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1. Introduction

In 2003, King [12] introduced an exotic sequence of positive linear operators V, : C([0, 1]) — C([0, 1]), which modifies the
Bernstein operators:

Ve =3 ()1 =y (). fecio, xe 0.1

k=0

where r,(x) : [0,1] — [0, 1] are continuous function,

X2, n=1, -
m(x) = :
n®) {_2(;_1)+ Rt n=23..... a1
This sequence preserves two test functions eg, e; and (V,e1)(x) = rn(x). He also proved that the operators V,, have a better rate
of convergence than the classical Bernstein polynomials whenever 0 < x < 1/3. After this several researchers have studied
that many approximating operators, L, possess these properties, i.e., L(e;,X) = e;(x) where e;(x) = xi(i=0,1) or (i=0,2)
for example Bernstein, Szdsz-Mirakian, Baskakov, Meyer-Konig and Zeller, Post-Widder and Stancu operators (see
[6-9,12,14,17]).

Very recently Deo and Singh [4] have given another modification of Baskakov operators and studied Voronovskaya type
results. The first author [1,3] and Pop [15,16] have studied Voronovskaya results for other positive linear operators.

Now we consider Heilmann’s operator which is defined as:

Definition 1.1 (/2,10]). The nth operator D, of Baskakov-Durrmeyer operator, n € N,c € Ng,n > ¢, is defined by
Duf)(®) = (M =€) Y Pas() /0 Pri(0)f (t)d, (1.2)
k=0
with x € [0,00), poi(x) = (—1)*% ¢ (x), where

e, for the interval [0, ) with ¢ =0,
¢n(x) =

(1+cx)™"¢, for the interval [0, c0) with ¢ > 0,
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and f is a function for which the right side of (1.2) makes sense. It is easy to see that D, are Szasz-Durrmeyer operators
[11,13], Lupas-Durrmeyer [18] and Baskakov-Durrmeyer operators [10] for c = 0,c = 1 and ¢ > 0, respectively.

Lemma 1.2 ([2,10]). Let e;(x) = x', i =0,1,2, then for x € [0,00),n € N and n > 3¢, we have

(i) (Dneo)(x) =
(if) (Dner)(x) = P50

2 14 2
(iii) (Dnez)(x) = M5 02,

Lemma 1.3. For x € [0,00),n € N,n > 3c and ¢,(t) =t — X, we have

(i) (D) (X) = — 522,
(i) (Dp2)(x) = 22ga0 0],

The linear functions, i.e., for h(t) = ct + d, where c,d any real constants, we get (ﬁnh> (x) = h(x).

2. Construction of the operators and basic results

Let {r,(x)} be a sequence of real-valued continuous functions defined on [0, co) with 0 < r,(x) < oo, for x € [0,00),n € N
then we have

(D)) = (0= )Y pue(ra(x) | " pudnf(ode (1)
k=0
with x € [0, 00), Py (Tn(®)) = (—1)F 2" 40 (1, (x)), where

g nlX) for the interval [0, c0) with ¢ = 0,
Pn(ra(X)) =

(14 cra(x))™¢, for the interval [0, 00) with ¢ > 0,

and
(n—2c)x-1
-

(X) =
We obtain the following results at once.
Lemma 2.1. Let e;(x) = X', i =0,1,2 then for each x > 0 and n > 3c, we have
(i) (Dao) () =1,
(ii) (Dner ) (x) ==,

(lll) (ﬁnez) (X) _ (n+c)(n—2£)2x2+2(n—c)(n—2c)x—(n—c)'

n(n—2c)(n—3c)
Lemma 2.2. For x € [0,00), n€ N, n > 3c and ¢,(t) =t — x, we have

(i) (Dagpy) ) =0,
(i) (Dugp?) (x) = -oiiein 20 1),
(i) (f)nq)gp) (X) = O(n*['"T“]).
3. Voronovskaya type results & better error estimation
In this section we compute the rates of convergence and Voronovskaya type results of these operators D, given by (2.1).

Let f € C5[0,00) be the space of all real valued continuous bounded functions on [0,cc), equipped with the norm
Ifll = SUPxejo ) If (£)]. The Peetre’s K-functional is defined by

Ky =inf {|If - gl +olg"| :ge W2}, 50,

where W2 = {g € C3[0,00) : g, g" € C3[0,00)}. From [5], there exists a positive constant C such that
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K»(f, ) < Cay (f, \/5) (3.1)
and

wz(f,\/5> = sup sup [f(x+2h) —2f(x+h) +f(x)|.

0<h<é x€[0,00)

Theorem 3.1. Let f € C[0, 00), then for every x € [0, 00) and for C > 0, we have

(04)o-1o] <ol [T 2D,

Proof. Let g € W2. Using Taylor’s expansion

g() =800 + g (0t~ + [ (¢~ wg'wdu

from Lemma 2.2, we have

(Dug) 0~ 0 = (B | (- g’ (w)du ) ).

We know that

/ (- wg(uw)du

Therefore

< (t-w)’llg"|l-

|(rg) - 0] < (Bute — ) ol = "= LS SN ZO = D g

By Lemma 2.1, we have

()] < =S pustrate) [ pastofofde < 1

Hence

|(Daf ) 0 = F0| < | (Dol — 8)) 0 = F — )x)| + | (Dug) 0) — £(x)|
<a)f g + =B 020~ T g

taking the infimum on the right side over all g € Wi and using (3.1), we get the required result. [

Theorem 3.2. If a function f is such that its first and second derivative are bounded in [0, cc), then we get

lim n{ (f),J) (x) — f(x)} = x(1+ex)f"(x). (3.3)

n—oo

Proof. Using Taylor’s theorem we write that

2 2
£t o) = -0 @ + g+ L e, (3.4)

where &(t, x) is a bounded function Vt,x and lim,_,¢(¢,x) =0
Now applying (2.1) and (3.4), we get

(Daf ) (0) = F(x) = f (%) D@y ) +

L0, g2 41,

where

Il ﬁ ((px7 )é( )

[\J\v—*
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Using Lemma 2.2, we get

nf (Buf) 00 e} 0 { BT ZO =T

Now, we have to show that as n — oo, the value of nl; — 0. Let ¢ > 0 be given since £(t,x) — 0 as t — 0, then there exists

4 > 0 such that when |t — x| < § we have |£(t,x)| < &€ and when |t — x| > J, we write

(t %)’

E(tx)<C<C .

Thus, for all t,x € [0, c0)

(t—x)*
52

l&(t,x)| <e+C

and

- 2
nl < n(an)ﬁ (8 + C(;/z)"

Using Lemma 2.2, we get that,

>) (x) < 8n<f)n<p§) (x) + (%n(ﬁn(pjj) (x).

nl, — 0asn— oo.

This leads to (3.5). O

Remark 3.3. We may note here that under the conditions of Theorem 3.2, we have

lim n{(Daf)(x) = f(x)} = =(1 + 2e0)f'(x) + X(1 + cX)f" (%).

Theorem 34. If g c Cﬁ [0, 00) then we have

(D) ) — 80| < (0l
where

(n—0o){2x(1 +cx)(n—2c) — 1}
2n(n —2c)(n - 3c) ’

on(X) = n> 3c.

Proof. We write that

2(0800) = (Vg () + 5 (¢ —27'(0),

where t < { < x. From Lemma 2.2 and (3.7), we have

< (n—0){2x(1 + cx)(n

~20)-1}

Bug) 0 — 20| < 12| (Bagrs) )| + 2 1]
|(Dug) | < 11| (Dueps) )] +5

Remark 3.5. Under the same conditions of Theorem 3.4, we obtain

|(Dng) (%) — 8(0)| < o (X)lI8llc2,

where

n+30)x(1+cx)+1

= a0m 30 0 "7

Theorem 3.6. For f € C3[0, 00), we obtain

|(Buf ) )~ f0) <A{w2 <f, “2"(")) +min (1,22) m},

where n > 3c and constant A depends on f & o, (x).

(’3“"’5)(")’ S 2n(n — 2¢)(n — 3¢)

gl = o (X)l|8llc:-

O

(3.9)
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Proof. For f € C3[0,0) and g € C3[0, c0) we write
(Duf ) %) = fx) = (Duf ) %) — (Dug) (x) + (Dug) (x) — 80 +8(x) — f(x)
by using (3.6) and Peetre K-functions, we get
|(Daf ) %) = F0)| = | (Daf ) %) — (Dag)) 0] + | (Dug) ) — 8(x)| + (%) ~ FX)I < | Duf | If - & + a(x) g5 + IF — &
<2f - 8l + 3(0)lal < 2{1 - 2l + 32 Wlgl | < 2K {F 50000}
<200 (1.5 v ) + min (153000 e, -

This completes the proof. [

Remark 3.7. Under the same conditions of Theorem 3.6, we get
(04 ~F00] < 28] a1,/ ) + min(t, o)1 - (3.10)

Theorem 3.8. For every f € C[0,00), X € [0, 00), we obtain

|(Daf ) 00 ()| < 200(f, 00, (3.11)

where

n>3c

5 — (n—co){2x(1 +cx)(n—2c) — 1}
T n(n—2c)(n —3c) ’

and w(f, dx) is the modulus of continuity of f.

Proof. Let f € C[0,00) and x € [0, oo). Using linearity and monotonicity of D.., we easily obtain, for every 5 > 0 and n € N, that

(B0 ~f0| < wif.0){ 1+ 5/ Butotn ).

By using Lemma 2.2 and choosing 6 = J, the proof is completed. [

Remark 3.9. For the original operator D, defined in, we may write that, for every f € C[0, o)

|(Dnf) (%) = f(x)] < 200(F, Vi), (3.12)

where

. \/2{(n +30)X(1 +cx) + 1}

n>3c

(n—-2c)(n—-3c) ’
and o(f, vy) is the modulus of continuity of f. The error estimate in Theorem 3.8 is better than that of (3.12) for f € C[0, )
and x € [0,00), we get Jy < Vy.
Now we compute rate of convergence of the operators of D, by means of the Lipschitz class Lip,(y), (0 <y < 1). As usual,
we say that f € C3[0, c0) belongs to Lip,,(7y) if the inequality
IF(t) — f(x)] < Mt x| (3.13)
holds.

Theorem 3.10. If f € Lipy,(y), x € [0,00) and n > 3c, we have

(5o vt -
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Proof. Since f € Lipy,(y) and x > 0, from inequality (3.13) and applying the Hélder inequality with p = %, q = 5%, we have

((ﬁnf) (x) —f(x)( < (ﬁn[f(t) _f(x)|)(x) < M(ﬁn|t - x\’*’)(x) < M{ (Bnq)g)(x)}”z

(n —c){2x(1 + cx)(n — 2¢) — 1}]7?
n(n—2c)(n-3c) }

<m|

proof is completed. O

Remark 3.11. If using Lemma 1.3, for the original operator D,, then we get the following result

(os)r-sn| Py

for every f € Lipy,(y), x = 0 and n > 3c.
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