FLOOD FREQUENCY ANALYSIS ON RIVER YAMUNA IN DELHI

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

HYDRAULICS AND WATER RESOURCES ENGINEERING

Submitted By:

Amit Kumar

2K17/HFE/03

Under the supervision of

Prof. S. ANBU KUMAR

CIVIL ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

July, 2019

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, Amit Kumar , Roll No. 2K17/HFE/03 student of M.Tech. (Hydraulics and Water Resources Engineering), hereby declare that the project dissertation titled "Flood frequency Analysis on River Yamuna in Delhi" which is submitted by me to the Department of Civil Engineering, Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of the degree of Master of Technology, is original and not copied from any source without proper citation. This work has not previously formed the basis for the award of any Degree, Diploma Associate ship, Fellowship or other similar title of recognition.

Place: Delhi Date: Amit Kumar 2K17/HFE/03 (M.TECH)

DEPARTMENT OF CIVIL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled "FLOOD FREQUENCY ANALYSIS ON RIVER YAMUNA IN DELHI" which is submitted by Amit kumar, 2K17/HFE/03, Department of Civil Engineering, Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of the degree of Master of Technology, is a record of the project work carried out by the students under my supervision. To the best of my knowledge this work has not been submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi

Date:

Dr. S.Anbu Kumar

(Associate Professor) Department of Civil Engineering

ABSTRACT

Flood frequency analysis is necessary for evaluating the flood peak which is used to provide the information about the probability of occurrence of an event for a particular return period. In the present study used the statistical approach for analysis the River Yamuna at Wazirabad, Indraprastha and Okhla Station in Delhi. The data had collected in form of maximum annual discharge from the Flood & Irrigation Department of Delhi from Year 1978 to 2017. So, its having the sets of observation now using the annual maximum series which is uni variant. Firstly, check the sets of observation that is time independent or not, than its decided that the discharge data is random or not which defines that our data is suitable for further computation. In this analysis adopting the method of moments which includes the various distribution i.e., Extreme value type I Distribution, Log EV type I Distribution, Normal Distribution, Log Normal Distribution, Pearson Type III Distribution, Log Pearson Type III Distribution. After that plotting the graphical representation for their distribution & their (95% confidence Limits which clearly seen in the graphical approach of the distribution). In each distribution tried to find out calculate the discharge for different return period 10,25, 50, 100, 200,500, 1000 years & also calculate the upper bound & lower bound discharges are calculated&coefficient of determination is also found which describes the scatter of observation is narrow. If the coefficient of determination is approaches to unity its means the distribution is less scatter, than comparing their results on the basis of D INDEX method which describes the best fit distribution method for River Yamuna at three barrage in Delhi.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my project supervisor, Associate Prof. S. Anbu Kumar, for his supervision, invaluable guidance, motivation and support throughout the extent of the project. I have benefited immensely from his wealth of knowledge.

I am extremely grateful towards Mr. Saurabh Sah, Ph.D scholar and Mr. Deepak Singh, Ph.D scholar, DTU for their invaluable time and support.

I extend my gratitude to my college, Delhi Technological University (formerly Delhi College of Engineering) for giving me the opportunity to carry out this project.

This opportunity will be a significant milestone in my career development. I will strive to use the gained skills and knowledge in the best possible way, and I will continue to work on their improvement, in order to attain desired career objectives.

Amit kumar 2k17/HFE/03 (M.Tech)

CONTENTS

			PAGE NO.
Candidate De	claratio	Dn	i
Certificate			ii
Abstract			iii
Acknowledgement			iv
List of Tables	;		v
List of Figures			vi
List of Abbre	viation	5	vii
CHAPTER 1 INTRODUCTION		1	
	1.1	General	1
	1.2	Basic Assumptions	2
	1.3	Objective of study	2
	1.4	Organization	2
CHAPTER 2	REVI	EW OF LITERATURE	3
	2.1	General	3
	2.2	Annual Maximum Series (AMS)	3
	2.3	Conclusion	8
CHAPTER 3	MET	HODOLOGY	9
	3.1	Study Area	9
	3.2	Data availability	10
	3.3	Screening of Data Sets	11
		3.3.1 Anderson's Correlogram Test	12
	3.4	Methods of moments	12
		3.4.1 EV TYPE I Distribution	13
		3.4.2 Log EV TYPE I Distribution	14
		3.4.3 Normal Distribution	14

	3.4.4	Log Normal Distribution	14
	3.4.5	Pearson Type III Distribution	15
	3.4.6	Log Pearson Type III Distribution	15
3.5	D-Index		16
3.6	Conclusion		17
CHAPTER 4 R	ESULTS		18
4.1	General		18
4.2	Screening of Da	ata sets	18
	4.2.1 And	erson's correlogram Test	18
4.3	Evaluating the o	discharge for different return period	19
4.4	Goodness of fit	test	37
CHAPTER 5 CO	ONCLUSION		38
REFRENCES			40

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
4.0	Anderson's correlogram results	18
4.1	Estimation of T-year flood by using	
	EV Type I Distribution for Wazirabad barrage	19
4.2	Estimation of T-year flood by using	
	Log EV Type I Distribution for Wazirabad	
	Barrage	20
4.3	Estimation of T-year flood by using	21
	Normal Distribution for Wazirabad Barrage	
4.4	Estimation of T-year flood by using	
	Log Normal Distribution for Wazirabad	
	Barrage	22
4.5	Estimation of T-year flood by using	
	Pearson Type III Distribution for	
	Wazirabad Barrage	23
4.6	Estimation of T-year flood by using	
	Log Pearson Type III Distribution for	
	Wazirabad barrage	24
4.7	Estimation of T-year flood by using	
	EV Type I Distribution for Indraprastha barrage	25
4.8	Estimation of T-year flood by using	
	Log EV Type I Distribution for Indraprastha bar	rage 26
4.9	Estimation of T-year flood by using	
	Normal Distribution for Indrastha Barrage	27
4.10	Estimation of T-year flood by using	
	Log Normal Distribution for Indraprastha Barrag	e 28
4.11	Estimation of T-year flood by using	

	Pearson Type III Distribution for Indrastha	
	Barrage	29
4.12	Estimation of T-year flood by using	
	Log Pearson Type III Distribution for Indrastha	
	Barrage	30
4.13	Estimation of T-year flood by using	
	EV Type I Distribution for Okhla barrage	31
4.14	Estimation of T-year flood by using	
	Log EV Type I Distribution for Okhla barrage	32
4.15	Estimation of T-year flood by using	
	Normal Distribution for Okhla Barrage	33
4.16	Estimation of T-year flood by using	
	Log Normal Distribution for Okhla Barrage	34
4.17	Estimation of T-year flood by using	
	Pearson Type III Distribution for Okhla	
	Barrage	35
4.18	Estimation of T-year flood by using	
	Log Pearson Type III Distribution for Okhla	
	Barrage	36
4.19	D-Index value of all Distributions	37

х

LIST OF FIGURES

Figure no.	Title	Page
no.		

3.0	Location map of the study area	9
3.1	Effect of Past flood peak in Delhi	10
3.2	Annual Peak discharge data at three Barrages	
	on River Yamuna	11
4.1	Graphical Representation of EV Type I	
	Distribution For Wazirabad Barrage.	19
4.2	Graphical Representation of Log EV Type I	
	Distribution For Wazirabad Barrage.	20
4.3	Graphical Representation of Normal Distribution	
	For Wazirabad Barrage.	21
4.4	Graphical Representation of Log Normal Distribution For Wazirabad Barrage.	22
4.5	Graphical Representation of Pearson Type III	
	Distribution For Wazirabad Barrage.	23
4.6	Graphical Representation of Log Pearson Type III Distribution For Wazirabad Barrage.	24
4.7	Graphical Representation of EV Type I Distribution	
	For Indraprastha Barrage.	25
4.8	Graphical Representation of Log EV Type I Distribution	
	For Indraprastha Barrage.	26
4.9	Graphical Representation of Normal Distribution	
	For Indraprastha Barrage.	27
4.10	Graphical Representation of Log Normal Distribution For Indraprastha Barrage	28

4.11	Graphical Representation of Pearson Type III	
	Distribution For Indraprastha Barrage.	29
4.12	Graphical Representation of Log Pearson Type III Distribution For Indraprastha Barrage.	30
4.13	Graphical Representation of EV Type I Distribution	
	For Okhla Barrage.	31
4.14	Graphical Representation of Log EV Type I Distribution	
	For Okhla Barrage.	32
4.15	Graphical Representation of Normal Distribution	
	For Okhla Barrage.	33
4.16	Graphical Representation of Log Normal Distribution For Okhla Barrage	34
4.17	Graphical Representation of Pearson Type III Distribution For Okhla Barrage.	35
4.18	Graphical Representation of Log Pearson Type III Distribution For Okhla Barrage.	36

LIST OF ABBREVIATIONS

Annual Maximum Series
Probability distribution funcition
Cumulative distribution function
Kurtosis coefficient
Skewness coefficient
Coefficient of variation
Cubic metres per second (m^3/s)
Extreme value- type one distribution
The frequency factor corresponding to T
Log Pearson
Log Pearson type three distribution
Number of years in historic period
Probability distribution function
Computed flood flow for a selected recurrence interval
Return period
Location parameter
coefficients of Determination
Mean
The magnitude of flood at required return period T
Upper confidence limit
Lower confidence limit
Reduced variate
Scale parameter
Significance level
ShapeParameter