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ABSTRACT

The main precondition for applications such as face recognition and face de-identification
for privacy protection is efficient face detection in real scenes.The proposal is a multi stage
cascade model for face detection . The cascaded two-stage model is based on the
fast normalized pixel difference (NPD) detector at the first stage, and MTCNN based
CNN at the second stage. The outputs of the NPD detector are having small number of false
negative (FN) and a much higher number of false positive face (FP) detections.Order of
magnitude of FP detections are typically higher than the FN ones. Due to this very
high number of FPs hasa negative impacton recognition and de-identification
processing time and on the naturalness of the de-identified images. To suppress the effect
of large number of FP face detections, a CNN is used at the second stage. The CNN is
applied only on face region solution obtained by the NPD detector that have an NPD score
in the interval between two experimentally determined thresholds. The experimental results
on the part of the Face Detection Dataset and Benchmark (FDDB) show that the hybrid
cascade model significantly reduces the number of FP detections while the number of FN

detections are only slightly increased.
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ABSTRACT

The main precondition for applications such as face recognition and face de-identification
for privacy protection is efficient face detection in real scenes.The proposal is a multi stage
cascade model for face detection . The cascaded two-stage model 1is based on the
fast normalized pixel difference (NPD) detector at the first stage, and MTCNN based
CNN at the second stage. The outputs of the NPD detector are having small number of
false negative (FN) and a much higher number of false positive face (FP) detections.Order
of magnitude of FP detections are typically higher than the FN ones. Due to this very
high number of FPs has a negative impacton recognition and de-identification
processing time and on the naturalness of the de-identified images. To suppress the effect
of large number of FP face detections, a CNN is used at the second stage. The CNN is
applied only on face region solution obtained by the NPD detector that have an NPD score
in the interval between two experimental 1y determined thresholds. The
experimental results on the part of the Face Detection Dataset and Benchmark (FDDB)
show that the hybrid cascade model significantly reduces the number of FP detections

while the number of FN detections are only slightly increased.



CHAPTER 1

INTRODUCTION

Today, examine on machine vision is spreading enormously so it is practically hard to
organize every last bit of its subtopics. Despite of this, one can rundown important a few
provisions, for example, face processing (i.e. gesture recognition and face expresssion),
machine human cooperation, swarm reconnaissance, and substance-based picture recovery.
Almost all of the applications stated above require detection of face, which can be
basical 1y seen as a preprocessing step for obtaining the “object”. The face is our essential
focal point of consideration in social life assuming an imperative part in passing on
emotions and character. We can see other appearances adjusted all around our lifespan and
distinguish faces considerably after numerous years of division. This fitness is
exceptional 1y hearty in spite of numerous varieties in visual jolt because of maturing,
changing condition and preoccupations, for example, glasses, facial hair or changes in

hairstyle.

Face detection is a technology that finds the human faces and sizes in digital images. It
perceive just the the faces and rejects non-faces objects , such as trees, bodies and buildings.
Face detection might be recognized as a more broad case of face confinement. It is the basic
building block of all facial analysis, e.g., face localization, face recognition,face
authentication, facial feature detection, face tracking, and facial expression recognition.
The objective of face detection is to find out if whether face is present or not in the picture
and, if present, then give back where it is and the characteristic of each one face. While
face detection is an inconsequential assignment for human vision, it is a test for
machine vision  because of the various factors like varieties n scale,
area, introduction, posture, facial articulation, 1light condition and other appearance
characteristics. Face detection is generally used within numerous places now a days
particularly the sites facilitating pictures like instagram,facebook and picassa. The

subsequently naming or labelling characteristic adds another challenge to find the



individuals who are in the picture and in 1ike manner gives the thought to other individuals

about who the individual is in the picture.

There exist two other types of face detection problems:

Face detection in images: Most face detectors are focus a little amount of the entire
face, by dispensing with the majority of the foundation and other zones of
a singular's head, for example, hair that are not important for the face
distinguishment . With static pictures, this is frequently done by running a sliding
"window" over the picture. The face detection structure then finds if a face is
available inside the window. Unfortunately, with static pictures there is a immense
chase space of conceivable areas of a face in a picture. Faces could be expansive or

little and be situated anyplace from the upper left to the easier right of the picture.

Real-time face detection : Continuous-face recognition includes discovery of face
from an arrangement of casings from a feature-catching gadget. Real time
face detection is really extremely a significantly more direct strategy than
recognizing a face in static pictures. It is in light of the fact that not at all like a
large portion of our nature, individuals dependably keep moving. We walk around,

wriggle, wave our hands about, squint and so on.

1.1 Applications Of Face Detection

Facial recognition :Face detection is valuable in biometrics, as a bit of or
together with a facial distinguishment framework. It is in like manner utilized as a
part of human machine interface, video surveillance and image database

management.

Photography : Autofocus is utilized in Digital cameras for face detection technique.
Face detection is helpful for choosing regions of interest in photo slideshows that

use a pan-and-scale Ken Burns effect.



e Marketing : Face detection is getting up the enthusiasm of all advertisers. A webcam
may be facilitated into a TV and identify any face that strolls by. At that point the
framework computes the sexual orientation, race and age extent of the face. Once
the data is collected, an arrangement of notices might be played that is specific
towards the identified age/race/sex. A case of such a structureis known as Optimeyes

and is coordinated into Amscreen digital signage system.

e Smart captcha :It is a mixture of an adequately existing captcha which utilizes
sounds and realistic pictures . On the other hand, utilizing a face or
movement discovery engineering we are not going to inconvenience clients
with perceiving peculiar letters and vague sounds any more. All that the customer
needs is to show his face in movement so that the site holder could make certain

that he is an individual, and not a machine.

1.2 Method Description

For successful authentication (verification or identification) and face de-identificationfor
privacy protection of face-based is efficient face detection in real scenes. It is very hard and
challenging task for detection of faces in the wild . The major constraining factors are the
variability and diversity of the face poses, occlusions, expression variability, variant

il lumination conditions, scale variations, and the richness of colour and texture.

Recently, many methods have been proposed for face detection: the unified model for face
detection, pose estimation and landmark localization called the Deformable Parts Model
(DPM) [2], a detector which is based on multiple registered integral image channels [3], a
face detector based on Normalized Pixel Difference (NPD) [1], a deep neural network
detector [5], and a very deep convolutional network detector [6]. An other approach to
robust face detection is based on cascades consisting of multilevel homogenous or
hybrid stages. In general, the first stages are fast and having less computational cost but
less accurate in the sense of FP detections, and the next stages are used for reducing FP
detections with having minimal impact on FN detections. One of the earliest work on
homogenous cascade models for face detection is described in [7]. The model was based
on, for fast face detection and localization in images using nonlinear Support Vector

Machine (SVM)cascades of a reduced set of support vectors. The cascaded model has a



thirty-fold speed-up compared to using the single level of a SVM. In [8], a face detection
algorithm, called DP2MFD, capable of detecting faces of various sizes and poses in
unconstrained conditions is proposed. It consists at the first stage of deep pyramid
convolutional neural net-works (CNNs), and a deformable part model (DPM) at
the second stage. The inputs of the detector are a colour image resolution pyramid
with seven levels. Other CNNs are used for several levels at each stage. The output of
the detector is based on a root-filter DPM and a DPM score pyramid. Extensive experiments
on AFW, FDDB, MAI1F, 1IB-A unconstrained face detection test sets have demonstrated
state-of-the-art detection performance of the cascade model. A joint cascade face detection
and alignment is described in [9]. It is combination of the Viola-Jones detector with having
a low threshold to ensure high recall at the first stage, and at the second stage pose
indexed features with boosted regression [10] are used for detection of face. A two-
stage cascade model for robust head-shoulder detection is introduced in [11]. It is
combination of several methods as follows: At the first stage a histogram of gradients
(HOG) and a local binary patterns (1BP) feature-based classifier, and a Region Covariance
Matrix (RCM) at the second stage. In [12], cascade architecture built on CNNs with high
discriminative capability and performance is proposed. The CNN cascade operates at
multiple resolutions and it quickly rejects the regions at background at fast 1ow-resolution
stages, and at the last high-resolution stage it carefully evaluates a small number of
challenging candidates. To improve localization effectiveness and reduce the number of
candidates at later stage , a so-called CNN-based calibration stage is introduced. The
proposed cascade  model  achieves state-of-the-art performance  and near  real

time performance for VGA resolution (14 FPS on a single CPU).

In [13],a two-stage cascade model for unconstrained face detection in which the first stage
is based on the NPD detector, and in the second stage the CNN used inspired from MTCNN.
The experimental results on part of the Face Detection Dataset and Benchmark (FDDB) [15]
showed that the two-stage model significantly reduces false positive detections while
simultaneously the number of false negative detections is increased by only a few . These
recent papers have shown that a multi-stage organization of several detectors significantly

improves face detection results compared to "classical" one-stage approaches.



CHAPTER 2

LITERATURE REVIEW

Early efforts in face detection have gone over as promptly as beginning of the 1970s,
where basic anthropometric and heuristic systems were utilized. These frameworks are
general ly unyielding due to other presumptions, for example, plain foundation, frontal
face a common visa photo situation. To every one of these frameworks, any change in
picture conditions might mean a fine-tuning, if not a complete overhaul. Notwithstanding of
all these issues, the development of exploration investment stayed steady until the 1990s,
when convenient and genuine face distinguishment and feature coding frameworks began to

start on an actuality.

Over the past few decades there has been a great deal of examination excitement traversing
distinctive critical parts of face identification. More hearty division designs have been
presented, generally those utilizing color, movement and summed up data. The usage of
neural systems and facts has likewise empowered appearances to be recognized from

cluttered scenes at various partitions from the Polaroid.

Additional 1y there are other developments in the configuration of characteristic extractors,
for example, deformable layouts and the dynamic shapes which can find and track the
facial characteristics appropriately.The ash data inside a face can additional 1y be utilized
as attributes. Facial characteristics, for example, understudies, eyebrows and 1ips show up
for the generally darker than their encompassing facial locales. This property could be

misused to isolate other facial parts.

Other late facial characteristic extraction computations chase nearby light black
minima inside divided facial regions. In these estimations, the info pictures are first
upgraded by complexity-extending and ash-scale morphological schedules to expand the
nature of neighborhood dim patches in this way make location less demanding. The of

dim patches is accomplished by low-level ash-scale thresholding.



On the provision side, Wong et al. execute a robot that finds for dim facial districts inside
face applicants got in a roundaboutly from shade examination. The figuring makes
utilization of a weighted human eye layout to focus areas of an eye pair. In Hoogenboom
and lew, neighborhood maxima, that are characterized by a bril liant pixel encompassed by
eight dull neighbors, are utilized rather to show the splendid facial spots, for example,
nose tips. The disclosure focuses are then changed in accordance with the characteristic

formats for connection estimations.

Yang and Huangon the other hand, investigated the light black-scale conduct of
countenances in mosaic (pyramid) pictures. At the point when the determination of a
face picture is diminished either by averaging or subsampling , naturally visible
characteristics of the face will vanish. At low determination, face locales will get
uniform. Considering this perception, Yang proposed a other leveled face discovery

schema.

Starting from 1ow determination pictures, face hopefuls are dictated by a situated of decides
that hunt down uniform areas. The face hopefuls are then confirmed by presence of
conspicuous facial attributes utilizing neighborhood minima at higher resolutions. The
strategy of Yang and Huang was consolidated into a framework for rotation invariant face
recognition by 1v et al. furthermore an expansion of the calculation is displayed in

Kotropoulos and Pitas.
2.1 Face Detectors

As indicated in a survey of face detection methods [16], the most popular face detection
methods are appearance based, which use local feature representation and classifier
learning. Viola and Jones’ face detector [17] was the first one to apply rectangular Haar-
like features in a cascaded AdaBoost classifier for real-time face detection. Many
approaches have been proposed around the Viola-Jones detector to advance the state of the
art in face detection. lienhart and Maydt [18] proposed an extended set of Haar-like
features, where 45 rotated rectangular features were introduced. 1i et al. [19] proposed
another extension of Haar-1ike features, where the rectangles can be spatial 1y set apart with
a flexible distance. A similar feature, called the diagonal filter was also proposed by

Jones and Viola [17].



Various other local texture features have been introduced for face detection, such as the
modified census transform [20], local binary pattern (1BP) [21], MB-1BP [22], 1BP
histogram [23], and the locally assembled binary feature [24]. These features have
been shown to be robust to il lumination variations. Mita et al. [25] proposed the joint
Haarlike features to capture the co-occurrence of effective Haar-1ike features. Huang et al.
[26] proposed a sparse feature set in a granular space, where granules were represented by

rectangles, and each individual sparse feature was learned as a combination of granules.

A problem with the approaches in [25] and [26] is that the joint feature space is very large,
making the optimal combination a difficult task. While more sophisticated features may
provide better discrimination power than Haar-1ike features for the face detection task, they
general 1y increase the computational cost. In contrast, ordinal relationships among image

regions are simple yet effective image features [25], [26], [27], [28], [29], [30], [31].

Sinha [25] found several robust ordinal relationships in face images and developed a
face detection method accordingly. liao et al. [28] further showed that ordinal features can
be effectively learned by AdaBoost classifier for face recognition. Sadr et al. [26] showed
that pixelwise ordinal features (POF), i.e. ordinal relationship (x > y) between any two
pixels, can faithful 1y encode image structures. 1epetit and Fua [29] applied POF features in
random trees for keypoint recognition. Shotton [32] applied POF features in random forests

for image categorization and segmentation.

For facial analysis, Baluja et al. [27] showed that POF features are good enough for
discriminating between five facial orientations, a relatively simpler task than face
detection. Wang et al. [31] applied the random forest classifier together with POF features
for facial landmark localization. Abramson and Steux [30] proposed a pixel control
point based feature for face detection, where each feature is associated with two sets of pixel

locations (control points).

Besides other feature representations, some researchers have also tried other AdaBoost
algorithms and weak classifiers. For weak classifiers utilized in boosting, lienhart et al.
[33] and Brubaker et al. [34] have shown that classification and regression trees (CART)
[35] work better than simple decision stumps. The described method has optimal ordinal/
contrastive features and their combinations can be learned by integrating the proposed NPD
features in a deep quadratic tree. In this way, unconstrained face variations can be

automatical 1y partitioned into other leaves of the 1earned quadratic tree classifier.



Knowing that the original Viola-Jones face detector has limitations for multiview face
detection [24], various cascade structures have been proposed to tackle multiview face
detection. Jones and Viola [17] extended their face detector by training one face
detector for each specific pose. To avoid evaluating all face detectors on each scanning
subwindow, they developed a pose estimation step (similar to Rowley et al. [36]) before

face detection, and then only the face detector trained on that estimated pose was applied.

This two-stage detection structure, if pose estimation is not reliable, the face is not likely
to be detected in the second stage. Wu et al. [14] proposed a parallel cascade structure for
multiview face detection, where all face detectors tuned to other views have to be
evaluated for each scanning window; they did use the first few cascade layers of all face
detectors to estimate the pose for speedup. 1i and Zhang [15] proposed a coarse-to-fine
pyramid architecture for multiview face detection, where the entire range of face poses was
divided into increasingly smaller subranges, resulting in a more efficient detection
structure. Huang et al. proposed a WFS tree based multiview face detection approach,
which also works in a coarse-to-fine manner. They proposed the Vector Boost algorithm for

multiclass learning, which is well suited for multiview pose estimation.

However, all these methods need to learn a cascade classifier for each specific view (or
view range) of a face, requiring an input face image to go through other branches of the
detection structure. Hence, their computational cost generally increases different with the
number of classifiers in complex cascade structures. Moreover, these approaches require
manual labeling of the face pose in each training image. Instead of designing a
detection structure, lin and liu [19] proposed to learn the multiview face detector as a

single cascade classifier.

They derived a multiclass boosting algorithm, called MBH Boost by sharing features
among other classes. This is a simpler approach to multiview face detection than
designing complex cascade structures. Nevertheless, it still requires manual labeling of
poses. In uncontrolled environments, however, it is not easy to define specific views of a
face by discretizing the pose space, because a face could be in arbitrary pose

simultaneously in yaw (out-of-plane), rol1 (in-plane), and pitch (up-anddown) angles.

To avoid manual labeling, Seemann et al. [37] suggested learning viewpoint clusters
automatically for object detection. However, for human faces, Kim and Cipolla [38]

showed that clustering by traditional techniques like K Means does not result in



categorized poses. They hence proposed a multiclassifier boosting (MCBoost) for human
perceptual clustering of object images, which showed promise for clustering face poses.
However, the clusters are not always related to pose variations; in addition to different pose
clusters, they also obtained clusters with various il lumination variations. Face detection in
presence of occlusion is also an important issue in unconstrained face detection, but it has
received less attention compared to multiview face detection. This is probably because,
compared to pose variations, it is more difficult to categorize arbitrary occlusions
into predefined classes. Hotta [17] proposed a 1ocal kernel based SVM method for face
detection, which was better than global kernel based SVM in detecting occluded frontal

faces.

lin et al. [18] considered 8 kinds of manually defined facial occlusions by training 8
additional cascade classifiers besides the standard face detector. lin and liu [19] further
proposed the MBHBoost algorithm to handle faces with one of 12 in-plane rotations or one
of 8 types of occlusions, with each kind of rotation and occlusion treated as a different
class. Chen et al. [20] proposed a modified Viola-Jones face detector, where the trained
detector was divided into sub-classifiers related to several predefined local patches, and

the outputs of sub-classifiers were fused.

Goldmann et al. [21] proposed a component-based approach for face detection, where the t
2 eyes, nose and mouth were detected separately, and further connected in a topology
graph. However, none of the above methods considered face detection with both occlusions

and pose variations simultaneously in unconstrained scenarios.

As discussed in [22], arobust face detector should be effective under arbitrary variations in
pose and occlusion, which has not yet been solved. Recently, unconstrained face detection
has gained attention. Jain and learned-Miller [3] developed the FDDB database and
benchmark for the development of unconstrained face detection algorithms. This database
contains images collected from the Internet, and presents chal lenging scenarios for face

detection.

Subburaman and Marcel [39] proposed a fast bounding box estimation technique for face
detection, where the bounding box is predicted by small patch based local search. Jain and
learned-Miller [40] proposed an online domain adaption approach to improve the
performance of the Viola-Jones face detector on the FDDB database. 1i et al. [13] proposed
the use of SURF feature [41] in an AdaBoost cascade, and area under the curve (AUC)



criterion to speed up the face detector training. Shen et al. [42] proposed an exemplar-
based face detection approach, which retrieves images from a large annotated face dataset;

facial landmark 1ocations are inferred from the annotations

This method is further improved in [43] by boosting. 1i et al. [44] proposed a probabilistic
elastic part (PEP) model to adapt any pre-trained face detector to a specific image
collection like FDDB by an additional post-processing classifier. Zhu and Ramanan [45]
proposed to jointly detect a face, estimate its pose, and localize face landmarks in the wild

by a Deformable Parts-based Model (DPM), which was further improved in [46] and [47].

Chen et al. [48] proposed to combine the face detection and 1andmark estimation tasks in a
joint cascade framework to refine face detection by precise 1andmark detections. Yang et al.
[49] investigated the use of channel features for face detection, which achieves promising
performance. Despite the availability of these methods for unconstrained face detection, the
detection accuracy is stil 1 not satisfactory, especial 1y when the detector is required to have

low false alarms.
2.1.1 Problem analysis

The basic problem to be solved to implement al gorithm for detection of faces in an image.
At first glance the task of face detection may not seem so overwhelming especially
considering how easy it is solved by a human. However there is a stark contrast to how

difficult it actual 1y is to make computer successful 1y solve this task.

In order to ease the task Viola-Jones 1imit themselves to full view frontal upright faces.
1.e, in order to be detected the entire face must point towards the camera and it should not be
tilted to any side. This may compromise the requirement for being unconstrained a little
bit, but considering that the detection algorithm most often will be succeeded by a

recognition algorithm these demands seem quite reasonable.
2.1.2 Related Work

During the last decade a number of promising face detection algorithms have been
developed and published. Among these three stand out because they are often referred to
when performance figures etc. are compared. This section briefly presents the outline and

main points of each of these algorithms.

Robust Real-Time Objection Detection, 2001 [17]



This seems to be the first article where Viola-Jones present the coherent set of ideas that
constitute the fundamentals of their face detection algorithm. This algorithm only finds
frontal upright faces, but is in 2003 presented in a variant that also detects profile and

rotated views [2].
Neural Network-Based Face Detection,

An image pyramid is calculated in order to detect faces at multiple scales. A fixed size
sub-window is moved through each image in the pyramid. The content of a subwindow is
corrected for non-uniform lightning and subjected to histogram equalization. The processed
content is fed to several parallel neural networks that carry out the actual face detection.
The outputs are combined using logical AND, thus reducing the amount of false

detections. In its first form this algorithm also only detects frontal upright faces.
A Statistical Method for 3D Object Detection Applied to Faces and Cars,

The basic mechanics of this algorithm is also to calculate an image pyramid and scan fixed
size sub-window through each layer of this pyramid. The content of the subwindow
is subjected to a wavelet analysis and histograms are made for the other wavelet
coefficients. These coefficients are fed to otherly trained parallel detectors that are
sensitive to various orientations of the object. The orientation of the object is determined by
the detector that yields the highest output. Opposed to the basic Viola- Jones algorithm and

the algorithm presented by Rowley et al. this al gorithm also detects profile views.

The other fundamental problems of automated object detection is that the size and position
of a given object within an image is unknown. As two of the mentioned algorithms
demonstrate the standard way to overcome this obstacle is to calculate an image pyramid

and scan the detector through each image in the pyramid.
2.2 Viola-Jones Method

The basic principle of the Viola-Jones algorithm is to scan a sub-window capable of
detecting faces over a given input image. The standard image processing approach would
be to rescale the input image to various sizes and afterward run the fixed size detector
through these images. This approach is rather time consuming due to the calculation of

the other size images.



Contrary to the standard approach Viola-Jones rescale the detector rather than of the input
image and run the detector many times through the image each time with a other size. At
first one might suspect both approaches to be equally time consuming, but Viola-Jones
have devised a scale invariant detector that requires the similar number of counts whatever
the size. This detector is constructed using a so-called integral image and some simple

rectangular features reminiscent of Haar wavelets. The next area explains on this detector
2.2.1 The scale invariant detector
The initial process of the Viola-Jones face detection algorithm is to transform the input

image into an integral image. This is done by making every pixel equal to the entire sum of

all pixels above and to the left of the concerned pixel.

1 1 1 1 2 | 3
1 1 1 2 | 4| 6
1 1 1 3 6 | 9
Input image Integral image

Figure 2.1: Integral image of 3x3 pixels

This al lows for the calculation of the sum of all pixels inside any given rectangle using
only four values. These values are the pixels in the integral image that coincide with the

corners of the rectangle in the input image.




Figure 2.2: Selected rectangle representation
Sum of greyrectangle=D —(B+C)+ A (2.1)

As both rectangle B and C incorporate rectangle A ,the sum of A has to be added to the
calculation. It has now been exhibited how the sum of pixels within rectangles of
arbitrary size can be calculated in consistent time. The Viola-Jones face detector analyzes a

given sub-window using features consisting of two or more rectangles.

Type 1 Type 2 Type 3 Type 4 Type 5

m P o»

Figure 2.3: Type of rectangle

Every feature results in a single value which is calculated by subtracting the sum of the
white rectangle(s) from the sum of the black rectangle(s). Viola-Jones have empirical 1y
found that a detector with a base resolution of 24x24 pixels gives satisfactory results.
When allowing for all possible sizes and positions of the features, a total of
approximately 160.000 other features can then be constructed. Thus, the amount of possible
features vastly outnumbers the 576 pixels contained in the detector at base reso lution.
These features may seem overly simple to perform such an advanced task as face detection,
but what the features lack in complexity they most certainly have in computational
efficiency.
One could understand the features as the computer’s way of perceiving an input image. The
hope being that some features will yield large values when on top of a face. Of course

operations could also be carried out directly on the raw pixels, but the variation due



to other pose and individual characteristics would be expected to hamper this approach. The
goal is now to smartly construct a mesh of features capable of detecting faces and this is

the topic of the next section.

As stated above there can be calculated approximately 160.000 feature values within
detector at base resolution. Among all these features some few are expected to give
almost consistently high values when on top of a face. In order to find these features
Viola-Jones use a modified versionof the AdaBoost algorithm developed by Freund and

Schapire in 1996 .

AdaBoost is a machine learning boosting algorithm capable of constructing a strong
classifier through a weighted combination of weak classifiers. (A weak classifier classifies
correctly in only a little bit more than half the cases.) To match this terminology to the
presented theory each feature is considered to be a potential weak classifier. A weak

classifier is mathematical 1y described as:

_ (1 if pf(x) > pb
h(x.f.p.0) = {0 otherwise @2

Where x is a 24x24 pixel sub-window, f is the applied feature, p the polarity and 6 the
thresho1d that decides whether x should be classified as a positive (a face) or a negative (a

non-face).

Since only a small amount of the possible 160.000 feature values are expected to be
potential weak classifiers the AdaBoost algorithm is modified to select only the best

features. Viola-Jones’ modified AdaBoost algorithm is presented in pseudo code .

An important part of the modified AdaBoost algorithm is the determination of the best
feature, polarity and threshold. There seems to be no smart solution to this problem and
Viola-Jones suggest a simple brute force method. This means that the determination of each
new weak classifier involves evaluating each feature on all the training examples in order
to find best performing feature. This is expected to be the most time consuming part of the

training procedure.



The best performing feature is chosen based on the weighted error it produces. This
weighted error is a function of the weights belonging to the training examples. As seen in
Figure 5 part 4) the weight of a correctly classified example is decreased and the weight of
a misclassified example is kept constant. As a result it is more ‘expensive’ for the second
feature (in the final classifier) to misclassify an example also misclassified by the first

feature, than an example classified correctly.

An alternative interpretation is that the second feature is forced to focus harder on
the examples misclassified by the first. The point being that the weights are a vital part of

the mechanics of the AdaBoost algorithm.

With the integral image, the computational 1y efficient features and the modified AdaBoost
algorithm in place it seems like the face detector is ready for implementation, but Viola-

Jones have one more ace up the sleeve.

2.2.2 The cascaded classifier

The basic principle of the Viola-Jones face detection algorithm is to scan the detector many
times through the same image — each time with a new size. Even if an image should contain
one or more faces it is obvious that an excessive large amount of the evaluated sub-
windows would stil 1 be negatives (non-faces). This realization 1eads to a other formulation
of the problem:

In stead of finding faces, the algorithm should discard non-faces. The thought behind
this statement is that it is faster to discard a non-face than to find a face. With this in mind a
detector consisting of only one (strong) classifier suddenly seems inefficient since the
evaluation time is constant no matter the input. Hence the need for a cascaded classifier
arises. The cascaded classifier is composed of stages each containing a strong classifier.
The job of each stage is to determine whether a given sub-window is definitely not a face or
maybe a face. When a sub-window is classified to be a non-face by a given stage it is
immediately discarded. Conversely a sub-window classified as a maybe-face is passed on
to the stage in the cascade. It follows that the more stages a given sub-window passes,

the higher the chance the sub-window actual ly contains a face.



In a single stage classifier one would normally accept false negatives in order to reduce
the false positive rate. However, for the first stages in the staged classifier false
positives are not considered to be a problem since the succeeding stages are expected to
them out. Therefore Viola-Jones prescribe the acceptance of many false positives in the
initial stages. Consequently the amount of false negatives in the final staged classifier is

expected to be small.

Viola-Jones also refer to the cascaded classifier as an attentional cascade. This name
implies that more attention (computing power) is directed towards the regions of the image

suspected to contain faces.

It follows that when training a given stage, say n, the negative examples should of course
be falsenegatives generated by stage n-1.The majority of thoughts presented in the

‘Methods’ section are taken from the original Viola-Jones paper [17].

Stage 1 KiparmeRn Stage 2 Nicpecs
o =X Is input a face? | Maybe = Is input a face? | Maybe =
________ banasan TR, O
 Definitely nc!  Definitely not
Discard input Discard input

Figure 2.4: Cascaded stages



CHAPTER 3

UNDERLYING TECHNO1OGIES

3.1 NORMALIZED PIXEL DIFFERENCE FEATURE SPACE

The Normalized Pixel Difference (NPD) feature in an image between two pixels is defined

as

_ Xty
fx,y) = " 3.1)

X, y > 0 are intensity values of the two pixels, and {0, 0) is equal to 0 when x =y = 0.

The NPD feature between two pixel values measures the relative difference between them.
The ordinal relationship between the two pixels x and y indicates by the sign of f(x, y) , and
the magnitude of f(x, y) measures the relative difference (as a percentage of the
joint intensity x+y) between x and y. The definition f{(0, 0) , 0 is reasonable because, in that
case, there is difference between the two pixels x and y is nothing they have same intensity
levels . Compared to the absolute difference |[x — y|, NPD is invariant to scale change of

the pixel intensities.

Weber, a pioneer in experimental psychology, stated that the just-noticeable difference in
the magnitude change of a stimulus is proportional to the magnitude of the stimulus, rather
than its absolute value [51]. This is known as the Weber’s 1aw. In other words, the human
perception of difference in stimulus is often measured in a form Al/l, as a fraction of the
original stimulus, which is called the Weber Fraction. Chen et al. [51] proposed a local
image descriptor, called Weber’s law Descriptor for face recognition, which was computed
from Weber Fractions of pixels in a 3 x 3 window. The proposed feature in Eq. (3.1) has

also been used in other fields such as remote sensing, where the Normalized Difference



Vegetation Index (NDVI) [51] is defined as the difference to sum ratio between the visible
red and the near infrared spectra to estimate the green vegetation coverage. The NPD feature
has a numerous of desirable properties. First, the NPD feature is antisymmetric, so f(X, y)
and f(y, x) is same for feature representation, which results in a reduced feature space.
Therefore, in an s x s image patch (vectorized as p x 1, where p = s - s), NPD feature f(xi, xj)
for pixel pairs 1 <i<j<p is computed, resulting in d = p(p—1)/2 features. For example, in
a 20x20 face template, there are (20x20)x(20x20—-1)/2 = 79, 800 NPD features in total.The

resulting feature space the NPD feature space, denoted as Qppq

Second, the sign of f{x, y) is an indicates the ordinal relationship between x and y. Ordinal
relationship has been an effective encoding for object detection and recognition [25], [26],
[28] because ordinal relationship gives the intrinsic structure of an object image and it is
invariant under different il lumination variations [25]. However, when x and y have similar
values by simply using the sign to encode the ordinal relationship is more likely to be

sensitive to noise.

Third, the NPD feature is scale invariant, which is implies robust nature against
il lumination changes. This is major factor for image representation, since for both object

detection and recognition il lumination change is al ways a troublesome issue.

Fourth, the NPD feature f(x,y) is bounded in [-1,1]. The bounded property makes the NPD

feature amiable to histogram binning or threshold learning in tree-based classifiers [1].

fix.y)




Figure 3.1 Plot of function f(x, y)
Given the NPD feature vector = (f(x1, x2), f(x1, x3), . . . ,f (xp—1, xp))T in Qppq

, as the original image [ = (x1, x2, . . ., xp)T can be reconstructed up to a scale factor.A
linear-time approach to reconstruct the original image up to a scale factor.Each point in the
feature space ,,q represent to a group of intensity-scaled images in the original pixel
intensity space. In contrast, the scale invariance property says that all intensity-scaled
images are “compressed”to a point in the bounded feature space Qpq. Therefore, Qupq is a
is invariant to scale variations feature space, but it contains all the required information

from the original space.
3.1.1 Deep Quadratic Tree

The classic Viola-Jones face detector [1] based upon features by boosted stumps. A stump
is a basic tree classifier that splits a node in two leaves with one threshold. There are two
limitations with stumps. First, interactions between different feature dimensions not capture
in this shal low structure. Second, It ignores higher-order information contained in a feature
due to the simple thresholding. Therefore, to eliminate this problem, a quadratic splitting
strateg and a deeper tree structure is used . Specifically, for a feature x,the tree node

splitting is used as
ax’+bx+c<t (3.2)

where t is the splitting threshold and a, b, ¢ are constants w.r.t. x, . With effective
coefficients, this corresponds to checking whether x is in a range [O;, O] or not, where O,
and O, are two learned thresholds. Compared to the original linear splitting x <t, Eq. (3.2)
a better interpretation of the splitting rule comes by considering both the first-order and

second-order information of x.

fi€[6,,, 8,,] ?




Figure 3.2 : Combining NPD Features in a Deep Quadratic Tree

Their are three kinds of object structures can be learned from the proposed NPD feature,

-1< <9<, (3.3)
x+y

0<o<—2<1, (3.4)
x+y
Xy

1< <6 (3.5)

where ©; < 0 and ©, > 0. Eq. (3.3) applies if the object pixel x is comparatively
darker than pixel y (e.g. f; in Fig. 3.2), while Eq. (3.4) covers the case when pixel x is
comparatively brighter than pixel y (e.g. f; in Fig. 3.2). These two kinds of structures can
also be learned by a classic stump. They are also known as ordinal relationships similar as
in [25], except that a better threshold is learned instead of the default threshold 0. In
contrast, if Eq. (3.5) does not hold, then there will be a either edge or contrast between
pixels x and y (e.g. f3 and f; in Fig. 3.2), but the polarity is uncertain. For example, f; in
Fig. 3.2 represents a notable edge between the face and background, but the background
pixel can be either darker or brighter than the face. This kind of contrastive structure can

only be learned by a quadratic splitting.

In practice, instead of solving Eq. (3.2) for quadratic splitting, the feature range is quantized
into 1 discrete bins (e.g. 1=256 ), and to determine the two optimal thresholds exhaustive
search is doen, where the weighted mean square error is applied as the optimal splitting
criterion. Due to the bounded property of the proposed NPD feature, the quantization can be
done easily. Besides, an 1-bin histogram of the sample weights is used, and apply a one-

dimensional integral technique similar as in [17] to speed up the splitting

Furthermore, the quadratic splitting is used to learn a deep tree ( depth of eight is used in
model), instead of a stump or a shallow tree for face detection. Which results optimally
combination of several NPD features together to represent the intrinsic face structure. The
proposed method using deep quadratic tree is suitable for face detection with having property

of pose variations, since in the same leaf node of the tree similar views can be clustered.



Face Detector Given that the proposed NPD features contain redundant information, so for
better result the AdaBoost algorithm is used to select the most discriminative features and
construct strong classifiers [17]. The Gentle AdaBoost algorithm is used [53] to learn the
NPD feature based deep quadratic trees. As in [17], a cascade classifier is further 1earned for

rapid face detection. One single cascade classifier for unconstrained face detection which is
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Figure 3.3: System Architecture for multi-view face detection



Face Detector Given that the proposed NPD features contain redundant information, so for
better result the AdaBoost algorithm is used to select the most discriminative features and
construct strong classifiers [17]. The Gentle AdaBoost algorithm is used [53] to learn the
NPD feature based deep quadratic trees. As in [17], a cascade classifier is further 1earned for
rapid face detection. One single cascade classifier for unconstrained face detection which is
robust to occlusions and pose variations. It has advantage in the implementation that there is
no requirement to label the pose of each face image manually or cluster the poses before
training the detector. In the learning process ,due to the deep quadratic trees the algorithm
automatical 1y divides the whole face manifold into several sub-manifolds. Besides, that
the soft cascade structure is used [52] for efficient training and early rejection of negative
samples. Specifically, soft cascade can be regarded as a single AdaBoost classifier with
one exit per weak classifier. In each iteration, a deep quadratic tree is learned as the weak
classifier, and a threshold of the current AdaBoost classifier is also learned for rejecting
nonfaces. Finally, the learned deep quadratic trees and thresholds are aggregated

sequential 1y to represent an ensemble [53].

Below is a summary of how the proposed method handles the unconstrained face detection

problem.

* Pose or Multi view: Pose variations or multiview are handled by 1earning NPD features in
boosted deep quadratic trees, where different views can be automatically partitioned

mto different leaves of the trees.

Figure 3.4: Example of Pose invariation property of NPD



e Occlusion: In contrast to Haar-1like features which sensitive to occlusions because of
large support but in NPD, features are computed by use of only two pixel values, which

makes them robust to occlusion.

Figure 3.5: Example of Occlusion property of NPD

e [11umination: Since NPD features are invariant to scale, which makes them robust to

il lumination changes.

Figure 3.6: Example of [llumination property of NPD



* Blur or low image reso lution: Because the NPD features involve only two pixel values,
their is not requirement of rich texture information of the face. This makes NPD features

effective to blurred or low resolution face images.

Figure 3.7: Example of Blur or low image resolution property of NPD

3.1.2 NPD Implementation

The Annotated Facial landmarks in the Wild (AF1W) database [53] for training of NPD
face detector. The AF1W database contains 25,993 face annotations in 21,997 real-world
images collected from Flickr. This is an unconstrained face database including large face
variations in pose, il lumination, expression , ethnicity, age , gender, etc. 21,730 face images
are taken from AF1W. Together with their mirrored images and perturbations in positions,

217,300 face images in total for training. Some examples are shown in Fig. 3.8.

For bootstrapping. nonface images, but masked the facial regions with random images
containing no faces, as shown in Fig. 3.8.. A detection template of 24x24 pixels is used and
the maximum depth of the tree classifiers to be learned as 8, so that at most eight
NPD features need be evaluated for each tree classifier. In the soft cascade training, set of
the threshold of each exit is used as the minimal score of positive samples, i.e.

reject positive samples during training. The final detector contains 1,226 deep



quadratic trees, and 46,401 NPD features. Nevertheless, the average number of feature
evaluations per detection window is only 114.5 considering stagewise nonface rejection,
which is quite reasonable. For an analysis, another method trained a near frontal
face detector using the proposed NPD features and the classic cascade of regression trees
(CART [55]) with depth of four. A subset of the training data2 in [13] was used, including
12,102 face images and 12,315 nonface images . The detection template is 20 x 20 pixels.
The detector cascade contains 15 stages, and for each stage, the target false accept rate was

0.5, with a detection rate of 0.998.

Figure 3.8: Negative face samples for training

3.1.3 Detector Speed Up

To further speed up the learned NPD detector for face detection, two techniques are
develop. First, for 8-bit gray images,in which build a 256x256 1ook up table to store pre-
computed NPD features. This way, computing f(x, y) in Eq. 1 only requires one memory
access from the look up table. Second, the learned face detection template (e.g. 20 x 20 )
can be easily scaled to enable multiscale face detection. So, pre-compute multiscale
detection templates and apply them to detect faces at various scales. This way, iterative

rescaling of images for multiscale detection is avoided.



3.2 Non-maximum suppression

Non-maximum suppression (NMS) has been widely used in several key aspects of computer
vision and is an integral part of many proposed approaches in detection, might it be edge,
corner or object detection . Its necessity stems from the imperfect ability of detection
algorithms to localize the concept of interest, resulting in groups of several detections near
the real location. In the context of object detection, approaches based on sliding windows
typical ly produce multiple windows with high scores close to the correct location of
objects. This is a consequence of the generalization ability of object detectors, the
smoothness of the response function and visual correlation of close-by windows. This
relatively dense output is generally not satisfying for understanding the content of an
image. As a matter of fact, the number of window hypotheses at this step is simply
uncorrelated with the real number of objects in the image. The goal of NMS is therefore to
retain only one window per group, corresponding to the precise local maximum of the
response function, ideally obtaining only one detection per object. Consequently, NMS

also has a large positive impact on performance measures that penalize double detections.

The most common approach for NMS consists of a greedy iterative procedure , which
refer to as Greedy NMS. The procedure starts by selecting the best scoring window and
assuming that it indeed covers an object. Then, the windows that are too close to the
selected window are suppressed. Out of the remaining windows, the next top-scoring one is

selected, and the procedure is repeated until no more windows remain.

This procedure involves defining a measure of similarity between windows and setting a
threshold for suppression. These definitions vary substantial 1y from one work to another,
but typically they are manually designed. Greedy NMS, although relatively fast, has a
number of downsides, .First, by suppressing everything within the neighborhood with a
lower confidence, if two or more objects are close to each other, all but one of them will
be suppressed. Second, Greedy NMS always keeps the detection with the highest confidence
even though in some cases another detection in the surrounding might provide a better fit for
the true object. Third, it returns all the bounding-boxes which are not suppressed, even
though many could be ignored due to a relatively low confidence or the fact that they are

sparse in a subregion within the image.

NMS are replaced with soft penalties in the objective function. The intuition behind our

model is that the multiple proposals for the same object should be grouped together and be



represented by just one window, the so-called cluster exemplar.The framework of Affinity
Propagation Clustering (APC) , an exemplar-based clustering algorithm, which is
inferred globally by passing messages between data points. However, APC is not directly
usable for NMS.It is adapted it to include two constraints that are specific to detection. First,
since there are false positives, not every window has to be assigned to a cluster. Second,
in certain scenarios it is beneficial to encourage a diverse set of proposals and penalize
selecting exemplars that are very close to each other. Hence, our contributions are the
following: (i) extension of APC to add repellence between cluster centers; (ii) to model
false positives, which relaxes the clustering problem; (iii) introduceing weights between

the terms in APC, and show how these weights can be 1earned from training data.
3.3 Multi-task Cascaded Convolutional Neural Networks(MTCNN)

MTCNN (Multi-task Cascaded Convolutional Neural Networks) is an algorithm consisting
of 3 stages, which detects the bounding boxes of faces in an image along with their 5 Point
Face landmarks . Each stage gradual ly improves the detection results by passing it’s inputs
through a CNN, which returns candidate bounding boxes with their scores, fol1lowed by non

max suppression.

In stage 1 the input image is scaled down multiple times to build an image pyramid and
each scaled version of the image is passed through it’s CNN. In stage 2 and 3 extraction of
image patches for each bounding box and resize them (24x24 in stage 2 and 48x48 in stage
3) and forward them through the CNN of that stage. Besides bounding boxes and scores,

stage 3 additional ly computes 5 face 1andmarks points for each bounding box.
3.3.1 MTCNN Proposed Method

The overall pipeline of the method is shown below . Given an image, it is initial 1y resize
it to different scales to build an image pyramid, which is the input of the following

three - stage cascaded framework :

Stage 1 : The exploit a fully convolutional network [?] , called Proposal Network (P -
Net), to obtain the candidate windows and their bounding box regression vectors in a similar
manner as [56] . Then in the method it use the estimated bounding box regression vectors to
calibrate the candidates . After that, employment of non - maximum suppression (NMS) to

merge highly overlapped candidates.
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Figure 3.9: Stage 1- Resize and P-Net with NMS

Stage 2 : Al1l candidates are fed to another CNN, called Refine Network (R - Net) , which
further reject s a large number of false candidates , performs calibration with bounding box

regression , and NMS candidate merge.
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Figure 3.10: Stage 2 and R-Net with NMS

Stage 3 : This stage is similar to the second stage, but in this stage it is aim to describe the

o

face in more detail s . In particular, the network will output five facial landmarks

positions
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Figure 3.11: Stage 3 and o-Net with NMS
3.3.2 CNN Architectures

In [57], multiple CNN s have been designed for face detection. However, it is noted that its

performance might be limited by the fol lowing facts :

(1) Some filters lack diversity of weights that may limit them to produce discriminative

description .

(2) Compared to other multi - class objection detection and clasification tasks , face
detection is a chal 1enge binary classification task, so it may need 1ess numbers of filters but
more discrimination of them. To this end, reductaion of the number of filters and change
the 5x5 filter to a 3x3 filter to reduce the computing while increase the depth to get better
performance. With these improvements , compared to the previous architectures in [57], it
has better performance with less runtime (the result is shown in Table 1 . For fair

comparison, the same data is used for both methods ).
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Figure 3.12: Convolution Stages of MTCNN



3.3.3 Training

The three tasks to train our CNN detector s: face/non - face classification, bounding box

regression , and facial landmark localization.

1) Face classification : The 1 earning objective is formulated as a two - class classification

problem . For each sample Xx; , the cross - entropy loss is used as :

LI = —(yd 1og(p) + (1 -y ) (1 — 1og(p)) (3.6)

Where p; is the probability produce d by the network that indicates a sample being a face.

The notation y#° € {0,1} denotes the ground - truth label.

Bounding box regression : For each candidate window, the prediction the offset between it
and the nearest ground truth (i.e., the bounding boxes’ left top, height, and width). The
learning objective is formulated as a regression problem, and the Euclidean loss for each

sample x; as:

et =| por — ybox |2 (3.7)

where $P°% regression target obtained from the network and y?°* is the ground - truth
coordinate . There are four coordinate s, including left top, height and width , and thus

yibox E R4' .

Facial landmark localization: Similar to the bounding box regression task, facial
landmark detection is formulated as a regression problem and minimized the Euclidean

loss:

Lliandmark =" yilandmark andmark "2 (38)

- yil



where ~ plandmark js the facial landmark’s coordinate obtained from the network
andy/endmark is the ground - truth coordinate . There are five facial landmarks, including

left eye, right eye, nose, left mouth corner , and right mouth corner , and thus .

4) Multi - source training : Since different tasks in each CNN s are employed , there are
different types of training images in the 1 earning process, such as face, non - face and
partial 1y aligned face. In this case, some of the loss functions (i.e., Eq. (1) - (3) ) are not
used. For example, for the sample of background region, only compute L%, and the other
two losses are set as 0. This can be implemented directly with a sample type indicator.

Then t he overall learning target can be formulated as

. N J .
min Zi:l Zj €{det ,box landmark } a]:Bl L]l' (3-9)

w here N is the number of training samples . @; denotes on the task importance. ,Bij € {0,1} is

the sample type indicator. In this case, it is natural to employ stochastic gradient descent to

train the CNNSs.

5) Online Hard sample mining: Different from conducting traditional hard sample mining
after original classifier had been trained and online hard sample mining is done in face
classification task to be adaptive to the training process . In particular, i n each mini - batch,
sort is done the loss computed in the forward propagation phase from all sample s and
select the top 7 0% of them as hard sample s . Then only compute the gradient from the
hard sample s in the backward propagation phase. That means it is ignore that easy samples
that are less helpful to strengthen the detector while training. Experiments show that this
strategy yields better performance without manual sample selection . Its effectiveness is

demonstrated in the Section I11.
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Figure 3.13: Examole of output of MTCNN face detector



CHAPTER 4

PROPOSED METHOD

The initial stage of the method is based on the NPD, and the next stage is the CNN inspired
from MTCNN. The NPD achieves 1ow FN face detections for unconstrained scenes and it is
very fast. But,The disadvantage of the NPD is to achieve minimal FN detections resutls
high number of FPs (typically higher order of magnitude than FN face detections). The
original 1y proposed threshold 6 NPD for NDP detection is set to zero il lustrates a typical
result of the NPD detector for an image with a rich texture in which the number of FP face

detections is relatively high.

Figure 4.1: Example of output of proposed method face detector

By increasing the value of 6 NPD The number of FP face detections for the NPD detector

can be reduced, but this has negative effects on FNs.

The output of the NPD detector is represented by square regions S; = (xj, yi, si), 1= 1, 2, ..., ],
where x; and y; are the coordinates of a square region centre, s; is the size of the region
(sixsi), and j is the number of detected faces in an image 1. Note that for all S;,i1=1, 2, ..., ],

the score ScoreNPD (I, S;) is greater than zero .
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In order to minimize FP face detections, but without having large effect on FN, the outputs
of the NPD detector that have a ScoreNPD(I, Si) in the interval corresponding to vague face

region so lutions are forwarded to the CNN detector to classify as face or non-face.

The outline of procedure of the proposed method is described as fol lows:

NPD stage

For each and every output square region S; of the NPD in an image /-

1) IF ScoreNPD(1,S;) in interval [0, 87] :The square region S; is classified as nonface

region and it is labelled as a non-face. The region Si is not required to forwarded to the
next stage.

i) IF ScoreNPD(1,S;) in interval [62, «o]:The square region Si is classified as a face

region and it is labelled as a face. The region Si is not required to forwarded to the next
stage.

iii) IF ScoreNPD(1,S;) in interval [61, 62], i.e. ScoreNPD falls in an interval corresponding
to the vague face region candidates,then region Si is required to forwarded to the next stage.
CNN decision stage

v) Resize the square region S; to uniform size;

v) IF the output of the CNN, called the confidence value ConValCNN(, S;), is higher than
63, then the vague face region candidate S; with the original dimensions is labelled as a

face.

vi) IF the output of the CNN is , then the vague face region candidate S; is labelled as a

non-face.

Note that ConVal CNN(I, S;) expresses the confidence that a face is detected in an image [ at
a region S;.

The first two thresholds 6/ and 62 define three intervals for the NPD score ScoreNPD(I, S;).
The third threshold 63 defines two intervals for the CNN confidence value ConVal CNN(I,
Si). They define the operating point of the face detector, and are selected to maximize a sum
of Precision and Recall, where Precision = TP/(TP + FP) and Recall = TP/(TP + FN),
where TP is the number of correctly detected faces. A1l S; which are inputs to the CNN
stage are expanded by 75% of the original size in each direction and then resized to
225x225. In general, the CNN detector implemented on a single CPU) is typical 1y about

an order of magnitude slower than the NPD detector.



This shortcoming of the CNN is circumvented in such a way that the CNN is applied only
to vague face candidate regions S; (all scaled to small resolution ~50 K pixels).
These characteristics justify using the CNN detector at the second stage only on a
relatively small number of scaled regions S;, and these regions are a small fraction of the
whole area of an image /. For the implementation of the NPD and CNN program are based

on implementations of [1] and [4], respectively.



CHAPTER S

RESULTS

The experimental results are based on part of the Face Detection Dataset and Benchmark
(FDDB) [15] database showed that the multi-stage model significantly reduces false
positive detections while simultaneously the number of false negative detections is
increased by only a few . The dataset of 128 images of FDDB having total number of faces
209 is used for detection of faces and the comparison of NPD detector and proposed method

1s show in Table 5.1

Dataset of Total 128 images having total faces 209

NPD CASCADE METHOD
TP=178 TP=176

FN=31 FN=33

FP=104 FP=32

PRECISION =0.6312

RECALL=0.8516

PRECISION =0.8979

RECALL=0.8421

Table 5.1: Comparison between NPD and Proposed Method




Figure 5.1:FDDB Example 1 having low illumination on NPD and Proposed method



Figure 5.2:FDDB Example 2 having occlusion and multi-view on NPD and Proposed
method



Figure 5.3:FDDB Example 3 having occlusion and multi-view on NPD and Proposed
method



The comparison on NPD and proposed method is done to other than FDDB database having
high resolution samples which have occluded, different pose and low illumination

faces.Output of samples shown in Figure 5.4,5.5,5.6.

Figure 5.4: Example 4 high resolution picture



Figure 5.5: Example 5 picture having different Pose and Occluded faces



Figure 5.6: Example 6 picture having low illumination, multi view and Occluded faces



Face Detection Output of sample images

Sample Images Face Detected | Face Detected by
by NPD Proposed Method

Example 1 5 4

Example 2 7 3

Example 3 7 6

Example 4 20 6

Example 5 7 2

Example 6 20 6

Table 5.2: Face detection output of examples

As we results shows that FN is drastically reduced as compare to NPD detector by proposed
method but slightly increase FP as shown in Figure5.6 in which one face is missed by the

proposed detector.



CHAPTER 6

CONCLUSION

Multi stage cascade model is used for unconstrained face detector. The initial stage is based
on the NPD detector, and the next on the CNN-based detector. The model is used to reduce
FP face detections, by keeping FNs as low as possible. This is achieved by forwarding the
outputs of the NPD detector conditionally that represent face candidate regions to the
second stage CNN stage. The NPD detector score value is used for forwarding . The major

factors for using the proposed model are-

e The NPD detector is used at the initial stage of the detector because it is faster
(around 15 times) than the CNN for face detection as well as localization on a
single CPU.

e The CNN detector is used conditionally as a post classifier and it operates only on

a few number of rescaled vague face candidate regions which are the forward by the

NPD detector.

This makes effective implementation of a second stage of the proposed method. The

achieved detector has effective time performance as compared to the NPD.



CHAPTER 7

FUTURE SCOPE

The proposed method achieves state-of-the-art performance for unconstrained face detection,
and its results conveys that occlusions and blur are two big challenges for face detection
which results in increasing the number of false negative candidates .In the Aim of future
work will be to improve the multi stage model to decrease the false negative and tend the
number of false positive to zero.
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