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ABSTRACT 

 

The initiation of fatigue cracks or other defects in structures or machines or their 

elements cause a reduction in stiffness and also change the dynamic characteristics of 

the machine. Dynamic analysis of cracked rotor is an emerging area of research due to 

its practical importance and several issues are associated with this analysis due to its 

complexity and increasing demand of reliable crack detection techniques. It has been 

found in archival literature that various crack detection methodologies have been used 

to analyze the dynamic behaviour of a cracked rotor. The vibration problems of 

cracked rotor generally pose nonlinearity due to its breathing phenomena. Moreover, 

the theoretical and computational analysis of the non-linear problems seems to be 

complex and very expensive even with today’s powerful computers. In this work, 

extended Lagrangian formalism is used for the dynamic analysis of multi-cracked 

rotor. 

Another significant issue for the analysis of vibration of cracked rotor, is the 

analysis of symmetry breaking of cracked rotor, which is also analyzed in this work. 

However, this symmetry of rotor is disturbed if there is a small difference in material 

or geometric properties, caused due to initiation of a crack. The study investigates the 

dynamic behaviour of a finite asymmetric rotor through extended Lagrangian 

mechanics. Two case studies are analyzed and presented to develop analytical 

framework for these systems. Computational models are also developed through 

bondgraph modeling technique and simulations are carried out and compared with 

analytical results. 



 

 vi 

Further, an extended Lagrangian–Hamiltonian formalism is employed to a 

continuous multi-cracked rotor system. Analytical formulation for amplitude and 

natural frequency is being derived through this extended Lagrangian–Hamiltonian 

methodology. Computational model through bondgraphs are being created. 

Simulations are carried out for various crack depth to analyze the dynamic behaviour 

of multi-crack rotor system. 

Finally, an experimental framework is being developed for the validation of 

simulation and analytical results. Variation of stiffness due to crack depth and effects 

of second crack are also determined. Amplitude of vibration at various speeds and 

different crack depths of multi-crack rotor are examined. NVGate® software is being 

used for capturing the various signals in running mode of machines. Experimental 

results validate the analytical and computational results to a great extent. Therefore, it 

is concluded that the extended Lagrangian methodology is one of the effective and 

accurate methods to determine dynamic characteristics of a multi-cracked shaft. It 

may be used for real-time monitoring of the rotor system in various industries.  
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Introduction 

 

1 

Chapter 1 

Introduction 

 

1.1 Motivation 

The rotating components of machines like turbines, pumps, generators and high speed 

compressor, which are subjected to the extreme loading conditions, has widespread 

applications in various fields ranging from aircrafts, automobiles, and power generation 

equipments. Rotor shaft can be regarded as one of the components prominent amongst 

various parts of rotating machineries. The defects in shaft may be due to manufacturing 

conditions or due to loading conditions (cyclic loading) and the fatigue cracks are quite 

prevalent in rotating shaft. The different kinds of defects such as notches, slits, cracks, 

and asymmetries in components of machines may lead to a catastrophic failure of 

rotating machine shafts. Cracks on the shafts may be due to different causes namely, 

fluctuating bending stresses, fatigue stresses, torsional stresses, creep and corrosion 

(Patel and Darpe, 2008). For this reason, cracked rotors have attracted the attention of 

researchers since last 50 years. 

In the power plant, equipments such as steam turbines and steam generators, the 

stresses caused by thermal loadings are generally accountable for high stress intensity 

factors that are further responsible for crack initiation and propagation. This failure may 

cause hazardous working conditions, and may turn up in human injuries, as well as 

great economic and equipment losses. One of the most common losses of rotor in 

mechanical structures is the development and propagation of cracks. A crack may 

propagate even for a small imperfection on the surface or inner volume of rotor material 

and it is most likely to originate from zones of high stress concentration. 
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Generally, the initiation of fatigue cracks or other defects in structures or 

machines or their elements cause a reduction in stiffness and also change the dynamic 

characteristics of the machine. Dynamic analysis of cracked rotor is an emerging area of 

research due to its practical importance. Owing to its complex behavior and ever 

increasing need as a realistic tool of crack detection, multiple issues associated with this 

analysis must require to give due consideration. Vibrations of cracked rotors frequently 

exhibit nonlinear behavior due to breathing phenomenon. This type of behaviour limits 

the application of conventional approach, such as model analysis, and harmonic 

response methods for their analysis. In addition to this, the analysis of the non-linear 

behavior using theoretical and computational approaches, is generally of complex 

nature and includes high computational costs. All these observations and limitations 

leads to the development of accurate, efficient, and reliable theoretical and 

computational framework for modeling the vibrational response of cracked rotor. 

Extensive literature survey (Dimarogonas, 1996; Gasch, 1993; Kumar and 

Rastogi, 2009; Sabnavis et al., 2004; Wauer, 1990) reveal that researchers have used 

various analytical and simulation techniques in the field of rotordynamics; however 

limited literatures (Kumar, 2013; Mukherjee, 1994, 2001; Mukherjee and Karmakar, 

2000; Mukherjee et al., 2006, 2007, 2009, 2011; Rastogi, 2005; Rastogi and Kumar, 

2009) are available on dynamic analysis through extended Lagrangian mechanics. It is a 

well known fact that the crack containing rotating machine components causes the forces 

generated through non potential fields and dissipative source. The application of classical 

Lagrange's equation is not preferred for studying the dynamic behavior of such system 

involving non holonomic constraints, non-potential forces, dissipative forces, gyroscopic 

forces and general class of systems with time fluctuating parameters. Therefore some 
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additional information of system interior and exterior need to be given to generate 

extended Lagrangian equations, which may be applicable to the crack rotor system. 

Another challenge in the analysis of nonlinear vibration of cracked rotor is 

posed by the breaking of symmetry of the rotor. The cracks induced in the rotor disturb 

the symmetry of rotor. This problem can be simplified and dealt with by introducing the 

concept of cyclic symmetry in the vibrational analysis of cracked rotor, which relies on 

assuming every sector of the rotors to be an identical and symmetric. However, minor 

variations in the material or geometric characteristics of the rotor caused due to 

initiation of a crack, may result in the loss of symmetry of rotor. 

Furthermore, in the search of realistic modeling approaches for analysis of 

multi-crack rotor, the application of finite element method, and other solid modeling 

approaches are more likely to appear in the list. On the other hand, bondgraph modeling 

technique proved to be very promising in the system modeling as it effectively 

represents the essential dynamics by facilitating the system modeling from the physical 

paradigm itself. Therefore, the bondgraph technique is profitably used to obtain the 

numerical results. This technique greatly improves the computational efficiency of the 

analysis. In modeling the behavior of continuous cracked rotor; the computational time 

and accuracy of results obtained are significantly dependent on the complexity of the 

crack model formulation. To be more specific, the damping property and flexibility 

matrix of rotor shaft is thought to be the key parameters that have a significant impact in 

controlling the accuracy, reliability and computational time for the analysis. Therefore it 

is important for the creation of computational model of a continuous cracked rotor to 

incorporate all these factors in order to effectively determine its dynamic behaviour. 
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To validate the accuracy of the result obtained from the theoretical and 

computational analysis, experimental analysis is essentially required to be carried out. 

This also facilitates the actual implementation of the proposed methodology. The 

development of experimental test rig is required for conforming the results obtained by 

analytical and simulation model. In line with the above discussion, the objectives of the 

present research are to acquire in depth understanding of analogy of vibrations 

developed in multi-cracked rotor system using extended form of Lagrangian-

Hamiltonian approach and further to develop a novel explicit equation for capturing the 

system behavior. The multi-cracked rotor is being investigated as finite system as well 

as continuous system for the parametric analysis. The major objectives for the present 

work are outlined as 

 To develop an analytical & computational frameworks for discrete asymmetric 

multi-rotor system through extended form of Lagrangian formulation. 

 To extend the analytical frameworks for continuous multi-cracked rotor system 

through extended Lagrangian formalism. 

 Computational investigation of dynamic behaviour of multi-cracked rotor 

system using bondgraph technique. 

 To validate the results obtained from theoretical analysis by developing 

experimental framework for the analysis of multi-crack rotor system and to 

develop experimental test rig for the same. 

1.2 Literature review 

The occurrence of crack in a rotor shaft is one of the most critical issues to address the 

performance of heavy rotating machinery. This analysis is very essential to ascertain the 
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smooth, effective and efficient operation and performance of the machine and hence, 

has been given due consideration by various researchers throughout the globe. In the 

last 50 years, significant progress has been made in the field of cracks detection and 

analysis. Beginning from 1970, a huge contribution in terms of research papers on crack 

detection and its effects had been made by various researchers in the archival literature. 

Various review paper have been also published on a regular time interval by various 

researcher like Wauer (1990), Gasch (1993), Dimarogonas (1996), Sabnavis et al. 

(2004). Some recent papers were presented by Papadopoulos (2008), Kumar and 

Rastogi (2009) and Sekhar (2011). 

For crack detection and study of dynamic behavior in cracked rotor, various 

techniques and approaches have been used like finite element method, Hilbert-Huang 

transform, wavelet transform, nonlinear dynamics, breathing mechanism, transfer 

matrix method, harmonic balance technique, Floquet theory, and direct optical 

observation. Noticeable progresses have reported in crack detection research during 

these years. Due to a large demand of more powerful rotor for power plants and gas 

turbine etc., it requires a more reliable and accurate technique to show the inception and 

propagation of cracks in a rotating machine elements. An alternate method based on the 

symmetry analysis is being presented to analyze the dynamics of a multi-crack rotor. 

The cyclic symmetry of the rotor has been used to investigate the dynamic of multi-

crack rotor through symmetry breaking approach. Different modeling methods applied 

to investigate the dynamic behaviour of crack rotor presented in this section by various 

researchers time to time. The next subsections will present the review and classification 

of existing literature. 
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1.2.1 Evolution of rotor dynamics era 

Rankine has initially studied the dynamic behaviour of a rotor system, which was 

followed by Jeffcott. Since 1970, a lot of attention on dynamic behaviour of cracked 

rotor has been given by many researchers for different points of analysis. Wauer (1990) 

has made a significant review on studies and investigations of cracked rotor in the last 

few decades. Gasch (1993) has presented a nice survey on a simple rotor. Dimarogonas 

(1996) and Sabnavis et al. (2004) have also presented a review paper. Kumar and 

Rastogi (2009) have reported a brief review based on different methodologies used by 

various researchers for dynamic analysis of a cracked rotor. Mayes and Davis (1984) 

have analyzed the effects of a transverse crack on multi-rotor bearing system. Firstly, 

Dimargonas and Papadopoulos (1983) have investigated the dynamics of cracked rotor 

by taking the transverse crack occurring as a result of fatigue of shaft material resulting 

from the excessive bending moment. Dimargonas and Papadopoulos (1987) have also 

studied the coupling of bending and torsional vibration of a cracked Timoshenko shaft 

using 6X6 matrix for flexibility due to change in stiffness and also analyzed the 

dynamic behaviour of a cracked rotor. 

1.2.2 Studies based on breathing phenomenon 

When cracked shaft rotates under the external load, the crack opens and closes regularly 

per revolution, it is called breathing. Due to the action of bending moment the stress 

distribution around the crack produces the breathing mechanism. Georgantzinos and 

Anifantis (2008) explained association of local flexibilities with a breathing crack in a 

rotating shaft and provided a simulation of rotating load on a fixed beam and then, 

simulation results were used for the cracked analysis. Patel and Darpe (2008) have 

used two well known models for crack breathing simulation in rotors. First was the 
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switching crack model, representing the switching of rotor stiffness values from one 

coinciding fully opened crack condition to another coinciding closed crack condition 

and vice versa. Second is response-dependant breathing crack model should be used to 

follow the true breathing behavior of the cracked rotors, presented by Jun et al. (1992). 

Chasalevris and Papadopoulos (2009) have investigated cross-coupled bending 

vibrations of a rotor-bearing system with a transverse breathing crack.  

Al-Shudeifat et al. (2010) have given an efficient technique for analysis of the 

behaviour of the cracked rotor system. Behaviour of the whirl orbits, vibration 

amplitudes and frequencies of a damaged rotor-disk-bearing system may help in 

detecting the crack at the beginning of its growth. This may be found while generating 

waterfall plots. Orbit shapes changes at critical and subcritical rotor speeds at very low 

crack depths. Hence, tracking the change in orbit shapes in the neighbourhoods of 

subcritical rotor speeds at low crack depths can be used as an earlier indication of a 

propagating breathing crack. Guo et al. (2013) have investigated stability analysis for 

transverse breathing cracks in rotor systems by a new breathing function for the cross-

coupling stiffness were developed to represent the breathing mechanism more 

accurately. The effects of crack depth and rotating speed on the dynamic properties of 

the rotor system were studied by using Floquet theory. They also compare the stability 

diagrams for the systems with and without damping. 

1.2.3 Studies related with finite element modelling 

The main feature of FEM is three dimensional (3-D) visualization, which makes it a 

suitable tool for the study of crack formation and propagation mechanism. The 

suitability of finite element method (FEM) may be attributed to its ease of applicability 
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and hence, many researchers have adopted the finite element technique for dynamics 

analysis of crack in rotating shaft. Finite element method saves time and money by 

allowing reductions in equations while solving the equation systems. Ichimonji and 

Watanabe (1988) have investigated a slant fatigue crack usually occured from the 

torsional moment on a shaft. They have analyzed the dynamics of a simple rotor for 

qualitative analysis using a 3D finite element method. Sekhar and Prabhu (1994) have 

studied the vibration and stress fluctuation in cracked shafts and investigated a simply 

supported shaft with a transverse crack for the vibrational characteristics. Finite element 

analysis (FEA) has been carried out for free and force vibrations. Sekhar and Prasad 

(1999) have performed the dynamic analysis of a rotor system for a slant crack in the 

shaft. Using FEM analysis of the rotor bearing system for flexural vibration, they 

observed the reduction in the eigen frequencies of all the modes with an increase in 

depth of crack. For the same crack location, it is noticed that small decrease in eigen 

frequencies in slant crack as compared to transverse crack. 

Sekhar (1990) has analyzed the vibration characteristics of a cracked rotor with 

two transverse open cracks using finite element analysis (FEA) for flexural vibrations. 

He observed that for two cracks of different depths, the larger crack has more 

pronounced effect on the eigen frequency as compared to the smaller one. Sekhar and 

Dey (2000) have investigated effects of cracks on rotor system instability and applied 

FEM and consider various parameters and shaft internal damping (viscous and 

hysteretic damping) and geometric parameters. It has been noticed that the instability 

speed has been reduced considerably with increase in crack depth and influenced more 

with hysteretic damping compared to viscous damping. Nandi (2004) has presented a 



Introduction 

 

9 

simple method for reduction of finite element model of nonaxisymetric rotors on 

nonisotropic spring.  

Bachschmid et al. (2008) have investigated the rotor shaft affected by a 

helicoidal crack by 3D finite element non linear models. This model has been used for 

calculating deflections of a cracked specimen and breathing behavior, which has loaded 

with bending and torsion loads. After that they compared helicoidal crack to transverse 

crack model results. Positive Torsion loads increase deflections, when torsion opens the 

crack and stiffness will reduce. Patel and Darpe (2009) have investigated coupled 

latral-torsional vibrations response for crack and rub faults using FE model. 

Han et al. (2012) have analyzed slant cracked geared rotor by using finite 

element model. Using the concept of fracture mechanics, they have examined three 

methods for whirling analysis, parametric instability analysis and steady-state response 

analysis. The effects of slant crack upon the whirling characteristics, parametric 

instability and steady-state response for the system under unbalance force and tooth 

error excitations are investigated. It has been observed that in presence of the slant 

crack on the transmission shaft, the whirling frequencies of the system are drastically 

reduced. For the same crack depth, the frequency reduction value of slant crack is lower 

than that of transverse crack. Al-Shudeifat (2013) has worked on the finite element 

modeling of the asymmetric cracked rotor and introduced finite element model of the 

time-varying stiffness matrix is for a cracked rotor with an open transverse crack. He 

has shown that the open crack model excites the backward subcritical whirl. It is 

verified here that the whirl orbits with inner loops are a unique signature for the 

breathing crack rather than the open crack. 
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Darpe (2007) has investigated the dynamics of a Jeffcott rotor with slant crack 

describing the flexibility matrix for the slant crack. Georgantzinos and Anifantis (2008) 

have studied the effect of crack breathing phenomenon on the time varying flexibility in 

a spinning shaft. They considered the quasi-static approximation in the extended form 

of nonlinear contact-FEM formulation. They have predicted the partial contact of crack 

surfaces, and reported the suitability of this method to evaluate the instantaneous crack 

flexibilities.  

1.2.4 Wavelet transform and wavelet finite element  

Since the last 10 years, a great interest has been shown by the researcher in the wavelet 

theory. Fault diagnosis of rotary machines has promoted continued advancement of 

measurement as well as signal-processing technologies. Wavelet transform can be used as 

a mathematical tool that transfers a signal in time domain into a different form. The 

wavelet transform can be categorized as CWT, DWT, and WPT. This method can be 

suitably applied for detection of depth of damage at a particular location using model 

frequencies, and model shape etc. Adeswusi and Al-Bedoor (2001) have investigated an 

overhang rotor with a propagating transverse crack using discrete wavelet transform. He 

concluded that crack reduces the critical speed of the rotor. He has also presented such 

results in 2D graphs (scalograms) and 3D graphs (space-scale energy distribution graphs).  

Sekhar (2003) has investigated crack detection through wavelet transform for a 

run-up rotor. He has found subharmonic resonant peaks (using CWT) when the cracked 

rotor is passing through its critical speed. These peaks are not apparent in frequency 

spectrum as well as in time response. Based on wavelet transform techniques, Darpe 

(2007) has developed a method to detect transverse surface crack in a rotating shaft. 
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Wavelet coefficient is highly sensitive to the depth of crack and even a very shallow 

crack (5% of rotor diameter) can be detected. The value of this coefficient for bending 

vibration in horizontal direction is highly sensitive to depth of crack and hence can be 

used for early detection of crack in rotors. 

Deng and Wang (1998) have used the discrete wavelet transform to investigate a 

crack along the length of a beam. Prabhakar et al. (2001) has been shown the 

effectiveness of wavelet transforms for detection and monitoring of cracks. Sekhar 

(2003) has used continuous wavelet transforms (CWT) to detect transverse cracks 

considering the time domain signals of the decelerating rotor. 

Xiang et al. (2006) have also proposed a finite element method of a B-spline 

wavelet on the interval (FEM BSWI) Euler beam model for detecting crack location as 

well as crack size in a beam. The simulation and experimental results showed the high 

performance of the BSWI Euler beam element. B-spline wavelets have the best 

approximation properties among all known wavelets method. Dong et.al (2009) have 

used wavelet finite element (WFE) model to determine the depth and location of a 

transverse surface crack in a rotor system. The rotor system is modeled using FEM 

BSWI, while the crack is assumed as a weightless rotational spring. Another novel 

method based on empirical mode decomposition and Laplace wavelet was proposed to 

obtain modal parameters with high precision. The results of the proposed approach 

were confirmed by experimental analysis and various crack parameters were identified. 

1.2.5 Hilbert-Huang transform 

Hilbert–Huang Transform developed by Norden E. Huang has a good potential for 

dynamic and nonlinear data analysis, especially for time-frequency-energy domain 
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representations. HHT gave results much sharper than the wavelet. It has been found that 

HHT appears to be a better tool compared to fast Fourier transform and continuous 

wavelet transform for natural fatigue crack characterization in a rotating rotor in all 

experiment cases. Li et al. (2012) have investigated the influence of acceleration and 

crack depth on the rotor through experiments. The results of experiment showed that 

HHT is a better tool for crack detection. Lin et al. (2012) have used HHT to search AE 

signal time–frequency–energy features of nature fatigue cracks on rotating shaft. Babu 

et al. (2008) have used Hilbert-Huang transform for detection and monitoring of a crack 

in a transient rotor. It is very usefull for identification for very small crack depth; where 

continuous wavelet transforms fail. Guo and Peng (2007) have used HHT for 

possibilities and observance of crack in transient behavior of a cracked rotor. HHT is a 

promising tool for analyzing rubbing vibration signal that exhibited nonlinear and non-

stationary properties, particularly for identifying cracks of small depths. 

1.2.6 Other techniques used in the analysis of cracked rotor 

Besides the techniques and methodology discussed in previous sections, some other 

techniques and methods have been developed by several researchers for the analysis of 

a cracked rotor. An extensive approach including theoretical, numerical and 

experimental analysis for a crack detection in rotating parts of machines is given by 

Stoisser and Audebert (2008). Theoretically, they have derived a lumped cracked beam 

model from 3-D formulation of the problem of elasticity with unilateral contact 

conditions on the crack lips. That is valid for any shape and number of cracks in the 

beam section and extended to cracks not located in a cross-section. Cracked beam 

rigidity can also calculate as a function of the rotation angle, in case of pure bending 

load or bending plus shear load, which has been validated through experimental results. 
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Saridakis et al. (2008) have used neural networks, genetic algorithms (GA) and fuzzy 

logic for the identification of cracks in shafts by using coupled response measurements. 

It is an efficient tool for real-time crack identification.  

Chasalevris and Papadopoulos (2008) have investigated coupled horizontal and 

vertical bending vibrations of a stationary shaft with two cracks. They found that 

coupling becomes stronger when cracks are in phase, if cracks are opposite then the 

coupling turns weaker. They have also validated that deeper crack makes the coupling 

phenomenon more intense. Xiang et al. (2008) have detected crack location and its 

depth in a shaft. Rayleigh-Euler and Rayleigh-Timoshenko beam elements of B-spline 

wavelet on the interval (BSWI) were constructed to discretize slender shaft and stiffness 

disc, respectively. Wavelet-based modeled cracked shaft was used to obtain precise 

frequencies; which were used in crack detection process and the normalized crack 

location and depth was detected using genetic algorithm (GA). Sinou (2008) has 

investigated that the super-harmonic components of 2X and 3X revolution could be 

used to detect a crack in the sub-critical speed region in rotor systems. Crack–unbalance 

interaction does affect the vibration amplitudes of super as well as sub harmonic 

frequency. Super harmonic frequency components can be used to detect the presence of 

a crack in the rotor even crack–unbalance orientation and the unbalance magnitude are 

not known. 

Babu and Sekhar (2008) have developed a new technique amplitude deviation 

curve (ADC) or slope deviation curve (SDC) for the detection of two cracks in a rotor-

bearing system. It is a good investigating tool for online detection of crack parameters 

even small cracks around 0.1 times the shaft diameter. Jun and Gadala (2008) have 
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presented the analysis of dynamic behavior of crack containing rotor. In this research, 

they have considered an additional slope for crack breathing. They have used fracture 

mechanics concept formulate the responce of cracked rotor on the basis of transfer matrix 

method. Gasch (2008) has worked on dynamic behaviour of the Laval rotor with a 

transverse crack in the elastic shaft. He has used Floquet‟s method and results presented 

in an overview diagram. Szolc et al. (2009) have used stochastic approach based on the 

Monte Carlo simulations for crack detection and identification in the rotating shafts. They 

have used hinge-model and fundamentals of the fracture mechanics for a local shaft 

weakening as well as mutual coupling of shaft flexural, torsional and axial motions due to 

a cross-sectional anisotropy caused by the crack. All results obtained from Monte Carlo 

simulation have been verified through experimental results. 

Darpe et al. (2004, 2006) have evaluated the coupling between longitudinal, 

lateral and torsional vibrations of a rotating shaft using response-dependent non-linear 

breathing crack model. Assuming the closed part of the crack surface is bounded by 

„„crack closure line‟‟ (CCL), they concluded that it can be represented by a segment, 

orthogonal to the crack tip that can be drawn from that point on the crack tip. 

Chasalevris and Papadopoulos (2009) have used the parameters such as position, depth 

and relative angle to characterized the cracks. They firstly introduced the concept of 

compliance calculation in analysis of cracked shafts with rotated cracks. The bending 

compliance matrix of the crack was developed using the method of integration of the 

strain energy density function over an opened crack surface. 

In another study, Karthikeyan et al. (2007) have analyzed the crack localization 

and sizing as represented in a beam model. They applied the free and forced response 
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measurement method in their analysis. Jain and Kundra (2004) have applied a model 

based on inline investigation of unbalance induced due to transverse fatigue crack 

developed in a rotor system. Gosiewski (2009) has introduced control oriented approach 

in rotor dynamics application. Lin and Chu (2009) have investigated flexural vibrations 

of a rotor system with transverse or slant crack. They have investigated a 45° slant 

crack on Jeffcott type rotor system. They developed four types of directional motion 

equations namely, two transverse, one torsional and one longitudinal direction. The 

study has revealed that a bending–torsion coupling was resulted due to eccentricity of 

the rotor. Tsai and Wang (1997) have used transfer matrix method (TMM) for free-

vibrational analysis of multi-crack rotor. Cracks were assumed to be in the opening 

mode (first mode of fracture). The effects of relative distances along axis and 

orientations of cracks, both were considered in free vibration analysis. Durali and 

Borhan (2003) have investigated discrete dynamic modeling of rotating Timoshenko 

shaft with transverse cracks using bondgraph. The next sub-section will highlight some 

recent development in multi-crack rotor analysis.  

1.2.7 Latest developments in analysis of cracked rotor 

Since 2010, several recent methodologies have been introduced for identification of 

multiple cracks and its analysis. Singh and Tiwari (2010) have proposed an 

identification methodology to identify number of cracks and their location on a cracked 

shaft. The methodology used transverse forced response of a cracked shaft at several 

frequencies to reduce the effect of noise in the signal; these responses have been 

predicted by FE modeling. The identification algorithm has defined crack probability 

functions, which provided the number of cracks present in the shaft and their 

approximate locations over it. They have also introduced a multi-objective optimization 
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function; which was solved by using the non-dominated sorting genetic algorithm-II. 

Informations obtained from the identification algorithm (at the first stage) were used to 

define the design space for the GA at the second stage. They have used this method on 

simply supported shaft having two cracks and got satisfactory results. 

Han and Chu (2011) have compared straight front crack model with elliptical 

front crack. They have found elliptical front crack model which has found to be more 

accurate and realistic for modelling the transverse surface crack in the rotor shaft. The 

local flexibilities of an elliptical cracked shaft solved by means of numerical integration 

technique. Once, the elliptical front and shape variation are considered, obtained 

flexibility values are reduced, specially for the deeper surface cracks. Al-Shudeifat and 

Butcher (2011) have introduced two new breathing functions, which represented the 

actual breathing effect on the cracked element stiffness matrix. The new breathing 

functions were used in formulating the time-varying finite element stiffness matrix for 

the cracked rotor system. The analytical results of this approach have been verified with 

previously published results, obtained using approximate formulas for the breathing 

mechanism. The comparison has showed that the previously used breathing function is 

a weak model for evaluating the breathing mechanism in the cracked rotor even for the 

small crack depths. The new breathing functions have given more accurate results for 

the dynamic behaviour of the cracked rotor system for a wide range of the crack depths 

even for the critical and subcritical speeds of rotor shaft. 

Rubio et al. (2011) have investigated static behaviour of a shaft with an 

elliptical crack. Flexibility functions for cracked shafts having elliptical cracks, based 

on the polynomial fitting of the stress intensity factors were obtained. The static 
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displacements in bending of the shaft for different support have been calculated under 

the consideration of different size and shape of elliptical crack. The obtained results 

have been compared with FEM analysis and experimental results. Cheng et al. (2011) 

have investigated the influence of crack breathing and imbalance orientation angle on 

the characteristics of the critical speed of a cracked rotor. They have used angle 

between the crack direction and the shaft deformation direction for determining the 

opening and closing of the crack and also, investigated the effect of nonlinear breathing 

of the crack and imbalance orientation angle on the stability, peak response and critical 

speed of the rotor. They have found basic characteristics of a cracked rotor near its 

critical speed, which are similar to those of an uncracked rotor. Ricci and Pennacchi 

(2012) have used a real hyperstatic rotor model with several degrees of freedom. They 

have analyzed stability in the presence of the transverse crack by the multi dimensional 

Floquet theory. They have also developed an algorithm to execute multi-dimensional 

Floquet analysis. 

Bovsunovsky (2012) has formulated the relationship between the crack size and 

the energy dissipation in a crack. He has introduced the principle mechanisms of energy 

dissipation in a surface fatigue crack at torsional vibration through direct experimental 

investigation. He has explained that that energy dissipation in the non-propagating 

transverse crack at torsional vibration was caused mainly by the plastic zone along the 

crack front rather than by the friction of crack faces. Liong and Proppe (2013) have 

proposed a cohesive zone model for the evaluation of the stiffness losses in the cross-

section that contained a crack. Since LEFM has major limitations and the cohesive zone 

model (CZM) described material failure on a phenomenological basis (i.e. without 

considering the material microstructure). Cohesive zone model generally depends only 
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on the material, not on the geometry. Li et al. (2013) have introduced a simple method 

for calculating stress intensity factors of transverse cracked shaft subjected to tension, 

bending and shear. They have formulated stress intensity factor in terms of the crack 

depth. They have found that initial crack growth angle of bending-shear mixed mode 

calculated by the SEDF (Strain Energy Density Factor)-criterion was a slightly bigger 

than that one calculated with MTS (Maximum Tangential Stress)-criterion. Silani et al. 

(2013) have worked on a new breathing crack model. They have also introduced a 

computer code. Two investigations have been performed on the rotor, one with constant 

speed and another start-up and only open part of the crack considered in each angular 

position. The results explained that detection of the crack during start-up was easier. 

They found that short time Fourier transform (STFT) can clearly identify small cracks 

as compare to transient response. 

Guo et al. (2017) have validated theoretical results of the dynamics behaviour 

through experimental investigation. The breathing crack in the rotor is simulated by a 

real fatigue crack. They have decomposed dynamic responses into several 

subcomponents by the EMD method. The experimental results were well corroborated 

with the theoretical analysis, which indicated that EMD based crack detection method is 

practicable. In another research, Singh and Tiwari (2018) have investigated crack 

effects in flexible rotor systems supported with active magnetic bearing (AMB). They 

have introduced an algorithm, which identified the crack force in form of additive crack 

stiffness and simultaneously estimates the disc unbalances, end support bearing stiffness 

and active magnetic bearing dynamic parameters as well. The algorithm has been tested 

in a simple rotor system for the measurement of noise and bias errors in the system 
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parameters, and found to be robust. The next section will highlight the various 

extension of Lagrangian-Hamiltonian formulation.  

1.2.8 Proposal through extended Lagrangian-Hamiltonian formulation 

Various literatures (Dimarogonas, 1996; Gasch, 1993; Kumar and Rastogi, 2009; 

Sabnavis et al., 2004; Wauer, 1990) reveal that researchers have used various analytical 

and simulation techniques in the field of rotordynamics; however limited literatures 

(Kumar, 2013; Mukherjee, 1994, 2001; Mukherjee and Karmakar, 2000; Mukherjee et 

al., 2006, 2007, 2009, 2011; Rastogi, 2005; Rastogi and Kumar, 2009) are available on 

extended Lagrangian mechanics. It is a well-known fact classical Lagrange‟s equation 

cannot analyze the dynamics of systems, where asymmetric rotating component 

produces non potential and dissipative forces. It fails to solve systems having 

nonpotential forces, gyroscopic forces, dissipative forces, nonholonomic constraints, 

and time fluctuating parameters. Analysis of such problems requires the additional 

informations of system‟s interior and exterior to be given at first hand for generating 

extended Lagrangian equations based on bondgraphs theory (Karnopp et al., 1990; 

Breedveld and Dauphin-Tanguy, 1992; Gawthrop and Smith, 1996). These extended 

Lagrangian equations coupled with bondgraphs simulation may be used to solve the 

problem of asymmetric rotating component. In the problems involving symmetries, it is 

easy to derive useful information such as constant of motion and these symmetries 

reduce the complexity of the dynamical systems such as cracked rotor. For problems 

involving asymmetries, a lot of effort is required to solve the complex system. 

It has been reported that Noether‟s theorem (Noether, 1918, 1971) plays a 

significant role in determination of invariants of motion. Further, theorem allows 
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exploitation of symmetries of the system to arrive at invariant of motion. Extended form 

of Noether‟s theorem with umbra‟s Hamiltonian provides the insight of dynamics of the 

asymmetric rotor system. To extend the scope of Lagrangian-Hamiltonian mechanics, a 

new proposal of additional time like variable “umbra (virtual)-time” was proposed by 

Mukherjee (1994) and this new concept of umbra (virtual)-time leads to a peculiar form 

of equation, which is termed as umbra-Lagrange‟s equation. Virtual/umbra-time also 

introduced a novel concept named as umbra-Hamiltonian, which provides an 

understanding of dynamics of system with symmetries when used along with the 

extended form of Noether‟s theorem. 

One of the significant advantages of using the umbra-Lagrangian formalism is 

its underlying variational principle (Rastogi, 2005), which uses recursive minimization 

of functional for their development. By using this formulation a general class of system 

can be derive by applying a least action principle. Further Rastogi (2005) has expressed 

all these notions in an extended manifold comprising of virtual/umbra, and real time 

and real time displacements and velocities. The umbra-Lagrangian theory has given the 

fruitful outcomes, when it is used to study invariants of motion for non-conservative 

mechanical and thermo-mechanical systems. Using umbra Lagrangian theory, 

Mukherjee et al. (2007) have studied the dynamics of an electro-mechanical system 

consisting of an induction motor running an elastic rotor. Mukherjee et al. (2009) have 

also investigated the dynamics of a one-dimensional rotor having internal damping 

conditions and applying dissipative coupling. In addition, Rastogi and Kumar (2009) 

have investigated the dynamics of asymmetric rotor by extended form of Lagrangian-

Hamiltonian mechanics. This work had augmented the scope of umbra-Lagrangian in 

the field of rotor dynamic research. In a study, Kumar (2013) has investigated the 



Introduction 

 

21 

dynamic behavior of a single cracked rotor system through Extended Lagrangian 

formalism. No such work is available in archival literature on dynamic analysis of 

multi-crack rotor system through extended Lagrangian mechanics. 

This work investigates the dynamic behaviour of multi-cracked rotor through 

extended Lagrangian formalism. This is in order to enlarge the range of extended 

Lagrangian formalism employed for any discontinuous rotor system in terms of cracks. 

The bondgraphs are profitably used to obtain umbra-Lagrangian of the system. Further, 

the experimental results are corroborated with analytical results to consolidate the 

extended Lagrangian theory applicable for rotordynamics problem.   

1.3 Significance of bondgraph modelling 

Modeling of engineering systems through bondgraphs is based on exchange of power 

amongst the basic elements of the system and several energy domains can be 

represented in a unified manner. In 1960‟s, Paynter (1961) gave the revolutionary idea 

of portraying systems in terms of power bonds, connecting the elements of the physical 

system to the so-called junction structures which were manifestations of the constraints. 

This power exchange portray of a system is called bondgraph which can be both power 

and information oriented. 

The bondgraph causality concept, introduced by Karnopp et al. (1990), 

describes the orientation of the flow of calculus schemes within the system model. This 

constitutes the physical level of the description contained in the bondgraph 

representation. In his work, Karnopp (1977) introduced the concept of artificial flow 

sources and proposed the algorithmic generation of Lagrange‟s equation for complex 

systems with the help of their bondgraph models. This is supposed to emphasize the 
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role of generalized velocity in the analysis. A modified procedure of this method is 

given by Dijk (1994). Few other contributions in this line, devoted to mathematical 

formulations of dynamical systems are as presented by Brown (1981, 2006) and 

Karnopp (1983). Breedveld and Hogan (1994) were also credited with the multi-

bondgraph representation of Lagrangian mechanics. Thoma (1990) have given a 

graphical method for simulation by bondgraph. Gawthrop and smith (1996) have done 

Meta Modeling for dynamic system through bondgraph. Breedveld and Dauphin-

Tanguy (1996) have presented bondgraphs for modeling the engineering systems. This 

modeling technique may be conveniently applied to analyze the real problem by 

engineers. Granda (1985) have proposed a method of generation of physical system 

differential equation using bondgraphs. Borutzky (2015) has presented bondgraph 

model-based fault diagnosis of hybrid systems. 

Advancing the idea given by Karnopp’s (1977) further to broader class of 

systems, Mukherjee and Samantaray (1997) introduced a detailed procedure to generate 

umbra-Lagrangian through system bondgraphs. In this approach two similar bondgraphs 

of the system are created. One of them is based on real time and another one on umbra 

(virtual)-time. The junction structures are modified and introduced the bonds connecting 

the two diagrams known as trans-temporal bonds. Rest of the procedure follows the 

Karnopp‟s approach to arrive at the umbra-Lagrangian of the system. 

Banerjee and Karmakar (2007) have developed a bondgraph model of a free 

rail wheelset rolling on curved track using sub models called capsules. A railway truck 

running on flexible tangent track has been modeled by Saha et al. (2008) through 

bondgraph formulism considering an eighteen degree of freedom vehicle with six 
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degree of freedom for each wheelset and truck unit. Kalkar‟s linear creep formulation 

has been used for rail-wheel contact forces. Truck-critical speeds and stability 

behaviour were studied through simulations. Bondgraph model of a truck running on a 

flexible curve track has been created with eighteen degrees of freedom by Banerjee et 

al. (2009). The truck stability and curving behaviour have been studied through 

simulations. A bondgraph model of a free railway wheelset rolling on flexible curved 

track has been developed using module-based approach by Banerjee and Karmakar 

(2014). Wheelset model was made without linearity approximation using subsystem 

models. Different subsystem models were integrated together to develop a complete 

bondgraph model of a wheelset for simulation on a rigid railway track. Bondgraph 

technique has been applied for modeling and simulating the behaviour of railway 

vehicle drive system by reproducing actual railway operating conditions along a 

standard section of track (Lozano et al., 2010). Pacejka (1987) have presented the 

application of bondgraph technique in modeling dynamic vehicle systems. The method 

was explained through applications in the development of symmetrical (vertical, pitch, 

longitudinal), anti-symmetrical (lateral, yaw) and combined 3-dimensional motion 

models of a motor vehicle. Margolis and Shim (2001) presented a four-wheel, nonlinear 

vehicle dynamic model with electrically controlled brakes and steering, as well as 

control at each suspension corner. Controllers were not modeled in actual but are 

demonstrated through simulation. Khurshid and Malik (2007) have applied the 

bondgraph formulism for the analysis of an automobile crash. An optimum design has 

been obtained through parametric studies to find a safe design of an automobile to 

enhance the possibility of survival of vehicle occupant in case of accident. Bera et al. 

(2011) have developed an integrated vehicle braking system dynamics and control 
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modeling procedure for a four-wheel vehicle. The bondgraph model has been 

developed in a modular and hierarchical modeling environment and was simulated to 

evaluate the performance of the anti-lock braking system under different operating 

conditions. 

A vector bond approach which effectively leads to a compact form of 

Hamiltonian bondgraph structure and naturally to Hamilton‟s equation of motion id 

proposed by Cho (1998) for the modeling of general multi-body dynamic system. Vaz et 

al. (2003) have presented an example of two links spatial manipulator to discuss certain 

issues involved in the modeling of robotics manipulators using bondgraph technique and 

presented expression of its Jacobian along with simulation results. The dynamic analysis 

of a two-stage pressure rate controllable relief valve has been studied by Dasgupta and 

Watton (2008). The system is modeled through bondgraph approach considering non-

linear characteristics of the valve. Balino (2009) has used bondgraph methodology to 

model compressible fluid flows with viscous and thermal effects. A procedure for 

causality assignment has been derived for satisfying the second law of thermodynamics. 

A comprehensive model of a closed-loop servo-valve controlled hydro-motor drive 

system has been developed using bondgraph technique by Dasgupta and Murrenhoff 

(2011). The dynamic performance of the complete system has been studied with respect 

to the variation of the parameters of the PI controller that drive the servo-valve. An 

extended Lagrangian formulation has been proposed by Mukherjee et al. (2009) for a 

one-dimensional continuous system with gyroscopic coupling. The formulation has been 

used to study the dynamics of an internally and externally damped rotor driven through a 

dissipative coupling. Lee and Chang (2012) have presented a bondgraph model of a 

hydraulic excavator. Fakri and Vilkazi (2014) have modeled and controlled the 
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wheelchair electric drive using bondgraph technique. A control scheme for interaction 

torque control at the interface of the end-effector and the environment using bondgraph 

was proposed by Pathak et al. (2009). Nacusse and Junco (2015) have presented two duel 

controlled switched bondgraph structure called generalized switched junction structures. 

These structures can represent all interconnections enforced by commutations involving 

bondgraph elements around standard 0- and 1-junctions. The generalized switched 

junction structures incorporate some algebraic constraints into their equation sets which in 

the bondgraph domain can be represented with residual sinks, in order to make them able 

to fix the causality assignment even under ideal switching. 

The present research work utilizes the ability of the bondgraphs to obtain 

umbra-Lagrangian of the multi-cracked rotor system based on the physical paradigm of 

the system. Bondgraph technique offers flexibility in modelling and formulation of 

system equations. A very large system may also be modelled as a combination of sub-

system models which are joined together at their interaction port to create an integrated 

system model. Bondgraph equations normally use generalized displacement and 

generalized momenta as state variables. The modelling, simulation and animation based 

on bondgraph is performed using Symbol Shakti
®
 (Mukherjee and Samantaray, 2006), 

a bondgraph modelling software. 

1.4 Contribution of the present work 

The focus of the thesis is mainly directed towards application of extended form of 

Lagrangian-Hamiltonian mechanics to analyze the dynamic behaviour of multi-cracked 

rotor system. This thesis contributes to analyze, investigate and solve the problems 

involved in dynamic behaviour of multi-crack rotor system.  
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 Concept of umbra Lagrangian equation and symmetry breaking approach 

This thesis deals with an extension of Lagrangian-Hamiltonian mechanics that 

incorporates dissipative and non–potential fields, and non integrable constraints in a 

compact form, such that one may obtain invariants of motion or possible invariant 

trajectories through an extended Noether‟s theorem. A new concept of umbra (virtual) 

time has been applied for this extension. This leads to a new form of equations, which is 

termed as umbra-Lagrange‟s equation. The idea of umbra-time is then carried forward 

to prepare a novel concept of Umbra-Hamiltonian. The role of symmetry and symmetry 

breaking concept has also been accomplished for the multi-crack rotor system to 

analyze the dynamic behaviour. 

 Analysis of finite asymmetric rotor system through extended Lagrangian formalism 

The introduction of the concept of umbra time extends the classical manifold over 

which the systems evolve and an extension of Lagrangian-Hamiltonian mechanics over 

vector fields in the extended space has been presented for finite systems. An extended 

Noether‟s theorem along with an Umbra-Hamiltonian is employed to get invariant of 

motion or provide invariant trajectories. As a case study, an asymmetric multi-rotor 

system with a DC motor having asymmetries in stiffness is analyzed using this 

approach. The behavior of the asymmetric rotor is analyzed and validated through 

simulations. Likewise, an asymmetric multi-rotor system having asymmetry in mass is 

also analyzed through this approach. 

 Investigation of continuous multi-cracked rotor system through Extended 

Lagrangian formalism 

The umbra Lagrangian formulation for a continuous set of generalized coordinates has 

been developed in order to describe continuous systems. The invariants of umbra 
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lagrangian density are obtained through extension of Noether‟s theorem over manifolds. 

The dynamic behavior of internally and externally damped rotor with multi-crack with 

dissipative coupling has been analyzed through this approach. The bondgraph modeling 

of this system has also been presented and the effect of variation in stiffness has been 

investigated and some significant results have been obtained. 

 Experimental frame work for cracked rotor system 

The thesis also presents experimental framework for the investigations of dynamic 

behaviour of a multi-crack rotor system. The experimental setup is developed and a 

rotor shaft having single and multi transverse cracks are being analyzed. Experiments 

are also being conducted to obtain the variation in stiffness at various crack depth for 

single as well as multi cracks. The experimental analysis is carried out to validate the 

theoretical and simulation results. 

1.5 Organization of the thesis 

The chapters of the thesis are arranged as follows. First Chapter is introductory in 

nature. It gives a review of earlier work in this field and summary of the thesis. Second 

Chapter is explaining umbra-Lagrange and umbra-Hamiltonian concept for asymmetric 

multi-rotor system. Third Chapter deals with development of analytical and 

computational framework to analyze the dynamics of discrete asymmetric rotor systems 

using extended Lagrangian-Hamiltonian mechanics. This chapter also includes two case 

studies of asymmetric rotor system. The bondgraph models of discrete multi-rotor are 

also presented in this chapter. The Fourth Chapter presents the investigation of 

dynamic behaviour of continuous rotor system with a single and multi transverse crack 

through extended Lagrangian formalism. The Fifth Chapter presents the experimental 
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analysis of a multi-crack rotor system for the validation of theoretical results. Chapter 

Six concludes the thesis and presents the scope for further research. The Appendix A is 

devoted to an introduction of bondgraph elements. Appendix B presents the flexibility 

co-efficients of an open crack. Appendix C gives an overview of basic terminology of 

manifolds and vector fields. In Appendix D, classical Lagrange‟s equation is 

summarized. In Appendix E, concepts of umbra-Hamiltonian are explained. In Appendix 

F, Karnopp‟s algoritm is summarized, general condition for symmetry is briefly 

explained in Appendix G.  
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Chapter 2 

Methodology 

 

2.1 Introduction 

In this chapter, the fundamental ideas of extended Lagrangian-Hamiltonian mechanics 

is explained. The brief review presented here highlights the principle ideas of 

extended Lagrangian philosophy and introduces the notation and philosophy of 

umbra-Lagrangian that will be used throughout this research work. The chapter starts 

with an introduction of umbra-Lagrangian and umbra (virtual)-time which is an 

extension of a classical Lagrange‟s equation. In Appendix D, formulation between the 

classical Lagranges equation and the variational principle is briefly presented. The 

variational principle for umbra-Lagrange‟s equation is also presented in this chapter. 

The foremost advantage of Lagrange‟s equations is that it is easier to apply 

dynamical systems. Besides this, it correlates the close association between symmetry 

properties and conservation laws of the dynamical system. Relationship among 

symmetries and conservation laws through classical Noether‟s theorem are also 

discussed in Appendix G. The need to extended Noether‟s theorem for umbra-

Lagrange‟s equation for finite and continuous systems is also emphasized in this 

chapter. The idea of umbra-Hamiltonian is also presented, however its related 

theorem are also detailed in Appendix E, which are coupled to the extended Noether‟s 

theorem in order to obtain an cognizance of the dynamics of systems that attain 

symmetries. The chapter also details the principle of symmetry breaking along with 

its application to a multi-cracked rotor system. 
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Further, the creation of umbra-Lagrangian through extended Karnoop 

algorithm is also presented using bondgraphs. Bondgraph is advantageously utilized 

for accounting of the umbra and the real component of the systems. 

2.2 Concept of umbra-time and umbra-Lagrangian 

In Literature, Mukherjee and their colleagues (Mukherjee et al., 2006, 2007, 2009, 

2011; Mukherjee, 1994, 2001; Rastogi and Mukherjee, 2011) have coined a novel 

extension of Lagrange's equation. An application of this unique and innovative 

methodology, in order to attain the motion invariants of the dynamical systems was 

demonstrated. This novel approach included decomposition of energy (or work) into 

virtual and real energy components by introducing the concept of „umbra (virtual) 

time‟. Since „umbra/virtual‟ was applied to every form of energies in the system, 

therefore Lagrangian was termed as „umbra-Lagrangian‟. This innovative approach of 

„umbra-Lagrangian‟ and umbra-Lagrange's equation accompanied by relevant 

energies has been illustrated by Mukherjee et al. (2011). The basic formulation 

presented by Mukherjee (1994, 2001), Mukherjee and Samantaray (1997) that leads 

to umbra-Lagrangian and umbra-Lagrange‟s equation can be depicted in Figure 2.1 

with the detailed nomenclature of energies and forces. 

 D‟Alembert‟s concept of permitting displacements, with frozen real time is 

effectively presented through umbra (virtual)-time terminology. 

 Umbra (virtual)-time may be considered as the interior time of a system. 

 Kinetic, co-kinetic and potential energies stocked in storage elements like 

inertial fields and symmetric compliant can be explained as functions in umbra 

(virtual)-time (umbra-velocities and umbra-displacements). 
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 The effort of any external force, gyroscopic element, resistive element or field 

(treated as anti-symmetric resistive field), lever or transformer element (as 

they are combination of gyrators), sensing element and anti-symmetric 

compliant field generally rely on velocities and displacements in real time. 

The potentials associated with all such elements are derived by estimation of 

work-done through umbra-displacements. 

 

Figure 2.1: Schematic representation of umbra theory 

Generally, there are two types of elements that are required to formulate the umbra-

Lagrangian for a dynamic system. First type of elements are those, which contain 

energies that are expressed through umbra-displacements and umbra-velocities and 

termed as storage elements. Rest of the elements are of second type, for which the efforts 

returned are expressed totally through real time and their umbra-potential are acquired by 

umbra-displacement of the corresponding element. These two types of elements can be 

recognized through discretizing the system into dynamical units or systems basic entities. 

Bondgraphs are one of the best available tools that show the complete dynamics of a 

system and generate the classical or umbra-Lagrangian expressions.  
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The concept of umbra-Lagrangian along with relevant energy terms may be 

presented stepwise as 

1. All temporal fluctuations of parameters are in real time. 

2. The potential and co-kinetic energies are expressed using generalized displacements 

and velocities as functions of umbra time. 

The umbra-potential (for potential forces only) is expressed as  

   
 (   ( ))  ∫  (   ( ))  ( ) 
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       (2.1) 

where a bold face letter denotes a vector quantity. A time varying stiffness spring, 

whose umbra-potential energy can be represented as 
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Similarly, the umbra-kinetic energy is evaluated as  
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                  (2.2) 

and the umbra co-kinetic energy is obtained as  
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The umbra co-kinetic energy for a varying mass is defined as 
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3. Based on the philosophy that resistive fields contemplate the motion states in real 

time as an external observer since it opens the system, the umbra-potential is 

expressed by associating it with generalized resistive fields. The force created by 

them does work on the system through umbra generalized displacements presented as  
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As an example, umbra-potential for a damper whose damping coefficient is time 

varying may be expressed as 
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It is important to notice that in classical approach, one may include energy dissipative 

forces through Rayleigh potentials, which can be expressed 

    
 

 
 ̇( ), - ̇( )       (2.5) 

Even if any anti-symmetric part of [R] is present in Eq. (2.5), it does not contribute 

to   . Although, the present methodology as considered in Eq. (2.4), can incorporate 

both the gyroscopic effects (anti-symmetric part) as well as the dissipative (symmetric 

part) through the resistive field for which the corresponding umbra-potential can be 

written as  

   
   ̇( ), - ( )       (2.6) 

4. The umbra-potential integrated with external generalized forces may be evaluated as  
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       (2.7) 

To elaborate, one may evaluate the umbra-potential for some random external force 

 ( ) as 
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The entire umbra-potential is expressed by adding all the potentials denoted by Eqs. 

(2.1), (2.4) and (2.7) and written as 



 Chapter 2 

 

34 

  (   ( )  ̇( )  ( ))    
 (   ( ))    

 (   ( )  ̇( ))    
 (   ( ))        (2.8) 

and the umbra-Lagrangian would, therefore, be presented as  

  (   ( )  ̇( )  ( )  ̇( ))    
 (   ̇( ))    (   ( )  ̇( )  ( ))        (2.9) 

Mukherjee (1994, 2001), presented a set of equations for a general class of systems, 

which can be written as 
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(2.10) 

The variational formulation in this form of Lagrange‟s equation was presented by 

Rastogi (2005). 

2.2.1 Variational approach/theory of umbra-Lagrange’s equation 

A generalized variational principle or the principle of least action is presented in brief 

that results in a peculiar form of the umbra-Lagrange equation. The extended least 

action principle may be written as, “For general systems, there  are dynamic paths in 

such a way that they recursively minimize the integral of their umbra-Lagrangians 

considering the real-time velocities and displacements as modulatory variables and 

umbra-time velocities and displacement as trajectorial variables with fixed end point 

conditions”. It may also be expressed mathematically as 

  ( ( )  ̇( )  ( )  ̇( )  )   ( (   )  ̇(   )  (   )  ̇(   )  )                            

where  (   ) and  (   ) are elements of a homotopic family and named as 

trajectorial and modulatory variables. The action integral to be recursively minimized, 

which may be presented as 
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 For trajectorial occurrences having stated end constraints, minimization of the integral 

in Eq. (2.11) is carried out leading to a trajectory function. Again, by considering 

those as modulatory and these trajectory function can be minimized for trajectorial 

occurrences. This procedure may be repeated under similar conditions and termed as 

recursive minimization of functionals. This procedure converges rendering the 

modulatory and trajectorial members identically. The relationship between symmetry 

and conservation laws may be presented in the next sub-section. 

2.3 Correlation between symmetry and conservation laws 

Symmetry has always played a key role in analytical mechanics, from fundamental 

formulations to basic principle like conservation law to concrete applications. The 

main focus of this work is to highlight the role of symmetry in certain classes of 

dynamical systems. In last decade, many researchers have been using symmetry 

techniques for studying integrable and chaotic systems, stability and bifurcation in 

engineering applications. Moreover, this technique is greatly used to obtain a new 

insight into the dynamics of rigid, fluid, elastic and plasma systems. Mechanics and 

symmetry principle establishes an essential framework for all these areas, which is 

beneficial to physicist as well as engineers. 

The definition of symmetry as presented by Weyl (1992) can be briefly defined, 

“A thing is symmetrical if one can subject to a certain operation and it appears exactly the 

same after the operation.” To broaden the more extensive idea of symmetry, the German 

mathematician Noether (1971) discovered the most fundamental justification for 



 Chapter 2 

 

36 

conservation laws and symmetries. Noether‟s theorem can be explained for each 

symmetry operation, there is a corresponding conservation law. The conservation of 

momentum results due to the homogeneity of space. Invariance under translation in time 

results in the law of conservation of energy, whereas conservation of angular momentum 

results from the isotropy of space. Noether‟s theorem develops conservation laws from 

symmetries under assumption that the principle of least action is the basic law that 

governs the motion of a particle in classical mechanics. This theorem further presents the 

concept that a physical quantity corresponding to the symmetries is a constant of motion, 

which does not alter along entire path of the particle. In general terminology, a system is 

considered symmetric if there is no change in the system dynamics by imposing any 

change in the system. This relation is formulated through Noether‟s theorem. Which 

states that “If a Lagrangian is invariant under a family of transformations, its dynamical 

system has a constant of motion, and that constant can be found from knowledge of the 

Lagrangian and the transformation.” The correlation of symmetry and Lagrangian may 

also be possible with the concept of Noether‟s theorem. The next sub-section will present 

the extended Noether‟s theorem for finite and continuous system. 

2.3.1 Extended Noether’s theorem for finite and continuous systems 

Noether (1971) stated that every differentiable symmetry of the action of a physical 

system brings about a conservation law. The classical Noether‟s theorem mainly 

depends on the particular structure of dynamical frameworks, where the influence of 

dissipation, constraints, gyroscopic coupling and time fluctuating parameters are not 

taken into consideration. An extended version of Noether‟s theorem has been 

achieved, which includes non-potential and dissipative fields, and non-integrable 

constraints in a concise form, such that conservation laws (invariants of motion) or 
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possible invariant limit trajectories on which some dynamical quantity remains 

invariant may be obtained. 

In this thesis, the Noether‟s theorem is extended to finite as well as continuous 

systems and found to be more suitable for use in engineering applications such as 

rotordynamics applications. It is found that such effects of dissipative or non-potential 

fields are usually ignored by physicists, since these effects are insignificant in the 

larger scale of phenomena to which this theorem is applied. However an extension of 

Noether‟s theorem for a general class of systems in engineering applications with a 

new concept of umbra-time provides a novel approach to depict the dynamics of the 

systems, which generates significant information about the dynamical behaviour of 

the systems. The details of the extension of Noether‟s theorem for discrete and 

continuous transformation are presented separately in Chapter 3 and Chapter 4. 

2.3.2 Symmetry breaking approach 

It is a common phenomenon that symmetry breaking generates asymmetric 

contribution in a symmetric environment. It is one of the novel approaches to explain 

the self organized pattern formation. Using of this theorem, cosmologists have found 

that the universe is scattered in clusters with the greater part of the universe vacant, 

the formation of jet streams, ocean currents and the continental drifts is investigated 

by the earth scientists, material scientists study the theory of phase transition and 

biologists attempt to explain how living organism acquired forms through cell 

division and morphogious as given by Weyl (1992); Prigogine, (1967). 

In physics, symmetry breaking is a phenomena, in which the system's output is 

decided by the analysis of response of a system crossing a critical point to 
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infinitesimally small fluctuations, by determining the branch of a bifurcation is 

determined and analyzed. To an external observer, who is unaware of the fluctuations 

(or "noise"), the choice appears arbitrary. This process is termed as symmetry breaking 

because such transitions usually bring the system from an orderly state (symmetric) into 

a disorderly state (asymmetric). Symmetry breaking is thought to play a major role 

in pattern formation. The concept of symmetry breaking can be broadly classified into 

two basic categories. 

(a) Explicit symmetry breaking - In this symmetry breaking approach, the basic 

laws governing the system are not invariant under symmetry in question. 

(b) Spontaneous symmetry breaking- In this symmetry breaking approach, the basic 

laws governing the system is invariant but system is not because of the 

parameters of the systems. Such a symmetry breaking is parameterized by order 

parameters. A special case of this type of symmetry breaking is dynamical 

symmetry breaking due to some change in parameter. The present work is 

mainly focused on application of spontaneous symmetric breaking approach 

into rotor dynamic applications. 

2.3.3 Symmetry breaking phenomenon for the cracked-rotor system 

For investigation of dynamic behaviour and the vibration, a cracked rotor can be 

enormously improved by presenting the concept of cyclic symmetry, each variable 

parameters (including material properties and geometry) is inferred to be similar. 

However, the cyclic symmetry of cracked rotor system is wrecked due to the small 

differences in geometric or material properties. Generally, this small difference appear 

in the form of change in shaft material such as stiffness variation, mass or damping 
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properties and change in geometry due to initiation and propagation of crack in the rotor 

structure. Although the difference is less in terms of material properties, it may have 

drastic effects on the system response. In particular, this symmetry breaking in terms of 

shaft material property can cause localization of vibration and the stress concentration 

due to the initiation and propagation of crack. Due to this, the stress levels and 

amplitude are sharply increased. Therefore, many research activities have been 

conducted for analyzing the vibration in rotor machinery. 

However, there are relatively few literature available to date concerning the 

symmetry breaking of rotor shaft due to cracking. The studies by Akira (2009) 

considered the cyclic symmetry in the case of turbine blade for the forced vibration 

response of blade disks with cracked blades. Hou (2006) investigated crack induced 

mistuning analytically, using a lumped mass beam model, where the local stiffness loss 

because of crack was implemented with a flexible matrix method. However above 

studies used simplified model for crack and were limited to the mistuning of turbine 

blades. Most importantly, all the models have not considered the symmetry breaking 

due to the material property change due to a crack (stiffness or mass of the rotor). Also, 

nonlinearity effect of the crack was not modeled for the continuous cracked rotor.  

Kumar (2013) has investigated the dynamic response of a single cracked-rotor 

system through extended Lagrangian mechanics. Extended form of Lagrangian-

Hamiltonian equations were employed and variation in stiffness due to crack depth 

variation for a single-crack rotor analysis was evaluated.   

Motivated by the concept of symmetry and symmetry breaking approach, this 

thesis highlights the application of this approach for the analysis of the dynamics of a 
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multi-crack rotor. The Noether‟s theorem along with the concept of umbra-Hamiltonian 

brings out some significant insight into the system behaviour. 

2.4 Concept of umbra-Hamiltonian 

Mathematically, the umbra-Hamiltonian (Mukherjee, 1994, 2001) may be represented as 

  , ( )  ( )  ( )  ̇( )  -   ̇( ) ( )    , ( )  ̇( )  ( )  ̇( )  -      (2.12) 

where the umbra-momentum is 
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The real momentum may be obtained as  
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Taking total differential of Eq. (2.12), one obtains  
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The relations which may be derived, are 
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and the other relations acquired are 

   

  ( )
  

   

  ( )
 

   

  
  
   

  
 

The umbra-Hamiltonian    is having two mathematical elements as   
  and   

 .   
  is 

the interior form of Hamiltonian, which is independent of any function of real time, real 

velocity and real displacement, and   
  is the rest of the umbra-Hamiltonian, termed as 

the exterior Hamiltonian. Thus, one may write     

     
 * ( )  ( )+    

 * ( )  ( )  ( )  ̇( )  +                  (2.15) 

The theorems of the umbra-Hamiltonian (Mukherjee, 1994, 2001) are now detailed in 

Appendix E. 

2.4.1 Importance of umbra-Hamiltonian  

The augmentation of Noether's hypothesis assumes an essential part in deciding the 

invariants or so constants of motion and invariant trajectories, on which few physical 

entity becomes constant. Although, the dynamical quantity, which are conserved, can 

be found out just by considering the umbra-Hamiltonian of the framework. Therefore, 

the notion of umbra-Hamiltonian is extremely important to acquire the conserved 

dynamical quantity by means of related theorems and the corollary presented in 

Appendix E. In this way, combined aspects of extended Noether‟s theorem and 

umbra-Hamiltonian provide the interior nature of the dynamics of systems with 

symmetries. 
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2.5 Umbra-Lagrangian and the system generated through bondgraphs  

In the case of mathematical models of dynamical systems, the equations for any 

dynamical system can be easily and systematically generated from the bondgraph. The 

bondgraph representation of a system may be created in total notion from the 

mathematical model of the system. Generally, there are two types of elements that are 

required to formulate the umbra-Lagrangian for a dynamic system. First type of 

elements are those, which contain energies that are expressed through umbra-

displacements and umbra-velocities and termed as storage elements. Rest of the 

elements are of second type, for which the efforts returned are expressed totally through 

real time and their umbra-potential acquired by the umbra-displacement of the 

respective elements. These two types of elements can be recognized by discretizing the 

system into dynamical units or systems basic entities. After these elements and their 

ports are identified from the bondgraph model of the system, an extended bondgraph is 

created, which has three components: (i) an umbra-time component (ii) a real time 

component (iii) a trans-temporal component. The procedure for getting umbra-

Lagrangian and the steps followed are separately provided in Appendix F, which is an 

extended version of Karnopp‟s algorithm. It is very important to note that a bondgraph 

model helps in the identification of two important varieties of elements, along with the 

real and umbra time variables, thus leading to the umbra-Lagrangian functional. Once 

the umbra-Lagrangian is achieved, many dynamical aspects of umbra-Lagrange‟s 

equation can be employed effectively to obtain dynamical behaviour of the system.  

2.6 Summary of the chapter 

In this chapter, some fundamental concepts of extended Lagrangian-Hamiltonian 

mechanics have been presented. The concepts of umbra-Lagrange and umbra-
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Lagrangian equation have been given by its point by point foundation. The underlying 

variational philosophy, which results in this modified form of equation, has also been 

discussed.  

 The role of symmetry in dynamical system hypothesis has been examined, 

which highlights the conservation laws of dynamical framework. The classical 

Noether‟s theorem is mathematically explained, which showed a relationship between 

symmetry property and corresponding conservation law. It has been realized that 

extension of classical Noether‟s theorem for finite or continuous system must 

incorporate dissipation and non-potential forces in a compact form to obtain invariants 

of motion or invariants trajectories, on which some physical entities turn out to be 

conserved. This augmentation of Noether‟s theorem for finite and continuous system 

along with its application will be dealt separately in the later chapters. 

The concept of umbra-Hamiltonian with two theorems has been exhibited, 

which are accompanied by extended Noether‟s theorems to impart detailed interior of 

the dynamics of systems. Finally, generation of umbra-Lagrangian through bondgraph 

modeling has been discussed. Bondgraphs turn out to be a helpful modeling technique 

to group the umbra and the real components of the systems.  The extended Lagrangian-

Hamiltonian mechanics for finite systems will be discussed along with various multi 

rotor cases. These entire concepts will be implemented to analyze the dynamics of finite 

rotor or continuous rotor in Chapter 3 and Chapter 4. 
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Chapter 3 

Analytical and Computational Framework  

for Discrete Rotor with Asymmetries 

 

3.1 Introduction 

In recent decade, several researchers (Babu et al., 2008; Chasalevris and 

Papadopoulos, 2009; Darpe, 2007; Georgantzinos and Anifantis, 2008; Patel and 

Darpe, 2008; Rubio, 2011; Singh and Tiwari, 2011) have studied non-linear response 

of asymmetric rotor and its variation with system parameters by employing various 

analytical techniques and methods. Several papers on Lagrangian mechanics are 

studied in archival literature. It is the fact that any asymmetries in revolving element 

consists of a non-potential and dissipative forces; and in such situation, original 

Lagrange's equation cannot provide the dynamic interior of the system and loose 

generality in the presence of non-holonomic constraints, dissipative forces, non-

potential forces, gyroscopic forces and other general class of systems with time 

fluctuating parameters. 

 Lagrangian formulation is preferred because of its inherent properties of 

depicting conservation laws and important symmetry properties of dynamical systems. 

In literature, few attempts have been made by several authors to extend the scope of 

Lagrange's equation so that forces with holonomic constraints, effects of dissipation, 

constraints of nonconservative dynamical system can be included in this equation. 

Another important characteristics shown by Lagrange's equation is its connection with 

symmetry properties and possible constant of motions of dynamical systems. 
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 Various researchers (Djukic, 1973; Djukic et al., 1989; Vujanovic, 1978; 

Vujanovic et al., 1989) have published several research papers to show connection 

between symmetries conservation laws. (Vujanovic, 1978; Vujanovic et al., 1989) have 

formulated a novel methodology to obtain constants of motion of general dynamic 

system with non potential forces and non holonomic constraints. This new formulation 

by Vujanovic (1978) was entirely based on the quantities of non-conservative 

holonomic system, which is based on the differential variational principle of 

D'Alembert. 

The knowledge of invariants of motion of dynamical system is very significant 

in the analysis of dynamical systems such as multi-rotors. These exists a close 

connectivity of symmetries with invariant of motions (Karnopp, 1977; Mukherjee and 

Samantaray, 1997) of such systems. Generally, symmetric properties of dynamical 

system present a close insight to evaluate the invariants of motion of the dynamical 

system as they disintegrate the complex dynamics of the dynamical systems such as 

multi-rotor with cracks. In this direction, Noether's theorem (Noether, 1971) has played 

a prominent contribution to derive invariance properties. Thus, Noether's theorem 

provides exploration of symmetric properties of the dynamical system to obtain 

constant of motion. Extension of Noether's theorem along with umbra's Hamiltonian 

provides a great deal of insight to obtain dynamic behaviour of an asymmetric rotor 

system. 

Rastogi (2005) has worked on extension of the Lagrangian-Hamiltonian 

mechanics for finite system. He has included dissipative and non-potential fields and 

non-integrable constraints. However, his study was limited to symmetric system only. 
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Kumar (2013) has also used same phenomenon for asymmetric system. He has 

considered a single crack rotor for such analysis. 

There are various causes for unbalancing in dynamics system. So it is not easy to 

predict the dynamics signature of any such asymmetric system. It is a great challenge for 

engineers / scientist. Initiation and propagation of crack in a rotor is a very critical for the 

health structure of rotor system. Development of crack in a rotor due to fatigue generally 

changes the stiffness of shaft and ultimately the whole rotor system becomes asymmetric. 

Extended Lagrangian formalism has been applied to analyze a symmetrical 

electromechanical system, and continuous system (Kumar, 2013; Mukherjee et al., 2006, 

2007 and 2009; Rastogi, 2005). However, this work deals with the application of 

extended Lagrangian – Hamiltonian mechanics on the asymmetric rotor system.  As a 

case study, an analytical model is developed considering symmetry breaking of a discrete 

rotor due to asymmetries in stiffness. The amplitude and natural frequencies has been 

determined analytically. A computational model for asymmetric rotor system was also 

created by using bondgraph modeling technique, which was simulated on the Symbol- 

Shakti


  software (Mukherjee and Samantaray, 2006) to analyze the dynamic behavoiur. 

In another case study, a similar analytical framework with asymmetries in mass 

has been developed. A computational model for the analytical framework was also 

developed by using unified bondgraph simulation methodology. Symbol-Shakti


 

software (Mukherjee and Samantaray, 2006) was used for simulation work. The effects 

of excitation frequency, change in mass asymmetry has been noticed. Different graphs 

have also plotted to explain the insight dynamics of framework. These graphs have also 

showing good agreement between analytical and simulated results.      
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3.2 Noether’s theorem and its extension for finite rotor 

Noether’s theorem plays a significant contribution to achieve an insight dynamics of 

dynamical system. The theorem (Noether, 1971) states that, if the Lagrangian of a 

system is invariant under a family of single parameter groups, then each such group 

renders a constant of motion. The extended Noether’s theorem, presented in papers 

(Mukherjee et al., 2011; Rastogi and Mukherjee, 2011) may provide invariants of 

motion, or invariant trajectories, on which some dynamical parameters lies constant. 

The Umbra-Lagrangian can be evolved on an enlarged manifold, which incorporates 

umbra as well as real displacements and velocities and real time (Mukherjee et al., 

2011), i.e 

           )  ̇  )    )  ̇  )) (3.1) 

where,  ̇  ) is a real time velocity and  ̇  ) is an umbra time velocity. Deviated from 

classical expression, the nomenclature needs single but enlarged manifold incorporating 

of real and umbra displacements and velocities and real time. The umbra-Lagrangian of 

any dynamical system allows several one-parameter transformation groups, and further 

the infinitesimal generator (Kumar and Rastogi, 2012; Mukherjee et al., 2007) 

corresponding to p
th

 parameter (or group) may be decomposed as follows: 

     
 
   

 
, where p =1….m (3.2) 
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and  

  
 
 ∑    
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where           
     

  
 and           

     

  
 are functions of real and umbra 

displacement and real time. The functions of Eq. (3.4) remains unchanged under the p
th

 

transformation, which may be presented as  

     )    (3.5)  

By the using of the Eq. (3.2) and Eq. (3.5) and taking limit η → τ, one obtains 
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By using Eq. (3.3) in above Eq. (3.6), one obtains 
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Where superscript   )̇ represents the derivative with respect to umbra time. Umbra-

Lagrange’s Eq.(3.1) may be represent in following form 
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Using Eq. (3.8) in Eq. (3.7)  
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The extended Noether’s theorem may now be expressed as  
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The left-hand side term in Eq. (3.9) provides classical Noether’s rate equation, whereas the 

right hand side term is an additional, which is termed as the modulatory convection term. 

The modulatory term is useful to obtain the dynamical insight of the rotor-motor system. 

3.3  Case study–I: Analysis of finite multi-rotor system with 

asymmetries due to stiffness using extended Lagrangian formalism 

Recently various researchers have been concerned towards the study of dynamical 

behaviour of cracked rotor. In order to investigate the dynamical behaviour of finite 

rotor system with asymmetries due to stiffness, extended Lagrangian formulation has 

been proposed in this case study. It has been observed that stiffness plays a significant 

role in rotordynamics, in which past studies are majorly based on single crack rotor 

system (Mukherjee et al., 2007). This study conducts an experimental, analytical and 

computational analysis of multi-crack rotor system, whereas computational and 

analytical results will also be validated with experimentation. Primarily section 

represents the analytical model of multi-crack system, which will be followed by 

computational and experimental study.  

 A multi-rotor-system with asymmetries are being analyzed through extended 

Lagrangian formulation (Jain et al., 2018). In this analytical model, a shaft is carrying 
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two rotors, which are mounted on equal distances. The rotors are composed of internal 

as well as external damping and transverse stiffness is included due to flexural 

behaviour of the shaft (Kumar and Rastogi, 2012). The shaft is driven by DC motor as 

shown in Figure 3.1. Thus, one may evaluate stiffness and damping properties in two 

orthogonal directions. In this evaluation, dampers may incorporate external as well as 

internal damping. One of the rotors consist small asymmetries in stiffness parameter. It 

is assumed that mass of the discs of rotors are much more than that of the shaft, 

henceforth, mass of the shaft is ignored in this dynamics. 

  

Figure 3.1: Rotor 1 and rotor 2 driven through a DC motor 

The bondgraph model of the physical system is shown in Figure 3.2, which contains 

causalled bond for generation of system equations and simulation results (Mukherjee et 

al., 2007). The modulated gyrator element has been used to portray the additional 

circulatory effects due to internal damping. Bonds 4, 27, 28, 29, 30 represent the 
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artificial flow sources to obtain umbra-Lagrangian of the system. The rate of rotation of 

shaft has been recorded by bond 20, which is flow activated C-bond. 

 

Figure 3.2: Bondgraph model of multi rotors with artificial flow sources to obtain umbra-

Lagrangian in stiffness asymmetries case 
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Model represents the interaction of energy in the system. In the pictorial 

representation, ΔK shows the change in stiffness in X direction in rotor1, which makes 

the system asymmetric. This change in stiffness (ΔK) may be due to initiation and 

propagation of crack in the discrete rotor1. 

3.3.1 Umbra-Lagrangian for multi-rotor system with asymmetric stiffness 

The umbra-Lagrangian may be formulated following the steps of extended Karnopp’s 

algorithm discussed in Appendix 6. The umbra-Lagrangian corresponding to the 

bondgraph model shown in Figure 3.2 may be expressed as 
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(3.10) 

In Eq. (3.10), m1 & m2 is the mass of the rotor, K1 & K2 is the stiffness of the two span 

of the shaft, K is the change in stiffness of right span of the shaft. J is the moment of 

inertia of the rotor mass, Ri and Ra are the internal and external damping of the rotor1, 
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    and     are the internal and external damping of the rotor 2, x( ) and y( ) are the 

displacements in real or Umbra time,  is the angular displacements in  or   times, and 

Rc is the resistance of dissipative coupling. 

The BG model of the system shown in Figure 3.2 reveals that discrete multi-

rotor system is SO(2) symmetric (symmetry for the rotor amplitude in mechanical 

coordinates). The rotational symmetries of umbra-Lagrangian of the finite rotor system 

may be achieved through the vector field. The umbra-Lagrangian of rotor system 

admits one parameter transformation groups, so infinitesimal generator (Hassani, 1999; 

Olver, 1986) of the rotational SO(2) group is termed as   . The infinitesimal generators 

   may be written as 
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(3.11) 

The derivation of above infinitesimal generators is detailed in Appendix 3. One may 

obtain the invariance (symmetries) of umbra-Lagrangian of finite asymmetric rotor 

system of Eq. (3.10) through Eq. (3.11), which may be expressed in case ∆K→0  

{     )}    

3.3.2 Extended Noether’s equation for multi-rotor system with asymmetric stiffness 

From Eq. (3.9), applying the extended Noether’s theorem, one may obtain the Noether’s 

rate equation for rotor 1 as 
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(3.12) 

In Eq. (3.12), the left hand side is the classical Noether’s rate equation and this 

momentum may be equated by making the modulatory convection term on right side to 

be zero on some invariant trajectories with following assumptions  

    )                  (3.13) 

    )           (3.14) 

where    is the natural frequency of limiting orbit of the rotor 1. The modulatory 

convection term of Eq. (3.12) provides 
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(3.16) 

One may achieve Noether’s rate equation for the rotor two, which can be 

expressed as  
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Again, assuming the modulatory convection term of Eq. (3.17) to be zero on some 

invariant trajectories with following assumptions 

    )                  (3.18) 

    )           (3.19) 

where    is the natural frequency of limiting orbit of the rotor 2. The modulatory 

convection term of Eq. (3.17) derives 
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which finally yields 
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In Eqs. (3.16) and (3.20),  ̇  ) and  ̇   ) are the shaft spinning speeds of rotor one and 

rotor two. The Noether’s rate equation of rotor 1 due to asymmetries comes out to be 

 

  
[  { ̇   )    )    ̇   )    )}      )    )    )]    (3.21) 

                            symmetric                               asymmetric 

The Eq. (3.21) consists two significant terms, if asymmetric term equated to zero, i.e. 

there is no asymmetry in stiffness, one may obtain invariants of motions as 
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3.3.3 Umbra-Hamiltonian for multi-rotor system with asymmetric stiffness 

The umbra-Hamiltonian of the system may be written as 
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This may be expressed as 
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(3.26) 

In Eq. (3.24), the interior Hamiltonian Hi

 does not related to any functional of 

real displacement, real velocities and real time whereas He

 depends on rest of 
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umbra-Hamiltonian comprising all real & virtual displacement, velocities and real 

time. 

Applying the theorem 2 of Umbra-Hamiltonian, one may obtain: 
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Assuming once again an orbit 

    )               )           , and     )               )            

one may obtain 
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(3.29) 

Setting Eq. (3.28) equal to zero and compare the same coefficient yields as achieved in 

Eq. (3.16) and (3.20) 
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Setting Eq. (3.29) equate to zero and compare the same coefficient of internal damping 

gives the amplitude of the rotor 
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where    and    are the amplitude of rotor 1 and rotor 2. 

If        
       

               

Then, amplitude of the rotor may be achieved as 
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Further, 
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One obtains the following expression 
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The two types of frequencies are available in Eq. (3.35). Applying the method as 

presented by Krodkiewski (2007), In case of first rotor, one may obtain the natural 

frequency in y-y direction if symmetric part is there, one may have 
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 (3.36) 

If unsymmetric part is there, one obtain the natural frequency in x-x direction 
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In case of second rotor 

    √
  

  
                    √

  

  
 (3.38) 



Analytical and Computational Framework for Discrete Rotor with Asymmetries 61 

The final natural frequency, may be finally represented as 
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The next subsection will present simulation study, which will further validate the 

analytical model. 

3.3.4 Simulation study and validation 

The prime objective of this simulation is to achieve an insight dynamics of multi-

rotor-system and ascertaining the electromechanical influence of multi-rotor with 

asymmetries. Moreover, it confirms analytical results. The bondgraph model of multi-

rotors with asymmetries with external and internal damping was simulated 

SYMBOLS-Shakti
®
 (Mukherjee and Samantaray, 2006) software with parameters 

presented in Table 3.1. To show the efficiency of the simulation, a series of 

parametric variation are carried out as the model is significantly sensitive to all such 

variations in parameters. 

 The threshold angular speed of instability found to be twice the natural 

frequency of rotor 1 using the parameters presented in Table 3.1. It is evident from 

Figure 3.3 that the amplitude of rotor 1 at variable stiffness shows the correctness of an 

analytical model upto maximum 7 % variation in stiffness. One may find a marginal 

difference in simulated and analytical value of rotor 1 amplitude beyond 7 % variation 
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in stiffness. After that the variation is little more due to the parametric sensitivity. The 

amplitude of the rotor increases with percentage change of stiffness of rotor1. 

Table 3.1: Simulation parameters 

 Parameter Value 

Stiffness of the rotor 1 and rotor 2  K1, K2 1000 N m-1 

Mass of the rotor 1 and rotor 2 m1, m2 10 Kg 

Mass Moment of Inertial of rotor J 1 Kg m2 

Internal damping coefficient of rotor 1 and rotor 2  Ri, Ri’ 5 N s m-1 

External damping coefficient of rotor 1 and rotor 2 Ra, Ra’ 5 N s m-1 

Damping coefficient of dissipative couplings Rc 0.2 N s m-1 

Constant excitation frequency Ω 22 rad s-1 

Range of change in stiffness ΔK 0-100 N m-1 

 

Likewise trend is also achieved in Figure 3.4, where analytical frequency nearly 

matches with the simulated frequency obtained for rotor 1. A general behaviour of 

reduction in the natural frequencies is noticed at various stiffness variations. 

In Figure 3.5, it has been shown that the simulated value of rotor amplitudes at 

various excitation frequencies with stiffness variation. The amplitude of the rotor 

increases with increase in stiffness variation. Considerable good agreement between 

analytical and simulated results has been stated. Here again the parametric variation of 

asymmetric rotor can be compared reasonably with the numerical simulation. One may 

easily diagnose any faults in the multi-rotor-system by knowing the amplitude of rotor 1 

through Eq. (3.30), which is theoretically obtained through extended Lagrangian 

methodology. 
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Figure 3.3: % Change in amplitude of rotor 1 Vs % change in stiffness  

 

Figure 3.4: Frequency of rotor Vs asymmetries in stiffness 
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Figure 3.5: Amplitude of the rotor Vs excitation frequency with different stiffness variation 

 

Figure 3.6: Threshold frequency Vs time with different stiffness variation 
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In Figure 3.6, the simulated value of threshold frequency with stiffness 

variation is plotted. In this figure, the frequency obtained by simulation results is 

nearly same as analytical value. It is apparent that the threshold frequency of the rotor 

1 decreases with increases in ΔK and conforms to angular speed obtained through 

extended formalism. This is basically the frequency at which the asymmetric rotor is 

spinning in actual. This phenomenon has a great application for monitoring and 

diagnoses the cracks in multi-rotor-system in plants. The next section will highlight 

another case with asymmetries due to point mass of any rotor in multi-rotor system. 

The next section will highlight the another case with asymmetries due to point mass 

of any rotor in multi-rotor system.  

3.4 Case study–II: Analysis of finite multi-rotor system with asymmetries 

due to mass using extended Lagrangian formalism 

In recent years, the dynamic behaviour and diagnostic of cracked rotor have been 

gained momentum. In literature, several studies are available for cracked rotor systems, 

however very few authors have addressed the issue of asymmetries due to various 

parameters in multi-cracked rotor system. In order to investigate the dynamical 

behaviour of the finite rotor system with asymmetries due to mass, extended 

Lagrangian formulation has been developed in this case study. 

In this case, a multi-rotor-system with asymmetries in mass is being analyzed 

through extended Lagrangian formulation. In this analytical model, a shaft is carrying 

two rotors, which are mounted on equal distances. The shaft is driven by DC motor as 

shown in Figure 3.1. In this case, variation of mass is the main cause of asymmetries. 

Thus, one may evaluate mass and damping properties in two orthogonal directions. In 
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this evaluation, dampers may incorporate external as well as internal damping. One of 

the rotors consist small asymmetries due to mass variation of rotor. It is assumed that 

stiffness is constant in this dynamics.  

 

Figure 3.7: Bondgraph model of multi rotors with artificial flow sources to obtain umbra-

Lagrangian in mass asymmetries case 
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The bondgraph model of the physical system is shown in Figure 3.7, which 

contains causalled bond for generation of system equations and simulation results 

(Mukherjee et al., 2007). The modulated gyrator element has been used to portray an 

additional circulatory effects due to internal damping. Bonds 4, 27, 28, 29, 30 represent 

the artificial flow sources to obtain umbra-Lagrangian of the system. The rate of 

rotation of shaft has been recorded by flow activated C-bond. 

Model represents the interaction of energy in the system. In the pictorial 

representation, Δm shows the change in mass in X direction in rotor1, which makes the 

system asymmetric. 

3.4.1 Umbra-Lagrangian for multi-rotor system with asymmetric in mass 

The umbra-Lagrangian may be formulated following the steps discussed in various 

published research paper (Jain et al., 2018; Mukherjee, 2001; Rastogi and Kumar, 

2009). The umbra-Lagrangian corresponding to the BG model shown in Fig. 3.7 may 

be expressed as 
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In Eq. (3.41), m1 and m2 is the mass of the rotor, K1 and K2 is the stiffness of the 

two span of the shaft, m is the change in mass of right span of the shaft. J is the 

moment of inertia of the rotor mass, Ri and Ra are the internal and external damping of 

the rotor 1,     and     are the internal and external damping of the rotor 2, x( ) and y( ) 

are the displacements in real or Umbra time,  is the angular displacements in  or t 

times, and Rc is the resistance of dissipative coupling. 

3.4.2  Extended Noether’s equation for multi-rotor system with asymmetric due to 

mass variation 

From Eq. (3.9), Applying the extended Noether’s theorem, one may obtain the 

Noether’s rate equation for rotor 1 as 
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(3.42) 

In Eq. (3.42), the left hand side is the classical Noether’s rate equation and this 

momentum may be equated to by making the modulatory convection term on right side 

to be zero on some invariant trajectories with following assumptions  

    )                  (3.43) 
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    )           (3.44) 

where    is the natural frequency of limiting orbit of the rotor 1. The modulatory 

convection term of Eq.(3.42) provides 
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One may achieve Noether’s rate equation for the rotor two, which can be expressed as 
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(3.47) 

Again, assuming the modulatory convection term of Eq. (3.47) to be zero on some 

invariant trajectories with following assumptions 

    )                  (3.48) 

    )           (3.49) 

where    is the natural frequency of limiting orbit of the rotor 2. The modulatory 

convection term of Eq. (3.47) derives 
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which finally yields 



 Chapter 3 

 

70 
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In Eqs. (3.46) and (3.50),  ̇  ) and  ̇   ) are the shaft spinning speeds of rotor one and 

rotor two. The Noether’s rate equation of rotor 1 due to asymmetries comes out to be 
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(3.51) 

                         symmetric                             asymmetric  

The Eq. (3.51) consists two significant terms, if asymmetric term equated to zero, i.e. 

there is no asymmetry in stiffness, one may obtain invariants of motions as 
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3.4.3 Umbra-Hamiltonian for multi rotor system with asymmetric mass 

From Eq. (3.23) the umbra-Hamiltonian of the system may be written as 
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This may be expressed as 
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(3.54) 
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(3.55) 

In Eq. (3.53), the interior Hamiltonian Hi

 does not related to any functional of real 

displacement, real velocities and real time whereas He

 depends on rest of umbra-

Hamiltonian comprising all real and virtual displacement, velocities and real time. 

According to the theorem 2 of Umbra-Hamiltonian: 
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Applying the above theorem, one may obtain: 
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(3.57) 
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Assuming once again an orbit 
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one may obtain 
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(3.59) 

Setting Eq. (3.58) equal to zero and compare the same coefficient yields as achieved in 

Eq. (3.46) and (3.50) 
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Setting Eq. (3.59) equate to zero and compare the same coefficient of internal damping 

gives the amplitude of the rotor 
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where    and    are the amplitude of rotor 1 and rotor 2. 

If        
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Then, amplitude of the rotor may be achieved as 

  √
  

    
[   (  

  

  
)]  (3.62) 

Further, 
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One obtains the following expression 
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(3.64) 
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in Eq. (3.64), one may obtain the equation as 
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The two types of frequencies are available in Eq. (3.65). Applying the method as 

presented by Krodkiewski (2007), In case of first rotor, one may obtain the natural 

frequency in y-y direction if symmetric part is there, one may have 
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 (3.66) 
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If unsymmetric part is there, one may obtain the natural frequency in x-x direction 
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In case of second rotor 
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The final natural frequency, may be finally represented as 
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The next subsection will present simulation study, which will further consolidate 

analytical model presented in this section. 

3.4.4 Simulations study and validation 

The prime objective of this simulation is to validate the mathematical results obtained 

through the umbra-Lagrangian model of multi-rotor system having mass asymmetry. The 

bondgraph model of multi-rotors with mass asymmetries in rotor 1 with external and 

internal damping was simulated on SYMBOLS-Shakti
®
 (Mukherjee and Samantaray, 

2006), a bondgraph simulation software with parameters presented in Table 3.2. In this 

case, the effects of mass variation are closely linked to the different parameter like 
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excitation frequency, amplitude, natural frequency, internal and external damping. To 

show the efficacy of the simulation, a series of parametric variation are carried out. 

Moreover, it confirms analytical results. However, simulation and mathematical results 

are provided here to compare the dynamic behavior of mass asymmetric system. 

Table 3.2: Simulation parameters 

Parameter Notation Value 

Stiffness of the rotor 1 and rotor 2  K1, K2 1000 N m-1 

Mass of the rotor 1 and rotor 2 m1, m2 10 Kg 

Mass Moment of Inertial of rotor J 1 Kg m2 

Internal damping coefficient of rotor 1 and rotor 2  Ri, Ri’ 5 N s m-1 

External damping coefficient of rotor 1 and rotor 2 Ra, Ra’ 5 N s m-1 

Damping coefficient of dissipative couplings Rc 0.2 N s m-1 

Excitation frequency range Ω 22 - 46 rad s-1 

Range of change in mass Δ m1 0±1 Kg 

 

 

Figure 3.8: Amplitude of the rotor 1 Vs excitation frequency with different mass variation 
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 It has been observed from Figure 3.8 that the simulated value of rotor 

amplitudes is directly proportional to excitation frequencies. However, the same pattern 

has been seen for the displacement of the rotor. In addition, when the value of mass 

asymmetry (Δ m) is added in the rotor mass, the value of amplitude is proportionally 

affected. Amplitude of rotor increases with mass. It is well known concept that the 

natural frequency of rotor decreases with increase in mass. Moreover, the rotor system 

is found un-stable at excitation frequency 22 rad/sec, when the value of Δ m is 0.8 and 1 

kg. Further, the response of rotor system obtained from simulation study has been 

precisely validated with analytical study. Thus the fault of any multi-rotor system may 

be diagnosed from the Eq. (3.62), which was theoretically obtained through extended 

Lagrangian methodology. 

 

Figure 3.9: 3-Dimensional representation of variation in amplitude of the rotor1, excitation 

frequency & mass variation 
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Figure 3.10: Frequency (ω) of rotor 1 Vs mass asymmetries (mass reduced) 

 

Figure 3.11: Frequency (ω) of rotor 1 Vs mass asymmetries (mass added) 
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In the Figure 3.9, the amplitude of rotor depends on excitation frequency as well 

as rotor mass, whereas the same pattern has been followed by all mentioned simulation 

with variational parameter (excitation frequency and delta mass). It can be seen from 

the Figure 3.10 & Figure 3.11 that the frequency obtained through simulation at 

different mass asymmetries almost validated mathematical results obtained in this case 

study. The simulation results are showing that the analytical result through extended 

Lagrangian formalism is able to capture the dynamics of asymmetric rotor.  

3.5 Summary of the chapter 

In this chapter, the work deals with the application of extended Lagrangian-Hamiltonian 

approach with extended Noether’s equation for asymmetric multi rotor system. 

Analytical framework has been developed to analyze the effect of asymmetries in 

stiffness and mass. Complete dynamics of variation in asymmetries (due to mass & 

stiffness) of multi-rotor system is investigated through extended Lagrangian mechanics. 

Mathematical equations for natural frequency and amplitude have been developed by 

using umbra concept and Noether’s equation. 

In both cases, multi-rotor system has been modeled through bondgraph 

modeling technique. Bondgraph is a unified modeling approach. One can model the 

rotor motor system in multi energy domain on common platform by using this 

technique. SYMBOLS-Shakti
®
 software has used for the simulation work. 

In first case, the amplitude of the rotor increases with percentage change of 

stiffness of rotor1. Analytical frequency nearly matches with the simulated frequency 

obtained for rotor 1. A general behaviour of reduction in the natural frequencies is 

noticed at various stiffness variations. In second case, effects of asymmetries due to 
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mass have been investigated. All the analytical results have been validated through 

simulated results. It has been found that there has been a good agreement between 

analytical and simulated results.  

The next chapter will provide an application of extended Lagrangian–

Hamiltonian approach. Continuous multi-cracked rotor will be considered for 

investigation of dynamic behaviour in the next chapter. 
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Chapter 4 

Analytical and Computational Framework  

for Continuous Rotor with Multi-crack 

 

4.1 Introduction 

All formulations and theory of umbra-Lagrangian presented in previous chapter are 

obtained for assuming rotor system as discrete or finite system. However, various 

systems are there, which consider innumerable DOF (degree of freedom). In this 

variety of framework, each and every point of the continuous solid particles takes in 

the oscillations and position coordinates of all points describes complete motion of the 

system. The main attraction of this chapter is to explore the application of 

Lagrangian-Hamiltonian mechanics for continuous systems and it also contains with 

the computational framework for a multi-cracked rotor. A rotor with two transverse 

cracks on its surface is analyzed and presented in this chapter. Bondgraph modeling 

technique is used to model this multi-cracked rotor system as it eases the modeling of 

system from the physical equivalent model. The computation of stiffness matrixes in 

mathematical form for multi-cracked elements is performed and further validated with 

analytical results. 

4.2  Umbra-field formulation for continuous system through 

variational approach 

4.2.1 Generalized variational approach and umbra-Lagrangian density function  

It is a function defined on a stipulated manifold including real time, real and virtual/ 

umbra velocities and displacements, and up to second order derivatives of pseudo and 
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real displacement w.r.t. space coordinates x. Lagrangian density function is generally 

represented as follows 

   

(
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 (4.1) 

From the successive minimization approach of a functional in the umbra-Lagrangian 

concept, the variables attached by “m” and “t” arguments would momentarily be 

termed as modulatory  and trajectorial  respectively (Rastogi, 2005). Both these 

variables are the components of same homotopic family (Munkres, 1994). The 

Lagrangian density can be presented as components of the same homotopic family, 

modulatory part ( (     )) can be expressed as: 

 (     )  4
 (     )  (     )  ̇(     )  ̇(     )    (     )     (     ) 

    ̇(     )     ̇(     )      (     )     (     )
5 

Now the action integral may be represented as 
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 (4.2) 

This action integral of the system can be defined using a continuous one-dimensional 

system and will be related to successive minimization. For a clear understanding, the 

change in variables may be expressed as follows 
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A perturbation scheme on fixed end-points is necessarily suggested on the stated 

trajectorial function ( (     )   ) associated to the modulatory 

function  (     ) and considering path homotopic loops based at origins as 

  ,     -   ,   -    such that  (    )    and     (    )     where    ,   -  the 

action integral with one-dimensional variational problem can be defined as: 

 ( )  ∫ ∫  (     (     )   (     )   (     )  )    

  

  

  

  

 (4.3) 

 

The extreme conditions of the action integral signifies   ( )     , which finally 

results in equation   ̅ ( )     . As a result of extremality condition umbra-

Lagrange’s field equations are formed along with the boundary conditions at both 

ends. It is possible to use incisive notation for detailed validation of umbra-

Lagrange’s field equation, they are provided below 

 (     )    (     )        (     )    (     )   

    (     )     (     )          (     )      (     ), 

where i=1, 2.  

Although, in the notations stated above, the cognizance of the vector field variance is 

not considered. Now,    and    are considered as the times at which system 
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configurations are specified and a continuous one-dimensional framework specified 

over the closed domain         and    is the variation. When such notational 

changes are adopted, variations in the action integral can be presented as 
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[
 
 
 
 
 
 

  

   (     )
 ̂ (     )  

  

  ̇ (     )
 ̂ 
̇ (     )

 
  

  ̇   (     )
 ̂  
̇ (     )  

  

  ̇   (     )
 ̂   (     )

 
  

      (     )
 ̂    (     )

]
 
 
 
 
 
 

 

   

  

  

  

  

        (4.4) 

Through integration of Eq. (4.4), one obtains 
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When equated the first part of the Eq. (4.5) is zero, it gives umbra-Lagrange’s field 

equation for 1-D continuous systems by considering the following notations as   

   ,        with   (     )    (   ) and   (     )    (   ), where 

       Now, one may rearrange first part in     form, applying the limit     

umbra field equations can be expressed as 
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where, i=1,2  and       
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When the second part of Eq. (4.5) is equated to zero, it provides boundary conditions 

that depicts the geometric (physical) conditions at the both ends and can be written as  
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where i=1,2   

Considering the boundary conditions, one may achieve the following possibilities  

Either  
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or  ̂ (   )   , and  either        
  

      
(   )

        (   )    at one of the ends 

     and     . Equation (4.6) governs the motion of a continuous 1-D system (or 

field) with generalized co-ordinates. The illustration of this dynamical equation along 

with the suitable boundary conditions presented by Eqs. (4.7.a–4.7.b) describe the 

exact motion of this continuous system, the movement that confirms the action 

integral of Eq. (4.3) to be extremal. 

4.2.2 Variational formulation for continuous one-dimensional (1-D) rotor shaft 

After formulating the variational theory of umbra-field equation for 1-D continuous system, 

one may proceed to obtain generalized formulation for a continuous 1-D spinning shaft by 

defining the system over a closed domain         as shown in Figure 4.1, where    

and    are assumed as random times and x is the spatial position of an arbitrary material 

point of the system. In this generalized formulation, one may assume that the rotor shaft 
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system is rotated at constant speed without any dissipative coupling. The continuous rotor 

system includes polar moment of (rotary) inertia, gyroscopic forces, internal and external 

damping. Umbra-Lagrangian density can be expressed for such system as  

   

[
 
 
 
 
 
 
 
 
 

∑

{
 
 
 
 

 
 
 
 

 

 
 .

   (   )

  
/
 

 
 

 
   .

    (   )

   /
 

 
 

 
   .

    (   )

    
/
 

    (
   (   )

  
  (   ))

    .
    (   )

    

   (   )

  
 

    (   )

    

   (   )

  
/

     {
.
    (   )

     
  

    (   )

   
/

    (   )

   

 .
    (   )

       
    (   )

   /
    (   )

   

}

}
 
 
 
 

 
 
 
 

 
   

]
 
 
 
 
 
 
 
 
 

       (4.8) 

Where   ( ) is the displacement coordinate of the rotor system in umbra/virtual-time 

and real-time, ρ is the density of rotor material, EI is the material rigidity, Ip is the 

inertia of the rotor through principle axis, Id the polar moment of (rotary) inertia, ω is 

the uniform angular velocity, μa and μi are the external and internal damping of the 

rotating shaft. Equation (4.8) is formed by two terms of the system, the first and 

second term is kinetic energy and strain energy for small deflections respectively, 

where I is the cross-section moment of inertia, and E is the Young’s modulus of the 

shaft material, rotary moments with the angular velocity  
    (   )

    
 are the elements of 

the third term, the fourth term is contributed by umbra-potential because of external 

damping, the fifth term contains gyroscopic forces with uniform angular velocity ω, 

and umbra-potential, which is generated by internal damping is the sixth term in the 

above equation. All these terms are denoted in per unit length. The umbra-Lagrangian 

density variation has been presented in detailed by Mukherjee et al. (2009). Rastogi 

(2016) has also studied the dynamic behaviour of rotating shaft and effects of discrete 
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damping on the system. Umbra field equation and boundary conditions at the two 

ends can be easily obtained by following the steps detailed in the published papers of 

Mukharjee et. al (2009), which is expressed as follow 

 

Figure 4.1: Representation of a continuous rotor with homogenous rigidity and mass 
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and 
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After taking limit     and a set of BC (boundary conditions), one may expressed as   

{
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   (4.10.a) 

or   (   ) at each end. 

Likewise, other BC (boundary conditions) can be formulated as either 
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   (4.10.b) 

or,   (   ) each end. Either 

8  
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59    (4.11.a) 

or 
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(4.11.b) 

and either 
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59    (4.12.a) 

or 
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(4.12.b) 
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Eqs. (4.9–4.12) reflect various types of physical conditions at both ends. The former 

Eqs. (4.10.a–4.10.b) express force and moment balance at the end, whereas latter Eqs. 

(4.11-4.12) reflects geometric constraints at both ends. In above equations, four pairs 

of BC (boundary conditions) consisting of dynamics and geometry conditions. First 

part of each equation pair expression having bending moment balance and shear force 

balance, and shows the dynamic boundary conditions. The second part of each pair 

depends on slopes or displacement, and is comprised of the geometric or essential BC 

(boundary conditions). In the next section of this chapter, this umbra-Lagrangian 

density function will be employed to obtain the extended form of Noether’s theorem 

for 1-D (one dimensional) continuous system.  

4.2.3 Extended form of Noether’s theorem for continuous system 

One of the leading contributions of the Noether’s theorem is that constants of motion 

or conserved quantities for continuous systems can be obtained by employing this 

theorem. According to the Noether’s theorem (Noether, 1971) under certain 

conditions, there exists a set of integrals of motion or dynamical constants that 

characterize a field or a system of fields. The symmetries stated in the Noether’s 

theorem are analyzed for the umbra-Lagrangian density of the multi-cracked rotor 

system. The extension of Noether’s theorem in umbra-Lagrangian theory can be 

expressed by using infinitesimal generators of the symmetry groups. Due to this, the 

umbra-Lagrangian density can be made invariant. This Noether’s theorem extension 

is constrained to amplitude invariance of the rotor only, and therefore not involving 

the asymmetries with independent variables. Hence, only amplitudes are being 

transformed. In the present study, one may consider one parameter rotational group 
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represented by SO (2) group as presented in details in Appendix C. The infinitesimal 

generator of this group over the extended manifold may be expressed as 
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  (4.13) 

This tangent vector is expressed by Eq. (4.13) conserving only the relevant 

components of a sub-space of the jet space  ( ) regulated by the form of umbra-

Lagrangian density, which may be presented as 
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In the above equation, derivative with respect to real time or umbra/virtual time are 

represented by superdot (  )̇  and derivative with respect to space co-ordinate are 

presented by a superprime ( ´ ). Equation (4.14) is a 24-D manifold on which this 

tangent vector is specified. The relations of ξ’ s may be expressed as 
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and relations for η variable can also be written accordingly. The prolonged 

infinitesimal generators are formed by two parts as stated below 

  
( )    

( )     
( )    (4.15) 
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where   
( )   and   

( )   is the prolonged real-time component and prolonged 

umbra/virtual-time component respectively of the infinitesimal generators   
( ) . The 

invariance condition for umbra-Lagrangian density can also be presented as 

  
( ) ( )    (4.16) 

Extended Noether’s theorem formulation may be obtained by substitution of Eq. 

(4.15) in above Eq. (4.16) and applying the limit η→ , which gives 
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In Eq. (4.17), first term can be written as 
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expanding each term with derivatives of ξ’s in Eq. (4.18) yields after simplification as  

   
   

2  
( )  ( )3     

   
∑

[
 
 
 
 
 
 
 
 
 
 

  

{
 
 

 
    (   ) (

  

  ̇ (   )
)  

 

  
(   (   ) 4

  

  ̇ 
 (   )

5)

    (   )

 

  
4

  

  ̇ 
 (   )

5
}
 
 

 
 

   

{
 
 

 
    (   ) 4

  

   
 (   )

5  (   (   )

 

  
4

  

  ̇ 
 (   )

5)

    (   )
 4

  

   
  (   )

5     (   )

 

  
4

  

   
  (   )

5
}
 
 

 
 

]
 
 
 
 
 
 
 
 
 
 

 

   

 

     

(4.19) 

Thus, one may re-write above Equation as   
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  ( )             (4.20) 
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where    is total time derivatives and     is the total space derivatives, and may be 

defined as 
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and function 1Z  and 2Z  may be expressed as 
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Substitution of Eq. (4.20) in Eq. (4.17), finally results in extended Noether’s theorem 

for fields, which may be expressed as 

              
   

  
( )  ( )    (4.21) 

Equation (4.21) is termed as an extended Noether’s field equation for the umbra-

Lagrangian. 
1Z and 

2Z  may be assumed as local density and current/flux density 

(often termed as Noether’s current density) respectively. The last additional term is 

the contribution of non-conservative and gyroscopic actions which may be assumed 

as local rate of production and is termed as the modulatory convection term. The next 

section will provide an analytical framework for multi-crack rotor system through 

extended Lagrangian approach. 
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4.3  Analytical framework for continuous rotor with multi-cracks 

through extended Lagrangian approach  

A multi-crack rotor shaft has been considered to an equivalent of in-span concentrated 

discrete stiffnesses, which has been shown in Figure 4.2. The rotor shaft material 

comprises of stiffness and internal damping, whereas shaft is driven by a constant 

speed DC motor. DC motor is attached with continuous shaft along with dissipative 

coupling as depicted in Figure 4.2. Change in the flexural behaviour due to the 

initiation and propagation of the crack in shaft, which ultimately breaks the symmetry 

of a symmetric rotor. A line diagram of the framework is also shown in Figure 4.3. 

 

Figure 4.2: Representation of a DC motor driven rotor shaft coupled by a dissipative coupling 

 

Figure 4.3: Continuous rotor shaft with in-span concentrated discrete stiffness 
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The umbra-Lagrangian density for 1-D continuous shaft can be expressed taking into 

account external and internal damping along-with polar moment of (rotary) inertia 

without assuming gyroscopic coupling as 

         (4.22) 

where 
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where    (   )     (   ),   and Rc is the excitation frequency and the 

dissipative coupling resistance respectively,     and     is the change in stiffness 

due to crack at    and    position. Transverse fatigue crack at    and    position of 

shaft has been considered as shown in Figure 4.4. In this study, only rotational 

symmetry is contemplated and infinitesimal generators of the symmetry group and its 

prolongation are taken from Mukherjee et al. (2009). 
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Figure 4.4: Schematic diagram of multi crack test specimen 

However, stiffness variation due to the crack may lead to additional term, which may 

not be taken zero. The symmetries of the system can be achieved if this term is 

assumed to be zero. So, this factor breaks the symmetry of rotor amplitudes and hence 

forth, it is quite effective for the dynamic analysis of the multi-cracked rotor. 

There are two additional terms in the umbra-Lagrangian density function which are 

added because of stiffness change accumulated through rotor crack. For this system, 

the term, which needs special consideration may be written as 
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where     ,      and    (   )     (   ), 

Substitution of the following expression in Eq.(4.25) 

    ∑       

 

   

    
  

 
   

and 

    ∑       

 

   

    
  

 
   

yields 



 Chapter 4 

 

96 

   {  ∑ ∑         
  

 
     

  

 
  

 

   

 

   

}     {  ∑ ∑         
  

 
     

  

 
  

 

   

 

   

} 

where it is considered assumed that       varies vary slowly with time. 

4.3.1 Extended Noether’s theorem for multi-cracked rotating shaft 

The modified Noether’s rate equation for multi-cracked rotating shaft may be written as 
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or one may express as    
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Perturbrbing the independent variable in An+δAn, the variational equation can be 

expressed as, (dropping the factor L/2) 
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This is for the symmetries being valid for neighboring paths, which needs the 

following conditions to be satisfied. 
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The condition for entraining the n
th

 mode is nA finite limit and 0kA , if nk   

for τ → , obtained as 
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The value of  ̇( ) will be obtained from Eq.(4.31) and written as 
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Amplitude may be expressed as 



 Chapter 4 

 

98 

   
√
   [     

   
  {  

   

   
   .      

   
 

         
   

 
  /}]

    
 

(4.34) 

where 

   
   

   

  
 

The next section will present the computational framework for multi-crack rotor 

system to ascertain the dynamic behaviour numerically. 

4.4  Development of computational framework and analysis of multi-

cracked rotor system 

Computational analysis provides valuable information relating to dynamics of multi-

crack rotor. It involves the study of the dynamic characteristics and effects of crack on 

the shaft and its various components or regions. It provides a great deal of information 

of various contact forces and various asymmetries developed during the working 

cycle. It also provides online response (changes of its dynamics behaviour), which are 

responsible for catastrophic failure. This section describes the modeling of multi-

cracked flexible rotor possessing internal and external damping and driven by a 

flexible and dissipative coupling as shown in Figure 4.2. The coupling in the 

framework is extremely flexible in lateral direction and also in bending but it is 

torsionally rigid. In modeling, it is assumed that the effects of torsional vibration are 

negligible, henceforth not considered in this modeling.  

Bondgraph (BG) is a novel modeling technique which amalgamates several 

energy domains. In addition to that a complex system can also be modeled in 

commutable form by forming sub- system models and combining them, in order to 
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develop an integrated system model. Bondgraphs are pictorial representations of the 

physical system, where we represent the energy transformation and flow among the 

components of a dynamic system in a graphical form and formulating the system 

equations as provided details in Appendix 1. Models of cracked element, uncracked 

element and power source element generated through bondgraph have been further 

simulated with the help of fourth order Runge-Kutta method on software SYMBOLS-

Shakti
®
 (Mukherjee and Samantaray, 2006) to evaluate some interesting phenomena 

due to various asymmetries in multi-cracked rotor. Simulated results were further 

validated through experimental results. The next subsection will focus on the 

generation of motion equation for the cracked rotating shaft. 

4.4.1 Generation of motion equation 

Dynamic response of a cracked rotor shaft with time is being shown, which is derived 

by the theory presented by Shekhar and Prabhu (1994). Gasch (1983) has presented 

an inclusive survey of the dynamic stability of a cracked shaft, and evaluation of the 

vibrational force due to imbalance and due to crack. The static sink of the rotor is 

usually comparatively large, for example in case of turbo-generators it is generally 

more than 1mm. According to Gasch (1983), a simple hinged model can also be used 

for small cracks in such rotors. When the vibration remains small, the equation of 

nonlinear motion may be converted to linear, periodically time-variant equations. 

Some potential for detection of cracks at the early stage are reported by Keiner and 

Gadala (2002). Figure 4.5 represents a simple cracked rotor system with inertial co-

ordinates   -   and also with rotating co-ordinates   -  . The motion equation of 

cracked rotor system may be expressed in the form,  
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  ̈    ̇   (   )                             (4.35) 

where,  
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and in the above notation, Ω is constant angular velocity and α = Ωτ + ψ. 

where Xf and Yf are the displacement at mid-span in the plane of m mass disc, K is 

stiffness, d is damping. P0 is gravitational force. ε is the unbalance eccentricity of the 

disc, and ψ is the angle between centre of crack and eccentricity.  

 

Figure 4.5: Co-ordinate system representation of a cracked rotor 
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According to Gasch (1983), by assuming weight dominance (𝛥U(τ)<< Uo), it is 

required to simplify the equations with the time-variant and non-linear stiffness 

matrix into equations with linear and periodical time-variant stiffness terms for the 

elastic deflection, which results into the following equation, where 𝛥K(τ)𝛥U can be 

neglected if stability is ensured. 

 𝛥 ̈   𝛥 ̇  ,   𝛥 ( )-𝛥   𝛥 ( )                         (4.36) 

where 𝛥U(τ) vector describes the vibration behavior, Uo denotes the static deflection 

of un-cracked shaft and ε is the unbalance eccentricity, which generates force denoted 

by Pu. Since ∆K(τ) denotes change in stiffness, generated due to cracking, Eq. (4.36) 

is significant. For uncracked shaft the whole equation converts back to Eq. (4.35). 

4.4.2 Cracked model 

In similarity to the notches, there are cracks that always remain open. These cracks 

are generally known as gaping cracks. If crack size is small and shaft rotating speed is 

also slow, then the crack breathing phenomenon occurs regularly per revolution due 

to its own weight. The equation of the flexibility matrix of a crack-shaft with hinge 

model in rotational co-ordinates can be obtained as 

{
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} (4.37) 

In Eq. (4.37), first matrix represents the flexibility of the uncracked shaft (Ko), the 

additional flexibility is 𝛥   
     when crack is fully open in addition to flexibility 

Ko of un-cracked shaft.    
 denotes the main flexibility with    

    
 loadings, since 

the effect of cross-flexibility    
can be neglected for small cracks.    

    is the 
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stiffness parameter, which describes the influence of the crack. Papadopoulos and 

Dimarogonas (1987) generated a 6x6 flexible matrix for cracked section, which may 

be utilized for the determination of variation in stiffness due to change in crack depth. 

The steering function F(τ) switches between 1 (open) to 0 (closed). Generally, 

this function depend on the position    
. The rectangular function of the hinge model 

as presented in Figure 4.6 provides a better illustration of breathing for small cracks. 

Some angular position of the crack is also depicted in Figure 4.7 during one 

revolution. 

 ( )   8
          

  

          
  

9 (4.38) 

 

Figure 4.6: The closing-opening behavior of a hinge model for small cracks 

 

 

Figure 4.7: Different angular positions of the crack during single rotation of the cracked shaft 
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Figure 4.8 is self explanatory that the change in rotational angle (at 𝜽 = 90° 

and 𝜽 =270°) is change the sign of    
. By presuming the weight dominance, change 

of sign in    
 can be obtained by         

. The transformation matrix relating the two 

co-coordinate (rotational and inertial) systems can be written as 

{
  

  
}  [

     
    
     

        
    
    

  ] {
  

  
} (4.39) 

 

Figure 4.8: Closing-opening hinge crack model and static displacement in rotational co-ordinate 

Stiffness matrix required can be obtained by inverting the flexibilities in Eq. (4.39) 

and using these values in Eq. (4.37). This can be shown as  

   𝛥 ( )  [ 
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1 (4.40) 

By introducing the unbalance forces including the angular acceleration terms and by 

substituting the stiffness matrix from the Eq. (4.39) into Eq. (4.36), the equation may 

be expressed as 
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(4.41) 

The excitation forces Fy and Fx may be presented as 

     * ̈        ̇     + (4.42) 

     * ̈        ̇     + (4.43) 

where rotation angle       . 

Due to breathing phenomenon, change in stiffness is a time dependent function in 

crack shaft rotation. Generally, the system response is generated in steady-state 

amplitude data form at various operational speeds, for rotor dynamic analysis. In Eq. 

(4.38), the term ∆Kxr is important as it is derived in terms of flexibility matrix by the 

principle of strain energy as provided in the next section. 

A substantial local flexibility is introduced by a crack on a beam element 

because of strain energy concentration in the nearby zone at the tip of the crack 

subjected under load. In accordance of the Saint-Venant principle, the stress field is 

changed only in the vicinity of the crack. Under element size constraints, the element 

stiffness matrix can be considered as unchanged except for the region of cracked 

element. Determination of appropriate shape function in order to express the kinetic 

energy and elastic potential energy approximately is quite cumbersome because of the 

discontinuity of deformation in the cracked element. However, it is easily possible to 

derive the additional stress energy of the crack and the flexibility coefficient 

expressed by a stress intensity factor by means of Castigliano’s theorem in the linear-
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elastics range and it has been explored in fracture mechanics. After dividing the shaft 

in two elements, crack can be assumed to be in the center of the right hand side 

elements and left hand side elements. The behaviour of the former can be regarded as 

external forces applied to the cracked element, whereas the behaviour of latter may be 

considered as constraints. Thereafter the flexibility matrix of a cracked element with 

constraints may be evaluated. Local flexibility matrix are generated due to the 

additional strain energy formed because of the crack. 

 The flexibility matrix of a cracked section given by Papadopoulos and 

Dimarogonas (1987) and utilized in the FEM analysis of Sekhar and Prabhu (1994) 

has been presented in this section. The additional displacement in i-direction due to a 

crack of depth   is given as  
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(4.44) 

where J(a) is the strain energy release rate and Pi corresponding load. J(a) for general 

loading of the cracked section is 
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where     (    )⁄   for plane strain and   ̅̅̅ are the stress intensity factors for 

modes of fracture I, II, and III. The local flexibility due to the crack is given by, 
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The strain energy release rate Jα for a local crack depth α has to be integrated along 

the crack length b to yield, 
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(4.47) 

On substituting the stress intensity factors given by Papadopoulos and Dimarogonas 

(1987), the local flexibilities can be obtained. If only bending terms are considered 

here, then the flexibility matrix for the cracked section may given as 
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] (4.48) 

where Fo=ER
2
/ (1-v

2
); R=radius of shaft; v=0.3 

The dimensionless compliance coefficients,   ̅  of Cc are computed from the 

derivations discussed in Papadopoulos and Dimarogonas (1987). The off diagonal 

terms of the flexibility matrix indicate vibration coupling. 
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 (4.49) 

By neglecting the shearing action and by using the strain energy, the flexibility co-

efficient for a section of rotor without a crack can be obtained in the form expressed 

by Eq. (4.49). The next section will present the bondgraph modeling of multi-crack 

shaft. 
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4.4.3 Bondgraph modeling of multi-crack rotating shaft 

Bondgraph modeling technique is a unique modeling technique, when one can model 

several energy domains at one platform. It is also convenient to model a complex 

system through this modeling technique. This can be done by forming subsystem 

model and consolidating them to generate an integrated system model. Bondgraphs 

represents the physical systems in pictorial form, where the energy exchange between 

the components of a dynamic system are reproduced graphically and formulating the 

system equations. The bondgraph technique is a useful tool for modeling and the 

model of the system is generated using object-oriented reusable subsystem (capsules) 

as the model can be extended to incorporate any change at the later stage. The 

bondgraph model is also helpful in studying the effect of various parameters like 

stiffness, damping and rotor mass on the dynamical behaviour of the shaft. Following 

subsections will present the modeling of a cracked rotor system. 

4.4.3.1 Bondgraph modeling of velocity transformation 

The coordinate transformation from fixed to rotating frame may be expressed as 

[
  

  
]  0

        
         

1 {
  

  
} (4.50) 

where α is the angular rotation of the shaft. Differentiating above Equation with 

respect to time, one obtains 

6
 ̇ 

 ̇ 
7  0

        
         

1 8
 ̇ 

 ̇ 
9   0

         
        

1 {
  

  
} (4.51) 

In above equation    ̇ 
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Figure 4.9: Word bondgraph and capsule representation of fixed-rotating frame velocity 

transformation in block diagram 

 

In Figure 4.9, it is shown that fixed coordinate frame is converting into 

rotating coordinate. The shaft is rotating at a constant angular speed ω. The word 

bondgraph depicts the power and flow variable on either side. The unique aspect of 

this sub model is that it has separate angular speed port to model the spinning speed of 

the rotor shaft. 

4.4.3.2 Bondgraph modeling of uncracked rotating shaft  

The spinning shaft model (capsule) is based on Rayleigh beam model, where the 

effect of polar moment of (rotary) inertia as also considered as well as those of the 

linear inertia (m, mass per unit length). The deformations related with transverse shear 

are not included as well. 

The stiffness of the rigid beam elements relates the generalized Newtonian 

forces to the generalized displacements at the ends of the element as given by the 

following equations in X-Z plane and Y-Z plane direction as  

{

   

   

   

   

}  , - {

  

  

  

  

} (4.52) 
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} (4.53) 

In Eq. (4.52-4.53), VxL and VxR are the generalized forces, bending moments are 

denoted by MxL and MxR , whereas generalized displacements notations are XL, XR, ΨL 

and ΨR . Subscript “R” and “L” represents the right and left side of the model in X-Z 

plane direction. VyL and VyR are the generalized forces, MyL and MyR are the bending 

moments whereas XL, XR, θL and θR are the generalized displacements. Subscript “L” 

and “R” represents the left and right side of the model in Y-Z plane direction. In 

terms of flexural rigidity “EI” and element length “  ”, the stiffness matrix can be 

modeled as a 4-port C-field storing energy due to the four generalized displacements 

as shown in Figure 4.11 and 4.12. Finally compliance field in X-Z direction may be 

expressed as 
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} (4.54) 

 

Figure 4.10: Generalized forces, displacements and moments of a Rayleigh beam in (a) X-Z 

plane direction and (b) Y-Z plane direction 
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Figure 4.11: C- field representing the beam element stiffness matrix in X-Z direction 

Compliance field in X-Z direction may be expressed as 
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} (4.55) 

 

 

Figure 4.12: C- field representing the beam element stiffness matrix in Y-Z direction 
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In bondgraph formulation, the potential energy storage is represented as a four 

port C-field. The i
th 

beam element is influenced by displacements xi and xi+1 and 

rotations ψi and ψi+1 in x- directions and similarly in y-directions are computed. The 

flow variables in four ports of C-fields are the corresponding linear and rotational 

velocities. The effort variables are shear forces and bending moments. They are 

related with the following expressions: 

{

  

  

    

    

}  , -   {

  

  

    

    

} (4.56) 

or   , -    , where   , iV iM 1iV 1iM -  and 

  ,                      -
  are the vectors of efforts and flow variables 

respectively. The elements of stiffness matrix , -    are already given in previous 

expressions of Eqs. (4.54-4.55). By lumping the element inertias and attaching them 

to 1- junction that represents displacement and rotation at the ends of the elements, 

bondgraph model of the beam element can be created.  The stiffness of the rotor shaft 

can be modeled as four-port compliance fields storing energy due to the four 

generalized displacement are integrated in a model of beam element as shown in 

Figure 4.11 and 4.12. The compliance field models the bending of the shaft in any 

direction (either X-Z or Y-Z planes) as shown in Figure 4.13 and 4.14. 
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Figure 4.13: C- field representing the beam element modeling for the stiffness of the shaft in 

any direction 

 

 

Figure 4.14: Generalized C- field representing the beam element modeling for stiffness of the shaft 
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Internal damping of shaft is also considered as the damping accounts for the 

restoring force proportional to the strain rate. Thus, internal damping of the shaft (Ri) 

is also modeled in the transformed X and Y frame in the model. Masses and rotary 

inertia have been lumped as its left and right ends. Thus, total shear force and bending 

moment due to flexural condition may be expressed as 

{
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 (4.57) 

where ,  -    represents the internal damping matrix offered by lumber bones. The 

damping matrix ,  -    may be expressed as presented as 

,  -    
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] (4.58) 

where    represents the internal damping of shaft. The bondgraph representation of 

the combined stiffness and damping of the beam element is shown in Figure 4.15. 

 

Figure 4.15: Bondgraph model of single rigid element of shaft 
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In a fixed X and Y frame, external damping (Rex) has been modeled. By using 

two GY elements in the model, gyroscopic coupling has also been integrated between 

two rotations in the fixed frame. Lumping of mass and polar moment of (rotary) 

inertia can be taken on the left and right end of the shaft element in the plane, for shaft 

bending in any one transverse plane. 

 

Figure 4.16: Bondgraph model of un-cracked rotating shaft 
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Figure 4.17: Word bondgraph capsule representation of a rotating shaft 

In addition to that, one angular speed or spinning port is attached in fixed to rotating 

frame velocity transform sub-model (all four capsule) in order to model the spinning 

speed of the rotating shaft. Rotations θ about X-axis and the rotation of the ends of the 

shaft because of bending in Y-Z planes as used in deriving C-field matrix are 

different. Consequently, two-transformer elements (TF) have been used in the model 

as presented in Figure 4.16 with negative unitary modulus. The right interface vector 

glue port (flow input) has four scalar components namely the two translational and 

two rotational velocities in the fixed frame. The left interface vector glue port (flow 

output) has also the same attributes. The top interface glue port (angular velocity port) 

has spinning speed port. The capsule representation may also be given through word-

bondgraphs as shown in Figure 4.17. 

4.4.3.3 Bondgraph modeling of cracked rotating shaft  

The beam element with a transverse crack and its sub model representation is shown 

in Figures 4.14 and 4.15. The flexibility matrix of cracked rotor may be given as 



 Chapter 4 

 

116 

, -  [   

  ̅ 

 
 
 

    

 
  ̅ 

 
 

    

 
 
  ̅ 

  ̅ 

    

 
 
  ̅ 

  ̅ 

 ] (4.59) 

where  ̅22,  ̅33,  ̅44,  ̅45,  ̅54 and  ̅55 are the six nonzero dimensionless terms of 

flexibility and given by Dirr et al. [9]. As the flexibility matrix is symmetric, off 

diagonal flexibility may be denoted as 

  ̅      ̅  (4.60) 

Total five independent flexibility co-efficients define the crack model for the 

transverse loading, in which four ( ̅22,  ̅33,  ̅44,  ̅55) are direct co-efficients and one 

(  ̅       ̅  ) is the cross coupled co-efficient. 

 

Figure 4.18: Beam element model        Figure 4.19: Representation of cracked rotor element 

In Figure 4.18, radius of the spinning shaft is “R”, “a” is the crack depth and “2b” 

is width of the elemental strip. “α” is local crack depth that is varying along with 

the cross section. Now total flexibility matrix of the cracked beam element is 

obtained as  
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   (4.63) 

The bondgraph model of cracked beam element is similar to previous uncracked beam 

model of Figure 4.16 except the flexibility matrix is changed in the C-field and may 

be shown in Figure 4.20. 

 

Figure 4.20: C- field representing the stiffness matrix for cracked beam element 

4.4.3.4 Lumping of mass and polar moment of (rotary) inertia 

Lumping is an approximation method, in which a simplified system model is obtained 

through the real system. In this modeling of the rotating shaft, the rotary inertia and 
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mass may be lumped at both ends of shaft element by taking the contribution from 

adjacent right and left shaft elements, if required. 

(a) Lumping of mass 

The masses lumped at the left and right end of the shaft elements are ML and MR 

respectively as shown in Figure 4.21. 

     
  

 
(  )                (4.64) 

     
  

 
(  )       (4.65) 

 

Figure 4.21: Lumping of three consecutive shaft elements (capsules) showing mass and 

rotary inertia on the middle element 

 

where ρ is density of rotor material,   prev is the previous shaft element length,   next is 

the length of next shaft element and R is external radius of rotor shaft. In this model, 

  prev and   next are taken as   elem, 

where        
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(b) Lumping of rotary inertia 

The procedure of lumping of rotary inertia of shaft element is similar as that for mass 

lumping by taking the contribution from the adjacent left and the right shaft elements. 

The mass moment of inertia of a solid circular shaft of length    along the 

perpendicular direction to the axis may be given as 

     
  

 
4
  

 
 

   

 
5 (4.66) 

and rotary inertia density is defined by  

     
    

  

  
    

    

 
 (4.67) 

where    is rotary inertia density.  

For solid shaft 

   
  

 
 (4.68) 

The expressions for JL and JR are as follows: 

   
  

 
(  )                     (4.69) 

   
  

 
(  )                (4.70) 

where JL and JR are the rotary inertia at the left and right end of the shaft. 

4.4.3.5 Integrated model of a multi-cracked rotor shaft 

It is a vectorized bondgraph model, which interfaces various sub-models (capsules) 

respectively by their respective icons as shown in Figure 4.22. The shaft is modeled 
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with seven reticules (shaft elements). By analyzing through the second left and the 

fourth capsule in this model which are showing the cracked shaft, and more 

significant as compared to others. This is because of the fact that these portray the real 

power and dynamics of the multi-cracked shaft. Rest of the capsules (1
st
, 3

rd
 and 5

th
-

7
th

) are depicting only the spinning uncracked shaft element. These capsules are 

unfavorable from the dynamics point of view; although, the use of such capsules is 

necessary for improving the accuracy of the modeling, predominantly in the higher 

modes. The dissipative coupling is modeled by the resistive element (Rc) and shaft is 

rotated by a constant speed (Ω), as shown in Figure 4.22 

 

Figure 4.22: Integrated system of multi–crack rotor shaft connected by dissipative coupling 

using capsules represented through bondgraph 

 

4.4.4 Simulation study of multi-cracked rotor system 

As shown in Figure 4.22, pin-pin end conditions have been selected for simulation of 

bondgraph model of the multi-cracked rotor shaft. Simulation work has been 
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completed on the software SYMBOLS Shakti
®
 (Mukherjee and Samantaray, 2006). 

Shaft is rotated at Ω excitation frequency by a uniform speed source. Simulation test 

rig is discretized into seven reticules (capsules). The ends of the Rotor are well 

supported on a self-aligning double groove ball bearing.  

Table 4.1: Simulation parameters 

 Parameter Value 

Shaft  length  L 0.65 m 

Number of elements N 7 

 Young’s Modulus of elasticity for steel (Rotor 

shaft material) 

E 210 GPa 

Density of steel ( rotor shaft material ) Ρ 7850 Kg /m
3
 

Shaft Diameter  D 0.022 m 

Dissipative coupling co-efficient  Rc 2x10
-3

 N m s 

Excitation frequency Ω 22 rad s-1 

Internal damping co-efficient of the rotor shaft    0.0002 N s m-1 

External damping co-efficient of the rotor shaft     0.00003 N s m-1, 0.0006 N s m-1 

 

4.4.4.1 Simulation results for un-cracked rotor 

Simulation is carried out for parameters given in Table 4.1 with various combinations 

of external damping (μex) and excitation frequency (Ω). An initial momentum of 

0.0001 Kg-m
2
 was given to 7

th 
reticules of the shaft so that the simulation may be 

started. Initial momentum is used to accelerate the simulation and reducing the 

simulation time. Figures 4.23 – 4.24 show that the trajectories of the rotating un-crack 

shaft and 1 mm single crack shaft reaching the limiting orbit. This is due to loading of 

the motor of the elecromechanical system.  
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Figure 4.23: Limit orbits of rotor shaft for uncracked shaft 

 

 

Figure 4.24: Limit orbits of rotor shaft for 1 mm cracked shaft 
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When the value of excitation frequency is changed from 1000 rpm to 5000 

rpm, one obtains increased amplitudes of the rotor shaft. The limiting orbits of the 

rotating shaft may be obtained through simulation at different value of excitation 

frequency.  

 

Figure 4.25: Limiting orbits of the trajectories of the different test specimen (Intact, single 

and double crack shaft) at different crack depth 

 

As shown in Figure 4.25, the limiting orbits of rotating shaft with different conditions 

have been obtained through simulation at different crack depth. In this case, each 

section of the shaft is moving in a circular trajectory with common angular velocity. 

On such limit orbits, the regenerative work due to internal damping and the net 

dissipative work balance each other (Mukherjee et al., 2009). Limiting dynamics is 
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resulted when the power imported by internal damping from shaft spin is balanced by 

dissipation of power by external damping, dissipation in coupling and a part of action 

of internal damping, which acts like an external damping. When such balance takes 

place, the shaft behaves as if it was under damped and sustains transverse motion. 

However, the above said balance take place for one of the modes of the shaft showing 

limiting dynamics (or so called limit cycle or instability) depending upon the relative 

value of various parameters.  Displacement of the cracked rotor shaft in X and Y 

direction increases with the crack depth and number of cracks. It means that 

instability of high speed rotating shaft increases with the crack depth and number of 

cracks in a rotor shaft. 

4.5 Summary of the chapter 

An extended form of Lagrangian-Hamiltonian mechanics for double crack continuous 

systems has been presented through an addition of umbra (virtual) time. The 

variational formulation for a 1-D continuous shaft has been achieved, which provides 

the boundary conditions and the motion governing equations. The amplitude 

asymmetry of umbra-Lagrangian density of 1-D continuous rotor shaft has been 

obtained by extending form of Noether’s theorem, in which polar moment of (rotary) 

inertia, gyroscopic forces; external and internal damping terms have been 

incorporated. The interesting case of a cracked rotating shaft with external and 

internal  damping driven through a dissipative coupling has been examined. The 

dynamical behaviour analysis has been carried out through an extended form of 

Noether’s theorem and umbra-Hamiltonian theoretically as well as analytically. Finite 

stiffness has been assumed for the crack in the study.  
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The dynamic framework for double-cracked rotor system has been presented 

using the bondgraph technique that has shown the object-oriented reusable capsules, 

used to model the system. Bondgraph modeling of this system has effectively 

incorporated the internal damping in the model. It has provided an added features in 

studying turbo machinery (like turbine, generator etc.) stability. The flexibility matrix 

of the cracked rotor shaft has been obtained and modeled as a C-field element. Model 

presented in this chapter only consider transverse dynamics. Torsional dynamics has 

not been considered. The effect of multi-cracks on the rotor shaft has been 

investigated. The vibration characteristics of the rotor shaft have been observed 

through simulation of computational model. The effects of crack depth on system 

response have clearly seen through simulation. It is further shown that amplitude of 

the rotor has increased inversely with the stiffness of the rotor. Results obtained 

through simulation for uncracked and cracked rotor shaft have clearly shown the 

effect of crack on the amplitude of vibration. For small crack depth, there is very 

small disturbance in the system response. However the response can be clearly 

noticed, as well as observed when the crack depth was more. Due to the presence of 

crack, the amplitude of the rotor increases. Moreover, the propagation of cracks will 

further make these amplitudes too high so that catastrophic failure may occur. 

The next chapter will present the development of an experimental framework 

for analysis of multi-cracked rotor and validation of analytical and computational 

results.    

  



 Chapter 4 

 

126 

 



Development of Experimental Framework and Validation for Multi-crack Rotor 

 

127 

Chapter 5 

Development of Experimental Framework and  

Validation for Multi-crack Rotor 

 

5.1 Introduction 

Development of a test rig is an essential part of any research work. It is again, very 

important to validate the simulation and analytical results with experimental results. 

Many researchers (Darpe et al., 2003; Ishida and Inoue, 2006) have been developed 

test rig for validation of simulation and analytical results. So one may use the method 

with live / online industrial application. In this way, our society may be benefited 

directly in terms of time or money. In the previous Chapter 3 and Chapter 4, analytical 

model of multi-cracked rotor has been developed through the extended Lagrangian–

Hamiltonian formalism. Computational model has been also created on Symbol Shakti
®
 

software by using the bondgraph concept. The main focus of these experiments was 

directed towards to evaluate an amplitude of vibration of a single and multi cracked 

shaft with different crack depth at various excitation frequencies. Another objective is 

also to find out the variation of stiffness, natural frequency in single and multi cracked 

shaft. Silent features of the test rig developed include variation in cross section, length, 

material of the shaft. The source of excitation is provided through variable speed DC 

motor, which produces sinusoidal forces. Data acquisition system with display system 

is integrated with this test rig. The test rig developed enable to execute a wide range of 

experiments with minimum assembly time and maximum adaptability. The next section 

will explain the various details of components of the experimental test rigs.  
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5.2 Experimental test rig 

Experimental test rig used for dynamic analysis of multi-cracked rotor system is shown 

in Figure 5.1. Various major components like analyzer, signal display device, speed 

control device, techo sensor (tachometer), accelerometer, DC motor and flexible 

coupling are shown in this Figure 5.1, which presents an actual picture of the test rig. 

 

Figure 5.1: Experimental test rig for dynamic analysis 

The brief details of various components are presented in next subsection. 

5.2.1 Rotor system and its metallic structure  

Base platform is an essential part of any rotor system. Since rotor shaft is rotating at 

very high speed (6000 rpm), so it is very necessary to use heavy base plate as a 

platform, on which all parts are mounted. Base plate is made of mild steel. Rotor system 
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consists of a DC motor, bearings, coupling and fasteners. All parts are assembled 

mounted on this robust mechanical frame together as presented in Figure 5.2. The 

structure is designed in such a way that it assures enough rigidity and sufficient 

strength. Top view and front view of rotor system are also shown in Figure 5.3. 

 

Figure 5.2: Actual rotor system for dynamic analysis 

 

Figure 5.3: Front view and top view of rotor system 
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Test specimen was similar as referred by American Society for Testing Material 

Engineering (ASTM) as standard for the shaft material (0.3% – 0.6%). It was made from 

steel with 0.3% carbon. This specimen is also used by the various researchers in its 

experimental analysis as reported in research paper. Details of test specimen are presented 

in Table 5.1 and schematic diagram of test specimens are shown in Figure 5.4. 

Table 5.1: Detail of test specimen 

Shaft (Specimen) Material  Mild steel 

Effective Length (Bearing to bearing) 660 mm 

Overhang (each side) 170 mm 

Diameter of the shaft  22 mm 

Weight of the shaft  1.83 kg 

Density 7850 kg/m
3 

Ixx and Iyy 11503 mm
4
 

Stiffness 285 N/mm 

 

 

Figure 5.4: Schematic diagram of test specimens 

5.2.2 DC motor and speed controller 

In dynamic analysis of a rotating shaft, a variable speed DC motor is used to rotate the 

shaft specimen at various speeds. This motor is connected to the rotor on extreme right of 
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the frame with the help of fasteners and washers. The specification of DC motor is shown 

in Table 5.2. Figure 5.5(a) is showing a DC motor, which are used in experimental test 

rig. Speed controller is used to control the speed of the rotor shown in Figure 5.5(b). 

Table 5.2: Specification of DC motor 

Phase Single  

RPM 1440 rpm to 7000 rpm 

Power 1 KW 

Pole 4 pole (electromagnetic) 

Current, voltage 5 Amp, 240 volts 

 

  

Figure 5.5: (a) DC Motor (b) Speed controller 

5.2.3 Flexible coupling 

A flexible coupling is also used to connect a DC motor shaft to the specimen rotor shaft. 

There is a lateral and angular misalignment between the specimen shaft and motor shaft 

in dynamic condition. These coupling reduce the effect of misalignment. These are also 

called dissipative coupling. Neoprene rubber is compressed and press fitted between the 

two flanges, so this coupling become highly flexible and durable. Figure 5.6 shows the 

flexible coupling, which are used in experimental test rig. 
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Figure 5.6: Flexible coupling 

5.2.4 Self aligned bearing 

In the development of an experimental test rig, the bearing selection is also very 

important part. Moreover, due to lateral displacement of the shaft, alignment of shaft 

and high variational speed is a measure issue. In order to balance misalignment, self 

aligning ball bearings are selected as shown in Figure 5.7. The standard specification of 

bearings is 1204 K C3 NTN. Bearings are fixed on the frame at respective block with 

proper nut-bolt and washer. Main functions of bearings are to provide a relative motion 

to the specimen shaft with respect to the frame and to take care of misalignment 

introduced if any, due to the lateral deflection of the shaft. Moreover, it provides a good 

running condition without increasing the temperature at high speeds. 

 

Figure 5.7: Self aligned bearing 
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5.2.5 Acceleration sensor & tachometer 

In this experimental test rig, an acceleration sensor (accelerometer) has been used to 

capture the signal. Sensor was fixed at bearing housing in dynamic analysis and at 

different position of the test specimen in static analysis. Figure 5.8 is showing 

acceleration sensor, which is used in experimental test rig. The specifications of 

accelerometer are also presented in Table 5.3. 

 

Figure 5.8: Acceleration sensor 

Table 5.3: Accelerometer specification 

Transducer Type Acceleration Sensor 

Unit/ Magnitude Acceleration (m/s
2
) 

Identifier PCB-78534 

Model 356A16 

Coupling ICP 

Sensitivity 1×10
-2 

V/g or V/(m/s
2
) 

 

The analysis of an instantaneous angular speed inside each shaft rotation provides 

essential information. The common way to measure such instantaneous velocity is to 

install a black and white stripe or disk on the shaft as well as an accurate tachometer. The 

TAC-O02, an interference-free and non-contact high speed optical fiber sensor providing 
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up to 50000 rpm/sec from an optical fiber probe is the perfect tool for such measurement. 

Figure 5.9 is showing an tachometer sensor, which are used in dynamic experimental 

analysis. The specification of tachometer is shown in Table 5.4. 

 

Figure 5.9: Tachometer sensor 

Table 5.4: Tachometer specification 

Operating distance 61 cm and 45
o
 offset from target  

Speed range 1 – 50,000 RPM 

Operating temperature -13
o
 to 257

o
 F (-25

o
 to 125

o
 C) 

Power input 6 – 24 Vdc, 40 mA 

Output Signal TTL same as source 

Standard Cable 7.6 m 

Dimensions 73 X 16 mm 

 

5.3 Signal acquisition and display system 

A perfect measurement and proper conditioning of signal data are essential to execute 

the experiment successfully. OR36/OR38 is designed for high channel count capacity 

without comprising the analyzer geographies. All channels are handled in real-time 

whatever the analysis mode: FFT, 1/3rd Octave, CPB or synchronous order analysis. 

OR36 and OR38 keep these real-time capabilities up to 20 kHz. There are blue LCD 

screen controls on the OR36 and OR38 hardware that allow you to run, stop the 

analyzer and change the fan speed etc. 
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The type of use of universal inputs is selectable by NVGate® software during 

the analyzer operations. NVGate® software provides a comprehensive set of tools for 

noise and vibration acquisition, recording and analysis. The universal inputs gather 

dynamic as well as parametric input in the same connector. For each input connector, a 

green LED indicates that the input is active and a red LED indicates that the input is 

overloaded. Front panel of OR36 is shown in Figure 5.10.  

 

Figure 5.10: Front panel of OR36 

With the universal input and the connection kit, OR36 can receive signal conditioning 

modulus called XPod. The XPod is a device that can be fixed on OR36 side, which is 

associated to a block of 8 inputs. The XPod line starts with a bridge signal conditioning 

for strain gauges, dynamic force, and pressure and acceleration measurements. Back 
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panel of OR36 is shown in Figure 5.11. Back panel consists the various components 

like ethernet connector, data emission / reception LED, connection PC/OR36, auxiliary 

DB9 connector, interface connector and DC power connector. 

 

Figure 5.11: Back panel of OR36 

 

Figure 5.12: Display of signal 
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Personal computer/laptop may be easily used for online display and store the 

experimental data for post analysis. In Figure 5.12, laptop screen shows the display 

during the signal receiving with the help of NVGate® software and OR36. The next 

section will present details of experimental set-up for stiffness measurement. 

5.4 Experimental setup for stiffness measurement 

Stiffness plays a vital role in any structure’s dynamic behaviour. Dynamic behaviour of 

any rotating shaft regularly changes with the stiffness variation. When any small defects 

or cracks initiate and propagate in rotating shaft due to breathing phenomenon, stiffness 

of the shaft varies with time in every revolution. It is necessary to determine the 

stiffness at different crack depths for experimental analysis of a cracked rotor. 

Figure 5.13 is showing a block diagram of an experimental setup, which was 

build up to measure the static deflection under gradually applied known load. By using 

of following mathematical relationship between deflection and known load, one may 

easily determine the stiffness of the specimen with different cracks at different position. 

 k = P / x                                                     (5.1) 

where k is stiffness in N/mm, P is applied load in N, and x is deflection of shaft at the 

mid span in mm. 

 In this simple test rig, major components are vertical column with semi circular 

ring, base plate, dial gauge stand with magnetic base, dial gauge, load holding device 

and various load. Vertical columns are made of a cast iron. Height of columns is kept 

800 mm and the cross section of the column is 50 mm X 50 mm. Rings are welded on 

the top of the column to hold the specimen. In the bottom of columns, a base plate was 
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welded having the cross section 100 mm X 100 mm and thickness 10 mm. This plate 

provided the vertical stability to the column. An arrangement has been made to carry 

the weights (N), which are applied on the shaft. A weight holding device is also formed 

from a rod of diameter 10 mm and length 250 mm, which was used in this experiment. 

One end of holding device was given round shape so that it can be hanged on test 

specimen. Another end of this rod was welded with a 2 mm thick circular plate on 

which different weights can be placed. 

 

Figure 5.13: Schematic diagram of experimental set-up of stiffness measurement 

Digital dial gauge is used to measure the deflection (x) of specimen under the applied 

load. This dial gauge can measure the deflection from 0.01mm to 13.5mm. The known 

weights are used to apply the force on the shaft.  
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5.5 Experimental methodology 

5.5.1 Formation of crack in the test specimen 

Creating a artificial transverse crack is one of the most challenging tasks in this present 

study. It is well known fact that fatigue cracks could be initiated at the point, which has 

minimum local strength and maximum local stress. As reported in the research 

literature, transverse crack (Adeswusi and Bedoor, 2001; Sawicki et al., 2009) was 

created artificially in the workshop. Cracks were created in shaft by using a very fine 

jewel saw. Initially the dimension of crack was considered 1mm depth and width 

0.2mm. Therefore, a single crack has a range of depth between 0 to 23% (5mm) of the 

diameter. Moreover, the following crack depths were considered for analysis: 4.54% 

(1mm), 9.09% (2mm), 13.64% (3mm), 18.18% (4mm) and 22.73% (5mm). First crack 

was formed at the centre of the two bearing support. The second crack was created 

between the first crack and the right bearing support. Crack location of first and second 

crack from the right bearing support is 330 mm and 165 mm respectively. Schematic 

diagram of a single cracked and multi cracked test specimen is shown in Figure 5.4. 

5.5.2 Stiffness evaluation 

Stiffness of the intact shaft and single cracked shaft has been determined on 

experimental set up as shown in Figure 5.13. The specimen was positioned in circular 

ring fitted at top of the both column. The dial gauge and load holding device was also 

fitted as per schematic diagram as shown in Figure 5.13. Initially, the dial gauge 

indicator was showing zero, which depicts that there was no deflection in the test 

specimen. Subsequently, loads are gradually placed on holding device and the 

deflection of the shaft was recorded by a digital dial gauge. By using the Eq. (5.1), 
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stiffness may be effectively calculated. Similarly, at different crack depth of a single 

and multi crack, the stiffness measured and change in stiffness were evaluated. 

Variation of stiffness with respect to crack depth is shown in Table 5.5. 

In this studies and in archival literature also, it is point out that no significant 

change observe in stiffness, when shafts having a very small cracks. In second part of 

this experiment, stiffness of shaft was measured at different angular position of 

transverse crack with respect to initial position. In this experiment, the circumference of 

the shaft has been divided into 12 sections, each making 30
o
 angle at the center of the 

shaft cross section. One may got thirteen values for one crack depth at different rotation 

angle, which are shown in Figure 5.18. Figure 5.14 is showing the cross sectional view 

of rotating angle between crack and the loading axis. 

 

Figure 5.14: Cross sectional view of rotating angle between crack and loading direction 

5.5.3 Dynamic analysis of multi-cracked rotor 

The amplitude of rotational shaft at various rotational speeds/excitation frequencies and 

at various single/multi crack depth were determined experimentally. Figure 5.1 shows 

the actual picture of the experimental test rig. For cooling the DC motor and bearings 
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lubrication is incorporated before the start the experiment. The shaft is being rotated at 

various speeds in the range 1200-5500 rpm, which is used for dynamic investigation. 

The signal is transformed through signal analyzer, which is further analyzed through 

NVGate® software. It has been found from literature that probes are generally placed 

near the bearing or over the bearing for analysing shaft behaviour (Zhou et al., 2005). 

The accelerometer is attached on the top of bearing for capturing a signal, which is 

further transmitted to display monitor. The amplitudes of the vibration of intact and 

crack shaft at various excitation frequencies have been recorded in the range of 1000 – 

5500 rpm with the interval of 100 rpm. 

Further, an impact hammer test has also been conducted to find out the static 

natural frequencies. This test was performed through equipment OR36 (maximum range 

20 KHz) integrated with compact real time multi-analyzer. A single accelerometer is 

used, which was mounted at the mid of the shaft. Experiments have been conducted on 

the un-cracked, single-cracked and multi-cracked shafts. Each specimen is hit by the 

hammer (with ICP coupling) at the centre of the shaft to create a force and vibration, 

which is further captured by OROS hammer and accelerometer respectively. For each 

shaft the input force, trigger levels and the accelerometer response had to be calibrated in 

the NVGate ® analyzer project for measurement and analysis. 

Initially, the crack depth at which the amplitude of vibration was considered has 

a range of depths between 0 to 23% (5mm) of diameter and width 0.2mm. Moreover, 

the following crack depths were considered for analysis: 4.54% (1mm), 9.09% (2mm), 

13.64% (3mm), 18.18% (4mm) and 22.73% (5mm). First crack was formed at the 

centre of the two bearing support. The arrangement of second transverse crack is shown 
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in Figure 5.4. In this case, depth varies in the range 0 to 13.64% (3mm) of diameter. 

Further, the following crack depths were considered for analysis: 4.54% (1mm), 9.09% 

(2mm), and 13.64% (3mm). This crack is generated at a distance of 165 mm from the 

middle crack. Stiffness of the double cracked shaft has been evaluated through 

experiments and further used in analytical formulation of amplitude equation. 

5.6 Results and discussions 

Dynamic and static analysis was performed successfully on both the experimental test 

rig shown in Figure 5.1 and 5.13. The effect of crack initiation and propagation has 

been examined taken into account various input parameters like stiffness, amplitude, 

natural frequency etc. The next subsection will present variation in stiffness due to 

crack initiation and propagation.     

5.6.1 Variation in shaft stiffness 

 

Figure 5.15: Variation in stiffness with the single crack depth 
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Figure 5.16: Variation in stiffness with the multi crack depth (when crack 1 depth is fixed at 5 mm) 

 

Figure 5.17: Some of the angular positions of the crack during one rotation of the shaft 

In the static experimental analysis on stiffness test rig, the change in stiffness of 

specimen is determined at various crack depth, which is tabulated in Table 5.5. Figure 

5.15 shows the variation in stiffness with a single crack depth variation. It shows that 

the stiffness variation increases with increase in crack depth. Figure 5.16 shows the 

variation in stiffness due to second crack. 

In case of multi crack shaft, slope of the stiffness curve decreases due to second 

crack as compare to single crack shaft. Thus, increase in the stress concentration is 

marginal near the first (middle) crack as compare to the middle crack depth. 
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Table 5.5: Change in stiffness in various crack depth 

Crack Depth (mm) Change in stiffness 

(N/mm) 
Crack 1  

(at mid of specimen) 
Crack 2  

(Between crack1 and Right hand side bearing) 

0 0 0 

1 0 0.28432 

3 0 4.566739 

5 0 11.31678 

5 1 15.5739 

5 3 25.97405 

 

In other experiment, stiffness of four different circular shafts was measured as a 

function of rotation of the shafts and presented in Table 5.6. Different positions of 

rotating cracked shaft are shown in Figure 5.17. For various crack depths, the slope of 

the curve decreased as the shaft rotated from fully closed (0
o
 and 360

o
) to partially 

closed (90
o
 and 270

o
) to fully open (180

o
), which is termed as breathing phenomenon. 

Table 5.6: Stiffness of shaft as a function of rotation angle 

Angle 

(Degree) 

Intact shaft 

stiffness 

(N/mm) 

5 mm single cracked 

shaft stiffness 

(N/mm) 

5 mm & 1 mm  

multi -cracked 

shaft stiffness 

(N/mm) 

5 mm & 3 mm  

multi-cracked 

shaft stiffness 

(N/mm) 

0 288.74 280.61 276.06 269.64 

30 287.85 279.70 274.48 268.04 

60 287.61 278.86 273.49 266.53 

90 287.56 278.28 272.10 265.03 

120 287.34 277.18 272.10 264.03 

150 285.86 275.84 270.82 263.07 

180 285.03 273.91 269.47 259.06 

210 285.86 275.84 270.82 263.07 

240 287.34 277.19 272.10 264.03 

270 287.56 278.28 272.10 265.03 

300 287.61 278.86 273.49 266.53 

330 287.85 279.70 274.48 268.03 

360 288.75 280.61 276.03 269.64 
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It is observed from Table 5.6 and Figure 5.18 that for any un-cracked shaft, the 

stiffness remain unchanged. There is no effect of angular orientation on stiffness. Slight 

fluctuation observed due to experimental and random errors. Whenever, crack depths 

increases, stiffness decreases. Slope of the curve decreased as the crack rotated gradually 

from fully closed, partially open to the fully open position. After creating the second crack, 

stiffness further reduces but the effect of second crack on the stiffness is found marginal. 

Stress concentration for the shaft is marginally affected at the middle of the crack. It has 

been observed that larger crack depth has more dominant effect on the shaft. Crack at the 

mid of the rotor shaft has optimum effect on the stiffness as compared to the second crack, 

created at any other position of the shaft. Position of crack plays a significant parameter in 

multi-crack rotor detection. These values of variation in stiffness obtained experimentally 

are further used in amplitude equation, which has been obtained analytically through 

extended Lagrangian–Hamiltonian formalism discussed in previous chapter. 

 

Figure 5.18: Stiffness of cracked rotor at different angular orientation 
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The natural frequencies at various crack depth have also been presented in 

Figure 5.19 – 5.21. For a single crack, natural frequency of the shaft decreases rapidly, 

which is clearly observed in Figure 5.19.  

In case of multi-crack, the changes in natural frequency are marginally noticed 

in Figure 5.20. First natural frequency obtains to be 114.5 Hz for intact shaft and 96.5 

Hz for 1mm cracked shaft, 86.5 Hz for 3 mm cracked shaft, 85Hz for 5 mm cracked 

shaft. In Figure 5.20, natural frequency obtains comes out to be 84.5Hz for a multi-

cracked shaft (5 mm and 1 mm crack) and 83.5 Hz for second case of a multi-cracked 

shaft (5 mm and 3 mm crack). The next sub section will present the comparison 

between analytical and experimental amplitude.  

 

 

Figure 5.19: Frequency Vs acceleration for un-cracked shaft and single cracked shaft 
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Figure 5.20: Frequency Vs acceleration for multi-cracked shaft. 

 

 

Figure 5.21: Frequency Vs acceleration for intact shaft, single cracked shaft & multi-cracked 

shaft various mode. 
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5.6.2 Comparison between analytical and experimental amplitude 

 Amplitudes of vibration of different cracked shaft specimen are presented in Figure 

5.22. The amplitude of vibration in cracked rotor increases with increase in crack depth. 

In this way increase in amplitude can be quick and reliable indicator of crack 

propagation. Resonance condition may also become a cause of catastrophic failure due 

to this crack propagation. Considerable good agreement between analytical and 

experimental results has been stated. Complete dynamic analysis is carried out through 

extended Lagrangian methodology for a continuous system. It has also been focused on 

the effect of stress concentration factor. Amplitude further decreases when second crack 

is appeared, which is basically due to stress concentration. It is further shown that 

amplitude of the rotor increases inversely with the stiffness of the rotor. 

 

Figure 5.22: Analytical Vs experimental value of amplitude at different crack depth 
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 Experimental test rig presented in this chapter is capable to analyze the dynamic 

behaviour of a cracked rotor to validate the theoretical and computational result to a 

large range. However, there are some deviations in analytical and experimental results 

because of some limitations and random error. In specimen, presented crack is not a 

fatigue crack. Transverse crack is created manually. A separate system is required to 

create fatigue crack. There may be some error in signal adopting process as 

accelerometer has been placed at bearing housing. Some environmental noise also 

affects the results up to a certain limit. DC motor also shows jumping phenomenon so 

one may have to leave some signal data. The next subsection will present the impact 

hammer test which is used for validation of natural frequency of static condition, 

5.6.3 Validation of natural frequency through impact hammer test 

The natural frequency of a system is dependent only on the stiffness of the structure and 

the mass, which participates with the structure (including self-weight).  When structure 

temporarily excited by an external load, it will vibrate at natural frequency. When 

external excitation applied to the structure at the same frequency as the structure’s 

natural frequency, it will result in resonance. Resonance can be dangerous for the 

structure. So, the natural frequency of a structure / machinery may be determined by 

measuring frequency response signal. A moving hammer impact test using a single 

static motion transducer is a mutual example of single reference testing. An impact 

hammer with a load cell attached to its head to measure the input force. An 

accelerometer to measure the response acceleration at a fixed point and direction. Here, 

one may determined the natural frequency for a simply supported beam to make sure 

that the results, one find through computational analysis are correct or not, also to check 

variation from analytical results. Different observations have been taken at different 
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frequency band, using different tip of hammer by hitting at different location on the 

component. This experimental analysis is carried out for frequency of 800 Hz, 16 KHz, 

32 KHz with different tips of hammer like rubber tip, plastic tip and metallic tip. An 

accelerometer is mounted on the shaft at different location. In Figure 5.23, 

accelerometer is mounted in mid span of the shaft. Experimental setup of impact 

hammer test is shown in Figure 5.23. Accelerometer and vibration analyzer are used to 

measure the response signal created by external source impact hammer. 

The natural frequency response for intact shaft with 5 mm single crack and multi 

crack with 5 mm and 3 mm crack shaft 1 received by NVGate® software as shown in 

Figures 5.24 – 5.29. The value of natural frequency obtained is 114.5 Hz for intact shaft 

as shown in Figure 5.24. In another experiment, the value of natural frequency is obtained 

at 85 Hz for a single cracked shaft with 5 mm crack as shown in Figure 5.26.   

 

Figure 5.23: Experimental set-up for impact hammer test 
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Figure 5.24: Frequency Vs acceleration and frequency Vs forces for intact shaft (FFT analysis) 

 

 

Figure 5.25: Frequency Vs phase change and frequency Vs (acceleration/force) for intact shaft 
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Figure 5.26: Frequency Vs acceleration and frequency Vs forces for 5 mm single crack shaft 

(FFT analysis) 

 

 

Figure 5.27: Frequency Vs phase change and frequency Vs (acceleration/force) for 5 mm single 

crack shaft 
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Figure 5.28: Frequency Vs acceleration and frequency Vs forces for a multi-crack shaft of 5 

mm and 3 mm crack (FFT analysis) 

 

 

Figure 5.29: Frequency Vs phase change and frequency Vs (acceleration/force) for a multi-

crack shaft of 5 mm and 3 mm crack 
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Table 5.7: Comparison of natural frequencies 

Test specimen Natural frequency (Hz) 

(Through analytical analysis) 

Natural frequency (Hz) 

(Through impact hammer test) 

Intact Shaft  119.36 114.50 

Single-cracked shaft with 

5 mm single crack 
89.43 85 

Multi-cracked shaft with 5 

mm and 3 mm single crack 
86.58 83.50 

 

The value of natural frequency was 83.5 Hz for multi cracked shaft with 5 & 3 

mm crack as shown in Figure 5.28. Natural frequency of analytical and impact hammer 

test were compared and the results are presented in Table 5.7. It may be shown that 

there is a marginal gap in natural frequency values between both cases. The possible 

reasons may be transients presents and the parametric value of various components of 

the system. However it is under 4% variation, which is a good agreement between the 

experimental and analytical studies carried out in this work. In Figures 5.24 – 5.29 

various modes of natural frequencies are clearly depicted. Natural frequencies are also 

varying with the change in crack depth and types of test specimen like intact, single-

crack and multi-crack shaft.   

5.7 Summary of the chapter 

The major focus of this chapter is to design and development of an experimental test rig 

for the dynamic analysis of a multi cracked rotor. In experimental static analysis, 

stiffness and its variation has been determined for various test specimen like single and 

multi cracked rotor shaft. The effect of crack depth variations have been analyzed on 

various parameters like natural frequency, stiffness and amplitude of the vibration. 
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Breathing phenomenon has also been validated experimentally. The stiffness has 

changed due to the rotation of the shaft. Stiffness is varying between two values 

regularly due to the breathing of a crack in the rotation process. It is also experimentally 

validated that the stiffness is also a function of an angular rotation. Besides this, the 

amplitude of vibration of rotor at different crack depth has also been determined. The 

experimental analysis has been employed for the validation of theoretical results of 

rotor system presented in the previous chapter. 

 It has been seen through the results that the experimental frame work developed 

in this chapter has capability to analyze the dynamic behaviour of a multi-cracked rotor 

accurately, efficiently and effectively. This experimental test rig model may further be 

applied as on line monitoring system. The experimental test rig model may be 

effectively used for the fault diagnosis of a rotor dynamic system in the various 

industries like power plant, aircraft and heavy rotating machinery. 
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Chapter 6 

Conclusions and Future Directions 

 

6.1 Conclusions 

This research work has a crucial impact on the sustainability of rotating machinery. The 

approaches that have been presented in this study is an application of the extended form 

of the Lagrangian mechanism. The main objective and motivation for this work was to 

develop an extended form of the Lagrangian-Hamiltonian formalism and the Noether’s 

theorem. Further, these extended formulations were applied to multi-cracked, discrete and 

continuous rotor system. This work had augmented the scope of umbra-Lagrangian in the 

field of rotor dynamic research. Effective outcomes were obtained from the umbra-

Lagrangian theory, while studying invariants of motion for non-conservative mechanical 

and thermo-mechanical systems, which have time fluctuating parameters, gyroscopic 

forces and non-holonomic constraints. The dynamic response signal of asymmetric rotor 

has been received and captured by NVGate® software.  

Further, these outcomes have been investigated through umbra-Lagrangian-

Hamiltonian equations. The main causes of these asymmetries are initiation and 

propagation of cracks and variation in rotor mass. In the analysis of asymmetries 

concept of cyclic symmetries has been efficiently used to uncover the dynamics of 

multi-cracked rotor. This may be used to diagnose the defects online in various 

industrial applications. Further, extended form of Noether’s theorem has been used to 

obtain constants of motion of dynamical system. An experimental test rig is also 

developed for the experimental validation of obtained simulation and analytical 

results.  Based on research work, some conclusions have been made. 
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 A novel approach of umbra-Lagrangian and umbra-Hamiltonian has been 

applied to analyze the dynamic behaviour of multi-cracked rotor. 

 Umbra-Hamiltonian has been used with the extended form of Noether’s 

theorem to provide the complete insight of dynamics of the system with 

asymmetries due to crack depth and rotor mass variation. 

 Expression of amplitude of vibration and natural frequencies were derived 

through the novel concept of umbra-Lagrangian mechanism. 

 Bondgraph software has been used for modeling. Umbra-Lagrangian of the 

multi-crack system and multi-rotor system were developed through this 

bondgraph technique. 

Analytical and computational framework for discrete rotor with asymmetries 

has been presented through extended form of Lagrangian-Hamiltonian formulation. 

Multi-crack rotor has been driven by DC motor. Following points have been 

concluded through this work: 

 Mathematical equations for natural frequency and amplitude of vibrations 

have been developed by using umbra concept and Noether’s equation for both 

cases such as asymmetries in stiffness as well as in mass. 

 In both cases, multi-rotor system has been modeled through bondgraph 

modeling technique. SYMBOLS-Shakti
®
 software has used for the simulation 

work. These models provide insight of the dynamics of the rotor system. 

Analytical results are also compared with computational results. 

 In first case, the amplitude of the rotor increases with percentage change of 

stiffness of rotor 1. Analytical frequency nearly matches with the simulated 
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frequency obtained for rotor 1. A general behaviour of reduction in the natural 

frequencies is noticed at various stiffness variations. 

 In second case, effects of asymmetries due to mass have been investigated. All the 

analytical results have been validated through simulated results. It has been found 

that there was a good agreement between analytical and simulated results. 

Further, extended form of Lagrangian-Hamiltonian mechanism has been 

presented for analytical and computational framework for continuous rotor with two 

cracks. Following points have been concluded through this work: 

 Analytical frame work for a multi-crack rotor has been developed to determine 

the amplitude as well as natural frequency. Double-crack rotor system has 

been effectively analyzed through extended form of Lagrangian formalism and 

Noether’s theorem concept. 

 Computational framework through bondgraph modeling has been presented. 

The effects of crack depth on system response are clearly seen through 

simulation. It is further shown that amplitude of the rotor increases inversely 

the stiffness of the rotor.  

 Results obtained through simulation for uncracked and cracked rotor shaft 

clearly show the effect of crack on the amplitude of vibration. For small crack 

depth, there is very small disturbance in system response. However, the 

response can be clearly noticed, as well as observed when crack depth is more. 

 After creating the second crack, stiffness also reduces but the effect of second 

crack on the stiffness is found marginal. Stress concentration for the shaft is 

marginally affected at the middle crack. It has been observed that larger crack 

depth has the more significant effect on the shaft. 
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 Finally, a crack initiation and propagation has affected the dynamical 

characteristics of any rotating parts of machinery. So, it is necessary to replace 

components. Because, it may become a major cause of catastrophic failure due 

to resonance. In resonance conditions, amplitude has high magnitude value. 

6.2 Directions for future research 

Extended form of Lagrangian-Hamiltonian mechanism has been applied for the analysis 

of dynamics of discrete and continuous multi-cracked rotor system. Umbra time concept 

has been used to develop the various equations of amplitude and natural frequencies. In 

this thesis, analysis of double-cracked rotor system has been presented. 

 The methodology of current research can be extended further to meet diverse 

applications of rotating shaft. Therefore, following suggestions can be focused for 

future developments: 

 Analysis of discrete rotor may be analysed considering torsional rigidity through 

extended form of Lagrangian formulation. Measurement of torsional rigidity along 

with bending stiffness of cracked rotor can be done experimentally. 

 Rotor with more than two transverse cracks may also be considered for analysis. 

 Continuous rotor system with different types cracks like slant, longitudinal and 

elliptical crack etc. can be further analyzed through the extended Lagrangian 

formalism and bondgraph modelling. 

 This work is further extended for real time project work related to rotordynamics 

industries like aerospace, power producing plant etc. So one may stop the catastrophic 

failure and reduce the economical loss and production. 

 In future, one may develop high quality test-rig for dynamic analysis of various type 

of rotor used in different industries and research organization. One may also used tri-

axial transducer for capturing the signal in three directions.      
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Appendix A 

Bondgraph Elements 

 

A.1 Introduction 

The best way to study the dynamics of a system residing in multi-energy domain is to 

start with a schematic diagram, which includes its important components and portrays 

how they are connected together. Then one can show details of each component and 

specify the constitutive laws governing the components and subsystems they are in. 

Each energy domain has its own concepts, symbolic notations and equation. However, a 

basic similarity exists in the common underlying energy structure. 

Bond graph is an explicit graphical tool for capturing the common energy 

structure of systems. It increases one's insight into systems behavior. In the vector form, 

they give concise description of complex systems. Moreover, the notation of causality 

provides a tool not only for formulation of system equations, but also for qualitative 

analysis of system behavior, viz. controllability, observability, fault diagnosis, etc.  

In 1960, Paynter (Paynter, 1961) gave the revolutionary idea of portraying 

systems in terms of power bonds, connecting the elements of the physical system to the 

so called junction structures which were manifestations of the constraints. This power 

exchange portrait of a system is called Bond Graph (some prefer to write as 

Bondgraph), which can be both power and information oriented. Later on, Bondgraph 

theory has been developed further by many researchers like Karnopp et al. (1990), 

Thoma (1990), Brown (1981, 2006), Cellier (1991), Breedveld and Dauphin-Tanguy 
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(1992), Gawthrop and Smith (1996), Mukherjee and Karmakar (2000), etc. who have 

worked on extending this modeling technique to power hydraulics, mechatronics, 

general thermodynamic systems and recently to electronics and non-energetic systems 

like economics and queuing theory. 

Through Bondgraph approach, a physical system can be represented by symbols 

and lines, identifying the power flow paths. The lumped parameter elements of 

resistance, capacitance and inertance are interconnected in an energy conserving way by 

bonds and junctions resulting in a network structure. From the pictorial representation 

of the bondgraph, the derivation of system equations is so systematic that it can be 

algorithmized. The whole procedure of modeling and simulation of the system may be 

performed by some of the existing software e.g., ENPORT, Camp-G, SYMBOLS, 

20Sim, Dymola etc.  

The language of bondgraphs aspires to express general class of physical systems 

through power interactions. The factors of power, i.e., Effort and Flow, have different 

interpretations in different physical domains. Yet, power can always be used as a 

generalized co-ordinate to model coupled systems residing in several energy domains. 

In bondgraphs, one needs to recognize only four groups of basic symbols, i.e., three 

basic one port passive elements inertance (I), capacitance (C), and resistance (R); two 

basic active elements source of effort (SE), and source of flow (SF); two basic two port 

elements gyrator (GY), and transformer (TF); and two basic junctions i.e., constant 

effort junction (0), and constant flow junction (1). The basic variables are effort (e), 

flow (f), time integral of effort (P) and the time integral of flow (Q). 
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Table A.1: Definition of Bond graph Elements with integral causality 

Type Name Symbol Definition 

Linear Nonlinear 

Storages 

Inertance  dt

dp
e , PIf )/1(  

dt

dp
e , )(Pf F  

Capacitance  

QCe )/1(

dt

dQ
f   

)(Qe K

dt

dQ
f   

Dissipation 

Resistance  Ref /  
Ref /  

Resistance  fRe   fe R   

Sources 

Effort  )(tee   

Flow  )(tff   

Junctions 

Zero (0) 
 

321 eee  , 321 fff   

One (1) 
 

321 fff  , 321 eee   

Transducers 

(ideal) 

Gyrator I 
 

12 fre  , 21 fre   
12 )( fxre 

21 )( fxre   

Gyrator II 
 

12 )/1( erf 

21 )/1( erf   

12 )](/1[ exrf   

21 )](/1[ exrf   

Transformer I 

 
12 ff  , 21 ee   

12 )( fxf 

21 )( exe   

Transformer II 

 

12 )/1( ee 

21 )/1( ff   

12 )](/1[ exe 

21 )](/1[ fxf   

Activated 

Bond 

Effort 
 

 f  = 0  

Flow 
 

e = 0 

Detector Effort, flow 
 11 , fe  



  Appendices 

 

164 

Table A.1 gives definition of Bondgraph elements with integral causality. In a 

bondgraph, the assignment of power directions may be as arbitrary as fixing co-ordinate 

systems in classical analysis. The assignment of bond number also fixes the name of the 

elements or junctions. This is the best bookkeeping technique adopted by most of the 

existing software products. 

A.2 Causality 

Causality establishes the cause and effect relationships between the factors of power. In 

bondgraphs, the inputs and the outputs are characterized by the causal stroke. The 

causal stroke indicates the direction in which the effort signal is directed. The end of the 

bond that does not have a causal stroke is the end towards which the flow signal is 

directed. The proper causality for a storage element (I or C) is called Integral Causality, 

where the cause is integrated to generate the effect. Sometimes the causal strokes will 

have to be inverted, which means the constitutive relationship for the corresponding 

element is written as a differential equation. Genuine differential causality is not 

commonly encountered during system modeling except in certain cases of modeling 

mechanisms, robotics, etc., where link flexibilities or other aspects are neglected in the 

model. The occurrence of differential causalities in a system may indicate serious 

violations of principles of conservation of energy. At a 1 junction, only one bond should 

bring the information of flow. This uniquely causalled bond at a junction is termed as 

the Strong bond. Similarly at a 0 junction, only one bond can be stroked at the junction 

side. This strong bond determines the effort at the junction. The weak bonds are the 

bonds other than the strong bond.  
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A.3 Activation 

Some bonds in a bondgraph may be only information carriers. These bonds are not 

power bonds. Such bonds, where one of the factors of the power is masked are called 

Activated bonds. For example in a bond representing the velocity pick-up, the 

information of force must be masked and on the bond representing the exciter the 

information of the flow must be masked. A full arrow somewhere on the bonds shows 

that some information is allowed to pass and some information is masked. The 

information which is allowed to pass may be written near that full arrow. The concept 

of activation is very significant to depict feedback control systems.  

The term activation initially seems a misnomer. However, Paynter's idea was 

based on the fact that though the information of a factor of power is masked on one end, 

an activated bond on the other end can impart infinite power which is derived from a 

tank circuit used for both the measurement or actuation device (for instance, the pick-

up, the amplifier and the exciter, all have external power sources).  

A.4 Observers 

Additional states can be added for measurement of any factor of power on a bondgraph 

model using the observer storage elements. A flow activated C-element would observe 

the time integral of flow (and consequently flow), whereas an effort activated I-element 

would observe the generalized momentum (and consequently effort). Activated 

elements are perceived as conceptual instrumentation on a model. They do not interfere 

in the dynamics of the system. 
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A.5 Multi and vector bondgraphs 

When similarities in various sub-system components in the model morphology can be 

established, they can be represented in form of a concise notation called vector or multi-

bondgraphs. Multi bonds are drawn as two parallel lines augmented with power 

directions. The dimension of the multi-bond (number of scalar bonds, it is composed of) 

is indicated between these parallel lines. Thus multi-bondgraphs are compact 

representation of large systems with identical subsystems. Since a multi-bond can 

accept only one power direction and causal orientation, all the subsystems represented 

by that multi-bond must have same power and causal structure 
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Appendix B 

Flexibility Co-efficient of an Open Crack 

 

B.1 Flexibility co-efficient 

The general flexibility co-efficient of an open crack is presented in this Appendix. 

Initiation and propagation of crack in any element reduces the stiffness of the element. 

Reduction in stiffness indicates that there is variation in total flexibility in the element. 

Moreover, when a shaft rotates, its flexibility changes due to breathing phenomena of 

crack. One can approximate breathing of crack either by sinusoidal stiffness variation or 

by assuming stepwise stiffness fluctuation. A truly breathing behaviour can be 

represented by considering gradual opening and closing of the crack using the sign of 

stress intensity factor. 

Dimensionless terms of flexibility matrix [Kc] are given by Papadopoulos and 

Dimarogonas (1987) 
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In the above Eqs. (B.1-B.5), R is the radius of beam, h is the height of assumed 

elemental strip, a is the crack depth, 2b is the elemental strip and   is the local crack 

depth, which varies along the cross section. 
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Appendix C 

Terminology of Manifolds and Vector Fields 

 

C.1 Introduction 

The extended Lagrangian-Hamiltonian mechanics is proposed over vector fields 

throughout this study. Some of the important terms of manifolds and vector fields 

(Hassani, 1999; Pennacchi, 2006) are presented here. 

C.2 Differentiable manifolds and differential operator 

The differentiable manifolds or simply „manifolds‟ are abstract surfaces that locally 

look like linear spaces. So, it can be defined as, “A differentiable manifold is a 

collection of all objects called points that are connected to each other in a smooth 

fashion such that the neighbour hood of each point looks like the neighbour hood of an 

n-dimensional space, n is called the dimension of manifold.” A differential operator is 

a mapping that transforms a function into another function by means of partial 

derivative and multiplication by other function. It is an operator, which operates on 

tangent vector in tangent space and converts it into scalar. 

C.3 Tangent space, tangent bundle, cotangent bundle and vector fields 

A tangent vector v to a manifold M, at point m  M is an equivalence class of curves at 

m. it is a theorem that the set of all tangent vector to M at m forms a vector space, called 

as tangent space. It is denoted by Tm M. The union of all tangent space at different 

points of a manifold M at the points m  M is called the tangent bundle of M and 

denoted by TM. That is given by 
Mm

mMTTM


 . 
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The cotangent bundle of a manifold M is similar to the tangent bundle, except that it is 

set of (x, f) where x  M and f is a dual vector in the tangent space to x  M. The 

cotangent bundle is denoted by T
*
M. 

A vector field X on a subset U of a manifold M is a mapping X: UTM such that  

X (P) XP XPP(M).  

C.4 Infinitesimal generators  

The change of an arbitrary function f (x) due to an infinitesimal transformation is given by 

 

  kik
i

i
i

daxu
x

f
dx

x

f
df









                   (using Einstein convention) 
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 is the infinitesimal generator 

The two-dimensional rotation group SO (2) is defined by  
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The infinitesimal generator of the group can be given as 
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

















y

y

fx

x

f
yxf  

Finding infinitesimal transformation of the group due to parameter   
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or  

























x

y

y
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






 

Now, the infinitesimal generator of the group will be 
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


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C.4.1 Derivation of infinitesimal generators of the rotational SO (2) Group 

As the umbra-Lagrangian admits rotational transformation parameterized by an angle 

variable ‘s’, the first infinitesimal generator V  for this group may be obtained over 

extended single manifold consist of umbra and real displacements and velocities, and 

real time. The variation of a sufficiently smooth function f with s at s=0 may be 

obtained as the generator V  operating on f,  
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The generator V may however, be obtained from the action of this group as follows 
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where   is direct sum of vectors and  is Kronecker or tensor product of matrices.  I  

being a 44 identity matrix and   sR  is 2-dimensional orthogonal matrix given as 

 

   









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ss

ss
sR

cossin

sincos
 

Equation (C.2) now yields  
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The infinitesimal generator of the group may be written through Eq. (C.1) as  
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C.4.2 Derivation of Infinitesimal generators of translational group 

As the gauge variant umbra-Lagrangian admits translational transformation 

parameterized by a linear shift„s‟, the infinitesimal generator V  for this group may be 

obtained as 

 x x s    

The variation of a sufficiently smooth function f with s at s=0 may be obtained as the 

generator V  operating on f,  

 x s    
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or  1
x

s





, 

in other words, the infinitesimal generator may be written as 

 
    xx 
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V

 

 (C.4) 

C.5 Prolongation of a function  

The prolongation is a vector function from the space of the independent variables to the 

space nU , whose entries represents the values of f  and all its derivatives up to order  

n . In this way, some nebulous notions of a system of differential equations need to be 

replaced by a concrete geometric object that is characterized by the vanishing of certain 

functions. The aforementioned space UX   needs to be extended or prolonged, to 

include not only the variables under consideration, but also the other partial derivatives 

that exit in the system. Let kU represent the Euclidean space of all different thk order 

derivatives of the function and let  
n

n UUUU  ...21  be the Cartesian product 

space of all the different derivatives of the function from order 0 to n. 

Given a smooth function  xfu  , so UXf : , there is an induced function 

     xfpru nn  , called the thn  prolongation of f , which is defined by the equations 

 
 xfu jj

 
 

 (C.5) 

Thus   fpr n  is a function from X  to the space  nU , and for each x  in X ,    xfpr n  is 

a vector whose  npq.  entries represent the value of f  and all its derivatives up to order 
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n  at the point x . The total space  nUX  , whose coordinates represent the independent 

variables, the dependent variables and the derivatives of the dependent variables up to 

order n  is called thn order jet space of the underlying space UX  . 
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Appendix D 

Classical Lagrange’s Equation 

 

D.1 Classical Lagrange’s equation 

Lagrange (1788) had given a general treatment of dynamical systems formulated from 

scalar quantities of kinetic energy, potential energy and work expressed in terms of 

generalized coordinates. The difference between the kinetic and potential energy is 

termed as Lagrangian, which is expressed as  

 VTL    (D.1) 

where L  is the Lagrangian, T  is the total kinetic energy and V is the total potential 

energy. Since V does not depend on the velocities, Lagrange‟s equations of motion for 

n generalized co-ordinates may be represented as 
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Lagrange developed these equations of motion from the principle of virtual work. 

Lagrange‟s equations are applicable when the system is closed, constraints are 

integrable and there is no gyroscopic coupling. The relationship of Lagrange‟s 

equations of motion and the variational principle is discussed in following subsection. 

D.2  Relationship between classical Lagrange’s equation and 

variational principle 

It is significant that Lagrange‟s equations resemble the equations, one obtains from a 

variational principle. Variational problems are classified in mathematics, and numerous 
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variational problems arise more often in physics and engineering. Variational principle 

defines that a dynamical systems moves in such a way to minimize or maximize 

something. One may generalize it by showing that the dynamical systems moves in 

such a way to minimize the action (Calkin, 2000; Goldstein, 1980) expressed as  

 , ,S L q q d     (D.3)  

The equation (D.3) may be explained more accurately, if it is supposed that an initial 

time 
0 , a final time 

1 , and a dynamical path  q  are given. Then the action 

associated with them can be represented as 

 
   

1

0 1

0

; , , ,S q L q q d





       (D.4) 

When the given  q  is inserted into the expression for  ,,qqL  , the integrand 

becomes a function of t alone, so it can be integrand with respect to τ. It is clear that the 

value of S  depends on the trajectory  q , for it depends not only one value of τ, but 

one function q  and all of τ in the interval
10   . In this way, one may deal only 

with the trajectories that start and end at the same two points in configuration space M  

as shown in Figure D.1 and these trajectories are given by functions  mq ;  and  tq ; . 

To explain the variational concept, one may assume two continuous functions 

 0q  and  1q  which map the real line R  to a n  dimensional configuration space M  

on the real field. It is assumed that  0q  is homotopic to  1q , i.e., there exists a 

continuous map MIRF : such that      000 ;;  qtqmq   and 

     111 ;;  qtqmq  , where I  is the closed interval  tm, . If    tqmq ;;   , the 
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corresponding actions will not be equal and there are many possible trajectories with the 

same end points and each one yields a characteristic value of S , and physical problem 

is to choose among all these possibilities, to find particular  q  that the dynamical 

system takes in making the trip from  0q  to  1q . 

 

Figure D.1: Two possible trajectories  mq ; and  tq ; from  0q to  1q  in 

configuration space M at two times 

 

It may be further shown that the physical trajectory is one that yields the minimum value 

of S  and minimizing S  leads to Lagrange‟s equations. If a family of many trajectories 

are considered as   ;q  with all starting and ending at  0q  and  1q , where   is an 

index labeling each particular trajectory of the family. As  mq ;  and  tq ;  leads to 

different actions, each   ;q  leads to its corresponding action  S  In this way 

variational principle states that the physical trajectories is the one for which the action is 
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minimum and independent of the way in which the   family of trajectories is chosen, 

provided it contains the physical one. This principle is Hamilton‟s variational principle. 

The Lagrange‟s equations provide one of the most convenient ways of writing 

down the equations of motion for a wide range of mechanical systems. The foremost 

advantage of Lagrange‟s equations is that it is easier to apply to dynamical systems. 

Beside this it brings out the close connection between conservation laws and symmetry 

properties of dynamical systems. 

  Another advantage about Lagrange‟s equations is that it can be derived from a 

variational principle, a method that turns out to be quite general and applicable in many 

branches of physics. However, it suffers a lot due to its inherent limitations in presence of 

time fluctuating parameters, general dissipation and gyroscopic coupling. That is why the 

classical Lagrange‟s equation cannot analyze the dynamics of systems under such 

situations as such Lagrangian cannot be work out in the reverse depending on the nature of 

nonconservative forces involved in the system, which leads to a loss of generality. At this 

stage, some additional information of system interior and exterior is needed in generating 

extended Lagrange‟s equation, which may be applicable to a broader class of systems. 

D.3 Mathematical interpretation of classical Noether’s theorem 

The presence of constant of motion or even their absence reveals much valuable 

information regarding the dynamical behaviour of the system. The classical Noether‟s 

theorem as presented by Arnold (1974) employs the following definition of symmetries: 

“If the Lagrangian for a system admits some transformation of the phase variables, then 

these transformations are called symmetries of the system.” The term admits means that 

the Lagrangian remains unchanged under these transformations. Thus, Noether‟s 
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theorem states that with every (infinitesimal) symmetry there exists a conserved 

quantity or a first integral (invariants of motion).   

Mathematically, the aforementioned theorem states that if the Lagrangian 

system  LM ,  admits a one parameter group of diffeomorphisms RsMMh s  ,: , 

then the Lagrangian system of equations corresponding to L  has a first integral

:I TM R , where M  is a manifold and TM is a tangent bundle of the manifold, and

R  is the set of all real numbers. 

In local co-ordinates q  on ,M  the integral I  may be written in the form  

   0,
s

s

L dh
I q q

q ds






                        (D.5)   

and    0
d

dI

 
 (D.6) 

The Noether‟s theorem may be compactly written by using infinitesimal generators or 

vector fields (Hassani, 1999; Olver, 1986) of the symmetry groups. The condition that 

the given Lagrangian is invariant under the j
th

 transformation may then be expressed as 

   0j L V   (D.7) 

where jV  is the j
th
 infinitesimal generators of a symmetry group and L  is Lagrangian 

of the system. In the context of extended Lagrangian formulation, umbra-Lagrangian 

being invariant under the j
th

 transformation may be expressed as 

  * 0j L V                         (D.8) 

where *L   is umbra-Lagrangian of the system. 
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Appendix E 

Umbra-Hamiltonian Theorem 

 

E.1 Concept of umbra-Hamiltonian 

Mathematically, the umbra-Hamiltonian (Mukherjee, 1994, 2001) may be represented as 

  [                ̇     ]   ̇          [      ̇          ̇     ]  (E.1) 

where the umbra-momentum is 

     
   

  ̇   
 

The real momentum may be obtained as  

        
   

   

  ̇   
 

Taking total differential of Eq. (E.1), one obtains  

    
   

     
      

   

     
      

   

     
      

   

  ̇   
  ̇    

   

  
  

  ̇         
   

     
      

   

     
      

   

  ̇   
  ̇   

 
   

  
   (     

   

  ̇   
)   ̇    

The relations which may be derived, are 

 ̇    
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    ̇                                                             

and the other relations acquired are 

   

     
  

   

     
 

   

  
  

   

  
 

The umbra-Hamiltonian    is comprised of two components as   
  and   

 .   
  is the 

interior form of Hamiltonian, which is independent of any function of real time, real 

velocity and real displacement, and   
  is the rest of the umbra-Hamiltonian, termed as 

the exterior Hamiltonian. Thus, one may write     

     
               

                  ̇                           (E.4) 

The theorems of the umbra-Hamiltonian (Mukherjee, 1994, 2001) are now presented: 

Theorem 1  

   
   

[
   

  
]    

Proof    

   

  
 

  

     
 ̇    

   

     
  ̇     ̇    ̇    

   

     
 ̇    

Now taking the limit η→  , one obtains 

   
   

[
   

  
]     

   
( ̇    ̇   )     

   
(

   

     
 ̇   )   ̇    ̇    (   

   

   

     
)   

   
 ̇    
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Substitution of Eq. (E.3) gives 

   
   

[
   

  
]   ̇    ̇     ̇    ̇      

Theorem 2  

   
 

  
     

   
[
   

 

  
] 

Proof:  From theorem 1 and Eq. (E.4), one may write 

   
   

   
         

  
     

   
[
   

 

  
] 

or  

   
   

   
           

  
     

   
[
   

 

  
] 

Corollary 

If, for a system 

    
   

[
   

 

  
]    

Then   
            is a constant of motion. 

Proof:  It follows directly from theorem 2 that  

   
           

  
   

Hence,   
            is a constant of motion. 
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Appendix F 

Karnopp’s Algorithm 

 

F.1 Karnopp’s Algorithm 

Karnopp (1977) proposed an algorithm to arrive at Lagrange‟s equations for complex 

systems through its bondgraph model. The steps of Karnopp‟s algorithm may be 

briefed as 

 Apply the required causality at all effort and flow sources and use the junction 

structure elements (only) to extend the causality as far as possible within the 

bondgraph. If causal conflicts arise at this stage, there is a fundamental 

contradiction within the model and it must be reformulated.   

 Choose a „1‟ junction for which the flow is not yet causally determined or insert 

a „1‟ junction into any causally undetermined bond and attach an artificial flow 

source to „1‟ junction. 

 Apply the required causality to the artificial source and extend the causality as 

far as possible into the bondgraph using junction structure element. 

 Return to step (2) and continue until all bonds have been causally oriented. 

F.2 Extension of Karnopp’s Algorithm for Generation of Umbra-

Lagrangian 

An extension of Karnopp‟s algorithm (Karnopp, 1977) is presented with a detailed 

procedure and may appear more elaborate for generation of umbra-Lagrangian of the 

system. The models may be classified as follows: 
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(a) System with no modulated two-port transformers. Such bondgraph models may 

be called as holonomic. 

(b) System with modulated two-port transformers. Such bondgraph may be called 

as nonholonomic. 

To explain the procedure, one may take an example as shown in Figure F.1 (a) with its 

bondgraph model. Now, the additional steps for generation of umbra-Lagrangian may 

be given as 

(i) Create two copies of the part of the junction by excluding two-port elements, 

side by side associate one with  -variable (the umbra-time) and other with τ-

variable (the real time). The space between these two may be designated as 

trans-temporal space. 

(ii) Insert the artificial sources to their corresponding junctions. Those inserted in 

the  -component should be designated as function of η and their copies inserted 

in the τ-component would be designated as function of τ. 

(iii) Insert the original flow sources at their respective junctions on the  and τ 

component designating them as function of τ; the effort sources in   

component. 

(iv) Insert all I-and C-elements and fields at their respective junctions on η-

component. 

(v) R-elements and fields (including gyrators) observe the motion in real time τ and 

activations as shown in Figure F.1 (b). Such bondgraph may be termed as 

umbra-Lagrangian generator bondgraphs.  
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Figure F.1 (a): Schematic diagram of a system with a DC motor and a rotating disk in  

viscous medium 

 

 

Figure F.1 (b): Bondgraph model of system represented by Figure F.1 (a) 
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Figure F.2 (a): Causalled bondgraph model of system represented by Figure F.1 (a) with 

artificial flow sources 

 

 

Figure F.2 (b): Umbra-Lagrangian generator bondgraph of system represented by Figure F.1 (a) 
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The umbra-Lagrangian for Figure F.2 (b) may be expressed as 

 
           

          

* 2 21 1
3 1 6 2 2 1 1 7 2 22 2

2 1 1 2 .

L m x m x R x x R x x

x x x x

         

      
 (F.1) 

Now, it is easy to verify that umbra-Lagrangian of Eq. (F.1) renders the right equation 

of motion through Eq. (2.12) for this system. 

Nonholonomic situations may also be handled through this method. 

(i) If after the completion of steps (i-iv), an I-element (or field) receives flow 

through modulated transformer, then that I-element (or field) should be brought 

to the trans-temporal space. It should receives flow from  -component through 

effort activated copy of the modulated transformer and return force to  -

component, which then produces umbra-potential through the work done for the 

corresponding umbra-displacements. 

(ii) If after steps (i-iv), any C-element (or field) receives its flow through modulated 

transformer, then that C-element (or field) should be transformed into an I-

element (or field) by incorporation of a ( or set of) unit gyrator (s) and 1-

junctions. This 1-junction (s) should be now appended with the additional 

artificial flow sources and then the entire graph may be reduced by combining 

the original transformer and unit gyrator to render a modulated gyrator. 

(iii) For any element connected to 0-junction (other than junctions and artificial flow 

source in the model) returns flow information to the junction structure after 

incorporation of artificial flow source as per steps (i-vii), then the bond 

connecting this element and 0-junction must be broken in two bonds by 

incorporating a 1-junction. On this newly 1-junction, one may incorporate 
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additional artificial flow sources associated with a new variable. This should be 

followed for all such elements in the model. 

 One may consider the following example as shown in Figure F.3 (a). The 

umbra-Lagrangian generator bondgraph model of the system is represented in Figure 

F.3 (b), after adding 1-junction in between 0-junction and R-element, to change its 

causality, and additional artificial sources associated with a new variable are appended 

to this 1-junction. 

 

Figure F.3 (a): Schematic diagram of a mass-spring-damper system 

 

Figure F.3 (b): Umbra-Lagrangian generator bondgraphs of system as shown in Figure F.3 (a) 
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The umbra-Lagrangian of the system may be obtained as 

            
22 2

1 2

1 1 1

2 2 2
L mx K x K x y R y y             (F.2)                      

The above Lagrangian yields following equations of motion through Eq. (2.12) 

 
          021   yxKxKxm

dt

d
  (F.3.a) 

        02   yRyxK   (F.3.b) 

In another example, when C-element is in differential causality, one may consider the 

same step as mentioned above and yields the exact equation of motion after obtaining 

umbra-Lagrangian of the system. The system bondgraph model after insertion of 

artificial flow sources may be shown as Figure F.4, where artificial flow sources are 

shown by a double arrow with dotted and solid lines.  

 

Figure F.4: Umbra-Lagrangian generator bondgraphs with compacted artificial flow sources 

The umbra-Lagrangian of the system may be written as 

        22
2

1
2

2

1

2

1

2

1
 yKyxKxmL  

 
(F.4) 
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The equation of motion may be obtained through Eq. (2.12) as 

        01   yxKxm           (F.5.a)      

and condition        021   yKxyK .                                                         (F.5.b)    

The condition of Eq. (F.5.a) is substituted in Eq. (F.5.b) and the equation of motion may 

be finally expressed as 

 

    0
21

21 


  x
KK

KK
xm   (F.6) 

In Figure F.4, the real-time and umbra-time artificial flow sources are represented by a 

dotted and solid line as it is not always possible to make umbra-Lagrangian generator 

bondgraphs by elaborating   and  -component and trans-temporal portion as shown in 

Figure F.2 (b). So, some compaction is needed to show these umbra-Lagrangian 

generator bondgraphs by a single bondgraph model. In present work, the convention of 

compacted bondgraph models is used, to obtain umbra-Lagrangian of the system as 

represented by Figure F.4. 

Another additional feature of bondgraph modeling is that one may easily recognize 

Hamiltonian and non-Hamiltonian component through umbra-Lagrangian generator 

bondgraphs as represented in the Figure F.5, where R-elements and anti-symmetric C-

fields are shown by a superscript (*). The solid line shows the umbra-time flows and 

dotted line shows the real-time flows. Purely Hamiltonian components are only 

components of umbra-time flows as shown by I and C-elements. In this way, 

bondgraphs provide a facility to distinguish Hamiltonian and non-Hamiltonian 

components, and to obtain umbra-Lagrangian. One may keep these two points in his 
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mind, while drawing umbra-Lagrangian generator bondgraphs. In present research 

work, only artificial flow sources are shown by a dotted and solid line, whereas other 

elements are shown by a single solid line and this convention is used throughout the 

work. 

 

Figure F.5: Umbra-Lagrangian generator bondgraphs showing non-Hamiltonian components 
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Appendix G 

General Condition for Symmetry 

 

The most general description of the action functional with integrand as a function of 

time, multiple space variables and homotopic family of amplitudes and their derivative 

as follows 

           
1

1 , 1

0 0

, ,.., , , , , ... ,
nn n

p m t mtI x x u u u



 

      L M x x x   (G.1) 

where      stands for the function and all derivative up to order n. However, it will be 

more convenient to write the modulatory and the trajectorial member using  η→τ 

notations. Now, let us proceed to write the generalized condition for admissibility (or 

invariance) of  ..L  under a single parameter group, which transforms x,, and 

amplitudes  x,iu  and  x,iu , for .,.1i . Let us denote ii xy    for  pi ,...1 ,   

1py  and 2py . Then, a generalized infinitesimal generator may be written as 
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In principle, i  could be function of all sy' and su' . However as in umbra-dynamics, 

we do not assume coupling between  and τ as 1p  will not be function of 2py  and 

2p  will not be function of 1py . We are now concerned about 
thn prolongation of the 

generator vector field of Eq. (G.2) and it may be written as 

    

 
 

 
  












 















 







1

#

1#
2

1

#

1#
1 ,, i

nJ

J
piJ

J

i
i

nJ

J
piJ

J

i

n

r

t

t
t

t

yuyu
p

xx
VV                     (G.3) 



  Appendices 

 

196 

where # denotes the order and J  as subscript stands for all partial derivatives up to 

order n barring those which involve partial derivative with respect to 2py , ( that is with 

respect to τ) , likewise J  as subscript stands for all partial derivatives up to order n 

barring those which involve partial derivative with respect to 1py , (that is with respect 

to η), and  
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Now the admissibility of L under this group of one parameter transformation will be 

given as 

 
   n

rp   V L L 0  (G.4) 

The simplified situations addressed so far in present study are those, in which the 

independent variables, i.e., τ, η and x are not transformed. Only the amplitudes are 

transformed by one parameter group of transformations. The infinitesimal generator 

vector field and their prolongations may be written as  

       

(G.5)
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Equation (G.6) may be written in    form as 
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In this situation 0i , for ,...2,1  pi , the admissibility of Lagrangian density 

reduce to  

   0n
rp V L  (G.8) 

Even from these limited forms of symmetries, many interesting results are obtained for 

symmetric rotors with internal and external dissipation, gyroscopic couplings and 

drives. More generalized symmetries involving independent and dependent variables 

can also be proposed for symmetrizing rotors with special classes of asymmetries. 
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