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ABSTRACT 

This work presents the time-frequency analysis of multi-component non-stationary signal. The 

method uses the iterative eigen value decomposition of Hankel matrix and analytic signal. The 

proposed work uses the wavelet transform to obtain the analytic signal. This analytic signal is 

used to find out the instantaneous parameters. The proposed method compares the instantaneous 

parameters obtained using Wavelet Transform (WT) method with the Hilbert Transform (HT) 

method. 
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CHAPTER 1 

INTRODUCTION 

The illustration of non-stationary signals in each time and frequency domain is incredibly helpful 

for signal analysis in varied engineering applications like speech signal analysis and processing, 

medical specialty signals processing, telecommunication engineering, applied science & seismal 

signals process, The signal used in these applications are non-stationary signals i.e amplitude and 

frequency parameters vary with reference to time. Various time-frequency representations 

method are developed in literature for non-stationary signal analysis. Generally used time-

frequency analysis techniques include spectrogram (squared magnitude of the short-time Fourier 

Transform (STFT)), scalogram (squared magnitude of the continual Wavelet Transform(CWT)), 

Wigner-Ville distribution (WVD), and Hilbert-Huang Transform (HHT) etc. 

 

The basic technique for time-frequency analysis of nonstationary signals is spectrogram that 

comes from STFT. STFT assumes that the signal are stationary signal inside the window of 

study. The spectrum analysis supported Fourier transformation is applied on these short-time 

windowed signals. Also, in STFT, size of the analysis window is directly connected with the 

frequency resolution. The short analysis window provides poor resolution in frequency-domain 

whereas the employment of large size ofwindow offers higher resolution in frequency-domain. 

The limitations of STFT technique are overcome by wavelet transform based technique for non-

stationary signal analysis. 

 

The wavelet basis functions are adaptative window functions and provide a new way of signal 

analysis in which signal analysis can be performed for a given point of time using many scales. 

This multi-resolution property of wavelet transform solves the problem of fixed resolution in 

time and frequency domain because of use of variable analysis window. The scalogram primarily 

based time-frequency method that is employed for analysis of nonstationary signals additionally 

needs choice of mother wavelet. 

 

Another method used for time-frequency representation of signal is Wigner-Ville distribution 

(WVD). The WVD method offers excellent resolutions each in time-domain and frequency-



domain. The WVD is appropriate for mono-component linear frequency modulated signals. But, 

for nonlinear frequency modulated signals and multi-component non-stationary signals, the 

WVD method generates cross-terms which may be thought-about as a significant disadvantage 

of WVD method. Numerous cross-terms reduction techniques such as, Fourier-Bessel series 

expansion, tunable-Q wavelet transform based method and kernel functions based methods are 

used. 

 

Another time-frequency technique that has been used for non-stationary and non-linear signal 

analysis is Hilbert Transform (HT). The method is recursive in nature and doesn't need design of 

basis functions like in STFT and CWT strategies. In the Hilbert Transform (HT) technique, a 

multi-component non-stationary signal is decomposed using   the empirical mode  decomposition 

(EMD) technique. 

The obtained components from EMD technique are called intrinsic mode functions(IMFs). The 

Hilbert Transform (HT) has been applied to those IMFs so as to compute their amplitude 

envelope and fast frequency functions .These amplitude envelope and fast frequency functions of 

IMFs  are used  for getting   the  Hilbert Transform (HT)  based  mostly time-frequency 

representation. 

 

However, IMFs obtained  from the EMD technique,  suffer from  mode  commixture issue that 

results in improper time-frequency representation. To overcome the problems of EMD, the 

Hilbert Transform as an ensemble empirical mode decomposition (EEMD) has been proposed in 

for noisy signal analysis. The EEMD technique helps to cut back the mode commixture issue. 

The synchro squeezing transform  based mostly the  time-frequency analysis has been planned 

in. 

 

This work presents the time-frequency analysis of multi-component non-stationary signal. The 

method uses the iterative eigen value decomposition of Hankel matrix and analytic signal. The 

proposed work uses the wavelet transform to obtain the analytic signal. This analytic signal is 

used to find out the instantaneous parameters. The proposed method compares the instantaneous 

parameters obtained using Wavelet Transform (WT) method with the Hilbert Transform (HT) 

method. 



 

Time–frequency representation (TFR) is a view of a signal over both time and frequency. 

Time–frequency analysis means analysis into the time–frequency domain also called as "Time–

Frequency Distribution (TFD)”. TFRs are complex-valued fields over time & frequency, where 

the modulus of the field represents either amplitude or "energy density" i.e. the concentration of 

the root mean square over time and frequency, and the argument of the field represents the phase. 

A signal, as a function of time, may be considered as a representation with perfect time 

resolution. In contrast, the magnitude of the Fourier transform (FT) of the signal may be 

considered as a representation with perfect spectral resolution but with no time information 

because the magnitude of the FT conveys frequency content but it fails to convey when, in time, 

different events occur in the signal. 

TFRs provide a bridge between these two representations that they provide some temporal 

information and some spectral information simultaneously. Thus, TFRs are useful for the 

representation and analysis of signals containing multiple time-varying frequencies. 

One form of TFR (or TFD) can be formulated by the multiplicative comparison of a signal with 

itself, expanded in different directions about each point in time. Such representations and 

formulations are known as quadratic or "bilinear" TFRs or TFDs (QTFRs or QTFDs) because the 

representation is quadratic in the signal (see Bilinear time–frequency distribution).  

 

In engineering,the digital signal process techniques got to be fastidiously chosen consistent with 

the characteristics of the signals of interest. The frequency-based and time-frequency techniques 

are often mentioned in some literature (Cohen, 1995). The frequency based  techniques (FBTs) 

are wide used for stationary signal analysis. For non-stationary signals, the time-frequency 

techniques (TFTs) in common use, like the short time Fourier transform (STFT), the wavelet 

transform (WT), ambiguity function (AF) and wigner-ville distribution (WVD),etc.,are 

sometimes performed for extracting transient features of the signals. These techniques use 

different algorithms to produce a time frequency illustration for a signal. 

The STFT uses a customary Fourier transform over many forms of windows. The wavelet based 

techniques apply the mother wavelet with either discrete or continuous scales to a waveform to 

resolve the fixed time-frequency resolution problems inherent in STFT. In applications, the fast 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Time%E2%80%93frequency_analysis
https://en.wikipedia.org/wiki/Absolute_value#Complex_numbers
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Argument_(complex_analysis)
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Magnitude_(mathematics)
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Quadratic_function
https://en.wikipedia.org/wiki/Bilinear_time%E2%80%93frequency_distribution


version of wavelet transform, that's attributed to a pair of mirror filters with variable sampling 

rates,is sometimes used for reducing the amount of calculations to be done, thereby saving 

computer running time. AF and WVD are quadratic time-frequency representations, that use 

advanced techniques to combat these resolution difficulties. they need higher resolution than 

STFT however suffer from cross-term interference and turn out results with coarser graininess 

than wavelet techniques do. Of the wavelet-based techniques, the discrete wavelet transform 

(DWT), particularly its fast version, is sometimes used for encryption and decryption signals, 

whereas wavelet packet analysis (WPA)are self-made in the signal recognition and characteristic 

extraction. AF and WVD with excessive trans formation durations are clearly unacceptable 

within the development of time period observation systems. 

In   applications,  the FBTs were  usually  utilized  in noise  and vibration  engineering (Brigham, 

1988). they supply  the time-averaged  energy info  from a  signal  phase  in frequency domain,\ 

however stay nothing in time domain. For non-stationary signals like vehicle noises, some 

implementation examples are the STFT (Hodges & Power, 1985), WVD, ironed pseudo-WVD 

(Baydar & Ball, 2001) and WT (Chen, 1998). especially, the WT as “mathematical microscope” 

in engineering permits the dynamical spectral composition of a non-stationary signal to be 

measured and given within the type of a time-frequency map and therefore, was advised as an 

efficient tool for nonstationary signal analysis. 

 

Research Objective   

  

1. Design and implementation of Non-Stationary signal analysis using Eigenvalue 

decomposition of the Hankel Matrix with Hilbert Transform and Wavelet Transform. 

2. Comparative analysis of Hilbert Transform and Wavelet Transform Technique. 

 

 

Thesis Organization   

  

1. Chapter 1 includes the introduction of the Non-Stationary Signal Analysis & Time-frequency 

representation of signal with the research objectives of the thesis.   



2. Chapter 2 is having the literature survey related to the Non-Stationary Signals, Time-

frequency representation, Hilbert Transform & Wavelet Transform related methods.   

3. Chapter 3 presents brief theory of Hilbert Transform.   

4. Chapter 4 presents brief theory of Hankel Matrix.   

5. Chapter 5 presents brief theory of Continues & Discrete Wavelet Transform.   

6. Chapter 6 & 7 is related to the results and discussion, comparative analysis shown between 

the Hilbert and the wavelet transform technique.  

7. Chapter 8 is the conclusion chapter where in the summary of the proposed work done and all 

its analysis is explained in a brief.  

 

 

  



CHAPTER 2 

Literature Review 

  

Akbar M. Sayeed, Douglas L. Jones, et al (1994), [1], In this article, we determine the optimal 

kernel for mmse estimation of an arbitrary TFR (characterized by a kernel, &) of a realization of 

a process from the corresponding realization of a correlated process. The properties of the 

optimal kernel solution clearly demonstrate the limitations of the quasi-stationarity assumption. 

 

Branka Jokanovi´c, Moeness Amin and Traian Dogaru, et al (2015), [2], Time-frequency 

(TF) representations are a powerful tool for analyzing Doppler and micro-Doppler signals. These 

signals are frequently encountered in various radar applications. Data interpolators play a unique 

role in TF signal representations under missing samples. When applied in the instantaneous 

autocorrelation domain over the time variable, the low-pass filter characteristic underlying linear 

interpolators lends itself to cross-terms reduction in the ambiguity domain. This is in contrast to 

interpolation performed over the lag variable or a direct interpolation of the raw data. We 

demonstrate the interpolator performance in both the time domain and the time-lag domain and 

compare it with sparse signal reconstruction, which exploits the local sparsity property assumed 

by most Doppler radar signals. 

 

Akbar M. Sayeed, Douglas L. Jones, et al (1994), [3], Bilinear time-frequency representations 

(TFRs) and time-scale representations (TSRs) are potentially very useful for detecting a non-

stationary signal in the presence of nonstationary noise or interference. As quadratic signal 

representations, they are promising for situations in which the optimal detector is a quadratic 

function of the observations. All existing time-frequency formulations of quadratic detection 

either implement classical optimal detectors equivalently in the time-frequency domain, without 

fully exploiting the structure of the TFR, or attempt to exploit the nonstationary structure of the 

signal in an ad hoc manner. We identify several important nonstationary quadratic detection 

scenarios which are “naturally” suited for TFR/TSR-based detectors; that is, in which TFR/TSR-

based detectors are both optimal and exploit the many degrees of freedom available in the 

TFR/TSR. We also derive explicit expressions for the corresponding optimal TFR/TSR kernels. 

The proposed TFR/TSR detectors are directly applicable to many important radar/sonar detection 



problems. 

 

MARIUSZ SULIMA, et al (2017) [4], This work presents a new DHT impulse response 

function based on the proposed nonlinear equation system obtained as a result of combining the 

DHT and IDHT equation systems. In the case of input time series with selected characteristics, 

the DHT results obtained using this impulse response function are characterized by a higher 

accuracy compared to the DHT results obtained based on the convolution using other known 

DHT impulse response functions. The results are also characterized by a higher accuracy than 

the DHT results obtained using the popular indirect DHT method based on discrete Fourier 

transform (DFT). Analysis of these example time series with selected characteristics was 

performed based on the signal to noise ratio.  

 

Y Morales, et al (2017) [5], In the present investigation, a mathematical algorithm under 

MATLAB platform using Radial Hilbert Transform and Random Phase Moask for encrypting 

digital image is implemented. the algorithm is based on the use of the conventional Fourier 

transform and two random phase masks, which provide security and robustness to the system 

implemented. Random phase masks used throughout encryption and decryption are the keys to 

improve security and make the system immune to attacks by program generation phase masks.  

   

Prabhjot kour, et al (2015) [6], The quality and the size of image data is constantly increasing. 

With the advancement in technology, many products in the market use images for control and 

display. Image compression is one of the primary image processing techniques that are 

embedded in all  electronic products. Fast and optimally interactive post processing of these 

images is a  major concern. E.g., reduce the redundancy of the image data in order to be able to 

store or transmit data in an efficient form is difficult task to be performed. This paper presents a 

frame work for an Image processing based Discrete Wavelet Transform System The approach 

helps the end user to generate images using DWT at a high level without any knowledge of the 

low-level design styles and architectures. 

YANG Hang, et al (2016), [7],  



A novel sensor deployment method utilize Discrete wavelet transform (DWT) is propose, and the 

DWT is used to calculate the subband energy entropy to ascertain the coverage cavities in 

Wireless sensor networks (WSNs). We address the problem of deploying a limit number of 

sensors to optimize the coverage ratio in 3D surface, while it is a  complex surface in space and 

sensors can be deployed only onto it. Another novel aspect of this paper is that the method 

followed utilizes an Artificial bee colony algorithm with dynamic search strategy(ABC-DSS), 

which mimics the behavior of bees, and the new modified ABC-DSS algorithm matches the 

sensor deployment problems on 3D surface well. The extensive simulations illustrate that 

comparing with the deployment method based on Particle swarm optimization (PSO) and ABC, 

the ABC-DSS which utilizes the wavelet sub-band energy entropy is functional and efficient on 

3D surface deployment problems. 

  

  



 

CHAPTER 3 

HILBERT TRANSFORM 

 

Hilbert Transform (HT) is widely used in signal and network theory and it has very practical 

applications in numerous fields. Such as communication systems, radio detection and ranging 

systems and medical imaging. Hilbert transform provides a ±90° phase shift to the input signal, 

therefore if we choose the input signal to be a sine function then calculative its Hilbert Transform 

can offer cosine function. The Hilbert Transform is simply like any of the special phase adjusted 

filters that are attainable. In Fourier transform we alter the time domain signal to the frequency 

domain signals, however in Hilbert Transform domain of operation remains identical. Hilbert 

Transform are often used to design digital filters which may be infinite impulse response (IIR) 

and Finite impulse response (FIR) filters. In FIR filters there's no feedback whereas in IIR filters 

the feedback is present. Hilbert Transform acts as a causative sequence and relates the important 

part of Fourier transform to the imaginary part of Fourier transform. The Fourier Transforms 

need complete information of each Real and imagined parts of the magnitude and phase for all 

frequencies within the range –π < ω < π. Hilbert Transforms applied to causative signals takes 

advantage of the actual fact that Real sequences have parallel Fourier transforms.  

Hilbert Transform (HT) is  an  analytical  tool  that's  helpful  for the  illustration  of  varieties of  

signals  like band  pass signals.  This  transform is additionally  used  for various varieties  of  

modulation  schemes  as  series  side  band  AM  modulation. Hilbert Transform  is  totally  

different from  the other  transform  that's employed  in  signal process because in this no  

domain  change  is  needed. If  we  are  taking  the  sign  to  be within  the  time domain then  by 

using  the  Hilbert Transform  we  get  the  signaling in time domain solely. This  special 

property  of  Hilbert Transform is  true for frequency domain signal  additionally,  that  

additional  helps  within  the  complexness  reduction. currently we take the generalized form of 

the  Hilbert Transform in equation (2.1). 

 



Where x^(t) is the Hilbert Transform of x(t). The Hilbert Transform involves the convolution of 

the input signal and the impulse response. Most importantly we take the transfer function of the 

Linear Filter as it satisfies superposition principle and it can be only represented in transfer 

function form. This linear filter will work to phase shift all frequency components by –π/2 

radians. The magnitude characteristics of the filter are 1 for all frequencies whereas the real 

signals have positive as well as negative frequencies. As HILBERT TRANSFORM introduces a 

90° phase shift twice causes a 180° phase shift, which can cause a phase reversal of the original 

signal. The considered amplitudes of all frequency components in the signal, however are 

unaffected by transmission through the device. Such an ideal device is referred as Hilbert 

transformers. And for the inverse Hilbert Transform (IHT) as shown in equation. 

 

The input and the output x(t) is termed as Hilbert Transform pairs.  

  

3.1 APPLICATIONS OF HILBERT TRANSFORM  

  

Hilbert Transform possesses a large vary of applications within the analysis of system design. 

This Transform is so helpful for various functions like latency analysis in neuro-physiological 

signals, style of freaky stimuli for psychoacoustic experiments, speech data compression for 

communication, regularization of convergence issues in multi-channel acoustic echo 

cancellation, and signal process for exteroception prostheses. Here we are finding out very well 

regarding the 3 vital areas during which mathematician Transform will be used and enforced to 

induce the required results. 

  

3.1.1 HILBERT TRANSFORM in Image Processing  

The various television images that are of continuous value are transmitted using modulation 

techniques for video and audio signals. HILBERT TRANSFORM acts as a promising algorithm 

also for the earth images. HILBERT TRANSFORM is considered to be useful in manipulating 

images since the transmission bandwidth is efficiently reduced. And the HILBERT 



TRANSFORM is also proposed as one of the many coding techniques that can be used in 

practical fields for the imaging materials.  

  

For the image processing we consider the analytical function as the sum of the real and 

imaginary parts in terms of x and y nominations of the images as they are considered for the 2D 

domain. For example, we take the Fourier transform algorithm which is often applied to the same 

number sequences in the time and frequency domains. Stand still image signals are non-

fluctuations materials and information. So, the digitized and stored continuous images for 

evaluations and verifications can be derived from continuous images at one instant of time. 

HILBERT TRANSFORM is used for the continuous signals for the images that adopt such 

algorithm in modulation systems particularly.  

  

3.1.2 HILBERT TRANSFORM in Edge Detection.  

  

Edges represent the discontinuities in the intensity in an image. Edges created by occlusions, 

shadows, roofs, textures, etc. may have the coherent local intensity. Edge detection is a process 

that measures, detects, and localizes the changes in intensity. Edge detection is an important step 

in the process of segmentation also.  

In this a new method for edge detection using one dimensional processing is used which is the 

Gaussian function. The image is smoothed using 1 D Gaussian along the horizontal (or vertical) 

scan lines to reduce noise. Detection is then used in the orthogonal direction i.e., along vertical 

(or horizontal) scan lines to detect the edges.  

This method is based on the 2 D operators in the sense that smoothing is done along one 

direction in the sense that smoothing is done along one direction and the detection is applied 

along the orthogonal direction. But it also results in some loss of edge information.  

 

3.2.3 HILBERT TRANSFORM in Signal Analysis: 

One of the important application of HT is creating a Analytic Signal. For signal s(t), given its 

Hilbert Transform s^(t) it is defined as a composition: 

sA(t)=s(t)+js^(t)sA(t)=s(t)+js^(t) 



The Analytic Signal that we have a tendency to get is complicated, thus we are able to 

categorical it in exponential notation: 

sA(t)=A(t)ejψ(t)sA(t)=A(t)ejψ(t) 

where: 

A(t)A(t) is the instantaneous amplitude 

ψ(t)ψ(t) is the instantaneous phase. 

 

So however these area unit helpful? 

The instant amplitude are often helpful in several cases(it is wide used for locating the 

envelopeof easy harmonic signals). Here is an example for impulse response) 

:

 

Figure 1 

Now, based on the phase(ψ), we can evaluate the instantaneous frequency(IF): 

f(t)=12πdψdt(t)f(t)=12πdψdt(t) 

Which is again useful in several applications, like frequency detection of a sweeping tone, 

rotating engine, etc. 

Other samples of usage include: 

https://i.stack.imgur.com/yKTDQ.jpg


Sampling of narrowband signals in telecommunications (mostly exploitation Hilbert filters). 

Medical imaging. 

Array process for Direction of Arrival. 

System response analysis. 

The analytic signal made by the Hilbert transform is beneficial in several signal analysis 

applications. If you bandpass filter the signal 1st, the analytic signal illustration provide you info 

regarding the native structure of the signal: 

phase indicates the native symmetry at the purpose, wherever zero is positive bilaterally 

symmetric (peak), ππ  is negative bilaterally  symmetric (trough),  and ±π/2±π/2  is  anti-

symmetric (rising / falling edge).  

amplitude indicates the strength of the structure at the purpose, freelance of the symmetry 

(phase). 

This illustration has been used for 

feature detection via native energy (amplitude) 

feature classification exploitation section 

feature detection via section congruency 

It has additionally been extending to higher dimensions exploitation the Riesz remodel, as an 

example the heritable signal. 

Implementing a Hilbert Transform allows us to make Associate in Nursing analytic signal 

supported some original real-valued signal. And within the comms world we are able to use the 

analytic  signal  to simply and accurately  reason  the  fast  magnitude  of  the  initial  real-valued  

signal. That method is employed  in  AM  reception.  additionally from  the  analytic  signal  we  

are  able to simply  and  accurately  reason  the  fast  section  of  the  initial  real-valued  signal.  

That method  is  employed  in  each  section and FM reception. Your prof is correct in covering 

the Hilbert Transform as a result of it is so damn helpful in comms systems. 



The Hilbert Transform once used on real knowledge, provides "a true (instantaneous) amplitude" 

(and some more) for stationary phenomena, by turning them into "specific" advanced 

knowledge. for example, a trigonometric function cos(t)cos(t) is inherently of amplitude one, 

that you are doing not see directly, since it visually wiggles between −1−1 and eleven, and 

sporadically vanishes.  

Another way of trying Hilbert Transform is in frequency domain. As real signal have identical 

positive and negative frequency parts, thus in analysis this info is redundant. 

Hilbert Transform is employed to eliminate the negative frequency half and double the 

magnitude of positive frequency half (to keep power same). 

Here, the designed Hilbert Transform filter is band pass in nature that passes frequencies from 50 

MHz to 450 megacycle per second. The input is add of 2 curving signals having frequencies 

capable 200MHz and 500MHz. 

From the PSD plot, we are able to see the negative frequency element of 200MHz signal gets 

attenuated whereas 500MHz signal passes in and of itself. 

Figure 2: 

 

 

  



CHAPTER 4 

HANKEL MATRIX 

A squared Hankel matrix, which is denoted by HxK of size K×K, can be prepared using 2K−1 

samples of signal x[k], can be represented as follows [10]: 

 

 

The parameter K can be computed for the following two cases as follows: 

Case 1: When, a multi-component non-stationary signal contains amplitude modulated (AM) 

components, and fi denotes the frequency of ith mono-component, Fs denotes sampling rate and 

normalized frequency,  

   
 

  
  

  

  
, 

, in this case, the size of Hankel matrix can be given as follows: 

K ≥ MLCM, (2) 

where MLCM is the least common multiple (LCM) of Mi, i = 1, 2, ...,N. 

Case 2: When,a multi-component non-stationary signal contains frequency modulated (FM) 

components, in which Δfmin represents the minimum frequency separation between 

components, and Fs denotes sampling rate used for discretizing the signal, then for this case, the 

size of Hankel matrix can be specified in the range K ≫Fs/Δfmin [18]. 

The eigenvalue matrix λx having eigenvalues in its diagonal and real eigenvector matrix, Vx for 

the matrix HxK, are related as follows: 

  
        

   

 

The dominant eigenvalue pairs are selected based on the significant threshold point (STP) 

criteria mentioned in [18], which are on the basis of the 10% of the maximum eigenvalue. Each 



dominant eigenvalue pair has been selected to prepare a new eigenvalue matrix. This new 

eigenvalue matrix corresponding to ith eigenvalue pair can be represented as follows: 

 

A reconstruction matrix for ith component is formed using (4) and the matrix Vx as follows: 

  
        

   

The average of skew diagonal elements of reconstruction matrix HxiN is considered to determine 

the ith decomposed component. The obtained components need to satisfy the mono-component 

signal criteria (MSC) mentioned in. 

The MSC is based on the following two rules: 

Rule 1: The absolute value of the difference  between  the  number  of  zero-crossings and the 

number of local extrema of the obtained component is either zero or one. 

Rule 2: The number of  significant  eigenvalue  pairs  which  are  obtained  by performing eigen 

value decomposition (EVD) on the Hankel matrix constructed using the samples of the  obtained  

component  is  1.  The  components,  which  do  not  satisfy  the  MSC  such components are  

subjected  to  next  iteration.  This  process  will  be  repeated  till  all  the obtained components 

follow the MSC. 

In  the  end,  the  components,  which  fulfill the  MSC are considered as mono-component 

signals  and  applied  to  the next merging step. After last iteration, the components which 

perform  overlapping  of  1  dB  bandwidth,  are  merged  together.  After  this  stage,  the 

obtained components are considered as a set of decomposed components using IEVD-HM 

method [10].  These  obtained  final  components  are  also  considered  as  a set of mono-

component non-stationary signals. 

 

  



CHAPTER 5 

WAVELET TRANSFORM 

  

In recent years, the wavelet transforms emerged within the field of image/signal process as an 

alternate to the well-known Fourier transform (FT) and its connected transforms, namely, the 

discrete cos transform (DCT) and also the discrete sin transform (DST). within the Fourier 

theory, a signal (an image is taken into account as a finite 2-D signal) is expressed as a add, in 

theory infinite, of sines and cosines, creating the ft appropriate for infinite and periodic signal 

analysis. For many years, the ft dominated the sphere of signal process, however, if it succeeded 

well in providing the frequency info contained within the analyses signal; it did not provide any 

info regarding the prevalence time. This disadvantage, however not the sole one, actuated the 

scientists to scrutinize the transform horizon for a “messiah” transform. the primary step in this 

long analysis journey was to cut the signal of interest in many components then to analyses every 

part severally. The concept at a primary look looked as if it would be very promising since it 

allowed the extraction of your time info and the localization of various frequency elements. This 

approach is thought because the Short-Time Fourier transform (STFT). the basic question, that 

arises here, is the way to cut the signal? The simplest resolution to the present perplexity was 

after all to find a completely scalable modulated window within which no signal cutting is 

required any longer. This goal was achieved with success by the utilization of the wavelet 

transform.  

 Formally, the wavelet transform is outlined by several authors as a mathematical technique 

within  which  a  specific  signal  is  analyses  (or synthesized) within the time domain by using  

totally  different versions of  a expanded (or contracted)  and translated (or shifted) basis perform 

known as the wavelet paradigm or the mother wavelet. However, in reality the wavelet 

transforms found its essence and emerged from totally different discipline &wasn't, as declared 

by Mallat, all new to mathematicians operating in Fourier analysis, orto pc vision researchers 

finding out multiscale image process. At the start of the twentieth century, Haar, a German man 

of science introduced the primary wavelet transform named once  him  (almost  a  century  once  

the  introduction  of the  linear unit, by the French J. Fourier). The  Haar  wavelet  basis  function  

has  compact support and integer coefficients. Later, the Haar basis was used in physics to 



review pedesis. Since then, totally different works are meted out either within the development 

of the speculation associated with the Wavelet, or towards its application in several fields. within 

the field of signal process, the good achievements reached in several studies by Mallat, Meyer 

and Daubechies have allowed the emergence of a good vary of wavelet based applications. In 

fact, impressed by the work developed by Mallat on the relationships between the construction 

Mirror Filter (QMF), pyramid algorithms and orthonormal Wavelet bases (, Meyer made the 

primary non-trivial wavelets. However, the foremost necessary work was meted out by In grid 

Daubechies. Supported Mallat’s work, Daubechies succeeded to construct a group of Wavelet 

orthonormal basis functions, that became the cornerstone of the many application Few years 

later, an equivalent author, together with others, given a group of Wavelet biorthogonal basis 

perform, that later found their use in several applications, particularly in image committal to 

writing. Recently, JPEG2000, a biorthogonal wavelet-based compression has been adopted 

because the new compression customary.  

The Wavelet Transform is analogous to the Fourier Transform (or rather more to the windowed 

Fourier transform) with a totally totally different advantage perform. the most distinction is this: 

Fourier Transform decomposes the signal into sines and cosines, i.e.the functions localized in 

Fourier house; in contrary the Wavelet Transform uses functions that area unit localized in each 

the $64000 and Fourier space. Generally, the Wavelet Transform may be expressed by the 

subsequent equation: 

 

Where the * is the complex conjugate symbol and function ψ is some function. This function 

may  be chosen  arbitrarily providing it obeys bound rules.  

As it  is  seen,  the  wavelet  transform  is  indeed  an  infinite  set  of  assorted transforms, 

betting on the advantage function used for its computation. this is often the main reason, why we 

are able to hear the term “wavelet transform” in very different situations and applications. There 

also are some ways a way to sort the types of the wavelet transforms. Here we show solely the 

division based on the wavelet orthogonality. we are able to use orthogonal wavelets for  discrete  



wavelet  transform  development  and  non-orthogonal wavelets for continuous wavelet 

transform development. These 2 transforms have the subsequent properties:  

1. The discrete wavelet transform returns a data vector of a similar length because the Input 

is.  Usually, even in this vector  several  information are nearly zero. This corresponds to the 

actual fact that it decomposes into a group of wavelets (functions) that are orthogonal to its 

translations and scaling. so we decompose such a signal to a same or  lower  range  of  the  

wavelet  coefficient  spectrum  as  is  that  the  number of signal information points. Such a 

wavelet spectrum is incredibly sensible for signal process and compression, for instance, as we 

get no redundant info here.  

2. The continual wavelet transform in contrary returns an array one dimension larger than 

the input file. For a 1D information we get  an image of the time-frequency plane. We are able to 

simply see the signal frequencies evolution throughout the period of the signal  and  compare  the 

spectrum with different signals spectra. As here is employed the non-orthogonal set of wavelets, 

information are extremely related, therefore huge redundancy is seen here. This helps to examine 

the leads to a a lot of humane type.  

For a lot of details on wavelet transform see any of the thousands of wavelet resources on the 

net, or for instance.  

Within Gwyddion processing library, each these transforms are enforced and therefore 

themodules exploitation wavelet transforms may be accessed among information method → 

Integral Transforms menu. 

The  idea  of  wavelet  transforms is that the transform shall allow only change in time extension, 

but not the shape. It is affected by choosing the suitable basis function that allow for this. 

Changes in time extension are expected to conform the corresponding analysis frequency of the 

basis function. Based on uncertainty the principle of signal processing,  

 

https://en.wikipedia.org/wiki/Uncertainty_principle#Signal_processing


where t represents time and ω angular frequency (ω = 2πf, where f is temporal frequency).  

The higher is the required resolution in time, the lower is the resolution in frequency to be. The 

larger is the extension of the analysis windows is chosen, the larger is the value of  

 

Figure 3 

When Δt is large,  

1. Bad time resolution 

2. Good frequency resolution 

3. Low frequency, large scaling factor 

When Δt is small  

1. Good time resolution 

2. Bad frequency resolution 

3. High frequency, small scaling factor 

In other words, the basis function Ψ can be regarded as an impulse response of a system with 

which the function x(t) has been filtered. The transformed signal provides information about the 

time and the frequency. Therefore, wavelet-transformation contains information similar to the 

short-time-Fourier-transformation, but with additional special properties of the wavelets, which 

show up at the resolution in time at higher analysis frequencies of the basis function. The 

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/File:Basis_function_with_compression_factor.jpg


difference in time resolution at ascending frequencies for the Fourier transform and the wavelet 

transform is shown below.  

 

 

Figure 4 

This shows that wavelet transformation is good in time resolution of high frequencies, while for 

slowly varying functions, the frequency resolution is remarkable.  

Another example: The analysis of three superposed sinusoidal signals with STFT and 

wavelet-transformation.  

 

Figure 5 

Wavelet compression 

Wavelet compression is a form of data compression well suited for image compression 

(sometimes also video compression and audio compression). Notable implementations are JPEG 

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Image_compression
https://en.wikipedia.org/wiki/Video_compression
https://en.wikipedia.org/wiki/Audio_compression_(data)
https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/File:STFT_and_WT.jpg
https://en.wikipedia.org/wiki/File:Analysis_of_three_superposed_sinusoidal_signals.jpg


2   , DjVu and ECW for still images, Cine Form, and the BBC's Dirac. The goal is to store image 

data in as little space as possible in a file. Wavelet compression can  be either lossless or lossy.
[1]

  

Using a wavelet transform, the wavelet compression methods are adequate for representing 

transients, such as percussion sounds in audio, or high-frequency components in two-

dimensional images, for example an image of stars on a Hilbert Transform sky. This means that 

the transient elements of a data signal can be represented by a smaller amount of information 

than would be the case if some other transform, such as the more widespread discrete cosine 

transform, had been used.  

Discrete wavelet transform has been successfully applied for the compression of electro cardio 

graph (ECG) signals In this work, the high correlation between the corresponding wavelet 

coefficients of signals of successive cardiac cycles is utilized employing linear prediction.  

Wavelet compression is not good for all kinds of data: transient signal characteristics mean good 

wavelet compression, while smooth, periodic signals are better compressed by other methods, 

particularly traditional harmonic compression (frequency domain, as by Fourier transforms and 

related).  

See Diary Of An x264 Developer: The problems with wavelets (2010) for discussion of practical 

issues of current methods using wavelets for video compression.  

Method 

First a wavelet transform is applied. This produces as many coefficients as there are pixels in the 

image (i.e., there is no compression yet since it is only a transform). These coefficients can then 

be compressed more easily because the information is statistically concentrated in just a few 

coefficients. This principle is called transform coding. After that, the coefficients are quantized 

and the quantized values are entropy encoded and/or run length encoded. A few 1D and 2D 

applications of wavelet compression use a technique called "wavelet footprints".   

Comparison with Fourier transform and time-frequency analysis 

https://en.wikipedia.org/wiki/JPEG_2000
https://en.wikipedia.org/wiki/DjVu
https://en.wikipedia.org/wiki/ECW_(file_format)
https://en.wikipedia.org/wiki/CineForm
https://en.wikipedia.org/wiki/Dirac_(codec)
https://en.wikipedia.org/wiki/Computer_file
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Lossy_data_compression
https://en.wikipedia.org/wiki/Wavelet_transform#cite_note-1
https://en.wikipedia.org/wiki/Transient_(acoustics)
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://web.archive.org/web/20100228145846/http:/x264dev.multimedia.cx/?p=317
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Transform_coding
https://en.wikipedia.org/wiki/Coefficient
https://en.wikipedia.org/wiki/Quantization_(signal_processing)
https://en.wikipedia.org/wiki/Entropy_encoding
https://en.wikipedia.org/wiki/Run-length_encoding


 

Wavelets  have  some  slig Hilbert Transform benefits over Fourier transforms in reducing 

computations  when  examining  specific  frequencies. However, they  are  rarely  more sensitive,  

and  indeed, the common Morlet wavelet is mathematically identical to a short-time  Fourier  

transform  using  a  Gaussian  window  function.  The  exception  is  when searching  for  signals  

of  a  known,  non-sinusoidal  shape  (e.g., heartbeats);  in  that  case, using matched wavelets 

can out perform standard STFT/Morlet analyses.  

Discrete Wavelet Transform  

The discrete wavelet transform (DWT) is an implementation of the wavelet transform using a 

discrete set of the wavelet scales and translations obeying some defined rules. In other words, 

this transform decomposes the signal into mutually orthogonal set of wavelets, which is the main 

difference from the continuous wavelet transform (CWT), orits implementation for the discrete 

time series sometimes called discrete-time continuous wavelet transform (DT-CWT). 

The wavelet  can  be  constructed  from  a  scaling  function  which  describes  its  scaling 

properties. The restriction  that  the  scaling  functions  must  be  orthogonal  to  its  discrete 

translations  implies  some  mathematical  conditions  on  them  which  are  mentioned  

everywhere, e.g. the dilation equation  

 

where S is a scaling factor (usually chosen as 2). Moreover, the area between the function must 

be normalized and scaling function must be orthogonal to its integer translations, i.e.  

https://en.wikipedia.org/wiki/Morlet_wavelet
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform


 

After  introducing  some  more  conditions  (as  the  restrictions  above  does not produce a 

unique  solution)  we  can  obtain  results  of  all  these  equations,  i.e.  the  finite  set  of 

coefficients  ak  that  define  the  scaling  function  and  also  the  wavelet. The  wavelet  is 

obtained  from the scaling function as N where N is an even integer. The set of wavelets then 

forms an orthonormal basis which we use to decompose the signal. Note that usually only few of 

the coefficients ak are nonzero, which simplifies the calculations.  

In the following figure, some wavelet scaling functions and wavelets are plotted. The most 

known family of orthonormal wavelets is the family of Daubechies. Her wavelets are usually 

denominated by the number of nonzero coefficients ak, so we usually talk about Daubechies 4, 

Daubechies 6, etc. wavelets. Roughly said, with the increasing number of wavelet coefficients 

the functions become smoother. See the comparison of wavelets Daubechies 4 and 2  below. 

Another mentioned wavelet is the simplest one, the Haar wavelet, which uses a box function as 

the scaling function. 

 

Figure 6. Haar scaling function and wavelet (left) and their frequency content (right). 



 

Figure 7. Daubechies 4mcaling function and wavelet (left) and their frequency content (right). 

 

Figure 8. Daubechies 20 scaling function and wavelet (left) and their frequency content (right).  

There are several types of implementation of the DWT algorithm. The oldest and most known 

one is the Mallat (pyramidal) algorithm. In this algorithm two filters – smoothing and non-

smoothing one  are constructed from the wavelet coefficients and those filters are recurrently 

used to obtain data for all the scales. If the total number of data D = 2
N
 is used and the signal 

length is L, first D/2 data at scale L/2
N - 1

 are computed, then (D/2)/2 data at scale L/2
N - 2

, … up 

to finally obtaining 2 data at scale L/2. The result of this algorithm is an array of  the same length 

as the input one, where the data are usually sorted from the largest scales to the smallest ones.  

Within Gwyddion the pyramidal algorithm is used for computing the discrete wavelet transform. 

Discrete wavelet transform in 2D can be accessed using DWT module.  



Discrete wavelet transform can be used for easy and fast denoising of a noisy signal. If we take 

only a limited number of highest coefficients of the discrete wavelet transform spectrum, and we 

perform an inverse transform (with the same wavelet basis) we can obtain more or less denoised 

signal. There are several ways how to choose the coefficients that will be kept. Within 

Gwyddion, the universal thresholding, scale adaptive thresholding [2] and scale and space 

adaptive thresholding [3] is implemented. For threshold determination within these methods we 

first determine the noise variance guess given by  

 

where Yij corresponds to all the coefficients of the highest scale sub band of the decomposition 

(where most of the noise is assumed to be present). Alternatively, the noise variance can be 

obtained in an independent way, for example from the AFM signal variance while not scanning.  

For the highest frequency subband (universal thresholding) or for each subband (for scale 

adaptive thresholding) or for each pixel neighborhood within subband (for scale and space 

adaptive thresholding) the variance is computed as  

 

Threshold value is finally computed as  

 

where  

 

http://gwyddion.net/documentation/user-guide-en/wavelet-transform.html#wavelet-transform-ref-2
http://gwyddion.net/documentation/user-guide-en/wavelet-transform.html#wavelet-transform-ref-3


When threshold for given scale is known, we can remove all the coefficients smaller than 

threshold  value  (hard  thresholding)  or  we  can  lower  the  absolute  value  of  these co-

efficient by threshold value (soft thresholding).  

DWT denoising can be accessed with Data Process → Integral Transforms → DWT  Denoise.  

Continuous Wavelet Transform  

Continuous wavelet transform (CWT) is an implementation of the wavelet transform using 

arbitrary scales and almost arbitrary wavelets. The wavelets used are not orthogonal and the data 

obtained by this transform are highly correlated. For the discrete time series we can use this 

transform as well, with the limitation that the smallest wavelet translations must be equal to the 

data sampling. This is sometimes called Discrete Time Continuous Wavelet Transform (DT-

CWT) and it is the most used way of computing CWT in real applications.  

In principle the continuous wavelet transform works by using directly the definition of the 

wavelet transform, i.e. we are computing a convolution of the signal with the scaled wavelet. For 

each scale we obtain by this way an array of the same length N as the signal has. By using M 

arbitrarily chosen scales we obtain a field N×M that represents the time-frequency plane directly. 

The algorithm used for this computation can be based on a direct convolution or on a 

convolution by means of multiplication in Fourier space (this is sometimes called Fast Wavelet 

Transform). The choice of the wavelet that is used for time-frequency decomposition is the most 

important thing. By this choice we can influence the time and frequency resolution of the result. 

We cannot change the main features of WT by this way(low frequencies have good frequency 

and bad time resolution; high  frequencies have good time and bad frequency resolution), but we 

can some how increase the total frequency of total time resolution. This is directly proportional 

to the width  of  the  used wavelet in real and Fourier space. If we use the Morlet wavelet for 

example  (real part –damped cosine function) we can expect high frequency resolution as such a  

wavelet  is  very well localized in  frequencies. In  contrary, using Derivative of Gaussian(DOG) 

wavelet will result in good time localization, but poor one in frequencies.CWT is implemented in 

the CWT module that can be accessed with Data Process → Integral Transforms → CWT.  



CHAPTER -6 

PROPOSED APPROACH 

HILBERT & WAVELET TRANSFORM BASED SPECTRUM REPRESENTATION 

 

Steps of implementation 

1). Firstly, consider a multicomponent non-stationary signal y(t) with constant amplitude/ 

frequency parameters. 

2). Extract the components from a multi-component signal into mono-components signal. 

3). All the decomposed components are mono-component non-stationary signals. 

4). These components have well defined and meaningful instantaneous frequencies 

in time-frequency plane.  

5). We compute the HT for all the decomposed components to determine their instantaneous 

amplitude and frequency functions. [10] 

 

p.v. indicates the integral corresponding to its Cauchy principle value. 

6). The HT of a real signal can be used to determine its complex form which is also known as 

analytic signal and such signal can be represented as follows: 

 

7). The instantaneous amplitude, phase, and frequency of obtained mono component non-

stationary signals can be obtained as follows: 



 

8). Compute the instantaneous parameters using continues wavelet transform by using: 

 

9). The arrangement of computed instantaneous frequency and squared instantaneous amplitude 

of all mono-component non-stationary signals, provides the time-frequency representation of the 

multicomponent non-stationary signal in the proposed method. 

 

The HILBERT TRANSFORM (HT) is applied to extract the instantaneous amplitude and 

instantaneous frequency functions of the decomposed components obtained from IEVD-HM 

method. The HT H[y(t)] of a real valued decomposed mono-component. [10] 

 

 

Figure 9 

non-stationary signal y(t) is computed as follows: 

 

In the above expression, the p.v. indicates the integral corresponding to its Cauchy principle 

value. The Hilbert Transform of a real signal can be used to determine its complex form which is 

also known as analytic signal and such signal can be represented as follows: 



z(t) = y(t) + jH[y(t)] (7) 

The instantaneous amplitude, phase, and frequency of obtained mono-component non-stationary 

signals can be obtained as follows: 

 

These instantaneous amplitude and frequency parameters of the obtained components are 

arranged in order to design a framework of proposed method of time-frequency representation. 

 

Extraction of components from multi-component signal with constant amplitude & 

frequency parameters: 

Let   
 

 be the sq. Hankel matrix of size N*N consisting of 2N-1 elements formed from a real 

signal x[n] having Q no. of samples expressed as: 

 

where n = 0,1,2,…;Q-1, Q>=2N-1 

 

Now, the Eigen Value Decomposition (EVD) of the square matrix   
 

 is: 

  
        

   

Λx is a diagonal matrix with N real eigen values  

Vx is an orthogonal matrix having real eigen vectors as its columns & each column consisting of 

N elements. 

Let      be a multi‐component signal consisting of   constant amplitude-frequency mono-

components signals as 

       ∑   
 
          ∑   

 
    COS              



    , 1 , ..,     

   
 

  
  

  

  
, where    &    are the sampling frequency and frequency of       respectively. 

      , &    represent the amplitude, phase and normalized frequency of       respectively. 

   represents the period of       in samples.  

Using above equations,   
  can be represented as follows: 

  
   ∑   

   
    where   

      
      

The characteristic equation of   
  is given by 

        
              

                 
     

      and          are the trace and the determinant of a matrix respectively.  

 

We now derive the conditions of the Hankel matrix of size   to enable separation of 

monocomponent signals of      using EVD of   
  as below. 

If        , the    eigenvalues and corresponding eigenvectors of       

  are equal to the 

set consisting of non‐zero eigenvalues and eigenvectors of       

    

         

  
    ∑      

       

   

            

Compute   
   as follows: 

 ̃       ̃  
    

The average of elements of      skew diagonals of  ̃ provide values of the kth component of 

x[n], denoted by  ̃    where     , 1 ,        .  



 

Figure 9. (a) Multi‐component signal      , (b) mono‐component signals       and      , (c) 

mono‐ component signal       &      , (d) mono‐component signal x3     and X3    .  

xn, denoted           ; 2;     , are the same as the original mono‐component signals of xn, 

denoted          ; i.e, for           ̃    
   and  ̃            

 

The frequency resolution that can be achieved by performing EVD of   
  increases non‐

monotonically with    

In this case, the modified eigenvalue diagonal matrix preserving the kth non‐zero eigenvalue pair 

of   is given by 

    diag                                  0 

The Hankel matrix formed by preserving the kth eigenvalue pair     
 , denoted  ̃ is computed 

using   ̃ as follows: 

  
         

                     

The kth mono‐component signal of      is extracted by taking the mean of elements of skew 

diagonals of  ̃. Let the kth original and extracted component of      be denoted by       and 



 

Figure 10. Error to signal ratio (N/S) for the three mono‐component signals of the multi‐

component signal      with respect to the Hankel matrix size (N) , computed after the first 

Iteration. 

 

Analytical Signal Extraction via Wavelet Transform [15]: 

Considering an analytic wavelet function denoted by      and its Fourier transform by  ̂    

satisfying: 

for a given signal                 the WT of      wrt wavelet      is defined as 

         
 

 
          

   

 
     

where             is the real number set and             is complex conjugate of       

 

If      is a signal with finite energy and      is an analytic wavelet function, then        , the 

WT of      , wrt      , is a complex function with respect to real‐valued variable   and the scale 

factor           For a fixed value of  , the imaginary part of this complex function is the HT 

of the real part; i.e.,        is an analytic function wrt  .  

 

If      is an analytic wavelet function with its real part0       being even and        
    ̂     , 

with         Then for an arbitrary real                 , we have 

 

  
  
       

  

 
              0 

where        is defined above,         is the HT of       



 

Definition of     : 

Define the IP’s of a real‐valued signal      as follows: 

     √               

              
       

    
  

     
 

  
 
 

  
          

       

    
      

 

where      ,      and      is the instantaneous amplitude (IA , in‐ stantaneous phase (IPh , and 

instantaneous frequency (IF) of      , respectively. 

formula for IF estimation is 

      
 

  
 
    

        

  
        

     

  

              
    

where 

      
                

and        

Now, comparisons of IF estimation are presented as 

                                                     

where      √            ,      √            ,                          28:28,      

42:43, we may have 

                                                        . 

 

 

IV. TECHNIQUE BASED ON IEVD-HM AND HILBERT TRANSFORM [10] 

In order to get the time-frequency illustration of a multi-component non-stationary signal, the 

projected  IEVDHM   mathematician   rework   technique   has   been   shown   in  Fig. Firstly, a 

multicomponent non-stationary signal  is  rotten  exploitation  IEVDHM technique, that provides 



the elements on the idea of eigenvalue pairs of Hankel matrix as explained in section II.   Every 

eigenvalue try represents the strength of corresponding element. All the rotten elements are 

thought-about to be mono-component non-stationary signals. These elements have well outlined 

and  significant  instant  frequencies in time-frequency  plane. We have a tendency to cypher the 

mathematician rework for all the rotten elements to see their instant  amplitude  and  frequency  

functions. The arrangement  of  computed instant frequency  and  square  instant   amplitude of  

all  mono-component  non-stationary  signals, provides the time frequency illustration of the 

multicomponent non-stationary signal with  in the projected technique. 

 

Non-stationary Signal Analysis Using Wavelet Transform 

Wavelet analysis is an approach which decomposes a time-domain signal into components in 

different time windows and different frequency bands and presents the resulting information in 

the form of a surface in the time-frequency plane, sometimes referred to as a scalogram. The 

scalogram is similar in concept to the spectrogram but differs from in that the frequency 

resolution of the scalogram is logarithmic rather than linear, as is the case for the spectrogram. 

Because of the nature of the frequency resolution, the wavelet approach is more effective in 

analyzing both the long-time, low-frequency and the short-time, high-frequency content of a time 

signal. This characteristic is very useful for analyzing pulse-like and non-stationary signals. The 

continuous wavelet transform of a square-integrable, continuous time signal s(t) is the inner 

product between and the analyzing wavelet Ãa;b(t), which gives the wavelet coefficients 

 

 

 

  



CHAPTER -7 

SIMULATION AND RESULTS 

Example 1. 

The proposed method, IEVD-HM-HILBERT TRANSFORM [10]and WAVELET 

TRANSFORM for non-stationary signal analysis has been studied for three representative multi-

component non-stationary signals. 

The brief description of these synthetic signals denoted by s1[n], s2[n], and s3[n] is given below. 

A. Signal 1: 

The signal s1[n] is the summation of three sinusoidal signals with constant amplitude and 

frequency parameters 

 

 

 

Where,  

f20=08500Hz,0f30=011900Hz,0and0sampling0frequency0(Fs)0is028000Hz. The signal length 

considered is 799 samples. The plot of signal s1[n] is shown in Fig. 11(a). The Fig. 11 shows its 

three mono-component  signals  (Fig.  11(b)-(d)). The time-frequency  representation of  this  

signal  s1[n] using IEVD-HM-HILBERT TRANSFORM method [10] is shown in Fig. 12. 

We  have  also  shown  the  spectrogram  of  signal s1[n] in Fig. 12.  It  is  clear  that  the  

proposed method  provides  the  similar  number  of  frequency components (three) like 

spectrogram but with good resolution. 



.  

Figure 11. Signal s1[n]; components of signal s1[n] 



 

Figure 12. Time-frequency representation of signal s1[n] using IEVD-HM-HILBERT 

TRANSFORM method 

  



B. Signal 2: 

C. The signal s2[n] [5] has been obtained by concatenation of two constant frequency 

components, given as: x1[n] = 2.1cos(2πf1n/Fs) and x2[n] = (7/3)cos(2πf2n/Fs) where, f1 =415 

Hz, f2 =541 Hz and Fs = 2100 Hz. The considered signal length for this signal is 599 samples. 

The plot of signal s2[n] has been presented in Fig. 5(a). The mono-component signals 

associated with this multicomponent non-stationary signal are shown in Fig. 5(b) and (c), 

respectively. The time-frequency representation of signal s2[n] using IEVD-HM-HILBERT 

TRANSFORM method has been shown in the Fig. 6. The Fig. 7 shows the spectrogram of 

this signal s2[n]. For this signal also, our proposed method provides better time-frequency 

representation than spectrogram based method. 

 

Figure 13. Signal s2[n]; (b)-(c) concatenating components of signal s2[n] 



 

Figure 15. Time-frequency representation of signal s2[n] using IEVD-HM-HILBERT 

TRANSFORM method 

 

The  multi-component  non-stationary  signal  s3[n] [9], [21]  has been obtained with the 

summation of  one  linearly  increasing  frequency  chirp  signal  and  one  linearly  decreasing  

frequency  chirp signal. The mathematical expression for the signal s3[n] is given as follows: 

 

 



 

Figure 16. Signal s3[n]; (b)-(c) components of signal s3[n] 

 

 



 

Figure 17. Time-frequency representation of signal s3[n] using IEVD-HM-HILBERT 

TRANSFORM method 

 

 

The signal s3[n] has been shown in Fig. 8(a) and its mono component signals are shown in Fig. 

8(b)  and  8(c).  The  time frequency  representation  of  signal  s3[n]  using  IEVD-HM-

HILBERT TRANSFORM method is shown in Fig. 9 and spectrogram of signal s3[n] is shown in 

Fig . It clear  from  the   Fig.  9  and 10  that the proposed method gives better resolution in time-

frequency plane as compared to spectrogram method. 

 

 

 



 

Example 2.  

Let      be a multi‐component signal shown in figure 1. 

 

Figure 18. Shows the multicomponent signal. 

 

       ∑   
 
          ∑   

 
    cos              

A1 = 2 

A2 = 3 

A3 = 1 

f1 = 640/3 

f2 = 800/3 

f3 = 320 

fs = 6400 



Q1 =  /2 

Q2 = 0 

Q3 = 0 

 

 

Figure 19. Shows the theoretical instantaneous frequency (IF)  of mono component signals. 

 

 



Figure 20. ‘a’ Shows the multicomponent and ‘b’ to ‘d’ show the mono-components obtained by 

EVD of Hankel Matrix. 

 

 

Figure 21. Shows the IF of mono-components obtained by HT method. 

 

 

Figure 22. Shows the IF’s of mono-components obtained by WT method. 



Performance Evaluation   

  

In this work, the performance of analyzed signal is computed in terms of Mean square error 

(MSE) & Peak signal to noise ratio (PSNR). The following measures of performance are used for 

quantitative estimation of the performance and analysis of the proposed technique.   

 

Table 7.1 shows the comparative analysis of the proposed work using two evaluating 

parameters PSNR and MSE.  

 

Table 7.1 Comparison of Performance on Signal x[n] 

Algorithm  MSE  PSNR  

Hilbert Transform  0.58  10.7618 

Wavelet Transform  0.47   12.0161  

  

It shows the PSNR of the wavelet is around 10% higher as compared to Hilbert algorithm due to 

time-frequency localization of wavelet transform. The MSE of both the algorithm also displaying 

the wavelet profound performance.   

  



CHAPTER -8 

CONCLUSION & FUTURE SCOPE 

We have proposed a method for analysis of nonstationary signals based on IEVD-HMHT and 

Wavelet Transform. The simulation results presented in this paper show the potential of the 

proposed method for non-stationary signal analysis. This type of feature makes the proposed 

method suitable for real-time implementation for non-stationary signal analysis. The proposed 

time-frequency domain in this paper can be studied for the analysis of various non-stationary 

signals like as, speech signals, biomedical signals, mechanical signals, seismic signals, etc. The 

proposed method can be compared with other existing methods for non-stationary signal 

analysis in time-frequency domain. In this thesis work, Hilbert Transform and wavelet based 

transform techniques are used to extract different features from vibration data. Wavelet and 

multiresolution analysis techniques of signal transformation are already in practice in other 

signal processing fields like acoustics, digital image processing, etc. As morlet wavelet has been 

used as mother wavelet in this thesis, similar kind of work can be done using other wavelets to 

compare the efficiency in terms of quality of the features to be extracted. Work can also be done 

in expanding the available wavelets options to maximize its applications. 
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