffer is illustrated in 

Fig. 3.3. The timing waveform of Pseudo Domino Logic, for logic 1 to logic 0 transition is 

displayed in Fig. 3.4. 
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Figure 3.3 PDB Domino Logic Buffer Implementation 
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Figure 3.4 Timing Waveform of Pseudo Domino Logic 
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    Implementation of logic functions using PDB topology leads to a problem that 

occurs when logic 0 is applied as input after logic l in evaluation phase which is shown in 

Fig 3.3. This condition arises because output parasitic capacitance charge accumulated in 

evaluation phase when input A is logic l does not have a discharge path in precharge phase 

when input A is logic 0. Due to this, logic l to logic 0 transition is not a suitable input for 

dynamic logic circuits. 

    The precharge pulse propagation is overcame by using PDB design technique. 

However, it catches on a major problem: pseudo dynamic buffer logic to design more 

complex boolean functions results in faulty output logic. This situation leads to erroneous 

output logic in cascaded PDB logic circuits. This problem arises because of logic high to 

logic low transition at output which can be resolved by implementing logic functions using 

Footed Quasi Resistance (FQR) technique. 

 

 

3.3 CHARACTERIZATION OF FOOTED QUASI RESISTANCE MODEL 

    When the input signal (A) being applied is logic 1, then in precharge phase, 

the node Y is connected to VDD and in evaluation phase it is connected to ground which 

makes footed quasi resistance work as PDB only. When the input signal(A) being applied is 

logic 0, the footed quasi resistance functionality in evaluation and precharge phase can be 

explained as below [39]: 

• During precharge phase, both the transistors NM2 and NM5 are in cut-off condition 

which will lead node Y to act as an open circuit. This happens due to the fact that 

we are using depletion NMOS and PMOS in FQR which provides a path to 

discharge the output parasitic capacitance. 

• During evaluation phase, both the NMOS transistors, NM2 and NM5 are turned on 

 thus causing  the output node to be at voltage 0. 

 



40 

 

    The VIRTUOSO schematic of FQR Buffer is illustrated in Fig. 3.5. In Fig. 3.6 

output voltage waveform is given where we can observe logic l to 1ogic 0 transition is 

removed. 

 

 

Figure 3.5 VIRTUOSO schematic of FQR Buffer 
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Figure 3.6 Timing Waveform of FQR Buffer 
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3.4 CHARACTERIZATION OF AND GATE 

3.4.1 AND Gate using domino logic 

    The VIRTUOSO schematic of AND Gate using domino logic is illustrated in 

Fig. 3.7. The Timing Waveform of AND Gate, is illustrated in Fig. 3.8. 

 

Figure 3.7 VIRTUOSO Schematic of AND Gate using domino logic 
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Figure 3.8 Timing Waveform of AND Gate 
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3.4.2 AND Gate using PDB logic 

 

 

 

Figure 3.9 VIRTUOSO Schematic of AND Gate using PDB logic 

 

The VIRTUOSO schematic of AND Gate using PDB logic is illustrated in Fig. 3.8. 
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3.4.3 AND Gate using FQR logic 

 

 

Figure 3.10 VIRTUOSO Schematic of AND Gate using FQR Model 

 

The VIRTUOSO schematic of AND Gate using FQR Model is illustrated in Fig. 3.10. 
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3.5 CHARACTERIZATION OF OR GATE 

 

3.5.1 OR Gate using domino logic 

 

 

Figure 3.11 VIRTUOSO Schematic of OR Gate using domino logic 
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The VIRTUOSO schematic of OR Gate using domino logic is illustrated in Fig. 3.11. 

The Timing Waveform of OR Gate, is illustrated in Fig. 3.12. 

 

Figure 3.12 Timing Waveform of OR Gate 



48 

 

3.5.2 OR Gate using PDB logic 

 

 

Figure 3.13 VIRTUOSO Schematic of OR Gate using PDB logic 

The VIRTUOSO schematic of OR Gate using PDB logic is illustrated in Fig. 3.13. 
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3.5.3 OR Gate using FQR logic  

 

   

Figure 3.14 VIRTUOSO Schematic of OR Gate using FQR Model 

The VIRTUOSO schematic of OR Gate using FQR Model is illustrated in Fig. 3.14. 
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3.6 CHARACTERIZATION OF NAND GATE 

 

3.6.1 NAND Gate using domino logic 

 

 

Figure 3.19 VIRTUOSO Schematic of NAND Gate using domino logic 
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The VIRTUOSO schematic of NAND Gate using domino logic is illustrated in Fig. 3.19. 

Timing Waveform of NAND Gate, is illustrated in Fig. 3.20. 

 

 

Figure 3.20 Timing Waveform of NAND Gate 
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3.6.2 NAND Gate using PDB logic 

 

 

Figure 3.21 VIRTUOSO Schematic of NAND Gate using PDB logic 

The VIRTUOSO schematic of NAND Gate using PDB logic is illustrated in Fig. 3.21. 
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3.6.3 NAND Gate using FQR logic 

 

 

Figure 3.22 VIRTUOSO Schematic of NAND Gate using FQR logic 

The VIRTUOSO schematic of NAND Gate using FQR logic is illustrated in Fig. 3.22. 
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3.7 CHARACTERIZATION OF NOR GATE 

 

3.7.1 NOR Gate using domino logic 

 

 

Figure 3.23 VIRTUOSO Schematic of NOR Gate using domino logic 
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The VIRTUOSO schematic of NOR Gate using domino logic is illustrated in Fig. 3.23. 

Timing Waveform of NOR Gate, is illustrated in Fig. 3.24. 

 

 

Figure 3.24 Timing Waveform of NOR Gate 
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3.7.2 NOR Gate using PDB logic 

 

 

Figure 3.25 VIRTUOSO Schematic of NOR Gate using PDB logic 

The VIRTUOSO schematic of NOR Gate using PDB logic is illustrated in Fig. 3.25. 
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3.7.3 NOR Gate using FQR logic 

 

 

Figure 3.26 VIRTUOSO Schematic of NOR Gate using FQR logic 

The VIRTUOSO schematic of NOR Gate using FQR logic is illustrated in Fig. 3.26. 
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3.8 CHARACTERIZATION OF XOR GATE 

 

3.8.1 XOR Gate using domino logic 

 

 

Figure 3.27 VIRTUOSO Schematic of XOR Gate using domino logic 
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The VIRTUOSO schematic of XOR Gate using domino logic is illustrated in Fig. 3.27. The 

Timing Waveform of XOR Gate, is illustrated in Fig. 3.28. 

 

 

Figure 3.28 Timing Waveform of XOR Gate 
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3.8.2 XOR Gate using PDB logic 

 

 

Figure 3.29 VIRTUOSO Schematic of XOR Gate using PDB logic 

The VIRTUOSO schematic of XOR Gate using PDB logic is illustrated in Fig. 3.29. 
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3.8.3 XOR Gate using FQR logic 

 

 

Figure 3.30 VIRTUOSO Schematic of XOR Gate using FQR logic 

The VIRTUOSO schematic of XOR Gate using FQR logic is illustrated in Fig. 3.30. 
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3.9 CHARACTERIZATION OF XNOR GATE 

 

3.9.1 XNOR Gate using domino logic 

 

 

Figure 3.31 VIRTUOSO Schematic of XNOR Gate using domino logic 
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The VIRTUOSO schematic of XNOR Gate using domino logic is illustrated in Fig. 3.31. 

The Timing Waveform of XNOR Gate, is illustrated in Fig. 3.32. 

 

 

Figure 3.32 Timing Waveform of XNOR Gate 
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3.9.2 XNOR Gate using PDB logic 

 

 

Figure 3.33 VIRTUOSO Schematic of XNOR Gate using PDB logic 

The VIRTUOSO schematic of XNOR Gate using PDB logic is illustrated in Fig. 3.33. 
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3.9.3 XNOR Gate using FQR logic 

 

 

Figure 3.34 VIRTUOSO Schematic of XNOR Gate using FQR logic 

The VIRTUOSO schematic of XNOR Gate using FQR logic is illustrated in Fig. 3.34. 
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3.10 CHARACTERIZATION OF XOR GATE 

 

3.10.1 Half Adder using domino logic 

 

 

Figure 3.35 VIRTUOSO Schematic of half adder using domino logic 

The VIRTUOSO schematic of half adder using domino logic is illustrated in Fig. 3.35. The 

Timing Waveform of half adder, is illustrated in Fig. 3.36. 
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Figure 3.36 Timing Waveform of half adder 
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3.10.2 Half Adder using PDB logic 

 

 

Figure 3.37 VIRTUOSO Schematic of half adder using PDB logic 

The VIRTUOSO schematic of half adder using PDB logic is illustrated in Fig. 3.37. 
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3.10.3 Half Adder using FQR logic 

 

Figure 3.38 VIRTUOSO Schematic of half adder using FQR logic 

The VIRTUOSO schematic of half adder using FQR logic is illustrated in Fig. 3.38. 
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3.11 CHARACTERIZATION OF HALF SUBTRACTOR 

 

3.11.1 Half Subtractor using domino logic 

 

Figure 3.39 VIRTUOSO Schematic of half subtractor using domino logic 
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The VIRTUOSO schematic of half subtractor using domino logic is illustrated in Fig. 3.39. 

Timing Waveform of half subtractor, is illustrated in Fig. 3.40. 

 

 

Figure 3.40 Timing Waveform of half subtractor 
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3.11.2 Half Subtractor using PDB logic 

 

Figure 3.41 VIRTUOSO Schematic of half subtractor using PDB logic 

The VIRTUOSO schematic of half subtractor using PDB logic is illustrated in Fig. 3.41. 
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3.11.3 Half Subtractor using FQR logic 

 

Figure 3.42 VIRTUOSO Schematic of half subtractor using FQR logic 

The VIRTUOSO schematic of half subtractor using FQR logic is illustrated in Fig. 3.42. 
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3.12 CHARACTERIZATION OF 1-BIT FULL ADDER 

 

3.12.1 1-bit Full Adder using domino logic 

 

Figure 3.43 VIRTUOSO Schematic of 1-bit full adder using domino logic 
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The VIRTUOSO schematic of 1-bit full adder using domino logic is illustrated in Fig. 3.43. 

Timing Waveform of 1-bit full adder, is illustrated in Fig. 3.44. 

 

Figure 3.44 Timing Waveform of 1-bit full adder 
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3.12.2 1-bit Full Adder using PDB logic 

 

Figure 3.45 VIRTUOSO Schematic of 1-bit full adder using PDB logic 

The VIRTUOSO schematic of 1-bit full adder using PDB logic is illustrated in Fig. 3.45. 
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3.12.3 1-bit Full Adder using FQR logic 

 

Figure 3.46 VIRTUOSO Schematic of 1-bit full adder using FQR logic 

The VIRTUOSO schematic of 1-bit full adder using FQR logic is illustrated in Fig. 3.46. 
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3.13 CHARACTERIZATION OF 2-BIT FULL ADDER 

 

3.13.1 2-bit Full Adder using domino logic 

 

Figure 3.47 VIRTUOSO Schematic of 2-bit full adder using domino logic 
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The VIRTUOSO schematic of 2-bit full adder using domino logic is illustrated in Fig. 3.47. 

Timing Waveform of 2-bit full adder, is illustrated in Fig. 3.48. 

 

Figure 3.48 Timing Waveform of 2-bit full adder 
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3.13.2 2-bit Full Adder using PDB logic 

 

 

Figure 3.49 VIRTUOSO Schematic of 2-bit full adder using PDB logic 

The VIRTUOSO schematic of 2-bit full adder using PDB logic is illustrated in Fig. 3.49. 
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3.13.3 2-bit Full Adder using FQR logic 

 

 

Figure 3.50 VIRTUOSO Schematic of 2-bit full adder using FQR logic 

The VIRTUOSO schematic of 2-bit full adder using FQR logic is illustrated in Fig. 3.50. 
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3.14 CHARACTERIZATION OF 1-BIT FULL SUBTRACTOR 

 

3.14.1 1-bit Full Subtractor using domino logic 

 

 

Figure 3.51 VIRTUOSO Schematic of 1-bit full subtractor adder using domino logic 
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The VIRTUOSO schematic of 1-bit full subtractor using domino 1ogic is illustrated in Fig. 

3.51. Timing Waveform of 1-bit full subtractor, is illustrated in Fig. 3.52. 

 

Figure 3.52 Timing Waveform of 1-bit full subtractor 
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3.14.2 1-bit Full Subtractor using PDB logic 

 

 

Figure 3.53 VIRTUOSO Schematic of 1-bit full subtractor using PDB logic 

The VIRTUOSO schematic of 1-bit full subtractor using PDB logic is illustrated in Fig. 

3.53. 
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3.14.3 1-bit Full Subtractor using FQR logic 

 

 

Figure 3.54 VIRTUOSO Schematic of 1-bit full subtractor using FQR logic 

The VIRTUOSO schematic of 1-bit full subtractor using FQR logic is illustrated in Fig. 

3.54. 
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3.15 CHARACTERIZAION OF INCREMENTER 

 

3.15.1 Incrementer using domino logic 

 

Figure 3.55 VIRTUOSO Schematic of incrementer using domino logic 

The VIRTUOSO schematic of incrementer using domino logic is illustrated in Fig. 3.55. 

Timing Waveform of incrementer, is illustrated in Fig. 3.56. 
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Figure 3.56 Timing Waveform of incrementer 
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3.15.2 Incrementer using PDB logic 

 

 

Figure 3.57 VIRTUOSO Schematic of incrementer using PDB logic 

The VIRTUOSO schematic of incrementer using PDB logic is illustrated in Fig. 3.57. 
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3.15.3 Incrementer using FQR logic 

 

Figure 3.58 VIRTUOSO Schematic of incrementer using FQR logic 

The VIRTUOSO schematic of incrementer using FQR logic is illustrated in Fig. 3.58. 
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3.16 CHARACTERIZATION OF DECREMENTER 

 

3.16.1 Decrementer using domino logic 

 

Figure 3.59 VIRTUOSO Schematic of decrementer adder using domino logic 

The VIRTUOSO schematic of decrementer using domino logic is illustrated in Fig. 3.59. 

Timing Waveform of decrementer, is illustrated in Fig. 3.60. 
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Figure 3.60 Timing Waveform of decrementer 
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3.16.2 Decrementer using PDB logic 

 

 

Figure 3.61  VIRTUOSO Schematic of decrementer using PDB logic 

The VIRTUOSO schematic of decrementer using PDB logic is illustrated in Fig. 3.61. 
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3.16.3 Decrementer using FQR logic 

 

 

Figure 3.62 VIRTUOSO Schematic of decrementer using FQR logic 

The VIRTUOSO schematic of decrementer using FQR logic is illustrated in Fig. 3.62. 
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3.17 ARITHMETIC LOGIC FUNCTIONS IMPLEMENTED 

 

The following table represents the arithmetic logic functions implemented in this work. 

 

ARITHMETIC LOGIC FUNCTION(S) OUTPUT 

Transfer Input A A 

Logical AND Gate A.B 

Logical OR Gate A+B 

Logical NAND Gate (A.B)' 

Logical NOR Gate (A+B)' 

Logical XOR Gate (A'.B)(AB') 

Logical XNOR Gate (A'.B')(A.B) 

Half Adder SUM = (A⊕B) = A.B' + A'.B 

CARRY = A.B 

Half Subtractor DIFFERENCE = (A⊕B) = A.B'+ A'.B 

BORROW = A'.B 

Full Adder SUM = (A⊕B⊕Cin ) 

Cout = (A.B)+(B.Cin)+(A.Cin) 

Full Subtractor DIFF = (A⊕B⊕Bin ) 

Bout =  A'Bin + A'B + BBin 

Incrementer (Ai + Bi) +1 

Decrementer (Ai + Bi) -1 

 

Table 3.1   Arithmetic Logic Functions Implemented 
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CHAPTER 4 

 

SIMULATION RESULTS AND ANALYSIS 

    To evaluate and analyse the performance of all the arithmetic logic functions 

implemented using domino logic, pseudo dynamic buffer logic and footed quasi resistance 

model, we have used 180nm technology node in VIRTUOSO, Cadence.  

 

 

4.1 DELAY EVALUATION AT DIFFERENT CLOCK FREQUENCIES 

 

Clock Frequency (MHz) Delay(ns) 

Domino PDB FQR 

1000 0.12 0.61 0.89 

500 0.21 0.86 1.15 

250 1.86 1.89 2.16 

100 4.27 4.9 5.11 

 

Table 4.1  Delay evaluation at different clock frequencies 
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4.2 POWER DISSIPATION AT DIFFERENT CLOCK FREQUENCIES 

 

Clock Frequency (MHz) 1000 500 250 100 

Power in Domino (µW) 33.68 16.93 8.50 3.41 

Power in PDB (µW) 18.83 9.45 4.76 1.92 

Power in FQR (µW) 23.18 11.62 5.84 2.34 

Power Saving (%) 

(PDB Vs FQR) 

-23.10 -22.96 -22.68 -21.87 

Power Saving (%) 

(Domino Vs FQR) 

31.17 31.36 31.29 31.38 

 

Table 4.2  Power dissipation at different clock frequencies 
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4.3 DELAY EVALUATION AT 180nm TECHNOLOGY 

 

Arithmetic Functions Delay (ns) 

Domino PDB FQR 

Buffer 1.62 2.06 2.32 

Logica1 AND Gate 3.08 3.12 3.32 

Logica1 OR Gate 0.11 0.18 0.23 

Logica1 NAND Gate 0.19 0.25 0.34 

Logical NOR Gate 5.13 5.38 5.6 

Logica1 XOR Gate 1.11 1.23 1.55 

Logica1 XNOR Gate 5.01 5.16 5.47 

Ha1f Adder 5.18 5.21 5.92 

Ha1f Subtractor 5.03 5.19 5.45 

1-Bit Fu11 Adder 2.57 3.59 4.17 

2-Bit Fu11 Adder 3.45 3.99 4.29 

Fu11 Subtractor 2.98 4.01 5.09 

Incrementer 1.79 2.01 2.25 

Decrementer 1.01 1.44 1.68 

 

Table 4.3  Delay Analysis at 180nm 
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4.4 POWER DISSIPATION AT 180nm TECHNOLOGY 

 

Arithmetic  

Functions 

Power(uW) Power Saving (%) 

 Domino PDB FQR Domino Vs 

FQR 

PDB Vs 

FQR 

Buffer 15.63 8.74 10.75 31.22 -22.99 

Logica1 AND Gate 3.93 2.88 3.38 13.99 -17.36 

Logica1 OR Gate 4.57 1.88 2.15 42.95 -14.36 

Logica1 NAND 

Gate 

4.45 2.09 2.43 45.39 -16.27 

Logical NOR Gate 3.18 1.88 2.05 35.53 -9.04 

Logica1 XOR Gate 5.75 3.47 3.97 30.96 -14.40 

Logica1 XNOR 

Gate 

4.64 4.05 4.14 10.78 -2.22 

Ha1f Adder 11.66 9.51 9.94 14.75 -4.52 

Ha1f Subtractor 11.32 9.75 10.10 12.19 -3.59 

1-Bit Fu11 Adder 34.69 20.3 21.06 39.29 -3.74 

2-Bit Fu11 Adder 112.6 86.8 89.6 20.42 -3.22 

Fu11 Subtractor 39.68 21.22 23.04 41.93 -8.57 

Incrementer 7.07 5.18 5.45 22.91 -5.21 

Decrementer 10.56 5.85 6.05 42.71 -3.42 

 

Table 4.4  Power Dissipation Analysis at 180 nm 
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4.5 POWER-DELAY PRODUCT AT 180nm TECHNOLOGY 

 

Arithmetic Functions Power-Delay Product (PDP) 

Domino PDB FQR 

Buffer 25.24 18.01 24.91 

Logical AND Gate 11.92 8.96 11.22 

Logical OR Gate 0.51 0.35 0.47 

Logical NAND Gate 0.85 0.50 0.82 

Logical NOR Gate 16.31 10.11 11.48 

Logical XOR Gate 6.38 4.26 6.14 

Logical XNOR Gate 23.25 20.89 22.64 

Half Adder 60.39 49.50 58.84 

Half Subtractor 56.93 50.61 55.04 

1-Bit Full Adder 89.15 72.87 87.50 

2-Bit Fu11 Adder 699.25 623.39 691.89 

Full Subtractor 118.35 85.09 117.17 

Incrementer 12.65 10.41 12.26 

Decrementer 10.55 8.42 10.16 

 

Table 4.5  Power-Delay Product at 180 nm 

 

 

 



100 

 

 

Figure 4.1  Bar graph for delay evaluation 

 

 

 

Figure 4.2  Bar graph for power dissipation 
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4.6 AVERAGE AND STANDARD DEVIATION EVALUATION OF FULL ADDER 

 

1-Bit Full Adder 2-Bit Full Adder 

PDB FQR PDB FQR 

0.778 0.535 0.878 0.577 

0.722 0.536 0.874 0.550 

0.761 0.563 0.854 0.542 

0.760 0.505 0.843 0.556 

0.793 0.544 0.860 0.553 

0.822 0.532 0.873 0.562 

0.784 0.534 0.876 0.561 

0.765 0.521 0.838 0.549 

0.746 0.541 0.856 0.544 

0.758 0.556 0.842 0.539 

MEAN = 0.7502 MEAN = 0.5398 MEAN = 0.8496 MEAN = 0.5518 

SD = 0.0302 SD = 0.0223 SD = 0.03261 SD = 0.0113 

     

Table 4.6  Average and Standard Deviation Evaluation 

 

ARITHMETIC 

FUNCTIONS 

CORRELATION COEFFICIENT % SAVING 

Domino Vs PDB Domino Vs FQR 

Buffer 0.653 0.721 10.41 

Logical AND 0.774 0.866 11.88 

1-Bit Full Adder 0.884 0.995 12.56 

2-Bit Full Adder 0.823 0.954 15.91 

 

Table 4.7  Correlation Analysis 
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    As depicted in the Fig. 3.40 and Fig. 3.44, it can be inferred from the 

timing waveforms of 1-bit full adder and 2-bit full adder that FQR implementation results 

in ‘good 1’ and ‘poor 0’ when the output makes a transition from logic 1 to logic 0. Noise 

Margin for logic ‘0’ should be high. Due to that, the noise margin for logic ‘1’ in PDB 

implementation becomes significantly less, i.e., almost negligible. This results in faulty 

output. Though, for FQR implementation the noise margin for logic ‘1’ has significant 

scope to detect the input signal. Therefore, the functionality of a cascaded logic circuit is 

better for FQR model. 

    From the Table 4.6, it can be observed that a sample data is taken for the PDB 

and FQR implementation of 1-bit full adder and 2-bit full adder. For the taken data values, 

Mean and Standard Deviation has been evaluated. From the results, it can be observed that 

the standard deviation for the PDB logic increases significantly for the cascading logic 

function. This signifies that for the PDB logic, the ripples in the circuit enhances when 

complex logic circuit is designed. Hence, it can be deduced that noise margin is negatively 

affected which may further lead to faulty output. 

    For FQR implementation, the standard deviation reduces for the logic designs 

with multiple cascading stages. This causes less voltage transitions to propagate through the 

logic circuit and hence provides reduced variation in the voltage level at the output of 

multiple cascaded stages. Hence, even if the power consumed in FQR logic is higher than 

that of PDB logic, FQR logic provides better results.  

   From Table 4.7, the correlation of the FQR and PDB logic waveforms with 

respect to the domino logic has been evaluated for buffer, logical AND gate, 1-bit full 

adder, 2-bit full adder. The output of domino logic implementation of a function is 

approximately ideal. The implementation of buffer, logical AND gate, 1-bit full adder and 

2-bit full adder depicts increasing percentage of correlation by 15% which signifies that the 

FQR waveform for a logic function is significantly identical to domino logic. Thus, from 

the evaluated values it can be derived that the output of FQR topology is closer to the 

domino logic model. Hence, FQR logic produces better output as compared to the PDB 

logic for a complex logic function. 
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     In this work, two performances of the above circuits are analyzed: Delay and 

Power dissipation. These performances and metrics are measured for all arithmetic logic 

functions based on domino logic buffer model, pseudo dynamic buffer model and footed 

quasi resistance model. Each of the designs is implemented to determine the optimal trade-

off between delay-power dissipation.  

    From above evaluation, we can observe that Power Saving of Footed Quasi 

Resistance Model Footed Quasi Resistance model (FQR) is less compared with PDB. 

However, it is not beneficial to implement cascaded circuits using PDB if we want to avoid 

compromising on power saving. The evaluation of the simulation results obtained, leads to 

an observation that as the clock frequency is increased, the power dissipation as well as the 

delay of the FQR model correspondingly increases as well. This implies that power saving 

(%) for domino logic is increased with the rise in clock frequency. By above simulation 

results we can observe that the FQR logic has less power dissipation of 29.58% as 

compared to domino logic. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE SCOPE 

     

    The domino logic buffer suffers from the issue of precharge pulse 

propagation. This problem is overcome by using PDB topology. Implementation of a logic 

function using PDB topology eliminates precharge pulse propagation. However, PDB 

technique poses a problem while designing of cascaded circuits to execute a logic function. 

In this work, we used footed quasi resistance technique for implementing logic functions 

since it is capable of resolving the problems due to cascading. However, there is one 

drawback of this implementation: Increase in power dissipation. Even with increased power 

dissipation, this technique allows the designer to implement cascaded designs. This 

observation is drawn by analyzing the power dissipation and delay of domino logic, PDB, 

and FQR logic models for implementation of different logic functions. To determine the 

accurate results, the power consumption of domino logic is compared with that of PDB 

topology and FQR topology. Thus, the Footed Quasi Resistance model exhibits power 

trade-off to overcome the cascading issues of PDB domino logic.  

    Footed quasi resistance topology can be further utilized to design an 

Arithmetic Logic Unit (ALU) for implementing all the logic functions described in this 

thesis. Experimental verification of the obtained results can be performed for logic circuits 

having higher degree of cascading and complex logic designs. 

 

 

 

 

 



105 

 

 

 

 

 

REFERENCES 

 

[1] Bokare, U. M., & Gaidhani, Y. A. (2017). Design of CMOS dynamic logic circuits 

to improve noise immunity. 2017 International Conference on Communication and 

Signal Processing (ICCSP). 

[2] R.G.D.Jeyasingh, N.Bhat and B.Amrutur, "Adaptive Keeper Design for Dynamic 

Logic Circuits Using Rate Sensing Teehnique," IEEE Trans. Very Large Seale 

Integr.(VLSI) Syst., Feb. 2011. 

[3] H. F. Dadgour and K. Banerjee, “A novel variation tolerant keeper architecture for 

high-performance low-power wide fan in dynamic or gates,” IEEE Trans. Very 

Large Scale (VLSI) Syst., vol. 18, Nov. 2010. 

[4] F.Mendoza-Hernandez, M.Linares-Aranda, V. Champac, Noisetolerance 

improvement in dynamic CMOS logic circuits. In: proceedings of the lEE circuits, 

devices and systems, Dec 2006. 

[5] L. Ding and P. Mazumder, “On circuit techniques to improve noise immunity of 

CMOS dynamic logic,” IEEE Trans. Very Large Scale Integer. Syst., Sep. 2004. 

[6] Tyler J. Thorp, Member, IEEE, Gin S. Yee, Member, IEEE, and Carl M. Sechen, 

Fellow, IEEE, “Design and Synthesis of Dynamic Circuits”, IEEE 

TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) 

SYSTEMS, VOL. 11, NO.1, FEBRUARY 2003. 

[7] R.H. Krambeck, C. M. Lee, H.-F.S. "Law,High-speed compact circuits with 

CMOS",IEEE Journal of Solid-State Circuits, SC-17 (1982). 



106 

 

[8] G.Yee and C. Sechen, “Dynamic logic synthesis,” in Proc. IEEE Custom Integrated 

Circuits Conf., May 1997.  

[9] P. Larsson, and C. Svensson, "Noise in digital dynamic CMOS circuits," IEEE 

Journal of Solid-State Circuits, vol. 29, June. 1994. 

[10] V. Friedman and S. Liu, “Dynamic logic CMOS circuits,” IEEE J. Solid- State    

Circuits, vol. SC-19, pp. 263–266, Apr. 1984. [8] G.Yee and C.Sechen, “Dynamic 

logic synthesis,” in Proc. IEEE Custom Integrated Circuits Conf., May 1997. 

[11] M.W. Allah, M.H. Anis and M.l. Elmasry, "High speed dynamic logic circuits for 

scaled-down CMOS and MTCMOS technologies" in Proc. IEEE Inter. Symp. Low 

Power Electronics Design, July 2000.  

[12] N. F. Goncalves and H. J. De Man, "NORA: A dynamic CMOS technique for 

pipelined logic structures, IEEE J . Solid State Circuits, vol. SC-18, June 1983.  

[13] J. Kuo, J. Lou, "Low-Voltage CMOS VLSI Circuits", Wiley interscience, 

NewYork, 1999.  

[14] Y. Lih, N. Tzartzanis and W. W. Walker, "A Leakage Current Replica Keeper for 

Dynamic Circuits," in IEEE Journal of Solid-State Circuits, vol. 42, Jan. 2007.  

[15] Y.Ji-Ren, I.Karlsson, C.Svensson, A true single-phase-clock dynamic CMOS 

circuits technique, IEEE journal of solid state circuits 22, October1987.  

[16] R. H. Krambeck, C. M. Lee and H. F. S. Law, "High-speed compact circuits with 

CMOS,"IEEE Journal of Solid State Circuits, vol. 17, Jun. 1982.  

[17] A. Alvandpour, R. K. Krishnamurthy, K. Soumyanath, and S. Y. Borkar, "A 

conditional keeper technique for sub-130nm wide dynamic gates," in Proceedings of 

Intertional Symposium on VLSI Circuits, 2001. 

[18] M. Anis, Mohab H., Mohamed W. Allam, and Mohamed I. Elmasry. "Energy-

efficient noise-tolerant dynamic styles for scaled-down CMOS and MTCMOS 

technologies." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 



107 

 

10.2 (2002).  

[19] M. H. Anis, M.W. Allam, and M. I. Elmasry, "High-speed dynamic logic styles for 

scaled-down CMOS and MTCMOS technologies," in Proceedings of International 

Symposium on Low- Power Electronics and Design, 2000.  

[20] Atila Alvandpour,, Ram K. Krishnamurthy, K. Soumyanath and Shekhar Y. 

Borkar, “A Sub-130-nm Conditional Keeper Technique”, IEEE Journal of solidstate 

circuits, vol. 37, May 2002.  

[21] Ankita Sharma , Divyanshu Rao and Ravi Mohan, “Design and Implementation of 

Domino Logic Circuit in CMOS”, Journal of Network Communications and 

Emerging Technologies (JNCET) Volume 6, Issue 12, December (2016) .  

[22] A. Peiravi and M. Asyaei, “Robust low leakage controlled keeper by current-

comparison domino for wide fan-in gates, integration,” VLSI J., 2012.  

[23] Shiksha and K. K. Kashyap, "High speed domino logic circuit for improved 

performance," 2014 Students Conference on Engineering and Systems, Allahabad, 

2014.  

[24] Roy, K., Mukhopadhyay, S. and Mahmoodi-Meimand, H., 2003. Leakage current 

mechanisms and leakage reduction techniques in deep sub-micrometer CMOS 

circuits. Proceedings of the IEEE. 

[25]  Ravikumar, R., “Double Stage Domino Technique: Low-Power HighSpeed 

Noise-tolerant Domino Circuit for Wide Fan-In Gates”. International Journal of 

Engineering and Technology (IJET) Vol 8 No 3 Jun-Jul 2016 (2016). 

[26] A. Peiravi and M. Asyaei, "Current-Comparison-Based Domino: New Low-

Leakage High-Speed Domino Circuit for Wide Fan-In Gates," in IEEE Transactions 

on Very Large Scale Integration (VLSI) Systems, vol. 21, May 2013. 

[27] Rangari, A. V., & Gaidhani, Y. A. (2016). Design of comparator using Domino 

Logic and CMOS Logic. 2016 Online International Conference on Green 

Engineering and Technologies (IC-GET). 



108 

 

[28] A. Manikandan and J. Ajayan, “High Speed Low Power 64-Bit comparator 

designed Using Current Comparison Based Domino Logic,” IEEE sponsored 2nd 

international conference on electronics and communication systems (icecs ‘2015). 

[29] D.Y.Ponomarev, G. Kueuk, O.Ergin, K. Ghose, "Energy Effieient Comparators for 

Supersealar Datapaths", IEEE Trans. Computers, vol. 53, July 2004. 

[30] Satwik Patnaik, Shruti Mehrotra “A Low-Power, Area Efficient Design Technique 

for Wide Fan-in Domino Logic based Comparators” 2013 International Conference 

on Circuits, Power and Computing Technologies [ICCPCT2013]. 

[31] F.Moradi, APeiravi and H.Mahmoodi, "A High Speed and Leakage Tolerant 

Domino Logie for High Fan-in Gates," Proc. 15th ACM Great Lakes Symp. on 

VLSI (GLSVLSI'05), 2005. 

[32] H. Mahmoodi and K. Roy, “Diode-footed domino: A leakage-tolerant high fan-in 

dynamic circuit design style,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, 

Mar. 2004. 

[33] Sah, N., & Mittal, E. (2017). An improved domino logic. 2017 International 

Conference on Energy, Communication, Data Analytics and Soft Computing 

(ICECDS). 

[34] Neha Vaish, Sampath Kumar V, “Energy efficient and high speed domino logic 

circuits ” Int. Journal of Engineering Research and Applications, Vol. 5, Issue 4, 

(Part -1) April 2015. 

[35] David Van Campenhout, Trevor Mudge, Karem A. Sakallah, “Timing verification 

of sequential domino circuits”, Proceeding of the 1996 IEEE/ACM International 

Conference on Computer-Aided Design. 

[36] Harris, D., & Horowitz, M. A. (1997). Skew-tolerant domino circuits. IEEE 

Journal of Solid-State Circuits. 

 



109 

 

[37]  Fang Tang, Amine Bermark,Zhouye Gu,"Low power dynamic logic design using 

a pseudo dynamic buffer, INTEGRATION", the VLSI journal 45(2012) . 

[38] Deepika Bansal, B P Singh, Ajay Kumar, “Comparative analysis of improved 

Pseudo Domino logic”, 31st National convention of Electronics and 

Telecommunication Engineers, October 2015. 

[39] Thota Ravi Sankar, Sankit R. Kassa, R.K. Nagaria and Ankur Kumar, 

“Performance Analysis of Footed Quasi Resistance Scheme for Low Power VLSI 

Circuits”, 1st IEEE International Conference on Power Electronics. Intelligent 

Control and Energy Systems (ICPEICES-2016).  

[40] Wairya. S, Nagaria. R. K and Tiwari. S, 2012, “Comparative performance analysis 

of XOR-XNOR function based high speed CMOS full adder circuits for low voltage 

VLSI design”, International Journal of VLSI design and Communication Systems 

(VLSICS), AIRCC Publication. 

[41] Amit Kumar Pandey,  Jayant Kumar Tiwari, Ram Awadh Mishra, “Design of New 

Low Leakage Power Domino XOR Circuit”, International Journal of Computer 

Applications (0975 – 8887) Volume 65– No.1, March 2013. 

[42] Chowdhary. S. R, Banerjee. A, Roy. A and Saha. H, 2008, “A high speed 8 

transistor full adder design using novel 3 transistor XOR gates”, International 

Journal of Electrical and Computer Engineering,vol.3,no.12. 

[43]  S. Wairya, Himanshu Pandey, R. K. Nagaria and S. Tiwari, Member, IEEE, 

"UItra low voItage high speed I-bit CMOS adder", Power, Control and Embedded 

Systems (lCPCES), 20 I 0 International Conference.  

[44] Navi, K., Kavehie, O., Rouholamini, M., Sahafi, A., & Mehrabi, S. (2007). A 

Novel CMOS Full Adder. 20th International Conference on VLSI Design Held 

Jointly with 6th International Conference on Embedded Systems (VLSID’07). 

[45] J.M. Rabey , A Chandrakasan, and B. Nicolic, Digital Integrated Circuits, 2nd ed., 

Prentice Hall, 2003.  



110 

 

[46] H. Mahmoodi-Meimand and K. Roy, "Diode-footed domino: a leakage tolerant 

high fan-in dynamic circuit design style," in IEEE Transactions on Circuits and 

Systems I: Regular Papers, vol. 51, no. 3, March2004.  

[47] Kumar, S., Singhal, S., Pandey, A. K., & Nagaria, R. K. (2013). Design and 

simulation of low power dynamic logic circuit using footed diode domino logic. 

2013 Students Conference on Engineering and Systems (SCES). 

[48] V. Kursun, E.G. Friedman, Domino logic with variable threshold voltage keeper, 

IEEE Transactions on VLSI Systems, 11 (6) (2003). 

[49] Jinn-ShyanWang, Ching-RongChang, ChingweiYeh, Analysis and design of high-

speed and low-power CMOS PLAs, IEEE Journal of Solid-State Circuits 36 (8) 

(2001). 

[50] Meher, P., & Mahapatra, K. K. (2011). A high-performance circuit technique for 

CMOS dynamic logic. 2011 IEEE Recent Advances in Intelligent Computational 

Systems. 

[51] Adarsh, C. S. D., Lakshmi, T. V., & Kamaraju, M. (2017). Implementation and 

comparative analysis of double gate low power multiplexers using dynamic logic 

styles. 2017 International Conference of Electronics, Communication and 

Aerospace Technology (ICECA). 

[52] Dadashi, A., Mirmotahari, O., & Berg, Y. (2016). Domino dual-rail, high-speed, 

NOR logic, with 300mV supply in 90 nm CMOS technology. 2016 IEEE 

International Symposium on Consumer Electronics (ISCE). 

[53] Shinde, J. R., Salankar, S. S., & Shinde, S. J. (2016). Multi-objective optimization 

domino techniques for VLSI circuit. 2016 International Conference on Advances in 

Computing, Communications and Informatics (ICACCI). 

[54] Salendra.Govindarajulu, Dr.T.Jayachandra Prasad, P.Rangappa, “Low Power, 

Reduced Dynamic Voltage Swing Domino Logic Circuits”, Indian Journal of 

Computer Science and Engineering Vol 1 No 2, 74-81, 2011.  



111 

 

[55] Vojin G. Oklobdziza and Robert K. Montoye “Design Performance Trad-Offs in 

CMOS Domino Logic” IEEE Journal solid state circuiit VOL Sc12 No-2 April, 

1986. 

[56] Rajeev Kumar, Maneesh Kumar Singh, Vimal Kant Pandey, “Performance of low 

power Domino Circuits using pseudo dynamic buffer”, IOSR Journal of VLSI and 

Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014). 

[57]  Akurati, S. K., Angeline, A. A., & Bhaaskaran, V. S. K. (2017). ALU design 

using Pseudo Dynamic Buffer based domino logic. 2017 International Conference 

on Nextgen Electronic Technologies: Silicon to Software (ICNETS2). 


