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1. Introduction

Let C [0, +∞) be the set of continuous and bounded functions defined on [0, +∞) .
For f ∈ C [0, +∞) and n ∈ N = {1, 2, ...} the Beta operators are given by

(Bnf) (x) =
+∞∑

v=0

pn,v(x)f
(

v

n + 1

)
, (1.1)

where
pn,v(x) =

1
n
· 1
β(v + 1, n)

· xv

(1 + x)n+v+1
, x ∈ [0, +∞),

and β(v + 1, n) denotes the Beta function defined as: β (v + 1, n) =
Γ(v + 1).Γn

Γ(v + n + 1)
.

Very recently Deo [2] has studied simultaneous approximation for the mod-
ified Beta operators and Gupta and Deo [4] have studied the rate of convergence
for bivariate Beta operators.

The purpose of this note is to prove an equivalence theorem concerning on the
whole interval [0, +∞) for the Beta operators. Corresponding to the unbounded
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interval the functions are indeed allowed to be unbounded, with some restrictions
however concerning the growth of f at infinity. Here we discuss functions of poly-
nomial growth. To be precise, we consider spaces CN defined via the weight ωN as
follows (N ∈ N0 := N ∪ {0}):

ω0(x) = 1, ωN(x) =
1

1 + xN
, (x ≥ 0, N ∈ N),

CN = {f ∈ C [0, +∞) ; ωNf uniformly continuous and bounded on [0, +∞)},∥∥f
∥∥

N
= sup

x≥0
ωN(x)

∣∣f(x)
∣∣.

The corresponding Lipschitz classes are given for 0 < α ≤ 2 by (h > 0)

�2
hf(x) = f(x + 2h) − 2f(x + h) + f(x),

ω2
N (f, δ) = sup

0<h≤δ

∥∥�2
hf

∥∥
N

,

Lip2
Nα =

{
f ∈ CN ; ω2

N (f, δ) = O(δα), δ → 0+
}

.

Actually the direct theorem provides the rate of convergence for functions
of specified smoothness; on the other hand, a converse theorem infers the nature
of smoothness of function. In the present paper we study an equivalence result,
which includes the direct as well as the converse part for the Beta operators. Our
main result is the following:

Theorem 1.1. Let N ∈ N0, f ∈ CN , 0 < α ≤ 2, then the following statements are
equivalent:

f ∈ Lip2
Nα, (1.2)

ωN (x)
∣∣Bnf(x) − f(x)

∣∣ ≤ MN

[
φ(x)
n + 1

]α/2

, (x ≥ 0, n ∈ N), (1.3)

the constant MN being independent of n and x, where φ(x) = x(1 + x).

Throughout this note, MN denotes a constant independent of n and x, but
it is not necessarily the same in different cases.

2. Basic Results

Let us introduce some basic properties of these operators in the first three Lemmas,
which we shall apply to the proofs of the main theorems.

Lemma 2.1 ([2]). Let the function µn,m be defined on [0, +∞) for positive integers
m and n and the mth moments

µn,m(x) = Bn

(
(t − x)m ; x

)
=

+∞∑

v=0

(
v

n + 1
− x

)m

pn,v(x),

then

(n+1)µn,m+1(x) = x (1 + x)
[
µ′

n,m(x) + mµn,m−1(x)
]
,

(
x ≥ 0, m ∈ N0

)
. (2.1)
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As a first consequence we have

Bn(ti; x) = xi, (i ∈ {0, 1}), (2.2)

µn,2(x) = Bn

(
(t − x)2 ; x

)
=

x(1 + x)
n + 1

. (2.3)

Lemma 2.2. ([5, p. 475]). For f ∈ C [0, +∞) and n ∈ N, by [3, (9.4.3)], we know
that

(Bnf)r(x) =
(n + r)!

n!

+∞∑

v=0

�r
(n+1)−1f

(
v

n + 1

)
pn+r,v(x).

Lemma 2.3. ([6, p. 335]). Let m ≥ 2, δm := 0 if m is even, δm := 1 if m is odd.
Then one has for the mth moment of the Beta operators that

µn,m(x) =
[m/2]∑

j=1

pn,m,j

{x(1 + x)
n + 1

}j{1 + 2x

n + 1

}δm

, (2.4)

with positive coefficients pn,m,j , bounded with respect to n. In particular, µn,m(x)
is a polynomial of degree m without a constant term.

Lemma 2.4. ([3, (10.5.3)]). For each N ∈ N0 there is a constant MN such that
uniformly for n ∈ N, x ≥ 0

ωN (x)Bn

( 1
ωN (t)

; x
)
≤ MN . (2.5)

In particular, for any f ∈ CN ,
∥∥Bnf

∥∥
N

≤ MN

∥∥f
∥∥

N
. (2.6)

Lemma 2.5. ([3, (10.5.3)]). For each N ∈ N0 there is a constant MN such that for
all x ≥ 0, n ∈ N

ωN(x)BN

(
(t − x)2

ωN (t)
; x

)
≤ MN

x(1 + x)
n + 1

. (2.7)

Furthermore, one has

(1 + 2x)ωN (x)BN

(
(t − x)
ωN (t)

; x
)

≤ MN
x(1 + x)
n + 1

. (2.8)

Lemma 2.6 ([1]). Let N ∈ N0, g ∈ C2
N := {f ∈ CN ; f ′′ ∈ CN} . Then there exists

a constant MN such that for all x ≥ 0, n ∈ N

ωN (x)
∣∣Bng(x) − g(x)

∣∣ ≤ MN

∥∥g′′
∥∥

N

x(1 + x)
n + 1

. (2.9)

Lemma 2.7. For x, δ > 0, f ∈ CN there holds

ωN (x)
∣∣(Bnf

)′′(x)
∣∣ ≤ MNω2

N(f, δ)
{

n + 1
x(1 + x)

+ δ−2

}
. (2.10)
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Lemma 2.8. Let φ(x) = x(1 + x), then one has for x ≥ 0, 0 < h ≤ 1
∫ ∫ h

0

ds dt

φ(x + s + t)
≤ Mh2

φ(x + 2h)
. (2.11)

Since the proofs of Lemma 2.7 and Lemma 2.8 are easy, we leave them to the
readers.

3. Direct Theorem

The proof of the direct theorem follows along standard lines using the Steklov
means, the Jackson-type inequality and approximate estimates of the moments of
the Beta operators.

Theorem 3.1. For any N ∈ N0, f ∈ CN there holds for all x > 0, n ∈ N

ωN(x)
∣∣Bnf(x) − f(x)

∣∣ ≤ MNω2
N

(
f,

√
x(1 + x)
n + 1

)
. (3.1)

In particular, if f ∈ Lip2
Nα for some α ∈ (0, 2] , then

ωN (x)
∣∣Bnf(x) − f(x)

∣∣ ≤ MN

[
x(1 + x)
n + 1

]α/2

.

Proof. For x = 0 the assertion is trivial. For f ∈ CN , h > 0 by Lemmas 2.4 and
2.6, we get

ωN(x)
∣∣Bnf(x) − f(x)

∣∣

≤ ωN (x)
∣∣Bn(f − fh)(x)

∣∣ + ωN (x)
∣∣Bnfh(x) − fh(x)

∣∣ + ωN (x)
∣∣fh(x) − f(x)

∣∣

≤ ∥∥f − fh

∥∥
N

[
ωN (x)Bn

(
1

ωN(t)
; x

)
+ 1

]
+ MN

∥∥f ′′
h

∥∥
N

{
x(1 + x)
n + 1

}

≤ MNω2
N (f, h)

[
1 +

{
x(1 + x)
h2(n + 1)

}]
,

so that (3.1) follows upon setting h =
√

x(1+x)
(n+1) . In particular, for each f ∈ CN ,

x ≥ 0, we get lim
n→∞ ωN(x)

∣∣Bnf(x) − f(x)
∣∣ = 0. �

4. Inverse Theorem

The main tool for the proof of the inverse theorem in the nonoptimal case 0 < δ < 2
is an appropriate Bernstein-type inequality.

Theorem 4.1. Let N ∈ N0. If f ∈ CN satisfies for some α ∈ (0, 2) and all n ∈ N,
x ≥ 0

ωN (x)
∣∣Bnf(x) − f(x)

∣∣ ≤ MN

[
x(1 + x)
n + 1

]α/2

, (4.1)

then f ∈ Lip2
Nα.
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Proof. It is sufficient to show that for 0 < h, δ ≤ 1, δ <
√

h (see [7])

ω2
N (f, h) ≤ MN

[
δα +

(
h

δ

)2

ω2
N (f, δ)

]
, (4.2)

where 0 < h, δ ≤ 1, δ <
√

h, x ≥ 0. By Lemmas 2.7 and 2.8 and observing that

ωN (x)
ωN (x + 2h)

≤ 3N as h ≤ 1,

then from (4.1) for all n ∈ N

ωN (x)
∣∣�2

hf(x)
∣∣

≤ ωN (x)
∣∣f(x + 2h) − Bnf(x + 2h)

∣∣ + 2ωN(x)
∣∣Bnf(x + h) − f(x + h)

∣∣

+ωN(x)
∣∣f(x) − Bnf(x)

∣∣ + ωN (x)
∣∣�2

h(Bnf)(x)
∣∣

≤ MN

{φ(x + 2h)
n + 1

}α/2{ ωN(x)
ωN (x + 2h)

+
2ωN(x)

ωN (x + h)
+ 1

}

+ωN(x)
∫ ∫ h

0

∣∣(Bnf)′′(x + s + t)
∣∣ ds dt

≤ MN

{φ(x + 2h)
n + 1

}α/2

+ MNω2
N (f, δ)

(
ωN (x)

ωN(x + 2h)

)

·
{

(n + 1)
∫ ∫ h

0

ds dt

φ(x + s + t)
+

(
h

δ

)2 }

≤ MN

[{φ(x + 2h)
n + 1

}α/2

+
{ (n + 1)Mh2

φ(x + 2h)
+

(h

δ

)2}
ω2

N (f, δ)
]
.

For x = 0 let us only note that the estimate holds true in view of the existence
of the integrals for x = 0 and the continuity of the expressions involved. Now choose
n such that

√
φ(x + 2h)

n + 1
≤ δ <

√
φ(x + 2h)

n
≤

√
2
φ(x + 2h)

n + 1
,

the last expression being ≥ 2
√

h
n+1 . Then

ωN (x)
∣∣�2

hf(x)
∣∣ ≤ MN

[
δα +

(
h

δ

)2

ω2
N (f, δ)

]
,

proving (4.2). This completes the proof of the theorem. �
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