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Abstract

This paper is concerned with a new type of the classical Bernstein operators where the function is evaluated at intervals
[0, 1 — —5]. We also make extensive study simultaneous approximation by the linear combination L, (f, k,x) of these new

Bernstein type operators L,(f). At the end of this paper we have given an other modification of these operators.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

If f(x) is a function defined on [0, 1], the well known Bernstein operators B,(f) as

(Bf)(x) = Z b()f (") ()

where

boy(x) = (Z)xk(l " k=0,1,2,...,n.

Durrmeyer [7] studied the integral modification of Bernstein operator and Bernstein—-Durrmeyer operators

(D)@ = (04 1S buel) [ bt (12)
k=0 0
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In the last decade an interesting generalization viz. g-Bernstein polynomials were proposed by Phillips [14],
which for each positive integer n and f € C[0, 1] are defined as

B,y (f.) Zf ( ﬁ )pnk g %),

where

Puc(g3x) = {Z] (1 —x)n .

Also for each non-negative integer k, by [k] we mean the g-integer and (1 — x); = H}’;& (1 — ¢/x). Approxima-
tion properties of these operators were studied recently by Ostrovska [13] and Wang [17].
Very recently based on the g-analog of integration and for /' € C[0, 1], Gupta [8] proposed a simple g-ana-

logue of the well known Durrmeyer operators as

Dyg(fix)=[n+1 Zq P (g5 /f )P (g q1)d

It can be easily verified that in case ¢ = 1, the operators D, ,(f;x) reduce to the well known Durrmeyer
operators D, (f’; x).
Cheney and Sharma [2] generalized the Bernstein polynomials by the relation

(o)) = (1 +n1) Zf()() x b k) (1= x (1= K

where {#,},.y is a sequence of positive real numbers.

Several modifications of Bernstein polynomials have been introduced and studied by many researchers. We
cite the works on such operators (see [1,4,5,13,14,16]). Gupta and Maheshwari [11] estimated the rate of con-
vergence for the Bezier variant of some other Bernstein—Durrmeyer operators.

Now we introduce a Bernstein type special operator 7, defined as

=Y (3) (13)

where

N\"/n\ [ n nk n 1
= - — > -——.
pn,k(x) (l+n> <k>x <n—|—1 x) D x and x € [0,1 . 1]

It is a generalized form of Bernstein operators, i.e., if n is sufficient large then our operators convert in the
original form of Bernstein operators (1.1).

By considering the integral modification of Bernstein operators, one can approximate Lebesgue integrable
function on the interval [0, 1]. Derriennic [6] was the first, who studied the operators (1.2) in detail. Motivated
by the earlier works on Bernstein operators, we now propose a certain new integral modification of the oper-
ators (1.3) which are defined as

L)) =n(1+ )me [ 0 (0 (1.4

It turns out that the order of approximation to f(x) by L,(f,x) is at best O(n~'). The existence of deriva-
tives of higher order of the function does not improve this order of approximation. May [12] and Rathore [15]
have described a method for forming linear combinations of positive linear operators so as to improve the
order of approximation.

Wood [18] applied this technique of linear combinations to the operators L, to improve the order of
approximation. It is described as follows:
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Let do,d,,...,d; be k+ 1 arbitrary but fixed distinct positive integers. Then, the linear combinations
L,(f,k,x)) of Lg,(t,x), j=0,1,... k are defined as
Lagn(f ) dy' dy? ... d)t 1 d,' 4> ... d,f
| Lan(f,x) it dr .. dt 1 d" d7* ... d*
Ln(f,k7x):2 ............ eee oo .. ... |, where 4=
Lan(f,x) ;' d? ... d* 1 a4 d7* ... df

We may write these linear combinations in alternative form as follows:
k
La(f kx) =Y C(j k) Lau(f ), (1.5)
=0

where

k
C(j,x):HdAcijd‘ for k # 0 and C(0,0) = 1.
i=0 "/ !
i#j

Now in this paper, we establish a Voronovskaya type asymptotic formula and obtain an estimate of error in
terms of modulus of continuity in simultaneous approximation by the linear combinations of the operators
(1.4). Very recently Deo [3] studied direct and inverse theorems in ordinary approximation for hybrid type
operators. Gupta and Noor [10] also studied another type hybrid operators.

2. Basic results

In this section, we shall mention some definitions and certain lemmas to prove our main theorems.

Lemma 2.1. Let the mth order moment for the operator (1.3) be defined by

n k m
x) = X)|——=—x), m=0,1,2,...,
) = 309 (5 )

then we have p,o(x) =1, u,,(x) =0 and

My () = ( ) () & Mt 1 ()] for n € N

n+1

1

Consequently, for every x € [0,1 — 5

], we have

(1) p,.(x) is a polynomial in x of degree < m;
(ii) p,,,(x) = O(n~["*V72)) \where [J] denotes the integral part of J.

Proof. First we prove recurrence relation, by using the following relation:

x(n o —x)p;vk(x) = n(}&—x)pnyk(x). (2.1)

We have from the definition of g, , (x)

, n , k m
o) = ) (5= 5) = 9
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then we obtain from (2.1)

(=) W) )= S (=)t (5 =)
k

0

n m+1
=n mek(x) (I’l + 1 - X) = nl’tn,n1+1(x)' U

k=0

Lemma 2.2. Let the mth order moments are defined by

) = 1) (14 )ank O””p,,‘,ko)(z—x)mdt,

then, we have

_ _n—(nt )2
.un‘()(x) - 17 :un‘](x) - (I’l + 1)(}’1 + 2)7 (22)

and for m = 1

— (" ' no_
(1414 D0 =0 =) [ 004 0]+ (2 265 D)
Consequently,
() . (x) lynomzal in x of degree <

is a po
(ii) w,,,(x) =O(n ~51), where [o] denotes the mtegml part of o.

Proof. The values of u, ,(x) and p, ;(x) can easily follows from the definition. We prove the recurrence relation
as follows:

) = (1 + ( )ank [ T st — )"t — it ().

From (2.1), we get
(; j =) {0+ 10}
— (1+’11) ank /0 n(n_]il—x)pmk(t)(t—x)’"dt
_ ( n ) knopnk Hni 1 —x> n (%— 2x> (t—x) — (t—x)z] PL(0)(t — x)"de

) = (2 —x) o 16) = 1) (2 = 26 )
O 2Dt (8) 1 3

This complete the proof of the recurrence relation. [

S | =

Lemma 2.3 [6, Lemma I1.7]. There exists the polynomials g, ;,(x) independent of n and k such that

Ao\ d =3 nt Y ()P (x)
X — x dxfp’“kx_ n P X ) 4, \X)Ppi(X)-

2i+j<r
i,j=0




608 N. Deo et al. | Applied Mathematics and Computation 201 (2008) 604-612
3. Main results

In this section, we shall prove the following main result.

Theorem 3.1. Let [ € C[0,1 — L], if f*T+2) exists at a point x € [0,1 — 1] then
2tri2
lim n* " LY (f &, x) — ZQ k,r,x)f9(x),
lim AL (/K + 1,x) = /7 ()] =0,

where Q(i,k,r,x) are certain polynomials in x. Furthermore (3.1) and (3.2) hold uniformly on [0,1 — 1

f(2k+r+2) c C[O, 1— nl?}

Proof. By Taylor’s expansion of f(¢), we have

24142 £(i) X ) e
F0 =3 T gl

i=1

where g(¢t — x) — 0 as ¢t — x and is bounded and integrable function on [—x,1 — (n = —|—x>]
Using (3.3), we get

k ddn+]
Lir)(f7 k,x) = Z C(j, k) d n+1 ( ) Zpd"k / pn‘,k(t)f(ﬁdt
j=0

./

k 1 djn d:{nﬁ 2k4r4+2 £(i) :
=S ctmdn+ (142 ) Y [7 st { > Wy
=0 J k=0 0 i=1 :
+(t—x)(t x)2k+r+2}dt
2k+r+2 k ) k
-3 L~ 5) + 3 CURLY, W el — X~ x>
=

=1 +1.
By Lemma 2.2, we have

htr42 f

I, = Z ZC(]k )((t = x)",x)

i=r

2h+r+2 f( )(.X)

i
i!

l) () LY k)
i=r : =0

2k+r+2 i i . r 2k+2 r j
RS f<;(x) lz><_1)i_lx”' [%x]-l-n(kﬂ){i & (Q(f QUi k%) d;jx]) +o<1)}

N

i=r Sy =1 7
2k+r+2 i i . 2k+r42
f(l) .X) ! i— l i—r —
=S s (Y (e TS 00 k) + 06 )
i=r : 1=0 i=r
2k+r+2

= FO0) + DS Qi k) O(x) + O ).

Using the identities

(0 -{d 2
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To prove the the first assertion (3.1) it is sufficient to show that
AL (gt —x)(t— %) x) >0 asn— occ.

Now
e R () Do U R

and from Lemma 2.3, we obtain

= l - " ’ (r) w . N\ 2ketrt2
B 0 (1) S (=) ) [ bt -0 -0

k=0
n J ot
=l ( ) > 14,00 Y ) Pai()g(t = x)(t — x)* " dr.
2i+j<r k=0
i.j=0

Put M = sup,o;_1,supy; j<rlq:;,(x)| then apply Schwartz inequality summation to have

o n(149) £ 05 (o) man}

2i+j<r
ij=0

- {me (/ " (gt~ )t~ x)z"*’”dr)z}l/z. (34)

From Lemma 2.1, we get

: ()
it sup ( - x> pn,k(x) )
' sefor-4] U=\ 1

bounded for all values of ;.
Let K =sup, . ., (_H) lg(u)] and let & > 0 be arbitrary Choose 6 > 0 such that |g(u)| < & when |u| < ¢

So forall € [0,1 —

L1 we have (g(r —x))* < &2 + ( . By Schwartz inequality, we get

’ 2
n+] K2 l‘f ‘
< (_1’_171)2 / pmk(t){gz + %}(i -~ x)2(2k+'+2)dt.
n 0

2

n+11°
( /0 ﬁp,,,k(t)g(t —x)(t— X)Zk”“df)

Applying Lemma 2.2, we get

Zp,, (o ( / Pas(08(t —x)(1 X)kadt)
< an‘k (X) #1)2 /()mp”‘k(t) {82 i K(t5—2_x>} (t— x)2(2k+r+2)dt

»r+l ” K2 n 1 "
{ank ) a0 TS ) [ a0 - %}
k=0

K nlrz{szo(n@"r”)m O~ 2”*“))}:820("”"“*‘”),
n—+

Thus finally in (3.4), we get
1 i _
|| <=M(n+ 1)(1 —l——) Z Cyn2eCyn T
n 2i4j<r
ij=0

Since ¢ > 0 is arbitrary, therefore n**'I, — 0 as n — oo.
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The last assentation (3.2) can be proved along similar lines using L,((t —x)",k + 1,x) = O(n~*+2),
i=1,2,....

The last assertion follows due to the uniform continuity of /%2 on [0,1 — -] (enabling 6 to become
independent of x € [0, 1 — —1-]) and the uniformity of O(n~**1) term in the estimate of /; (because in fact, it is
a polynomial in x).

This completes the proof. [

n+1]

Theorem 3.2. Let 1 < p <2k+2andf € C[0,1 — —] If £+ exists and is continuous on {a,b) C (07 1— #)
having the modulus of continuity () on {(a,b) Zhen Sor n sufficiently large
LD (F k. x) — £ ()| < Max{Cyn ey (0 /2), Con~ 1)},

where C; = C\(k,p,r) and C, = Cy(k,p,r, f).

Proof. For every x € [a, b], by the hypothesis, we have

ptr [ r r
() i ST - S () ,
10 =3 P e e T M, 1< £ (35)
where () is the characteristic function of the set [0,1 — —5]/(a,b) and 7 € [0, 1 — —5].

The function A(¢,x) for x € [a, b] is bounded by M|t — x|er for some constant M. From (3.5), we get

djin
djn J

LO(f k,x) = ZC )(dn+1 )(1 +%) Y P /Ompd,mk(t)
p+r (p+r) — flon) (x
{Z (—x) L (&j;! ( )<t—x>”+’+h<r,x>x<r>}dr

=1+ 1, +1s.

Now /; = f@(x) + O(n~**V), uniformly in x € [a, b].
To estimate 7, we have for every 6 > 0

£ — x|

t—x|) < <1+ - >wf<p+,>(5). (3.6)

|f(p+r)<5) _f(p+')( )| < (Uf(pm(‘f —x]) < @i+ (

Therefore from (3.6) and Lemma 2.3, we have

1 1 djn " % |t_x‘
e !ka 014 g2 S st [ paunte - (145570

- x|p CUf(p+r) (5)dt
. .
dn+1

djn

wfw Z|C(/k JI(dn+ )(udjn) > ) P '(q i 2 Pups®)

2i+s<r —( — X
+1
is=0 "

din

Tt 1
< [T sl et L

Putting K = sup,(, ;jSup2i+s<r r‘g"";"'(x)‘)r, then applying Schwartz inequalities for summation and for integral
is>0 © T
and Lemma 2.2, as in the proof of Theorem 3.1, we have

1
|12| < K|:C5n_1’/2 +5C6n—(17+1)/2:| wf(p”‘)(é)'
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Now choosing 6 = n~!/2, it follows that
]2 wf‘(p+r ( 71/2)0(7’171]/2),

where the O-term holds uniformly in x € [a, b]. Finally choosing a positive number ¢ such that |t — x| > J, we

get
|]3 Z'C(]k d}’[«l» )(1 1 ) Z(djn)z |qzsr Zpdnk ( k x) s
d " 2i+s<r x (n— — x) d n + 1
is=0
X o Pans Ml =
Tab)
: . 1 i |ql Sr k :
SMY_|CGRNdm+ 1)1+ > (dn) Z)Mk PP
=0 N/ gits<r x" (— — x) N+
J n+l
i,s=>0
ﬁ (t _ x)Zm
X () ———dt.
/0 Pani(t) e
Thus
_ (=) 2k+r+2
I3 O(n ), m > —
Therefore

I3 =0(n"*")  uniformly in x € [a, b].

The theorem follows from the estimates of /;,/, and /5. [

Remark 3.3. Very recently Gupta and Ispir [9] introduced a new type of Bernstein—Durrmeyer operators. We
can modify that operators as follows:

016 = 503 to) [ e (142 (2 5) 70 ()

where x € [0, 1 — L.
cuss them elsewhere.

These operators (3.7) have different approx. properties, analysis is different we will dis-
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