

A DISSERTATION

ON

ANALYSING EFFECT OF REFACTORING ON SOFTWARE

MAINTAINABILITY USING OBJECT ORIENTED METRICS

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

In

SOFTWARE TECHNOLOGY

Submitted by

Nirmala

University Roll No. 2K15/SWT/511

Under the Esteemed Guidance of

Dr. Ruchika Malhotra

Associate Head & Associate Professor,

Department of Computer Science & Engineering, DTU

2015-2018

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY,

DELHI– 110042, INDIA

iii

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

DECLARATION

I hereby declare that the thesis entitled “ANALYSING EFFECT OF REFACTORING

ON SOFTWARE MAINTAINABILITY USING OBJECT ORIENTED METRICS”

which is being submitted to the Delhi Technological University, in partial fulfillment of

the requirements for the award of the degree of Master of Technology in Software

Technology is an authentic work carried out by me. The material contained in this thesis

has not been submitted to any university or institution for the award of any degree.

DATE:

SIGNATURE:

Nirmala

2K15/SWT/511

iv

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

CERTIFICATE

This is to certify that thesis entitled “ANALYSING EFFECT OF REFACTORING

ON SOFTWARE MAINTAINABILITY USING OBJECT ORIENTED

METRICS”, is a bona fide work done by Ms. Nirmala (Roll No: 2K15/SWT/511) in

partial fulfillment of the requirements for the award of Master of Technology Degree in

Software Technology at Delhi Technological University, Delhi, is an authentic work

carried out by her under my supervision and guidance. The content embodied in this

thesis has not been submitted by him earlier to any University or Institution for the award

of any Degree or Diploma to the best of my knowledge and belief.

DATE:

SIGNATURE:

Dr. RUCHIKA MALHOTRA

ASSOCIATE HEAD & ASSOCIATE PROFESSOR,

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING.

DELHI TECHNOLOGICAL UNIVERSITY, DELHI 110042

v

ACKNOWLEDGEMENT

I am presenting my work on “ANALYSING EFFECT OF REFACTORING ON

SOFTWARE MAINTAINABILITY USING OBJECT ORIENTED METRICS”

with a lot of pleasure and satisfaction. I take this opportunity to express my deep sense of

gratitude and respect towards my guide Dr. Ruchika Malhotra. I am very much

indebted to her for her generosity, expertise and guidance I have received from her while

working on this project. Without her support and timely guidance the completion of the

project would have seemed a far-fetched dream. In this respect, I find myself lucky to

have my guide. She has guided not only with the subject matter, but also taught the

proper style and techniques of documentation and presentation. Besides my guides, I

would like to thank entire teaching and non-teaching staff in the Department of Computer

Science & Engineering, DTU for all their help during my tenure at DTU. Kudos to all my

friends at DTU for thought provoking discussion and making stay very pleasant. I am

also thankful to the SAMSUNG who has provided me opportunity to enroll in the

M.Tech Program and to gain knowledge through this program. This curriculum provided

me the knowledge and an opportunity to grow in various domains of computer science.

Nirmala

2K15/SWT/511

vi

ABSTRACT

Software maintainability is the ease with which a software components can be

modified to rectify the defects or their cause, repair or supplant broken or exhausted

segments without replacing the working parts, prevent unexpected working condition,

maximize a product's useful life, maximize efficiency, reliability, and safety, meet new

requirements, make future maintenance easier, or cope with a changed environment.

For vast programming frameworks, the maintenance stage has longer term than all

the past life-cycle stages taken together, causing significantly more exertion. The time

spent and exertion required to keep software product operational after deployment is

exceptionally critical and expends to 40-70% of the total cost of the whole life cycle.

Nice measure of software maintainability can enable better dealing in the maintenance

stage exertion. In past writing, analysts and experts have proposed few machine learning

calculations with a target to anticipate programming viability and assess them.

Maintainability model as described by S. Counsell [6] is used as base in this

study. Maintenance is very important phase of software life cycle. And many researchers

[1,2,3,4,5,16] have already shared their findings about object oriented metric and code

refactoring has direct impact on maintainability. As per past literature, Maintainability

[6,7,11] , C&K metrics [4] , other multiple OO metrics and Code-refactoring have some

relation with each other.

Since refactoring was first investigated as a maintenance discipline in the late

1990's, it has moved toward becoming a vital part of an engineer's tool-set and generated

numerous refactoring experimental studies. Seventy-two types of refactoring were

described by Martin Fowler, in his book [14], which includes renaming, conditional-

statements, structural modifications and many more coding areas.

vii

The objective of this study is to calculate object oriented

metrics[1,3,4,5,6,7,9,10,11] which can be further used with JArchitct tool and ref-finder

to correlate it with software maintainability . In order to study, software repository of

android application CALENDAR [22] is used. The motive is to generate a data set of a

repository to measure the maintainability index of software based on object-oriented

software metrics using the JHawk [19] tool. And using JArchitect2018.1.0 (demo) tool

[20] for code smells and refactoring extraction. Then analysing the relation between

object oriented metrics change with maintainability index and impact of refactoring on

maintainability. The result shows that the dataset is successfully generated, and code-

refactoring is more in those components which have low maintainability index.

viii

TABLE OF CONTENTS

DECLARATION ... ii

CERTIFICATE ... iii

ACKNOWLEGEMENT ... iv

ABSTRACT .. v

TABLE OF CONTENTS ...vii

LIST OF TABLES ……………………………………………………………………… ix

LIST OF FIGURES ………………………………………………………………………x

LIST OF ACRONYMS…………………………………………………………..……...xii

Chapter 1: Introduction ...1
Chapter 2: Literature Review ..6

Chapter 3: Research Background..10

3.1 Data set generation ..10

3.1.1 JHAWK Tool ...12
3.1.2 OO Metrics into consideration ...14

CKJM Metrics ..15

1. Weighted Methods Per Class (WMC) ...16
2. Depth of Inheritance Tree (DIT) ..16

3. Number of Children (NOC) ...16
4. Coupling between Object Classes (CBO) ..16
5. Response for a Class (RFC) ...17

6. Lack of Cohesion of Methods (LCOM) ...17

3.2 Jhawk Metrics ...17

3.3 Software Maintainability model..18
Chapter 4: Research Methodlogy..19

4.1 Preprocessing of Data ...20

4.2 Jhawk Tool Outputs ..20

4.3 Object Oriented metric capturing process ...33

4.4 Refactoring Dataset construction ..33
4.4.1 Code-Refactoring ...34

 Rename ..34

 Move Class ..35

 Extract Method (Long Methods) ...35

 Extract Classes and SuperClasses ...35

 Replace Conditions with Polymorphism (too many conditional statements)36

ix

4.4.2 JArchitect Tool...37

4.5 Results ...40
4.5.1 DONUT-ECLAIR Correlation...41
4.5.2 ÉCLAIR-FROYO Correlation ...41

4.5.3 FROYO-GINGERBREAD OS Correlation ...42
4.5.4 GINGERBREAD-ICS OS Correlation ..43
4.5.5 ICS-JB OS Correlation ..44
4.5.6 JB-KITKAT OS Correlation ..44

Chapter 5: Conclusion & Future Work ...46

Bibliography ..49

x

LIST OF TABLES

Table 3. 1 Repository links of all the OS versions of android app Calendar 10

Table 3. 2 Dataset for different OS versions of android application Calendar 11

Table 4. 1 Code-Smell and other Metrics captured .. 39

Table 5. 1 System Data .. 46

xi

LIST OF FIGURES

Figure 3. 1 JHAWK Tool.. 14

Figure 3. 2 Jhawk Tool- OO Metrics generation .. 15

Figure 4. 1 Dataset construction and analysis-process..19

Figure 4. 2 Jhawk output for Donut .. 21

Figure 4. 3 Jhawk output for Eclair .. 22

Figure 4. 4 Jhawk output for Froyo .. 23

Figure 4. 5 Jhawk output for Gingerbread .. 24

Figure 4. 6 Jhawk output for ICS .. 25

Figure 4. 7 Jhawk output for JB .. 26

Figure 4. 8 Jhawk output for Kitkat .. 27

Figure 4. 9 Jhawk output for Lollipop .. 28

Figure 4. 10 Jhawk output for Marshmallow .. 29

Figure 4. 11 Jhawk output for Nougat .. 30

Figure 4. 12 Jhawk output for Oreo .. 30

Figure 4. 13 Jhawk output for Pie ... 31

Figure 4. 14 JArchitect Tool ... 37

Figure 4. 15 Metric-View of Calendar-Lollipop Version ... 38

Figure 4. 16 Code-Smells captured by JArchitect of Calendar-Lollipop Version 39

Figure 4. 17 MI and Refactoring of Donut & Éclair... 41

Figure 4. 18 Eclair-Froyo : Refactoring vs MI ... 42

Figure 4. 19 Froyo-Gingerbread : Refactoring vs MI ... 43

Figure 4. 20 Gingerbread-ICS : Refactoring vs MI .. 43

Figure 4. 21 ICS-JB : Refactoring vs MI .. 44

Figure 4. 22 JB-Kitkat : Refactoring vs MI .. 45

xii

Figure 5. 1 : MI ,TCC,NOM,LOC(java statement) metric plot of 12 OS versions of

Calendar app. .. 47

Figure 5. 2 : Total Refactoring in 6 OS versions of Calendar app. 47

1

Chapter 1: Introduction

Software maintainability practicality implies the simplicity with which a product

framework or segment can be adjusted to rectify flaws, enhance performance or different

credits or adjust to a changed situation. The adjustment in the product is required to meet

the changing necessities of clients which may emerge because of numerous reasons, for

example, change in the innovation, and presentation of new equipment or upgrade of the

requirement and so on. Delivering Software product which does not should be changed

isn't just infeasible yet additionally exceptionally uneconomical. This procedure of

changing the product which has been conveyed is called software maintenance. The

measure of asset, exertion and time spent on software maintenance is considerably more

than what is being spent on its before-deployment programming. Along these lines,

creating a software product that is anything but difficult to maintain may conceivably

spare substantial expenses and endeavours.

One of the primary methodologies in controlling maintenance cost is to screen

programming measurements (metrics) amid the development stage. It involves

enthusiasm to quantify different properties of programming configuration as far as

inheritance, coupling, and cohesion and so on and anticipate its maintenance pattern

based on their quantitative values. The issue of foreseeing the maintainability of software

is broadly recognized in the business and much has been composed on how this can be

anticipated by utilizing different algorithms and procedures at the season of development

using software metrics [1, 3, 4, 5, 6, 7].

2

 Studies have been led and found the solid connection between Object Oriented

metrics and software maintainability. They have additionally discovered that these

metrics can be utilized as indicators of maintenance effort. Exact forecast of software

maintainability can be valuable as a result of the accompanying reasons: (a). It helps

venture directors in looking at the efficiency and expenses among various undertakings.

(b). It furnishes directors with data for all the more viably arranging the utilization of

significant assets. (c). It helps administrators in taking imperative choice in regards to

staff portion. (d). It controls about support process proficiency. (e). It helps in monitoring

future support exertion. (f). The edge estimations of different metrics which definitely

influence maintainability of software product can be checked and monitored in order to

accomplish minimum upkeep cost. (g). It empowers the engineers to recognize the

determinants of programming quality with the goal that they can enhance plan and

coding. (h). It encourages specialists to enhance the nature of programming frameworks

and in this manner upgrade support costs.

To quantify the maintainability we first discover the "change “. It is characterized

as "how much measure of normal endeavours are required to include, change or erase

existing classes". Software maintenance is vital as it expends 70% of the season of any

item's life. In spite of this reality it is ineffectively overseen on the grounds that we truly

don't have great measures of software maintainability. The crucial factor is expressed by

Counsell [6] in the year 2015, that the coupling, defects and size have impact on

maintainability.

3

To gauge the different highlights of oops, for example, inheritance, cohesion,

coupling, memory distribution and so forth unique measurements are deliberately chosen.

We have contemplated different metrics accessible in writing and chose just those

software metrics that have a solid association with programming maintenance and

utilized them while developing our model for expectation of question arranged

programming maintainability[1].These metrics are related to effort per module, total

cyclomatic complexity per module, size per module and MI per module.

When a software's source code is effectively understandable, the software is more

maintainable, prompting decreased expenses and enabling valuable advancement assets

to be utilized somewhere else. In the meantime, if the code is all around organized, new

prerequisites can be presented more productively and with less issues. These two

improvement errands, maintainability and upgrade, frequently struggle since new

highlights, particularly those that don't fit neatly inside the first outline, result in an

expanded support exertion. The re-factoring procedure expects to lessen this contention,

by helping non damaging changes to the structure of the source code, keeping in mind the

end goal to improve code clearness and viability.

Refactoring enhances non-functional traits of the product. Favorable

circumstances incorporate enhanced code intelligibility and decreased many-sided

quality; these can enhance source-code viability and make a more expressive inside

engineering or protest model to enhance extensibility. Normally, refactoring applies a

progression of institutionalized fundamental miniaturized scale refactoring, every one of

4

which is (more often than not) a little change in a PC program's source code that either

protects the conduct of the product, or if nothing else does not adjust its conformance to

utilitarian necessities. There are multiple refactoring techniques present , some of them

are Rename , Move Class , Extract Method(Long Methods) , Extract Classes and Super-

Classes , Replace Conditions with Polymorphism(too many conditional

statements),Fields Removed ,Methods removed ,Classes Removed , Methods Direct

Calling , Method indirect Calling and Classes with poor cohesion are also considered in

this study. All these refactoring types have self-explanatory names.

In this work, we propose a dataset that we assembled using the

JArchitect2018.1.0(demo) tool [20] for code smells extraction and the JHawk (starter)

tool for source code metric calculation of a open source git-repository of

CALENDAR(https://android.googlesource.com/platform/packages/apps/Calendar) from

Android subsequent releases Donut to Lollipop.

 Google Calendar is a time administration and planning logbook benefit created by

Google. It ended up accessible in beta version in April 13, 2006, on the web and as

portable applications for the Android and iOS. Google Calendar enables clients to make

and alter occasions in it. Reminders is supported, which can be set on the basis of user

preferences like, time days or months. Occasion areas can likewise be included, and

different clients can be welcome to occasions. Application recovers dates of births from

Google contacts and shows birthday cards on a yearly premise, and Holidays, a nation

particular schedule that shows dates of unique events. Time to time, Google has included

5

usefulness that makes utilization of machine learning.Code smells are treated as the code-

refactoring. Further the change in OO metrics and maintainability of software

components is analysed w.r.t to refactoring which is captured using code-smells and

naming convention change metric-rules of JArchitect tool.

6

Chapter 2: Literature Review

Several studies were done in the past to relate OO software metrics and

refactoring with maintainability metric. Some of the key areas are discussed below.

Software Engineering Institute (SEI), Carnegie Mellon University [17]

proposed the metric to measure the cost of maintainability based on source code,MI.This

is an important element that permits the software engineer to have the capacity to foresee

the maintenance effort while writing the code. MI is ascertained using polynomial

equation that can be just computed dependent on the code lines, comments and

complexity of the code also described in chapter3.Further based on this study, Hybrid

intelligent Model for Software Maintenance prediction [7], MI is studied again and

provided a maintainability prediction model based on evolutionary neural network. The

suggested model is proved to have very good accuracy but is not that transparent to users.

S.Counsell , X.Liu ,S.Eidh,R.Tonelli, M.Marchesi,G.Concas and A.Murgia

[6] , explored the MI metric and scrutinized the OO metric. Five metrics were used

including coupling, defect and size. Coupling between objects (CBO) metric of

Chidamber and kemerer[2] ,Fan-in(FIN) of a class, number of java statements in a

class(NOS) and defects that each class has encountered were captured for three software

projects and analyzed w.r.t MI. And huge correlations were found in the study.

7

S.Counsell, X.Liu ,S.Swift,

J.Buckley,M.English,S.Herold,S.Eldh,A.Ermedahl [9] , proposed a refactoring type

IEV as one of the very important when we see defect statistic. It was shown via study that

IEV refactoring had been applied to those classes which were expected to be more

inclined towards defects. IEV(Introduce explaining variable) and RCF(Remove control

flag) are 2 refactoring type which were seemed to be related to defect-inclined classes.

István Kádár, Péter Heged˝us, Rudolf Ferenc and Tibor Gyimóthy

[10,11],encouraged the investigation of code refactoring by providing an excessive open

dataset of source code metrics and applied refactoring through several releases of 7 open-

source systems. Results show that lower maintainability indeed triggers more code

refactoring in practice and these refactoring significantly decrease complexity, code lines,

coupling and clone metrics.[10] "A Manually Validated Code Refactoring Dataset and Its

Assessment Regarding Software Maintainability" paper presented a manually validated

dataset of applied refactoring and source code metrics and maintainability of 7 open-

source systems. It is a subset of [11].And found that Refiner had around 27% overall

average precision on the subject systems, thus new – manually validated – subset has

substantial added value allowing researchers to perform more accurate empirical

investigations. Study answered, whether refactoring were really triggered by poor

maintainability of the code, or by other aspects. The results show that source code

elements subject to refactoring had significantly lower maintainability values

(approximated by source code metric aggregation) than elements not affected by

refactoring between two releases.

8

Birgit Geppert, Audris Mockus, and Frank Rößler [18], studied a refactoring

on a part of a large legacy business communication product where protocol logic in the

registration domain was restructured. And pose a number of hypotheses about the

strategies and effects of the refactoring effort on aspects of changeability and measure the

outcomes. The results of this case study show a significant decrease in customer reported

defects and in effort needed to make changes.

Ruchika Malhotra and Anuradha Chug [13], provided a study which states

that, refactoring is very tedious and might introduce errors if not implemented with

utmost care, it is still advisable to frequently refactor the code to increase maintainability.

Results of this study are useful to project managers in identifying the opportunities of

refactoring while maintaining a perfect balance between reengineering and over-

engineering.

 Francesca Arcelli Fontana and Stefano Spinelli [12], Explored the code smells

and relevant refactoring and their impact on software quality. Feature Envy, Long method

, shotgun surgery and large class are the types of code smells considered in study and

refactoring are applied accordingly. The monitored metric were

WMC,LCOM,RFC,DAC,NOM and TCC.TCC increased for after all the refactoring ,

WMC increased only for Extract method same pattern is observed for RFC.LCOM

decreased on all four types of refactoring. Hence Code smells result into refactoring

which further effects the Quality metric of software.

9

10

Chapter 3: Research Background

Here, we will see the data collection process, tools used in our experiment, OO

metrics generation etc.

3.1 Data set generation

In this study, OO Metrics were obtained using open source mobile OS – Android.

12 Android OS versions of an application namely Calendar. OS versions from

donut,éclair,froyo,gingerbread,ICS,JB,kitkat,lollipop,marshmallow,nougat,oreo and pie

are considered for generating the data sets.

Table 3. 1 Repository links of all the OS versions of android app Calendar

S.No. OS Version Repository link

1 DONUT https://android.googlesource.com/platform/packages/apps/Calendar/+/donut-

release

2 ECLAIR https://android.googlesource.com/platform/packages/apps/Calendar/+/eclair-

release

3 FROYO https://android.googlesource.com/platform/packages/apps/Calendar/+/froyo-

release

4 GINGERBRE

AD

https://android.googlesource.com/platform/packages/apps/Calendar/+/gingerbre

ad-release

5 ICS https://android.googlesource.com/platform/packages/apps/Calendar/+/ics-mr1-

release

6 JB https://android.googlesource.com/platform/packages/apps/Calendar/+/jb-release

7 KITKAT https://android.googlesource.com/platform/packages/apps/Calendar/+/kitkat-

release

8 LOLLIPOP https://android.googlesource.com/platform/packages/apps/Calendar/+/lollipop-

release

9 MARSHMAL https://android.googlesource.com/platform/packages/apps/Calendar/+/marshmal

https://android.googlesource.com/platform/packages/apps/Calendar/+/donut-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/donut-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/eclair-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/eclair-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/froyo-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/froyo-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/gingerbread-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/gingerbread-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/ics-mr1-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/ics-mr1-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/jb-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/kitkat-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/kitkat-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/lollipop-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/lollipop-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/marshmallow-release

11

LOW low-release

10 NOUGAT https://android.googlesource.com/platform/packages/apps/Calendar/+/nougat-

release

11 OREO https://android.googlesource.com/platform/packages/apps/Calendar/+/oreo-

release

12 PIE https://android.googlesource.com/platform/packages/apps/Calendar/+/pie-

release

Source code is fetched from Google GIT repository [13]

(https://android.googlesource.com/platform/packages/apps/Calendar/) for above

subsequent OS versions of an application. The source code contains java files. First

Android code is downloaded. JHAWK tool [14] is used to generate the object oriented

metrics data set. JHawk is a static code analysis tool - i.e. it takes the source code of

software project and calculates metrics based on numerous aspects of the code - for

example volume, complexity, relationships between class and packages and relationships

within classes and packages. This tool takes input of source code file & generated the

component wise OO metrics as mentioned in Table 3.1.2.

Characteristics of different android application package with respect to Android

releases are mentioned in Table 3.1 and Table 3.2 .

Table 3. 2 Dataset for different OS versions of android application Calendar

OS Versions Total Classes

DONUT 97

ECLAIR 107

FROYO 111

https://android.googlesource.com/platform/packages/apps/Calendar/+/nougat-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/nougat-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/oreo-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/oreo-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/pie-release
https://android.googlesource.com/platform/packages/apps/Calendar/+/pie-release

12

GINGERBREAD 123

ICS 220

JB 255

KITKAT 324

LOLLIPOP 326

MARSHMALLOW 326

NOUGAT 326

OREO 326

PIE 326

GIT is open source versioning control system used for source code management task for

Google android code. GIT as a distributed revision control system is aimed for speed,

integrity of data and support for non-linear, distributed workflows. Google GIT

Repository: https://android.googlesource.com/platform/packages/apps/...

Table 3.1.2 contains android app data sets with total class, total number Of

classes having changes w.r.t. multiple Android release versions Calendar Application.

Metrics were generated using JHAWK Tools ,downloaded from

http://www.virtualmachinery.com/jhawkprod.html .

3.1.1 JHAWK Tool

JHawk is a static code investigation tool - i.e. it takes the source code of your

undertaking and ascertains metrics dependent on various parts of the code - for instance

size,complexity, connections among java-class and packages.

https://en.wikipedia.org/wiki/Distributed_revision_control
https://android.googlesource.com/platform/packages/apps/

13

J-Hawk is a Java based open source system which can be added in any java

application for testing.The thought is the designer needs to characterize module and its

errands, by errands we mean a method inside the Java code. j-Hawk executes the modules

and creates a graphical report which can be dissected to discover choke-point of any

Java-coded application. J-Hawk gives it's own scripting language called \"hawk\" which

is similar to C,C++ and UNIX Shell scripting. Henceforth the client can actualize the

experiment effortlessly with hawk scripting.

Jhawk Tool [15] is a JAVA based automated tool which collects and reports

various oo metric of a given version of android Operating System (OS). Matrices

generation from Jhawk Tool depends completely on files of Java Project parsed to it.

Various studies [23] in the past have used this tool to carry out the research work

on Java repository. Jhawk tool determines the multiple oo metrices including No. of

Methods,LCOM, AVCC, NOS, HBUG, HEFF, UWCS, INST, PACK, RFC, CBO, MI,

CCML, NLOC, RVF, F-IN, DIT, MINC, S-R, R-R, COH, LMC, LCOM2, MAXCC,

HVOL, HIER, NQU, FOUT, Superclass, SIX, EXT, NSUP, TCC, NSUB, MPC, NCO,

INTR, CCOM, Mod etc. It efficiently collects the data from java code repository under

our research. Finally, the corresponding values of different metric suites are obtained by

the system for each class files in the source code of android OS.

14

Figure 3. 1 JHAWK Tool

Install & configure GIT first, for source code of each version of the Android OS.

Find the path of each android application on Google site:

(https://android.googlesource.com) for corresponding TAGs i.e. Donut, Éclair, Froyo,

Gingerbread,ICS,JB,Kitkat,Lollipop,Marshmallow,Nougat,Oreo and Pie. Now, download

source code of each application for passing corresponding versions to Jhawk tool.

Versioning can be seen through above GIT Tags. Figure 3.1.1 shown below is the tool

home page after selecting the Donut code-folders.

3.1.2 OO Metrics into consideration

OO metrics is used to predict & evaluate the software’s quality. OO metrics

generated is used for MI & as an early indicator of externally visible attributes (like

15

cohesion, coupling, Encapsulation, inheritance etc.) CKJM metrics is the most popular

used as OO Metrics.

OO Metrics were generated using Jhawk tool on each Java file. We provided the

path of generated class files and downloaded source code to tool, and tool generated OO

metrics for each of the classes of android application packages. Figure 3.1.2 display’s the

Jhawk tool captured OO metrics.

Figure 3. 2 Jhawk Tool- OO Metrics generation

CKJM Metrics

C&K [2] define the so called C&K metric suite. This metric suite offers

informative insight whether developers are following OO principles in their design &

development. This metrics helps managers to create higher style selections. C&K metrics

16

is incredibly standard among the researchers conjointly also and it’s the most well-known

suite of measurements for OO software quality. C&K had projected six metrics.

Following discussion describes its attributes:

1. Weighted Methods Per Class (WMC)

WMC is total number of the functions in a class. It measures the complexity of

any class and it is can be checked by the cyclomatic complexity of the methods

2. Depth of Inheritance Tree (DIT)

DIT is the maximum inheritance level of the class from its base class.A low value

of DIT is preferred as a high DIT indicates increase errors in the project.

3. Number of Children (NOC)

NOC is total number of immediate children of any class. It measures sub classes

number that is inheriting the methods of its parent class. NOC shows absolute exertion

required to test the class & its reuse.

A high NOC, a large no. of child class, indicates High reuse of a base-class. High

NOC indicates lesser bugs in code.

4. Coupling between Object Classes (CBO)

CBO demonstrates coupling between the classes. If the object is utilizing any

other object, at that point it is said to be coupled. A class is combined with another class

if the techniques for one class are utilizing the strategies for inferior. An increase in CBO

17

demonstrates decline in class re-usability. Thus, the CBO for each class must be as less as

would be prudent.

5. Response for a Class (RFC)

For any reaction to message, RFC is the count of function/method that are called.

As RFC increases, testing effort also increases with testing arrangement develops. Plan

multifaceted nature of a class increments with increment in RFC esteem and it ends up

more earnestly to get it. On opposite side, its lower esteem speaks to more

polymorphism. RFC values lies somewhere in the range of 0 and 50 for any class, it can

increment up to 100 for certain cases relying upon undertaking.

6. Lack of Cohesion of Methods (LCOM)

LCOM metric speaks to level of equity between the methods. It demonstrates the

level of cohesiveness in the software, for example way of structuring of the framework

and measure of complex nature of the class. LCOM is subtraction of the quantity of

methods combines whose resemblance is zero and tally count of method pairs whose

similitude isn't zero. Along these lines, LCOM value ought to be kept Low and cohesion

high.

3.2 Jhawk Metrics

Jhawk Tool captures more then 35 Object oriented metrics, it included Name of

the Class, Weighted Methods Per Class, LCOM, Total Cyclomatic Complexity,

Number of statements, Modifiers, Interfaces, Response for Class, Message passing,

Coupling between objects, Maintainability Index (MI), Cohesion, (DIT)Depth of

Inheritance Tree, Lines of code etc.

18

3.3 Software Maintainability model

In our study, the dependent variable is the MI and its Predicted value of classes &

the OO metrics of the class is the independent variables. The objective of our study is to

establish the relation of OO metrics, the change in OO metrics in subsequent version of

class of operating system. We have used CKJM metrics with other OO metrics as

independent variables. It is also calculated using JHAWK tool along with OO metrics

generation. The metrics given by C&K [2] are summarized in Table 3.2. In figure 3.2.1,

MI is the dependent variable which dependent on independent variables. Maintainability

model used in Jhawk is as below:

MI = 171 - 3.42ln(aveE) - 0.23aveV(g') - 16.2ln(aveLOC) + (50 * sin(sqrt(2.46*aveCM))

[I]

19

Chapter 4: Research Methodlogy

We have conducted an empirical validation of correlation between MI and code

refactoring of 12 releases of the android OS given in Table 3.1 1 using the following

steps.

1. Pre-processing of android repository.

2. Generating OO metric change data set from the output of step 1.

3. Building JArchitect pprojects for each and every OS version under consideration.

4. Generating and mapping the Refactoring data of repository.

5. Plotting the refactoring data w.r.t to component MI of Calendar app and

representing graphical results.

Figure 4. 1 Dataset construction and analysis-process

20

4.1 Preprocessing of Data

In this segment, we check the MI and refactoring metric generation techniques. MI

model[I] is based on OO measurements utilizing Jhawk tool. The number of Lines of

code(LCOM) in donut is 9588, eclair has 11093, froyo has 11697, gingerbread has

12549, ICS has 25410, JB has 28914, kitkat as 34208 and all later OS adaptation has

34281 classes from lollipop to pie. KitKat onwards, the OO metric information is

relatively same, which is clear from Table 5.1. As the quantity of classes are relatively

same, in working framework KitKat or more forms, we will discuss about Donut, Eclair,

Froyo, Gingerbread, ICS, JB and KitKat OS versions of calendar application.

4.2 Jhawk Tool Outputs

In our study, MI metric of each class & the OO metrics of the class is focused. The

objective of our study is to establish the relation of OO metrics, the MI metric and code

refactoring in subsequent version of classes of calendar operating system. We have used

CKJM metrics with other OO metrics as independent variables. It is also calculated using

JHAWK tool along with OO metrics generation. The metrics given by C&K [2] are

summarized in section 3.1 2.

21

1. Donut Operating System

As illustrated in Figure 4. 2, Donut version of Calendar was very small module , which is

having only 97 java classes, therefore its overall maintainability is good when compared

with other operating system versions. The total number of codes is 9588, and MI is 92.91.

And as the size is less, the scope of refactoring also reduces. Table 5.1 1 shows that the

refactoring is also lowest when Éclair version came.

Figure 4. 2 Jhawk output for Donut

22

2. Eclair Operating System

Figure 4. 3 , is having Éclair system analysis of Calendar application. In MI metric value

shown an improvement of 0.14 units, and as per data set, refactoring is also there. So our

data-set is also inclined with Jhawk output.

Figure 4. 3 Jhawk output for Eclair

23

3. Froyo Operating System

Froyo version of calendar application has total of 111 classes, 574 methods and 94.15 MI

metric. The maintainability index of foryo is degraded. This is due increase in size of

system. And the value of refactoring metric is more when compared with Ecliar and

gingerbread. This result is deviating from our expectations. And similar results are

captured in figure 4. 18 and figure 4. 19. In these figures the refactoring happened in the

area where classes had good maintainability. The reason behind it is the new feature

support and new functionality addition. This result shows that our refactoring calculation

is having exceptions.

Figure 4. 4 Jhawk output for Froyo

24

4. Gingerbread Operating System

In gingerbread version of calendar application, we see a increase in SIZE metric of

system, number of classes increased to 123, and MI is 94.19,Therefore we can see that

SIZE is increased so MI should degrade. But there is no significant change in MI.

Figure 4. 5 Jhawk output for Gingerbread

25

5. ICS Operating System

As shown in figure 4. 6, the ICS version of calendar has 220 Classes and 25410 number

of lines of code. And MI value is 95.96.Size is increased by significant amount and still

there is an improvement in MI. Also the refactoring is also highest in this OS version, due

to which MI metric od system uplifted. Therefore we got the expected result.

Figure 4. 6 Jhawk output for ICS

26

6. JB Operating System

In JB version of Calendar, we see that there is significant changes in SIZE, number of

classes became 255 and number of lines of code became 28914.And refactoring is also

recorded little less.

Figure 4. 7 Jhawk output for JB

27

7. Kitkat Operating System

Kitkat version of calendar has MI of 96.02 unit and 324 number of classes. It has 34208

lines of code. But JB had lesser size metric still the MI is almost same, So, we checked

the refactoring in this case. From Figure 5.1 2 Kitkat recorded second highest refactoring.

Therefore result is also as per our expectation, with the increase in relevant oo metric,

the MI metric remained good due to high refactoring value.

Figure 4. 8 Jhawk output for Kitkat

28

8. Lollipop Operating System

Lollipop has 96.02 MI and 34281 lines of code. The SIZE metric is almost same as

kitkat. Also now onwards, the metric data is almost same for all the OS versions,

therefore we will limit our study till lollipop version.

Figure 4. 9 Jhawk output for Lollipop

29

9. Marshmallow Operating System

The system output w.r.t to OO metric is same as that of previous operating system

version .The discussion in Kitkat can be referred.

Figure 4. 10 Jhawk output for Marshmallow

30

10. Nougat Operating System

Nougat version of operating system is having same metric output as previous version.

Figure 4. 11 Jhawk output for Nougat

11. Oreo Operating System

Oreo operating system version of calendar has exactly same system output using Jhawk

tool, as Nougat had.

Figure 4. 12 Jhawk output for Oreo

31

12. Pie Operating System

Pie version of calendar application has same system results as last OS version.

Figure 4. 13 Jhawk output for Pie

32

33

4.3 Object Oriented metric capturing process

Jhawk tool , is static tool which is used in this study as object oriented metric

capturing software. This tools is used as it already been used in multiple study

areas[23].The indepth explanation is already done in section 3.1 .The data set generated is

verified and and we made some change after manually checking with JArchitect tool

outputs.

4.4 Refactoring Dataset construction

The informational collection is done utilizing Jhawk , Ref-finder and Jarchitect

Tools. As we have utilized various apparatuses in this study, greatest time utilized in

mapping the class information from Ref-discoverer and JArchitect to information caught

by Jhawk.The code-repository[22] is downloaded, which is open-source and accessible to

everybody. We picked calendar application as source-code to be investigated and

analysed. This code is utilized on the grounds that the Calendar application isn't yet

researched by any scientist and we needed to check the relationship is same as portrayed

in past studies [10,11,13]. We analyzed the outcomes and discovered that outcomes are

inclined with past investigations. Jarchitect device is utilized to discover the code-smell

and naming standard infringement in code.

 Code Smells captured by JArchitect includes types too large, types with so

many methods, types with multiple fields, methods too large, so much complex methods

with multiple parameters, methods with too many local variables, methods with too many

overloads, methods with less comments, types with bad cohesion. These code smells are

mapped to the classes and generated the metric. If we have 3 methods as too big code

smell which belongs to same class , then we add 3 in too big method code-smell of that

class. Now once we have the all the measurements corresponding to code-smells , then

we will check for the change in code-smell in next OS versions. If there is any change ,

we have treated it as related refactoring. This is very critical and time taking activity.

Similarly code smells for all the OS versions under study were captured and mapped to

the correct class. Then 2 consecutive OS versions are compared and Code smell change is

calculated. And this change is treated as one refactoring as per JArchitect tool.

34

As shown in Figure 4.14 Naming conventions captured in JArchitect are Instance fields

should begin with a lower , Interface name should begin with an Upper character ,

Exception class name should be suffixed with 'Exception' , Types name should begin

with an Upper character , Methods name should begin with an lower character , Avoid

types with name too long , Avoid methods with name too long , Avoid fields with big

name , Avoid prefixing type name with parent package name , Avoid naming types and

packages with the same name . These naming convention violation data is also mapped to

the classes and then compared with neighbouring version. If name change is observed or

classes with similar functionality is added in new version and removed from previous

version, then Naming related refactoring is updated for that class and method. This

complete process is manual and very time consuming.

4.4.1 Code-Refactoring

When a software's source code is effectively understandable, the software is more

maintainable, prompting decreased expenses and enabling valuable advancement assets

to be utilized somewhere else. In the meantime, if the code is all around organized, new

prerequisites can be presented more productively and with less issues. These two

improvement errands, maintainability and upgrade, frequently struggle since new

highlights, particularly those that don't fit neatly inside the first outline, result in an

expanded support exertion. The re-factoring procedure expects to lessen this contention,

by helping non damaging changes to the structure of the source code, keeping in mind the

end goal to improve code clearness and viability. Below are some of the refactoring-types

which are considered in analyzing the data-set.

 Rename

A method, variable, class or other java thing has a name that is deceiving or befuddling.

This requires all references, and conceivably record areas to be refreshed. The way

toward renaming a method may incorporate renaming the method in subclasses and

customers. Then again, renaming a bundle will likewise include moving documents and

catalogs, and refreshing the source control framework.

35

 Move Class

A Class is in the wrong package, it ought to accordingly be moved to another package

where it fits better. All import proclamations or completely qualified names alluding to

the given class should be refreshed. The record will likewise must be moved and

refreshed in the source control framework.

 Extract Method (Long Methods)

A long method should be separated to upgrade decipher-ability and viability. A segment

of code with a solitary legitimate errand is supplanted with a conjuring to another

method. This new method is given appropriate parameters, return compose and special

cases. By giving the method a demonstrate and enlightening innocence, the first method

ends up less difficult to comprehend as it will read like pseudo-code. Extricating the

method additionally enables the method to be reused in different spots, impractical when

it was tangled among the bigger method. On the off chance that the removed area is well

picked, this method might be a characteristic place to change the conduct of the class

through subclass, as opposed to a reorder of the current method before rolling out

improvements.

 Extract Classes and SuperClasses

A current class gives usefulness that should be altered somehow. A unique class is

presented as the parent of the present class, and after that regular conduct is "pulled up"

into this new parent. Customers of the current class are changed to reference the new

parent class, permitting elective usage (polymorphism). Any methods which are basic to

the solid classes are "pulled up" with definitions, while those that will change in

subclasses are left unique. And in addition supporting in productive code re-utilize, it

36

likewise enables new subclasses to be made and utilized without changing the customer

classes.

 Replace Conditions with Polymorphism (too many conditional statements)

Methods in a class as of now check some esteem (if or switch statement) keeping in mind

the end goal to choose the correct activity to perform. One unimportant illustration is a

class that draws a shape, which is characterized by a width and sort (circle or square).

The code rapidly winds up confounding as the same if or switch statements are rehashed

all through the class, i.e. in methods that compute the territory or edge of the shape. By

utilizing polymorphism, the shape particular conduct can be offloaded to subclasses,

rearranging the code. This has the additional advantage of permitting different subclasses,

e.g. rectangle or star, to be presented without broad code changes.

With every issue over a pretty much evident arrangement has been expressed, as well.

Nonetheless, it is obvious to each accomplished programming designer that there are

more convoluted code issues, for which straightforward arrangements can not all that

effectively be introduced. Clearly, a product designer will normally apply re-factorings

effectively just, on the off chance that he/she knows how the product should look like at

last. As it were, before attempting to refactor some code, one needs to acquaint oneself

with the basic protest arranged outline designs and re-factorings.

Other than above mentioned refactoring, Fields Removed, Methods removed, Classes

Removed, Methods Direct Calling, Method indirect Calling and Classes with poor

cohesion are also considered in this study. All these refactoring types have self-

explanatory names.

37

4.4.2 JArchitect Tool

Figure 4. 14 JArchitect Tool

 JArchitect is able to tell the developer that over the past hour, the code just

written has introduced debt that would cost for example about 30 minutes should it have

to be repaid later. Knowing this, the developer can fix the code before even committing it

to the source control. With JArchitect code rules are LINQ queries that can be created

and customized in a matter of seconds. These queries contain formulas to compute

accurate technical debt estimations.The default rule-set offers over a hundred code rules

that detect a wide range of code smells including entangled code, dead-code, API

breaking changes and bad OOP usage.

38

Figure 4. 15 Metric-View of Calendar-Lollipop Version

The Metric view of JArchitect tool shows a method and its size and cyclomatic

complexity. So the bigger rectangle in metric view seems to be a code smell, which can

be directly access using this metric view.

39

Figure 4. 16 Code-Smells captured by JArchitect of Calendar-Lollipop Version

Code Smells captured by JArchitect included all the events as mentioned in section 4.4,

As shown in Figure 4.16.

Table 4. 1 Code-Smell and other Metrics captured

40

 As shown in Table 4.1, Naming conventions captured in JArchitect are Instance

fields should begin with a lower , Interface name should begin with an Upper character ,

Exception class name should be suffixed with 'Exception' , Types name should begin

with an Upper character , Methods name should begin with an lower character , Avoid

types with name too long , Avoid methods with name too long , Avoid fields with name

too long , Avoid having different types with same name , Avoid prefixing type name with

parent package name , Avoid naming types and packages with the same identifier .

4.5 Results

In this section, we will discuss about correlation pattern between MI and

refactoring. MI model is based on generated data set of OO metrics using Jhawk tool..

The number of classes in donut is 97, eclair has 107, froyo has 111, gingerbread has 123,

ICS has 123, JB has 255, kitkat as 342 and all other OS version has 326 classes from

lollipop to pie. KitKat onwards, the OO metric data is also almost same, which is evident

from Table 5.1. As the number of classes are almost same, in operating system KitKat

and above versions, we will consider only Donut, Eclair, Froyo, Gingerbread, ICS, JB

and KitKat. The data set is generated using Jhawk , Ref-finder and Jarchitect tools. As we

have used multiple tools therefore, maximum time is invested in mapping the class data

from Ref-finder and JArchitect to data captured via Jhawk.The code-repository[22] is

downloaded, which is open-source and available to everyone. We chose calendar app as

source-code to be analysed. This repository is used as, Calendar app software code is not

yet analysed by any researcher and we wanted to verify the correlation is same as

described in past study [10,11,13]. We compared the results and found that results are

inclined with the previous studies. JArchitect tool is used to find out the code-smells and

naming rule violations in code. Figure 4. 16 shows the captured information of one of the

OS version. After this, we compared the final data-set and the results are discussed in

following sections.

41

4.5.1 DONUT-ECLAIR Correlation

Figure 4. 17 MI and Refactoring of Donut & Éclair

 Figure 4.17 shows comparison between MI metric of donut and refactoring of

Éclair version of Calendar. We have not considered the negative change in data-set. If

negative change is observed, then it is changed to zero in data-base. In almost all the

negative cases, either the classes were not present in previous version of calendar or there

was a feature enhancement due to which code-smell measurement were increased.

Keeping these point in mind, we have mapped the total refactoring with MI metric and

found that the classes which were having very poor maintainability are refactored more in

its next OS version. Therefore the past studies are verified with positive results. The

result of this correlation is shown in Figure 4.17

4.5.2 ÉCLAIR-FROYO Correlation

Figure 4.18 shows comparison between class level MI metric and refactoring. MI

in Éclair and refactoring in foryo, shown the same result but 4 to 5 exceptional peaks

were observed. When the classes checked in code then it was found that new features

were added in Froyo. Due to new functionality the code-smells increased and due to

0

5

10

15

20

25

30

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3

1
0

6

Donut-Eclair : Refactoring vs MI

Refactoring

MI

42

which refactoring measurement also increased. Therefore our method of finding

refactoring has a threat and is not completely valid. Below is the result of correlation with

an exception at good maintainability also refactoring happened.

Figure 4. 18 Eclair-Froyo : Refactoring vs MI

4.5.3 FROYO-GINGERBREAD OS Correlation

Figure 4.19 shows comparison between Froyo and Gingerbread, MI metric of

froyo is correlated with Gingerbread’s refactoring. Similar result is observed with one

exception that is the class which is having comparatively good Maintainability is

refactored most.

0

10

20

30

40

50

60

70

80

1

4

7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3

1
0

6

Eclair-Froyo : Refactoring vs MI

Refactoring

MI

43

Figure 4. 19 Froyo-Gingerbread : Refactoring vs MI

4.5.4 GINGERBREAD-ICS OS Correlation

Figure 4.20 shows comparison between gingerbread and ICS, MI metric of

gingerbread and refactoring of ICS. The results are same, but in this correlation, we have

observed that refactoring magnitude is too big, this means ample amount of refactoring

were carried out in ICS OS.

Figure 4. 20 Gingerbread-ICS : Refactoring vs MI

0

10

20

30

40

50

60

70

1

4

7

1
0

1

3

1
6

1

9

2
2

2

5

2
8

3

1

3
4

3

7

4
0

4

3

4
6

4

9

5
2

5

5

5
8

6

1

6
4

6

7

7
0

7

3

7
6

7

9

8
2

8

5

8
8

9

1

9
4

9

7

1
0

0

1
0

3

1
0

6

1
0

9

Froyo-Gingerbread : Refactoring vs MI

Refactoring

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Gingerbread-ICS : Refactoring vs MI

Refactoring

MI

44

4.5.5 ICS-JB OS Correlation

Figure 4.21 shows comparison between ICS and JB, MI metric of ICS and

refactoring in JB. The results are still inline with the previous results. And it seems like

Calendar app is showing the expected behaviour as per out study so far, Except for the

exceptional peaks seen in the area where maintainability is good.

Figure 4. 21 ICS-JB : Refactoring vs MI

4.5.6 JB-KITKAT OS Correlation

Figure 4.22 shows comparison JB and Kitkat OS version of calendar app. The

results similar, and those classes are most refactored which were having less

maintainability as per MI metric.

0

10

20

30

40

50

60

70

1

8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

ICS-JB : Refactoring vs MI

Refactoring

MI

45

Figure 4. 22 JB-Kitkat : Refactoring vs MI

0

100

200

300

400

500

600

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

JB-Kitkat : Refactoring vs MI

Refactoring

MI

46

Chapter 5: Conclusion & Future Work

In Our work we have found relationship among OO Metrics, Code-smells,

Refactoring and Maintainability of any class. Finally, the purpose of the examination in

this thesis is to add the collection of information about correlation between MI and

refactoring. The study of operating system versions of android application Calendar

shows that object oriented metrics [2] maintainability [3,4,5] and Code refactoring[14]

are closely related. Also multiple OO metrics gets effected by code refactoring including

code-smells, naming rules and dead code.

Table 5. 1 System Data

OS
Version

Total
Numb
er of
Class
es

Total
Cycloma
tic
Complex
ity

Total
number
of Java
stateme
nts

Cumulati
ve
Halstead
Bugs

Maintainabi
lity Index

Total
Line
of
Code
in the
Syste
m

Total
number
of
Comme
nts in
the
system

Total
numbe
r of
Metho
ds

Donut 97 1324 7445 104.99 92.91 9588 38 461

Éclair 107 1599 8602 121.27 92.76 11093 42 523

Froyo 111 1714 9051 126.16 94.15 11697 46 574

Gingerbre
ad 123 1851 9716 136.65 94.19 12549 47 621

ICS 220 3882 19444 265.09 95.96 25410 79 1321

JB 255 4416 22033 303.4 96.12 28914 86 1562

Kitkat 324 5266 25857 360.74 96.02 34208 108 1843

Lollipop 326 5273 25904 361.64 96.02 34281 109 1847

Marshmall
ow 326 5273 25904 361.64 96.02 34281 109 1847

Naugat 326 5273 25904 361.64 96.02 34281 109 1847

Oreo 326 5273 25904 361.64 96.02 34281 109 1847

Pie 326 5273 25904 361.64 96.02 34281 109 1847

The motivation behind the MI was to give a marker of practicality where high MI

reflected good maintainability and low MI bad maintainability. Maintainability was

examined utilizing OO metric. Eclipse project of Twelve OS versions of the Calendar

application, were used as a basis of the this study. The basic inspiration behind why the

47

relationships were huge seemed, to be a direct result of refactoring of the code segment

having very poor MI metric. The below table and graph 5.1 shows the results, that

maximum refactoring happened in those classes which has the significantly low

maintainability.

Figure 5. 1 : MI ,TCC,NOM,LOC(java statement) metric plot of 12 OS versions of

Calendar app.

Figure 5. 2 : Total Refactoring in 6 OS versions of Calendar app.

92.91 92.76

94.15 94.19

95.96 96.12 96.02 96.02 96.02 96.02 96.02 96.02

91

92

93

94

95

96

97

0

5000

10000

15000

20000

25000

30000

System data

Total Cyclomatic Complexity Total number of Java statements

Total number of Methods Maintainability Index

0

100

200

300

400

500

600

700

800

900

Eclair Froyo Gingerbread ICS JB Kitkat

Refactorings

48

 From our experiment, we found that for ICS version, the refactoring is more as

compared to other operating system versions and its MI metric is comparatively good

when compared with higher end OS version, it is visible in Figure 5.1 and 5.2.

MI and refactoring correlation is significant Hence, we can conclude our work on

Refactoring is more in the classes in subsequent releases of Android OS Data sets (like

Android Donut to Pie Release),with bad MI metric value.

49

Bibliography

[1] W. Li, “Another Metric Suite for Object-oriented Programming”,The Journal of

System and Software, vol 44, no : 2, pp 155–162,December 1998.

[2] IEEE Standard. 1219-1993 IEEE Standard for Software Maintenance. INSPEC

Accession Number: 4493167 DOI:10.1109/IEEESTD.1993.11557 Journal .1993

[3] W. Li and S. Henry, "Object-Oriented Metrics that Predict Maintainability," Journal

of Systems and Software, vol. 23, no 2,pp. 111-122, 1993

[4] S. R. Chidamber and C. F. Kammerer, "A Metrics Suite for Object Oriented

Design," IEEE Transactions on Software Engineering, pp. 20, 6, 476-493., 1994.

[5] S. Chidamber, R. Shyam and C. Kamerer, “Towards a metrics Suite for Object-

Oriented Design Proceedings”, Proceeding of Conference on object – oriented

programming systems, languages and applications, OOPSLA'91, pp.197-211,

November, 1991

[6] S.Counsell , X.Liu ,S.Eidh,R.Tonelli, M.Marchesi,G.Concas and A.Murgia, “Re-

visiting the 'Maintainability Index' Metric from an Object-Oriented perspective ”,

Published in: 2015 41st Euromicro Conference on Software Engineering and

Advanced Applications , DOI: 10.1109/SEAA.2015.41

[7] Baqais,A.,Alshayeb,M.,& Baig,z..A. (2014), " Hybrid intelligent Model for Software

Maintenance prediction," Proceedings of World Congress on Engineering, pp 358–

362.London,U.K. Springer.

[8] Celia Chen, Shi Lin, Michael Shoga, Qing Wang and Barry Boehm, " How Do

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7302131
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7302131
https://doi.org/10.1109/SEAA.2015.41

50

Defects Hurt Qualities? An Empirical Study on Characterizing a Software

Maintainability Ontology in Open Source Software," in IEEE International

Conference on Software Quality, Reliability and Security (QRS), 2018

[9] S. Counsell, X. Liu, S. Swift,J. Buckley,M. English,S. Herold,S. Eldh and A.

Ermedahl, "An exploration of the 'introduce explaining variable' refactoring"

published in Proceeding XP '15 workshops Scientific Workshop Proceedings of the

XP2015 Article No. 9 and Helsinki, Finland — May 25 - 29, 2015 ACM New York,

NY, USA ©2015 table of contents ISBN: 978-1-4503-3409-9

[10] István Kádár, Péter Heged˝us, Rudolf Ferenc and Tibor Gyimóthy, "A Code

Refactoring Dataset and Its Assessment Regarding Software Maintainability" ,978-

1-5090-1855-0/16 $31.00 © 2016 IEEE DOI 10.1109/SANER.2016.42

[11] István Kádár, Péter Heged˝us, Rudolf Ferenc and Tibor Gyimóthy, "A Manually

Validated Code Refactoring Dataset and Its Assessment Regarding Software

Maintainability",2016 ACM. ISBN 978-1-4503-2138-9 , DOI:

10.1145/2972958.2972962

[12] Francesca Arcelli Fontana and Stefano Spinelli,"Impact of refactoring on quality

code evaluation"Published in:in Proceeding WRT '11 Proceedings of the 4th

Workshop on Refactoring Tools Pages 37-40 and Waikiki, Honolulu, HI, USA —

May 22 - 22, 2011 ACM New York, NY, USA ©2011 ,table of contents ISBN: 978-

1-4503-0579-2 doi>10.1145/1984732.1984741

[13] Ruchika Malhotra and Anuradha Chug, "An Empirical Study to Assess the Effects

of Refactoring on Software Maintainability" , 2016 Intl. Conference on Advances in

51

Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016

[14] Book : "Refactoring-Improving the Design of Existing Code" by Martin Fowler ,

https://martinfowler.com/books/refactoring.html

[15] M. Fowler,"Refactoring : Improving the design of existing Code." Addison-Wesley

profestional,1999.

[16] Mie Mie ThetThwin and Tong-SengQua,"Application of neural networks for

software quality prediction using object-oriented metrics" ,Journal of Systems and

Software Volume 76, Issue 2, May 2005, Pages 147-156

[17] John T. Foreman, Jon Gross, Robert Rosenstein, David Fisher, Kimberly Brune ,"C4

Software Technology Reference Guide: A Prototype" , Software Engineering

Institute Carnegie Mellon University,1997

[18] Birgit Geppert, Audris Mockus, and Frank Rößler, "Refactoring for Changeability:

A way to go?", 11th IEEE International Software Metrics Symposium (METRICS

2005) 1530-1435/05 $20.00 © 2005 IEEE

[19]

[20]

R. Malhotra and A. Chug, "Software Maintainability Prediction using Machine

Learning Algorithms," in An International Journal (SEIJ), Vol. 2, No. 2,

SEPTEMBER 2012

JHawk tool, [online] Available: virtualmachinery.com/jhawkprod.htm..

[21]

[22]

JArchitect tool, [online] Available: https://www.jarchitect.com/.

Code-repository :

https://android.googlesource.com/platform/packages/apps/Calendar/

[23] http://www.virtualmachinery.com/jhawkreferences.htm

https://martinfowler.com/books/refactoring.html

52

53

