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Executive Summary: 

Gross Domestic Product (GDP) of a country is the money value of all final goods and services 

produced by all the enterprises within the borders of a country in a year. It represents the 

aggregate statistic of all economic activity. The performance of economy can be measured with 

the help of GDP. Forecasting future economic outcomes is a vital component of the decision-

making process in central banks for all countries. Monetary policy decisions affect the economy 

with a delay, so, monetary policy authorities must be forward looking, i.e. must know what is 

likely to happen in the future.Gross domestic product (GDP) is one of the most important 

indicators of national economic activities for countries. Scientific prediction of the indicator has 

important theoretical and practical significance on the development of economic development 

goals.For the forecasting of time series we use models that are based on a methodology that 

was first developed in Box and Jenkins (1976), known as ARIMA (Auto-Regressive-Integrated-

Moving-Average) methodology. This approach was based on the World representation 

theorem, which states that every stationary time series has an infinite moving average (MA) 

representation, which actually means that its evolution can be expressed as a function of its 

past developments (Jovanovic and Petrovska 2010).The rest of the paper is organized as 

follows: Section 1 describes introduction while in Section 2 and 3, theoretical background and 

data interpretation and coding in R is given.In Section 4 the empirical results are presented. 

Section 5 is the forecasting and finally, conclusions.  
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1.INTRODUCTION 

1.1 About Time series forecasting : 

Time series modeling is a dynamic research area which has attracted attentions of researchers 

community over last few decades. The main aim of time series modeling is to carefully collect 

and rigorously study the past observations of a time series to develop an appropriate model 

which describes the inherent structure of the series. This model is then used to generate future 

values for the series, i.e. to make forecasts. Time series forecasting thus can be termed as the 

act of predicting the future by understanding the past. Due to the indispensable importance of 

time series forecasting in numerous practical fields such as business, economics, finance, 

science and engineering, etc., proper care should be taken to fit an adequate model to the 

underlying time series. It is obvious that a successful time series forecasting depends on an 

appropriate model fitting. A lot of efforts have been done by researchers over many years for 

the development of efficient models to improve the forecasting accuracy. As a result, various 

important time series forecasting models have been evolved in literature. One of the most 

popular and frequently used stochastic time series models is the Autoregressive Integrated 

Moving Average (ARIMA)  model. The basic assumption made to implement this model is that 

the considered time series is linear and follows a particular known statistical distribution, such 

as the normal distribution. ARIMA model has subclasses of other models, such as the 

Autoregressive (AR) , Moving Average (MA)  and Autoregressive Moving Average (ARMA)  

models. For seasonal time series forecasting, Box and Jenkins had proposed a quite successful 

variation of ARIMA model, viz. the Seasonal ARIMA (SARIMA) .The popularity of the ARIMA 

model is mainly due to its flexibility to represent several varieties of time series with simplicity 

as well as the associated Box-Jenkins methodology for optimal model building process. But the 

severe limitation of these models is the pre-assumed linear form of the associated time series 

which becomes inadequate in many practical situations. To overcome this drawback, various 

non-linear stochastic models have been proposed in literature , however from implementation 

point of view these are not so straight-forward and simple as the ARIMA models. 

A time series is a sequential set of data points, measured typically over successive times.. The 
measurements taken during an event in a time series are arranged in a proper chronological 
order. A time series containing records of a single variable is termed as univariate. But if records 
of more than one variable are considered, it is termed as multivariate. A time series can be 
continuous or discrete. In a continuous time series observations are measured at every instance 
of time, whereas a discrete time series contains observations measured at discrete points of 
time. For example temperature readings, flow of a river, concentration of a chemical process 
etc. can be recorded as a continuous time series. On the other hand population of a particular 
city, production of a company, exchange rates between two different currencies may represent 
discrete time series. Usually in a discrete time series the consecutive observations are recorded 
at equally spaced time intervals such as hourly, daily, weekly, monthly or yearly time 
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separations.The variable being observed in a discrete time series is assumed to be measured as 
a continuous variable using the real number scale. Furthermore a continuous time series can be 
easily transformed to a discrete one by merging data together over a specified time interval. 
Components of a Time Series A time series in general is supposed to be affected by four main 
components, which can be separated from the observed data. These components are: Trend, 
Cyclical, Seasonal and Irregular components. A brief description of these four components is 
given here. The general tendency of a time series to increase, decrease or stagnate over a long 
period of time is termed as Secular Trend or simply Trend. Thus, it can be said that trend is a 
long term movement in a time series. For example, series relating to population growth, 
number of houses in a city etc. show upward trend, whereas downward trend can be observed 
in series relating to mortality rates, epidemics, etc. Seasonal variations in a time series are 
fluctuations within a year during the season. The important factors causing seasonal variations 
are: climate and weather conditions, customs, traditional habits, etc. For example sales of ice-
cream increase in summer, sales of woolen cloths increase in winter. Seasonal variation is an 
important factor for businessmen, shopkeeper and producers for making proper future plans. 
The cyclical variation in a time series describes the medium-term changes in the series, caused 
by circumstances, which repeat in cycles. The duration of a cycle extends over longer period of 
time, usually two or more years. Most of the economic and financial time series show some 
kind of cyclical variation. For example a business cycle consists of four phases, viz. i) Prosperity, 
ii) Decline, iii) Depression and iv) Recovery. 
Irregular or random variations in a time series are caused by unpredictable influences, which 

are not regular and also do not repeat in a particular pattern. These variations are caused by 

incidences such as war, strike, earthquake, flood, revolution, etc. There is no defined statistical 

technique for measuring random fluctuations in a time series. Considering the effects of these 

four components, two different types of models are generally used for a time series viz. 

Multiplicative and Additive models. Multiplicative model is based on the assumption that the 

four components of a time series are not necessarily independent and they can affect one 

another; whereas in the additive model it is assumed that the four components are 

independent of each other.Examples of Time Series Data Time series observations are 

frequently encountered in many domains such as business, economics, industry, engineering 

and science, etc . Depending on the nature of analysis and practical need, there can be various 

different kinds of time series. To visualize the basic pattern of the data, usually a time series is 

represented by a graph, where the observations are plotted against corresponding time. Below 

we show two time series plots: 
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Introduction to Time Series Analysis : In practice a suitable model is fitted to a given time series 

and the corresponding parameters are estimated using the known data values. The procedure 

of fitting a time series to a proper model is termed as Time Series Analysis. It comprises 

methods that attempt to understand the nature of the series and is often useful for future 

forecasting and simulation. In time series forecasting, past observations are collected and 

analyzed to develop a suitable mathematical model which captures the underlying data 

generating process for the series .The future events are then predicted using the model. This 

approach is particularly useful when there is not much knowledge about the statistical pattern 

followed by the successive observations or when there is a lack of a satisfactory explanatory 

model. Time series forecasting has important applications in various fields. Often valuable 

strategic decisions and precautionary measures are taken based on the forecast results. Thus 

making a good forecast, i.e. fitting an adequate model to a time series is very important. Over 

the past several decades many efforts have been made by researchers for the development and 

improvement of suitable time series forecasting models.A time series is non-deterministic in 

nature, i.e. we cannot predict with certainty what will occur in future. Generally a time series is 

assumed to follow certain probability model which describes the joint distribution of the 

random variable.The mathematical expression describing the probability structure of a time 

series is termed as a stochastic process . Thus the sequence of observations of the series is 

actually a sample realization of the stochastic process that produced it. A usual assumption is 

that the time series variables tx are independent and identically distributed following the 

normal distribution.; They follow more or less some regular pattern in long term. For example if 

the temperature today of a particular city is extremely high, then it can be reasonably 

presumed that tomorrow’s temperature will also likely to be high. This is the reason why time 

series forecasting using a proper technique, yields result close to the actual value. 

 Concept of Stationarity : 

The concept of stationarity of a stochastic process can be visualized as a form of statistical 

equilibrium .The statistical properties such as mean and variance of a stationary process do not 

depend upon time. It is a necessary condition for building a time series model that is useful for 

future forecasting. Further, the mathematical complexity of the fitted model reduces with this 

assumption. There are two types of stationary processes which are defined below: 
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A process is Strongly Stationary or Strictly Stationary if the joint probability distribution function 

is independent of t for all .Thus for a strong stationary process the joint distribution of any 

possible set of random variables from the process is independent of time . However for 

practical applications, the assumption of strong stationarity is not always needed and so a 

somewhat weaker form is considered. A stochastic process is said to be Weakly Stationary of 

order k if the statistical moments of the process up to that order depend only on time 

differences and not upon the time of occurrences of the data being used to estimate the 

moments.For example a stochastic process is second order stationary if it has time independent 

mean and variance and the covariance values.It is important to note that neither strong nor 

weak stationarity implies the other. However, a weakly stationary process following normal 

distribution is also strongly stationary.Some mathematical tests like the one given by Dickey 

and Fuller are generally used to detect stationarity in a time series data. As mentioned in], the 

concept of stationarity is a mathematical idea constructed to simplify the theoretical and 

practical development of stochastic processes. To design a proper model, adequate for future 

forecasting, the underlying time series is expected to be stationary. Unfortunately it is not 

always the case. Greater the time span of historical observations, the greater is the chance that 

the time series will exhibit non-stationary characteristics. However for relatively short time 

span, one can reasonably model the series using a stationary stochastic process. Usually time 

series, showing trend or seasonal patterns are non-stationary in nature. In such cases, 

differencing and power transformations are often used to remove the trend and to make the 

series stationary. In the next chapter we shall discuss about the seasonal differencing technique 

applied to make a seasonal time series stationary.While building a proper time series model we 

have to consider the principle of parsimony .According to this principle, always the model with 

smallest possible number of parameters is to be selected so as to provide an adequate 

representation of the underlying time series data .Out of a number of suitable models, one 

should consider the simplest one, still maintaining an accurate description of inherent 

properties of the time series. The idea of model parsimony is similar to the famous Occam’s 

razor principle. One aspect of this principle is that when face with a number of competing and 

adequate explanations, pick the most simple one. The Occam’s razor provides considerable 

inherent informations, when applied to logical analysis. Moreover, the more complicated the 

model, the more possibilities will arise for departure from the actual model assumptions. With 

the increase of model parameters, the risk of overfitting also subsequently increases. An over 

fitted time series model may describe the training data very well, but it may not be suitable for 

future forecasting. As potential overfitting affects the ability of a model to forecast well, 

parsimony is often used as a guiding principle to overcome this issue. Thus in summary it can be 

said that, while making time series forecasts, genuine attention should be given to select the 

most parsimonious model among all other possibilities.  
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The selection of a proper model is extremely important as it reflects the underlying structure of 

the series and this fitted model in turn is used for future forecasting. A time series model is said 

to be linear or non-linear depending on whether the current value of the series is a linear or 

non-linear function of past observations. In general models for time series data can have many 

forms and represent different stochastic processes. There are two widely used linear time 

series models in literature, viz. Autoregressive (AR) and Moving Average (MA) models. 

Combining these two, the Autoregressive Moving Average (ARMA) and Autoregressive 

Integrated Moving Average (ARIMA) models have been proposed in literature. The 

Autoregressive Fractionally Integrated Moving Average (ARFIMA) model generalizes ARMA and 

ARIMA models. For seasonal time series forecasting, a variation of ARIMA, viz. the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model is used. ARIMA model and its 

different variations are based on the famous Box-Jenkins principle and so these are also broadly 

known as the Box-Jenkins models. Linear models have drawn much attention due to their 

relative simplicity in understanding and implementation. However many practical time series 

show non-linear patterns. For example,non-linear models are appropriate for predicting 

volatility changes in economic and financial time series. Considering these facts, various non-

linear models have been suggested in literature. Some of them are the famous Autoregressive 

Conditional Heteroskedasticity (ARCH) model and its variations like Generalized ARCH (GARCH) , 

Exponential Generalized ARCH (EGARCH) etc., the Threshold Autoregressive (TAR)] model, the 

Non-linear Autoregressive (NAR) model, the Non-linear Moving Average (NMA) model, etc. 

The Autoregressive Moving Average (ARMA) Models : 

 An ARMA(p, q) model is a combination of AR(p) and MA(q) models and is suitable for 

univariate time series modeling. In an AR(p) model the future value of a variable is assumed to 

be a linear combination of p past observations and a random error together with a constant 

term. Usually For estimating parameters of an AR process using the given time series, the Yule-

Walker equations are used. Just as an AR(p) model regress against past values of the series, an 

MA(q) model uses past errors as the explanatory variables.The random shocks are assumed to 

be a white noise process, i.e. a sequence of independent and identically distributed random 

variables with zero mean and a constant variance .Generally, the random shocks are assumed 

to follow the typical normal distribution. Thus conceptually a moving average model is a linear 

regression of the current observation of the time series against the random shocks of one or 

more prior observations. Fitting an MA model to a time series is more complicated than fitting 

an AR model because in the former one the random error terms are not fore-seeable. 

Autoregressive (AR) and moving average (MA) models can be effectively combined together to 

form a general and useful class of time series models, known as the ARMA models. Here the 

model orders qp, refer to p autoregressive and q moving average terms. Usually ARMA models 
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are manipulated using the lag operator notation.Polynomials of lag operator or lag polynomials 

are used to represent ARMA models.  

Stationarity Analysis: It is proved by Box and Jenkins that a necessary and sufficient condition 

for the AR(p) process to be stationary is that all the roots of the characteristic equation must 

fall outside the unit circle. Hipel and McLeod mentioned another simple algorithm (by Schur 

and Pagano) for determining stationarity of an AR process.An MA(q) process is always 

stationary, irrespective of the values the MA parameters . The conditions regarding stationarity 

and invertibility of AR and MA processes also hold for an ARMA process. An ARMA(p, q) process 

is stationary if all the roots of the characteristic equation lie outside the unit circle. Similarly, if 

all the roots of the lag equation lie outside the unit circle, then the ARMA(p, q) process is 

invertible and can be expressed as a pure AR process. 

Autocorrelation and Partial Autocorrelation Functions (ACF and PACF) : 
 
To determine a proper model for a given time series data, it is necessary to carry out the ACF 
and PACF analysis. These statistical measures reflect how the observations in a time series are 
related to each other. For modeling and forecasting purpose it is often useful to plot the ACF 
and PACF against consecutive time lags. These plots help in determining the order of AR and 
MA terms.  
The autocovariance at lag zero i.e. 0γ is the variance of the time series. From the definition it is 

clear that the autocorrelation coefficient kρ is dimensionless and so is independent of the scale 

of measurement Another measure, known as the Partial Autucorrelation Function (PACF) is 

used to measure the correlation between an observation k period ago and the current 

observation, after controlling for observations at intermediate lags (i.e. at lags k<). At lag 1, 

PACF(1) is same as ACF(1). Normally, the stochastic process governing a time series is unknown 

and so it is not possible to determine the actual or theoretical ACF and PACF values. Rather 

these values are to be estimated from the training data, i.e. the known time series at hand. The 

estimated ACF and PACF values from the training data are respectively termed as sample ACF 

and PACF. As explained by Box and Jenkins ,the sample ACF plot is useful in determining the 

type of model to fit to a time series of length N. Since ACF is symmetrical about lag zero, it is 

only required to plot the sample ACF for positive lags, from lag one onwards to a maximum lag 

of about N/4. The sample PACF plot helps in identifying the maximum order of an AR process.  

Autoregressive Integrated Moving Average (ARIMA): Models The ARMA models, described 

above can only be used for stationary time series data. However in practice many time series 

such as those related to socio-economic business show non-stationary behavior. Time series, 

which contain trend and seasonal patterns, are also non-stationary in nature.Thus from 

application view point , ARMA models are inadequate to properly describe non-stationary time 

series, which are frequently encountered in practice. For this reason the ARIMA model is 
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proposed, which is a generalization of an ARMA model to include the case of non-stationarity as 

well. In ARIMA models a non-stationary time series is made stationary by applying finite 

differencing of the data points.An ARIMA(p,0,0) is nothing but the AR(p) model and 

ARIMA(0,0,q) is the MA(q) model. ARIMA(0,1,0), is a special one and known as the Random 

Walk model .It is widely used for non-stationary data, like economic and stock price series. A 

useful generalization of ARIMA models is the Autoregressive Fractionally Integrated Moving 

Average (ARFIMA) model, which allows non-integer values of the differencing parameter d. 

ARFIMA has useful application in modeling time series with long memory. In this model the 

expansion of the term is to be done by using the general binomial theorem. Various 

contributions have been made by researchers towards the estimation of the general ARFIMA 

parameters. Box and Jenkinshave generalized this model to deal with seasonality. Their 

proposed model is known as the Seasonal ARIMA (SARIMA) model. In this model seasonal 

differencing of appropriate order is used to remove non-stationarity from the series. A first 

order seasonal difference is the difference between an observation and the corresponding 

observation from the previous year. 

 

 

1.2 Research Objectives: 

 

• To test the stationarity in the data of GDP over the period. 

• To study Autocorrelation in the observed series of GDP 

• To Forecast the GDP using appropriate ARIMA Model. 

• To test the Model fitness using Information Criterion and goodness of fit model. 
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2.Literature Review: 
 
India’s growth along with sustainability in the next decade majorly depends on the growth in its 
market and economy as a whole. In the present study researcher has attempted to forecast the 
GDP growth for the country. Out of a variety of forecasting models ARIMA (1,2,2) model has 
been applied to forecast the GDP over a period of ten years ranging from 2020 to 2030.The 
results indicate the fitness of AR (1) I (2) MA(2) parameters for making the future predictions. It 
is concluded that the GDP of India would be rising continuously over the estimated period. 
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) were studied to 
study the AR and MA terms. Augmented Dickey Fuller (ADF) Unit root test was used to test the 
stationarity of the data and identification of Integration order. Akaike Information Criterion 
(AIC), Root Mean Squared Error, Mean Absolute Percentage Error were applied to study the 
model fitness. 
 
 
 
Keywords: Auto Regressive Integrated Moving Average (ARIMA), Autocorrelation Function 
(ACF), Akaike Information Criterion (AIC), Forecast, GDP, Mean Absolute Percentage 
Error, Partial Autocorrelation Function (PACF), Root Mean Squared Error 
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3.Research Methodology: -  

3.1  R Programming:  

R is a language and environment for statistical computing and graphics. It is a GNU project 
which is similar to the S language and environment which was developed at Bell Laboratories 
(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be 
considered as a different implementation of S. There are some important differences, but much 
code written for S runs unaltered under R. 

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, 
time-series analysis, classification, clustering, …) and graphical techniques, and is highly 
extensible. The S language is often the vehicle of choice for research in statistical methodology, 
and R provides an Open Source route to participation in that activity. 

One of R’s strengths is the ease with which well-designed publication-quality plots can be 
produced, including mathematical symbols and formulae where needed. Great care has been 
taken over the defaults for the minor design choices in graphics, but the user retains full 
control. 

R is available as Free Software under the terms of the Free Software Foundation’s GNU General 
Public License in source code form. It compiles and runs on a wide variety of UNIX platforms 
and similar systems (including FreeBSD and Linux), Windows and MacOS. 

The R environment 

R is an integrated suite of software facilities for data manipulation, calculation and graphical 
display. It includes 

• an effective data handling and storage facility, 
• a suite of operators for calculations on arrays, in particular matrices, 
• a large, coherent, integrated collection of intermediate tools for data analysis, 
• graphical facilities for data analysis and display either on-screen or on hardcopy, and 
• a well-developed, simple and effective programming language which includes 

conditionals, loops, user-defined recursive functions and input and output facilities. 

The term “environment” is intended to characterise it as a fully planned and coherent system, 
rather than an incremental accretion of very specific and inflexible tools, as is frequently the 
case with other data analysis software. 

R, like S, is designed around a true computer language, and it allows users to add additional 
functionality by defining new functions. Much of the system is itself written in the R dialect of S, 
which makes it easy for users to follow the algorithmic choices made. For computationally-

http://www.gnu.org/
http://www.gnu.org/
https://www.r-project.org/COPYING
https://www.r-project.org/COPYING
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intensive tasks, C, C++ and Fortran code can be linked and called at run time. Advanced users 
can write C code to manipulate R objects directly. 

Many users think of R as a statistics system. We prefer to think of it of an environment within 
which statistical techniques are implemented. R can be extended (easily) via packages. There 
are about eight packages supplied with the R distribution and many more are available through 
the CRAN family of Internet sites covering a very wide range of modern statistics. 

R has its own LaTeX-like documentation format, which is used to supply comprehensive 
documentation, both on-line in a number of formats and in hardcopy.  

R package: 

The primary uses of R is and will always be, statistic, visualization, and machine learning. The 
picture below shows which R package got the most questions in Stack Overflow. In the top 10, 
most of them are related to the workflow of a data scientist: data preparation and 
communicate the results. All the libraries of R, almost 12k, are stored in CRAN. CRAN is a free 
and open source. You can download and use the numerous libraries to perform Machine 
Learning or time series analysis. Why use R? 

Data science is shaping the way companies run their businesses. Without a doubt, staying away 
from Artificial Intelligence and Machine will lead the company to fail. The big question is which 
tool/language should you use?  

They are plenty of tools available in the market to perform data analysis. Learning a new 
language requires some time investment. The picture below depicts the learning curve 
compared to the business capability a language offers. The negative relationship implies that 
there is no free lunch. If you want to give the best insight from the data, then you need to 
spend some time learning the appropriate tool, which is R.  

In a nutshell, R is a great tool to explore and investigate the data. Elaborate analysis like 
clustering, correlation, and data reduction are done with R. This is the most crucial part, 
without a good feature engineering and model, the deployment of the machine learning will 
not give meaningful results.  
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 4.DATA ANALYSIS AND INTERPRETATION 

 
 
The data of GDP (Nominal Value) was collected over the time period from 2000 to 2018. It had 
been collected from the website publications of Reserve Bank of India (RBI). The following 
figure exhibits the GDP Curve over the observed period of 18 years. 
 
 
 
 
Conceptual Framework of ARIMA Model:  
 
 
 
Popularly known as the Box-Jenkins (BJ) methodology, and technically known as the ARIMA 
methodology, the emphasis of these methods is not on constructing single equation or 
simultaneous equation models but on analyzing the probabilistic or stochastic properties of 
economic time series on their own under the philosophy of letting the data speak for 
themselves. Unlike the regression models, in which Yt is explained by k regressors, X1, X2, 
X3...Xk, the BJ type time series models allow Yt to be explained by past or lagged valued of Yt 
itself and stochastic error terms. For this reason, ARIMA models are sometimes called a-
theoretic models because these are not derived from any economic theory, while economic 
theories are often the basis of simultaneous equation models. Let Yt be a time series sequence 
for t = 1, 2 ….t ,then we can say that Yt follows a first order Autoregressive (AR)(1). Here the 
value of Y at time t depends on its value in the previous time period and a random term. In 
other words, this model says that the forecast value of Y at time t is simply some proportion of 
its value at time (t – 1) plus a random shock or disturbance at time t, again the values are 
expressed around their mean values. Economic variables with time series data are usually non-
stationary, since these are integrated. These need first order differencing for attaining 
stationarity. If a time series is integrated of order 1, its first differences are I (0), and it is 
stationary. Similarly, if a time series is I (2), its second difference is I (0). In general, if a time 
series is I (d), after differencing it d times, we obtain an I (0) series. Therefore , if we have to 
difference a time series d times to make it stationary and then apply an ARIMA time series, 
where p denotes the number of AR terms, d represents the number of times, the series has to 
be differenced before it becomes stationary, and q is the number of MA terms. 
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Dickey Fuller Test of Stationarity 

Here is a small tweak which is made for our equation to convert it to a Dickey Fuller test: 

X(t) = Rho * X(t-1) + Er(t) 
=>  X(t) - X(t-1) = (Rho - 1) X(t - 1) + Er(t) 

We have to test if Rho – 1 is significantly different than zero or not. If the null hypothesis 
gets rejected, we’ll get a stationary time series. 

Stationary testing and converting a series into a stationary series are the most critical processes 
in a time series modelling. You need to memorize each and every detail of this concept to move 
on to the next step of time series modelling.                   

4.2  Coding in R: 

> data(GDP) 
 > class(GDP) 
 [1] "ts"                                                                                                                     
#This tells you that the data series is in a time series format 
 > start(GDP) 
 [1] 2000 1 
#This is the start of the time series 
> end(GDP) 

                                                   Fig 4.1 
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 [1] 2018                                                         
#This is the end of the time series 
> plot(GDP) 
#This will plot the time series 
>abline(reg=lm(GDP~time(GDP))) 
# This will fit in a line 

 

 

 

Here are a few more operations you can do: 

> cycle(GDP) 
#This will print the cycle across years. 
>plot(aggregate(GDP,FUN=mean)) 
#This will aggregate the cycles and display a year on year trend 
> boxplot(GDP~cycle(GDP)) 
#Box plot across months will give us a sense on seasonal effect 
  

                                                   Fig4.2 

 

 

https://www.analyticsvidhya.com/wp-content/uploads/2015/02/plot_AP1.png
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adf.test(diff(log(GP)), alternative="stationary", k=0) 
data: diff(log(GDP)) 
 Dickey-Fuller = -9.6003, Lag order = 0, 
 p-value = 0.05 
 alternative hypothesis: stationary 
acf(log(GDP)) 
 
 

 

                         Fig 4.3 

                         Fig 4.4 
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               acf(diff(log(GDP))) 
 
 
 
  

z

 

 

 

Clearly, ACF plot cuts off after the first lag. Hence, we understood that value of p should be 0 as 
the ACF is the curve getting a cut off. While value of q should be 1 or 2. After a few iterations, 
we found that (0,1,1) as (p,d,q) comes out to be the combination with least AIC and BIC. 

Let’s fit an ARIMA model and predict the future 10 years. Also, we will try fitting in a seasonal 
component in the ARIMA formulation. Then, we will visualize the prediction along with the 
training data. You can use the following code to do the same  

(fit <- arima(log(GDP), c(0, 1, 1),seasonal = list(order = c(0, 1, 1), period = 12))) 
pred <- predict(fit, n.ahead = 10) 
 
 
 
 

                         Fig 4.5 
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4.3  Important Inferences 

1. The year on year trend clearly shows that the GDP have been increasing without fail. 
2. The variance and the mean value in July quarter 2018 is much higher than rest of the 

quarters. 
3. Even though the mean value of each year is quite different their variance is small.  
4. ARMA models are commonly used in time series modeling. In ARMA model, AR stands 

for auto-regression and MA stands for moving average.  
5. In case you get a non-stationary series, you first need to stationarize the series (by 

taking difference / transformation) and then choose from the available time series 
models. 

Auto-Regressive Time Series Model: 

The current GDP of a country say x(t) is dependent on the last year’s GDP i.e. x(t – 1). The 
hypothesis being that the total cost of production of products & services in a country in a fiscal 
year (known as GDP) is dependent on the set up of manufacturing plants / services in the 
previous year and the newly set up industries / plants / services in the current year. But the 
primary component of the GDP is the former one. 

Hence, we can formally write the equation of GDP as: 

x(t) = alpha *  x(t – 1) + error (t) 

This equation is known as AR(1) formulation. The numeral one (1) denotes that the next 
instance is solely dependent on the previous instance.  The alpha is a coefficient which we seek 
so as to minimize the error function. Notice that x(t- 1) is indeed linked to x(t-2) in the same 
fashion. Hence, any shock to x(t) will gradually fade off in future. 

For instance, let’s say x(t) is the number of juice bottles sold in a city on a particular day. During 
winters, very few vendors purchased juice bottles. Suddenly, on a particular day, the 
temperature rose and the demand of juice bottles soared to 1000. However, after a few days, 
the climate became cold again. But, knowing that the people got used to drinking juice during 
the hot days, there were 50% of the people still drinking juice during the cold days. In following 
days, the proportion went down to 25% (50% of 50%) and then gradually to a small number 
after significant number of days. The following graph explains the inertia property of AR series: 
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Moving Average Time Series Model: 

Example-A manufacturer produces a certain type of bag, which was readily available in the 
market. Being a competitive market, the sale of the bag stood at zero for many days. So, one 
day he did some experiment with the design and produced a different type of bag. This type of 
bag was not available anywhere in the market. Thus, he was able to sell the entire stock of 1000 
bags (lets call this as x(t) ). The demand got so high that the bag ran out of stock. As a result, 
some 100 odd customers couldn’t purchase this bag. Lets call this gap as the error at that time 
point. With time, the bag had lost its woo factor. But still few customers were left who 
went empty handed the previous day. Following is a simple formulation to depict the scenario : 

x(t) = beta *  error(t-1) + error (t) 

 

 

 

 

 

                                     Fig 4.5 

https://www.analyticsvidhya.com/wp-content/uploads/2015/02/AR1.png
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If we try plotting this graph, it will look something like this : 

 

 

 

? In MA model, noise / shock quickly vanishes with time. The AR model has a much lasting 
effect of the shock. 

  

Difference between AR and MA models: 

The primary difference between an AR and MA model is based on the correlation between time 
series objects at different time points. The correlation between x(t) and x(t-n) for n > order of 
MA is always zero. This directly flows from the fact that covariance between x(t) and x(t-n) is 
zero for MA. However, the correlation of x(t) and x(t-n) gradually declines with n becoming 
larger in the AR model. This difference gets exploited irrespective of having the AR model or MA 
model. The correlation plot can give us the order of MA model. 

 

 

               Fig 4.6 

https://www.analyticsvidhya.com/wp-content/uploads/2015/02/MA1.png
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ACF                                                                      

 

      

 

PACF 

 

 

 

 

The blue line above shows significantly different values than zero. Clearly, the graph above has 
a cut off on PACF curve after 2nd lag which means this is mostly an AR(2) process. 

               Fig 4.7 

https://www.analyticsvidhya.com/wp-content/uploads/2015/02/cut-off.gif
https://www.analyticsvidhya.com/wp-content/uploads/2015/02/Gradual-decline.gif
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This framework(shown below) specifies the step by step approach on ‘How to do a Time Series 
Analysis‘: 

 

 

 

4.4 Results: 
Identification of I (d) term: 
The GDP series was differences twice as ADF test  justified the presence of unit 
root in the data. Thus, the stationarity was achieved by differencing the GDP series twice. It 
thus, validated the integration order at two lags I(2). 
 
Table-1: ADF Unit Root Test 
t-Stat istic Pro b.* 
Augmented Dickey-Fuller te st statistic 4.41 7378 1.0 000 
Test critical values: 1% level -3.568308 
5% level -2.921175 
10% level -2.598551 
*MacKinnon - one-sided p-values . 
 
 

                        Fig 4.8 

https://www.analyticsvidhya.com/wp-content/uploads/2015/02/flowchart.png
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Identification of AR (p) and MA (q) terms: 
After making the GDP series stationary , the autocorrelation and partial autocorrelation 
functions were studied. By observing the PACF values and term AR was found to be fit for 
predictions. Similarly, MA term were justified by observing the ACF values. The MA (1) was 
rejected as it was found to be insignificant. Thus, the ARMA (1, 2) parameters were identified 
using Autocorrelation and Partial Autocorrelation Functions. 
  
Figure-2:  ACF and PACF Values 

 

 

The ARIMA (1, 2, 2) parameters were found significant at 5% level ofsignificance. The coefficient 
of AR (1) was estimated as 0.54 and that of MA (2) as 0.49. Thet-test confirms the significance 
of these coefficients for predicting the GDP. A model ARIMA (1, 1, 1) was rejected due to 
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insignificance of its AR (1) term while testing. The model fitness was confirmed by lower AIC 
values and lower values of root mean squared error. The R-square is merely 24%. 
 
Model Validity: 
The correlogram of ACF of residuals (Fig 3) suggests that there is no substantial spike has been 
observed as the case of correlogram of PACF of residuals. In turn, it has been concluded that 
the error terms become white noise. It thus validates the model as no further information is 
available. 
Figure: Residual ACF and PACF 

 

                             Fig 4.9 
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4.5 Forecasting: 

  
 Output: Time Series: 
 Start=21 
 End=30 
 Frequency = 1 
 [1] 134170.5  281196.3  468367.7  746227.4  1111836.9  1541294.7  2061617  2685230.4  
340003.6  [10] 4213741.4 
 
 
4.6 Limitations of the study : 
 
 

• Overdifferencing in ARIMA model– A series that has been differenced one too many 
times will show very strong negative autocorrelation and a strong MA signature, 
probably with a unit root in MA coefficients. 

 

• Sometimes AR, ARCH. GARCH, ARIMA, etc. do not seem to be helpful in forecasting in 
the case of coming of crisis. 

 

• In time-series forecasting, you rarely know the true shape of the distribution with which 
you are working. Workers in other areas often assume normal distributions while 
knowing that assumption is not fully accurate. 

. 
4.7 Conclusion: 
 
The GDP forecast for the next decade is increasing over the period of time.Also the RBI should 
take necessary steps as and when needed to regulate different rates to keep the indian 
economy stable.The ARIMA (1, 2, 2) model was found to be a better fit model in forecasting 
India’s GDP. 
 
4.8 Implications of the Study: 
 
The results of this study would be very useful for policy makers and managers dealing with 
macro variables such as foreign direct investment (FDI), foreign institutional investment (FII), 
etc. The findings of the study will be helpful for formulation of better policies. Managers who 
are planning to invest in the expansion of existing business or in the new project will be 
benefitted greatly as the findings will provide them a picture of the economic conditions of 
India well in advance. Further, the findings suffer from some limitations since the researchers 
have not taken into consideration the models such as Regression Analysis, VAR, ECM etc. to 
forecast GDP and its growth rates in India. 
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