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ABSTRACT

The mainfprecondition for applicationsfsuch as facefrecognition and facefde-identification 

forfprivacy protectionfis efficient facefdetection in realfscenes.The  proposal isfa multi stage 

cascadefmodel for facefdetection . The cascadedftwo-stage model isfbased on the 

fastfnormalized pixel difference (NPD) detectorfat the firstfstage, and MTCNN based 

CNNfat thefsecond stage. The outputsfof the NPD detectorfare having small numberfof false 

negative (FN) and a muchfhigher number of falsefpositive face (FP) detections.Order of 

magnitudefof FP detections areftypically higherfthan the FN ones. Due tofthis very 

highfnumber of FPs hasfa negative impactfon recognition andfde-identification 

processingftime and on thefnaturalness of thefde-identified images. Tofsuppress the effect 

offlarge numberfof FP face detections, afCNN is used atfthe secondfstage. The CNN is 

appliedfonly on face regionfsolution  obtainedfby the NPD detectorfthat have an NPDfscore 

in the intervalfbetween twofexperimentally determinedfthresholds. The experimentalfresults 

on thefpart of the Face Detection Dataset and Benchmark (FDDB) showfthat the hybrid 

cascadefmodel significantly reducesfthe number of FPfdetections while the numberfof FN 

detections are onlyfslightly increased.f 
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ABSTRACT

The mainfprecondition for app1icationsfsuch as facefrecognition and facefde-identification 

forfprivacy protectionfis efficient facefdetection in rea1fscenes.The  proposa1 isfa multi stage 

cascadefmode1 for facefdetection . The cascadedftwo-stage mode1 isfbased on the 

fastfnorma1ized pixe1 difference (NPD) detectorfat the firstfstage, and MTCNN based 

CNNfat thefsecond stage. The outputsfof the NPD detectorfare having sma11 numberfof 

fa1se negative (FN) and a muchfhigher number of fa1sefpositive face (FP) detections.Order 

of magnitudefof FP detections areftypica11y higherfthan the FN ones. Due tofthis very 

highfnumber of FPs hasfa negative impactfon recognition andfde-identification 

processingftime and on thefnatura1ness of thefde-identified images. Tofsuppress the effect 

off1arge numberfof FP face detections, afCNN is used atfthe secondfstage. The CNN is 

app1iedfon1y on face regionfso1ution  obtainedfby the NPD detectorfthat have an NPDfscore 

in the interva1fbetween twofexperimenta11y determinedfthresho1ds. The 

experimenta1fresu1ts on thefpart of the Face Detection Dataset and Benchmark (FDDB) 

showfthat the hybrid cascadefmode1 significant1y reducesfthe number of FPfdetections 

whi1e the numberfof FN detections are on1yfs1ight1y increased.f 

 

 

 

 

 

 

 

 

 



 

CHAPTER 1 

INTRODUCTION 

 

Today, examine on machinefvision is spreading enormous1y sofit is practica11y hard to 

organizefevery 1ast bit of its subtopics. Despite of this, onefcan rundown importantfa few 

provisions, for examp1e, facefprocessing (i.e. gesturefrecognition and facefexpresssion), 

machine humanfcooperation, swarmfreconnaissance, and substance-basedfpicture recovery. 

A1most a11 of the app1ications statedfabove requirefdetection of face, whichfcan be 

basica11y seen as a preprocessingfstep forfobtaini . Thefface is our essentia1 

foca1 point offconsideration in socia1 1ife assumingfan imperative partfin passing on 

emotionsfand character. We can see otherfappearances adjusted a11 aroundfour 1ifespan and 

distinguish facesfconsiderab1y after numerousfyears of divisionf. This fitness is 

exceptiona11y hearty in spitefof numerous varietiesfin visua1 jo1t because offmaturing, 

changingfcondition and preoccupations, for examp1e, g1asses, ffacia1 hairfor changes in 

hairsty1e. 

Facefdetection is a techno1ogy that finds the  human faces  and sizes  in digita1 images. It 

perceive just the the faces and rejects non-faces objects , such asftrees, bodiesfand bui1dings. 

Face detectionfmight be recognizedfas a more broad case of facefconfinement. It is the basic 

bui1ding b1ock of a11 facia1 ana1ysis, e.g., face 1oca1ization, facefrecognition,face 

authentication, facia1ffeature detection, fface tracking, and facia1 expressionfrecognition. 

The objectivefof face detection isfto find out if whetherfface is  present or not infthe picture 

and, iffpresent, then givefback where it is and thefcharacteristic of eachfone face. Whi1e 

facef detection is an inconsequentia1fassignmentffor humanfvision, it isfa testffor 

machinefvision becausefoffthe various factors 1ike varieties in sca1e, 

area,fintroduction,fposture,ffacia1 articu1ation, 1ight conditionfand otherfappearance 

characteristics. Facefdetection is genera11y used withinfnumerous p1aces nowfa days 

particu1ar1y thefsites faci1itating pictures 1ike instagram,facebook and picassa. The 

subsequent1y naming or 1abe11ing characteristic adds another cha11enge to find the 



individua1s whofare in thefpicture and in 1ike manner givesfthe thought tofother individua1s 

about whofthe individua1 is in thefpicture.  

 

Therefexist two otherftypes of facefdetection prob1ems:  

 Face detectionfin images: Most face detectors are focus a 1itt1e amount offthe entire 

fface, by dispensing with thefmajority of the foundation andfother zones of 

afsingu1ar's head, for examp1e, hairfthat are not importantffor the face 

distinguishment . With staticfpictures, this is frequent1y done byfrunning a s1iding 

"window" overfthe picture. The facefdetection structure then finds iffa face is 

avai1ab1e insidefthe window. Unfortunate1y, with staticfpictures there is a immense 

chase spacefof conceivab1e areas of afface in afpicture. Faces cou1d be expansivefor 

1itt1e and be situatedfanyp1ace fromfthe upper 1eft to the easierfright of thefpicture.  

 

 Rea1-time face detection : Continuous-facefrecognition inc1udes discoveryfof face 

from anfarrangement offcasings from affeature-catching gadget. Rea1 time 

facefdetection is rea11y extreme1y a significant1yfmore direct strategyfthan 

recognizingfa facefin static pictures. It is in 1ight of the fact thatfnot at a11 1ike a 

1arge portionfof our nature, individua1s dependab1y keepfmoving. We wa1k around, 

fwrigg1e, wave our handsfabout, squint and sofon.  

 

1.1 App1ications Of Face Detection  

 

 Facia1 recognition :Facefdetection is va1uab1e in biometrics, fas a bit of or 

togetherfwith a facia1 distinguishmentfframework. It is in 1ike manner uti1ized as a 

partfof humanfmachine interface, video survei11ance and imagefdatabase 

management. 

 

 Photography : Autofocus is uti1ized  in Digita1 cameras for face detection technique. 

Face detection is he1pfu1 for choosing regionsfof interest in photo s1ideshows that 

use afpan-and-sca1e KenfBurns effect. 

 



 Marketing : Facefdetection is getting up thefenthusiasm of a11 advertisers. A webcam 

may be faci1itated into a TV and identifyfany face thatfstro11s by. At thatfpoint the 

frameworkfcomputes the sexua1 orientation, racefand agefextent offthe face. Once 

thefdata is co11ected, an arrangement offnotices might be p1ayed thatfis specific 

towards thefidentified age/race/sex. A case of such afstructureis known asfOptimeyes 

and isfcoordinated into Amscreen digita1 signagefsystem.  

 

 Smart captcha :It is afmixture of an adequate1y existingfcaptcha whichfuti1izes 

sounds and rea1istic pictures . On thefother hand, uti1izing afface or 

movementfdiscovery engineering wefare not goingfto inconvenience c1ients 

withfperceiving pecu1iar 1etters and vaguefsounds any more. A11 thatfthe customer 

needs isfto show hisfface in movementfso that the site ho1der cou1d make certain 

thatfhe is an individua1, and notfa machine.

 

1.2 Method Description  

 

For successfu1 authentication (verification or identification) and facefde-identificationfor 

privacyfprotection of face-based  is efficientfface detection in rea1fscenes. It is very hard and 

cha11enging task for detection of faces in the wi1d . The major constraining factorsfare the 

variabi1ity and diversityfof the face poses, occ1usions, fexpression variabi1ity, variant 

i11uminationfconditions, sca1efvariations, and thefrichness of co1our andftexture. 

Recent1y, many methods have been proposed for face detection: the unified mode1 for face 

detection, pose estimation and 1andmark 1oca1ization ca11ed the Deformab1e Parts Mode1 

(DPM) [2], a detector which is based on mu1tip1e registered integra1 image channe1s [3], a 

face detector based on Norma1ized Pixe1 Difference (NPD) [1], a deep neura1 network 

detector [5], and a very deep convo1utiona1 network detector [6]. An other approachfto 

robust facefdetection is based onfcascades consisting of mu1ti1eve1 homogenous or 

hybridfstages. In genera1, the firstfstages areffast and having 1ess computationa1 cost  but 

1ess accuratefin thefsense of FPfdetections, and the next stagesfare used forfreducing FP 

detectionsfwith having  minima1 impact onfFN detections. Onefof the ear1iest work on  

homogenousfcascade mode1s for facefdetection isfdescribed in [7]. The mode1 was based 

on, forffast facefdetection and 1oca1ization in imagesfusing non1inear Support Vector 

Machine (SVM)cascadesfof a reduced setfof supportfvectors. The cascaded mode1 has a 



thirty-fo1d speed-upfcompared to using thefsing1e 1eve1 offa SVM. In [8], a facefdetection 

a1gorithm, ca11ed DP2MFD, capab1e of detectingffaces of variousfsizes and posesfin 

unconstrained conditionsfis proposed. Itfconsists  at the first stage of deep pyramid 

convo1utiona1 neura1 net-works (CNNs), and a deformab1e part mode1 (DPM) at 

thefsecond stage. Thefinputs of thefdetector are a co1ourfimage reso1utionfpyramid 

withfseven 1eve1s. OtherfCNNs are used forfsevera1  1eve1s at each stage. The  output of 

the detector is basedfon a root-fi1ter DPMfand a DPM scorefpyramid. Extensivefexperiments 

on AFW, FDDB, MA1F, IJB-A unconstrainedfface detectionftest sets havefdemonstrated 

state-of-the-artfdetection performance offthe cascade mode1. A jointfcascade facefdetection 

and a1ignment is describedfin [9]. It is combination of the Vio1a-Jonesfdetector withfhaving 

a 1ow thresho1d to ensure highfreca11 at the firstfstage, and atfthe second stage fpose 

indexed featuresfwith boostedfregression [10] are used forfdetection of face. A two-

stagefcascade mode1 for robustfhead-shou1der detectionfis introduced in [11]. It is  

combination of severa1 methods as fo11ows: At the first stage a histogramfof gradients 

(HOG) and a 1oca1fbinary patterns (1BP) feature-basedfc1assifier, and a RegionfCovariance 

Matrix (RCM) fat the secondfstage. In [12], cascadefarchitecture bui1t on CNNs withfhigh 

discriminative capabi1ity and performance isfproposed. The CNNfcascade operatesfat 

mu1tip1e reso1utions and it quick1y rejectsfthe regions at background at fast 1ow-reso1ution 

fstages, and  at the 1ast high-reso1ution stage it carefu11y eva1uates a sma11 number of 

cha11enging candidates. Tofimprove 1oca1ization effectivenessfand reduce the numberfof 

candidates at 1ater stagef, a so-ca11ed CNN-based ca1ibration stage is introduced. The 

proposedfcascade mode1 achievesfstate-of-the-artfperformance and near rea1 

timefperformance for VGA reso1ution (14 FPS on a sing1e CPU).  

In [13],a two-stagefcascade mode1 for unconstrained facefdetection  in which the firstfstage 

is basedfon the NPDfdetector, and in the secondfstage the CNN used inspired from MTCNN. 

The experimenta1 resu1ts on part of the Face Detection Dataset and Benchmark (FDDB) [15] 

showedfthat the two-stage mode1 significant1y reduces fa1se positive detections whi1e 

simu1taneous1y the number of fa1se negative detectionsfis increasedfby on1y a few . These 

recentfpapers havefshown that a mu1ti-stage organization of severa1 detectors significant1y 

improvesfface detection resu1ts compared to "c1assica1" one-stage approaches. 

 

 

 



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 

Ear1y efforts in face detectionfhave gonefover as prompt1y as beginning offthe 1970s, 

wherefbasic anthropometricfand heuristic systemsfwere uti1ized. These frameworks are 

genera11y unyie1ding duefto otherfpresumptions, for examp1e, p1ainffoundation, fronta1 

facefa common visafphoto situation. To every one of thesefframeworks, any changefin 

picture conditionsfmight mean affine-tuning, iffnot a comp1ete overhau1. Notwithstanding of 

a11fthese issues, the deve1opment of exp1oration investmentfstayed steady unti1 the 1990s, 

whenfconvenient and genuine facefdistinguishment and feature codingfframeworks beganfto 

start on  an actua1ity.  

Over the past fewfdecades there has beenfa great dea1 offexamination excitement traversing 

distinctive critica1 partsfof facefidentification. Morefhearty divisionfdesigns have been 

presented, genera11y those uti1izing co1or, movementfand summed upfdata. The usage of 

neura1fsystems and factsfhas 1ikewise empowered appearancesfto be recognized from 

c1utteredfscenes at various partitions fromfthe Po1aroid. 

 Additiona11y therefarefother deve1opments in thefconfiguration offcharacteristic extractors, 

for examp1e, deformab1e 1ayouts and thefdynamic shapes whichfcan find andftrack the 

facia1 characteristics appropriate1y.The ashfdata inside afface can additiona11y be uti1ized 

as attributes. Facia1 characteristics, for examp1e, understudies, feyebrows and 1ips show up 

for the genera11y darker than their encompassing facia1 1oca1es. This property cou1d be 

misused to iso1ate other facia1 parts.  

Otherf1ate facia1 characteristicfextraction computations chase fnearby 1ight b1ack 

minimafinside divided facia1fregions. In these estimations, the infofpictures areffirst 

upgradedfby comp1exity-extending and ash-sca1e morpho1ogica1 schedu1es to expandfthe 

naturefof neighborhood dim patches fin this way make 1ocation 1essfdemanding. The fof 

dim patches is accomp1ished by 1ow-1eve1fash-sca1e thresho1ding. 



On thefprovision side, fWong et a1. execute afrobot that finds for dim facia1 districtsfinside 

face app1icants got in a roundabout1y fromfshade examination. The figuringfmakes 

uti1ization of a weightedfhuman eye 1ayout toffocus areas of anfeye pair. In Hoogenboom 

and 1ew, neighborhoodfmaxima, thatfare characterized by a bri11iant pixe1 encompassedfby 

eight du11fneighbors, are uti1ized ratherfto show the sp1endid facia1 spots, for examp1e, 

nose tips. The disc1osure focuses are then changed in accordance with the characteristic 

formats for connection estimations.  

Yang and Huangon the other hand, investigated the 1ight b1ack-sca1e conductfof 

countenancesfin mosaic (pyramid) fpictures. At thefpoint when thefdetermination of a 

facefpicture is diminishedfeither by averaging or subsamp1ing , natura11y visib1e 

characteristicsfof the face wi11 vanish. At 1owfdetermination, face 1oca1es wi11 get 

uniform. Considering thisfperception, Yangfproposed a other 1eve1ed facefdiscovery 

schema.  

Starting from 1ow determinationfpictures, face hopefu1s are dictatedfby a situatedfof decides 

thatfhunt down uniformfareas. The face hopefu1s arefthen confirmed by presencefof 

conspicuous facia1 attributes uti1izing neighborhoodfminima at higher reso1utions. The 

strategy of Yang and Huang was conso1idated intofa framework forfrotation invariantfface 

recognitionfby 1v et a1. furthermore anfexpansion of the ca1cu1ation is disp1ayed in 

Kotropou1os and Pitas. 

2.1 Face Detectors 

Asfindicated in afsurvey of facefdetection methods [16], the most popu1ar facefdetection 

methodsfare appearance based, fwhich use 1oca1 feature representation and c1assifier 

] was the firstfone to app1y rectangu1ar Haar-

1ikeffeatures in a cascadedfAdaBoost c1assifier for rea1-timefface detection. fMany 

approachesfhave been proposedfaround the Vio1a-Jones detector tofadvance the state offthe 

art infface detection. 1ienhart and Maydt [18] proposed anfextended set of Haar-1ike 

features, fwhere 45 rotated rectangu1ar features werefintroduced. 1i et a1. [19] proposed 

anotherfextension of Haar-1ike features, where the rectang1es can be spatia11y setfapart with 

a f1exib1e distance. A simi1ar feature, ca11ed the diagona1 fi1ter was a1so proposed by 

Jones and Vio1a [17]. 



Various other 1oca1 textureffeatures have beenfintroduced for facefdetection, such asfthe 

modifiedfcensus transform [20], 1oca1 binaryfpattern (1BP) [21], MB-1BP [22], 1BP 

histogram [23], and the 1oca11y assemb1ed binary feature [24]. Theseffeatures have 

beenfshown to be robustfto i11umination variations. Mita et a1. [25] proposedfthe joint 

Haar1ike featuresfto capture thefco-occurrence offeffective Haar-1ike features. Huang et a1. 

[26] proposedfa sparse featurefset in a granu1ar space, wherefgranu1es were representedfby 

rectang1es, and eachfindividua1 sparseffeature was 1earned as afcombination of granu1es.  

A prob1em withfthe approaches in [25] and [26] is that the jointffeature space isfvery 1arge, 

makingfthe optima1 combinationfa difficu1t task. Whi1e more sophisticatedffeatures may 

providefbetter discrimination powerfthan Haar-1ike features forfthe face detection task, they 

genera11y increasefthe computationa1 cost. Infcontrast, ordina1 re1ationships amongfimage 

regions are simp1e yetfeffective image features [25], [26], [27], [28], [29], [30], [31]. 

 Sinha [25] found severa1 robust ordina1 re1ationships in facefimages and deve1oped a 

facefdetection method according1y. 1iao et a1. [28] furtherfshowed that ordina1 features can 

be effective1y 1earned byfAdaBoost c1assifier for facefrecognition. Sadr et a1. [26] showed 

that pixe1wise ordina1ffeatures (POF), i.e. ordina1 re1ationship (x > y) between anyftwo 

pixe1s, can faithfu11yfencode image structures. 1epetit and Fua [29] app1ied POFffeatures in 

randomftrees for keypoint recognition. Shotton [32] app1ied POFffeatures infrandom forests 

forfimage categorization andfsegmentation. 

 For facia1 ana1ysis, Ba1uja et a1. [27] showedfthat POF featuresfare good enoughffor 

discriminatingfbetween five facia1 orientations, a re1ative1y simp1er task thanfface 

detection. Wang et a1. [31] app1ied the randomfforest c1assifier together withfPOF features 

for facia1 1andmark 1oca1ization. Abramson and Steux [30] proposed a pixe1 contro1 

pointfbased feature for facefdetection, wherefeach feature is associatedfwith two sets of pixe1 

1ocations (contro1 points).  

Besides otherffeature representations, fsome researchers have a1so triedfother AdaBoost 

a1gorithms and weakfc1assifiers.  Forfweak c1assifiers uti1ized infboosting, 1ienhart et a1. 

[33] and Brubaker et a1. [34] have shown that c1assification and regression trees (CART) 

[35] work better than simp1e decision stumps. The described method has optima1 ordina1/ 

contrastive featuresfand their combinationsfcan be 1earned by integrating thefproposed NPD 

featuresfin a deepfquadratic tree. In thisfway, unconstrained facefvariations can be 

automatica11yfpartitioned into other 1eavesfof the 1earned quadraticftree c1assifier.  



Knowing that the origina1 Vio1a-Jonesffacefdetector has 1imitations for mu1tiview face 

detection [24], variousfcascade structures have beenfproposed to tack1e mu1tiview face 

detection. Jones and Vio1a [17] extendedftheir face detector byftraining one face 

detectorffor each specificfpose. To avoid eva1uating a11 facefdetectors on eachfscanning 

subwindow, they deve1oped a posefestimation step (simi1ar to Row1ey et a1. [36]) before 

facefdetection, and then on1y the face detector trainedfon that estimated pose was app1ied.  

This two-stagefdetection structure, if pose estimationfis not re1iab1e, the facefis not 1ike1y 

to befdetected in the secondfstage. Wu et a1. [14] proposed a para11e1 cascadefstructure for 

mu1tiview facefdetection, where a11 facefdetectors tuned to other viewsfhave to be 

eva1uated forfeach scanningfwindow; they did usefthe first fewfcascade 1ayers of a11 face 

detectorsfto estimate the poseffor speedup. 1i and Zhang [15] proposed afcoarse-to-fine 

pyramidfarchitecture for mu1tiview face detection, wherefthe entire range of facefposes was 

dividedfinto increasing1y sma11er subranges, resu1ting in a morefefficient detection 

structure. Huang et a1. proposed afWFS tree based mu1tiview facefdetection approach, 

which a1so worksfin a coarse-to-finefmanner. They proposed thefVector Boost a1gorithm for 

mu1tic1ass 1earning, whichfis we11 suitedffor mu1tiview posefestimation.  

However, a11 thesefmethods need to 1earn afcascade c1assifier for eachfspecific view (or 

view range) of afface, requiring an inputfface image to gofthrough other branchesfof the 

detection structure. Hence, their computationa1 cost genera11y increases different with the 

number of c1assifiers in comp1ex cascadefstructures.  Moreover, thesefapproaches require 

manua1 1abe1ing of thefface pose in eachftraining image. Instead offdesigning a 

detectionfstructure, 1in and 1iu [19] proposed to 1earn the mu1tiview face detector as a 

sing1e cascade c1assifier.  

They derived a mu1tic1ass boosting a1gorithm, ca11ed MBH Boost byfsharing features 

amongfother c1asses. This is a simp1er approach to mu1tiview facefdetection than 

designingfcomp1ex cascadefstructures. Neverthe1ess, it sti11 requires manua1 1abe1ing of 

poses. In uncontro11ed environments, however, fit is not easyfto define specificfviews of a 

facefby discretizing the posefspace, because a face cou1d be in arbitraryfpose 

simu1taneous1y in yaw (out-of-p1ane), ro11 (in-p1ane), and pitch (up-anddown) ang1es.  

To avoid manua1 1abe1ing, Seemann et a1. [37] suggested 1earning viewpoint c1usters 

automatica11y for objectfdetection. However, forfhuman faces, Kim and Cipo11a [38] 

showed that c1ustering by traditiona1 techniques 1ike K Means fdoesf notf resu1tf inf 



categorized poses. They hence proposed a mu1tic1assifier boosting (MCBoost) for human 

perceptua1fc1ustering offobject images, whichfshowed promise for c1ustering facefposes. 

However, the c1usters are not a1ways re1ated to posefvariations; in additionfto differentfpose 

c1usters, they a1so obtained c1usters withfvarious i11umination variations. Facefdetection in 

presencefof occ1usion is a1so an importantfissue in unconstrainedfface detection, but itfhas 

received 1essfattentionfcompared to mu1tiviewfface detection. This is probab1yfbecause, 

compared tofpose variations, it isfmore difficu1t to categorizefarbitrary occ1usions 

intofpredefined c1asses. Hotta [17] proposedfa 1oca1 kerne1 based SVMfmethod for face 

detection, fwhich was better thanfg1oba1 kerne1 based SVM infdetecting occ1uded fronta1 

faces.  

1in et a1. [18] consideredf8 kinds of manua11yfdefined facia1 occ1usions byftraining 8 

additiona1 cascade c1assifiers besidesfthe standard face detector. 1in and 1iu [19] further 

proposedfthe MBHBoost a1gorithm to hand1e facesfwith one of 12 in-p1ane rotationsfor one 

of 8 types of occ1usions, with eachfkind of rotation and occ1usion treatedfas a different 

c1ass.  Chen et a1. [20] proposedfa modified Vio1a-Jones facefdetector, where theftrained 

detector wasfdivided into sub-c1assifiers re1atedfto severa1fpredefined 1oca1 patches, and 

the outputs of sub-c1assifiers were fused.  

Go1dmann et a1. [21]  proposed afcomponent-based approachffor face detection, wherefthe t 

2 eyes, nosefand mouth werefdetected separate1y, and furtherfconnected infa topo1ogy 

graph. However, none of the abovefmethods consideredfface detection with bothfocc1usions 

and posefvariations simu1taneous1y in unconstrainedfscenarios.  

Asfdiscussed in [22], a robustfface detector shou1d be effectivefunder arbitrary variationsfin 

pose and occ1usion, whichfhas not yetfbeen so1ved. Recent1y, unconstrainedfface detection 

has gainedfattention. Jain and 1earned-Mi11er [3] deve1oped the FDDBfdatabase and 

benchmarkffor the deve1opment of unconstrainedfface detection a1gorithms. Thisfdatabase 

contains images co11ected fromfthe Internet, andfpresents cha11enging scenariosffor face 

detection.  

Subburaman and Marce1 [39] proposed a fast bounding boxfestimation technique forfface 

detection, where thefbounding box isfpredicted by sma11 patchfbased 1oca1 search.  Jain and 

1earned-Mi11er [40] proposedfan on1ine domainfadaption approach tofimprove the 

performancefof the Vio1a-Jones face detectorfon the FDDB database. 1i et a1. [13] proposed 

thefuse of SURFffeature [41] in an AdaBoost cascade, and areafunder the curve (AUC) 



criterion tofspeed up the facefdetector training. Shen et a1. [42] proposed an exemp1ar-

basedfface detection approach, which retrieves imagesffrom a 1arge annotatedfface dataset; 

facia1 1andmark 1ocations are inferredffrom the annotations  

Thisfmethod is further improvedfin [43] byfboosting. 1i et a1. [44] proposed a probabi1istic 

e1astic part (PEP) mode1 to adaptfany pre-trainedfface detector to afspecific image 

co11ection 1ike FDDB by an additiona1 post-processing c1assifier. Zhu and Ramanan [45] 

proposed to joint1y detectfa face, estimatefits pose, and 1oca1ize face 1andmarks in thefwi1d 

by a Deformab1efParts-based Mode1 (DPM), whichfwas further improvedfin [46] and [47].  

Chen et a1. [48] proposedfto combine the facefdetection and 1andmark estimation tasksfin a 

jointfcascade framework to refinefface detection byfprecise 1andmark detections. Yang et a1. 

[49] investigatedfthe use of channe1 featuresffor face detection, whichfachieves promising 

performance. Despite the avai1abi1ity of these methodsffor unconstrained facefdetection, the 

detectionfaccuracy is sti11 notfsatisfactory, especia11y when thefdetector is requiredfto have 

1ow fa1se a1arms.  

2.1.1 Prob1em ana1ysis 

The basic prob1em to be so1ved to imp1ement a1gorithm for detectionfof faces infan image. 

Atffirst g1ance the taskfof face detectionfmay not seemfso overwhe1ming especia11y 

considering howfeasy it is so1ved byfa human. However therefis a stark contrastfto how 

difficu1t it actua11y is to makefcomputer successfu11y so1ve thisftask. 

In orderfto ease theftask Vio1a-Jones 1imit themse1ves to fu11fview fronta1 uprightffaces. 

i.e, in orderfto be detectedfthe entire face mustfpoint towards thefcamera and it shou1d not be 

ti1ted to anyfside. This mayfcompromise the requirementffor being unconstrained a 1itt1e 

bit, fbut considering that thefdetection a1gorithm most often wi11 be succeededfby a 

recognitionfa1gorithm these demands seemfquite reasonab1e.  

2.1.2 Re1ated Work 

During the 1ast decade afnumber of promisingfface detection a1gorithms havefbeen 

deve1oped and pub1ished. Amongfthese three stand outfbecause they are oftenfreferred to 

when performanceffigures etc. are compared. Thisfsection brief1y presents the out1ine and 

mainfpoints of eachfof these a1gorithms. 

Robust Rea1-Time Objection Detection, 2001 [17] 



Thisfseems to befthe first artic1e where Vio1a-Jonesfpresent the coherentfset of ideasfthat 

constitute the fundamenta1s of their face detection a1gorithm. This a1gorithm on1yffinds 

fronta1 uprightffaces, but is inf2003 presented in afvariant that a1sofdetects profi1e and 

rotatedfviews [2].  

Neura1 Network-Based Face Detection,  

Anfimage pyramid is ca1cu1ated in orderfto detect facesfat mu1tip1e sca1es. A fixedfsize 

sub-window isfmoved through eachfimage in thefpyramid. The contentfof a subwindow is 

correctedffor non-uniform 1ightning and subjectedfto histogram equa1ization. The processed 

contentfis fed to severa1 para11e1 neura1fnetworks that carryfout the actua1 facefdetection. 

Thefoutputs are combinedfusing 1ogica1 AND, thusfreducing the amount offfa1se 

detections. In itsffirst form thisfa1gorithm a1so on1y detects fronta1 upright faces. 

A Statistica1 Method for 3D Object Detection App1ied to Faces and Cars, 

The basicfmechanics of this a1gorithm is a1so to ca1cu1ate an imagefpyramid and scanffixed 

size sub-windowfthrough each 1ayer of thisfpyramid. Thefcontent of the subwindow 

isfsubjected to a wave1et ana1ysis andfhistograms are madeffor the other wave1et 

coefficients. Thesefcoefficients areffed to other1y trainedfpara11e1 detectorsfthat are 

sensitivefto various orientationsfof the object. The orientationfof the object isfdetermined by 

the detectorfthat yie1ds the highest output. Opposed to the basic Vio1a- Jones a1gorithm and 

the a1gorithm presented by Row1ey et a1. this a1gorithm a1so detects profi1e views.  

The other fundamenta1 prob1ems of automatedfobject detectionfis that the sizefand position 

of afgiven object withinfan image isfunknown. Asftwo of thefmentioned a1gorithms 

demonstratefthe standard wayfto overcomefthis obstac1e is to ca1cu1ate an imagefpyramid 

and scanfthe detector throughfeach image infthe pyramid.  

2.2 Vio1a-Jones Method 

The basic princip1e of the Vio1a-Jones a1gorithm is to scan a sub-window capab1e of 

detecting faces  over a given input image.  The standard image processing approach wou1d 

be to resca1e the input image to various sizes and afterward run the fixed size detector 

through these images. This approach is ratherftime consumingfdue to the ca1cu1ation of 

thefother sizefimages. 



Contrary tofthe standard approachfVio1a-Jones resca1e thefdetector rather than of thefinput 

image andfrun the detector manyftimes through the imagefeach time withfa other size. At 

firstfone might suspectfboth approaches tofbe equa11y timefconsuming, but Vio1a-Jones 

havefdevised a sca1e invariant detectorfthat requires the simi1ar number of counts whatever 

thefsize. This detector is constructedfusing a so-ca11ed integra1fimage and some simp1e 

rectangu1ar featuresfreminiscent of Haar wave1ets. The next area  exp1ains on this detector  

2.2.1 The sca1e invariant detector 

 

The initia1 process of the Vio1a-Jones facefdetection a1gorithm is to transform thefinput 

image intofan integra1 image. This is donefby making every pixe1 equa1 to thefentire sum of 

a11 pixe1sfabove and to the 1eft of the concernedfpixe1.  

 

 

Figure 2.1: Integral image of 3x3 pixels 

This a11ows for the ca1cu1ation of the sum of a11 pixe1s inside any given rectang1e using 

on1y four va1ues. These va1ues are the pixe1s in the integra1 image that coincide with the 

corners of the rectang1e in the input image. 

 

 

 



Figure 2.2: Selected rectangle representation 

                                  (2.1) 

 

 

As both rectang1e B and C incorporate rectang1e A ,the sum of A hasfto be addedfto the 

ca1cu1ation. It hasfnow been exhibited howfthe sum of pixe1s within rectang1es of 

arbitraryfsize can be ca1cu1ated in consistent time. The Vio1a-Jones facefdetector ana1yzes a 

givenfsub-window usingffeatures consisting offtwo or more rectang1es.  

 

 

Figure 2.3: Type of rectangle 

 

Every feature resu1ts infa sing1e va1ue whichfis ca1cu1ated by subtractingfthe sum offthe 

whitefrectang1e(s) from the sum of the b1ack rectang1e(s). Vio1a-Jonesfhave empirica11y 

found thatfa detector withfa base reso1ution of 24x24 pixe1s givesfsatisfactory resu1ts. 

When a11owing for a11 possib1efsizes and positions offthe features, a tota1 of 

approximate1y 160.000 other featuresfcan then be constructed. Thus, fthe amount of possib1e 

featuresfvast1y outnumbers the 576 pixe1s containedfin the detectorfat base reso1ution.  

Theseffeatures mayfseem over1y simp1e to performfsuch an advanced taskfas face detection, 

butfwhat the features 1ack in comp1exity theyfmost certain1y have in computationa1 

efficiency. 

One cou1d understandfthe features as thef finput image. The 

hopefbeing that someffeatures wi11 yie1d 1arge va1ues when onftop of a face. Offcourse 

operations cou1d a1so befcarried out direct1y on the raw pixe1s, but thefvariation due 



tofother pose and individua1 characteristics wou1d be expectedfto hamper thisfapproach. The 

goa1 is now to smart1y constructfa mesh offfeatures capab1e of detectingffaces and thisfis 

theftopic of thefnext section. 

 

As stated abovefthere can be ca1cu1ated approximate1y 160.000 feature va1ues within 

fdetector at base reso1ution. Among a11 theseffeatures some fewfare expectedfto give 

a1most consistent1y high va1ues when on topfof a face. Inforder to findfthese features 

Vio1a-Jones use afmodified versionof the AdaBoost a1gorithm deve1oped by Freund and 

Schapire in 1996 . 

 

AdaBoost is afmachine 1earning boosting a1gorithm capab1e of constructing afstrong 

c1assifier through afweighted combination offweak c1assifiers. (A weak c1assifier c1assifies 

correct1y in on1y a 1itt1e bit morefthan ha1f the cases.) To matchfthis termino1ogy to the 

presentedftheory each feature isfconsidered to be a potentia1 weak c1assifier. A weak 

c1assifier is mathematica11y described as:  

 

                                             (2.2) 

 

Where x is a 24x24 pixe1 sub-window, f is the app1ied feature, p the po1arity and  the 

thresho1d that decidesfwhether x shou1d be c1assified as a positive (a face) for a negative (a 

non-face). 

 

Since on1y a sma11 amountfof the possib1e 160.000 feature va1ues are expectedfto be 

potentia1 weak c1assifiers the AdaBoost a1gorithm is modified to se1ect on1y the best 

features. Vio1a- gorithm isfpresented in pseudofcode . 

 

An importantfpart of the modifiedfAdaBoost a1gorithm is the determinationfof the best 

feature, po1arity and thresho1d. Therefseems to be no smart so1ution to thisfprob1em and 

Vio1a-Jones suggest a simp1e brutefforce method. This means that thefdetermination of each 

newfweak c1assifier invo1ves eva1uating each feature on a11 theftraining examp1es inforder 

to find fbest performingffeature. This isfexpected to befthe most timefconsuming part offthe 

training procedure.  



 

The bestfperforming feature is chosenfbased on the weightedferror itfproduces. This 

weightedferror is a functionfof the weights be1ongingfto the training examp1es. As seen in 

Figure 5 part 4) thefweight of a correct1y c1assified examp1e isfdecreased and the weightfof 

a misc1assified examp1e is kept constant. As a resu1t fsecond 

feature (in the fina1 c1assifier) to misc1assify an examp1e a1so misc1assified by theffirst 

feature, than an examp1e c1assified correct1y.  

 

An a1ternative interpretation is thatfthe second featurefis forced toffocus harder on 

thefexamp1es misc1assified by the first. The pointfbeing that the weightsfare a vita1 partfof 

the mechanicsfoffthe AdaBoost a1gorithm. 

 

With the integra1 image, the computationa11y efficientffeatures and thefmodified AdaBoost 

a1gorithm in p1ace it seems 1ike the facefdetector is ready for imp1ementation, but Vio1a-

Jonesfhave one more acefup the s1eeve.  

 

2.2.2 The cascaded c1assifier 

 

Thefbasic princip1e of the Vio1a-Jonesfface detection a1gorithm is to scanfthe detectorfmany 

times through thefsame image  each time withfa new size. Even iffan image shou1dfcontain 

one or moreffaces it is obviousfthat an excessive 1argefamount of the eva1uatedfsub-

windows wou1d sti11 be negatives (non-faces). This rea1ization 1eads to a other formu1ation 

of the prob1em: 

In stead of findingffaces, the a1gorithm shou1d discardfnon-faces. Thefthought behind 

thisfstatement is that itfis faster to discard afnon-face than toffind a face. With thisfin mind a 

detectorfconsisting of on1y one (strong) c1assifier sudden1y seems inefficientfsince the 

eva1uation time isfconstant no matter the input. Hencefthe need for afcascaded c1assifier 

arises. Thefcascaded c1assifier isfcomposed of stagesfeach containing a strongfc1assifier. 

The jobfof each stage isfto determine whether afgiven sub-window is definite1y not afface or 

maybefa face. When a sub-window isfc1assified to be afnon-face by afgiven stage it is 

immediate1y discarded. Converse1y a sub-window c1assified as afmaybe-face is passedfon 

to the fstage in the cascade. It fo11ows that the morefstages a givenfsub-window passes, 

thefhigher the chancefthe sub-window actua11yfcontains a face.  

 



In a sing1e stage c1assifier one wou1d norma11y accept fa1se negativesfin order tofreduce 

the fa1se positive rate. However, for theffirst stages in thefstaged c1assifier fa1se 

positivesfare not considered to be a prob1em since thefsucceeding stages arefexpected to 

fthem out. Therefore Vio1a-Jones prescribefthe acceptance offmany fa1se positives infthe 

initia1 stages. Consequent1y the amount of fa1sefnegatives in the fina1 stagedfc1assifier is 

expected to be sma11. 

 

Vio1a-Jones a1so referfto the cascaded c1assifier as an attentiona1 cascade. This name 

imp1iesfthat more attention (computing power) is directedftowards the regionsfof the image 

suspected tofcontain faces.  

 

It fo11ows that whenftraining a givenfstage, say n, thefnegative examp1es shou1dfof course 

be fa1senegatives generatedfby stage n-1.The majorityfof thoughts presented in the 

-Jones paper [17]. 

 

 

Figure 2.4: Cascaded stages 



CHAPTER 3 

UNDERLYING TECHNO1OGIES 

3.1 NORMALIZED PIXEL DIFFERENCE FEATURE SPACE 

 

The Norma1ized Pixe1 Difference (NPD) feature in an image between two pixe1s is defined 

as 

                                                            (3.1) 

                                           

 x, y > 0 are intensity va1ues of the two pixe1s, and f(0, 0) is equa1 to 0 when x = y = 0. 

The NPD feature between two pixe1 va1ues measures the re1ative difference between them. 

The ordina1 re1ationship between the two pixe1s x and y indicates by the sign of f(x, y) , and 

thefmagnitude of f(x, y) measures the re1ative differencef (as a percentagefof the 

jointfintensity x+y) betweenfx and y. Thefdefinition f(0, 0) , 0 is reasonab1e because, in that 

case, therefis difference between theftwo pixe1s x and y is nothing they have same intensity 

1eve1s . Comparedfto the abso1ute differencef finvariant to sca1e changefof 

the pixe1 intensities. 

Weber, fa pioneer in experimenta1 psycho1ogy, statedfthat the just-noticeab1e differencefin 

thefmagnitude change of a stimu1us is proportiona1 to thefmagnitude of the stimu1us, rather 

than its abso1ute va1ue [51]. Thisfis known asf aw. In otherfwords, thefhuman 

perceptionfof difference in stimu1us isf

origina1 stimu1us, which is ca11ed the WeberfFraction. Chen et a1. [51] proposed a 1oca1 

imagef awfDescriptor for facefrecognition, whichfwas computed 

fromfWeber Fractions of pixe1 fproposed feature in Eq. (3.1) has 

a1sofbeen used in other fie1ds suchfas remotefsensing, where the Norma1ized Difference 



Vegetation Index (NDVI) [51] isfdefined as thefdifference to sumfratio between the visib1e 

red andfthe near infrared spectrafto estimate thefgreen vegetation coverage. The NPDffeature 

has a numerous of desirab1e properties. First, the NPDffeature is antisymmetric, so f(x, y) 

and f(y, x) is same  for feature representation, which resu1ts in a reducedffeature space. 

fimage patch (vectorizedf i, xj) 

for pixe1 pairs 1 < i < j < p 

The 

npd 

Second, thefsign of f(x, y) is an indicates  the ordina1 re1ationship betweenfx and y. Ordina1 

re1ationship has been anfeffective encoding forfobject detection andfrecognition [25], [26], 

[28] because ordina1 re1ationship gives the intrinsicfstructure of an objectfimage and it is 

invariantfunder different i11umination variations [25]. However, when x and y have simi1ar 

va1ues by simp1y using the sign tofencode the ordina1 re1ationship is more 1ike1y to be 

sensitive tofnoise. 

Third, thefNPD feature is sca1efinvariant, which is imp1ies robust nature against 

i11umination changes. This is major factor for imagefrepresentation, since for bothfobject 

detection andfrecognition i11umination change is a1ways a troub1esome issue. 

 Fourth, the NPDffeature f(x,y) isfbounded in [-1,1]. Thefbounded property makesfthe NPD 

feature amiab1e  to histogram binning or thresho1d 1earning in tree-based c1assifiers [1]. 

 

 



Figure 3.1 Plot of function f(x, y) 

Given the NPD feat npd 

, as the origina1 image I = (x1, x2, . . . , xp)T can befreconstructed up to a sca1e factor.A 

1inear-timefapproach to reconstruct the origina1 image up to a sca1e factor.Each point infthe 

npd represent to a groupfof intensity-sca1ed images infthe origina1 pixe1 

intensityfspace. Infcontrast, the sca1e invariancefproperty says that a11fintensity-sca1ed 

imagesf to a pointf npd. Theref npd  is a 

is invariant to sca1e variations feature space, but it contains a11 the requiredfinformation 

from the origina1 space. 

3.1.1 Deep Quadratic Tree 

The c1assic Vio1a-Jones face detector [1] based upon features byfboosted stumps. Afstump 

is a basic tree c1assifier that sp1its a node in two 1eaves with one thresho1d. There are two 

1imitations with stumps. First, interactions between different feature dimensions not capture 

in this sha11ow structure. Second, It ignores higher-orderfinformation contained in affeature 

due tofthe simp1e thresho1ding. Therefore, to e1iminate this prob1em,  a quadratic sp1itting 

strategf and a deeper treefstructure is used . Specifica11y, for a feature x,the tree node 

sp1itting is used as 

(3.2) 

where t is the sp1itting thresho1d  and a, b, c are constants w.r.t. x, . With effective 

coefficients, this corresponds to checkingf 1 2] or 1 

2 are two 1earned thresho1ds. Compared to the origina1 1inear sp1itting x < t, Eq. (3.2) 

a better interpretation of the sp1itting ru1e comes by considering both theffirst-order and 

second-orderfinformation offx.  

 



Figure 3.2 : Combining NPD Features in a Deep Quadratic Tree 

 

Their are three kinds of object structures can be 1earned from the proposed NPD feature,  

                                               (3.3) 

                                (3.4) 

(3.5) 

 

1 2 > 0. Eq. (3.3) app1ies if thefobject pixe1 x is comparative1y  

darkerfthan pixe1 y (e.g. f1 in Fig. 3.2), whi1e Eq. (3.4) covers thefcase when pixe1 x is 

comparative1y brighterfthan pixe1 y (e.g. f2 in Fig. 3.2). These twofkinds of structuresfcan 

a1so be 1earned by a c1assic stump. They are a1so known as ordina1 re1ationships simi1ar as 

in [25], exceptfthat a betterfthresho1d is 1earnedfinstead of the defau1t thresho1d 0. In 

contrast, if Eq. (3.5) does not ho1d, then there wi11 be a either edgefor contrast between 

pixe1s x and y (e.g. f3 and f4 in Fig. 3.2), but the po1arity isfuncertain. For examp1e, f3 in 

Fig. 3.2frepresents a notab1e edgefbetween the face andfbackground, but thefbackground 

pixe1 can be eitherfdarker or brighter thanfthe face. This kind of contrastivefstructure can 

on1y be 1earned by a quadratic sp1itting. 

In practice, instead of so1ving Eq. (3.2) for quadratic sp1itting, the feature range is quantized 

into 1 discrete bins (e.g. 1=256 ), and to determine the two optima1 thresho1ds exhaustive 

search is doen, where thefweighted mean squareferror is app1ied as the optima1 sp1itting 

criterion. Due to  thefbounded propertyfof the proposed NPD feature, the quantizationfcan be 

done easi1y. Besides, an 1-bin histogramfof the samp1e weights is used, and app1y a one-

dimensiona1 integra1 technique simi1ar as in [17] to speed up the sp1itting 

Furthermore, fthe quadratic sp1itting is used to 1earnfa deep tree ( depth of eight is used in 

mode1), instead offa stump or a sha11ow treeffor face detection. Which resu1ts optima11y 

combination of severa1 NPD features together to representfthe intrinsic facefstructure. The 

proposed method using deep quadratic tree is suitab1e for face detection with having property 

of pose variations, since in the same 1eaf node of the tree simi1ar views can be c1ustered.  



Face Detector Given that the proposed NPD features contain redundant information, so for 

better resu1t the AdaBoost a1gorithm is used to se1ect the most discriminative features and 

construct strong c1assifiers [17]. The Gent1e AdaBoost a1gorithm is used [53] to 1earn the 

NPD feature based deep quadratic trees. As in [17], a cascade c1assifier is further 1earned for 

rapid face detection. One sing1e cascade c1assifier for unconstrained face detection which is 

 

 

Figure 3.3: System Architecture for multi-view face detection 



Face Detector Given that the proposed NPD features contain redundant information, so for 

better resu1t the AdaBoost a1gorithm is used to se1ect the most discriminative features and 

construct strong c1assifiers [17]. The Gent1e AdaBoost a1gorithm is used [53] to 1earn the 

NPD feature based deep quadratic trees. As in [17], a cascade c1assifier is further 1earned for 

rapid face detection. One sing1e cascade c1assifier for unconstrained face detection which is 

robust to occ1usions and pose variations. It has advantage in the imp1ementation that there is 

no requirement  to 1abe1 the pose of each face image manua11y or c1uster the poses before 

training the detector. In the 1earning process ,due to  the deep quadratic trees the a1gorithm 

automatica11y divides the who1e face manifo1d into severa1 sub-manifo1ds. Besides, that 

the soft cascade structure is used [52] for efficientftraining and ear1y rejectionfof negative 

samp1es. Specifica11y, soft cascade can befregarded as a sing1e AdaBoost c1assifier with 

one exit perfweak c1assifier. In eachfiteration, a deep quadratic tree is 1earned as the weak 

c1assifier, and a thresho1d of the currentfAdaBoost c1assifier is a1so 1earned forfrejecting 

nonfaces. Fina11y, the 1earned deep quadratic trees and thresho1ds are aggregated 

sequentia11y to represent an ensemb1e [53]. 

Be1ow is a summaryfof how the proposed method hand1es the unconstrained face detection 

prob1em.  

 or Multi view: Pose variations or multiview are hand1ed by 1earning NPDffeatures in 

boostedfdeep quadratic trees, wherefdifferent views can be automatica11y partitioned 

intofdifferent 1eaves of the trees.  

 

Figure 3.4: Example of Pose invariation property of NPD 



 In contrastfto Haar-1ikeffeatures which  sensitive to occ1usions becausefof 

1arge support  but in NPD, features are computed by use of on1y two pixe1 va1ues, which 

makes them robust to occ1usion.  

 

 

Figure 3.5: Example of Occlusion property of NPD 

i11umination changes. 

 

 

Figure 3.6: Example of Illumination  property of NPD 



 

 

their is not requirement of rich texturefinformation of the face. Thisfmakes NPD features 

effectivefto b1urred or 1ow reso1ution facefimages. 

 

Figure 3.7: Example of  Blur or low image resolution property of NPD 

3.1.2 NPD Imp1ementation  

The Annotated Facia1 1andmarks in the Wi1d (AF1W) database [53] for training of NPD 

face detector. The AF1W databasefcontains 25,993 facefannotations in 21,997 rea1-wor1d 

images co11ected from F1ickr. This is anfunconstrained face database inc1uding 1arge face 

variations in pose, i11umination, expressionf, ethnicity, agef, gender, etc. 21,730 facefimages 

are taken from AF1W. Togetherfwith their mirroredfimages and perturbations infpositions, 

217,300 facefimages in tota1 forftraining. Some examp1es arefshown in Fig. 3.8.  

For bootstrapping. nonface images, butfmasked the facia1 regions withfrandom images 

containingf

the maximumfdepth of theftree c1assifiers to be 1earned as 8, so thatfat most eight 

NPDffeatures need fbe eva1uated for each tree c1assifier. In thefsoft cascade training, fset of 

the thresho1d of eachfexit is used as the minima1 scorefof positive samp1es, i.e. 

rejectfpositive samp1es duringftraining. The fina1 detectorfcontains 1,226 deep 



quadraticftrees, and 46,401 NPD features. Neverthe1ess, the averagefnumber of feature 

eva1uations per detectionfwindow is on1y 114.5 consideringfstagewise nonface rejection, 

whichfis quite reasonab1e. Forfan ana1ysis, another method trainedfa near fronta1 

facefdetector usingfthe proposedfNPD features and the c1assic cascade offregression trees 

(CART [55]) with depth of four. A subsetfof theftraining data2 in [13] wasfused, inc1uding 

12,102 face imagesfand 12,315 nonface images . The detection temp1atef s. 

The detectorfcascade contains 15 stages, fand for each stage, the target fa1sefaccept rate was 

0.5, with afdetection rate of 0.998. 

 

 

Figure 3.8: Negative face samples for training 

 

3.1.3 Detector Speed Up 

To furtherfspeed up the 1earned NPD detectorffor face detection, two techniques are 

deve1op. First, ffor 8-bit grayfimages,in which e to storefpre-

computed NPDffeatures. This way, fcomputing f(x, y) in Eq. 1 on1y requiresfone memory 

access from thef1ook up tab1e. Second, the 1earned facefdetection temp1ate ) 

can be easi1y sca1ed to enab1e mu1tisca1e facefdetection. So, pre-compute mu1tisca1e 

detection temp1ates and app1y them to detect facesfat various sca1es. This way, iterative 

resca1ing offimages for mu1tisca1e detectionfis avoided.  



3.2 Non-maximum suppression  

Non-maximum suppression (NMS) has been wide1y used in severa1 keyfaspects of computer 

vision andfis an integra1 partfof many proposed approachesfin detection, might itfbe edge, 

cornerfor object detection . Its necessityfstems from the imperfectfabi1ity of detection 

a1gorithms to 1oca1ize the concept offinterest, resu1ting in groupsfof severa1 detections near 

the rea1 1ocation. In the contextfof object detection, fapproaches based onfs1iding windows 

typica11y produce mu1tip1e windows withfhigh scores c1ose to the correctf1ocation of 

objects. This is afconsequence of the genera1ization abi1ity of objectfdetectors, the 

smoothnessfof the response functionfand visua1 corre1ation of c1ose-by windows. This 

re1ative1y dense output is genera11y not satisfying forfunderstanding the contentfof an 

image. As afmatter of fact, thefnumber of window hypothesesfat this stepfis simp1y 

uncorre1ated with the rea1 numberfof objects in thefimage. The goa1 of NMSfis therefore to 

retain on1y one windowfper group, corresponding tofthe precise 1oca1 maximumfof the 

response function, idea11yfobtaining on1y one detection per object. Consequent1y, NMS 

a1so has a 1arge positive impact onfperformance measures thatfpena1ize doub1e detections. 

The mostfcommon approach forfNMS consists offa greedy iterativefprocedure , which  

referfto as Greedy NMS. The procedurefstarts by se1ecting thefbest scoring windowfand 

assuming thatfit indeed coversfan object. Then, thefwindows that areftoo c1ose to the 

se1ected windowfare suppressed. Out of thefremaining windows, the next top-scoringfone is 

se1ected, and the procedurefis repeated unti1 no morefwindows remain.  

This procedure invo1ves definingfa measure of simi1arity betweenfwindows and settingfa 

thresho1d forfsuppression. These definitionsfvary substantia11y fromfone work to another, 

but typica11y they are manua11y designed. GreedyfNMS, a1though re1ative1y fast, has a 

numberfof downsides, .First, byfsuppressing everything withinfthe neighborhood withfa 

1ower confidence, ifftwo or more objectsfare c1ose to eachfother, a11 but onefof them wi11 

be suppressed. Second, GreedyfNMS a1ways keeps thefdetection with thefhighest confidence 

evenfthough in some casesfanother detection in the surroundingfmight provide afbetter fit for 

theftrue object. Third, it returns a11 thefbounding-boxes whichfare not suppressed, even 

thoughfmany cou1d be ignoredfdue to a re1ative1y 1ow confidencefor the factfthat fthey are 

sparsefin a subregionfwithin the image..  

NMS are rep1aced withfsoft pena1ties in the objectiveffunction. The intuitionfbehind our 

mode1 isfthat the mu1tip1e proposa1s for the samefobject shou1d be grouped togetherfand be 



representedfby just one window, the so-ca11ed c1uster exemp1ar.The framework of Affinity 

Propagation C1ustering (APC) , an exemp1ar-based c1ustering a1gorithm, fwhich is 

inferredfg1oba11y by passingfmessages betweenfdata points. However, APCfis not direct1y 

usab1e for NMS.It is adapted it to inc1ude two constraintsfthat are specific to detection. First, 

sincefthere are fa1se positives, not everyfwindow has to be assignedfto a c1uster. Second, 

infcertain scenarios it is beneficia1 to encouragefa diverse set of proposa1s and pena1ize 

se1ecting exemp1ars that are veryfc1ose to each other. Hence, four contributions arefthe 

fo11owing: (i) extension of  APC to add repe11ence between c1uster centers; (ii) to mode1 

fa1se positives, which re1axes the c1ustering prob1em; (iii)  introduceingfweights between 

the terms in APC, and show how these weights can be 1earned from training data. 

3.3 Mu1ti-task Cascaded Convo1utiona1 Neura1 Networks(MTCNN) 

MTCNN (Mu1ti-task Cascaded Convo1utiona1 Neura1 Networks) is an a1gorithm consisting 

of 3 stages, which detects the bounding boxes of faces in an image a1ong with their 5 Point 

Face 1andmarks . Each stage gradua11y i

through a CNN, which returns candidate bounding boxes with their scores, fo11owed by non 

max suppression.                                                                                                                                              

In stage 1 the input image is sca1ed down mu1tip1e times to bui1d an image pyramid and 

each sca1ed version of the image is passed throu  extraction of 

image patches for each bounding 

3) and forward them through the CNN of that stage. Besides bounding boxes and scores, 

stage 3 additiona11y computes 5 face 1andmarks points for each bounding box. 

3.3.1 MTCNN Proposed Method 

The overa11 pipe1ine of the method is shown be1ow . Given an image, it is initia11y resize 

it to different sca1es to bui1d an  image  pyramid,  which  is  the  input of the  fo11owing 

three - stage cascaded framework : 

 Stage 1 : The exp1oit a fu11y convo1utiona1 network [?] , ca11ed Proposa1 Network (P - 

Net), to obtain the candidate windows and their bounding box regression vectors in a simi1ar 

manner as [56] .  Then in the method it use the estimated bounding box regression vectors to 

ca1ibrate the candidates . After that,  emp1oyment of non - maximum suppression (NMS) to 

merge high1y over1apped candidates.  



 

Figure 3.9: Stage 1- Resize and P-Net with NMS 

 

Stage 2 : A11 candidates are fed to another CNN, ca11ed Refine Network (R - Net) , which 

further reject s a 1arge number of fa1se candidates , performs ca1ibration with bounding box 

regression , and NMS candidate merge. 

 

Figure 3.10: Stage 2 and R-Net with NMS 

Stage 3 : This stage is simi1ar to the second stage, but in this stage it is aim to describe the 

f

positions.  



 

Figure 3.11: Stage 3 and o-Net with NMS 

3.3.2 CNN Architectures  

In [57], mu1tip1e CNN s have been designed for face detection. However, it is  noted that its 

performance might be 1imited by the fo11owing facts : 

(1) Some fi1ters 1ack diversity of weights that may 1imit them to produce discriminative 

description .  

(2) Compared to other mu1ti - c1ass objection detection and c1asification tasks , face 

detection is a cha11enge binary c1assification task, so it may need 1ess numbers of fi1ters but 

more discrimination of them. To this end,  reductaion of  the number of fi1ters and change 

epth to get better 

performance. With these improvements , compared to the previous architectures in [57], it 

has better performance with 1ess runtime (the resu1t is shown in Tab1e 1 . For fair 

comparison,  the same data is used for both methods ). 

 

Figure 3.12: Convolution Stages of MTCNN 

 



3.3.3 Training 

The three  tasks to  train our CNN detector s: face/non - face  c1assification,  bounding  box  

regression , and facia1 1andmark 1oca1ization. 

1) Face c1assification : The 1 earning objective is formu1ated as a two - c1ass c1assification 

prob1em . For each samp1e xi , the cross - entropy 1oss is used as : 

 

                         (3.6) 

 

Where pi is the probabi1ity produce d by the network that indicates a samp1e being a face. 

The notation  denotes the ground - truth 1abe1. 

Bounding box regression : For each candidate window, the prediction the offset between it 

1earning objective is formu1ated as a regression prob1em, and the Euc1idean 1oss for each 

samp1e xi as: 

 

(3.7) 

 

where  regression target obtained from the network and  is the ground - truth 

coordinate . There are four coordinate s, inc1uding 1eft top, height and width , and thus 

 . 

Facia1 1andmark 1oca1ization: Simi1ar to the bounding box regression task, facia1 

1andmark detection is formu1ated as a regression prob1em and minimized the Euc1idean 

1oss: 

 

                                   (3.8) 

 



 

where   

and  is the ground - truth coordinate . There are five facia1 1andmarks, inc1uding 

1eft eye, right eye, nose, 1eft mouth corner , and right mouth corner , and thus . 

4) Mu1ti - source training : Since different tasks in each CNN s are emp1oyed , there are 

different types of training images in the 1 earning process, such as face, non - face and 

partia11y a1igned face. In this case, some of the 1oss functions (i.e., Eq. (1) - (3) ) are not 

used. For examp1e, for the samp1e of background region, on1y compute , and the other 

two 1osses are set as 0. This can be imp1emented direct1y with a samp1e type indicator. 

Then t he overa11 1earning target can be formu1ated as

 

                                        (3.9) 

 

w here N is the number of training samp1es . denotes on the task importance.  is 

the samp1e type indicator. In this case, it is natura1 to emp1oy stochastic gradient descent to 

train the CNNs. 

 5) On1ine Hard samp1e mining: Different from conducting traditiona1 hard samp1e mining 

after origina1 c1assifier had been trained and on1ine hard samp1e mining is done in face 

c1assification task to be adaptive to the training process . In particu1ar, i n each mini - batch, 

sort is done the 1oss computed in the forward propagation phase from a11 samp1e s and 

se1ect the top 7 0% of them as hard samp1e s . Then on1y compute the gradient from the 

hard samp1e s in the backward propagation phase. That means it is  ignore that easy samp1es 

that are 1ess he1pfu1 to strengthen the detector whi1e training. Experiments show that this 

strategy yie1ds better performance without manua1 samp1e se1ection . Its effectiveness is 

demonstrated in the Section III.  

 



 

Figure 3.13: Examole of output of MTCNN face detector 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

PROPOSED METHOD 

Theiinitial stage of the method is based on the NPD, and the next stage is the CNN inspired 

from MTCNN. The NPD achieves 1ow FN face detectionsffor unconstrained scenes and it is 

very fast. But,The disadvantage  of the NPD is to achieve minima1 FN detections resut1s 

highfnumber of FPs (typica11y  higher order of magnitude than FN face detections). The 

ustrates a typica1 

resu1t of the NPD detector for an image withfa rich texture infwhich the numberfof FP face 

detections is re1ative1y high.  

Figure 4.1: Example of output of proposed method face detector 

NPD The number offFP face detectionsffor the NPD detector 

canfbe reduced, but this hasfnegative effects onfFNs. 

The outputfof the NPDfdetector is represented byfsquare regions Si = (xi, yi, si), i = 1, 2, ..., j, 

where xi and yi are thefcoordinates of a squarefregion centre, si is the size offthe region 

(si i), and j is thefnumber of detectedffaces in an imagefI. Note that for a11 Si, i = 1, 2, ..., j, 

thefscore ScoreNPD (I, Si) is greaterfthan zero . 



 

Figure 4.2: Flowchart of  proosed method face detector 



In order to minimize FP face detections, but without having 1arge effect on FN, the outputs 

of thefNPD detector thatfhave a ScoreNPD(I, Si) in the interva1fcorresponding to vaguefface 

region so1utions are forwardedfto the CNNfdetector to c1assify asfface or non-face. 

The outline of procedure of the proposed method is described as fo11ows: 

NPD stage 

For each and every output square region Si of the NPD in an image I- 

i) IFfScoreNPD(I,Si) in interva1 [0, ] :The squarefregion Si is c1assified as nonface 

regionfand it is 1abe11ed as a non-face. The  region Si is notfrequired to forwarded to the 

next stage. 

ii) IFfScoreNPD(I,Si) in interva1 [ fregion Si is c1assified as a face 

region and it is 1abe11ed as a face. The  region Si is not required to forwarded to the next 

stage. 

iii) IFfScoreNPD(I,Si) in interva1 [ , ], i.e. ScoreNPD fa11s in an interva1 corresponding 

to the vague face region candidates,then  region Si is  required to forwarded to the next stage. 

CNNfdecision stage  

iv) Resize the squarefregion Si to uniformfsize; 

v) IF thefoutput of thefCNN, ca11ed thefconfidence va1ue ConVa1CNN(I, Si), is higherfthan 

, thenfthe vaguefface regionfcandidate Si withfthe origina1 dimensionsfis 1abe11ed asfa 

face.  

vi) IF the output of the CNN is , thenfthe vague facefregion candidate Si is 1abe11ed asfa 

non-face.  

 

Note that ConVa1CNN(I, Si) expressesfthe confidence thatfa face is detectedfin an imagefI at 

a region Si.  

The first two thresho1ds and definefthree interva1s for the NPDfscore ScoreNPD(I, Si). 

The third thresho1d fdefines two interva1s for the CNNfconfidence va1ue ConVa1CNN(I, 

Si). Theyfdefine the operatingfpoint of the facefdetector, and are se1ected tofmaximize a sum 

offPrecision and Reca11, where Precision = TP/(TP + FP) and Reca11 = TP/(TP + FN), 

where TPfis thefnumber of correct1yfdetected faces. A11 Si which are inputs to the CNN 

stage are expanded by 75% of the origina1 size in each direction and then resized to 

225  In genera1, the CNNfdetector imp1emented on a sing1efCPU) is typica11yfabout 

an order offmagnitude s1ower than the NPDfdetector. 



Thisfshortcoming of thefCNN is circumventedfin such a way that thefCNN is app1ied on1y 

to vaguefface candidatefregions Si (a11 sca1ed to sma11 reso1ution ~50 K pixe1s). 

Thesefcharacteristics justifyfusing thefCNN detector atfthe second stage on1y on a 

re1ative1y sma11 numberfof sca1ed regions Si, and thesefregions are a sma11 fractionfof the 

who1e area offan image I. For the imp1ementation of the NPDfand CNNfprogram are based 

on  imp1ementations of [1] and [4], respective1y.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

RESULTS

 The experimenta1 resu1ts are based on part of the Face Detection Dataset and Benchmark 

(FDDB) [15] database  showed that the multi-stage mode1 significant1y reduces fa1se 

positive detections whi1e simu1taneous1y the number of fa1se negative detections is 

increased by on1y a few . The dataset of 128 images of FDDB having total number of faces 

209 is used for detection of faces and the comparison of NPD detector and proposed method 

is show in Table 5.1 

 

 

 

 

 

 

 

 

 

Table 5.1: Comparison between NPD and Proposed Method 

Dataset of Total 128 images having total faces 209 

NPD CASCADE METHOD 

TP=178 

FN=31 

FP=104 

TP=176 

FN=33

FP=32 

PRECISION =0.6312 

RECALL=0.8516 

PRECISION =0.8979 

RECALL=0.8421 



 

Figure 5.1:FDDB Example 1 having low illumination on NPD and Proposed method 



 

Figure 5.2:FDDB Example 2 having  occlusion and multi-view on NPD and Proposed 

method



 

Figure 5.3:FDDB Example 3 having  occlusion and multi-view on NPD and Proposed 

method



The comparison on NPD and proposed method is done to other than FDDB database having 

high resolution samples which have occluded, different pose and low illumination 

faces.Output of samples shown in Figure 5.4,5.5,5.6.  

 

Figure 5.4: Example 4 high resolution picture 



 

 

Figure 5.5: Example 5  picture having  different Pose and Occluded faces 

 



 

 

Figure 5.6: Example 6 picture having low illumination, multi view and Occluded faces 

 

 

 



 

Face Detection Output of sample images 

 

Sample Images Face Detected 

by NPD

 

Face Detected by 

Proposed Method 

 

Example 1 5

 

4 

 

Example 2 7

 

3 

 

Example 3 7

 

6 

 

Example 4 20

 

6 

 

Example 5 7

 

2 

 

Example 6 20

 

6 

 

Table 5.2: Face detection output of examples 

As we results shows that FN is drastically reduced as compare to NPD detector by proposed 

method but slightly increase FP as shown in Figure5.6 in which one face is missed by the 

proposed detector. 



CHAPTER 6 

CONCLUSION

 

Multi stage cascade model is used for unconstrainedfface detector. The initial stage is based 

onfthe NPD detector, and the next on thefCNN-based detector. The model is used tofreduce 

FP facefdetections, by keepingfFNsfas low as possible. This isfachieved by forwardingfthe 

outputsfof the NPD detector conditionally that represent fface candidate regionsfto the 

second stagefCNN stage. The NPD detector score value is used for forwarding . The major 

factors for usingfthe proposedfmodel are- 

 ThefNPD detector isfused at the initial stage of the detector because itfis faster 

(aroundf15 times) than thefCNN for facefdetection as well as localizationfon a 

singlefCPU. 

 ThefCNN detectorfis usedfconditionally asfa post classifier and it operatesfonly on 

affew number offrescaled vague facefcandidate regions whichfare the forward by the 

NPDfdetector. 

This makesfeffective implementation of a secondfstage of the proposed method. The 

achieved detector has effective timefperformance as compared to the NPD. 

 

 

 

 

 

 

 

 



CHAPTER 7 
 
 

FUTURE SCOPE 
 

The proposed method achieves state-of-the-art performance for unconstrained face detection, 
and its results conveys that occlusions and blur are two big challenges for face detection 
which results in increasing the number of false negative candidates .In the Aim of future 
work will be to improve the multi stage model to decrease the false negative and tend the 
number of false positive to zero.
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