Simultaneous approximation on generalized Bernstein-Durrmeyer operators

Naokant Deo, Neha Bhardwaj \& Suresh P. Singh

Afrika Matematika

ISSN 1012-9405
Volume 24
Number 1

Afr. Mat. (2013) 24:77-82
DOI 10.1007/s13370-011-0041-y

Your article is protected by copyright and all rights are held exclusively by African Mathematical Union and Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories.
If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

Simultaneous approximation on generalized Bernstein-Durrmeyer operators

Naokant Deo • Neha Bhardwaj - Suresh P. Singh

Received: 15 February 2011 / Accepted: 29 July 2011 / Published online: 16 August 2011
© African Mathematical Union and Springer-Verlag 2011

Abstract

In the present paper, we study some theorems on approximation of the r-th derivative of a given function f by corresponding r-th derivative of the generalized Bernstein operator.

Mathematics Subject Classification (2000) 41A28•41A36
Keywords Bernstein operator • Simultaneous approximation

1 Introduction

Very recently Deo et al. [4] introduced modified Bernstein operator B_{n} defined as:

$$
\begin{equation*}
\left(B_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right), \tag{1.1}
\end{equation*}
$$

where

$$
p_{n, k}(x)=\left(1+\frac{1}{n}\right)^{n}\binom{n}{k} x^{k}\left(\frac{n}{n+1}-x\right)^{n-k} \quad \text { and } \quad x \in\left[0,1-\frac{1}{n+1}\right] .
$$

[^0]In this context Deo [1] has studied direct as well as converse results for the Beta operators and in [2,3] Deo has given Voronovskaya type results for exponential operators.

To approximate Lebesgue integrable functions on the interval [0,1 , Durrmeyer [6] first proposed integrated Bernstein polynomial. Later Derriennic [5], Gupta [7], Gupta and Srivastava [8] and Heilmann [9] studied so called Bernstein-Durrmeyer operators in detail and established many interesting properties of these operators. We study the following Durrmeyer variant of the operator (1.1) as:

$$
\begin{equation*}
\left(M_{n} f\right)(x)=n\left(1+\frac{1}{n}\right)^{2} \sum_{k=0}^{n} p_{n, k}(x) \int_{0}^{\frac{n}{n+1}} p_{n, k}(t) f(t) d t, \tag{1.2}
\end{equation*}
$$

where $p_{n, k}(x)$ is defined in (1.1) above. In the operators (1.2), the interval of the definition of integrability of function has been contracted from class $[0,1]$ to $\left[0,1-\frac{1}{n+1}\right]$.

In this paper we prove some theorems on the approximation of r-th derivative of a function f by the corresponding operators $\left(M_{n}^{(r)}\right)$.

2 Auxiliary results

In this section, we shall mention some definitions and certain lemmas to prove our main theorems.

Lemma 2.1 If f is differentiable r times on $\left[0,1-\frac{1}{n+1}\right]$, then we get

$$
\begin{equation*}
\left(M_{n}^{(r)} f\right)(x)=\frac{(n+1)^{2(r+1)}}{n^{2 r+1}} \frac{(n!)^{2}}{(n-r)!(n+r)!} \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}} p_{n+r, k+r}(t) f^{(r)}(t) d t . \tag{2.1}
\end{equation*}
$$

Proof We have by Leibnitz's theorem

$$
\begin{aligned}
\left(M_{n}^{(r)} f\right)(x)= & \frac{(n+1)^{n+2}}{n^{n+1}} \sum_{i=0}^{r} \sum_{k=0}^{n-r+i}\binom{r}{i} \frac{(-1)^{r-i} n!x^{k-i}}{(k-i)!(n-k-r+i)!} \\
& \cdot\left(\frac{n}{n+1}-x\right)^{n-k-r+i} \int_{0}^{\frac{n}{n+1}} p_{n, k}(t) f(t) d t \\
= & \frac{(n+1)^{r+2}}{n^{r+1}} \sum_{k=i}^{n-r+i} \sum_{i=0}^{r}\binom{r}{i} \frac{(-1)^{r-i} n!}{(n-r)!} p_{n-r, k-i}(x) \int_{0}^{\frac{n}{n+1}} p_{n, k}(t) f(t) d t \\
= & \frac{(n+1)^{r+2}}{n^{r+1}} \frac{n!}{(n-r)!} \sum_{k=0}^{n-r}(-1)^{r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}} \sum_{i=0}^{r}\binom{r}{i}(-1)^{i} p_{n, k+i}(t) f(t) d t .
\end{aligned}
$$

Again using Leibnitz's theorem

$$
\begin{aligned}
& \frac{d^{r}}{d t^{r}} p_{n+r, k+r}(t)=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} \frac{(n+r)!}{n!}\left(\frac{n}{n+1}\right)^{r} p_{n, k+i}(t) \\
& \left(M_{n}^{(r)} f\right)(x)=\frac{(n+1)^{2(r+1)}}{n^{2 r+1}} \frac{(n!)^{2}}{(n-r)!(n+r)!} \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}}(-1)^{r} p_{n+r, k+r}^{(r)}(t) f(t) d t .
\end{aligned}
$$

Further integrating by parts r times, we get the required result.
Lemma 2.2 Let $r, m \in N^{0}$ (the set of non-negative integers), $n \in N$ and $x \in[0, \infty)$. Let the m-th order moments are defined by if

$$
\mu_{n, m}(x)=(n+r+1)\left(1+\frac{1}{n}\right) \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}} p_{n+r, k+r}(t)(t-x)^{m} d t,
$$

then we get

$$
\begin{align*}
& \mu_{n, 0}(x)=1, \quad \mu_{n, 1}(x)=\frac{(1+r)\{n-2 x(n+1)\}}{(n+1)(n+r+2)} \tag{2.2}\\
& \mu_{n, 2}(x)=\frac{(r+1)(r+2)\{n-2 x(n+1)\}^{2}}{(n+1)^{2}(n+r+2)(n+r+3)}+\frac{2 x\{n-x(n+1)\}}{(n+r+2)(n+r+3)} \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
(m+n+r+2) \mu_{n, m+1}(x)= & (1+m+r)\left(\frac{n}{n+1}-2 x\right) \mu_{n, m}(x) \\
& +2 m x\left(\frac{n}{n+1}-x\right) \mu_{n, m-1}(x)+x\left(\frac{n}{n+1}-x\right) \mu_{n, m}^{\prime}(x) . \tag{2.4}
\end{align*}
$$

Consequently,
(i) $\mu_{n, m}(x)$ is a polynomial in x of degree $\leq m$;
(ii) $\mu_{n, m}(x)=O\left(n^{-\left[\frac{m+1}{2}\right]}\right)$, where $[\alpha]$ denotes the integral part of α.

Proof The values of $\mu_{n, 0}$ and $\mu_{n, 1}$ can easily follows from the definition. We prove the recurrence relation as follows:

$$
\mu_{n, m}^{\prime}(x)=(n+r+1)\left(1+\frac{1}{n}\right) \sum_{k=0}^{n-r} p_{n-r, k}^{\prime}(x) \int_{0}^{\frac{n}{n+1}} p_{n+r, k+r}(t)(t-x)^{m} d t-m \mu_{n, m-1}(x)
$$

Using the following relation

$$
\begin{equation*}
x\left(\frac{n}{n+1}-x\right) p_{n, k}^{\prime}(x)=n\left(\frac{k}{n+1}-x\right) p_{n, k}(x) \tag{2.5}
\end{equation*}
$$

then we get

$$
\begin{aligned}
x & \left(\frac{n}{n+1}-x\right)\left\{\mu_{n, m}^{\prime}(x)+m \mu_{n, m-1}(x)\right\} \\
= & (n+r+1)\left(1+\frac{1}{n}\right) \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}}\left\{\frac{n k}{n+1}-(n-r) x\right\} p_{n+r, k+r}(t)(t-x)^{m} d t \\
= & (n+r+1)\left(1+\frac{1}{n}\right) \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}} t\left(\frac{n}{n+1}-t\right) p_{n+r, k+r}^{\prime}(t)(t-x)^{m} d t \\
& -r\left(\frac{n}{n+1}-2 x\right) \mu_{n, m}(x)+(n+r) \mu_{n, m+1}(x) \\
= & (n+r+1)\left(1+\frac{1}{n}\right) \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}}\left[-(t-x)^{m+2}+\left(\frac{n}{n+1}-2 x\right)(t-x)^{m+1}\right. \\
& \left.+x\left(\frac{n}{n+1}-x\right)(t-x)^{m}\right] p_{n+r, k+r}^{\prime}(t)-r\left(\frac{n}{n+1}-2 x\right) \mu_{n, m}(x)+(n+r) \mu_{n, m+1}(x) \\
= & (m+2) \mu_{n, m+1}(x)-\left(\frac{n}{n+1}-2 x\right)(m+1) \mu_{n, m}(x)-m x\left(\frac{n}{n+1}-x\right) \mu_{n, m-1}(x) \\
& -r\left(\frac{n}{n+1}-2 x\right) \mu_{n, m}(x)+(n+r) \mu_{n, m+1}(x) .
\end{aligned}
$$

This completes the proof of the recurrence relation. The values of $\mu_{n, 1}(x)$ and $\mu_{n, 2}(x)$ can be easily obtained from the above recurrence relation.

3 Main results

In this section we shall prove the following main results.

Theorem 3.1 If $f^{(r)}$ is a bounded and integrable in $\left[0,1-\frac{1}{n+1}\right]$ and admits $(r+2)$-th derivative at a point $x \in\left[0,1-\frac{1}{n+1}\right]$, then

$$
\begin{align*}
& \lim _{n \rightarrow \infty} n\left[\frac{n^{2 r}(n-r)!(n+r+1)!}{(n+1)^{2 r+1}(n!)^{2}}\left(M_{n}^{(r)} f\right)(x)-f^{(r)}(x)\right] \\
& \quad=(1-2 x)(1+r) f^{(r+1)}(x)+x(1-x) f^{(r+2)}(x) \tag{3.1}
\end{align*}
$$

Proof By Taylor's formula, we have

$$
\begin{equation*}
f^{(r)}(t)=f^{(r)}(x)+(t-x) f^{(r+1)}(x)+\frac{(t-x)^{2}}{2} f^{(r+2)}(x)+\frac{(t-x)^{2}}{2} \zeta(t-x) \tag{3.2}
\end{equation*}
$$

where $\zeta(u) \rightarrow 0$ as $u \rightarrow 0$ and ζ is a bounded and integrable function on $[-x, 1-x]$.

Now, using (3.2) and by Lemma 2.2, we get

$$
\begin{aligned}
& \frac{n^{2 r}(n-r)!(n+r+1)!}{(n+1)^{2 r+1}(n!)^{2}}\left(M_{n}^{(r)} f\right)(x)-f^{(r)}(x) \\
& \quad=\left\{\frac{(1+r)\{n-2 x(n+1)\}}{(n+1)(n+r+2)}\right\} f^{(r+1)}(x) \\
& \quad+\frac{1}{2}\left\{\frac{(r+1)(r+2)\{n-2 x(n+1)\}^{2}}{(n+1)^{2}(n+r+2)(n+r+3)}+\frac{2 x\{n-x(n+1)\}}{(n+r+2)(n+r+3)}\right\} f^{(r+2)}(x)+R_{n, r}(x),
\end{aligned}
$$

where

$$
R_{n, r}(x)=\frac{1}{2} \sum_{k=0}^{n-r} p_{n-r, k}(x) \int_{0}^{\frac{n}{n+1}} p_{n+r, k+r}(t)(t-x)^{2} \zeta(t-x) d t
$$

Now we have to show that $n R_{n, r} \rightarrow 0$ as $n \rightarrow \infty$. Let $K=\sup _{u \in[-x, 1-x]}|\zeta(u)|$ and let $\varepsilon>0$. Choose $\delta>0$ such that $|\zeta(u)|<\varepsilon$ when $|u| \leq \delta$. So for all $t \in\left[0,1-\frac{1}{n+1}\right]$, we have $|\zeta(t-x)|<\varepsilon+K \frac{(t-x)^{2}}{\delta^{2}}$. Clearly

$$
\begin{aligned}
\left|n R_{n, r}(x)\right|< & \frac{n \varepsilon}{2} M_{n}^{(r)}(t-x)^{2}(x)+\frac{K n}{2 \delta^{2}} M_{n}^{(r)}(t-x)^{4}(x) \\
= & \frac{n \varepsilon}{2}\left\{\frac{(r+1)(r+2)\{n-2 x(n+1)\}^{2}}{(n+1)^{2}(n+r+2)(n+r+3)}+\frac{2 x\{n-x(n+1)\}}{(n+r+2)(n+r+3)}\right\} \\
& +\frac{K}{2 \delta^{2}} O\left(\frac{1}{n}\right),
\end{aligned}
$$

since $\varepsilon>0$ is arbitrary, this implies that $\left|n R_{n, r}(x)\right| \rightarrow 0$ as $n \rightarrow \infty$. Thus as $n \rightarrow \infty$, we get the required result from (3.2). This completes the proof of the theorem.

Theorem 3.2 If $f^{(r+1)} \in C\left[0,1-\frac{1}{n+1}\right]$ and let $\omega\left(f^{(r+1)}\right.$; .) be the moduli of continuity of $f^{(r+1)}$. Then for $n \geq r,(r=0,1,2, \ldots)$, we have

$$
\begin{equation*}
\left\|M_{n}^{(r)}-f^{(r)}\right\| \leq\left\|f^{(r+1)}\right\|+\frac{1}{2 \sqrt{n}}\left\{\sqrt{\lambda} r+\frac{\lambda r}{2}\right\} \omega\left(f^{(r+1)} ; \frac{1}{\sqrt{n}}\right), \tag{3.3}
\end{equation*}
$$

where the norm is sup-norm over $\left[0,1-\frac{1}{n+1}\right]$, and $\lambda r=1+\frac{r}{2}$.
Proof Following [10] and by the Taylor formula

$$
f^{(r)}(t)-f^{(r)}(x)=(t-x) f^{(r+1)}(x)+\int_{x}^{t}\left\{\left(f^{(r+1)}(y)-f^{(r+1)}(x)\right\} .\right.
$$

Now, applying (2.1) to the above and using the inequality

$$
\left|f^{(r+1)}(y)-f^{(r+1)}(x)\right| \leq\left\{1+\frac{|y-x|}{\delta}\right\} \omega\left(f^{(r+1)} ; \delta\right),
$$

and the results (2.2) and (2.3), we have

$$
\begin{aligned}
& \left|\left(M_{n}^{(r)} f\right)(x)-f^{(r)}(x)\right| \\
& \quad \leq\left|f^{(r+1)}(x)\right|\left|M_{n}^{(r)}(t-x)(x)\right|+\omega\left(f^{(r+1)} ; \delta\right) M_{n}^{(r)}\left[\left|\int_{x}^{t} 1+\frac{|y-x|}{\delta} d y\right|\right](x), \\
& \quad \leq\left|f^{(r+1)}(x)\right|\left|M_{n}^{(r)}(t-x)(x)\right|+\omega\left(f^{(r+1)} ; \delta\right) \\
& \quad \times\left\{\sqrt{M_{n}^{(r)}(t-x)^{2}(x)}+\frac{1}{2 \delta} M_{n}^{(r)}(t-x)^{2}(x)\right\} .
\end{aligned}
$$

Choosing $\delta=\frac{1}{\sqrt{n}}$ and using the result (2.3), we get the required result (3.3). This completes the proof.

References

1. Deo, N.: A note on equivalence theorem for Beta operators. Mediterr. J. Math. 4(2), 245-250 (2007)
2. Deo, N.: Direct result on exponential-type operators. Appl. Math. Comput. 204:109-115 (2008)
3. Deo, N.: Direct result on the Durrmeyer variant of Beta operators. Southeast Asian Bull. Math. 32, 283-290 (2008)
4. Deo, N., Noor, M.A., Siddiqui, M.A.: On approximation by a class of new Bernstein type operators. Appl. Math. Comput. 201, 604-612 (2008)
5. Derriennic, M.M.: Surl'approximation des fonctions integrables sur [0,1$]$ par des polynomes de Bernstein modifies. J. Approx. Theory 31, 325-343 (1981)
6. Durrmeyer, J.L.: Une formule d'inversion de la transformée de Laplace-applications à la théorie des moments, Thése de 3e cycle, Faculté des Sciences de l' Université de Paris (1967)
7. Gupta, V.: A note on modified Bernstein polynomials. Pure Appl. Math. Sci. 44(1-2), 604-612 (1996)
8. Gupta, V., Srivastava, G.S.: Approximation by Durrmeyer type operators. Ann. Polon. Math. LXIV 2, 153-159 (1996)
9. Heilmann, M.: Direct and converse results for operators of Baskakov-Durrmeyer type. Approx. Theory Appl. 5(1), 105-127 (1989)
10. Singh, S.P., Varshney, O.P.: A note on convergence of linear positive operators. J. Approx. Theory 39, 51-55 (1983)

[^0]: N. Deo (\boxtimes) • N. Bhardwaj

 Department of Applied Mathematics, Delhi Technological University
 (Formerly Delhi College of Engineering), Bawana Road, Delhi 110042, India
 e-mail: dr_naokant_deo@yahoo.com
 N. Bhardwaj
 e-mail: neha_bhr@yahoo.co.in
 S. P. Singh

 Department of Mathematics, G. G. University, Bilaspur, CG 495009, India
 e-mail: drspsingh1 @rediffmail.com

