DESIGN AND ANALYSIS OF BAND GAP REFERENCE CIRCUITS

Α

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIRMENTS FOR THE AWARD

OF THE DEGREE OF

MASTER OF TECHNOLOGY IN CONTROL & INSTRUMENTATION (2015-2017)

SUMITTED BY: VIVEK MITTAL 2K15/C&I/21

UNDER THE SUPERVISION OF **PROF. PRAGATI KUMAR**

DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)
BAWANA ROAD, DELHI-110042
JULY, 2018

Department of Electrical Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

Candidate's Declaration

I, Vivek Mittal, Roll No. 2K15/C&I/21, student of M. Tech (Control & Instrumentation), herewith declare that the thesis titled "Design and Analysis of Band Gap Reference Circuits", under the supervision of Prof. Pragati Kumar of Electrical Engineering Department, Delhi Technological University, in partial fulfilment of the need for the award of the degree of master of technology, has not been submitted elsewhere for the award of any degree.

I herewith solemnly and sincerely confirm that all the particulars declared above by me are true and correct to the best of my knowledge and belief.

Vivek Mittal 2K15/C&I/21

Department of Electrical Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

Certificate

This is to certify that the dissertation entitled "Design and Analysis of Band Gap Reference Circuits" submitted by Vivek Mittal in completion of major project dissertation for the master of Technology degree in Control & Instrumentation at Delhi Technological University is an authentic work carried out by him under my superintendence and guidance.

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Prof. Pragati Kumar

Electrical Engineering Department
Delhi Technological University, Delhi

Acknowledgement

It gives me a great pleasure to express my profound gratitude to my supervisor and project

guide Prof. Pragati Kumar, Department of Electrical Engineering, Delhi Technological

University (formerly Delhi College of Engineering), for his invaluable guidance,

encouragement and patient reviews throughout the progress of this dissertation. It has been a

great experience to get a chance under his rich experience.

I would conjointly wish to extend my heartfelt thanks to Prof. Madhusudan Singh, head of the

department and all faculty of department of Electrical Engineering, Delhi Technological

University, for keeping the spirits high and clearing the visions to work on the project.

I am conjointly grateful to my family and friends for their constant support and motivation

throughout this work.

Finally, I am thankful to the almighty because without his blessing, this work was not possible.

Vivek Mittal

2K15/C&I/21

iii

ABSTRACT

In this dissertation titled "Design and Analysis of Band Gap Reference Circuits", we discuss the importance of Band Gap Reference circuits and their design.

We start our discussion with two important building blocks of any band gap reference circuit i.e. circuits exhibiting the CTAT (Complementary to absolute temperature) and PTAT (Proportional to absolute temperature) nature.

We later combine the above CTAT and PTAT designs to obtain a constant reference voltage which is fairly independent of temperature and supply variations over a certain pre-defined range and can be practically used in analog IC design of various electronic components.

Further in our dissertation we discuss certain improvements in design of our band gap reference circuits and conclude with future scope and promises the band gap reference circuits withheld in the field of electronic design.

Throughout our dissertation we analysed and simulated all the circuits using the Cadence Design Systems Software.

LIST OF FIGURES

Figure 1.1	Ideal expected behaviour of Band gap reference voltage circuit
Figure 1.2 (a)	CTAT Behaviour
Figure 1.2 (b)	PTAT Behaviour
Figure 1.3	Block diagram representing the generation of constant reference voltage
Figure 2.1	Simple circuit to generate a CTAT voltage (V _o) across diode D ₁
Figure 2.2	Circuit diagram as drawn in Cadence
Figure 2.3	Result of DC sweep of Vout w.r.t T from -40 to 125 °C
Figure 2.4	Plot showing the variation of $\frac{\partial V}{\partial T}$ w.r.t. to temperature
Figure 3.1	Simple circuit to get a PTAT voltage $(V_2 - V_1)$
Figure 3.2	Circuit simulated in Cadence to check the nature of $(V_d - V_{d1})$
Figure 3.3	Figure showing individual nature of V_{d} and V_{d}
Figure 3.4	Figure showing the nature of $V_d - V_{d1}$
Figure 3.5	Figure showing the replacement of the ideal current dc source with current mirror
Figure 3.6	Addition of a current Mirror in the figure 3.2
Figure 3.7	PTAT circuit with Simple current mirror drawn in cadence
Figure 3.8	Figure showing the individual nature of the voltage across the diodes in figure 3.2
Figure 3.9	Plot showing the variation of current through M ₃ and M ₄ w.r.t. temperature
Figure 3.10	Plot showing the variation of PTAT voltage obtained in figure 3.2
Figure 3.11	Addition of MOSFET M₅ in figure 3.5
Figure 3.12	Improved PTAT circuit drawn in Cadence for analysis
Figure 3.13	Plot showing the vaiations of the Vout w.r.t to temperature for Figure 3.11
Figure 3.14	Plot showing the comparison of the voltage across R1 and R2 for Figure 3.11
Figure 4.1	Combined simulation of CTAT and PTAT circuit (figure 2.2 and figure 3.6)
Figure 4.2	Result of the simulation of the circuit shown in figure 3.14

Figure 4.3	Figure showing V_1 as PTAT and V_2 as CTAT connected in series
Figure 4.4	Figure showing simulation of BGR circuit with parameters calculated in table 4.1
Figure 4.5	Figure showing variation in output voltage (Vref) w.r.t temperature (T)
Figure 4.7	Figure showing variations in reference vssoltage (Vref) w.r.t supply voltage (Vdd) $0-5V$
Figure 4.8	Figure showing variations in reference voltage (Vref) w.r.t supply voltage (Vdd) $2.5-3.5V$
Figure 5.1	Figure showing band gap reference with cascode current mirror for better supply rejection
Figure 5.2	Figure showing variations in reference voltage (Vref) w.r.t Temperature for figure 5.1
Figure 5.3	Figure showing variations in reference voltage (Vref) w.r.t supply voltage (Vdd) $2.5-3.5~\text{V}$
Figure 5.4	Figure showing variations in reference voltage (Vref) w.r.t supply voltage (Vdd) $2.5-3.5~\text{V}$
Figure 5.5	Figure showing variations in reference voltage (Vref) w.r.t supply voltage (Vdd) $2.5-3.5~\text{V}$
Figure 6.1	Figure showing a simulation of band gap reference circuit with start-up circuit
Figure 6.2	Figure showing the transient response of output voltage (V _{ref})
Figure 6.3	Figure showing the transient response of gate voltage of M_1,M_2,M_3,M_4
Figure 6.4	Figure showing variations in current for $M_1,M_2,$ and M_5
Figure 6.5	Figure shows the effect of start-up circuit on output voltage (V _{ref})
Figure 6.6	Figure shows the variation of current through NM_0 (start-up) in comparison to V_{dd}
Figure 7.1	Figure shows the modified PTAT with op-amp instead of current mirror used earlier in Fig 3.5

LIST OF TABLES

Table 3.1	Design Parameters used in simulation of circuit in Figure 3.12
Table 4.1	Design Parameters used in simulation of circuit in Figure 4.4
Table 5.1	Design Parameters used in simulation of circuit in Figure 5.1
Table 6.1	Design Parameters used in simulation of circuit in Figure 6.1
Table 6.2	Parameters for transient analysis used in simulation of circuit in Figure 6.1

LIST OF SYMBOLS

S.No	Symbols	Descriptions
1	CMOS	Complementary Metal Oxide Semiconductor
2	NMOS	N-type Metal Oxide Semiconductor
3	PMOS	P-type Metal Oxide Semiconductor
4	BGR	Band Gap Reference
5	MOSFET	Metal Oxide Semiconductor Field Effect Transistor
6	Op-Amp	Operational Amplifiers
7	V_{ref}	Reference Voltage
8	V_{dd}	Supply Voltage
9	V_{T}	Thermal Voltage
10	w.r.t	with respect to
11	gnd	ground
12	PTAT	Proportional to absolute temperature
13	CTAT	Complementary to absolute temperature
14	k	Boltzmann's constant
15	q	Electric charge
16	T	Temperature
17	n _i	Intrinsic carrier concentration
18	μ	Mobility
19	ε _g	Energy band gap
20	I _o	Diode Current
21	I_s	Reverse Saturation Current

CONTENT

Certificate	ii
Acknowledgment	iii
Abstract	iv
List of figures	v
List of tables	vii
List of symbols	viii
CHAPTER-1 INTRODUCTI	ON
1.1 Historical Background	2
1.2 Introduction to band gap circuits	2
1.3 Conclusions	
CHAPTER-2 CTAT DESIG	SN
2.1 Theory	7
2.2 Simulation results	10
2.3 Conclusions	12
CHAPTER-3 PTAT DESIG	SN
3.1 Theory	12
3.2 Simulation results	15
3.3 Further Improvements	22
3.4 Conclusions	26

CHAPTER-4 ADDING CTAT and PTAT

4.1 Theory		
4.2 Design of α_1 and α_2		
4.3 Simulation results		
4.4 Conclusions	36	
CHAPTER-5 Analysing BGR with Cascode Current Mirro	r	
5.1 Theory	38	
5.2 Simulation results		
5.3 Conclusions		
CHAPTER-6 Start-up Circuits		
6.1 Theory	44	
.1 Theory .2 Simulation results		
6.3 Conclusions	49	
CHAPTER-7 Conclusions and Future Scope		
7.1 Summers	51	
.1 Summary .2 Future Scope		
I did beope	51	