
i

SETUP & HOLD FIXING OF DIGITAL

CIRCUITS WITH AUTOMATED HOLD

FIXING USING MULTI SCENARIO

ANALYSIS

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

[VLSI DESIGN & EMBEDDED SYSTEM]

Submitted by:

MANISH MITTAL

2K17/VLS/13

Under the supervision of

Mr. ALOK KUMAR SINGH

Associate Professor

ELECTRONICS & COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

 JULY, 2019

ii

ELECTRONICS & COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Manish Mittal, Roll No. 2K17/VLS/13, student of M.Tech (VLSI Design & Embedded

System), hereby declare that the project Dissertation titled “Setup & Hold Fixing of Digital

Circuits with Automated Hold Fixing Using Multi Scenario Analysis” which is submitted

by me to the Department of Electronics & Communication Engineering, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of

the degree of Master of Technology, is original and not copied from any source without

proper citation. This work has not previously formed the basis for the award of any

Degree, Diploma Associate-ship, Fellowship or other similar title or recognition.

Place: Delhi MANISH MITTAL

Date: 25
th

 July, 2019

iii

ELECTRONICS & COMMUNICATION ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Setup & Hold Fixing of Digital Circuits

with Automated Hold Fixing Using Multi Scenario Analysis” which is submitted by

Manish Mittal, Roll No. 2K17/VLS/13, Electronics & Communication Engineering, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of

the degree of Master of Technology, is a record of the project work carried out by the

student under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi Mr. ALOK KUMAR SINGH

Date: 25
th

 July, 2019 SUPERVISOR

 ASSOCIATE PROFESSOR

iv

ABSTRACT

SoC (System on Chip) signoff is considered as a critical part of the SoC design

flow. From signoff perspective, an SoC has to pass through multiple criteria before

releasing the final GDSII to the foundries for manufacturing Chips, such as Timing

criteria, Phyical Verification (PV) criteria, Power Drawn Network (PDN) criteria, Formal

Verification (FV) criteria and Conformal Low Power (CLP) criteria. These signoff checks

along with many others are performed on an SoC. Timing checks are critical because if we

intend to deliver an SoC operating at a desired frequency and speed, it’s important that the

chip meets its timing requirements along all the paths.

With continuously decreasing technology node, and increasing logic complexity

within the chip, the number of scenarios required for timing analysis has also increased. An

important stage in performing Static Timing Analysis of a chip is the Engineering Change

Order (ECO), where the timing violations are fixed incrementally by giving feedbacks.

Usually different paths fail under different conditions or scenarios, hence generating

ECO’s for each specific corner and analysing each corner is not recommended as it is time

consuming and increases the cost of the chip. Hence Distributed Multi-Scenario Analysis

(DMSA) is a feature provided by synopsys PrimeTime tool, which helps the user to

simultaneously analyse violations across multiple corners and hence generate ECO’s in a

faster and more efficient way.

There are two kinds of timing violations that usually happens in a chip namely,

setup violations and hold violations. Setup violations are frequency dependent, so they can

be resolved by changing the operating frequency of the chip, but hold violations are

frequency independent. Hence fixing hold violations require more number of ECO’s to be

generated.

In my report, I have discussed about an algorithm that efficiently generates Hold

ECO’s using PrimeTime tool using Distributed Multi-Scenario Analysis so that each and

every violation that occurs across the chip across different scenarios can be captured and

fixed.

v

ACKNOWLEDGEMENT

It gives me an immense pleasure to express my deepest sense of gratitude and sincere

thanks to my highly respected and esteemed guide Mr. Alok kumar Singh, (Associate

professor, ECE) for his valuable guidance, encouragement and help for completing this

project work. His useful suggestions for this whole work and co-operative behavior are

sincerely acknowledged.

I also wish to express my gratitude to Professor. Neeta Pandey for her constant support and

guidance.

Mr. Puneet Dodeja, Team Manager & Technology Director, Qualcomm India, for

accepting me as an intern in his team. I am grateful to him for his expertise, kind concern

and continous encouragement.

Mr. Nitin Dhamija, Staff Engineer, Qualcomm India, for the long discussions that helped

me in understanding the technical details of my work. I am also thankful to him for his

unfailing support and for having faith in me.

At the end I would like to express my sincere thanks to all friends and others who helped

me directly and indirectly during this project work.

MANISH MITTAL

 2K17/VLS/13

vi

CONTENTS

Candidate’s Declaration i

Certificate ii

Abstract iii

Acknowledgement iv

Contents v

List of Tables ix

List of Figures x

List of Abbreviations xi

CHAPTER 1 INTRODUCTION 1

1.1 Asic Design Flow 2

1.1.1 Logical Design 3

1.1.1.1 RTL Design 3

1.1.1.2 Synthesis 3

1.1.2 Physical Design 3

1.1.2.1 Layout 3

1.1.2.2 Tapeout 3

1.2 Timing Constraints 4

1.3 Inter and Intra Chip Variations 4

1.3.1 Sources of Variations 6

1.3.1.1 Supply Voltage Variations 6

1.3.1.2 Process Variations 6

1.3.1.3 Temperature Variations 6

1.4 Scenarios in Timing Analysis 7

1.4.1 Operating Conditions 7

1.4.1.1 Front End Of Line (FEOL) 8

vii

1.4.1.1 Back End of Line (BEOL) 8

CHAPTER 2 OVERVIEW OF STATIC TIMING ANALYSIS 10

2.1 Various Timing Paths in Design 11

2.2 Delay Calculation 12

2.3 Constraint Checks 12

2.3.1 Different Timing checks for flip-flop 13

2.4 The PrimeTime STA Analysis Flow 14

2.5 Working with Design Data 16

2.5.1 Logic Libraries 16

2.5.2 Reading and Linking the Design 17

2.5.3 Working with Design Objects 18

2.5.4 Working with Attributes 19

2.6 Constraining the Design 19

2.6.1 Input Delays 19

2.6.2 Output Delays 20

2.6.3 Design Rule Constraints 21

2.7 Clocks 22

2.7.1 Specifying Clocks 23

2.7.2 Defining Clocks 23

2.7.3 Creating Virtual Clock 24

2.7.4 Applying Commands to all Clocks 24

2.7.5 Specifying Clocks Characteristics 24

2.7.6 Using Different Clocks 28

2.7.6.1 Clocks which are Synchronous 28

2.7.6.2 Clocks which are Asynchronous 29

2.7.6.3 Clocks which are Exclusive 29

2.7.7 Specifying Clock Gating Setup and Hold Checks 30

2.8 Timing Paths and Exceptions 31

2.8.1 Timing Path Groups 31

2.8.2 Specifying Timing Paths 32

viii

2.8.3 Overview of Timing Exceptions 32

2.8.4 False Paths 33

2.8.5 Multi-cycle Paths 33

2.9 Performing Case Analysis 34

2.9.1 Setting and Removing Case Analysis 35

2.10 Reading Parasitics 36

2.11 Setup and Hold Fixing Methods 37

2.11.1 Fixing Setup Violations 37

2.11.2 Fixing Hold Violations 38

2.12 PrimeTime Distributed Multi Scenario Analysis 39

2.12.1 Definition of Terms 40

2.12.1 Overview of the DMSA Flow 41

2.12.2.1 Setting the Search path 41

2.12.2.2 .synopsys_pt.setup File 41

2.12.3 DMSA Usage Flow 42

2.12.4 ECO Fixing 43

CHAPTER 3 DESIGN IMPLEMENTATION AND TIMING FIX 44

3.1 Design Setup 44

3.1.1 Read In Design Data 45

3.1.2 Constraining the Design 45

3.1.3 Clocks 46

3.1.4 Timing Exceptions 46

3.1.4.1 MultiCycle Paths 46

3.1.4.2 False Paths 46

3.1.5 Specifying Case Analysis 46

3.1.6 Reading parasitic 46

3.2 Timing Checks 47

3.2.1 Setup Timing Checks 47

3.2.2 Hold Timing Checks 48

3.3 Timing Fixes 49

ix

3.4 DMSA Environment Setup 50

3.4.1 Dominant Corner Extraction 51

3.5 Generating ECO Using PrimeTime DMSA 52

CHAPTER 4 RESULTS & DISUCSSIONS

4.1 Experimental Setup 53

4.2 Design Summary 54

4.3 Inferences 55

Conclusion 56

References 57

x

11

LIST OF TABLES

2.1 Timing Paths 11

2.2 PrimeTime STA flow 16

2.3 Different Input File Formats for PrimeTime 17

2.4 Design Hierarchy in PrimeTime 18

2.5 PrimeTime Attributes Command 19

2.6 PrimeTime Timing Exceptions 32

2.7 Example of SPEF Annotation Summary 37

3.1 Worst case Delay Scenarios 50

3.2 Worst case Delay Scenarios for Design A 50

4.1 Different Tools and their Version 53

4.2 PrimeTime DMSA ECO Results 54

4.3 Tweaker ECO Results 54

4.4 Summary 55

12

LIST OF FIGURES

1.1 ASIC Design Flow 2

1.2 Cell delay trend with PVT Variations 7

1.3 Design Corners 8

2.1 Timing Paths 11

2.2 Setup and Hold Check 13

2.3 Input Delay 20

2.4 Output Delay 21

2.5 Clock Distribution in Typical ASIC 23

2.6 On-chip Clock Source 26

2.7 Off-Chip Clock Source 26

2.8 Specifying Clock uncertainty 27

2.9 Synchronous Clock Generation 28

2.10 Mutually Exclusive Clocks 30

2.11 Multi-cycle Path 34

2.12 Selecting Clock Mode for Timing Analysis 35

3.1 Primary STA Flow 44

3.2 Test Case Schematic 45

3.3 Setup Timing Report 47

3.4 Hold Timing Report 48

3.5 Test Schematic with Lock-up Latch 49

3.6 Hold Violation Fixed 49

3.7 DMSA Environment Setup Algorithm 50

13

3.8 Generating PrimeTime ECO’s Algorithm 52

LIST OF ABBREVIATIONS

SoC – System on Chip

IP – Intellectual Properties

EDA – Electronic Design Automation

STA – Static Timing Analysis

RTL – Register transfer Level

GDS – Graphics data System

HDL - Hardware Description Language

DFT - Design for Testability

DRC – Design Rule Constraints

CMOS – Complementary Metal Oxide Semiconductor

OCV – On-chip Variations

AOCV – Advanced On-Chip Variations

POCV – Parametric On-chip Variations

PVT – Process Voltage Temperature

FEOL – Front End of Line

BEOL – Back End of Line

DTA – Dynamic Timing Analysis

ASIC – Application Specific Integrated Circuits

DMSA – Distributed Multi Scenario Analysis

SPEF - Standard Parasitic Exchange Format

PLL – Phase Locked Loop

ECO – Engineering Change Order

TCL – Tool command Language

14

Chapter 1

INTRODUCTION

“Most of the System on Chip (SoC) vendor’s today re-uses the Intellectual

Property (IP) for designing of different SoC’s. These Intellectual Properties (IP) are

integrated together to obtain what we see as SoC. With times, not only does the chip

density increases but also its complexity. With increasing number of transistors more

functionality can be packed into the system and with the ever decreasing feature size the

overall size keeps decreasing which leads to increase in the overall complexity of

designing the chip. With such large number of logic placed, the overall interconnect

parasitics have also increased manifold. Thus today’s design methodology is more

interconnect dominated rather than logic dominated, where large number of

interconnect wires running close to each other introduces many undesirable effects in

the design such as Crosstalk delay, Signal Integrity issues along with always increasing

clock frequency which pose some serious challenges in Timing Signoff of the design.

Thus it has been noticed that the accurate timing closure of the design consumes

a large part of the design time, thus special emphasis is always given to Timing

requirements of the design right from the initial stages of the design stage. Timing

closure is not only performed across single corner but a wide range of corners which

accounts for variations in manufacturability which further increases the complexity.

This is important because if Timing closure is not performed at different scenarios it

leads to failure in later design stages which is difficult to debug and also quite

expensive.

Designers try to reduce the number of Timing violations at the physical design

stage, but still a large number of violations occur after the post route stage. Analysing

and fixing these violations over the single scenario is not only time consuming but also

irrevalant. Hence designers tend to fix these violations using Multi Scenario Analysis

techniques provided by different EDA vendors through their Timing Signoff Tools.”

15

16

1.1 ASIC DESIGN FLOW

Figure 1.1 ASIC Design Flow

System Specifications

Architectural Design

Logic Design

Functional Verification

Logic Synthesis

DFT Insertion

Formal Verification

STA

Floor-planning

Placement

Clock Tree Synthesis

Routing

Sign-off LVS

Sign-off DRC

Sign-off STA

GDS-II Release

Fabrication

Testing

Packaging

Product Validation

DESIGN

SYNTHESIS

LAYOUT

PHYSICAL

VERIFICATION &

TAPE-OUT

PRODUCT

FABRICATION

LOGICAL DESIGN

PHYSICAL DESIGN

PRODUCTION

17

“ The flow is termed as RTL (Register Transfer Level) to GDS-II (Graphic Data

System) flow and process to generate GDS-II is known as Tape-Out. The ASIC design

flow is divided into Logical and Physical design flow i.e the Frontend and the

Backend Process.”

1.1.1 LOGICAL DESIGN

1.1.1.1 RTL DESIGN

“The flow starts with High-Level design specification; the designer puts

specification for Area, Speed and Power requirements. Then the designer starts setting

Chip Architecture. RTL, Register Transfer Level, describing the functional behaviour

using HDL, hardware description languages, Functional Verification, verifying the

functionality using simulation.”

1.1.1.2 SYNTHESIS

“Synthesis, the first step of converting the RTL to gate stage netlist based on

timing, power and area constraints. DFT (Design for Testability), this step is for

preparing the design for testability. Scan insertion is a common technique that helps in

making registers in the design that can be controlled and observed. Equivalence

Checking, this step is for verifying the functionality of gate netlist against the RTL

description using formal verification techniques. STA,static timing analysis, a method

that checks the ability of the design whether it meets the timing requirements as

required by the design statically without simulation.””

 “The designer is responsible of specifying 'Timing Constraints' to model how

the design needs to be constrained & the STA tools check that the design meets the

timing requirements. The designer uses an industry standard format 'SDC' Synopsys

Design Constraints. STA on this stage acts as the connection between logical and

physical design implementation.”

1.1.2 PHYSICAL DESIGN

1.1.2.1 LAYOUT

 “The flow starts with Floor planning; the logical blocks that are used in the

design are placed considering many optimization factors to account for Area, Speed

and Power. Then Placement occurs where the connections between blocks are routed.

After Placement the next step is to build the Clock Tree Synthesis to distribute the

clock and reduce clock skew that occurs in different parts of the design. Then routing

the design is the final step to generate the layout. During the physical design

implementation stage, STA flow is run multiple times to achieve a more correct

timing analysis.”

1.1.2.2 TAPEOUT

 Two steps are needed to verify the layout

18

 LVS, Layout versus Netlist, matching the layout with the netlist generated

after synthesis. DRC, Design Rule Checking, All rules that are being laid out

by the semiconductor fabrication foundries where it will be fabricated into a

chip are retained and followed.

 Signoff Static Timing Analysis is performed

Finally, GDSII release, semiconductor foundries manufacture chips based on

the GDSII.

1.2 TIMING CONSTRAINTS

“From timing perspective, the designer creates timing constraints for synthesis

which are a set of constraints or rules applied to a given collection of paths or nets that

allows the chip to have the desired performance. Constraints can be any set of rules or

definions about period, frequency, maximum and minimum delay between end points,

or maximum or minimum net delay.”

CONDITIONS THAT NEED TO BE MET:

 Clocks in the design

 Max allowed Transition time for clocks or signals

 Max allowed load or capacitance at pin or port

 Max allowed Delay for pin or port

BOUNDARY SETTINGS:

 Input transition Time for signals

 Output loading at the output

 Logic Settings for the design

EXCEPTIONS FOR THE SINGLE CYCLE PATH:

 False Path

 Multi-cycle path

1.3 INTER AND INTRA CHIP VARIATIONS

Regular scaling of the Complementary Metal Oxide Semiconductor (CMOS)

devices have led to the increase in the number of device parameter variations such as

gate oxide thickness, device channel length and width which in turn effects device

performance. As the technology node decreases it becomes more complex to model

these variations for efficient device manufacturing.

“As an accepted notion in the semiconductor industry, where device geometry

is continuously decreasing, the growing affect comes in the variations in static timing

analysis. Signal integrity (SI), which was first noticed as a first order effect in 130-nm

19

process technology and then became more complicated over reducing geometry

nodes, on-chip variations (OCV) which started at 130-nm and its effects are only

increasing with decreasing geometry nodes. A starting solution to consider for OCV

was to use a flat universal margin across the full chip. However, the increasing result

of variation in modern designs and techniques requires a better and accurate device

level variation methods.”

“On-chip variation (OCV), the present adopted model for variation in a

designer’s timing flow is the first stage of approach that applies a layer margin across

the design. With more variations due to different parameters like process, voltage, and

temperature, also due to increasing variations across the same die and in different dies,

arriving at a single unique blanket margin is difficult. There are increasing concerns

about OCV with respect to over-design, decreased design performance, and higher

timing closing cycles which is Engineering Change order Phase. As time this was one

of the most practical and safe way of applying the worst-case variation across the

complete chip is now becoming less acceptable, design engineers have found ways to

reduce and relax the OCV effects. Some important concerns such as “why do near

cells see such a large difference in variation swing?” and “why do nets or cells in

paths of different logic depths see the same variation?” this requires the need for

improved and relaxed techniques and for the layer OCV technique to take a different

form.”

The AOCV method provides derates numbers as a function of logical depth.

These variables provide more information and efficiency for margining approach by

calculating how much a particular path is affected by the process variations.

“Primetime Parametric on-chip Variation (POCV) is a method that reprsents the

delay of a cell or an instance in the design as a variable that is unique to that instance.”

“POCV is a method developed by Synopsys which uses a statistical approach,

which means it does not perform a full SSTA analysis of the design. Instead, what it

does is it computes the delay changes by modelling the cell delay which are internal to

design and driving load parasitic to calculate both the mean and sigma of a logic stage

of the design.

Features of POCV

 POCV does Statistical derating of various parameters for variations

 POCV provides Single input format and it does characterization source for

both the OCV’s AOCV and POCV table data

 It provides Non-Statistical Reports for timing

 It does very Limited statistical timing reporting for paths

 POCV is Compatible with already existing Primetime functionality

20

POCV provides benefits over AOCV

 POCV Reduces Pessimism gap between two analysis types which is graph

based analysis and the other is path based analysis.

 POCV provides Less overhead count for incremental or more timing analysis.

1.3.1 SOURCES OF VARIATIONS

1.3.1.1 SUPPLY VOLTAGE VARIATIONS

On a chip, each and every standard cell is connected to the supply voltage rails

that is the VDD and GND rails through interconnects which have some finite amount

of resistances. The length and width of these interconnects may be different which

may result in varying resistances. These resistances result in voltage drop across the

inter-connects, which results in incorrect voltage levels being received at the Standard

cell pins. Along with the resistances, inductance effect also comes into picture which

leads to further degradation of the voltage levels. Local effects like the On-chip

variations causes various undesirable effects such as IR drop, Ground bounce, Slew

variations, electro-migration. These effects have direct consequences on the delay

characteristics of the cells which in turn alter the Timing closure of the design. We

know that the speed of the circuit is directly related to the supply voltage which is

supplied at its Supply voltage pins, hence lesser the supply voltage, slower is the

circuit.

1.3.1.2 PROCESS VARIATIONS

 Process Variations arises due to changes or variations in semiconductor

fabrication process. Today, millions of instances are packed into single chip and the

device geometries like the channel width, length, gate oxide thickness and many more

are not identical for each and every instance. There are slight variations among

instances on same chip and these variations needs to be accounted for desired

performance of the design. Variations in device Geometries can lead to variations in

critical parameters like the Threshold voltages which in turn will always affect the

performance of the device. Process variations are caused due to variations in pressure,

dopant concentrations

1.3.1.3 TEMPERATURE VARIATIONS

 During the operation of a chip the temperature across it continuously varies.

Due to continous switching activity, the dynamic and static power dissipation on the

chip results in increasing temperature across the chip which than affects the desired

efficiency of the chip. The temperature of the chip affects the threshold voltage or

cutoff voltage of the device, increasing temperature decreases the threshold voltage,

which in turn makes the device faster. But a higher increase in the temperature is

undesirable for the overall performance of the device as it causes heating issues which

in turn causes relaibility concerns for the chip.

21

Figure 1.2: Cell delay trend with PVT variations [1]

1.4 SCENARIOS IN TIMING ANALYSIS

 A scenario is a unique mix of operating conditions and operating modes for a

given specifications. Scenarios are essentially required to ensure that the chip

performs its intended operation under all possible conditions. Operating conditions

denote various voltage levels at which the Chip is intended to work and different

parasitic corners for worst and best delay calculations. The operating modes on the

other hand represent different modes in which the chip is operated. There are widely

two operating modes for SoC’s

 Functional Modes

 Test Mode

1.4.1 OPERATING CONDITIONS

 The operating conditions denote the variations due to three different

parameters voltage, process and temperature. These variations are together denoted as

Operating Conditions or also known as Corners. These are defined in the form of

22

library set which are provides in the Process kit based on the Technology by

Foundries.

1.4.1.1 FRONT END OF LINE (FEOL)

 Front End of Line (FEOL) denotes the lowest layer of IC Fabrication stage

where the MOS/FINFET devices are fabricated. The variations in the device delays

and other parameters with the variations in the PVT are denoted using the FEOL

corners. On the basis of doping concentrations, carrier mobility usually three types of

FEOL corners exist namely SLOW, FAST, and TYPICAL. FEOL corners are

designated using two letter words; the first letter denotes the nMOS and the second

letter denotes the pMOS. For example, for fast nMOS and fast pMOS the FEOL

corner is deoted by ff, a fast nMOS and a slow pMOS is denoted by fs.

Figure 1.3: Design Corners [1]

1.4.1.2 BACK END OF LINE (BEOL)

 The back end of line denotes the metal interconnects that are used for

connectivity between different MOS structures. In today’s VLSI world, the delay of

these interconnects comprises a very important portion of the total delay of the circuit.

Due to the On-Chip Variations as discussed earlier, the delay due to coupling effects

caused because of the nearby interconnects is very useful in the calculation of the total

23

delay. With the increase in process complexity the number of BEOL has increased.

Some of the BEOL corners for 8nm are:

 Capacitance Worst (cw)

 Capacitance Best (cb)

 Coupling Capacitance Worst (ccw)

 Coupling Capacitance Best (ccb)

 Resistance-Capacitance Worst (rcw)

 Resistance-Capacitance Best (rcb)

24

Chapter 2

OVERVIEW OF STATIC TIMING

ANALYSIS

 “Timing analysis refers to analysing the design for timing violations. Dynamic

Timing Analysis (DTA) and Static Timing Analysis (STA) are the two ways of

performing timing analysis on a design. The former validates the design by verifying

its functionality as well as the timing. This is done by simulating the design for

various input stimulus. This process is extremely exhaustive as compared to static

timing analysis, where the design is validated statistically for timing and does not

depend on the input stimulus. Thus, for the timing analysis of Application-Specific

Integrated Circuit (ASIC), containing millions of gates, STA is a faster and simpler

approach. The main aim of static timing analysis is to make sure if the chip or design

can be operated at rated speed without causing any timing issues.”

 Performing efficient Static timing analysis is a widely used technique of

checking the timing behaviour of a design or circuit by checking and ensuring all the

possible paths for timing are violations free. The approach is that PrimeTime tool

breaks a design further down into different timing paths or timing arcs, it then

calculates the propagation delay for the data signal along different and also each path,

and finally checks for any violations of timing violations or design rules within the

design.

25

2.1 VARIOUS TIMING PATHS IN DESIGN

 PrimeTime tool when performing timing analysis does it by first breaking the

design into several smaller timing paths and then perform analysis. Each timing path

consists of the following elements:

 Startpoint- The start of a timing path where required signal data is launched or

released at the active clock edge or where the data must be available at a specific

time. A startpoint for timing analysis can be an input port of the design or a

register clock pin.

 Combinational Logic Network- Elements that have no memory or internal

state. Different combinational logic can be present along the data path such as

Adders, Logic gates (OR, XOR, XNOR, MUX, AND, NAND), but none of the

cells should be a sequential cell.

 Endpoint- The end of a timing path is where data is captured by an active clock

edge when it has been released at the startpoint or where the data must be

available at a specific time. An endpoint in the design can be either the input pin

of the registers or an output port of the design.

Figure 2.1: Timing Paths [2]

In the example, each logic block represents a combinational network having the

data path delay.

Table 2.1: Timing Paths

PATH STARTPOINT ENDPOINT

Path 1 Input Port of design Data input of data storing element

Path 2 Clock pin of data storing element Data input of data storing element

Path 3 Clock pin of data storing element Output Port of design

Path 4 Input Port of design Output Port design

26

2.2 DELAY CALCULATION

 The first step that tool performs is to break design into smaller paths, and then

calculate delays of each cell and nets along each path and then report back the timing

summary. The total accumulated delay along the path is the sum of its each cell delays

and net delays.

 Cell Delay

If there is a transition in the input signal of the cell, there will be

corresponding transition in the output signal. The delay from this input

transition to output transition of the cell is cell delay. If the standard

delay files for the cell (SPEF/SDF) are not available, the tool than

calculates the cell delay by viewing and applying values of delay from

the lookup tables which are provided in the cell libraries.

 Net Delay

The time that a data signal takes to traverse from the output pin of one

cell till the input pin of next cell along the path is actually the net delay.

The net delay is due to the different parasitic like the capacitance and

resistance of the interconnecting wires present in between the two

successive cells.

The PrimeTime tool calculates net delays with the following methods:

1. Estimate the delays using a different wire load models like Zero

Wire Load Model; this method is used before layout, when the

chip topography is unknown.

2. Using delay values as provided by standard delay files.

2.3 CONSTRAINT CHECKS

 Once different timing paths are known by PrimeTime and when it finds the path

delays, it now analyses the paths for different timing violations, such as setup and hold

constraints.

 A setup timing violation check makes sure that by what time the data signal

should be made available at the data input pin of a sequential device like flip-

flops or latches before the clock at the capture sequential block arrives. The

setup constraint ensures a maximum delay on the data path.

27

 A hold check on the other hand ensures that by what time the data signal should

be available before the capture edge at the capturing flip-flop arrives. The hold

check is performed on the same edge of the clock.

PrimeTime not only checks for setup and hold violations but also it can check

for clock gating checks, recovery and removal checks, and different Design rule

violations for the clock like the minimum pulse width violations and minimum period

violations for clock signals.

 For timing violations, we introduce term called Slack, which denotes the amount

of time by which a path has failed. For example, for a setup check, if the required time

to reach at the input pin of the capture flop is 10ns, and the data signal arrives at 7ns,

than in this case the slack is 3ns which is a positive quantity indicating the path is met.

A slack of value 0 will show that the path is just barely met. A negative slack means

that a timing violation has occured.

2.3.1 DIFFERENT TIMING CHECKS FOR FLIP-FLOP

 The following example shows how PrimeTime tool evaluates the hold time and

setup time checks for a flip-flop

Figure 2.2: Setup and Hold check [2]

 In the above example, consider the hold time and the setup time of the flip-flops

to be 1 unit of time and 0 unit of time respectively, and the clock is defined in such a

28

way that its time period is 8 units of time. The units of time can be in either

nanoseconds (ns) or picoseconds (ps), and these values are defined in the libraries.

 PrimeTime checks for setup violations in one clock period. So, when the data is

launched by FF1 at 0ns, the tool checks that the data should reach at the D pin of the

FF2 atleast before required library setup time of the capture flip-flop FF2. If the data

reached too delayed a timing violation is reported by the tool. For setup delay analysis,

the tool considers the maximum values of each nets delay and maximum values of each

cell delay along the data path.

 For the hold delay calculation, the PrimeTime tool checks that the data launched

at the clock edge of the launch register FF1 reaches the data pin D of the Capture

registers FF2 atleast after library hold time of the register FF2. For hold checks, the tool

considers the minimum delays of each nets and celss along the data path.

2.4 THE PRIMETIME STA ANALYSIS FLOW

 Table 2.2 shows steps to perform PrimeTime static timing analysis:

STEP TASK TYPICAL COMMANDS

1 First Read the design data, which includes

either a gate-level netlist or verilog and

associated logic libraries

set search_path

set link_path

read_verilog

link_design

2 Specify timing and design rule constraints set_input_delay

set_output_delay

set_min_pulse_width

set_max_capacitance

set_min_capacitance

set_max_fanout

set_max_transition

3 Specify clock characteristics create_clock

set_clock_uncertainty

set_clock_latency

set_clock_transition

4 Specify different timing exceptions set_multicycle_path

29

set_false_path

set_disbale_timing

5 Specify the analysis environment and

different conditions such as operating mode

conditions and delay models

set_operating_conditions

set_driving_cells

set_load

set_wire_load_model

6 Specify case and mode analysis settings set_case_analysis

set_mode

7 Back-annotate delay and parasitics read_sdf

read_parasitics

8 Apply variation read_ocvm

set_aocvm_coefficient

set_aocvm_table_group

9 Specify power information load_upf

create_power_domains

create_supply_net

create_supply_set

create_supply_port

connect_supply_net

set_voltage

10 Specify options and data for signal integrity

analysis

set si_enable_analysis true

read_parasitics –

keep_capacitive_coupling

11 Apply options for specific design techniques set_latch_loop_breaker

set_multi_input_switching_coefficient

define_scaling_lib_group

12 Check the design data and analysis setup check_timing

check_constraints

report_design

report_port

report_net

report_clock

report_path_group

30

report_cell

report_lib

13 Next we do a complete timing analysis and

than analyse the results

report_global_timing

report_timing

report_constraints

report_analysis_coverage

14 Generate the engineering change orders

(ECOs) for either to fix different timing

violations or recover power

set_eco_options

fix_eco_drc

fix_eco_timing

fix_eco_power

write_changes

15 Save the primetime session Save_session

Table 2.2: PrimeTime STA Flow

2.5 WORKING WITH DESIGN DATA

2.5.1 LOGIC LIBRARIES

 A logic library describes the timing and functions of macro cells in an ASIC

technology by using the Library Compiler tool. Other Synopsys tools, such as the

Design Compiler synthesis tool and the IC Compiler place-and route tool, also use these

logic libraries.

 A logic library contains library cell descriptions that include

 Cell, bus and pin structure that describes each cell’s connection to the outside

world

 Logic function of output pins of cells.

 Timing analysis and design optimization information, such as the pin-to-pin

timing relationships, delay parameters, and timing constraints for sequential

cells

 Other parameters that describe area, power, and design rule constraints

PrimeTime can read logic libraries in the .db and .lib formats. The libraries can have

different units of time, capacitance, and voltage.

31

2.5.2 READING AND LINKING THE DESIGN

 Before performing timing analysis, we need to read and link the design and logic

libraries. PrimeTime can read the following file formats:

INPUT DATA SUPPORTED FILE FORMATS

Design Data Binary database (.db)

Milkyway

Synopsys logicsl database (.ddc)

verilog

VHDL

Logic libraries Binary Database (.db)

Synopsys Library Compiler format (.lib)

Table 2.3: Different Input File Formats for PrimeTime

To read and link the design data,

1.) Specify the directories in which PrimeTime searches for designs, logic libraries,

and other design data such as timing models. To do this, set the search_path

variable. For example

set_app_var search_path “./abc/design /abc/libs”

PrimeTime searches the directories in the order that is specified.

2.) Specify the libraries in which PrimeTime finds elements in the design hierarchy

by setting the link_path variable. For example:

set_app_var link_path “* STDLIB.db”

The variable can contain an asterisk (*), library names, and file names. The

asterisk instructs PrimeTime to search for a design in memory. PrimeTime

searches libraries in the order that is specified. The first library in the path is

usually considered as the main library.

3.) Read the design into memory

read_verilog TOP.v

If the search path includes files that contain the subdesigns, we need to read

only the top-level design.

4.) Link the design to resolve References to library cells and subdesigns:

link_design TOP

32

During the design linking, the tool automatically loads the sub-designs if the

subdesign names match the file names.

2.5.3 WORKING WITH DESIGN OBJECTS

Designs are hierarchical entities composed of objects such as cells, ports, and

nets.

In PrimeTime tool, a design contains the objects in the following table:

OBJECT CLASS DESCRIPTION COMMAND

cell Instance in the design; can be a

hierarchical block or primitive

library cell

get_cells

clock Clock get_clocks

design Design get_designs

lib Library get_libs

Lib_cell Cell in a logic library get_lib_cells

Lib_pin Pin on a library cell get_lib_pins

Lib_timing_arc Timing arc on a library cell get_lib_timing_arcs

Net Net in the current design get_nets

Path_group Group of paths for cost-function

calculations and timing reports

get_path_groups

Pin Pin of lower level cell in design get_pins

Port Port of current design get_ports

Timing_arc Timing arc get_timing_arcs

Timing_path Timing path get_timing_paths

Table 2.4: Design Hierarchy in PrimeTime

 To constrain the design, we need to perform detailed timing analysis, and locate

the source of timing problems; we need to access the design objects. We can do this by

creating collection with the appropriate “get” command. For example, the get_ports

command creates a collection of ports.

33

2.5.4 WORKING WITH ATTRIBUTES

 An attribute is a string or value associated with an object that carries some

information about that object. We can write programs in TCL to get attribute

information from the design database and generate custom reports on the design.

 PrimeTime provides the following commands for setting, reporting, listing and

creating attributes.

ATTRIBUTE COMMAND DESCRIPTION

define_user_attribute Creates a new attribute for one or more object classes

get_attribute Retrieves the value of any attribute from a single object

list_attributes Shows attributes defined for object class

remove_user_attribute Removes a user defined attribute from one or more object

report_attribute Displays the value of all attributes on one or more object

set_user_attribute Sets a user defined attribute on one or more attribute

Table 2.5: PrimeTime Attribute Commands

2.6 CONSTRAINING THE DESIGN

 One of the most important criteria that needs to be fulfilled before we can

perform timing analysis of a design is to apply relevant timing constraints in the design.

Timing constraints usually apply various restrictions for a data signal or clock signal to

arrive at a input pin of the device or gates or to be relevant at a device output.

 For Input delay: set_input_delay

 For Output delay: set_output_delay

 To define a new clock: create_clock

2.6.1 INPUT DELAYS

 To do constraint checking at the inputs of the design, the tool needs information

about the signal arrival times of various inputs pins or ports of the design. The

set_input_delay command is used to denote the time taken for the external paths to the

port of the Design under test. The tool than will make use of this delay information to

find the timing violations at the input port and in the transitive fanout from that input

port. With this command we than specify the minimum value of delay and maximum

34

delay from arrival of active clock signal to the data signal arrival at the design input

port.

Figure 2.3: Input Delay [2]

 In the above example the timing analysis path from register UFF0 to register

UFF1, the path from UFF0 till INP1 is external to the Design Under Analysis (DUA).

The delay combined from Clock to q delay (Tclk2q) of UFF0 and Combinational Logic

delay (Tc1) is provided as an input delay at the INP1 port of the DUA. The Physical

Design Tool when optimizing the design takes this input delay into consideration and

optimizes the delay from port INP1 till D pin of UFF1 in such a way that it meets the

path within required time interval.

2.6.2 OUTPUT DELAYS

 To do constraint checking at the outputs of the design, we need to provide data

about the timing requirements at the outputs to the PrimeTime tool. To specify the delay

of an output port to a register, use the set_output_delay command.

 With this command, we specify minimum amount of delay and maximum delay

between the output external port of the Design under Test (DUA) and external

sequential device that captures data from that output port. This setting will ensure at

what time which data signals should be made ready at the output port of the design

under test to meet the timing requirements for setup and hold requirements for the

external sequential element:

35

 Maximum_output_delay = length_of_longest_path_to_register_data_pin +

library_setup_time_of_the_register or latch.

 Minimum_output_delay = length_of_shortest_path_to_register/latch_data_pin –

hold_time

Figure 2.4: Output Delay [2]

 In the Figure 2.4, for the timing path from UFF0 to UFF1, the path from OUTB

till D pin of UFF1 is outside of Design Under Analysis (DUA). The summation of delay

of combinational logic logic block Tc2 and required library setup time of UFF1 Tsetup

comprises the external output delay. This obtained value of the net output delay is than

provided at the OUTB port of the DUA. The Physical design tool when optimizing the

path for timing violations will take into consideration this value so that it can optimize

the path from CK pin of UFF0 till OUTB port.

2.6.3 DESIGN RULE CONSTRAINTS

PrimeTime checks for violations of design rule constraints that are defined in the

library or by PrimeTime commands. Rules for DRC checks include

 Maximum limit for transition time of the signals

 Maximum and minimum limits of capacitance

 Maximum limit of fanout

To report design rule constraint violations in a design, use the

report_constraint command.

36

2.7 CLOCKS

 PrimeTime supports the following clocks:

 Multiple Clocks

In a design we have many clocks that are different from each other and

have have different time periods and also have different waveforms and different

rise and fall edges. A virtual clock will have no real or actual source in the given

design itself.

 Skew and Delays of Clock Signals

Clocks when start from their sources arrive at the clock pins of their

respective flops of latches with different delays due to various delay factors such

as clock latencies (clock source latency and clock network latency), denoted

using the clock skew. For multi-clock designs, we can specify inter-clock skew.

We can specify an ideal delay of the clock network for analysis before clock tree

generation, or we can specify that the delay needs to be computed by PrimeTime

for analysis after clock tree generation. PrimeTime also supports checking the

minimum pulse width along a clock network.

 Gated Clocks

We can analyse a design that has gated clocks.A gated clock is one

which passes through some gating logic elements such as multiplexers.

PrimeTime tool will check for setup and hold violations on the gating signal.

 Generated Clocks

We can analyse a design that has generated clocks. Clocks which are

Generated are ones which are generated from already exiting clocks, such as a

clock which is multiplied or divided by some amount to generate a new clock,

but having the same source but different frequencies.

 Clock Transition Time

We can specify the transition times of clock signals at register clock pins.

The transition time of signal is defined as the amount of time a particular signal

takes to change its logic state.

37

Figure 2.5: Clock Distribution in Typical ASIC [2]

2.7.1 SPECIFYING CLOCKS

 Multiple Clocks are defined for a system. We need to define each clock. The

details for clock signals include:

 Clock Period and waveform for different scenarios

 Latency (insertion delay) of clock signal across scenarios

 Uncertainty (skew) value of the clock signals

 Divided or multiplied clocks

 Different Clock gating checks to be performed

 Different transition times for complete or incomplete clock networks

PrimeTime analyzes paths between different registers or between register and

ports. For a design with multiple interacting clocks, PrimeTime determines various

phase connections among the clocks at the starting flops and clocks at the endpoint

flops.

2.7.2 DEFINING CLOCKS

 In order to determine and create any clock for the design, we use the

create_clock command. This command creates a clock at the specified source. A source

for the clock can be either at an input port of our design under test or an internal pin of

any sequential block.

38

 A clock when created with the create_clock command has an ideal waveform.

After we create the clock, we must either propagate the clocks or define different

parameters of the clock to perform correct timing analysis.

As soon as we define the create_clock command, it creates a path group which

has the same name as that of the clock. This group contains all paths ending at points

clocked by this clock.

 We can define:

create_clock –period 12 –waveform {0.0 6.0} {ck1 ck2}

PrimeTime supports analysing multiple clocks propagated to a single register.

2.7.3 CREATING VIRTUAL CLOCK

The same create_clock command is used to define the virtual clock, these clocks

are used for clocking external devices. A virtual clock has no actual source in the

current design, but we can use it for setting input or output delays.

To create a virtual clock named virtual_clock1, we use

 create_clock –period 3 –name virtual_clock1 –waveform {0.5 1.5}

2.7.4 APPLYING COMMANDS TO ALL CLOCKS

The get_clocks command selects clocks for a command to use, for example, to

ensure that a command works on the CLK clock and not on the CLK port.

 In order to get different properties of clocks having names which starts with with

CLK1 and a period greater than or equal to 10.0 :

 report_clock [get_clocks –filter “period >= 10.0” CLK1*]

 The all_clocks command is equivalent to the PrimeTime get_clocks *

command. The all_clocks command returns a token representing a collection of clock

objects. The actual clock names are not printed.

The remove_clock command is used to remove all the clocks in the design.

To remove all clocks with names that start with CLKB, enter

 remove_clock [get_clocks CLKB*]

2.7.5 SPECIFYING CLOCK CHARACTERISTICS

 When we define a clock using create_clock command, the clocks that are

created are ideal, means they do not have any delay values associated with them nor any

parasitic. In order to define real clocks, we must either propagate the clocks, or define

39

certain characteristics with respect to the clocks. The important parameters of a clock

are clocks latency (either source latency or network latency or both) and clock

uncertainty values.

 Clock Latency values usually consists of either clock source latency or clock

network latency or a summation of both the latencies. The source latency for a clock is

usually the time clock signal takes to travel from its actual point of origin (can be output

port of Root Clock Generator RCG, or PLL) to clock definition point in the design

under test. On the other hand, network latency for a clock is the time a clock signal

takes to travel from the clock defined point till the clock pin of either register or latches

in the design.

 The difference in the arrival times of the clocks at different flops along the path

leads to Clock Skew or also known as clock uncertainties. Further effects of on chip

variations on the design leads to vaiations in the actual arrival of the clock signals at the

endpoints, leading to more stringent requirements for different timing checks either

setup or hold checks.

 Setting Clock Latency

There are two ways by which we can define clock latencies in our design. We

can either;

 The first method requires the clocks in the design to be actually

propagated across the entire design, so that the tool can calculate the

delays accurately. But this method is only useful after the Clock Tree

has been built in the design using the physical design flow.

 The other method to define latencies for clocks in the design to

explicitly apply certain delay values at different pins or ports of the

design, so that the tool when performing timing analysis takes into

account these delay values and calculates the actual delay. This

method is not very accurate, hence used only during placement stage,

when clock tree is not built.

 Specifying Clock Source Latency

Clock source latency can be applied for either ideal clocks or even propagated

clocks in the design. Therefore the delay at a register clock pin is actually the sum of

both clock source latency and clock network latency.

40

In order to apply source latencies for clocks we use:

set_clock_latency –source

The –source switch here indicates that the delay value is to be accounted for the

source delay and not the network delay.

The –early and –late switches along with the set_clock_latency command can

be also be used for to indicate the external uncertainties values for the clocks.

For defining clock network latency, the –source switch is dropped.

Figure 2.6: On chip Clock Source [2]

Figure 2.7: Off-chip Clock Source [2]

 Dynamic Effects of Clock Latency

Dynamic effects on the clock source latency, such as phase-locked loop (PLL)

clock jitter can be modelled using the –dynamic option in the set_clock_latency. This

option allows specifying a dynamic component of the clock source latency. Clock

41

reconvergence pessimism remobal (CRPR) handles the dynamic component of clock

latency in the same way as it handles the PrimeTime Signal Integrity delta delays.

We can model clock jitter using set_clock_uncertainty command. However, the

clock uncertainty settings do not affect the calculation of crosstalk arrival windows and

are not considered by CRPR. The set_clock_latency command allows us to specify

clock jitter as dynamic source clock latency.

 Setting Clock Uncertainty

Clock uncertainties are applied to clock signals to account for extra pessimism.

The edges of clock signals do not always arrive at the specified time instant, but

infact due to various factors the edges of clock signals arrive either early or late than

the specified time instant. For hold checks, the clock uncertainty values are added to

the total delay, whereas for setup checks the uncertainties are subtracted. By default

if nothing is mentioned, the tool picks the uncertainty value for both setup and hold.

To apply different uncertainty values of different clocks we use the

set_clock_uncertainty command.

For clock uncertainty, we can specify these values for either same clock domain

or different clock domains. For different clock domains we can specify Inter clock

uncertainties, and for applying uncertainties values among similar clock domains we

use intra clock uncertainties.

Figure 2.8: Specifying Clock Uncertainty [2]

42

 Setting Clock Jitter

To set clock jitter on a master clock, we run the set_clock_jitter command. This

command sets the same clock jitter properties on all clocks generated from the specified

master clock. If we do not specify a master clock, the command sets the jitter on all

clocks.

To remove the clock jitter, run the remove_clock_jitter command. This

command automatically removes the clock jitter properties from the generated clock as

well. If we do not specify a master clock, the command removes the jitter from all

clocks.

To report the clock jitter, run the report_clock_jitter command. The report

shows the cycle jitter, duty cycle jitter and the master clock with jitter that is used by the

generated clocks.

2.7.6 USING DIFFERENT CLOCKS

 Today’s SoC’s are much complex than they were few years back, as a result of

which multiple clocks are needed to be defined for a single design, each clock used for

specific operation. Many of such clocks can be related to each other and their

relationship usually depends on the way they are generated. Two clocks can be

synchronous, asynchronous, or exclusive.

2.7.6.1 CLOCKS WHICH ARE SYNCHRONOUS

 Clocks are said to be synchronous, if they share same source from which they

are generated and also have same or related phases. The tool assumes the clocks that

complete a timing path to be synchronous by default until and unless as specified by the

users explicitly.

Figure 2.9: Synchronous clock Generation [2]

43

 create_clock –period 6 –name CLK [get_ports CLK]

create_generated_clock –name CLK_OUT –source [get_ports CLK]

divide_by 2 [get_pins UFF0/Q]

 A design might have various synchronous clocks defined in its database, and

there will be many paths which have its launch clock from one clock domain and

capture clock from another clock domain. To perform timing analysis for such paths,

primetime will expand the clocks to the least common multiple of all the clocks in the

paths and perform timing checks based on the expanded clock period.

2.7.6.2 CLOCKS WHICH ARE ASYNCHRONOUS

 Clocks which do not have their sources common or which does not have any

phase relationship among them are termed as Asynchronous clocks. Clocks are

asynchronous when they are generated from different sources, like one clock is

generated from PLL located outside the chip, whereas other chip is generated within the

chip.

 If we define two domains of clocks to be asynchronous, the tool will not perform

any timing analysis on the paths that have these clocks as launch clocks and capture

clock. In addition, if you are doing crosstalk analysis, PrimeTime SI assigns infinite

arrival windows to the nets in aggressor-victim relationship between the two clock

domains.

2.7.6.3 CLOCKS WHICH ARE EXCLUSIVE

 A design might have clocks that are exclusive of each other. This means that

ther may be multiple clocks defined on a particular pin or port of the design, but based

on the either operating modes or conditions, only one of the clocks is enabled for

analysis. Example, clocks which are defined for Test mode are disabled during the

Functional mode of operation.

 By default, PrimeTime tool analysis the paths between clocks which are

mutually exclusive. Inorder to reduce extra effort of the tool , we can either declare such

paths as false paths or use the set_clock_groups –logically_exclusive command.

 To declare clocks CLKM1 and CLKM2 to be exclusive:

 set_clock_groups –logically_exclusive –group {CLKM1} –group {CLKM2}

 Using the above command, will force the PrimeTime to ignore or disable the

paths that originate from CLKM1 domain clock and end at CLKM2 clock domain or

44

vice-versa. In order to find different clock groups that are defined in the design, we use

the –group command. We avoid setting false paths between clock domains that have

been declared to be exclusive because doing so is redundant.

 The set_clock_groups –asynchronous command will actually create a group of

clocks that are actually asynchronous in the design with respect to each other.

Asynchronous clock group assignments are separate from exclusive clock groups

assignments, even though both types of clock groups are defined with the

set_clock_groups command. When we define clock groups (which gets defined

automatically when we use create_clocks) the clocks can be either logically exclusive

or even physically exclusive. Clocks are logically exclusive due to multiplexing and

physically exclusive when they are physically separated. For clocks that are physically

exclusive, the crosstalk phenomenon between two different signal lines cannot occur, so

in that case we use the –physically_exclusive option rather than the –

logically_exclusive option. This way we can prevents the tool from performing

unnecessary crosstalk analysis between the clock nets.

Figure 2.10: Mutually Exclusive Clocks [2]

2.7.7 SPECIFYING CLOCK GATING SETUP AND HOLD CHECKS

 We know that the clock networks are the ones having most switching activity on

them, hence the power consumption of clock networks is also high, in order to reduce

the power consumption of clock networks, a very efficient technique of clock gating is

used. In clock gating the clock signal is usually passed through some combinational

logic other than normal inverters and buffers, such as AND gate or Multiplexers.

45

 PrimeTime automatically performs timing checks for setup and hold violations

on clock gating inputs of logic cells. This check is performed only for combinational

gates where one signal is a clock that can be propagated through the gate, and the gating

signal is not a clock.

2.8 TIMING PATHS AND EXCEPTIONS

2.8.1 TIMING PATH GROUPS

 PrimeTime organizes paths into groups. This path grouping can affect the

generation of timing analysis reports. For example, the report_timing command, when

used with the –group option, this switch will report the worst of all the paths in each of

the listed path groups.

 In Design Compiler, path grouping also affects design optimizations. Each path

group can be assigned a weight (also called cost function). The higher the weight, the

more effort design compiler uses to optimise the paths in those groups. We can assign

weights to path groups in PrimeTime, but this weight information is not used in

PrimeTime. PrimeTime implicitly creates a path group each time we create a new clock

with the create_clock command; hence The name of the path group is the same as the

clock name. PrimeTime assigns a path to that path group if the endpoint of the path is a

Flip-Flop clocked by that clock. PrimeTime also creates the following path groups

implicitly:

 clock_gating_default - The group of paths that end on combinational

elements used for clock gating.

 async_default - The group of paths that end on asynchronous preset/clear

inputs of flip-flops.

 default - The group of constrained paths that do not fall into any of the

other implicit categories; for example, a path that ends on an output port.

In addition to these implicit path groups, we can create our own user-defined

path groups with the help of group_path command. This command also lets you assign

any particular path to a specific path group.

Unconstrained paths do not belong to any path group. To report unconstrained

paths, set the timing_report_unconstrained_paths variable to true. The

report_timing command reports unconstrained paths as belonging to a path group

called “(none)”.

46

2.8.2 SPECIFYING TIMING PATHS

 The report_timing command, the timing exceptions command (such as

set_false_path), and several other commands allow a variety of methods to specify a

single path or multiple paths for a timing report or for applying timing exceptions. One

way is to explicitly specify the –from $startpoint and -to $endpoint options in the

report_timing command for the path.

For a timing path, its start point can either be the clock pin of a sequential block,

or the input port of the Design under test, or even the D pin of a Latch. Similarly the

endpoints for a timing path can either be the D pin of the sequential block, or the output

port of the Design Under Test, or the D pin of other latch.

PrimeTime also supports a special form where the startpoint or endpoint

becomes a –through pin, and a clock object becomes the –from or –to object. We can

use this method with all valid startpoint and endpoint types, such as input ports, output

ports, clock flip-flop pins, data flip-flop pins, or clock-gating check pins.

2.8.3 OVERVIEW OF TIMING EXCEPTIONS

Timing Exception Command Description

False path set_false_path This command Prevents analysis of the

specified path. Extra runtime is saved

Minimum and

maximum path delays

set_max_delay,

set_min_delay

This command will over write the setup and

hold values with the ones specified in the

command.

Multicycle path set_multicycle_path This command basically specifies how

many clock cycles are required for data

propagation from startpoint till endpoint.

Table 2.6: PrimeTime Timing Exceptions

 Each of the above mentioned timing exception can be applied to either a single

path or a group of paths that belong to a particular clock group, or even to paths that

pass through some points.

For the given design, if we wish to view all the timing exceptions that has been

applied to the design we can use the report_exception command.

47

2.8.4 FALSE PATHS

 False paths are those paths which are physicslly and logically present in the

design, but these paths should not be analysed for timing violations. For example, a path

can be present between two multiplexers, such that the select pins of each multiplexer

receives opposite signals with respect to each other, in such a scenario, if the signal is

propagated from A0 pin of MUX1, than automatically signal from the A1 pin of MUX

2 will be transferred and vice-versa.

 For example, to define false paths between two pins, MUX1/A0 to pin

MUX2/A0:

 set_false_path –from [get_pins MUX1/A0] –to [get_pins MUX2/A0]

Once we declare a path to be False, all the timing related constraints that has

been applied to the path will be removed. PrimeTime will still perform the calculation

of this path delays, but PrimeTime will not report if any timing violations occur on this

path, it to be an error, even if the delay calculated is too large or short.

 If we wish to declare false paths for all the paths that are formed between two

different clock domains, we can use a set of two commands:

 set_false_path –from [get_clocks clock_main1] –to [get_clocks clock_main2]

 set_false_path –from [get_clocks clock_main2] –to [get_clocks clock_main1]

2.8.5 MULTI-CYCLE PATHS

 We use the set_multicycle_path command, if we wish to indicate that a

particular path takes more than one cycle to complete its timing data transfer. Such

paths are long paths, which cannot complete its timing checks in a single cycle of clock,

hence these paths require multi-cycle exceptions to be applied to them. PrimeTime will

than calculate the setup or hold requirements of the paths based on the specified number

of multi-cycles.

 In the figure 2.11, the path from UFF0 to UFF1 is designed to take three clock

cycles rather than one.

set_multicycle_path 3 –setup –from [get_pins UFF0/Q] –to [get_pins

UFF1/D]

 set_multicycle_path 2 –hold –from [get_pins UFF0/Q] –to [get_pins

UFF1/D]

In usual scenario we wish that the hold check scenario remains as it is, but as the

Hold check is always performed at the preceeding edge of the setup checking edge,

48

hence PrimeTime by default will perform hold check after two clock cycles which is not

desired. Hence to keep hold checking at the desired edge we set multicycle path of 2 for

hold check so that hold checking is performed two edges before the edge at which the

setup check is performed.

Figure 2.11: Multicycle Path [2]

2.9 PERFORMING CASE ANALYSIS

 Case analysis is used if we wish to restrict a particular value of the signal from

propagating forward in the logic. If we set a case analysis on a particular pin or port of

the design for the particular signal, the signal corresponding to that constant is

propagated forward in the design, and the corresponding inverted value is held back.

 For example, figure 2.12 shows a multiplexer. Setting the CLK_SEL[0] signal to

0 blocks the PLLdiv16 clock from propagating to the output and therefore disables the

timing arc from PLLdiv16 to MIICLK.

49

Figure 2.12 Selecting Clock Mode for timing analysis [2]

2.9.1 SETTING AND REMOVING CASE ANALYSIS VALUES

 To set case analysis values on specified pins or ports, we run the

set_case_analysis command. When setting case analysis, we can specify either of the

following:

 Constant logic 0, 1 or static

This command sets case analysis for the test port to constant logic 0:

set_case_analysis 0 [get_ports test]

The logic value static means constant 0 or 1, without any transition, so that the

connected net cannot act as a crosstalk aggressor or experience a change in delay

as a crosstalk victim.

 Rising of Falling Transition

This command sets case analysis for the RESET port to a rising transition:

set_case_analysis rising [get_ports RESET]

In case of conflict, the following rules apply:

 A set_case_analysis setting has priority over a built in constant value (for

example, in the verilog netlist).

 A newer set_case_analysis setting has priority over an older setting on

the same port or pin.

 A set_case_analysis value set directly on a port or pin has priority over a

conflicting case analysis value propagated to that port or pin.

 Where propagated case analysis values are in conflict, logic 0 has the

highest priority, then the static case setting, then logic 1.

50

If we wish to remove case analysis values that is applied, we run the

remove_case_analysis command.

2.10 READING PARASTICS

 The read_parasitics command can read parasitic data file in the following

formats:

 Galaxy parasitic Database (GPD)

 Standard Parasitic Exchange Format (SPEF)

 Detailed Standard Parasitic Format (DSPF)

 Reduced Standard Parasitic Format (RSPF), version IEEE 1481-1999

 Milkyway (PARA)

The read_parasitics command will load the current design data with the

parasitic information (RC delay) of the cells and nets. A SPEF or RSPF is an ASCII file

that can be compressed with gzip. Specifying the format in the command is optional

because the reader can automatically determine the file type.

When reading parasitic file, by default PrimeTime assumes that capacitance

values specified in the SPEF files do not include the pin capacitance. PrimeTime uses

the pin capacitance values specified in the Synopsys design libraries, any pin

capacitance values specified in SPEF are ignored. We must ensure that the coupling

capacitance in the SPEF file is symmetric. To verify that the coupling capacitance

contains only symmetric coupling, read in the design and then use both the –

syntax_only and –keep_capacitance_coupling options of the read_parasitics

command. PrimeTime checks for asymmetric coupling and issues warning messages

when this type of issue is identified. We ensure that the SPEF files contain valid

coupling capacitance before proceeding.

The reduced and detailed RC networks specified in SPEF files are used to

compute effective capacitance dynamically during delay calculation. The capacitance

value reported by most report commands, like the report_timing and report_net

command, is the lumped capacitance, also known as Ctotal. Ctotal is the aggregate total

of capacitance values of a net as specified in the SPEF, to which pin capacitance is also

added.

Parasitic files are often very large and time consuming for PrimeTime to read.

To minimize the read time, make sure that the data file is on a local disk that can be

51

accessed directly, not across the network. Compressing a SPEF file using gzip can

improve overall processing time because the file is much smaller.

Parasitic data files can be large (200 MB or larger) and can contain many

parasitic. To verify that the tool back-annotated all cell drivers,run the

report_annotated_parasitics command.

To create a report for annotated parasitic data files and verify that all RC

networks are complete, use the report_annotated_parasitics –check command, as

shown:

Pin Type Total RC pi RC Network Not annotated

Internal net drive 22456 0 22456 0

Design input port 4 0 4 0

 22460 0 22460 0

Table 2.7 Example of SPEF Annotation Summary

2.11 SETUP AND HOLD FIXING METHODS

 There are different methods adopted in VLSI industries to fix setup and hold

timimg violations. Sometime fixing one kind of violation may lead to introduction of

some other kind of violations

2.11.1 FIXING SETUP VIOLATIONS

 Setup violations in a design occur when the delay in the data signal path is larger

in comparison to the data arrival time at the capture edge. Setup violations in a circuit

can be fixed by using either of the following methods:

a) Replace the High device threshold voltage (HVT) cells with Low

Threshold Voltage cells (LVT) in the data path. This increases the

current through the cells and cells become faster hence the delay of

the path decreases. It has its own limitation as replacing the HVT

cells with LVT cells, the leakage current through the cells increases.

b) Replace the weak driving Strength cells with more drive strength

cells along the data path. The delay of the cell indirectly depends on

the drive strength (W/L) ratio of the device. Higher the drive

strength, lower is the delay of the cell.

52

c) Reduce the wire delay across the signal data path. The wire delay of

the design can be reduced by inserting buffers between two cells

connected by a particular wire. By inserting the buffers, the transition

time reduces, which in turn reduces the delay.

d) Removing redundant buffers from the data path.

e) Instead of placing buffers along the path to reduce the wire delay,

two inverters can be connected in serial, so that the overall stage

delay of the design decreases.

f) Balancing clock network. If the capture clock arrives early the

overall window available for data to reach the capture flop reduces

thereby making the path susceptible for setup violations. Adding

delays deliberately in the capture clock path can help overcome setup

violations, but care must be taken that the successive paths clocked

by the same clock are not critical.

g) By using Retiming Flops. Retiming flops are used as pipeline stage

for fixing setup violating paths which cannot be fixed by any above

mentioned paths. These paths are known as Hard Rock paths, which

cannot be met by normal fixing, so an extra Flop is introduced in-

between the path so that the path can be completed in cycles. This

technique essentially does not require a path to be named as Multi

Cycle Path which reduces the frequency of operation, but just acts as

a pipeline stage. But this method requires extra overhead of area for

extra Flop inserted and also RTFs needs to be included in the design

at the very initial stage of the design.

2.11.2 FIXING HOLD VIOLATIONS

 The hold violations in a design occur when the delay of the path is less than the

hold time requirements. The hold violations can be overcome by:

a) Reducing the Driving power of the cells. Reducing the driving power

increases the delay of the path.

b) Inserting buffers and inverters across the valid data path to increase

the delay of the path.

c) Clock balancing. If the capture clock arrives delayed at the capture

flip flop, the hold violation may occur. Hence it is important that the

53

clock network is properly balanced without introducing excessive

delays in the clock paths, which may lead to the hold timing

violations.

d) By using Lock Up Latches. Lock up latches are commonly used for

hold fixing in scan based designs where hold violations are due to

large clock skews as in scan test mode the clocks can be

asynchronous, leading to larger skews between clocks. Lockup

latches are transparent latches that are placed right after the launch

flip-flops and are clocked using the same clock as the launch flop

clock.

2.12 PRIMETIME DISTRIBUTED MULTI SCENARIO ANALYSIS

 Inorder Verify a chip design it is required that multiple PrimeTime timing runs

are performed to analyse the operation under multiple operating conditions and various

operating modes..

 The number of scenarios for a design is

 Scenarios = [sets of operating conditions] x [Modes]

 The PrimeTime tool can analyse several scenarios in parallel with distributed

multi-scenario analysis (DMSA). Rather than analysing each scenario in sequence,

DMSA technique will use a master PrimeTime process which at first will set up

workers than execute those workers, and finally controls multiple worker processes.

primetime allocates one worker for each scenario. We can distribute the processing of

scenarios onto different hosts running in parallel, reducing the overall turnaround time.

Total runtime is reduced when we share common data between different scenarios.

 A single script can control many scenarios, making it easier to set up and

manage different sets of analyses. Instead, DMSA algorithm provides a very useful way

to perform the analysis of multiple working conditions and modes for a given design

and to distribute those analysis tasks onto different hosts.

54

2.12.1 DEFINITION OF TERMS

 The following terms describe aspects of distributed processing:

 Baseline Image

Image that is produced by combining the netlist and the common data files for a

scenario.

 Command Focus

Current set of scenarios to which analysis commands are applied. The command

focus can consist of all scenarios in the session or just a subset of those

scenarios.

 Current Image

Image that is automatically saved to disk when there are more scenarios than

hosts, and the worker process must switch to work on another scenario.

 Master

Process that manages the distribution of scenario analysis processes.

 Scenario

A scenario is a unique combination of operating conditions and operating modes

 Session

Current set of scenarios selected for analysis

 Task

Self-contained piece of work defined by the master for a worker to execute.

 Worker

Process started and controlled by the master to perform timing analysis for one

scenario, also called slave process.

 There is no limit to the number of scenarios that we can create. To create a

scenario, the create_scenario command is used, which specifies the scenario name and

the also the required scripts that are used to apply the analysis conditions and mode

settings for the scenario.

 The scripts are divided into two groups: common data scripts and specific data

scripts. The common data scripts are shared between two or more scenarios, whereas

the specific data scripts are specific to the particular scenario and are not shared. This

grouping helps the master process manage tasks and to share information between

different scenarios, minimizing the amount of duplicated effort for different scenarios.

55

2.12.2 OVERVIEW OF THE DMSA FLOW

 Before we start multi-scenario analysis, we must set the search path and create a

.synopsys_pt.setup file

 Setting the search path

 .synopsys_pt.setup file

2.12.2.1 SETTING THE SEARCH PATH

 In multi-scenario analysis, we can set the search_path variable only at

the master. When reading in the search path, the master resolves all relative paths in the

context of the master. The master process then automatically sets the fully resolved

search path at the worker process. For example, we might launch the master in the

/remote1/test/ms directory, and set the search_path variable with the following

command:

 set search_path “./scripts”

The master automatically sets the path of the worker in the following:

 /remote1/test/ms /remote1/test /remote/ms/scripts

 The recommended flow in multi scenario analysis is to set the search path to

specify the location of

 All files for scenarios and configuration

 All tcl scripts and netlist, SDF, library, and parasitic files to be read in a worker

context.

2.12.2.2 .SYNOPSYS_PT.SETUP FILE

 The master and workers source the same set of .synopsys_pt.setup files

in the following order:

1) PrimeTime install setup file at

Install_dir/admin/setup/.synopsys_pt.setup

2) Setup file in home directory at

~/.synopsys_pt.setup

3) Setup file in the master launch directory at

$sh_launch_dir/.synopsys_pt.setup

56

2.12.3 DMSA USAGE FLOW

 We can use DMSA capability for timing analysis in PrimeTime and PrimeTime

SI as well as for power analysis in PrimePower. This dramatically reduces the

turnaround time.

A typical multi-scenario analysis has the following steps:

1) Start PrimeTime in the multi-scenario mode by running the pt_shell command

with the –multi_scenario option. Alternatively, from a normal PrimeTime

session, set the multi_scenario_enable_analysis variable to true.

2) Create the scenarios with the create_scenario command. Each create_scenario

command specifies a scenario name and the PrimeTime scripts files that apply

the conditions for that scenario.

3) Configure the compute resources that we want to use for the timing update and

reporting by running the set_host_options command. This command does not

start the host, but it sets up the host options for that host.

4) Verify the host options by running the report_host_usage command. This

command also reports peak memory and CPU usage for the local process and all

distributed processes that are already online. The report displays the host options

specified, status of the distributed processes, number of CPU cores each process

uses, and licenses used by the distributed hosts.

5) Request compute resources and bring the hosts online by running the

start_hosts command.

6) Select the scenarios which we wish for the session using the current_session

command. The command specifies a list of scenarios previously created with the

create_scenario command.

7) Change the scenarios in the current session that are in command focus, using the

current_scenario command. The command specifies a list of scenarios

previously selected with the current_session command.

8) View the analysis report and fix validation issues.

a) Start processing the scenarios by executing the remote_execute command or

performing a merged report command at the master.

b) When the processing of all scenarios by the worker processes is complete,

we can view the analysis reports. Locate the reports generated by the

remote_execute command under the directory we specified with the

multi_scenario_working_directory variable. Alternatively, if we issue the

57

remote_excute command with the –verbose option, all information is

displayed directly to the console at the master. The output of all merged

reporting commands is displayed directly in the console at the master.

c) Use ECO commands to fix the timing and design rule violations.

2.12.4 ECO FIXING

 In PrimeTime Tool, an Engineering Change Order (ECO) is an incremental

change in a chip design to reduce design rule constraints (DRC) violations, timing

violations, or power. The PrimeTime tool finds these design issues and corrects them by

sizing cells, replacing cells, or inserting buffers, and it writes out the changes in script

format so that we can implement the changes in other tools.

The commands to perform ECO fixing are:

 fix_eco_drc

 fix_eco_timing

 fix_eco_power

After ECO fixing is complete, to implement the changes, we run the

write_changes command, which is used to write out the changes in sourceable format,

and run the script in the ICC or ICC2 tool, or even third party vendor tools like

INNOVUS by carefully updating the script into INNOVUS compatible script. After the

changes are implemented, we should perform parasitic extraction and run timing

analysis again in PrimeTime tool.

In the PrimeTime tool, we can perform ECO fixing with or without physical

placement data:

 Physically aware mode – The tool uses only the design netlist, parasitic

data, and physical placement data. It replaces cells and inserts buffers

only where there is room to make the changes, and the write_changes

command writes out the location of each change for fast and accurate

physical implementation.

 Logic only mode – The tool uses only the design netlist and detailed

parasitic data, without considering physical placement data.

The ECO fixing flow is compatible with single-core analysis, multicore analysis,

and distributed multi-scenario analysis (DMSA).

58

 Chapter 3

DESIGN IMPLEMENTATION AND

TIMING FIX

Performing complete timing analysis of a SoC is quite complex and also

requires continuous iterations to fix the timing violations on the chip which is a time

consuming process. In this chapter a relatively simpler design compared to a SoC is first

designed and then various analyses are performed to close the timing requirements of

the design without any Timing fails. As discussed in the previous chapters there are

different methods to fix the Timing violations for both Setup and Hold violations.

Here some of the Industry adopted techniques are used to fix the timing fails of

the design. Also most of the times fixing one of the violations may lead to violations in

other domain hence complete coverage of multiple scenarios is also crucial in closing

timing for a given design.

3.1 DESIGN SETUP

 The primary inputs required for Static Timing Analysis flows are:

Da

Figure: 3.1 Primary STA Flow

Database Containing

Verilog, DEF & SPEF

Library Information for

Standard Cells

Constraints

STA

Save Timing Session Generate Timing Reports

59

3.1.1 READ IN DESIGN DATA

 Reading the verilog which defines the design of the circuit (.v file)

The veilog file containing the connectivity of different cells and the

circuit is read into by using the read_verilog command in PrimeTime

 Linking the paths for the standard cell libraries (.lib files)

The path for the standard cell libraries containing detailed information

about the standard cells as supported by the foundries is set using the

set_app_var link_path command in PrimeTime.

 Link the design

Once the required files are read into finally the design is linked using

link_design command in PrimeTime

Figure: 3.2 Test Case Schematic

3.1.2 CONSTRAINING THE DESIGN

 Once the design data is read into and the design is linked, it is required that the

design is correctly Constrained using suitable constraints required for the design.

Using different PrimeTime commands the design is constrained and a constraint file

with .sdc extension contains all the required constraint of the design. This file is than

provided as an input to STA process flow as depicted in Figure 3.1.

 “One limitation of Static Timing Analysis is that it does not check timing on

paths which have not been constrained. Thus, all paths must be constrained to enable

their analysis. Some of the constraints applied to the design are

 set_input_delay –clock CLK1 –max 3.0 [get_ports D1]

 set_output_delay –clock CLK1 –max 2.0 [get_ports OUT]

60

3.1.3 CLOCKS”

 For the given design, the Clocks are defined using the following commands:

 create_clock –name CLK1 –period 8 –waveform {0.0 4.0} [get_ports CLK1]

 create_clock –name CLK2 –period 6 –waveform {0.0 3.0} [get_ports CLK2]

 set_clock_uncertainty –setup 0.2 [get_clocks *]

 set_clock_uncertainty –hold 0.5 [get_clocks *]

 set_clock_latency 1.2 [get_clocks CLK1]

 set_clock_latency 5.0 [get_clocks CLK2]

3.1.4 TIMING EXCEPTIONS

3.1.4.1 MULTI-CYCLE PATHS

For the design, the Timing Exceptions for Multicycle paths are applied as

follows:”

 set_multicycle_path 3 –setup –from [get_pins U2/Q] –to [get_pins U11/D]

 set_multicycle_path 2 –hold –from [get_pins U2/Q] –to [get_pins U11/D]

3.1.4.2 FALSE PATHS

 “For the design, the Timing Exceptions for false paths are applied as follows:”

 set_false_path –from [get_pins U6/A] –to [get_pins U8/A]

 set_false_path –from [get_pins U6/B] –to [get_pins U8/B]

3.1.5 SPECIFYING CASE ANALYSIS

 For the design the case analysis is applied on the select pin of the multiplexers:

 set_case_analysis 0 [get_ports SEL]

3.1.6 READING PARASITICS

 During the Physical implementation stage of the Design, the design team

dumps out the .spef files using the PNR tool (e.g, Innovus by cadence, ICC2 by

Synopsys) which is than provided as an input to the STA process flow as depicted in

Figure 3.1. Alternatively the SPEF (Standard Parasitic Exchange Format) files can

also be linked to design using the read_parasitics command in PrimeTime. This

process is known as Back-Annotation.

 read_parasitics my_design.spef

61

3.2 TIMING CHECKS

3.2.1 SETUP TIMING CHECKS

 For the design, setup check is performed using the command:

 report_timing –from U1/CK –to U10/D

Figure 3.3: Setup Timing Report

In the above timing report for setup check, the path meets setup timing

requirements by 840ps. If there would have been violation, it can be met by any one

the technique mentioned in the section 2.11.1.

62

3.2.2 HOLD TIMING CHECKS

For the design, hold timing check is performed using the following command:

Report_timing –path_type min –from U2/CLK –to U11/D

Figure 3.4: Hold Timing Report

In the hold timing report, the path violates hold timing requirements by 1.04ns.

The hold timing violations can be met by any one of the technique mentioned in

section 2.11.2.

63

3.3 TIMING FIXES

 The hold violation of the circuit is met using Lock-Up technique.

Figure 3.5: Test Case Schematic with Lock-Up Latch

Figure 3.6 Hold Violation Fixed

64

3.4 DMSA ENVIRONMENT SETUP

 The algorithm for setting up the Distributed Multi Scenario Analysis (DMSA)

is shown below:

Figure 3.7 DMSA Setup Environment Algorithm

 The DMSA environment is setup up using the above alogirthm, and

PrimeTime commands using the Tool Command Language (TCL). Once the

environment is set analysis of different timing violations is done as described in

section 2.12.3 and 2.12.4.

A list of Scenarios is created for which we wish to perform the timing analysis.

This list of scenarios can be created based on different algorithms which extract the

dominant corners for which maximum timing violations occur.

set PT_TAG NAME

set PT Session Saved Path Directory

set Scenario List

set Multi-Scenario Working

Directory

set Host Options

Start Hosts

Report host usage

Create Scenarios

Enable Analysis for Scenarios

65

3.4.1 DOMINANT CORNER EXTRACTION

 As discussed in Chapter 1, with decreasing technology nodes and increasing

chip complexity, the number of scenarios for analysis for a SoC has increased

exponentially. The general trend for selecting the Dominant corner/scenarios is based

on the maximum number of endpoints that violates for a particular scenario. The

corner having having most number of violating endpoints is usually considered to be

the dominant corner, but this sometimes can be misleading. For example in Table 3.1

Scenarios No. Of Violating Endpoints Worst Negative Slack (ns)

Scenario 1 371 -0.4

Scenario 2 233 -5.4

Scenario 3 177 -1.5

Table 3.1 Worst Case Delay Scenarios

From table 3.1 we see that the dominant corner based on the maximum number

of violating endpoints (NVP) is Scenario 1, but based on the Worst Negative Slack

(WNS) Scenario 2, is the dominant scenario. There are different algorithms that take

into account either NVP or WNS as a deciding factor for Dominant corner; there are

also algorithms which consider using both NVP and WNS as deciding factor for

dominant corner extraction [1]. We have considered a Design A for which Dominant

corners are extracted to setup DMSA environment.

Scenario NVP WNS

Func_0.550_0.765_tt_rcw_ccw_0c_ptsi_pocv 437 -0.560

Func_0.660_0.675_tt_rcw_ccw_125c_ptsi_pocs 789 -0.012

Func_0.720_0.765_tt_cw_ccw_125c_ptsi_pocv 956 -0.234

Func_1.090_1.090_ff_cb_ccb_0c_ptsi_pocv 11877 -0.380

Func_1.090_1.090_fs_rcb_ccb_125c_ptsi_pocv 8856 -0.670

Func_0.800_0.835_tt_rcw_ccw_0c_ptsi_pocv 5988 -1.2

Table 3.2 Worst Case Delay Scenarios for Design A

66

 From Table 3.2, we find out the worst scenarios for the Design A. According

to number of FEP counts, corner Func_1.090_1.090_ff_cb_ccb_0c_ptsi_pocv seems

to be the worst scenario, but according to Worst Negative Slack (WNS), corner

Func_0.800_0.835_tt_rcw_ccw_0c_ptsi_pocv seems to be worst. Hence using our

algorithm, we consider our scenarios for DMSA setup as

 Func_1.090_1.090_ff_cb_ccb_0c_ptsi_pocv

 Func_1.090_1.090_fs_rcb_ccb_125c_ptsi_pocv

 Func_0.800_0.835_tt_rcw_ccw_0c_ptsi_pocv

3.5 GENERATING ECO PRIMETIME DMSA

 The algorithm to generate Engineering change order (ECO) using the

PrimeTime tool is given below:

 Figure 3.8: Generating PrimeTime ECO’s Algorithm

The above algorithm generates ECO file PT-ECO that contains the required

ECO to fix Hold Violations. The command used to generate Hold Eco is:

fix_eco_timing –setup_margin 0.500 –type hold –methods insert_buffer –

buffer_list {buf1 buf2 buf3 buf4 buf5} –path_selection_options {-delay_type min

–pba_mode none –to $endpoints –max_paths 100000 –nworst 5000 –

slack_lesser_than 0}.

The ECO file generated is in PrimeTime ECO format, if the Physical Design

tool used is ICC2 the ECO file can be sourced directly, but if the PD tool used is

INNOVUS, the PT-ECO file needs to be converted into INNOVUS compatible ECO

file, so that it can be sourced for Physical Implementation.

Specify Dont Touch Settings for cells

Specify List of Endpoints to Target for

Fixing

Run fix_eco_timing command with

switches

Write ECO to PT-ECO file

67

Chapter 4

RESULTS & DISCUSSIONS

At first the setup environment is discussed along with different tools and their

versions used for the Analysis. After the setup is done, results are analysed in details

along with each iterations of the run for hold fixing once the dominant corners were

were selected in section 3.4.1.

4.1 EXPERIMENTAL SETUP

 Before we start performing ECO cycles and also analysis different results it is

important the tool environments are set correctly. The different tools that are used along

with their versions used are shown in Table 4.1

Operating System SUSE Linux Enterprise

Linux Version v11.4

Number of CPU’s 4 CPU Cores

Tool 1) Synopsys PrimeTime Tool

Tool Version 2017.12.SP3-3

2) Dorado Tweaker Tool

Tool Version 2019.05.02 (T1-mmc)

Scripting Language TCL Version v8.5

Table 4.1: Different Tools and their Versions

 Once the environment is setup, the first step is to analyse different timing reports

generated from the Static Timing Analysis runs. Basically for multi-corner runs, we

analyse the merged reports generated, by taking into account worst fails for each

scenarios for each clock groups. We basically obtain merged reports for 4 different

scenarios:

 Functional Setup Merged Reports

 Test Setup Merged Reports

68

 Functional Hold Merged Reports

 Test Hold Merged Reports

Here the number of FEPs and WNS given in Table 3.2 are for Functional-Hold

Violations. For comparisons we also use Tweaker Tool by Dorado which is widely used

tool for Hold fixing. The results obtained from ECOs generated from both the Methods

are compared and analysed to check which method provides better results.

In traditional ECO fixing method, each corner wise specific ECOs are generated

and than implemented, this method requires more number of iterations to be performed

and also increases the implementation days by manifold.

4.2 DESIGN SUMMARY

 Table 4.2 shows detailed summary of each set of ECO iterations run for hold

fixing using PrimeTime DMSA. The number of Dominant corners selected for DMSA

is 3 out of total of 15 scenarios. Once the dominant corners are selected, the next step is

to generate the list of failing Endpoints that we need fix using ECO. Once the Endpoints

list is obtained, DMSA environment is setup using the selected scenarios. Here detail of

each round of ECOs generated and timing fixed are shown.

Table 4.2 PrimeTime DMSA ECO results.

Table 4.3 Tweaker ECO results

 INITIAL DATA ECO1 ECO2

Total Paths 255178 255178 255178

Number of FEPs 29343 2311 267

WNS -1.2 -0.36 -0.012

TNS 645.43 -178.03 -29.01

Buffers inserted for fixing

HOLD

- 7845 1244

 INITIAL DATA ECO1 ECO2

Total Paths 255178 255178 255178

Number of FEPs 29343 4623 894

WNS -1.2 -0.40 -0.140

TNS 645.43 -165.22 -21.34

Buffers inserted for fixing

HOLD

- 9456 1765

69

4.3 INFERENCES

 After running PrimeTime DMSA based ECO iterations and also Tweaker based

ECO iterations, we can now summarise the details in a summary table.

Criteria Traditional Method Tweaker Method DMSA Method

Effort 40 Days 8 Days 4 Days

Number of ECO cycles 12 4 2

Table 4.4: Summary

70

CONCLUSION

The results that are obtained from using DMSA method for generating ECO’s for

Static Timing Analysis proves to be better as compared to already existing technologies

like the one using Dedicated ECO Tools like Tweaker. Also generating ECO’s manually

for each scenarios is a time consuming and in today’s world where we find new technology

coming every year, it is hard to invest long duration for a chip to be taped out since its

design phase. Hence most if the Chip Design vendors usually keep their chip design phase

time to be as small as possible in order to compete with other vendors.

Engineering Change Order (ECO) play a crucial role in determining the overall

design time for a chip, hence efforts are always given to reduce the ECO Cycle time.

Timing ECO’s in particular are most crucial, as the number of timing violations in a chip

are more compared to other Signoff check violations.

The method described below reduces the manual effort days by nearly half for

ECO’s generation and to be rolled in compared to other technologies, also since the ECO’s

are generated using PrimeTime tool itself, the tool using which the Timing Analysis is

being performed, there is better correlation between the data generated using ECO and

Timing analysis.

Future works may include optimizing the algorithm to further enhance the

efficiency of ECO’s and also reducing the overall cycle times.

71

REFERENCES

[1] Aditi Sharma “Smart and Efficient Multi Scenario SoC Timing Closure and ECO

Generator” Indraprastha Institute of Information Technology, Delhi, June 2015.

[2] J.BHasker and Rakesh Chadha. “Static Timing Analysis For Nanometer Designs: A

Practical Approach” Springer, 2009.

[3] Primetime and Primetime SI User Guide.

[4] S. Narendra J. Tschanz A. Keshavarzi S. Borkar, T. Karnik and V. De. “Parameter

variations and impact on circuits and microarchitecture”. Design Automation Conference,

pages 338–342, 2003.

[5] Yao-Kai Yeh Jui-Hung Hung, Yung-Sheng Tseng, and Tsai-Ming Hsieh. “A New ECO

Technology For Functional Changes And Removing Timing Violations” International

Symposium on Quality Electronic Design, pages 1–5, 2011.

[6] Arvind NV Sreeram C Vish Visvanathan-Shailendra Dhuri Roopesh Chander Patrick

Fortner Subra Sripada Qiuyang Wu Rajagopal KA, Sivakumar R. “A comprehensive

solution for true hierarchical timing and crosstalk delay signoff” International Conference

on VLSI Design, pages 1–6, 2006.

[7] Joel R. Phillips Luis Guerra e Silva, L. Miguel Silveira. “Efficient Computation of the

Worst Delay Corner” Design, Automation & Test in Europe Conference & Exhibition,

pages 1–6, April 2007.

[8] Wei Chen Yongqiang Lu Qiang Zhou Weixiang Shena, Yici Cai and Jiang Hue.

“Useful clock skew optimization under a multi-corner multi-mode design framework”

Quality Electronic Design (ISQED), pages 62–68, March 2010.

[9] M. Jasmin. “Optimization Techniques for Low Power VLSI Circuits” Middle-East

Journal of Scientific Research, pages 1082–1087, 2014.

