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Abstract 
  

The task of caption generation for image has recently received considerable attention. In 

this thesis we will see how we can make computers to look at an image and output a description 

for the same. This process has many potential applications in real life. A noteworthy one would 

be to save the captions of an image so that it can be retrieved easily at a later stage just on the 

basis of this description. With few modifications this system can also assist visually-impaired 

persons with their daily chores.  

The task of caption generation is straightforward – Given an input image our algorithm is 

expected to describe what is there in the image. By description we mean that the system will tell 

us about the objects present in the image, and the tasks that are being performed by the objects. 

Tasks like these are trivial for humans, but non-trivial for computers. Thanks to advancement in 

deep learning, computers are now reaching human level performance.  

This thesis work introduces a generic end-to-end trainable Convolutional Neural Network 

(CNN) -Recurrent Neural Network (RNN) Fusion-based technique to solve the problem of image 

captioning. In particular, we feed an image into a CNN and the output of CNN then gets fed to 

an Encoder-Decoder. The task of CNN is to output set of objects and their location. Encoder-

Decoder network takes the output of CNN as input and feed that into its Encoder. The Encoder 

uses a two-stream RNN to encode the information coming from CNN, the coded information 

then gets passed to decoder. Decoder uses a standard LSTM neural network to generate text.

 Standard MS-COCO captioning task dataset is used for this task.  

Keywords : Convolutional Neural Network (CNN) ,  Recurrent Neural Network (RNN), 

Encoder-Decoder. 
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Chapter 1 

1.1 Introduction 

 

The famous English adage states “A picture is worth a thousand words”. Translated into 

technical terms, this is meant to convey that there is a lot the viewer can learn or infer from a 

single still image and that enumerating all the information encoded in an image can take up to 

even a thousand words. This is illustrated in our extensive use of images in all forms of 

communication, from scientific journals to Twitter chats. Humans are very good at processing 

images and videos and gathering all this encoded information, but the computers still struggle to 

make sense of the simplest ones. One could say it is still easier for computers to store, parse, 

search and even understand a thousand words than a single image. The use of multimedia on the 

internet has grown to staggering levels in the recent years, due to easy access to cameras in 

smartphones. For example about 95 million photos are uploaded to Instagram every day [2] and 

about 400 hours of video is uploaded to YouTube every minute [1]. Rapidly growing amount of 

visual data being created due to this phenomenon presents both an enormous challenge and an 

opportunity to build smarter computer algorithms to understand and summarize the data. Such 

algorithms could help us index and search this visual data better. An algorithm which can learn 

to recognize and describe different objects and their relationships in an image or a video would 

be an essential building block of a general artificial intelligence (AI) system. Hence, automatic 

understanding of visual media is an interesting and important problem in many aspects of 

computer vision and AI. An essential research topic at the heart of machine understanding of 

visual media is automatic captioning of images and videos. This involves designing an algorithm 

which takes the image or the video as input and generates a natural language caption succinctly 

describing the content of the media. Effectively solving the above problem requires the machine 

to be able to identify the salient objects in the image or video, recognize their attributes,extract 

the relationships between these objects and also to correctly recognize the scene. This machine 

also needs to be able to use the extracted information to generate a natural language caption 

summarizing the essence of it. Since the caption generation requires both visual feature 

extraction and natural language generation modules, it is also a good proxy task to measure the 

progress in both these domains. 
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Until recently, the task of reliably identifying even a single object in an image across diverse and 

large-scale datasets was hard. This changed dramatically with the availability of large-scale 

annotated data such as the ImageNet dataset [12], and the application of deep learning 

techniques, specifically convolutional neural networks (CNN). For example, in the image 

classification task of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [52], 

which involves classifying images to one of thousand object classes, the accuracy has improved 

from 71.8% to 95.06%, surpassing the human performance on the same task. It has also been 

discovered that image classification networks which are trained on the large ImageNet dataset, 

also generalize very well and can be used as generic image feature extraction for different tasks 

[74]. This has led to successful application of such deep networks to various other tasks in 

computer vision including the task of image captioning. In this thesis we will examine the task of 

automatic image and video captioning and discuss algorithms utilizing tools from deep learning 

to solve this task. Much of the discussion presented in this thesis applies to both image and video 

captioning problems. In such cases, in the interest of conciseness, we use the term “visual 

captioning” to refer to both of these problems.  

In general, generating visually descriptive language can be useful for various tasks such as 

human-machine communication, accessibility, image retrieval, and search. However this task is 

still challenging and it depends on developing both a robust visual recognition model, and a 

reliable language generation model. In this paper, we instead tackle a task of describing object 

Layouts where the categories for the objects in an input scene and their corresponding locations 

are known. Object layouts are commonly used for story-boarding, sketching, and computer 

graphics applications. Additionally, using our object layout captioning model on the outputs of 

an object detector we are also able to improve image captioning models. Object layouts contain 

rich semantic information, however they also abstract away several other visual cues such as 

color, texture, and appearance, thus introducing a different set of challenges than those found in 

traditional image captioning. 

 

 

 

 

 



            6 

 

We propose OBJ2TEXT, a sequence-to-sequence model that encodes object layouts using 

an LSTM network (Hochreiter and Schmidhuber,1997), and decodes natural language 

descriptions using an LSTM-based neural language model. Natural language generation systems 

usually consist of two steps: content planning, and surface realization. The first step decides on 

the content to be included in the generated text, and the second step connects the concepts using 

structural language properties. In our proposed model, OBJ2TEXT, content planning is 

performed by the encoder, and surface realization is performed by the decoder. Our model is 

trained in the standard MS-COCO dataset (Lin et al., 2014), which includes both object 

annotations for the task of object detection, and textual descriptions for the task of image 

captioning. While most previous research has been devoted to any one of these 

two tasks, our thesis presents, to our knowledge, the first approach for learning mappings 

between object annotations and textual descriptions. Using several lesioned versions of the 

proposed model we explored the effect of object counts and locations in the quality and accuracy 

of the generated natural language descriptions. 

Generating visually descriptive language requires beyond syntax, and semantics; an 

understanding of the physical word. We also take inspiration from recent work by Schmaltz et al. 

(2016) where the goal was to reconstruct a sentence from a bag-of-words (BOW) representation 

using a simple surface-level language model based on an encoder-decoder sequence-to-sequence 

architecture. 

In contrast to this previous approach, our model is grounded on visual data, and its 

corresponding spatial information, so it goes beyond word reordering. Also relevant to our work 

is Yao et al. (2016a) which previously explored the task of oracle image captioning by providing 

a language generation model with a list of manually defined visual concepts known to be present 

in the image. In addition, our model is able to leverage both quantity and spatial information as 

additional cues associated with each object/concept, thus allowing it to learn about verbosity, and 

spatial relations in a supervised fashion. 
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In summary, our contributions are as follows: 

1. We demonstrate that despite encoding object layouts as a sequence using an 

LSTM, our model can still effectively capture spatial information for the 

captioning task. We perform ablation studies to measure the individual impact of 

object counts, and locations. 

2. We show that a model relying only on object annotations as opposed to pixel data, 

performs competitively in image captioning despite the ambiguity of the setup for 

this task. 

3. We show that more accurate and comprehensive descriptions can be generated on 

the image captioning task by combining our OBJ2TEXT model using the outputs 

of a state-of-the-art object detector with a standard image captioning approach. 
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1.2  Problem Statement 

 

We evaluate OBJ2TEXT in the task of object layout captioning, and image captioning. In the 

first task, the input is an object layout that takes the form of a set of object categories and 

bounding box pairs; < 𝑜, 𝑙 > =  {< 𝑜(𝑖) , 𝑙(𝑖) >},  and the output is natural language. This task 

resembles the second task of image captioning except that the input is an object layout instead of 

a standard raster image represented as a pixel array. We experiment in the MS-COCO dataset for 

both tasks. For the first task, object layouts are derived from ground-truth bounding box 

annotations, and in the second task object layouts are obtained using the outputs of an 

object detector over the input image. 

 

 

1.3 Related Work  

 

Our work is related to previous works that used clipart scenes for visually-grounded tasks 

including sentence interpretation (Zitnick and Parikh, 2013; Zitnick et al., 2013), and predicting 

object dynamics (Fouhey and Zitnick, 2014). The cited advantage of abstract scene 

representations such as the ones provided by the clipart scenes dataset proposed in (Zitnick and 

Parikh, 2013) is their ability to separate the complexity of pattern recognition from semantic 

visual representation. Abstract scene representations also maintain common-sense knowledge 

about the world. The works of Vedantam et al. (2015b); Eysenbach et al. (2016) proposed 

methods to learn common-sense knowledge from clipart scenes, while the method 

of Yatskar et al. (2016), similar to our work, leverages object annotations for natural images. 

Understanding abstract scenes has demonstrated to be a useful capability for both language and 

vision tasks and our work is another step in this direction. Our work is also related to other 

language generation tasks such as image and video captioning (Farhadi et al., 2010; Ordonez et 
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al., 2011; Mason and Charniak, 2014; Ordonez et al., 2015; Xu et al., 2015; Donahue et al., 

2015; Mao et al., 2015; Fang et al., 2015). This problem is interesting because it combines two 

challenging but perhaps complementary tasks: visual recognition, and generating coherent 

language. Fueled by recent advances in training deep neural networks (Krizhevsky et al., 2012) 

and the availability of large annotated datasets with images and captions such as the MS-COCO 

dataset (Lin et al., 2014), recent methods on this task perform end-to-end learning from pixels to 

text. Most recent approaches use a variation of an encoder-decoder model where a convolutional 

neural network (CNN) extracts visual features from the input image (encoder), and passes its 

outputs to a recurrent neural network (RNN) that generates a caption as a sequence of words 

(decoder) (Karpathy and Fei-Fei, 2015; Vinyals et al., 2015). However, the MS-COCO dataset, 

containing object annotations, is also a popular benchmark in computer vision for the task of 

object detection, where the objective is to go from pixels to a collection of object locations. In 

this paper, we instead frame our problem as going from a collection of object categories and 

locations (object layouts) to image captions. This requires proposing a novel encoding 

approach to encode these object layouts instead of pixels, and allows for analyzing the image 

captioning task from a different perspective. Several other recent works use a similar sequence-

to-sequence approach to generate text from source code input (Iyer et al., 2016), or to translate 

text from one language to another (Bahdanau et al.,2015).There have also been a few previous 

works explicitly analyzing the role of spatial and geometric relations between objects for vision 

and language related tasks. The work of Elliott and Keller  (2013) manually defined a dictionary 

of object-object relations based on geometric cues. The work of Ramisa et al. (2015) is focused 

on predicting preposition given two entities and their locations in an image. Previous works of 

Plummer et al. (2015) and Rohrbach et al. (2016) showed that switching from classification-
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based CNN network to detection-based Fast RCNN network improves performance for phrase 

localization. The work of Hu et al. (2016) showed that encoding 

image regions with spatial information is crucial for natural language object retrieval as the task 

explicitly asks for locations of target objects. Unlike these previous efforts, our model is trained 

end-to-end for the language generation task, and takes as input a holistic view of the scene 

layout, potentially learning higher order relations between objects. 

 

1.4 Structure of the Thesis 

The rest of the thesis is organized as follows. In Chapter 2, a discussion on the 

background literature related to the building blocks of caption generation models, i.e. visual 

feature extraction and language modeling, is presented. Here we will also review the several 

related works on visual captioning and discuss the datasets available to train such models. The 

details of our baseline caption generation model and the automatic metrics used to evaluate a 

captioning system are discussed in Chapter 3. Chapter 4 presents some extensions to the image 

and video features compared to the ones used in the baseline model. Chapter 5 discusses several 

extensions to the baseline language model and presents some ensembling techniques to combine 

multiple language models. Chapter 6 contains results from several experiments to determine the 

best configurations for our image and video captioning systems and provide comparisons to a 

few other state-of-the-art models from the literature. In Chapter 7, some shortcomings of our 

visual captioning systems are identified and a few interesting problems to explore to address 

these issues are discussed. The thesis is concluded in Chapter 9. 
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Chapter 2 

Background: Vision & Language 
In this chapter we will review some background literature exploring different facets of 

integrating visual data and their natural language annotations. This includes learning good 

representations for images and videos, different kinds of generative language models, techniques 

which attempt to rank similarity between visual data and language annotations, and finally some 

recent advances in captioning images and videos. Additionally, we will review some datasets 

available for training such captioning models 

 

2.1 Visual Features 

 

Visual media, be it image or video, are inherently very high-dimensional data. This large 

dimensionality poses a challenge for machine learning systems trying to extract higher-level 

semantic information directly from such visual inputs, as in case of captioning. To address this, 

images and videos have traditionally been represented with smaller feature vectors which attempt 

to encode the most important information present in them, while ignoring redundancies. This 

feature extraction step is very important in any image understanding pipeline as it usually serves 

as input to the subsequent modules and hence can be a major bottleneck to the performance of 

the entire system. Therefore, we will now review some feature extraction techniques for images 

and videos and identify the best performing ones, which will be used in designing the captioning 

system later. 
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2.1.1 Image Features 

 

 Traditionally, tasks such as object recognition have relied on using handcrafted features 

to represent images. Recently, however, deep Convolutional Neural Networks (CNN), which 

learn to extract features necessary for the task entirely from the data, have become a popular 

choice for image feature extraction. This was triggered by the spectacular improvement in image 

classification accuracy seen on the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) 2012, with the first use of CNNs in this competition. In this challenge, involving 

classifying the input images to one of thousand classes, the submission by Krizhevsky et al. [34] 

using a deep CNN outperformed all the others by a large margin. This set off further exploration 

into CNN architectures and has driven up the performance in the ImageNet classification task to 

even surpass the human classification accuracies [20]. More interestingly, the deep CNNs trained 

on the large ImageNet dataset for the classification task have been shown to generalize very well 

to other datasets and tasks as well. In [74], it is shown that the weights learned by the CNNs pre-

trained on the ImageNet dataset are good initializers for other tasks as well. That is, if we use the 

weights from CNNs pre-trained on ImageNet to initialize the networks before training it on other 

datasets and tasks, we can learn much better models than just using random initialization. 

Alternatively, using activations from some higher layer of an ImageNet pretrained CNN as off-

the-shelf image features has also been shown to produce state-of-the-art results [15, 54, 56, 57] 

in several datasets and tasks, including object detection, scene recognition, image and video 

captioning, etc. We will follow this second approach, i.e. use activations from CNNs pre-trained 

on ImageNet as feature input to our captioning model, without any fine-tuning of the CNNs for 

this task. GoogLeNet [59] and VGG [58] architectures, which won the different categories of 
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ILSVRC 2014 competition, have been popular models for such feature extraction in the 

community with the ready availability of the code and pre-trained models. 

 

 2.1.2 Video Features  

 

Unlike in the case of images, where the convolutional neural network (CNN) image 

features have become the de facto standard features for many image understanding related tasks, 

no single video feature extraction method has achieved the best performance across tasks and 

datasets. Dense trajectories [66] and Improved dense trajectories [67] have been popular video 

feature extraction methods for the task of action recognition. In these methods, interest points are 

densely sampled in an initial frame and then tracked across frames, to form trajectories. 

Furthermore, a set of local descriptors are extracted around the trajectory coordinates to obtain a 

rich representation of the trajectory. These trajectories can encode motion patterns from a variety 

of sources, including actions from agents in the video, camera motion, etc. Following the success 

of the deep CNN models on static images, there have been attempts to train 3-D CNNs which 

operate directly on video segments [25, 31, 61]. However, these models need a lot of training 

data and are usually pre-trained on some large action recognition dataset, e.g. the Sports-1M 

dataset [31]. All of the above features encode action-related information very well, but fail to 

capture information about the identity of the objects in the video. The task of caption generation 

also requires us to describe the objects seen in the video and their attributes, in addition to 

recognizing actions. This can be addressed by extracting features from individual frames [64] or 

keyframes [55] using CNNs pre-trained on the ImageNet dataset. In this work we explore both 
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these paradigms of video feature extraction, namely hand-crafted trajectory features and deep 

video features, for the task of automatic visual captioning.  

 

2.2 Natural Language Modeling 

  

Generative language models are widely used in various tasks including speech 

recognition and synthesis, document analysis, dialog systems, etc. Our task of caption generation 

also involves learning a conditional generative language model which can generate captions 

given the input visual features. For this purpose, we will now discuss a few different language 

modeling approaches, and evaluate their suitability for our task. The simple n-gram language 

models, which are based on counting co-occurrence statistics of sequence of n words, are 

surprisingly good baselines for a lot of language Modeling tasks. However, they are constrained 

to generate sentences only by using n-grams they have seen in the training set. The maximum 

entropy language model (ME-LM) [5] overcomes this problem by using the principle of 

maximum entropy while learning the model. The principle dictates that among all the 

probabilistic models which satisfy the constraints of the training data, one should pick the model 

which is the most uniform. This allows the model to share some probability for unseen n-grams 

as well. Both the above models suffer from using a short context of previous words when 

predicting the next word, limited by the n-gram size, which can lead to longer generated 

sentences being incoherent. Alternatively, one could use recurrent neural networks as generative 

language models as proposed in [41]. Recurrent neural networks have the benefit of having 

access to theoretically infinite context through their hidden state. Additionally, these models do 

not need pre-defined language features, unlike in in case ME-LM , and can learn the necessary 
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word representations from the data. Indeed, such recurrent network based language models are 

quite popular in the machine translation task [3].  

 

2.3 Intermediate Problem: Multi-Modal Embeddings  

 

A precursor to the problem of caption generation from input visual features, is the 

problem of learning to map both visual features and the corresponding natural language labels 

into a common semantic space. This was posed as a solution to automatically annotate images in 

[68]. Here, using a simple bag-of-visual-words image representation, both the image and words 

are projected into a common space, with the training objective of ranking correctly the matching 

image and annotation pairs. In [18], using the CNN features as the image representation and the 

word vectors from word2vec [42] embeddings as the word representation, a linear embedding is 

learned to map the image vectors onto word vectors corresponding to the labels associated with 

the image. This allows the model to do “zero-shot” recognition of image classes it has not seen 

before, by finding the nearest label to the embedded image feature. A much simpler approach is 

used in [43], where the mapping to semantic embedding space is done by a convex combinations 

of c word vectors associated with the top c classes identified in the image. This does away with 

the need to learn the embedding, while still achieving impressive results in zero-shot 

classification on the ImageNet dataset. The methods discussed above forms the basis for the way 

visual features are used in captioning literature. In many early works, both image features and 

word vectors are input to the Long-Short Term Memory (LSTM) language model using the same 

input matrix, forcing the model to learn a joint embedding for them.  
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2.4 Approaches to Visual Captioning  

  

Visual captioning techniques include a wide range of methods and models. They can be 

broadly categorized into two groups: ones generating captions by retrieving from a database [17, 

24, 30], and ones using natural language generation techniques to produce captions [16, 35, 36, 

65]. While the retrieval based methods tend to be semantically more accurate as they do not need 

to learn grammatical rules to generate a caption, the captions they produce are strictly restricted 

to the caption database, and thus will not work well on unseen data. In contrast, although 

generative models can learn to create novel captions and even perform reasonably well on 

unseen data, they tend to have poorer semantic accuracy and details. Early work on captioning 

images presented in [17] was retrieval based, wherein a similarity score between sentences and 

images is computed and is used to retrieve the best matching caption to an input image. This 

method relied on few hand-engineered image features and dependency-parsing-based features for 

sentences. In [24], authors pose image description as a ranking problem involving correctly 

ranking a set of captions by their relevance to the input image. They argue that the ability to rank 

captions correctly is a good measure of semantic image understanding, with the added benefit 

that it is much easier to automatically evaluate such ranked lists than to evaluate generated novel 

captions. Such retrieval-based system is further enhanced by the use of deep image features and 

word embeddings in [30]. One of the early models to successfully generate novel image captions 

was described [35], albeit relying on pre-defined sentence templates to generate captions. In [36], 

this template based language model is replaced with a n-gram based one learned from large-scale 

natural language data collected from the web. Following the successful use of recurrent network–

based language models on tasks such as automatic speech recognition [41] and machine 
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translation [3], this approach was quickly adapted to the image captioning literature as well [14, 

29, 65]. All these methods consist of two-stage encoder–decoder models, with the encoder being 

the image feature extraction module and the decoder being the recurrent language model. One 

major advantage of this approach is that it allows end-to-end training of the entire system. In the 

case of [29], CNN-based image features and a simple recurrent neural network (RNN) based 

language model are used as the encoder and the decoder, respectively. The authors also propose 

techniques to align different parts of a caption to different regions in the image. Similarly in [65], 

authors also use CNN image features, but an LSTM-based network is used for the language 

model. In their method, the image features are fed to the LSTM only at the beginning of the 

recursion, in order to prevent the network from overfitting. Starting from a similar CNN+LSTM 

based pipeline,[14] proposes a more general framework which can generate captions for both 

images and videos. In the case of videos, they replace the single image CNN feature with a 

sequence of conditional random field (CRF) video features and keep the language model 

configuration identical. As opposed to such end-to-end learning systems, [16] takes a modular 

approach. They first train a set of object or concept detectors using multiple instance learning 

[40]. Then, a maximum entropy language model takes these detector outputs as input to generate 

the candidate sentence. This concept detector–based approach has been applied also to video 

captioning in [51], where the authors train a “visual label” detector on the LSMDC dataset and 

use it as an input to an LSTM language model. In [72], instead of using a single image feature 

vector from a fully connected CNN layer, multiple local image features extracted from a lower 

layer in the CNN are used. Then an attention mechanism is proposed to choose the right image 

features to look at while generating different words in the caption. Similar attention mechanism 

is used in [75], but instead of using the attention model to pick local CNN features, it is used to 
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pick the right semantic concept, from the output of a semantic concept detector. Attention 

models extended to temporal domain have been applied to the video captioning task, in order to 

dynamically choose the right video feature [73]. Alternatively, a recurrent network is used to 

encode frame-level video features before inputting them to the language model in [64]. Then a 

standard LSTM language model is used to decode these features into a caption. 2.5 Datasets for 

Image and Video Captioning The rapid progress in automatic image and video captioning in the 

recent years has also been driven by the availability of large-scale datasets to train and test such 

models on. These captioning datasets have images or videos with one or more associated 

reference captions. The reference captions can be collected with large-scale human annotation 

using crowdsourcing tools such as Amazon Mechanical Turk or they can be mined from other 

related sources. One of the early datasets for image captioning was Pascal1K [47] consisting of 

1000 images five human-annotated captions for each of them. Flickr8k [24] and Flickr30k [76] 

are relatively much larger datasets, consisting of 8,000 and 30,000 images, respectively. They 

also have five human-written captions for each image. Currently, the most popular and largest 

dataset for image captioning is the Microsoft Common Objects in Context (COCO) collection 

[39] with over 200,000 images and at least five human-written captions per image. There exists 

also an associated MS-COCO evaluation server, where researchers can upload their captions on 

the blind test dataset and compare the performance of their system to the state-of-the-art methods 

on a public leaderboard. Due to its size and availability of a standardized benchmark, all the 

image captioning experiments conducted on the MS-COCO dataset. Video captioning datasets 

are more difficult to collect and we can consequently see both automatic caption mining 

techniques and manual annotation used to collect them. YouTube corpus [8] consists of 2000 

video clips with at least 27 textual descriptions for each video. The M-VAD [60] and MPII-MD 
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[50] datasets used in the first Large Scale Movie Description Challenge (LSMDC), were 

collected by extracting movie clips and transcribing the associated audio descriptions available in 

the movie DVDs. In total the LSMDC dataset contains about 100k clips from 202 movies and 

one reference caption associated with each clip. Creators of this dataset also provide an 

evaluation server to standardize the testing and comparison of performance on it. More recently 

released Microsoft Video to Text dataset (MSRVTT) [71] contains 10,000 short videos with 20 

human annotated captions for each of them. This makes it the largest video captioning dataset in 

terms of video–caption pairs. The MSR-VTT dataset was also used in the recently concluded 

MSR-VTT video captioning challenge. We conduct our video captioning experiments on both 

the LSMDC and MSR-VTT datasets and also report results from our participation of the video 

captioning challenges associated with these datasets.  
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Chapter 3 

Caption Generation Pipeline 

 

In this chapter, we will examine in detail all the constituent parts of a baseline visual 

caption generation system. We adapt the model proposed in [65], the basis of the submission 

which jointly won the 1st Microsoft COCO captioning challenge in 2015, as our baseline model. 

Although the original model was proposed for generating captions for still images, the same 

architecture can be used for video captioning, by replacing the image feature extraction module 

with a video feature extraction module. Thus the discussion presented here is kept generic and 

specific details of features used for image or video captioning are discussed in Chapter 4. Then a 

discussion on the automatic evaluation metrics which are generally used to quantitatively rate the 

captions generated by the models is presented. The model presented in this chapter acts as the 

baseline against which we will compare the performance of the architectures and extensions 

proposed in the rest of the thesis.  

 

3.1 Baseline Architecture 

The baseline caption generation model consists of two stages: the visual feature extraction stage 

followed by a language model. The first stage consists of various techniques to extract 

descriptors of the visual contents of the input image or video. These descriptors are then 

represented as one or more vectors of fixed dimension. The language model then uses these 

feature vectors and generates a suitable caption to describe the image. This pipeline is illustrated 
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in Figure 3.1. In the following subsections, an overview of the different image features and the 

language model used in the baseline architecture is presented.  

 

Figure 3.1 : Overview of our model.   (a) object layout extracted from CNN. It consists of object 

categories and their corresponding bounding boxes. (b) Encoder : uses a two-stream RNN to 

encode the input object layout (c)  Decoder: Uses a standard LSTM recurrent neural network to 

generate text.  

 

 

3.1.1 Visual Feature Extraction 

 Baseline image feature. As discussed in Chapter 2, image features extracted from CNNs pre-

trained on ImageNet have become ubiquitous in most image understanding tasks. Therefore, in 
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our baseline captioning model we use features extracted from GoogLeNet [59] as the image 

feature vector. More details of the feature extraction process are discussed in Chapter 4, but it 

suffices here to say that the feature vectors are formed by the activations of the 5th Inception 

module in GoogLeNet. Baseline video feature. As a very simple baseline feature vector for 

videos, we use the same GoogLeNet features as above, but extracted only from a single key 

frame of the video. We choose the key frame as the frame at the center of the video’s time-span. 

The idea behind using this simple feature vector is to enable the video captioning baseline model 

to use the same pipeline as for images and to obtain a reasonable baseline against which more 

sophisticated feature extraction methods can be compared.  

 

3.1.2 Language Model.  

The next stage in the pipeline is a conditional language model which takes as input the visual 

features and generates a caption. The Long-Short Term Memory (LSTM) network [23] 

architecture has been a popular choice in the literature to model the probability of a sentence S, 

given an visual feature V, as P(S|V ). The following two subsections contain a discussion of the 

LSTM cell in detail and on the way it is used to build a conditional language model. 
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Chapter 4 Visual Features 

 

 

Finding good feature vector representations for the input images and videos is a very 

important task for successful design of a captioning system. Such a feature representation should 

be compact, but also able to encode all the information relevant for the task. For the image 

captioning task, the feature vector should capture all the objects in the image, their most essential 

properties such as color, their absolute position and relative location to each other, along with the 

type of the scene these objects are located in. In case of video captioning, apart from all the 

above mentioned information, the feature vector should also encode sufficient temporal 

information to enable recognizing actions, order of events, etc. In this chapter, we will study 

different visual features of images in order to improve the performance of the captioning system 

over the baseline presented in Chapter 3.  

 

4.1 Image Feature Extraction 

  

Activation values extracted from the deep Convolutional Neural Network (CNN) layers 

are the primary features used to represent images in the captioning models presented in this 

thesis. The CNN features are able to encode a rich variety of information, including scene 

context, object type, etc., as seen from its performance in the baseline model. However, this 

representation is still very dense and probably (as seen later in experiments) inefficient for the 

language model to be able to extract the information it needs to generate correct captions. It is 

also unclear to what extent these features encode multiple objects and object locations, since they 
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are trained on the ImageNet task involving recognizing a single object class. Thus, in a bid to 

improve the performance over the baseline model, language model is provided with additional 

features which explicitly encode presence of objects, scene types and object location. To achieve 

this, explicit object detectors and scene detectors are trained based on the CNN features. 

Additionally, features encoding object localization are constructed based on outputs from Faster 

Region-based Convolutional Neural Network (R-CNN) [48]. In the following subsections we 

will discuss the exact details of the processes used to extract all of the above features from input 

images.  

 

4.1.1 Convolutional Neural Networks  

Convolutional Neural Networks have in the recent years become the most widely used 

models for practically all tasks related to image classification and understanding. It is shown in 

[15] and [54] that activations of the fully connected layers of a CNN trained for image 

classification task act as a general feature representation of the image and can be successfully 

used to solve other tasks as well. In line with this, image features are extracted here from 

different CNN architectures pre-trained on two large datasets namely, ImageNet [12] and MIT 

Places [79], originally aimed for object and scene classification, respectively. The CNNs used 

here are based on the widely used GoogLeNet [59] and VGG [58] architectures. Both of these 

architectures achieved good results in the ILSVRC 2014 object classification challenge, finishing 

first and second, respectively. In this work, the GoogLeNet features are used both as a direct 

input to the language model and to train the place and object detector modules, while the VGG 

net features are only used for the latter.  
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Convolutional networks (LeCun, 1989), also known as convolutional neural networks , or CNNs, 

are a specialized kind of neural network for processing data that has a known grid-like topology. 

Examples include time-series data, which can be thought of as a 1-D grid taking samples at 

regular time intervals, and image data, which can be thought of as a 2-D grid of pixels. 

Convolutional networks have been tremendously successful in practical applications. The name 

“convolutional neural network” indicates that the network employs a mathematical operation 

called convolution. Convolution is a specialized kind of linear operation. Convolutional 

networks are simply neural networks that use convolution in place of general matrix 

multiplication in at least one of their layers. In this chapter, we first describe what convolution is. 

Next, we explain the motivation behind using convolution in a neural network. We then describe 

an operation called pooling, which almost all convolutional networks employ. Usually, the 

operation used in a convolutional neural network does not correspond precisely to the definition 

of convolution as used in other fields, such as engineering or pure mathematics. We describe 

several variants on the convolution function that are widely used in practice for neural networks. 

We also show how convolution may be applied to many kinds of data, with di�erent numbers of 

dimensions. We then discuss means of making convolution more e�cient. Convolutional 

networks stand out as an example of neuroscientific principles influencing deep learning. 

We discuss these neuroscientific principles, then conclude with comments about the role 

convolutional networks have played in the history of deep learning. One topic this chapter does 

not address is how to choose the architecture of your convolutional network. The goal of this 

chapter is to describe the kinds of tools that convolutional networks provides. Research into 

convolutional network architectures proceeds so rapidly that a new best architecture for a given 

Benchmark is announced every few weeks to months, rendering it impractical to describe in print 

the best architecture. Nonetheless, the best architectures have consistently been composed of the 

building blocks described here. 

 
 

4.1.1 Motivation 

 Convolution leverages three important ideas that can help improve a machine 
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Learning system : sparse interactions, parameter sharing and equivariant representations. 

Moreover, convolution provides a means for working with inputs of variable size. We now 

describe each of these ideas in turn. Traditional neural network layers use matrix multiplication 

by a matrix of parameters with a separate parameter describing the interaction between each 

input unit and each output unit. This means that every output unit interacts with every input unit. 

Convolutional networks, however, typically have sparse interactions (also referred to as sparse 

connectivity or sparse weights). This is accomplished by making the kernel smaller than the 

input. For example, when processing an image, the input image might have thousands or millions 

of pixels, but we can detect small, meaningful features such as edges with kernels that occupy 

only tens or hundreds of pixels. This means that we need to store fewer parameters, which both 

reduces the memory requirements of the model and improves its statistical e�ciency. It also 

means that computing the output requires fewer operations. These improvements in e�ciency are 

usually quite large. 

If there are m inputs and n outputs, then matrix multiplication requires m ×n parameters, and the 

algorithms used in practice have O(m × n ) runtime (per example). If we limit the number of 

connections each output may have to k, then the sparsely connected approach requires only 

k × n parameters and O(k × n ) runtime. For many practical applications, it is possible to obtain 

good performance on the machine learning task while keeping k several orders of magnitude 

smaller than m. For graphical demonstrations of sparse connectivity, see figure 4.1 and 

figure 4.2 In a deep convolutional network, units in the deeper layers may indirectly 

interact with a larger portion of the input, as shown in figure 4.3. This allows the network to 

e�ciently describe complicated interactions between many variables by constructing such 

interactions from simple building blocks that each describe only sparse interactions 
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4.1.2 Parameter sharing: refers to using the same parameter for more than one function in a 

model 
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In a traditional neural net, each element of the weight matrix is used exactly once when 

computing the output of a layer. It is multiplied by one element of the input and then never 

revisited. As a synonym for parameter sharing, one can say that a network has tied weights, 

because the value of the weight applied to one input is tied to the value of a weight applied 

elsewhere. In a convolutional neural net, each member of the kernel is used at every position 

of the input (except perhaps some of the boundary pixels, depending on the design decisions 

regarding the boundary). The parameter sharing used by the convolution operation means that 

rather than learning a separate set of parameters for every location, we learn only one set. This 

does not a�ect the runtime of forward propagation—it is still O(k × n)—but it does further 

reduce the storage requirements of the model to k parameters. Recall that k is usually several 

orders of magnitude smaller than m. Since m and n are usually roughly the same size, k is 

practically insignificant compared to m ×n. Convolution is thus dramatically more e�cient than 

dense matrix multiplication in terms of the memory requirements and statistical e�ciency. For a 

graphical depiction of how parameter sharing works, see figure 4.5. 



            32 

 

 

 

As an example of both of these first two principles in action, figure 4.6 shows how sparse 

connectivity and parameter sharing can dramatically improve the e�ciency of a linear function 

for detecting edges in an image. In the case of convolution, the particular form of parameter 

sharing causes the layer to have a property called equivariance to translation. To say a function is 

equivariant means that if the input changes, the output changes in the same way. Specifically, a 

function f(x) is equivariant to a function g if f(g(x)) =g(f(x)). In the case of convolution, if we let 

g be any function that translates the input, that is, shifts it, then the convolution function is 

equivariant to g. For example, let I be a function giving image brightness at integer coordinates. 

Let g be a function mapping one image function to another image function, such that I’=g(I) is 

the image function with I’(x, y) =I(x −1, y). This shifts every pixel of I one unit to the right. If 

we apply this transformation to I , then apply convolution, the result will be the same as if we 
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applied convolution to I’, then applied the transformation to the output. When processing time-

series data, this means that convolution produces a sort of timeline that shows when di�erent 

features appear in the input. If we move an event later in time in the input, the exact same 

representation of it will appear in the output, just later. Similarly with images, convolution 

creates a 2-D map of where certain features appear in the input. If we move the object in the 

input, its representation will move the same amount in the output. This is useful for when we 

know that some function of a small number of neighboring pixels is useful when applied to 

multiple input locations. For example, when processing images, it is useful to detect edges in the 

first layer of a convolutional network. The same edges appear more or less everywhere in the 

image, so it is practical to share parameters across the entire image. In some cases, we may not 

wish to share parameters across the entire image. For example, if we are processing images that 

are cropped to be centered on an individual’s face, we probably want to extract di�erent features 

at di�erent locations—the part of the network processing the top of the face needs to look for 

eyebrows, while the part of the network processing the bottom of the face needs to look for a 

chin. Convolution is not naturally equivariant to some other transformations, such as changes in 

the scale or rotation of an image. Other mechanisms are necessary for handling these kinds of 

transformations. Finally, some kinds of data cannot be processed by neural networks defined by 

matrix multiplication with a fixed-shape matrix. Convolution enables processing of some of 

these kinds of data. 
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4.1.2.1 GoogLeNet 

 The main idea behind the GoogLeNet [59] architecture is to use small dense structures 

like 1 × 1, 3 × 3 convolutions to mimic a large sparse layer. For this purpose they utilize the 

Inception modules consisting of 1 × 1, 3 × 3 and 5 × 5 convolutions and maximum pooling 

layers. This network achieved the top-5 error rate of 6.67% in the 1000 class ILSVRC 2014 

Classification Challenge, finishing first in the competition. We use two different versions of the 

GoogLeNet features in our experiments. Features from GoogLeNet trained on ImageNet [12] 
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dataset are used as direct input to our language model (referred to as ”gCNN ” in the rest of the 

text), whereas features from the GoogLeNet trained on MIT Places [79] data (referred to as 

”pCNN ” in the rest of the text) are used to construct scene recognition features which are used 

as auxiliary inputs to our language model. To extract gCNN features, we use the activations from 

the 5th Inception module, having the dimensionality of 1024. We augment these features with 

the reverse spatial pyramid pooling proposed in [19] with two scale levels. The first scale is just 

the full image rescaled to the size of 224 × 224. The second level consists of a 3 × 3 grid of 

overlapping patches of size 128 × 128 with stride of 64, and horizontal flipping. The activations 

of these regions are then reduced to a single 1024 dimensional feature vector by using average 

pooling or by just using the central crop. Finally, the activations of the two scales are 

concatenated resulting in 2048-dimensional features. Note that due to two different pooling 

methods on the second scale, we obtain two somewhat different feature vectors of 2048 

dimensions from the same network. Our final gCNN feature vector of size 4096 dimensions is 

obtained by concatenating these two feature vectors. This is also the feature vector used as the 

input to our baseline image captioning model. The same procedure described above for the 

ImageNet trained GoogLeNet has also been followed with the Places data trained GoogLeNet, 

with the exception that instead of the Inception module, the 3rd classification branch has been 

used as the activation layer where the feature vectors have been extracted. In this case, in 

addition to the mean and center pooling in the second scale of reverse spatial pyramid, we also 

use maximum pooling, and thus obtain three different features with the dimensionality of 2048 

each. Note that the term pCNN refers collectively to this set of three features.  
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4.1.2.2 VGG Network 

 VGG network was introduced in [58], where the authors study the effect of depth on the 

performance of convolutional networks. The salient feature of this architecture is the exclusive 

use of small 3 × 3 and 2 × 2 convolutional filters throughout the network. This helps in keeping 

the number of parameters small even with the increased depth. This network achieves the top-5 

error rate of 7.3% in the 1000 class ILSVRC 2014 Classification Challenge, finishing second in 

the competition. Two variants of the VGG net, namely the 16- and 19-layered ones from [58], 

are used in the experiments reported here. From both the variants, we extract the activations of 

the network on the second fully-connected 4096- dimensional fc7 layer for the given input 

images whose aspect ratio is distorted to a square. Ten regions, as suggested in [34], are 

extracted from all images and average pooling of the region-wise features are used to generate 

the final features.  

 

4.1.2 Object Detectors  

As mentioned before, the CNN features are augmented with explicit object detector 

features where each dimension represents the presence or absence of one of the 80 object 

categories defined in the COCO dataset [39]. These 80 categories consists of common object 

types such as person, car, bus, dog, cat, table, chair, pizza, banana, laptop, etc. To construct the 

explicit object detector features, 80 separate SVM classifiers [10] are trained on the COCO 2014 

[39] training set to detect each of these 80 object categories. Image features extracted using the 

previously described five CNN-based ImageNet-trained VGG and GoogLeNet features are used 

as input to the 80 object detector SVMs. In particular, we here utilized linear SVMs with 

homogeneous kernel maps [62] of second order to approximate the intersection kernel. 
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Furthermore, we used two rounds of hard negative mining [37] and sampled 5 000 negative 

examples on each round. For each image we thus have 15 SVM outputs for each class (five 

features times initial and two hard negative trained models) that we combine with simple 

arithmetic mean in the late fusion stage. The 80 fused output values, one for each object 

category, are then concatenated to form a class membership vector for each image. These vectors 

we optionally use as inputs to the LSTM network and we denote it as “SVM80 ” in the rest of the 

thesis.  

 

4.1.3 Scene Detectors  

 

In order to provide the language model with explicit information on the visual 

environment or the scene type of the images, we used the SUN Scene Categorization Benchmark 

database [70] and [69] to create a bank of visual detectors specialized for scene recognition. The 

version of the database we used contains 108,756 images associated with one of 397 scene 

categories. The 397 categories include three major classes — namely indoor, outdoor-natural and 

outdoor-man-made — and common scene types including kitchen, livingroom, shower, tennis-

court, courtroom, beach, dock, airfield, dam etc. We extracted both ImageNet data trained and 

MIT Places data trained GoogLeNet CNN features, as described in the previous section, for the 

images in the SUN database. We used features of all the images (not only the training split) for 

training Radial Basis Function (RBF) Support Vector Machines (SVMs) with the LIBSVM 

software [7]. As we had three slightly different versions of each of the feature types, we obtained 

the total of six SVM detectors for each scene category. We applied each of the detectors to the 

images of the COCO dataset and used the simple arithmetic mean for the late fusion of the 
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detector outputs. The concatenation of the fused category-wise detector outputs results in 397- 

dimensional feature vectors for the respective images. These feature vectors are referred to as 

“SUN397 ” in the rest of the thesis. Figure 4.1 shows the top five detected scene categories using 

the SUN397 features for an image from the COCO validation set.  
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Chapter 5  Language Model (Sequence Modeling): RNN 

   

 

In this chapter, we will look at the core concepts underlying recurrent neural networks, 

the problems they face( namely the problem of Vanishing gradient and Exploding gradient), and 

the solution to fight the problems: Gradient Recurrent Unit(GRU) and Long Short term 

Memory(LSTM). We will have the chance to go through the inner workings of each cells in 

recurrent network. We will also see how gradient descent is performed to train these networks. 

We will develop these theories to understand Encoder-Decoder sequence to sequence 

architecture, which is the topic of this thesis. 

Recurrent Neural Networks(RNNs) are the family of neural networks for handling 

sequential data, like text data. As we saw in chapter 4 that Convolutional Neural Networks are 

good at handling grid of values, in the same way RNNs specialise in dealing with sequential 

data. 

Why RNN? To understand why we need a recurrent network instead of conventional 

fully connected neural network, we will have to go back to the statistical modeling ideas of ‘80s : 

The idea of parameter sharing across different parts of a model. Parameter sharing makes it 

possible to apply RNN models to sequences of varying lengths. Parameter sharing also facilitates 

generalisation on new unseen data set. For example, consider that a machine learning system is 

given sentences, like (a) I reached airport at 9.12 am  (b) At 9.12 am, I reached airport, and asked 
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to extract the time at which person reached airport, we would want our system to return ‘9.12 

am’ for both the sentences , irrespective of  whether the word appears first in the sentence or at 

last. A traditional fully connected neural network would have learnt different rules for different 

positions because it doesn’t share parameters.  

 

For simplicity, we refer to RNNs as operating on a sequence that contains vectors x(t) with the 

time step index t � (1 , τ) . In practice, recurrent networks usually operate on mini batches of 

such sequences, with a di�erent sequence length τ for each member of the minibatch. We have 

omitted the minibatch indices to simplify notation. Moreover, the time step index need not 

literally refer to the passage of time in the real world. Sometimes it refers only to the position in 

the sequence. 

In the following subsection we will see ideas of unfolding a recursive computation into a 

computational graph. But, let’s first understand what a computational graph is .. 

 

5.1 Computational Graph 

 Using a computational graph one can formalize steps of calculations, such as mapping 

from input to output or calculation involving losses. Few examples of computational graph can 

be seen in figure 5.1. 
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Figure 5.1: Examples of computational graphs.  

 

5.2 Unfolding a computational graph 

 Consider a recurrent equation s(t)  = f( s(t-1); Ө) , this calculation can be unfolded, for 

example, for t =3:  

 s(3) = f( s( 2 ); Ө) 

  = f(f( s( 1 ); Ө); Ө) 

Illustration can be seen in figure 5.2 
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Figure 5.2: Unfolded computational graph. Node represents state at some time t. Function ‘f’ 

maps state at ‘t’ to state at ‘t+1’.  

 

Another Example, more relevant to our thesis, is : 

     h(t)  = f( h(t-1), x(t); Ө) 

Where x(t)  is input sequence and  h(t)  is hidden state. Figure 5.3 

 

 

 

Figure 5.3 Unfolded computational graph, each node is associated with each particular time 

instant  
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When an RNN is trained to predict a future value depending on past values, the network learns to 

use h(t) as a kind of lossy summary for past sequence (upto ‘t’) . The summary is necessarily 

lossy because h(t)  is a fixed length vector, whereas past sequence could be of any arbitrary 

length.  

Other than explicitly describing how to perform computation, unrolled graph has following 

advantages: 

1. The learned model always has the same input size, regardless of sequence length. 

2. It allows to use same transition function ‘f’ with same parameters at every time step. 

 

5.3 Recurrent Neural Networks  

Now that we understand unrolling of graph and parameter sharing, we can design wide variety of 

Recurrent neural network. 

1. Recurrent networks that gives an output at each time step and they have recurrent 

connections between hidden units. (explained in 5.3.1). 

2. Recurrent networks that give output at each time step and they have recurrent 

connections from output to next time step input.(explained in 5.3.2). 

3. Recurrent network that reads an entire sequence first and then gives just a single output. 

They have recurrent connections between hidden units. (explained in 5.3.3) 
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5.3.1  Recurrent networks that gives an output at each time step and they have recurrent 

connections between hidden units. 

 

 

We now develop equations for forward propagation for the architecture shown above in figure 

5.4. For each time step in t � (1 , τ), we can think that the architecture is doing the following 

calculation: 
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a(t) = b + Wh(t-1) + Ux(t) 

h(t) = tanh(a(t)) 

o(t) = c + Vh(t)  

Where b,c are bias vectors and W,U,V are weight matrices.  

o(t) can be thought of as a unnormalised log probabilities, which can then be passed through a 

softmax to obtain a vector y^ which is normalised probability over output. 

y^(t) = softmax(o(t)) 

Loss : The total loss is given by losses over all time steps: 

 

Where entry for y(t) can be read from model’s output vector y^(t).   

In summary, The model takes input, makes forward propagation from left to right in an unrolled 

graph like shown in figure 5.4, followed by a back propagation pass from right to left. The 

backward pass applied to unrolled graph is called backpropagation through time(BPTT). 
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5.3.2 Recurrent networks that give output at each time step and they have recurrent 

connections from output to next time step input. 
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5.3.3  Recurrent network that reads an entire sequence first and then gives just a single 

output. They have recurrent connections between hidden units. 

 

 

 

5.4 Computing Gradient in Recurrent Neural Network 

 Computation of gradient through RNN is simple, we can simply apply backpropagation 

algorithm to an unrolled graph as described in chapter 3. For illustration let’s see how 

backpropagation is applied to unfolded graph such as to those described in section 5.3(figure 

5.4). 

 For each node( N ) in the graph, we need to calculate �NL recursively , based on the 

gradients computed at nodes that follow it in the graph. Let’s start the recursion with the nodes 

immediately preceding the final loss. 
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As we have seen in 5.3.1, o(t) can be thought of as an unnormalised log probabilities, which can 

then be passed through a softmax to obtain a vector y^ which is normalised probability over 

output. The gradient �o(t) L on outputs at time step t , for all i,t is following  

 

At final time step τ, h(τ) only has o(τ) as a descendent, so gradient is  

 

Now we can iterate back through time from τ-1 to 1.  

 

We have gradients of internal nodes,we can obtain gradients of parameter nodes. It is important 

to remember that parameters are shared across many time steps so we should be careful with our 

calculus operations. 
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Obviously, we won’t compute gradient with respect to input x(t) for training because it doesn’t 

have any parameters.  
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All the recurrent neural networks that we have seen so far were causal networks that 

means the state at t captures information from past t-1 steps but not from future time steps. If 

somehow we could include information from future states, then the performance is bound to 

improve. In the following subsections we will see how we can improve performance by adding 

bidirectionality in recurrent neural network. 

 

5.5 Bidirectional Recurrent Neural Network 

 The idea for bidirectional Recurrent Neural Networks is just an extension of Recurrent 

Neural Network that we have seen in the previous sections. In bidirectional, we combine two 

RNNs, one that propagates information forward through time, and one that propagates 

information backward through time. In Figure 5.7 the ‘h’ recurrence propagates information 

forward ( Starting from beginning to end)  in time while ‘g’ propagtes the information 

backwards( Starting from end to beginning). 
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5.6  Difficulty of Training over many time steps/ The Problem of Long-Term Dependencies 

 While training a long-running RNNs one of the problem that is faced is the fact that 

memory of first input gradually tends to fade by the time it reaches fourth or fifth memory cell.  

For example if we wish to use our model for sentiment analysis and a reviewer has written 

something like ‘Absolutely loved the movie, despite poor performances by side-actors’. If we 

use a simple RNN model to predict rating for the review, the model will not tend to do well 

because it would forget the beginning part (‘Absolutely loved the..’ ) and predict according to 

last few words.  
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 To solve these kinds of problems, various types of cells with long distance memory were 

introduced. We will go through two of the most widely used cells: Long Short Term Memory 

networks – usually just called “LSTMs” and Gradient Recurrent Units aka ‘GRUs’. 

  

5.6.1  Long Short Term Memory networks( LSTMs) 

Long Short Term Memory networks – usually just called “LSTMs”  are special kind of  

Recurrent Neural Network, capable of handling long term dependencies. It was introduced by 

Hochreiter and Schmidhuber in 1997, and further improved by many(see reference ), and is now 

being widely used.  

 

Let’s go through the explanation of LSTM. The following figure is a figure of  simple 

RNN we see that repeating module has simple structure, such as only single tanh layer. 
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Let’s get ourselves familiarized with the notations used: 
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5.6.1.1  Core Ideas behind Long short term memories. 
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5.6.1.2  LSTM Step-by-Step  Walk Through 

The first step in our LSTM is to decide what information we’re going to throw away from the 

cell state. This decision is made by a sigmoid layer called the “forget gate layer.” It looks at ht−1 

and xt, and outputs a number between 0 and 1 for each number in the cell state Ct−1. A 1 

represents “completely keep this” while a 0 represents “completely get rid of this.” 

Let’s go back to our example of a language model trying to predict the next word based on all 

the previous ones. In such a problem, the cell state might include the gender of the present 

subject, so that the correct pronouns can be used. When we see a new subject, we want to forget 

the gender of the old subject. 

 

The next step is to decide what new information we’re going to store in the cell state. This has 

two parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll update. 

Next, a tanh layer creates a vector of new candidate values, C^
t, that could be added to the state. 

In the next step, we’ll combine these two to create an update to the state. In the example of our 

language model, we’d want to add the gender of the new subject to the cell state, to replace the 

old one we’re forgetting. 

 



            56 

 

 

 

It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The previous steps 

already decided what to do, we just need to actually do it. We multiply the old state by ft, 

forgetting the things we decided to forget earlier. Then we add it * C^t. This is the new candidate 

values, scaled by how much we decided to update each state value. In the case of the language 

model, this is where we’d actually drop the information about the old subject’s gender and add 

the new information, as we decided in the previous steps. 

 

 

 

Finally, we need to decide what we’re going to output. This output will be based on our cell 

state, but will be a filtered version. First, we run a sigmoid layer which decides what parts of the 
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cell state we’re going to output. Then, we put the cell state through tanh(to push the values to be 

between −1 and −1 ) and multiply it by the output of the sigmoid gate, so that we only output the 

parts we decided to. 

For the language model example, since it just saw a subject, it might want to output information 

relevant to a verb, in case that’s what is coming next. For example, it might output whether the 

subject is singular or plural, so that we know what form a verb should be conjugated into if that’s 

what follows next. 

 

 

5.6.1 .3 Variants on Long Short Term Memory 

What I’ve described so far is a pretty normal LSTM. But not all LSTMs are the same as the 

above. In fact, it seems like almost every paper involving LSTMs uses a slightly different 

version. The differences are minor, but it’s worth mentioning some of them. One popular LSTM 

variant, introduced by Gers & Schmidhuber (2000), is adding “peephole connections.” This 

means that we let the gate layers look at the cell state. 
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The above diagram adds peepholes to all the gates, but many papers will give some peepholes 

and not others. 

Another variation is to use coupled forget and input gates. Instead of separately deciding what to 

forget and what we should add new information to, we make those decisions together. We only 

forget when we’re going to input something in its place. We only input new values to the state 

when we forget something older. 

 

 

A slightly more dramatic variation on the LSTM is the Gated Recurrent Unit, or GRU, 

introduced by Cho, et al. (2014). It combines the forget and input gates into a single “update 

gate.” It also merges the cell state and hidden state, and makes some other changes. The resulting 

model is simpler than standard LSTM models, and has been growing increasingly popular. 
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These are only a few of the most notable LSTM variants. There are lots of others, like Depth 

Gated RNNs by Yao, et al. (2015). There’s also some completely different approach to tackling 

long-term dependencies, like Clockwork RNNs by Koutnik, et al. (2014). Which of these 

variants is best? Do the differences matter? Greff, et al. (2015) do a nice comparison of popular 

variants, finding that they’re all about the same. Jozefowicz, et al. (2015) tested more than ten 

thousand RNN architectures, finding some that worked better than LSTMs on certain tasks. 

 

5.6.1 .4  Conclusion 

Earlier, I mentioned the remarkable results people are achieving with RNNs. Essentially all of 

these are achieved using LSTMs. They really work a lot better for most tasks! 

Written down as a set of equations, LSTMs look pretty intimidating. Hopefully, walking through 

them step by step in this essay has made them a bit more approachable. 

LSTMs were a big step in what we can accomplish with RNNs. It’s natural to wonder: is there 

another big step? A common opinion among researchers is: “Yes! There is a next step and it’s 

attention!” The idea is to let every step of an RNN pick information to look at from some larger 

collection of information. For example, if you are using an RNN to create a caption describing an 
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image, it might pick a part of the image to look at for every word it outputs. In fact, Xu, et 

al.(2015) do exactly this – it might be a fun starting point if you want to explore attention! 

There’s been a number of really exciting results using attention, and it seems like a lot more are 

around the corner… 

Attention isn’t the only exciting thread in RNN research. For example, Grid LSTMs 

by Kalchbrenner, et al. (2015) seem extremely promising. Work using RNNs in generative 

models – such as Gregor, et al. (2015), Chung, et al. (2015), or Bayer & Osendorfer (2015) – 

also seems very interesting. The last few years have been an exciting time for recurrent neural 

networks, and the coming ones promise to only be more so! 
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Chapter 6. 

Model 

In this section we describe our base OBJ2TEXT model for encoding object layouts to produce 

text (section 6.1), as well as two further variations to use our model to generate captions for real 

images: OBJ2TEXT-YOLO which uses the YOLO object detector (Redmon and Farhadi, 2017) 

to generate layouts of object locations from real images (section 6.2), and OBJ2TEXT-YOLO + 

CNN-RNN which further combines the previous model with an encoder-decoder image 

captioning which uses a convolutional neural network to encode the image (section 6.3). 

 

6.1 OBJ2TEXT 

OBJ2TEXT is a sequence-to-sequence model that encodes an input object layout as a 

sequence, and decodes a textual description by predicting the next word at each time step. Given 

a training data set comprising N observations {<o(n), l(n) >},  where {<o(n), l(n) >} is a pair of 

sequences of input category and location vectors, together with a corresponding set of target 

captions {s(n)}, the encoder and decoder are trained jointly by minimizing a loss function over 

the training set using stochastic gradient descent: 

 

Equation 1  𝑾 =  𝒂𝒓𝒈 𝒎𝒊𝒏 𝑵 
𝒏 !𝟏 𝑳( {< 𝒐(𝒏), 𝒍(𝒏)  >}, {𝒔(𝒏)} )  

Where , W1 in W is Encoder parameter and W2 in W is decoder parameter. The loss function is 

a negative log likelihood function of generated description given the encoded object layout. 
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Equation 2  𝑳( {< 𝒐(𝒏), 𝒍(𝒏)  >}, {𝒔(𝒏)} ) = - log p(sn
 | hL

n , W2) 

where hL
n is computed using the LSTM-based encoder (eqs. 3, and 4) from the object layout 

inputs < 𝒐(𝒏), 𝒍(𝒏)  > and  p(sn
 | hL

n , W2) is computed using the LSTM-based decoder (eqs. 5, 

6 and 7). At inference time we encode an input layout <o, l> into its representation hL, and 

sample a sentence word by word based on p(st| hL,  s<t) as computed by the decoder in time-step 

t. Finding the optimal sentence s = arg maxs p(s| hL) requires the evaluation of an exponential 

number of sentences as in each time-step we have K number of choices for a word vocabulary of 

size K. As a common practice for an approximate solution, we follow (Vinyals et al., 2015) and 

use beam search to limit the choices for words at each time-step by only using the ones with the 

highest probabilities. 

 

Encoder: The encoder at each time-step t takes as input a pair <ot, lt>, where ot is the object 

category encoded as a one-hot vector of size V , and lt = [Bt
x, Bt

y, Bt
w, Bt

h] is the location 

configuration vector that contains left-most position, topmost position, and the width and height 

of the bounding box corresponding to object ot, all normalized in the range [0,1] with respect to 

input image dimensions. ot and lt are mapped to vectors with the same size k and added to form 

the input xt to one time-step of the LSTM-based encoder as follows: 

 

Equation 3    xt = Woot + ( Wl lt + bt),  xt � Rk 

 

in which Wo � Rk X V  is a categorical embedding matrix (the word encoder), and Wl � Rk X 4  and 

bias bl � Rk   are parameters of a linear transformation(the object location encoder). 

Setting initial value of cell state vector ce
o = 0 and hidden state vector ho

e = 0, the LSTM-based 
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encoder takes the sequence of input  (x1, x2 , ...xT1) and generates a sequence of hidden state 

vectors (he
1, …...he

T1) using the following step function (we omit cell state variables and internal 

transition gates for simplicity as we use a standard LSTM cell definition): 

Equation 4   he
t= LSTM(he t-1, xt;W1) 

We use the last hidden state vector hL = he
T1 as the encoded representation of the input layout 

 <ot, lt> to generate the corresponding description s. 

 

Decoder: The decoder takes the encoded layout hL as input and generates a sequence of 

multinomial distributions over a vocabulary of words using an LSTM neural language model. 

The joint probability distribution of generated sentence s = (s1, s2 :::; sT2) is factorized into 

products of conditional probabilities: 

Equation 5    p(s|hL) = 𝑻𝟐
𝒕!𝟏  p(st|hL, s<t) 

where each factor is computed using a softmax function over the hidden states of the decoder 

LSTM as follows: 

Equation 6   p(st|hL, s<t) = softmax(Wh| hd
 t-1 + bh) 

Equation 7   hd
t = LSTM(hd

t-1, Wsst;W2) 

where Ws is the categorical embedding matrix for the one-hot encoded caption sequence of 

symbols. By setting hd
-1 = 0 and  cd

-1 = 0 for the initial hidden state and cell state, the layout 

representation is encoded into the decoder network at the 0 time step as a regular input: 

Equation 8   hd
0 = LSTM(hd

-1, hL;W2) 

We use beam search to sample from the LSTM as is routinely performed in previous literature in 

order to generate text. 
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6.2 OBJ2TEXT-YOLO 

For the task of image captioning we propose OBJ2TEXT-YOLO. This model takes an 

image as input, extracts an object layout (object categories and locations) with a state-of-the-art 

object detection model YOLO (Redmon and Farhadi, 2017), and uses OBJ2TEXT as described 

in section 6.1 to generate a natural language description of the input layout and hence, the input 

image. The model is trained using the standard back-propagation algorithm, but the error is not 

back-propagated to the object detection module. 

 

6.3 OBJ2TEXT-YOLO + CNN-RNN 

For the image captioning task we experiment with a combined model where we take 

an image as input, and then use two separate computation branches to extract visual feature 

information and object layout information. These two streams of information are then passed to 

an LSTM neural language model to generate a description. Visual features are extracted using 

the VGG-16 (Simonyan and Zisserman, 2015) convolutional neural network pre-trained on the 

ImageNet classification task (Russakovsky et al., 2015). Object layouts are extracted using the 

YOLO object detection system and its output object locations are encoded using our proposed 

OBJ2TEXT encoder. These two streams of information are encoded into vectors of the same 

size and their sum is input to the language model to generate a textual description. The model is 

trained using the standard back-propagation algorithm where the error is back-propagated to 

both branches but not the object detection module. The weights of the image CNN model are 

fine-tuned only after the layout encoding branch is well trained but no significant overall 

performance improvements were observed. 
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Chapter 7  

Experimental Setup 

We evaluate the proposed models on the MSCOCO (Lin et al., 2014) dataset which is a popular 

image captioning benchmark that also contains object extent annotations. In the object layout 

captioning task the model uses the ground truth object extents as input object layouts, while 

in the image captioning task the model takes raw images as input. The qualities of generated 

descriptions are evaluated using both human evaluations and automatic metrics. We train and 

validate our models based on the commonly adopted split regime (113,287 training images, 5000 

validation and 5000 test images) used in (Karpathy et al., 2016), and also test our model in the 

MSCOCO official test benchmark. 

We implement our models based on the open source image captioning system Neuraltalk2 

(Karpathy et al., 2016). Other configurations including data preprocessing and training hyper-

parameters also follow Neuraltalk2. We trained our models using a GTX1080 GPU with 

8GB of memory for 400k iterations using a batch size of 16 and an Adam optimizer with alpha 

of 0.8, beta of 0.999 and epsilon of 1e-08. Descriptions of the CNN-RNN approach are generated 

using the publicly available code and model checkpoint provided by Neuraltalk2 (Karpathy et 

al., 2016). Captions for online test set evaluations are generated using beam search of size 2, but 

score histories on split validation set are based on captions generated without beam search (i.e. 

max sampling at each time-step). 
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Ablation on Object Locations and Counts: 

We setup an experiment where we remove the input locations from the OBJ2TEXT 

encoder to study the effects on the generated captions, and confirm whether the model is actually 

using spatial information during surface realization. In this restricted version of our model the 

LSTM encoder at each time step only takes the object category embedding vector as input. The 

OBJ2TEXT model additionally encodes different instances of the same object category in 

different time steps, potentially encoding in some of its hidden states information about how 

many objects of a particular class are in the image. For example, in the object annotation 

presented in the input in Figure 1, there are two instances of “person”. We perform an additional 

experiment where our model does not have access neither to object locations, nor the number 

of object instances by providing only a set of object categories. Note that in this set of 

experiments the object layouts are given as inputs, thus we assume full access to ground-truth 

object annotations, even in the test split. In the experimental results section we use the “-GT” 

postfix to indicate that input object layouts are obtained from ground-truth object annotations 

provided by the MS-COCO dataset. 

 

Image Captioning Experiment: 

 In this experiment we assess whether the image captioning model OBJ2TEXT-YOLO 

that only relies on object categories and locations could give comparable performance with a 

CNN-RNN model based on Neuraltalk2 (Karpathy et al., 2016) that has full access to visual 

image features. We also explore how much does a combined OBJ2TEXT-YOLO + CNN-RNN 

model could improve over a CNN-RNN model by fusing object counts and location information 

that is not explicitly encoded in a traditional CNN-RNN approach.  
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Human Evaluation Protocol. 

We use a two alternative forced-choice evaluation (2AFC) approach to compare two 

methods that generate captions. For this, we setup a task on Amazon Mechanical Turk where 

users are presented with an image and two alternative captions, and they have to choose the 

caption that best describes the image. Users are not prompted to use any single criteria but rather 

a holistic assessment of the captions, including their semantics, syntax, and the degree to which 

they describe the image content. In our experiment we randomly sample 500 captions generated 

by various models for MS COCO online test set images, and use three users per image to obtain 

annotations. Note that three users choosing randomly between two options have a chance of 25% 

to select the same caption for a given image. In our experiments comparing method A vs method 

B, we report the percentage of times A was picked over B (Choice-all), the percentage of times 

all users selected the same method, either A or B, (Agreement), and the percentage of times A 

was picked over B only for these cases where all users agreed (Choice-agreement). 
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Chapter 8 

Results 

Impact of Object Locations and Counts: Figure 3a shows the CIDEr (Vedantam et al., 2015a), 

and BLEU-4 (Papineni et al., 2002) score history on our validation set during 400k iterations of 

training of OBJ2TEXT, as well as a version of our model that does not use object locations, and 

a version of our model that does not use neither object locations nor object counts. These results 

show that our model is effectively using both object locations and counts to generate better 

captions, and absence of any one of these two cues affects performance. 

Table 1 confirms these results on the test split after a full round of training. Furthermore, human 

evaluation results in the first row of Table 2 show that the OBJ2TEXT model with access to 

object locations is preferred by users, especially in cases where all evaluators agreed on their 

choice (62% over the baseline that does not have access to locations). In Figure 4 we additionally 

present qualitative examples showing predictions side-by-side between OBJ2TEXT-GT and 

OBJ2TEXT-GT (no obj-locations). These results indicate that 1) perhaps not surprisingly, object 

counts is useful for generating better quality descriptions, and 2) object location information 

when properly encoded, is an important cue for generating more accurate descriptions. We 

additionally implemented a nearest neighbor baseline by representing the objects in the input 

layout using an orderless bag-of-words representation of object counts and the CIDEr score on 

the test split was only 0.387. 

On top of OBJ2TEXT we additionally experimented with the global attention model proposed 

in (Luong et al., 2015) so that a weighted combination of the encoder hidden states are forwarded 
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to the decoding neural language model, however we did not notice any overall gains in terms of 

accuracy from this formulation. We observed that this model provided gains only for larger input 

sequences where it is more likely that the LSTM network forgets its past history (Bahdanau et 

al., 2015). However in MS-COCO the average number of objects in each image is rather modest, 

so the last hidden state can capture well the overall nuances of the visual input. 

 

Object Layout Encoding for Image Captioning: 

Figure 3b shows the CIDEr, and BLEU-4 score history on the validation set during 400k 

iterations of training of OBJ2TEXT-YOLO, CNN-RNN, and their combination. These results 

show that OBJ2TEXT-YOLO performs surprisingly close to CNN-RNN, and the model resulting 

from combining the two, clearly outperforms each method alone. Table 3 shows MS-COCO 

evaluation results on the test set using their online benchmark service, and confirms results 

obtained in the validation split, where CNN-RNN seems to have only a slight edge over 

OBJ2TEXT-YOLO which lacks access to pixel data after the object detection stage. 

Human evaluation results in Table 2 rows 2, and 3, further confirm these findings. These results 

show that meaningful descriptions could be generated solely based on object categories and 

locations information, even without access to color and texture input. The combined model 

performs better than the two models, improving the CIDEr score of the basic CNN-RNN model 

from 0.863 to 0.950, and human evaluation results show that the combined model is preferred 

over the basic CNN-RNN model for 65.3% of the images for which all evaluators were in 

agreement about the selected method. These results show that explicitly encoded object counts 

and location information, which is often overlooked in traditional image captioning approaches, 

could boost the performance of existing models. Intuitively, object layout and visual features are 
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complementary: neural network models for visual feature extraction are trained on a 

classification task where object-level information such as number of instances and locations 

are ignored in the objective. Object layouts on the other hand, contain categories and their 

bounding-boxes but don’t have access to rich image features such as image background, object 

attributes and objects with categories not present in the object detection vocabulary. Figure 5 

provides a three-way comparison of captions generated by the three image captioning models, 

with preferred captions by human evaluators annotated in bold text. Analysis on actual outputs 

gives us insights into the benefits of combing object layout information and visual features 

obtained using a CNN. Our OBJ2TEXT-YOLO model makes many mistakes because of lack of 

image context information since it only has access to object layout, while CNN-RNN makes 

many mistakes because the visual recognition model is imperfect at predicting the correct 

content. The combined model is usually able to generate more accurate and comprehensive 

descriptions. In this work we only explored encoding spatial information with object labels, but 

object labels could be readily augmented with rich semantic features that are more detailed 

descriptions of objects or image regions. For example, the work of You et al. (2016) and Yao et 

al. (2016b) showed that visual features trained with semantic concepts (text entities mentioned in 

captions) instead of object labels is useful for image captioning, although they didn’t consider 

encoding semantic concepts with spatial information. In case of object annotations the MS-

COCO dataset only provides object labels and bounding-boxes, but there are other datasets such 

as Flick30K Entities (Plummer et al., 2015), and the Visual Genome dataset (Krishna 

et al., 2017) that provide richer region-tophrase correspondence annotations. In addition, the 

fusion of object counts and spatial information with CNN visual features could in principle 
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benefit other vision and language tasks such as visual question answering. We leave these 

possible extensions as future work. 
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Chapter 9  

Conclusion 

We introduced OBJ2TEXT, a sequence-to-sequence model to generate visual descriptions for 

object layouts where only categories and locations are specified. Our proposed model shows that 

an orderless visual input representation of concepts is not enough to produce good descriptions, 

but object extents, locations, and object counts, all contribute to generate more accurate image 

descriptions. Crucially we show that our encoding mechanism is able to capture useful spatial 

information using an LSTM network to produce image descriptions, even when the input is 

provided as a sequence rather than as an explicit 2D representation of objects. Additionally, 

using our proposed OBJ2TEXT model in combination with an existing image captioning model 

and a robust object detector we showed improved results in the task of image captioning. 
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