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Abstract

Univalent function theory is a branch of geometric function theory which comprises of

the various geometric properties of analytic functions. The first milestone in the field

of univalent functions theory was achieved by Bieberbach in the year 1916, wherein

he proved the second coefficient bound for a function f ∈ S of normalised analytic

univalent functions. He also proposed a conjecture for the nth coefficient of the function

in the class S in the same year. Bieberbach’s Conjecture states that the coefficients of

the the function f ∈ S satisfy |an| ≤ n for n = 2, 3, 4, · · · with equality if and only if holds

if f is some rotation of the famous Koebe function. Bieberbach’s conjecture paved way

for many mathematicians to work in the area of univalent functions and a vast literature

is available now.

The present research work focusses on investigating the various types of coefficient

estimate problems in geometric function theory such as computing the bounds on the

second and the third Hankel determinants, the Fekete- Szegö coefficient functional. The

thesis also aims at computing the sharp radius estimates and various inclusion relation-

ships between certain classes of analytic functions. To begin with, Chapter 1 introduces

some basic concepts and results in the theory of univalent functions which will be re-

quired later in our investigations.

Chapter 2, entitled “Initial Coefficients of Starlike Functions w.r.t. Symmetric Points”

aims at studying the functions which are starlike with respect to symmetric points. It

is well known that the class of analytic functions f defined on the unit disk satisfying

vii



viii Preface

Re(z f ′(z)/( f (z)− f (−z))) > 0 is a subclass of close-to-convex functions and the nth

Taylor coefficient of these functions are bounded by one. However, no bounds are known

for the nth coefficients of functions f ∈ S∗s (ϕ) satisfying 2z f ′(z)/( f (z) − f (−z)) ≺
ϕ(z), except for n = 2, 3. Thus, the sharp bound for the fourth coefficient of analytic

univalent functions f satisfying the following subordination 2z f ′(z)/( f (z)− f (−z)) ≺
ϕ(z) has been obtained. The bound for the fifth coefficient has also been obtained in

certain special cases of ϕ including ez and
√

1 + z.

Chapter 3, entitled “Fekete-Szegö Coefficient Functional”, deals with obtaining the bound

for the Fekete-Szegö coefficient functional. Let ϕ be an analytic function with the pos-

itive real part satisfying ϕ(0) = 1 and ϕ′(0) > 0. Let f (z) = z + a2z2 + a3z3 + · · ·
be an analytic function satisfying the subordination α f ′(z) + (1 − α)z f ′(z)/ f (z) ≺
ϕ(z), ( f ′(z))α(z f ′(z)/ f (z))(1−α) ≺ ϕ(z), ( f ′(z))α(1 + z f ′′(z)/ f ′(z))(1−α) ≺ ϕ(z),

( f (z)/z)α(z f ′(z)/ f (z))(1−α) ≺ ϕ(z) or ( f (z)/z)α(1 + z f ′′(z)/ f ′(z))(1−α) ≺ ϕ(z).

For functions satisfying the above subordination, the bounds of Fekete-Szegö coefficient

functional have been obtained.

In Chapter 4 entitled “Hankel Determinant of Certain Analytic Functions”, we have ob-

tained the bounds for the second Hankel determinant H2(2) = a2a4− a2
3 for the function

f satisfying α f ′(z) + (1− α)z f ′(z)/ f (z) ≺ ϕ(z), ( f ′(z))α(z f ′(z)/ f (z))(1−α) ≺ ϕ(z),

( f ′(z))α(1 + z f ′′(z)/ f ′(z))(1−α) ≺ ϕ(z), ( f (z)/z)α(z f ′(z)/ f (z))(1−α) ≺ ϕ(z) or

( f (z)/z)α (1+ z f ′′(z)/ f ′(z))(1−α) ≺ ϕ(z). Here ϕ is an analytic function with the pos-

itive real part, ϕ(0) = 1 and ϕ′(0) > 0. We have also determined the third Hankel deter-

minant H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2) for an analytic function f

of the form f (z) = z + ∑ anzn satisfying either Re
(
( f ′(z))α(z f ′(z)/ f (z))(1−α)

)
> 0 or

Re
(
( f ′(z))α(1 + z f ′′(z)/ f ′(z))(1−α)

)
> 0. Our results include some previously known

results.

In Chapter 5, entitled “Janowski Starlikeness and Convexity”, certain necessary and

sufficient conditions have been determined for the functions f (z) = z−∑∞
n=2 anzn ∈ T ,

an ≥ 0, defined on D, to belong to renowned subclasses of Janowski starlike and convex

functions. In the same chapter, we have also discussed certain sufficient conditions for
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the normalised analytic functions f satisfying (z/ f (z))µ = 1 + ∑∞
n=1 bnzn, µ ∈ C to be

in the class S∗[A, B] of Janowski starlike functions.

In Chapter 6, named “The classes S∗α,e and SL∗(α)”, we have attempted to study the

function f defined on D, with normalisations f (0) = 0 = f ′(0) − 1, satisfying the

subordinations z f ′(z)/ f (z) ≺ α + (1− α)ez or z f ′(z)/ f (z) ≺ α + (1− α)
√

1 + z re-

spectively, where 0 ≤ α < 1. The sharp radii has been determined for these functions

to belong to several known subclasses of analytic functions. In addition, some inclu-

sion relations and coefficient problems including the bounds for the first four coefficient

estimates and the Fekete-Szegö functional have also been obtained.
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Chapter 1
Introduction

Univalent function theory is an alluring branch of geometric function theory which com-

prises of the various geometric properties of analytic functions. The first paper on univa-

lent functions dates back to 1907 and was written by Koebe [40]. Since then, there has

been an extensive study in this field and a vast literature is available now. Among the

other textbooks on univalent functions, there are excellent books by Pommerenke [68],

Goodman [23], Duren [17], Goluzin [22] and Graham and Kohr [26] which provide an

enormous amount of theory of univalent functions.

1.1. UNIVALENT FUNCTIONS

A function f is said to be univalent in some domain D ⊂ C if it doesn’t take the same

value twice. Mathematically, we can say that for two distinct z1, z2 ∈ D, f (z1) 6= f (z2).

In other words, a one to one function which is analytic except at the most one simple

pole is said to be univalent. The function f is said to be locally univalent at some point

z0 ∈ D if f is univalent in some neighbourhood of z0. The necessary and sufficient

condition for local univalence of a function f at the point z0 is that f ′(z0) 6= 0.

LetA be the class of all normalised analytic functions defined on the open unit disk D :=

{z : |z| < 1} subject to normalisation f (0) = 0 and f ′(0) = 1. Our primary concern

here is to study a subclass ofA which consists of normalised analytic univalent functions

1



2 1. INTRODUCTION

f defined over a unit disc D. Such a class is denoted by S . We restrict the domain

under consideration to the open unit disc because of the famous Riemann Mapping

Theorem which was given as early as in 1851 and is one of the most remarkable results

in Complex Analysis. It states that any simply connected domain in C can be mapped

conformally onto a unit disc D = {z : |z| < 1}. The following version of Riemann

Mapping Theorem is from the textbook of Complex Analysis by Ahlfors.

THEOREM 1.1. (Riemann Mapping Theorem) [1] Let D ( C be a simply connected

domain, and z0 ∈ D be any given point. Then there must exist an analytic, one to

one function f : D → D which is unique, maps D onto D and has the properties that

f (z0) = 0 and f ′(z0) > 0.

Taylor series expansion for a normalised analytic and univalent function f ∈ S is

f (z) = z + a2z2 + a3z3 + · · · , |z| < 1.

The best example of a function in the class S is the Koebe function

K(z) = z
(1− z)2 = z + 2z2 + 3z3 + · · · .

Koebe function also acts as an extremal function for the class S . It maps the unit disk

D onto the entire complex plane except the slit from -1/4 to infinity on the negative real

axis.

The first milestone in the field of univalent function theory was the estimation of the

second coefficient bound for a function in the class S . It was given by Bieberbach in the

year 1916 wherein he proved that

THEOREM 1.2. (Bieberbach’s Theorem) [12]. If f ∈ S , |a2| ≤ 2 with equality if and only

if the function f is a rotation of the Koebe function.

Bieberbach’s coefficient theorem suggested the general coefficient estimate problem

which deals in finding An = sup f∈S |an|, n = 2, 3, 4, · · · . Bieberbach also proposed a

conjecture for the nth coefficient of the function in the class S in the same year which is

as follows
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Bieberbach Conjecture. [12] The coefficients of the the function f ∈ S satisfy |an| ≤ n

for n = 2, 3, 4, · · · . Equality holds if f is a rotation of the Koebe function.

For many years this conjecture remained as a challenge for all mathematicians and

has motivated a lot of studies in the theory of univalent functions. Among other results

obtained in trying to prove the Bieberbach conjecture, the following are worthy of note. In

the year 1923, Loewner proved that |a3| ≤ 3 using his parametric method. It was in the

year 1955 that Garabedian and Schiffer proved the Bieberbach conjecture for n = 4 by

the simultaneous use of variational and parametric methods. Later on, in 1960, with the

aid of Grunsky’s univalence condition, the estimate was obtained in a much more simple

manner. Pederson and Ozava demonstrated the validity of Bieberbach’s conjecture for

n = 6 in the year 1968 with the help of the Grunsky inequalities; and in the year 1972,

it was proved for n = 5 by Pederson and Schiffer with the aid of Garabedian-Schiffer

inequalities. After 68 years of extensive research in the geometric theory of functions of

a complex variable, the Bieberbach’s conjecture was finally proved in the year 1985 by

Louis de Branges [13] of Purdue University. He gave a proof for this conjecture using

certain inequalities for special functions. Exact references to these papers and future

discussion can be found in the book by Duren [17].

While going about proving the sharp coefficient bounds for functions in the class S ,

Fekete and Szegö [20] in the year 1933, proved that

|a3 − µa2
2| ≤


4µ− 3, (µ ≥ 1);

1 + exp(−2µ
1−µ), (0 ≤ µ ≤ 1);

3− 4µ, (µ ≤ 0).

holds for the functions f ∈ S and the result is sharp.

Let us now examine certain applications of the Bieberbach’s Theorem. Long back in

1907, Koebe [40] stated that the range of any function f ∈ S under the unit disk contains

a disk centred at the origin of radius 1/4. That is, D1/4 = {z : |z| ≤ 1/4} ⊆ f (D). This

theorem came to be known as Koebe’s One-Quarter Theorem and is given as
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THEOREM 1.3. (Koebe One-Quarter Theorem) [40]. The range of every function of the

class S contains the disk {z : |z| ≤ 1/4}. Equality holds if and only if f (z) is a rotation

of the function K(z) = z/(1− z)2.

Another interesting application of the Bieberbach’s Theorem is the famous Koebe’s Dis-

tortion Theorem. This theorem provides the sharp lower and upper bounds for | f ′(z)|
where f ∈ S .

THEOREM 1.4. (Distortion Theorem) [24, Theorem 3, p. 65] For each f ∈ S ,

1− r
(1 + r)3 ≤ | f

′(z)| ≤ 1 + r
(1− r)3 , |z| = r < 1.

For each z ∈ D, z 6= 0, equality occurs if and only if f is some rotation of the Koebe

function.

Furthermore, there were some very interesting consequences of the distortion theorem,

namely the growth theorem and the rotation theorem. Growth theorem gives the sharp

bounds for | f (z)| whereas the rotation theorem deals with the computation of the bound-

s for | arg f ′(z)|. Rotation theorem was given by Goluzin [21] in the year 1936 by skilfully

using the Loewner differential equation. It is called so, since the quantity arg f ′(z) ge-

ometrically represents the local rotation factor under the conformal mapping f ; the two

theorems are given as follows.

THEOREM 1.5. (Growth Theorem) [24, Theorem 8, p. 68] For each f ∈ S ,

r
(1 + r)2 ≤ | f (z)| ≤

r
(1− r)2 , |z| = r < 1

For each z ∈ D, z 6= 0, equality occurs if and only if f is some rotation of the Koebe

function.

THEOREM 1.6. (Rotation Theorem) [21]. If f ∈ S , then

| arg f ′(z)| ≤

 4arcsin−1r, if r ≤ 1/
√

2;

π + ln r2

1−r2 , if 1/
√

2 < r < 1.

The bound is sharp for each z ∈ D.
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1.2. FUNDAMENTALS IN UNIVALENT FUNCTION THEORY

A domain D is said to be starlike with respect to an interior point w0 if every point in that

domain is visible from w0. A function is starlike with respect to some point z0 if it maps D
onto a domain which is starlike with respect to z0. When z0 = 0, we say that f is starlike.

The class of all starlike functions is denoted by S∗. The following theorem which gives

the analytic characterisation of starlike functions was given by Nevanlinna in 1921.

THEOREM 1.7. [24, Theorem 1, p. 111] Let f be an analytic function in D with f (0) = 0

and f ′(0) = 1. Then f ∈ S∗ if and only if Re
(
z f ′(z)/ f (z)

)
> 0

If line joining any two points in the domain lies entirely within the domain, the domain D

is said to be convex. In other words, a domain is said to be convex, if it is starlike with

respect to each of its interior points. A function f is said to be convex, if it maps the unit

disk D onto a convex domain. The class of all convex functions is denoted by K. The

following analytic characterisation for the class of convex functions was given by Study

in the year 1913.

THEOREM 1.8. [24, Theorem 1, p. 111] Let f be an analytic function in D with f (0) = 0

and f ′(0) = 1. Then f ∈ K if and only if Re
(
1 + z f ′′(z)/ f ′(z)

)
> 0

There is a close analytic relationship between starlike and convex functions. Alexander

gave a two-way bridge relationship between the class of starlike and convex functions.

He proved that

THEOREM 1.9. (Alexander’s Theorem) [24, Theorem 5, p. 115] Let f be analytic in D
with f (0) = 0 and f ′(0) = 1. Then f ∈ K if and only if F ∈ S∗ where F(z) = z f ′(z).

In other words, F is starlike⇔ the function f defined by f (z) =
∫ z

0 F(ξ)/ξdξ is convex.

1.2.1. Caratheodory Class. Closely related to the class of starlike and convex func-

tions is the Caratheodory class which consists of analytic functions with real part posi-

tive. We denote this class by P and p ∈ P if Re(p(z)) > 0. Taylor series expansion

for functions in the class P is given by p(z) = 1 + c1z + c2z2 + c3z3 + · · · . We can
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reformulate the starlike and the convex functions in terms of the functions with the pos-

itive real part by saying that a function f (z) is said to starlike or convex if it satisfies

z f ′(z)/ f (z) ∈ P or 1 + z f ′′(z)/ f ′(z) ∈ P , respectively. The class P is also closely

related to the class of univalent functions because of the beautiful result by Noshiro and

Warschawski which states that

THEOREM 1.10. (The Noshiro- Warschawski Theorem.) [65, 93] Suppose that for some

real α we have Re(eια f ′(z)) > 0 for all z in a convex domain D. Then f (z) is univalent

in D.

Alexander also gave a relationship between the class S and P way back in 1915, which

is merely a special case of the Noshiro- Warschawski Theorem. The result goes as

follows.

THEOREM 1.11. [24, Theorem 12, p. 88] If f ′ is in P , then f is univalent in D.

1.2.2. Sharp bounds for coefficients. In the year 1921, Nevanlinna gave the fol-

lowing sharp bound for nth coefficient of function f ∈ S∗.

THEOREM 1.12. (R. Nevanlinna) [24, Theorem 6, p. 116] If f (z) = z+ a2z2 + a3z3 + · · ·
is in S∗, then for each positive integer n, |an| ≤ n, n = 1, 2, 3, · · · . Furthermore, equality

holds if f is some rotation of the Koebe function.

Loewner gave the sharp bound for nth coefficient of functions f ∈ K.

THEOREM 1.13. (C. Loewner) [24, Theorem 7, p. 117] If f (z) = z + a2z2 + a3z3 + · · ·
is in K, then for each positive integer n, |an| ≤ 1, n = 1, 2, 3, · · · . Furthermore, equality

holds if f is some rotation of the function z/(1− z).

Carathéodory gave the following lemma for the functions in the class P . This lemma is

quite useful for proving various coefficient problems in the theory of univalent functions.

LEMMA 1.14. (Carathéodory’s Lemma.) [17, p. 41] If p(z) = 1 + c1z + c2z2 + c3z3 +

· · · ∈ P , then |cn| ≤ 2, n = 1, 2, 3, · · · . Equality holds for the function (1+ z)/(1− z) ∈
P .
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1.2.3. Subordination. The concept of subordination was first studied long back in

1908 by Lindelöf [46] but the term subordination was only coined later in the year 1925

by Littlewood [47, 48] and studied in a more detailed fashion by Rogosinski [76, 77]. A

substantial amount of theory has been developed over the years and subordination plays

a very crucial role in the study of complex analysis.

Let the functions f and g be analytic on D. Then, f is said to be subordinate to g if

f (z) = g(w(z)), |z| < 1, where the function w ∈ Ω is analytic and satisfies w(0) = 0

and |w(z)| ≤ 1. We denote is as f (z) ≺ g(z). We can also say that g(z) is superordi-

nate to f (z) in D. When the function g is subject to an additional condition of univalence

along with analyticity, then the definition of subordination changes. In this case, f (z) is

subordinate to g(z) if and only if f (0) = g(0) and f (D) ⊂ g(D). According to Lindelöf,

the following condition holds for f (z) ≺ F(z).

THEOREM 1.15. (The Lindelöf Principle. 1908.) [24, Theorem 10, p. 86] Suppose that

f (z) ≺ F(z) in D. Then for each r in [0,1], f (Dr) ⊂ F(Dr). Further, if f (reιθ) is on

the boundary of F(Dr) for any one point z0 = reιθ0 , with 0 < r < 1, then there is a

real α such that f (z) = F(eιαz) and f (reιθ) is on the boundary of F(Dr) for every point

z = reιθ in D.

1.2.4. Ma- Minda Subclasses of Analytic Functions. Let ϕ be a univalent function

with positive real part which maps D onto a domain which is starlike with respect to

ϕ(0) = 1, symmetric with respect to the real line and ϕ′(0) > 0. For such a function

ϕ, in the year 1992, Ma and Minda defined and studied unified classes of starlike and

convex functions denoted by S∗(ϕ) and K(ϕ) respectively [51] which are defined as

S∗(ϕ) :=
{

f ∈ S :
z f ′(z)

f (z)
≺ ϕ(z)

}
and

K(ϕ) :=
{

f ∈ S : 1 +
z f ′′(z)
f ′(z)

≺ ϕ(z)
}

.

Ma-Minda classes generalise various subclasses by taking suitable choice of ϕ. For

instance, when ϕ = (1 + Az)/(1 + Bz), the classes S∗(ϕ) and K(ϕ) reduces to the
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class S∗[A, B] and K[A, B], respectively, which are the classes of the Janowski starlike

and convex functions respectively. Similarly, on replacing ϕ = (1 + (1− 2α)z)/(1− z),

where 0 ≤ α < 1 in S∗(ϕ) we get the classes S∗(α) which is the familiar class of s-

tarlike functions of order α and K(ϕ) reduces to the class K(α) which is the class of

convex functions of order α. For 0 < α ≤ 1, on substituting ϕ =
(
(1 + z)/(1− z)

)α

in S∗(ϕ), we get the subclass SS∗(α) which is the renowned class of strongly star-

like functions of order α. The class SS∗(α) consists of the functions f in S with∣∣ arg
(
(z f ′(z))/ f (z)

)∣∣ < απ/2 for z ∈ D. Finally, replacing ϕ by (1 + z)/(1 − z),

the class S∗(ϕ) and K(ϕ) reduces to the classes S∗ and K respectively. Note that, on

replacing ϕ with α+(1− α)ez and α+(1− α)
√

1 + z in S∗(ϕ), we have defined two ex-

tremely important subclasses of analytic functions, which have been studied extensively

in the sixth chapter of the thesis.

S∗α,e = S∗(α + (1− α)ez) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ α + (1− α)ez

}
,

and

SL∗(α) = S∗(α + (1− α)
√

1 + z) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ α + (1− α)

√
1 + z

}
.

1.3. STARLIKE FUNCTIONS W.R.T. SYMMETRIC POINTS

A function f ∈ A is starlike with respect to symmetric points in D if for every r less than

and sufficiently close to one and every ζ on |z| = r, the angular velocity of f (z) about

the point f (−ζ) is positive at z = ζ as z traverses the circle |z| = r in the positive

direction. Analytically, a function f ∈ A is starlike with respect to symmetric points if

Re
(

z f ′(z)
f (z)− f (−z)

)
> 0, z ∈ D.

The class of all starlike functions with respect to symmetric points is denoted by S∗s . The

class S∗s was introduced by Sakaguchi [79]. The functions belonging to this class are

close-to-convex and therefore univalent. It is a well known fact that this class S∗s includes

the class of convex functions K and the class of odd starlike functions [79]; the functions

in S∗s also satisfy the sharp coefficient inequality |an| ≤ 1, see [16] and [74] for other
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related classes. Let ϕ be a univalent function with positive real part which maps D onto

a domain which is starlike with respect to ϕ(0) = 1, symmetric with respect to the real

line and ϕ′(0) > 0. For such ϕ, Ravichandran [74] introduced the following generalised

class of Ma-Minda starlike functions with respect to symmetric points:

S∗s (ϕ) :=
{

f ∈ S :
2z f ′(z)

f (z)− f (−z)
≺ ϕ(z)

}
and later in [80], the sharp bound for the Fekete-Szegö coefficient functional |a3 − µa2

2|
were obtained. This immediately gives the bound for the first two coefficients of functions

in the above classes.

1.4. FEKETE-SZEGÖ PROBLEM

We have already stated that in the year 1933, Fekete and Szegö proved that

|a3 − µa2
2| ≤


4µ− 3, (µ ≥ 1);

1 + exp(−2µ
1−µ), (0 ≤ µ ≤ 1);

3− 4µ, (µ ≤ 0).

holds for functions f ∈ S and the result is sharp. Thereafter, computing the bound for the

quantity |a3− µa2
2| came to be known as the Fekete-Szegö problem or the Fekete-Szegö

coefficient problem. Keogh and Merkes [58], in 1969, obtained the sharp upper bound

of the Fekete-Szegö functional |a3 − µa2
2| for functions in some subclasses of S . The

Fekete-Szegö functional problem for close to convex functions was investigated among

others by Koepf [41], Kim, Choi and Sugawa [15, 39] and Cho et al. [14]. The problem

for starlike and convex functions were investigated in a more general settings by Ma and

Minda [51]. For other general classes of p-valent functions, the Fekete-Szegö functional

problem was investigated by Ali et al. [5,7]. For classes defined by quasi-subordination,

see Mohd and Darus [73]. Jakubowski and Zyskowska [33] obtained the estimate for

|a2− ca2
2|+ c|a2|n for c ∈ R, f ∈ S . Kiepiela, Pietrzyk and Szynal [38] obtained bounds

for certain combination of initial coefficients of bounded functions; these results were

used later for estimating fourth coefficients of many classes [7]. The results related to

this functional can be seen in [5,7].
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1.5. HANKEL DETERMINANT.

The qth Hankel determinant, denoted by Hq(n), for q = 1, 2, . . . and n = 1, 2, 3, . . . of

the function f is given by

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣
.

Therefore, the second Hankel determinant is given by H2(2) := a2a4 − a2
3. Among

the first few papers on determination of second Hankel determinant, theres one by

Pommerenke [69] in the year 1966. He investigated the second Hankel determinant

H2(2) := a2a4 − a2
3 of univalent functions, starlike functions and class of areally p-

valent functions. In addition to that, Pommerenke [70] also established that Hankel de-

terminant of univalent functions satisfies the following relation: |Hq(n)| < Kn−(
1
2+β)q+ 3

2

(n = 1, 2, . . . ; q = 1, 2, . . .), where β > 1/40000 and K depends on q. The second

Hankel determinants of areally mean p-valent functions were investigated by Noonan

in [59–61]. Noor studied the bounds for Hankel determinant for the class of close-to-

convex functions in [62–64]. Later, Hayman [30] proved that |H2(n)| < An1/2 for areally

mean univalent functions(n ∈ N; A is an absolute constant). In 1986, Elhosh [18, 19]

computed the bound for the second Hankel determinant for univalent functions having

positive Hayman index α, functions which are k-fold symmetric and the class of close-to-

convex functions. The bound for the second Hankel determinant for the class of starlike

and convex functions, the class of close-to-starlike and close-to-convex functions with

respect to symmetric points and the class of functions whose derivative has a positive

real part has been studied in [29, 34]. Lee et al. [45] obtained bounds for the second

Hankel determinant for the unified classes of Ma-Minda starlike and convex functions

with respect to ϕ and two other similar subclasses. One may refer to the survey given

by Liu et al. [50] for the other work done in the research of second Hankel determinant

for univalent functions. Hankel determinants have been studied by several other authors

for various other classes of analytic functions and can be referred to in [2,11,89].
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Similarly, the third Hankel Determinant is defined as

H3(1) :=

∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣
:= a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2).

The third Hankel determinant H3(1) for the class of starlike and convex functions was

studied by Babalola [10]. Shanmugam et al. [82] obtained the third Hankel determinant

H3(1) for the class of α- starlike functions. The third Hankel determinant for the class of

close to convex functions can be referred to in [71], for a subclass of p- valent functions

has been studied in [90], for a class of analytic functions associated with the lemniscate

of Bernoulli in [73] and for starlike and convex functions with respect to symmetric points

in [57]. One can refer to [92] for the third Hankel determinant H3(1) for the inverse of a

function whose derivative has real part positive and [82] for α- starlike functions.

1.6. RADIUS PROBLEM.

In this problem, we are interested in finding the maximal radius r ≤ 1 such that if a

function f is in some class imply that f is in some other subclass whenever |z| < r ≤ 1.

For instance, if f is a starlike function, then it need not be convex. The problem of

finding value for r (0 < r ≤ 1) so that f (Dr), where Dr = {z : |z| < r ≤ 1}reduces to a

convex domain from a starlike domain is known as radius of convexity for the class S∗.
The radius of convexity and starlikeness for the class of all normalised analytic univalent

functions S was studied by Nevanlinna and Grunsky respectively and are given as

THEOREM 1.16. (Nevanlinna 1920.) [24, Theorem 10, p. 119] Let f (z) ∈ S . Then for

each r ≤ 2−
√

3, the image of |z| = r is a simple closed convex curve. The number

RK = 2−
√

3 is sharp. There is a function in S such that for each r > RK the image of

|z| = r is not a convex curve. The number RK = 2−
√

3 is called the radius of convexity

for the set S .



12 1. INTRODUCTION

THEOREM 1.17. (Grunsky 1933.) [24, Theorem 11, p. 121] The the radius of starlikeness

of the class S is the root of the equation

ln
1 + r
1− r

=
π

2
,

namely

RST =
eπ/2 − 1
eπ/2 + 1

= tanh
π

4
= 0.65579.

1.7. SUMMARY OF THE THESIS

This thesis comprises of six chapters. The first chapter being the introductory chapter

contains the basic definitions and fundamentals of the univalent function theory which

will be needed in the subsequent chapters. The second chapter deals with the estimation

of the fourth and the fifth coefficient bound for the class of functions starlike with respect

to symmetric points. The third chapter focuses on the Fekete-Szegö inequality whereas

in the fourth chapter we have computed the second and the third Hankel determinants

for various interesting subclasses. In the fifth chapter, we have studied the Janowski

starlike and Janowski convex classes in detail. And lastly, the final chapter deals with

the radius problems and coefficient estimates for two very interesting subclasses. Given

below is the chapter - wise brief summary of the work we executed.

In Chapter 2, we have studied the class of functions starlike with respect to symmetric

points defined by

S∗s (ϕ) :=
{

f ∈ S :
2z f ′(z)

f (z)− f (−z)
≺ ϕ(z)

}
(1.1)

Taylor series expansion for the function f in this subclass is f (z) = z + a2z2 + a3z3 +

a4z4 + · · · . This class was introduced by Ravichandran [74] in the year 2004. We have

also examined certain special subclasses of S∗s (ϕ). On replacing ϕ by ez,
√

1 + z and
√

2− (
√

2− 1)
√
(1− z)/(1 + 2(

√
2− 1)z), we get the following subclasses.

(1) S∗s,e := S∗s (ez),

(2) S∗s,L := S∗s (
√

1 + z),
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(3) S∗s,RL := S∗s

(
√

2− (
√

2− 1)

√
1− z

1 + 2(
√

2− 1)z

)
.

Sharp bounds for the fourth coefficient a4 of the functions belonging to S∗s (ϕ) have

been obtained. Also, since the bounds for the fifth coefficient a5 for the generalised

class S∗s (ϕ) was coming out to be highly non linear. Therefore, the bounds for the fifth

coefficient a5 for the functions belonging to certain special subclasses of S∗s (ϕ) have

been determined namely S∗s,e, S∗s,L and S∗s,RL.

In Chapter 3, motivated by [5,7,58], we have defined five extremely interesting subclass-

es of S and estimated the bound for the Fekete-Szegö coefficient functional |a3 − µa2
2|

for them. The classes are Vα(ϕ),Mα(ϕ), Lα(ϕ), Kα(ϕ) and Tα(ϕ) respectively, where

0 ≤ α ≤ 1, and are defined as below:

Vα(ϕ) :=
{

f ∈ S : α f ′(z) + (1− α)
z f ′(z)

f (z)
≺ ϕ(z)

}
,

Mα(ϕ) :=
{

f ∈ S : ( f ′(z))α

(
z f ′(z)

f (z)

)(1−α)

≺ ϕ(z)
}

.

Clearly, when α = 0, both the classes Vα(ϕ) and Mα(ϕ) reduce to the Ma - Minda

unified class of starlike functions S∗(ϕ), whereas when α = 1, both the classes reduce

to the class R(ϕ) which is a subclass of close-to-convex functions.

Lα(ϕ) :=
{

f ∈ S : ( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)(1−α)

≺ ϕ(z)
}

.

Here, when α = 0, the class Lα(ϕ) reduces to the Ma - Minda class of convex functions

K(ϕ), whereas when α = 1, Lα(ϕ) reduces to the subclass of close-to-convex functions

R(ϕ).

Kα(ϕ) :=
{

f ∈ S :
(

f (z)
z

)α (z f ′(z)
f (z)

)(1−α)

≺ ϕ(z)
}

,

Tα(ϕ) :=
{

f ∈ S :
(

f (z)
z

)α (
1 +

z f ′′(z)
f ′(z)

)(1−α)

≺ ϕ(z)
}

.

Again, on substituting α = 0 in the classes Kα(ϕ) and Tα(ϕ), we get the Ma - Minda

generalised subclasses of starlike and convex functions, respectively.
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Note that the Fekete-Szegö coefficient functional directly yields the bounds for the first

two coefficients. Therefore, the sharp bounds for the second and the third coefficients

a2 and a3 for the functions belonging to the same classes have also been estimated.

Chapter 4 focuses on the Hankel determinants. The qth Hankel determinant (denoted

by Hq(n)) for q = 1, 2, . . . and n = 1, 2, 3, . . . of the function f (z) = z + a2z2 + a3z3 +

a4z4 + · · · is the determinant of the q× q matrix given by Hq(n) := det(an+i+j−2). Here

an+i+j−2 denotes the entry for the ith row and jth column of the matrix. Motivated by the

paper by Lee et al. [45], who obtained bounds for the second Hankel determinant for the

classes of Ma-Minda starlike and convex functions with respect to ϕ, we defined five sub-

classes of analytic functions and obtained the bound for the second Hankel determinant

H2(2) = |a2a4 − a2
3| for them. The classes respectively are consisting of the function

f ∈ S satisfying α f ′(z) + (1− α)z f ′(z)/ f (z) ≺ ϕ, ( f ′(z))α(z f ′(z)/ f (z))(1−α) ≺ ϕ,

( f ′(z))α(1 + z f ′′(z)/ f ′(z))(1−α) ≺ ϕ, ( f (z)/z)α(z f ′(z)/ f (z))(1−α) ≺ ϕ or ( f (z)/z)α

(1+ z f ′′(z)/ f ′(z))(1−α) ≺ ϕ , where ϕ is a univalent function with the positive real part

and satisfies ϕ(0) = 1 and ϕ′(0) > 0.

Apart from this, motivated by the paper by Babalola [10], who estimated the third Hankel

determinant H3(1) for the class of starlike and convex functions, we have also obtained

the third Hankel determinant for two very interesting subclasses of starlike and convex

functions defined as follows:

Mα :=

{
f ∈ S : Re

(
( f ′(z))α

(
z f ′(z)

f (z)

)1−α
)

> 0

}
,

Lα :=

{
f ∈ S : Re

(
( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)1−α
)

> 0

}
.

Note that for α = 0, the classesMα and Lα reduce to the classes of the starlike and the

convex functions respectively, whereas substituting α = 1 in the above subclasses again

yield the subclass of close to convex functions whose derivative has real part positive,

satisfying { f ∈ S : Re( f ′(z)) > 0}.
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Chapter 5 deals mainly with the functions with the negative coefficients which is a

subclass of S which consists of functions whose coefficients from second onward-

s are negative. We denote this class by T . A function f ∈ T if it is of the form

f (z) = z− a2z2 − a3z3 − a4z4 − · · · , an ≥ 0. Certain necessary and sufficient condi-

tions have been investigated for the functions in the class T to be in classes T S∗[A, B],

T K[A, B] and TR(A, B, α) defined as follows:

T S∗[A, B] :=
{

f ∈ T :
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz

}
,

T K[A, B] :=
{

f ∈ T : 1 +
z f ′′(z)
f ′(z)

≺ 1 + Az
1 + Bz

}
,

and

T R(A, B, α) :=
{

f ∈ T :
z f ′(z)

f (z)

(
α

z f ′′(z)
f ′(z)

+ 1
)
≺ 1 + Az

1 + Bz

}
.

Also discussed are some sufficient conditions for the functions belonging to the intersec-

tion of the above defined classes. In Section 5.4, motivated by [44], we defined another

class of functions f satisfying (z/ f (z))µ = 1 + ∑∞
n=1 bnzn, µ ∈ C and obtained the

necessary and sufficient conditions for such functions to be in the class S∗[A, B].

In Chapter 6, two very fascinating subclasses S∗α,e and SL∗(α), 0 ≤ α < 1 of S∗ have

been defined using the concept of subordination. They are given by

S∗α,e = S∗(α + (1− α)ez) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ α + (1− α)ez

}
,

and

SL∗(α) = S∗(α + (1− α)
√

1 + z) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ α + (1− α)

√
1 + z

}
.

and have been thoroughly examined and studied in this chapter. An observation leads to

the fact that when α = 0, S∗α,e and SL∗(α) reduce to the classes S∗e and SL respectively.

Apart from obtaining the bound for the Fekete-Szegö inequality, we have also studied the

relationship between S∗α,e and other subclasses of analytic functions such as the class

M(β), the class of k- starlike functions k−S∗ and the class S∗(β) of functions starlike
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of order β defined as follows:

M(β) :=
{

f ∈ A : Re
z f ′(z)

f (z)
< β

}
, z ∈ D

k− S∗ :=
{

f ∈ A : Re
z f ′(z)

f (z)
> k

∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣} , z ∈ D

and

S∗(β) :=
{

f ∈ A : Re
z f ′(z)

f (z)
> β

}
, z ∈ D.

We have also determined the S∗(β),M(β), k− S∗ and K- radii for functions in these

two subclasses. In addition, the S∗α,e - radius for various subclasses such as S∗[A, B],

W , F1 and F2 has also been determined. The classes W , F1 and F2 are defined as

under:

W :=
{

f ∈ A :
f (z)

z
∈ P

}
, z ∈ D

F1 :=
{

f ∈ A :
f (z)
g(z)

∈ P , g ∈ W
}

, z ∈ D

and

F2 :=
{

f ∈ A :
∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ < 1, g ∈ W

}
, z ∈ D.

Finally, many coefficient inequalities have been determined and the bounds for the first

four coefficient estimates have been obtained for both the classes S∗α,e and SL∗(α).



Chapter 2
Initial Coefficients of Starlike Functions

w.r.t. Symmetric Points

Recall that an analytic function f is subordinate to F, written f ≺ F or f (z) ≺ F(z) (z ∈
D) if there exists an analytic function w : D → D satisfying w(0) = 0 and f (z) =

F(w(z)) for z ∈ D. Let ϕ be a univalent function with positive real part which maps

D onto a domain which is symmetric with respect to the real line and starlike with re-

spect to ϕ(0) = 1 and ϕ′(0) > 0. Taylor series expansion of the function ϕ is given

as ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · . Let S∗(ϕ) be the class of functions f ∈ S
for which z f ′(z)/ f (z) ≺ ϕ(z) and K(ϕ) be the class of functions f ∈ S for which

1 + z f ′′(z)/ f ′(z) ≺ ϕ(z). The above classes were introduced and studied by Ma and

Minda [51]. Similar to Ma-Minda classes, for ϕ as defined above, Ravichandran [74]

introduced the following subclass:

S∗s (ϕ) =

{
f ∈ S :

2z f ′(z)
f (z)− f (−z)

≺ ϕ(z)
}

The contents of this chapter appeared in K. Khatter, V. Ravichandran and S. Sivaprasad Kumar, Esti-

mates for initial coefficients of certain starlike functions with respect to symmetric points, in Applied analysis

in biological and physical sciences, 385–395, Springer Proc. Math. Stat., 186, Cushing J., Saleem M.,

Srivastava H., Khan M., Merajuddin M. (eds) Springer, New Delhi.

17
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and later Shanmugam [80] obtained the sharp bound for the Fekete-Szegö coefficient

functional |a3 − µa2
2| for the class S∗s (ϕ) were obtained. This immediately gives the

bound for the first two coefficients of functions in the above classes.

Let P be the class of all analytic functions p(z) = 1 + ∑∞
n=0 cnzn with Re p(z) > 0 for

z ∈ D and Ω be the class of all analytic functions w : D → D of the form w(z) =

w1z + w2z2 + · · · . In this chapter, our aim is to determine the bound for the fourth

coefficient of functions belonging to the class S∗s (ϕ). This is done by first expressing the

coefficients of f in terms of the coefficients Bn of ϕ and the coefficient cn of a function

with a positive real part. The coefficient estimate for a4 also follows from a result of

Prokhorov and Szynal [72]. The bound for the fifth coefficient of functions in S∗s (ϕ) is

highly non-linear. We are able to estimate a5 in certain important special cases of ϕ:

S∗s,e := S∗s (e
z), S∗s,L := S∗s (

√
1 + z),

and

S∗s,RL := S∗s

(
√

2− (
√

2− 1)

√
1− z

1 + 2(
√

2− 1)z

)
.

These classes are analogues of the corresponding classes of starlike functions intro-

duced and studied respectively in [53,55,86].

2.1. FOURTH COEFFICIENT

To prove our results, we need the following results; the results in (a)–(c) of Lemma 2.1

are respectively in [3,51,75].

LEMMA 2.1. Let p(z) = 1 + ∑∞
n=0 cnzn ∈ P . Then,

(a) |c2 − υc2
1| ≤ 2 max{1, |2υ− 1|},

(b) |c3 − 2βc1c2 + δc3
1| ≤ 2 if 0 ≤ β ≤ 1 and β(2β− 1) ≤ δ ≤ β.

(c) |γc4
1 + ac2

2 + 2αc1c3 − (3/2)βc2
1c2 − c4| ≤ 2, when 0 < α < 1, 0 < a < 1

and 8a(1− a)((αβ− 2γ)2 +(α(a+ α)− β)2)+ α(1− α)(β− 2aα)2 ≤ 4α2(1−
α)2a(1− a).
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LEMMA 2.2. [72] If w ∈ Ω, then for any real numbers q1 and q2, the following sharp

estimate |w3 + q1w1w2 + q2w3
1| ≤ H(q1, q2) holds, where

H(q1, q2) =



1 for (q1, q2) ∈ D1 ∪ D2

|q2| for (q1, q2) ∈ ∪7
k=3Dk

2
3(|q1|+ 1)

(
|q1|+1

3(|q1|+1+q2)

) 1
2

for (q1, q2) ∈ D8 ∪ D9

1
3q2

(
q2

1−4
q2

1−4q2

)(
q2

1−4
3(q2−1)

) 1
2

for (q1, q2) ∈ D10 ∪ D11 − {±2, 1}

2
3(|q1| − 1)

(
|q1|−1

3(|q1|−1−q2)

) 1
2

for (q1, q2) ∈ D12

(2.1)

The extremal functions, up to rotations, are of the form

w(z) = z3, w(z) = z, w(z) = w0(z) =
z([(1− λ)ε2 + λε1]− ε1ε2z)

1− [(1− λ)ε1 + λε2]z
,

w(z) = w1(z) =
z(t1 − z)
1− t1z

, w(z) = w2(z) =
z(t2 + z)
1 + t2z

|ε1| = |ε2| = 1, ε1 = t0 − e
−iθ0

2 (a∓ b), ε2 = −e
−iθ0

2 (ia± b),

a = t0 cos
θ0

2
, b =

√
1− t2

0 sin2 θ0

2
, λ =

b± a
2b

t0 =

[
2q2(q2

1 + 2)− 3q2
1

3(q2 − 1)(q2
1 − 4q2)

] 1
2

, t1 =

(
|q1|+ 1

3(|q1|+ 1 + q2)

) 1
2

,

t2 =

(
|q1| − 1

3(|q1| − 1− q2)

) 1
2

, cos
θ0

2
=

q1

2

[
q2(q2

1 + 8)− 2(q2
1 + 2)

2q2(q2
1 + 2)− 3q2

1

]
.

The sets Dk, k = 1, 2, · · · , 12, are defined as follows

D1 = {(q1, q2) : |q1| ≤
1
2

, |q2| ≤ 1},

D2 = {(q1, q2) :
1
2
≤ |q1| ≤ 2,

4
27

(|q1|+ 1)3 − (|q1|+ 1) ≤ q2 ≤ 1},
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D3 = {(q1, q2) : |q1| ≤
1
2

, q2 ≤ −1},

D4 = {(q1, q2) : |q1| ≥
1
2

, q2 ≤ −
2
3
(|q1|+ 1)},

D5 = {(q1, q2) : |q1| ≤ 2, q2 ≥ 1},

D6 = {(q1, q2) : 2 ≤ |q1| ≤ 4, q2 ≥
1
12

(q2
1 + 8)},

D7 = {(q1, q2) : |q1| ≥ 4, q2 ≥
2
3
(|q1| − 1)},

D8 = {(q1, q2) :
1
2
≤ |q1| ≤ 2,−2

3
(|q1|+ 1) ≤ q2 ≤

4
27

(|q1|+ 1)3 − (|q1|+ 1)},

D9 = {(q1, q2) : |q1| ≥ 2,−2
3
(|q1|+ 1) ≤ q2 ≤

2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
},

D10 = {(q1, q2) : 2 ≤ |q1| ≤ 4,
2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
≤ q2 ≤

1
12

(q2
1 + 8)},

D11 = {(q1, q2) : |q1| ≥ 4,
2|q1|(|q1|+ 1)
q2

1 + 2|q1|+ 4
≤ q2 ≤

2|q1|(|q1| − 1)
q2

1 − 2|q1|+ 4
},

D12 = {(q1, q2) : |q1| ≥ 4,
2|q1|(|q1| − 1)
q2

1 − 2|q1|+ 4
≤ q2 ≤

2
3
(|q1| − 1)}.

By using Lemma 2.1 and 2.2, we have proved the following bound for the fourth coeffi-

cient of functions in S∗s (ϕ).

THEOREM 2.3. Let the function f (z) = z + a2z2 + a3z3 + · · · ∈ S∗s (ϕ) where ϕ(z) =

1 + B1z + B2z2 + B3z3 + · · · . Then

|a4| ≤
B1

4
H(q1, q2),

where H(q1, q2) is as defined in (2.1),

q1 :=
4B2 + B2

1
2B1

; and q2 :=
2B3 + B1B2

2B1
. (2.2)

PROOF. If f ∈ S∗s (ϕ), then there is an analytic function w(z) = w1z + w2z2 + · · · ∈
Ω such that

2z f ′(z)
f (z)− f (−z)

= ϕ(w(z)). (2.3)
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Since

2z f ′(z)
f (z)− f (−z)

= 1 + 2a2z + 2a3z2 + (−2a2a3 + 4a4)z3 + (−2a2
3 + 4a5)z4 + · · ·

and

ϕ(w(z)) = 1 + B1w1z + (B2w2
1 + B1w2)z2 + (B3w3

1 + 2B2w1w2 + B1w3)z3 + · · ·

we get, from (2.3),

a2 =
1
2

B1w1,

a3 =
1
2
(B2w2

1 + B1w2),

a4 =
1
4

(
(B3 +

1
2

B1B2)w3
1 + (2B2 +

1
2

B2
1)w1w2 + B1w3

)
.

The coefficient a4 can be rewritten as

a4 =
B1

4
(w3 + q1w1w2 + q2w3

1)

where q1 and q2 are as given in the equation 2.2. Lemma 2.2 immediately yields the

desired estimate |a4| ≤ B1H(q1, q2)/4.

2.2. FIFTH COEFFICIENT

Our next theorems provide sharp bound on |a5| for three different choices of ϕ. The

bounds for a2, a3, a4 have also been included here for completeness.

THEOREM 2.4. Let f (z) = z + a2z2 + a3z3 + · · · and f ∈ S∗s,L. Then

|a2| ≤
1
4

, |a3| ≤
1
4

, |a4| ≤
1
8

and |a5| ≤
1
8

.

All the bounds here are sharp.

PROOF. For the function f (z) = z + a2z2 + a3z3 + · · · ∈ S∗s (ϕ), we first express an

n = 1, 2, 3, · · · in terms of the coefficients of the functions ϕ(z) = 1+ B1z + B2z2 + · · ·
and p1(z) = 1 + c1z + c2z2 + · · · ∈ P . In terms of the coefficients bn of the function p
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defined by

p(z) :=
2z f ′(z)

f (z)− f (−z)
= 1 + b1z + b2z2 + · · · ,

the coefficients an are expressed by

nan =
dn/2e

∑
k=1

bn+1−2ka2k−1. (2.4)

From equation (2.4), we have

2a2 = b1, 2a3 = b2, −2a2a3 + 4a4 = b3, −2a2
3 + 4a5 = b4. (2.5)

Since ϕ is univalent and p ≺ ϕ, the function

p1(z) =
1 + ϕ−1(p(z))
1− ϕ−1(p(z))

= 1 + c1z + c2z2 + · · ·

belongs to P . Equivalently,

p(z) = ϕ

(
p1(z)− 1
p1(z) + 1

)
.

Using the previous equation, we obtain each bi’s in terms of ci’s and Bi’s as follows:

b1 =
1
2

B1c1,

b2 =
1
4

(
(B2 − B1)c2

1 + 2B1c2

)
,

b3 =
1
8

(
(B1 − 2B2 + B3)c3

1 + 4(B2 − B1)c1c2 + 4B1c3

)
, (2.6)

b4 =
1
16

(
(−B1 + 3B2 − 3B3 + B4)c4

1 + 6(B3 − 2B2 + B1)c2
1c2

+ 4(B2 − B1)c2
2 + 8(B2 − B1)c1c3 + 8B1c4

)
.

Thus, from equations (2.5) and (2.6), we get

a2 =
1
4

B1c1, (2.7)

a3 =
1
8

(
(B2 − B1)c2

1 + 2B1c2

)
, (2.8)

a4 =
1

64

(
(2B1 − B2

1 − 4B2 + B1B2 + 2B3)c3
1 + (2B2

1 + 8B2 − 8B1)c1c2 + 8B1c3

)
(2.9)
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and

a5 =
1

128

(
(−2B1 + B2

1 + 6B2 − 2B1B2 + B2
2 − 6B3 + 2B4)c4

1 (2.10)

+ (12B1 − 4B2
1 − 24B2 + 4B1B2)c2

1c2 + (4B2
1 + 8B2 − 8B1)c2

2

+ (16B2 − 16B1)c1c3 + 16B1c4

)
.

Since f ∈ S∗s,L, therefore

ϕ(z) =
√

1 + z = 1 +
1
2

z− 1
8

z2 +
1
16

z3 − 5
128

z4 + · · · .

Thus B1 = 1/2, B2 = −1/8, B3 = 1/16 and B4 = −5/128. On substituting these

values in (2.7), (2.8), (2.9) and (2.10) as in the previous theorem, we get

a2 =
1
8

c1,

a3 =
1
64

(−5c2
1 + 8c2),

a4 =
1

1024
(21c3

1 − 72c1c2 + 64c3),

a5 =
1

8192
(−116c4

1 + 544c2
1c2 − 256c2

2 − 640c1c3 + 512c4).

Since |cn| ≤ 2 for n ≥ 1, we have |a2| ≤ 1/4. By using Lemma 2.1(a) we obtain

|a3| ≤ 1/4. Since

a4 =
1

16
(c3 − 2βc1c2 + δc3

1)

where β = 9/16 and δ = 21/64, Lemma 2.1(b) shows that |a4| ≤ 1/8. Similarly,

a5 =
1

16
(γc4

1 + ac2
2 + 2αc1c3 − (3/2)βc2

1c2 − c4),

where γ = 29/128, a = 1/2, α = 5/8, β = 17/24. Lemma 2.1(c) shows that |a5| ≤
1/8. Define the functions fk (k = 1, 2, · · · ) by

2z f ′k(z)
fk(z)− fk(−z)

=
√

1 + zk = 1 +
zk

2
− z2k

8
+

z3k

16
+ · · · , ( fk(0) = 0, f ′k(0) = 1).

Then

f1(z) = z +
1
4

z2 + · · · , f2(z) = z +
1
4

z3 + · · · ,
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f3(z) = z +
1
8

z4 + · · · , and f4(z) = z +
1
8

z5 + · · · .

Clearly the functions fk ∈ S∗s,L. Moreover the kth coefficient is sharp for fk−1 where

k = 2, 3, 4, 5.

THEOREM 2.5. Let f (z) = z + a2z2 + a3z3 + · · · and f ∈ S∗s,RL. Then

|a2| ≤
5
4
− 3

2
√

2
, |a3| ≤

5
4
− 3

2
√

2
, |a4| ≤

5
8
− 3

4
√

2
and |a5| ≤

5
8
− 3

4
√

2
.

All the bounds here are sharp.

PROOF. Proceeding as in the proof of the previous theorem, the expressions (2.7),

(2.8), (2.9) and (2.10) for the coefficients a2-a5 can be obtained. Now let f ∈ S∗s,RL.

Then,

ϕ(z) =
√

2− (
√

2− 1)

√
1− z

1 + 2(
√

2− 1)z

= 1 +
5− 3

√
2

2
z +

71− 51
√

2
8

z2 +
589− 415

√
2

16
z3 +

20043− 14179
√

2
128

z4 + · · · .

Thus B1 = (5− 3
√

2)/2, B2 = (71− 51
√

2)/8, B3 = (589− 415
√

2)/16 and

B4 = (20043− 14179
√

2)/128. Using these values in (2.7), (2.8), (2.9) and (2.10), we

get

a2 =
1
8
(−1 +

√
2)(−c1 + 2

√
2c1),

a3 =
1
64

(−1 +
√

2)
(
(−27 + 12

√
2)c2

1 + (−8 + 16
√

2)c2

)
,

a4 =
1

1024

(
(1179− 818

√
2)c3

1 + 8(145− 108
√

2)c1c2 + 64(5− 3
√

2)c3

)
and

a5 =
1

8192

(
(14638− 10453

√
2)c4

1 − 48(−508 + 351
√

2)c2
1c2

− 64(−94 + 69
√

2)c2
2 − 384(−17 + 13

√
2)c1c3 − 512(−5 + 3

√
2)c4

)
.
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Since |cn| ≤ 2 for n ≥ 1, we have

|a2| ≤
5
4
− 3

2
√

2
.

Use of Lemma 2.1(a) shows that

|a3| ≤
5
4
− 3

2
√

2
.

Since

a4 =
5− 3

√
2

16

(
c3 − 2βc1c2 + δc3

1

)
where

β = (108
√

2− 145)/(16(5− 3
√

2)), δ = (1179− 818
√

2)/(64(5− 3
√

2)).

Lemma 2.1(b) shows that

|a4| ≤
5
8
− 3

4
√

2
.

Similarly, a5 can be rewritten as

a5 =
−5 + 3

√
2

8

(
γc4

1 + ac2
2 + 2αc1c3 − (3/2)βc2

1c2 − c4

)
where

γ = (14638− 10453
√

2)/(512(−5 + 3
√

2)), a = (94− 69
√

2)/(8(−5 + 3
√

2)),

α = (3(17− 3
√

2))/(8(−5 + 3
√

2)) and β = (−508 + 351
√

2)/(16(−5 + 3
√

2)).

Lemma 2.1(c) shows that

|a5| ≤
5
8
− 3

4
√

2
.

Define the functions fk (k = 1, 2, · · · ) by

2z f ′k(z)
fk(z)− fk(−z)

=
√

2− (
√

2− 1)

√
1− zk

1 + 2(
√

2− 1)zk
( fk(0) = 0, f ′k(0) = 1).
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Then

f1(z) = z +
5− 3

√
2

4
z2 + · · · , f2(z) = z +

5− 3
√

2
4

z3 + · · · ,

f3(z) = z +
5− 3

√
2

8
z4 + · · · , and f4(z) = z +

5− 3
√

2
8

z5 + · · · .

Clearly, the functions fk ∈ S∗s,RL and the kth coefficient is sharp for fk−1 (k = 2, 3, 4, 5)

THEOREM 2.6. Let f (z) = z + a2z2 + a3z3 + · · · and f ∈ S∗s,e. Then

|a2| ≤
1
2

, |a3| ≤
1
2

, |a4| ≤
1
4

and |a5| ≤
1
4

.

All the bounds here are sharp.

PROOF. Proceeding as in the proof of the Theorem 2.4, the expressions for the co-

efficients a2-a5 can be easily obtained. Next let f ∈ S∗s,e. Then,

q(z) = ez = 1 + z +
z2

2
+

z3

6
+

z4

24
+

z5

120
+ · · · .

Thus, B1 = 1, B2 = 1/2, B3 = 1/6 and B4 = 1/24. Using these values in (2.7), (2.8),

(2.9) and (2.10), we get

a2 =
1
4

c1,

a3 =
1
16

(−c2
1 + 4c2),

a4 =
1

384
(−c3

1 − 12c1c2 + 48c3)

and

a5 =
1

384
(c4

1 − 24c2
1c3 + 48c4).

Since |cn| ≤ 2 for n ≥ 1, therefore |a2| ≤ 1/2. Use of Lemma 2.1(a) shows that

|a3| ≤ 1/2. Since

a4 =
1
8
(c3 − 2βc1c2 + δc3

1)



2.2. FIFTH COEFFICIENT 27

where β = 1/8 and δ = −1/48, Lemma 2.1(b) shows that |a4| ≤ 1/4. Similarly,

a5 =
1
8
(γc4

1 + ac2
2 + 2αc1c3 − (3/2)βc2

1c2 − c4)

where γ = −1/48, a = 0, α = 1/4, β = 0. Note that Lemma 2.2 holds for a = 0.

Applying Lemma 2.1(c) with a = 0, we have |a5| ≤ 1/4. Define the functions fk (k =

1, 2, · · · ) by

2z f ′k(z)
fk(z)− fk(−z)

= ekz = 1 + zk +
z2k

2!
+

z3k

3!
+ · · · ( fk(0) = 0, f ′k(0) = 1).

Then

f1(z) = z +
1
2

z2 + · · · f2(z) = z +
1
2

z3 + · · · ,

f3(z) = z +
1
4

z4 + · · · , and f4(z) = z +
1
4

z5 + · · · .

Clearly the functions fk ∈ S∗s,e. Clearly the kth coefficient is sharp for fk−1 for k =

2, 3, 4, 5.





Chapter 3
Fekete-Szegö Coefficient Functional

3.1. FEKETE- SZEGÖ PROBLEM

Let ϕ be a univalent function having real part positive satisfying ϕ(0) = 1 and ϕ′(0) > 0.

In this chapter, we determine the bounds for the Fekete-Szegö functional |a3 − µa2
2| for

the following subclasses

Vα(ϕ) :=
{

f : α f ′(z) + (1− α)
z f ′(z)

f (z)
≺ ϕ(z)

}
,

Mα(ϕ) :=
{

f : ( f ′(z))α
(z f ′(z)

f (z)

)(1−α)
≺ ϕ(z)

}
,

Lα(ϕ) :=
{

f : ( f ′(z))α
(

1 +
z f ′′(z)
f ′(z)

)(1−α)
≺ ϕ(z)

}
,

Kα(ϕ) :=
{

f :
( f (z)

z

)α(z f ′(z)
f (z)

)(1−α)
≺ ϕ(z)

}
and

Tα(ϕ) :=
{

f :
( f (z)

z

)α(
1 +

z f ′′(z)
f ′(z)

)(1−α)
≺ ϕ(z)

}
Our results include some previously known results. In order to prove our results, we

need the following lemma:

The contents of this chapter appeared in K. Khatter, S. K. Lee and S. S. Kumar, Coefficient bounds for

certain analytic functions, Bull. Malays. Math. Sci. Soc. 41 (2018), no. 1, 455–490.

29
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LEMMA 3.1. [51] Let p ∈ P be given by p(z) = 1 + c1z + c2z2 + · · · . Then,

|c2 − νc2
1| ≤


−4ν + 2, if ν ≤ 0;

2, if 0 ≤ ν ≤ 1;

4ν− 2, if ν ≥ 1.

Let ϕ : D→ C be a function having real part positive with

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · , B1 > 0; B1, B2, B3 ∈ R. (3.1)

3.2. THE CLASS Vα(ϕ)

Our first theorem gives the Fekete-Szegö inequality for functions in the class Vα(ϕ).

THEOREM 3.2. Let ϕ be a function defined as in (3.1) and let the function f (z) = z +

a2z2 + a3z3 + · · · ∈ Vα(ϕ). Then we have the following:

(1) If B1, B2 and µ satisfy the condition

(2 + α)B2
1µ ≤ (1− α)B2

1 + (B2 − B1)(1 + α)2,

then

|a3 − µa2
2| ≤

1
(2 + α)

[
B2 +

(1− α)

(1 + α)2 B2
1 −

(2 + α)µ

(1 + α)2 B2
1

]
.

(2) If B1, B2 and µ satisfy the condition

(1− α)B2
1 + (B2 − B1)(1 + α)2 ≤ (2 + α)B2

1µ ≤ (1− α)B2
1 + (B2 + B1)(1 + α)2,

then

|a3 − µa2
2| ≤

B1

2 + α
.

(3) If B1, B2 and µ satisfy the condition

(1− α)B2
1 + (B2 + B1)(1 + α)2 ≤ (2 + α)B2

1µ,
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then

|a3 − µa2
2| ≤

1
2 + α

[
− B2 −

1− α

(1 + α)2 B2
1 +

(2 + α)µ

(1 + α)2 B2
1

]
.

PROOF. Since f ∈ Vα(ϕ), there is an analytic function w(z) = w1z + w2z2 + · · · ∈
Ω, such that

α f ′(z) + (1− α)
z f ′(z)

f (z)
= ϕ(w(z)). (3.2)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · .

Then

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Since ϕ(z) = 1 + B1z + B2z2 +

B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (3.3)

Also, the Taylor series expansion of f gives

α f ′(z) + (1− α)z
f ′(z)
f (z)

= 1 + a2(1 + α)z +
(
(2 + α)a3 − (1− α)a2

2

)
z2

+
(
(3 + α)a4 − (1− α)(3a2a3 − a3

2)
)

z3 + · · · .
(3.4)

Then from (3.2), (3.3) and (3.4), we get

a2 =
B1c1

2(1 + α)
. (3.5)

a3 =
1

4(2 + α)

[
2B1c2 +

( (1− α)

(1 + α)2 B2
1 + (B2 − B1)

)
c2

1

]
. (3.6)

Equations (3.5) and (3.6) yield

a3 − µa2
2 =

1
(2 + α)

[
c2B1

2
−

c2
1B1

4
+

c2
1B2

4
+

(1− α)c2
1B2

1
4(1 + α)2 −

µB2
1c2

1
4(1 + α)2

]
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=
B1

2(2 + α)

(
c2 − νc2

1
)
,

where

ν =
1
2

(
1− B2

B1
− (1− α)B1

(1 + α)2 +
(2 + α)B1

(1 + α)2 µ

)
.

Finally, by using Lemma 3.1, we get the desired result.

REMARK 3.3. Bounds for the second and the third coefficient for f in Vα(ϕ) can be

directly obtained from Theorem 3.2 and is given as follows:

|a2| ≤
B1

1 + α
,

and

|a3| ≤



B2 +
1−α

(1+α)2 B2
1

2 + α
, (1− α)B2

1 + (B2 − B1)(1 + α)2 ≥ 0;
B1

2 + α
, (1− α)B2

1 + (B2 − B1)(1 + α)2 ≤ 0 or

(1− α)B2
1 + (B2 + B1)(1 + α)2 ≥ 0;

−B2 − 1−α
(1+α)2 B2

1

2 + α
, (1− α)B2

1 + (B2 + B1)(1 + α)2 ≤ 0.

3.3. THE CLASSMα(ϕ)

Our next theorem gives the Fekete-Szegö inequality for functions in the classMα(ϕ).

THEOREM 3.4. Let ϕ be defined as in (3.1) and let the function f (z) = z+ a2z2 + a3z3 +

· · · ∈ Mα(ϕ). Then we have the following:

(1) If B1, B2 and µ satisfy the condition

2(2 + α)B2
1µ ≤ (2 + α)(1− α)B2

1 + 2(B2 − B1)(1 + α)2,

then

|a3 − µa2
2| ≤

1
(2 + α)

(
B2 +

(2 + α)(1− α)

2(1 + α)2 B2
1 −

(2 + α)µ

(1 + α)2 B2
1

)
.
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(2) If B1, B2 and µ satisfy the condition

(1− α)(2 + α)B2
1 + 2(B2 − B1)(1 + α)2 ≤ 2(2 + α)B2

1µ

≤ (1− α)(2 + α)B2
1 + 2(B2 + B1)(1 + α)2,

then

|a3 − µa2
2| ≤

B1

2 + α
.

(3) If B1, B2 and µ satisfy the condition

(1− α)(2 + α)B2
1 + 2(B2 + B1)(1 + α)2 ≤ 2(2 + α)B2

1µ,

then

|a3 − µa2
2| ≤

1
2 + α

(
− B2 −

(1− α)(2 + α)

2(1 + α)2 B2
1 +

(2 + α)µ

(1 + α)2 B2
1

)
.

PROOF. Since f ∈ Mα(ϕ), there is an analytic function w(z) = w1z+w2z2 + · · · ∈
Ω, such that

( f ′(z))α
(z f ′(z)

f (z)

)1−α
= ϕ(w(z)). (3.7)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (3.8)

Also, the Taylor series expansion of f gives

( f ′(z))α
(z f ′(z)

f (z)

)1−α
= 1 + a2(1 + α)z +

1
2
((2 + α)(2a3 − (1− α)a2

2)z
2 (3.9)
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+
1
6
(3 + α)(6a4 − 6(1− α)a2a3 + (1− α)(2− α)a3

2))z
3 + · · · .

Then from (3.7), (3.8) and (3.9), we get

a2 =
B1c1

2(1 + α)
. (3.10)

a3 =
1

2(2 + α)

[
B1c2 −

(2(1 + α)2(B1 − B2)− (1− α)(2 + α)B2
1

4(1 + α)2

)
c2

1

]
. (3.11)

Using (3.10) and (3.11) we get,

a3 − µa2
2 =

1
(2 + α)

(c2B1

2
−

c2
1B1

4
+

c2
1B2

4
+

(1− α)(2 + α)

4(1 + α)2 c2
1B2

1 −
µ(2 + α)B2

1c2
1

4(1 + α)2

)
=

B1

2(2 + α)

(
c2 − c2

1

(1
2

(
1− B2

B1

)
− (1− α)(2 + α)

4(1 + α)2 B1 +
(2 + α)

2(1 + α)2 µB1

))
=

B1

2(2 + α)
(c2 − νc2

1),

where ν =
1
2

(
1− B2

B1
− (1− α)(2 + α)

2(1 + α)2 B1 +
µ(2 + α)

(1 + α)2 B1

)
.

Using Lemma 3.1, we get the desired result.

REMARK 3.5. Bounds for the second and the third coefficients for f can be directly

obtained from Theorem 3.4 and are given below:

|a2| ≤
B1

(1 + α)
, and

|a3| ≤



B2 +
(1−α)(2+α)

2(1+α)2 B2
1

2 + α
, (1− α)(2 + α)B2

1 + 2(B2 − B1)(1 + α)2 ≥ 0;
B1

2 + α
, (1− α)(2 + α)B2

1 + 2(B2 − B1)(1 + α)2 ≤ 0 or

(1− α)(2 + α)B2
1 + 2(B2 + B1)(1 + α)2 ≥ 0;

−B2 − (1−α)(2+α)
2(1+α)2 B2

1

2 + α
, (1− α)(2 + α)B2

1 + 2(B2 + B1)(1 + α)2 ≤ 0.

3.4. THE CLASS Lα(ϕ)

Our next theorem gives the Fekete-Szegö inequality for functions in the class Lα(ϕ).
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THEOREM 3.6. Let ϕ be defined as in equation (3.1) and let the function f (z) = z +

a2z2 + a3z3 + · · · ∈ Lα(ϕ). Then we have the following:

(1) If B1, B2 and µ satisfy the condition

3(2− α)B2
1µ ≤ 4(1− α)B2

1 + 4(B2 − B1),

then

|a3 − µa2
2| ≤

1
3(2− α)

(
B2 + (1− α)B2

1 −
3(2− α)µ

4
B2

1

)
.

(2) If B1, B2 and µ satisfy the condition

4(1− α)B2
1 + 4(B2 − B1) ≤ 3(2− α)B2

1µ ≤ 4(1− α)B2
1 + 4(B2 + B1),

then

|a3 − µa2
2| ≤

B1

3(2 + α)
.

(3) If B1, B2 and µ satisfy the condition

4(1− α)B2
1 + 4(B2 + B1) ≤ 3(2− α)B2

1µ,

then

|a3 − µa2
2| ≤

1
3(2 + α)

(
− B2 − (1− α)B2

1 +
3(2− α)µ

4
B2

1

)
.

PROOF. Since f ∈ Lα(ϕ), there is an analytic function w(z) = w1z + w2z2 + · · · ∈
Ω, such that

( f ′(z))α
(

1 +
z f ′′(z)
f ′(z)

)1−α
= ϕ(w(z)). (3.12)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,
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which then implies

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (3.13)

Also, the Taylor series expansion of f gives

( f ′(z))α
(

1 +
z f ′′(z)
f ′(z)

)1−α
= 1 + 2a2z + (3(2− α)a3 − 4(1− α)a2

2)z
2 (3.14)

+ (4(3− 2α)a4 − 18(1− α)a2a3 + 8(1− α)a3
2)z

3 + · · · .

Then from (3.12), (3.13) and (3.14), we get

a2 =
B1c1

4
. (3.15)

a3 =
1

6(2 + α)

[
B1c2 −

((B1 − B2)− (1− α)B2
1

2

)
c2

1

]
. (3.16)

Using (3.15) and (3.16) we get,

a3 − µa2
2 =

1
(2− α)

(
c2B1

6
−

c2
1B1

12
+

c2
1B2

12
+

(1− α)

12
c2

1B2
1 −

µ(2− α)B2
1c2

1
16

)

=
B1

6(2− α)

(
c2 −

c2
1

2

((
1− B2

B1

)
− (1− α)B1 +

3(2− α)

4
µB1

))

=
B1

6(2 + α)
(c2 − νc2

1),

where ν =
1
2

(
1− B2

B1
− (1− α)B1 +

3µ(2− α)

4
B1

)
. Using Lemma 3.1 we get the

desired result.

REMARK 3.7. Bounds for the second and the third coefficients for f can be directly

obtained from Theorem 3.6 and are given as follows:

|a2| ≤
B1

2
,
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and

|a3| ≤



B2 + (1− α)B2
1

3(2− α)
, (1− α)B2

1 + (B2 − B1) ≥ 0;

B1

3(2− α)
, (1− α)B2

1 + (B2 − B1) ≤ 0 or

(1− α)B2
1 + (B2 + B1) ≥ 0;

−B2 − (1− α)B2
1

3(2− α)
, (1− α)B2

1 + (B2 + B1) ≤ 0.

3.5. THE CLASS Kα(ϕ)

Our next theorem gives the Fekete-Szegö inequality for functions in the class Kα(ϕ).

THEOREM 3.8. Let ϕ be defined as in equation (3.1) and let the function f (z) = z +

a2z2 + a3z3 + · · · ∈ Kα(ϕ). Then we have the following:

(1) If B1, B2 and µ satisfy the condition

(2− α)B2
1µ ≤ (1− α)B2

1 + (B2 − B1),

then

|a3 − µa2
2| ≤

1
(2− α)

(
B2 + (1− α)B2

1 − (2− α)µB2
1

)
.

(2) If B1, B2 and µ satisfy the condition

(1− α)B2
1 + (B2 − B1) ≤ (2− α)B2

1µ ≤ (1− α)B2
1 + (B2 + B1),

then

|a3 − µa2
2| ≤

B1

(2− α)
.

(3) If B1, B2 and µ satisfy the condition

(1− α)B2
1 + (B2 + B1) ≤ (2− α)B2

1µ,

then

|a3 − µa2
2| ≤

1
(2− α)

(
− B2 − (1− α)B2

1 + (2− α)µB2
1

)
.
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PROOF. Since f ∈ Kα(ϕ), there is an analytic function w(z) = w1z + w2z2 + · · · ∈
Ω, such that ( f (z)

z

)α(z f ′(z)
f (z)

)1−α
= ϕ(w(z)). (3.17)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (3.18)

Also, the Taylor series expansion of f gives( f (z)
z

)α(z f ′(z)
f (z)

)1−α
= 1 + a2z + ((2− α)a3 − (1− α)a2

2)z
2 (3.19)

+ ((3− 2α)a4 − 3(1− α)a2a3 + (1− α)a3
2)z

3 + · · · .

Then from (3.17), (3.18) and (3.19), we get

a2 =
B1c1

2
. (3.20)

a3 =
1

4(2− α)

[
2B1c2 −

(
(B1 − B2)− (1− α)B2

1

)
c2

1

]
. (3.21)

Using (3.20) and (3.21) we get,

a3 − µa2
2 =

1
4(2− α)

(
2c2B1 − c2

1B1 + c2
1B2 + (1− α)c2

1B2
1 − µ(2− α)B2

1c2
1

)
=

B1

2(2− α)

(
c2 −

c2
1

2

((
1− B2

B1

)
− (1− α)B1 + (2− α)µB1

))

=
B1

2(2− α)
(c2 − νc2

1),
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where ν =
1
2

(
−B2

B1
+ 1− (1− α)B1 + µ(2− α)B1

)
. Using Lemma 3.1 we get the

desired result.

REMARK 3.9. Bounds for the second and the third coefficients for f ∈ Kα(ϕ) can be

directly obtained from Theorem 3.8 as follows:

|a2| ≤ B1,

and

|a3| ≤



B2 + (1− α)B2
1

2− α
, (1− α)B2

1 + (B2 − B1) ≥ 0;
B1

2− α
, (1− α)B2

1 + (B2 − B1) ≤ 0 or

(1− α)B2
1 + (B2 + B1) ≥ 0;

−B2 − (1− α)B2
1

2− α
, (1− α)B2

1 + (B2 + B1) ≤ 0.

3.6. THE CLASS Tα(ϕ)

Our next theorem gives the Fekete-Szegö inequality for functions in the class Tα(ϕ).

THEOREM 3.10. Let ϕ be defined as in (3.1) and let the function f (z) = z + a2z2 +

a3z3 + · · · ∈ Tα(ϕ). Then we have the following:

(1) If B1, B2 and µ satisfy the condition

2(6− 5α)B2
1µ ≤ (1− α)(8 + α)B2

1 + 2(2− α)2(B2 − B1),

then

|a3 − µa2
2| ≤

1
2(6− 5α)

(
2B2 +

(1− α)(8 + α)

(2− α)2 B2
1 −

2(6− 5α)

(2− α)2 µB2
1

)
.

(2) If B1, B2 and µ satisfy the condition

(1− α)(8 + α)B2
1 + 2(2− α)2(B2 − B1) ≤ 2(6− 5α)B2

1µ

≤ (1− α)(8 + α)B2
1 + 2(2− α)2(B2 + B1),
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then

|a3 − µa2
2| ≤

B1

6− 5α
.

(3) If B1, B2 and µ satisfy the condition

(1− α)(8 + α)B2
1 + 2(2− α)2(B2 + B1) ≤ 2(6− 5α)B2

1µ,

then

|a3 − µa2
2| ≤

1
2(6− 5α)

(
− 2B2 −

(1− α)(8 + α)

(2− α)2 B2
1 +

2(6− 5α)

(2− α)2 µB2
1

)
.

PROOF. Since f ∈ Tα(ϕ), there is an analytic function w(z) = w1z + w2z2 + · · · ∈
Ω, such that ( f (z)

z

)α(
1 +

z f ′′(z)
f ′(z)

)1−α
= ϕ(w(z)). (3.22)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

then this implies

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (3.23)

Also, the Taylor series expansion of f gives( f (z)
z

)α(
1 +

z f ′′(z)
f ′(z)

)1−α
= 1 + (2− α)a2z +

(
(6− 5α)a3 −

1
2
(1− α)(8 + α)a2

2
)
z2

+
(
(12− 11α)a4 − (1− α)(18 + 5α)a2a3

+
1
6
(1− α)(α2 + 28α + 48)a3

2
)
z3 + · · · . (3.24)
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Then from (3.22), (3.23) and (3.24), we get

a2 =
B1c1

2(2− α)
. (3.25)

a3 =
1

8(6− 5α)

[
4B1c2 −

(2(B1 − B2)(2− α)2 − (1− α)(8 + α)B2
1

(2− α)2

)
c2

1

]
. (3.26)

Using (3.25) and (3.26) we get,

a3 − µa2
2 =

1
8(6− 5α)

(
4c2B1 − 2c2

1B1 + 2c2
1B2 +

(1− α)(8 + α)

(2− α)2 c2
1B2

1

− µ
2(6− 5α)

(2− α)2 B2
1c2

1

)
=

B1

2(6− 5α)

(
c2 −

c2
1

4

(
2
(

1− B2

B1

)
− (1− α)(8 + α)

(2− α)2 B1 +
2(6− 5α)

(2− α)2 µB1

))

=
B1

2(6− 5α)
(c2 − νc2

1),

where ν =
1
4

[
2
(

1− B2

B1

)
− (1− α)(8 + α)

(2− α)2 B1 +
2(6− 5α)

(2− α)2 µB1

]
. Using Lemma 3.1

we get the desired result.

REMARK 3.11. Bounds for the second and the third coefficients for f can be directly

obtained from Theorem 3.10 as follows:

|a2| ≤
B1

(2− α)
, and

|a3| ≤



B2 +
(1−α)(8+α)

2(2−α)2 B2
1

6− 5α
, (1− α)(8 + α)B2

1 + 2(2− α)2(B2 − B1) ≥ 0;
B1

(6− 5α)
, (1− α)(8 + α)B2

1 + 2(2− α)2(B2 − B1) ≤ 0 or

(1− α)(8 + α)B2
1 + 2(2− α)2(B2 + B1) ≥ 0;

−B2 − (1−α)(8+α)
2(2−α)2 B2

1

6− 5α
, (1− α)(8 + α)B2

1 + 2(2− α)2(B2 + B1) ≤ 0.

The classes studied in this chapter have also been explored in the subsequent chapters

for various other properties..





Chapter 4
Hankel Determinant of Certain Classes

of Analytic Functions

4.1. HANKEL DETERMINANTS

Recall that the qth Hankel determinant denoted by Hq(n), for q = 1, 2, . . . and n =

1, 2, 3, . . . of the function f (z) = z + a2z2 + a3z3 + · · · is given by

Hq(n) :=

∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣
.

Let ϕ be a univalent function with the positive real part, ϕ(0) = 1 and ϕ′(0) > 0.

In this chapter, we determine the bounds on the second Hankel determinant H2(2) :=

a2a4− a2
3 for the functions f belonging to five very important subclasses of analytic func-

tions satisfying α f ′(z) + (1− α)z f ′(z)/ f (z), ( f ′(z))α(z f ′(z)/ f (z))(1−α), ( f ′(z))α(1+

z f ′′(z)/ f ′(z))(1−α), ( f (z)/z)α(z f ′(z)/ f (z))(1−α) or ( f (z)/z)α(1+ z f ′′(z)/ f ′(z))(1−α)
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44 4. HANKEL DETERMINANT OF CERTAIN ANALYTIC FUNCTIONS

is subordinate to ϕ. Also, in the later section, we determine the bounds on the third Han-

kel determinant H3(1) := a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2) for the functions

f in the classesMα and Lα defined by

Mα :=

{
f ∈ S : Re

(
( f ′(z))α

(
z f ′(z)

f (z)

)1−α
)

> 0

}
,

Lα :=

{
f ∈ S : Re

(
( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)1−α
)

> 0

}
.

Our results include some previously known results.

4.2. SECOND HANKEL DETERMINANT

Let ϕ : D→ C be a function with positive real part with

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · , B1 > 0; B1, B2, B3 ∈ R. (4.1)

4.2.1. The Class Vα(ϕ). For 0 ≤ α ≤ 1, we define the class Vα(ϕ) consists of

functions f ∈ A satisfying the following subordination

α f ′(z) + (1− α)
z f ′(z)

f (z)
≺ ϕ(z).

Note that

S∗(ϕ) = V0(ϕ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ϕ(z)

}
is the class of Ma-Minda starlike functions and

R(ϕ) = V1(ϕ) := { f ∈ A : f ′(z) ≺ ϕ(z)}

is a subclass of close-to-convex function. Thus our class provides a continuous passage

from a subclass of starlike functions to the subclass of close-to-convex functions when

α varies from 0 to 1.

For functions in the class Vα(ϕ), we have the following estimate for the second Hankel

determinant.
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THEOREM 4.1. Let the function f ∈ Vα(ϕ) be given by f (z) = z + a2z2 + a3z3 + · · · .

(1) If B1, B2 and B3 satisfy the conditions

α(1− α)B2
1 + 2(1 + α)|B2| ≤ (1 + α)(α2 + 4α + 2)B1,

and∣∣∣(α− 1)(3α2 + 5α + 1)B4
1 − (1 + α)4(3 + α)B2

2 + (1 + α)3(2 + α)2B1B3

+ α(1− α)(1 + α)2B2
1B2

∣∣∣ ≤ (1 + α)4(3 + α)B2
1,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

B2
1

(2 + α)2 .

(2) If B1, B2 and B3 satisfy the conditions

α(1− α)B2
1 + 2(1 + α)|B2| ≥ (1 + α)(α2 + 4α + 2)B1,

and

2
∣∣∣(α− 1)(3α2 + 5α + 1)B4

1 − (1 + α)4(3 + α)B2
2 + (1 + α)3(2 + α)2B1B3

+ α(1− α)(1 + α)2B2
1B2

∣∣∣ ≥ (1 + α)2[α(1− α)B3
1 + 2(1 + α)|B2|B1

+ (1 + α)(2 + α)2B2
1],

or the conditions

α(1− α)B2
1 + 2(1 + α)|B2| ≤ (1 + α)(α2 + 4α + 2)B1,

and∣∣∣(α− 1)(3α2 + 5α + 1)B4
1 − (1 + α)4(3 + α)B2

2 + (1 + α)3(α + 2)2B1B3

+ α(1− α)(1 + α)2B2
1B2

∣∣∣ ≥ (1 + α)4(3 + α)B2
1,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

1
(1 + α)4(2 + α)2(3 + α)

∣∣∣(α− 1)(3α2 + 5α + 1)B4
1 − (1 + α)4
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(3 + α)B2
2 + (1 + α)3(2 + α)2B1B3 + α(1− α)(1 + α)2B2

1B2

∣∣∣.
(3) If B1, B2 and B3 satisfy the conditions

α(1− α)B2
1 + 2(1 + α)|B2| > (1 + α)(α2 + 4α + 2)B1,

and

2
∣∣∣(α− 1)(3α2 + 5α + 1)B4

1 − (1 + α)4(3 + α)B2
2 + (1 + α)3(2 + α)2B1B3

+ α(1− α)(1 + α)2B2
1B2

∣∣∣ ≤ (1 + α)2[α(1− α)B3
1 + 2(1 + α)|B2|B1

+ (1 + α)(2 + α)2B2
1],

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

B2
1 M

4(2 + α)2(3 + α)N
,

where,

M = 4(3 + α)
∣∣∣(α− 1)(3α2 + 5α + 1)B4

1 − (1 + α)4(3 + α)B2
2

+ (1 + α)3(2 + α)2B1B3 + α(1− α)(1 + α)2B2
1B2

∣∣∣
+
[
2(1 + α)|B2| − (1 + α)(α2 + 4α + 2)B1 + α(1− α)B2

1

]2

and

N =
∣∣∣(α− 1)(3α2 + 5α + 1)B4

1 − (1 + α)4(3 + α)B2
2 + (1 + α)3(2 + α)2B1B3

+ α(1− α)(1 + α)2B2
1B2

∣∣∣− α(1− α)(1 + α)2B3
1 − (1 + α)3(2B1|B2|+ B2

1
)
.

Theorem 4.1 is proved by expressing the coefficients of the function f in terms of the

coefficients of a function with the positive real part. Recall that the class P of functions

with the positive real part consists of all analytic functions p(z) = 1 + ∑∞
n=1 cnzn with

Re p(z) > 0 for z ∈ D. Let Ω be the class of all analytic functions w : D → D of the

form w(z) = w1z + w2z2 + · · · satisfying w(0) = 0 and |w(z)| ≤ 1. In order to prove

our result, we need the following lemmas:
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LEMMA 4.2. [17] If the function

p(z) = 1 + c1z + c2z2 + c3z3 + · · · (4.2)

is in P , then the following sharp estimate holds: |cn| ≤ 2 (n = 1, 2, 3, · · · ).

LEMMA 4.3. [27] If the function given by (4.2) is in P , then,

2c2 = c2
1 + x(4− c2

1), (4.3)

4c3 = c3
1 + 2(4− c2

1)c1x− c1(4− c2
1)x2 + 2(4− c2

1)(1− |x|2)y, (4.4)

for some x, y with |x| ≤ 1 and |y| ≤ 1.

LEMMA 4.4. [51] Let p ∈ P be given by (4.2). Then,

|c2 − νc2
1| ≤


−4ν + 2, if ν ≤ 0;

2, if 0 ≤ ν ≤ 1;

4ν− 2, if ν ≥ 1.

PROOF OF THEOREM 4.1. Since f ∈ Vα(ϕ), there exists an analytic function w(z) =

w1z + w2z2 + · · · ∈ Ω, such that

α f ′(z) + (1− α)
z f ′(z)

f (z)
= ϕ(w(z)). (4.5)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · .

Then

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Since ϕ(z) = 1 + B1z + B2z2 +

B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (4.6)
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Also, the Taylor series expansion of f gives

α f ′(z) + (1− α)z
f ′(z)
f (z)

= 1 + a2(1 + α)z +
(
(2 + α)a3 − (1− α)a2

2

)
z2

+
(
(3 + α)a4 − (1− α)(3a2a3 − a3

2)
)

z3 + · · · .
(4.7)

Then from (4.5), (4.6) and (4.7), we get

a2 =
B1c1

2(1 + α)
.

a3 =
1

4(2 + α)

[
2B1c2 +

( (1− α)

(1 + α)2 B2
1 + (B2 − B1)

)
c2

1

]
.

a4 =
1

8(3 + α)

[
4B1c3 +

(
B1 −

3(1− α)

(1 + α)(2 + α)
B2

1 +
(1− α)(1− 4α)

(1 + α)3(2 + α)
B3

1 − 2B2

+
3(1− α)

(1 + α)(2 + α)
B1B2 + B3

)
c3

1 + (−4B1 +
6(1− α)

(1 + α)(2 + α)
B2

1 + 4B2)c1c2

]
.

Therefore,

a2a4 − a2
3 =

1
16

B1

[{ (α− 1)(3α2 + 5α + 1)
(1 + α)4(2 + α)2(3 + α)

B3
1 −

α(1− α)

(1 + α)2(2 + α)2(3 + α)
B1(B2 − B1)

− 1
(2 + α)2

B2
2

B1
+

1
(1 + α)(3 + α)

B3 +
1

(1 + α)(2 + α)2(3 + α)
(B1 − 2B2)

}
c4

1

+
{ 4
(1 + α)(2 + α)2(3 + α)

(B2 − B1) +
2α(1− α)

(1 + α)2(2 + α)2(3 + α)
B2

1

}
c2c2

1

− 4
(2 + α)2 B1c2

2 +
4

(1 + α)(3 + α)
B1c1c3

]
.

Since the function p(eiθz) (θ ∈ R) is in the class P for any p ∈ P , without loss of

generality, we can assume that c1 = c > 0. Substituting the values of c2 and c3 from

(4.3) and (4.4) in the above expression, we get

|a2a4 − a2
3| =

1
16

B1

∣∣∣∣{ (α− 1)(3α2 + 5α + 1)
(1 + α)4(2 + α)2(3 + α)

B3
1 +

α(1− α)

(1 + α)2(2 + α)2(3 + α)
B1B2

− 1
(2 + α)2

B2
2

B1
+

1
(1 + α)(3 + α)

B3

}
c4 +

{
2

(1 + α)(2 + α)2(3 + α)
B2

+
α(1− α)

(1 + α)2(2 + α)2(3 + α)
B2

1

}
c2(4− c2)x−

{
1

(1 + α)(2 + α)2(3 + α)
c2

+
4

(2 + α)2

}
B1(4− c2)x2 +

2
(1 + α)(3 + α)

B1c(4− c2)(1− |x|2)y
∣∣∣∣.
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Replacing |x| by µ and by making use of the triangle inequality and the fact that |y| ≤ 1

in the above expression, we get

|a2a4 − a2
3| ≤

1
16

B1

[∣∣∣∣{ (α− 1)(3α2 + 5α + 1)
(1 + α)4(2 + α)2(3 + α)

B3
1 −

1
(2 + α)2

B2
2

B1
+

1
(1 + α)(3 + α)

B3

+
α(1− α)

(1 + α)2(2 + α)2(3 + α)
B1B2

}∣∣∣∣c4 +
2c

(1 + α)(3 + α)
B1(4− c2)

+

{
α(1− α)

(1 + α)2(2 + α)2(3 + α)
B2

1 +
2

(1 + α)(2 + α)2(3 + α)
|B2|

}
c2(4− c2) µ

+

{
c2

(1 + α)(2 + α)2(3 + α)
− 2c

(1 + α)(3 + α)
+

4
(2 + α)2

}
B1(4− c2)µ2

]
= F(c, µ). (4.8)

We shall now maximize F(c, µ) for (c, µ) ∈ [0, 2]× [0, 1]. Differentiating F(c, µ) in (4.8)

partially with respect to the parameter µ, we get

∂F
∂µ

=
1

16
B1

[ α(1− α)

(1 + α)2(2 + α)2(3 + α)
c2(4− c2)B2

1 +
2

(1 + α)(2 + α)2(3 + α)

c2(4− c2)|B2|+ 2µB1(4− c2)
( 1
(1 + α)(2 + α)2(3 + α)

c2 − 2
(1 + α)(3 + α)

c

+
4

(2 + α)2

)]
.

For 0 < µ < 1, and for any fixed c ∈ [0, 2], we observe that ∂F/∂µ > 0. Thus F(c, µ)

is an increasing function of µ, and for c ∈ [0, 2], F(c, µ) has a maximum value at µ = 1.

Thus, we have

max F(c, µ) = F(c, 1) = G(c). (4.9)

The equations (4.8) and (4.9), upon a little simplification, yield

G(c) =
1
16

B1

[{∣∣∣∣ (α− 1)(3α2 + 5α + 1)
(1 + α)4(2 + α)2(3 + α)

B3
1 −

1
(2 + α)2

B2
2

B1
+

1
(1 + α)(3 + α)

B3

+
α(1− α)

(1 + α)2(2 + α)2(3 + α)
B1B2

∣∣∣∣− α(1− α)

(1 + α)2(2 + α)2(3 + α)
B2

1

− 1
(1 + α)(2 + α)2(3 + α)

(
2|B2|+ B1

)}
c4 + 4

{
α(1− α)

(1 + α)2(2 + α)2(3 + α)
B2

1

+
2

(1 + α)(2 + α)2(3 + α)
|B2| −

α2 + 4α + 2
(1 + α)(2 + α)2(3 + α)

B1

}
c2
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+
16

(2 + α)2 B1

]
=

B1

16
(Pc4 + Qc2 + R), (4.10)

where

P = (1 + α)−4(2 + α)−2(3 + α)−1
(∣∣∣(α− 1)(3α2 + 5α + 1)B3

1 − (1 + α)4(3 + α)
B2

2
B1

+ (1 + α)3(2 + α)2B3 + α(1− α)(1 + α)2B1B2

∣∣∣− α(1− α)(1 + α)2B2
1

− (1 + α)3(2|B2|+ B1)
)

, (4.11)

Q = 4(1 + α)−2(2 + α)−2(3 + α)−1
(

α(1− α)B2
1 + 2(1 + α)|B2|

− (1 + α)(α2 + 4α + 2)B1

)
, (4.12)

and

R = 16(2 + α)−2B1. (4.13)

We know that

max
0≤t≤4

(Pt2 + Qt + R) =


R, Q ≤ 0, P ≤ −Q

4 ;

16P + 4Q + R, Q ≥ 0, P ≥ −Q
8 or Q ≤ 0 , P ≥ −Q

4 ;
4PR−Q2

4P , Q > 0, P ≤ −Q
8 .

(4.14)

Thus, we have, from (4.10),

|a2a4 − a2
3| ≤

B1

16


R, Q ≤ 0, P ≤ −Q

4 ;

16P + 4Q + R, Q ≥ 0, P ≥ −Q
8 or Q ≤ 0 , P ≥ −Q

4 ;
4PR−Q2

4P , Q > 0, P ≤ −Q
8 .

where P, Q, R are given by (4.11), (4.12) and (4.13), respectively. A simple computation

will give the results stated in the theorem.

REMARK 4.5. When α = 1 and ϕ = (1 + z)/(1 − z), Theorem 4.1 reduces to [34,

Theorem 3.1]. When α = 0, Theorem 4.1 reduces to [45, Theorem 1]. When ϕ(z) =

(1 + (1− 2γ)z)/(1− z), (0 < γ < 1),
√

1 + z, 1 + 2/π2(log((1 +
√

z)/(1−
√

z)))2

and ((1 + z)/(1 − z))β, 0 < β ≤ 1, the class S∗(ϕ) becomes the class S∗(γ) of
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starlike functions of order γ, the class S∗L of lemniscate starlike functions, the class S∗p
of parabolic starlike functions and the class S∗β of strongly starlike functions of order β,

respectively.

In particular, we get the following corollary:

COROLLARY 4.6. [45, Theorem 1]

(1) If f ∈ S∗(γ), then |a2a4 − a2
3| ≤ (1− γ)2.

(2) If f ∈ S∗L, then |a2a4 − a2
3| ≤ 1/16 = 0.0625.

(3) If f ∈ S∗p , then |a2a4 − a2
3| ≤ 16/π4 ≈ 0.164255.

(4) If f ∈ S∗β , then |a2a4 − a2
3| ≤ β2.

4.2.2. The Class Mα(ϕ). Let ϕ : D → C be an analytic function given by (4.1).

For 0 ≤ α ≤ 1, the class Mα(ϕ) consists of functions f ∈ A satisfying the following

subordination

( f ′(z))α

(
z f ′(z)

f (z)

)1−α

≺ ϕ(z).

We see thatM0(ϕ) = S∗(ϕ) is the class of Ma-Minda starlike functions and

M1(ϕ) = R(ϕ) := { f ∈ A : f ′(z) ≺ ϕ(z)}

is a subclass of close-to-convex function. Thus this class also provides a passage from a

subclass of starlike functions to the subclass of close-to-convex functions when α varies

from 0 to 1. Also, for different functions of ϕ we get different subclasses of starlike

functions as stated earlier.

THEOREM 4.7. Let the function f ∈ Mα(ϕ) be given by f (z) = z + a2z2 + a3z3 + · · · .
Then,

(1) If B1, B2 and B3 satisfy the conditions

2|B2| ≤ ((1 + α)(3 + α)− 1)B1,
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and

| − (2 + α)2(3 + α)B4
1 − 12(1 + α)3(3 + α)B2

2 + 12(1 + α)2(2 + α)2B1B3|

− 12(1 + α)3(3 + α)B2
1 ≤ 0,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

B2
1

(2 + α)2 .

(2) If B1, B2 and B3 satisfy the conditions

2|B2| ≥ ((1 + α)(3 + α)− 1)B1,

and

|−(1− α)(2 + α)2(3 + α)B4
1 − 12(1 + α)3(3 + α)B2

2 + 12(1 + α)2(2 + α)2

B1B3| − 12(1 + α)2|B2|B1 − 6(1 + α)2((1 + α)(3 + α) + 1)B2
1 ≥ 0,

or the conditions

2|B2| ≤ ((1 + α)(3 + α)− 1)B1,

and

| − (2 + α)2(3 + α)B4
1 − 12(1 + α)3(3 + α)B2

2 + 12(1 + α)2(2 + α)2B1B3|

− 12(1 + α)3(3 + α)B2
1 ≥ 0,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

1
12(1 + α)3(2 + α)2(3 + α)

|−12(1 + α)3(3 + α)B2
2

− (2 + α)2(3 + α)B4
1 + 12(1 + α)2(2 + α)2B1B3|.

(3) If B1, B2 and B3 satisfy the conditions

2|B2| > ((1 + α)(3 + α)− 1)B1,
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and

|−(1− α)(2 + α)2(3 + α)B4
1 − 12(1 + α)3(3 + α)B2

2 + 12(1 + α)2

(2 + α)2B1B3| − 12(1 + α)2|B2|B1 − 6(1 + α)2((1 + α)(3 + α) + 1)B2
1 ≤ 0,

then

|a2a4 − a2
3| ≤

B2
1 M

((2 + α)2(3 + α))N
,

where,

M = |−(1− α)(2 + α)2(3 + α)2B4
1 − 12(1 + α)3(3 + α)2B2

2

+ 12(1 + α)2(2 + α)2(3 + α)B1B3| − 12(1 + α)(2 + α)2B1|B2|

− 12(1 + α)B2
2 − 3(1 + α)(2 + α)4B2

1,

and

N = |−(1− α)(2 + α)2(3 + α)B4
1 − 12(1 + α)3(3 + α)B2

2 + 12(1 + α)2

(2 + α)2B1B3| − 12(1 + α)2B2
1 − 24(1 + α)2B1|B2|.

PROOF. Since f ∈ Mα(ϕ), there exists an analytic function w(z) = w1z + w2z2 +

· · · ∈ Ω, such that

( f ′(z))α
(z f ′(z)

f (z)

)1−α
= ϕ(w(z)). (4.15)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

then this implies

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.



54 4. HANKEL DETERMINANT OF CERTAIN ANALYTIC FUNCTIONS

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (4.16)

Also, the Taylor series expansion of f gives

( f ′(z))α
(z f ′(z)

f (z)

)1−α
= 1 + a2(1 + α)z +

1
2
((2 + α)(2a3 − (1− α)a2

2)z
2 (4.17)

+
1
6
(3 + α)(6a4 − 6(1− α)a2a3 + (1− α)(2− α)a3

2))z
3 + · · · .

Then from (4.15), (4.16) and (4.17), we get

a2 =
B1c1

2(1 + α)
.

a3 =
1

2(2 + α)

[
B1c2 −

(2(1 + α)2(B1 − B2)− (1− α)(2 + α)B2
1

4(1 + α)2

)
c2

1

]
.

a4 =
1

2(3 + α)

[
B1c3 +

(B1

4
− (1− α)(3 + α)

4(1 + α)(2 + α)
B2

1 +
(1− α)(1− 2α)(3 + α)

24(1 + α)3 B3
1

− B2

2
+

(1− α)(3 + α)

4(1 + α)(2 + α)
B1B2 +

B3

4

)
c3

1 +
(
− B1 +

(1− α)(3 + α)

2(1 + α)(2 + α)
B2

1

+ B2

)
c1c2

]
.

Thus,

a2a4 − a2
3 =

1
16

B1

[{ −(1− α)

12(1 + α)3 B3
1 −

1
(2 + α)2

B2
2

B1
+

1
(1 + α)3(3 + α)

B3

+
1

(1 + α)(2 + α)2(3 + α)
(B1 − 2B2)

}
c4

1 +
4

(1 + α)(2 + α)2(3 + α)

(B2 − B1)c2c2
1 −

4
(2 + α)2 B1c2

2 +
4

(1 + α)(3 + α)
B1c1c3

]
.

Since the function p(eiθz) (θ ∈ R) is in the class P for any p ∈ P , without loss of

generality, we can assume that c1 = c > 0. Substituting the values of c2 and c3 from

(4.3) and (4.4) in the above expression, we get

|a2a4 − a2
3| =

1
16

B1

∣∣∣∣{ (α− 1)
12(1 + α)3 B3

1 −
1

(2 + α)2
B2

2
B1

+
1

(1 + α)(3 + α)
B3

}
c4
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+

{
2

(1 + α)(2 + α)2(3 + α)
B2

}
c2(4− c2)x−

{
1

(1 + α)(2 + α)2(3 + α)
c2

+
4

(2 + α)2

}
B1(4− c2)x2 +

2
(1 + α)(3 + α)

B1c(4− c2)(1− |x|2)y
∣∣∣∣.

Replacing |x| by µ and by making use of the triangle inequality and the fact that |y| ≤ 1

in the above expression, we get

|a2a4 − a2
3| ≤

1
16

B1

[∣∣∣∣{ (α− 1)
12(1 + α)3 B3

1 −
1

(2 + α)2
B2

2
B1

+
1

(1 + α)(3 + α)
B3

}∣∣∣∣c4

+
2c

(1 + α)(3 + α)
B1(4− c2) +

2
(1 + α)(2 + α)2(3 + α)

|B2|c2(4− c2) µ

+

{
c2

(1 + α)(2 + α)2(3 + α)
− 2c

(1 + α)(3 + α)
+

4
(2 + α)2

}
B1(4− c2)µ2

]
= F(c, µ). (4.18)

We shall now maximize F(c, µ) for (c, µ) in [0, 2] × [0, 1]. On differentiating F(c, µ) in

(4.18) partially with respect to the parameter µ, we get

∂F
∂µ

=
1

16
B1

[ 2
(1 + α)(2 + α)2(3 + α)

c2(4− c2)|B2|+ 2µB1(4− c2){ 1
(1 + α)(2 + α)2(3 + α)

c2 − 2
(1 + α)(3 + α)

c +
4

(2 + α)2

}]
.

For a fixed c ∈ [0, 2] and for 0 < µ < 1, we observe that ∂F/∂µ > 0. Thus F(c, µ) is an

increasing function of µ, and for c ∈ [0, 2], the function F(c, µ) has a maximum value at

µ = 1. Thus, we have

max F(c, µ) = F(c, 1) = G(c). (4.19)

The equations (4.18) and (4.19), upon a little simplification, yield

G(c) =
B1

16

[
c4
{∣∣∣− 1

(2 + α)2
B2

2
B1
− (1− α)

12(1 + α)3 B3
1 +

1
(1 + α)(3 + α)

B3

∣∣∣
− 1

(1 + α)(2 + α)2(3 + α)

(
2|B2|+ B1

)}
+ c2

{ 4
(1 + α)(2 + α)2(3 + α)
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(
B1 + 2|B2|

)
− 4

(2 + α)2 B1

}
+

16
(2 + α)2 B1

]
=

B1

16
(Pc4 + Qc2 + R), (4.20)

where,

P =
1
12

(1 + α)−3(2 + α)−2(3 + α)−1
(∣∣∣12(1 + α)3(3 + α)

−B2
2

B1
− (1− α)(2 + α)2

(3 + α)B3
1 + 12(1 + α)2(2 + α)2B3

∣∣∣− 12(1 + α)2(B1 + 2|B2|
))

, (4.21)

Q = 4(1 + α)−1(2 + α)−2(3 + α)−1
((

B1 + 2|B2|
)
− (1 + α)(3 + α)B1

)
, (4.22)

R = 16(2 + α)−2B1. (4.23)

Thus using (4.14) and (4.20) we get,

|a2a4 − a2
3| ≤

B1

16


R, Q ≤ 0, P ≤ −Q

4 ;

16P + 4Q + R, Q ≥ 0, P ≥ −Q
8 or Q ≤ 0 , P ≥ −Q

4 ;
4PR−Q2

4P , Q > 0, P ≤ −Q
8 ,

where P, Q, R are given by (4.21), (4.22) and (4.23), respectively.

REMARK 4.8. When α = 1 and ϕ = (1 + z)/(1 − z), Theorem 4.7 reduces to [34,

Theorem 3.1]. When α = 0, Theorem 4.7 reduces to [45, Theorem 1]. Note that, when

ϕ(z) = (1 + (1− 2γ)z)/(1− z), (0 < γ < 1),
√

1 + z, 1 + 2/π2(log((1 +
√

z)/(1−
√

z)))2 and ((1 + z)/(1− z))β, 0 < β ≤ 1, the class S∗(ϕ) becomes the class S∗(γ)
of starlike functions of order γ, the class S∗L of lemniscate starlike functions, the class

S∗p of parabolic starlike functions and the class S∗β of strongly starlike functions of order

β, respectively. Therefore, Corollary 4.6 follows as a particular case.

4.2.3. The Class Lα(ϕ). Let the analytic function ϕ : D → C be given by (4.1).

For 0 ≤ α ≤ 1, the class Lα(ϕ) consists of functions f ∈ A satisfying the following

subordination

( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)1−α

≺ ϕ(z).
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We see that L0(ϕ) = K(ϕ) is the unified class of Ma-Minda convex functions and

L1(ϕ) = R(ϕ) := { f ∈ A : f ′(z) ≺ ϕ(z)}

is a subclass of close-to-convex function. Thus this class also provides a continuous

passage from a subclass of convex functions to the subclass of close-to-convex func-

tions when α varies from 0 to 1.

THEOREM 4.9. Let the function f ∈ Lα(ϕ) be given by f (z) = z + a2z2 + a3z3 + · · · .
Then,

(1) If B1, B2 and B3 satisfy the conditions

2|B2|(9α2 − 20α + 12) + B2
1(1− α)(6 + 5α) ≤ (−9α2 + 4α + 12)B1,

and

|(1− α)(2α2 − 5α− 6)B4
1 − 8(3− 2α)B2

2 + 9(2− α)2B1B3

+ (1− α)(6 + 5α)B2
1B2| − 8(3− 2α)B2

1 ≤ 0,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

B2
1

9(2− α)2 .

(2) If B1, B2 and B3 satisfy the conditions

2|B2|(9α2 − 20α + 12) + B2
1(1− α)(6 + 5α) ≥ (−9α2 + 4α + 12)B1,

and

2|(1− α)(2α2 − 5α− 6)B4
1 − 8(3− 2α)B2

2 + 9(2− α)2B1B3

+ (1− α)(6 + 5α)B2
1B2| − 2(9α2 − 20α + 12)|B2|B1 − (1− α)(6 + 5α)B3

1

− 9(2− α)2B2
1 ≥ 0,

or the conditions

2|B2|(9α2 − 20α + 12) + B2
1(1− α)(6 + 5α) ≤ (−9α2 + 4α + 12)B1,
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and

|(1− α)(2α2 − 5α− 6)B4
1 − 8(3− 2α)B2

2 + 9(2− α)2B1B3

+ (1− α)(6 + 5α)B2
1B2| − 8(3− 2α)B2

1 ≥ 0,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

1
72(2− α)2(3− 2α)

|−8(3− 2α)B2
2 + (1− α)(2α2 − 5α− 6)B4

1

+ 9(2− α)2B1B3 + (1− α)(6 + 5α)B2
1B2|.

(3) If B1, B2 and B3 satisfy the conditions

2|B2|(9α2 − 20α + 12) + B2
1(1− α)(6 + 5α) > (−9α2 + 4α + 12)B1,

and

2|(1− α)(2α2 − 5α− 6)B4
1 − 8(3− 2α)B2

2 + 9(2− α)2B1B3

+ (1− α)(6 + 5α)B2
1B2| − 2(9α2 − 20α + 12)|B2|B1 − (1− α)(6 + 5α)B3

1

− 9(2− α)2B2
1 ≤ 0,

then the second Hankel determinant satisfies

|a2a4 − a2
3| ≤

B2
1 M

(1152(2− α)2(3− 2α))N
,

where,

M = 4(|32(1− α)(3− 2α)(2α2 − 5α− 6)B4
1 − 256(3− 2α)2B2

2

+ 288(2− α)2(3− 2α)B1B3 + 32(1− α)(6 + 5α)(3− 2α)B2
1B2|

− 18(1− α)(2− α)2(6 + 5α)B3
1 − 36(2− α)2(12− 20α + 9α2)B1|B2|

− 81(2− α)4B2
1 − (1− α)2(6 + 5α)2B4

1 − 4(12− 20α + 9α2)2B2
2

− 4(1− α)(6 + 5α)(12− 20α + 9α2)B2
1|B2|)

and

N = |(1− α)(2α2 − 5α− 6)B4
1 − 8(3− 2α)B2

2 + 9(2− α)2B1B3
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+ (1− α)(6 + 5α)B2
1B2| − (1− α)(6 + 5α)B3

1 − 2(9α2 − 20α + 12)B1|B2|

− (9α2 − 20α + 12)B2
1.

PROOF. Since f ∈ Lα(ϕ), there exists an analytic function w(z) = w1z + w2z2 +

· · · ∈ Ω, such that

( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)1−α

= ϕ(w(z)). (4.24)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

which then implies

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (4.25)

Also, the Taylor series expansion of f gives

( f ′(z))α
(

1 +
z f ′′(z)
f ′(z)

)1−α
= 1 + 2a2z + (3(2− α)a3 − 4(1− α)a2

2)z
2 (4.26)

+ (4(3− 2α)a4 − 18(1− α)a2a3 + 8(1− α)a3
2)z

3 + · · · .

Then from (4.24), (4.25) and (4.26), we get

a2 =
B1c1

4
.

a3 =
1

6(2 + α)

[
B1c2 −

((B1 − B2)− (1− α)B2
1

2

)
c2

1

]
.

a4 =
1

8(3− 2α)

[
B1c3 +

(B1

4
− 3(1− α)

4(2− α)
B2

1 +
(1− α)(1− 2α)

4(2− α)
B3

1 −
B2

2

+
3(1− α)

4(2− α)
B1B2 +

B3

4

)
c3

1 +
(
− B1 +

3(1− α)

2(2− α)
B2

1 + B2

)
c1c2

]
.
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Thus,

a2a4 − a2
3 =

1
1152

B1

[{(1− α)(2α2 − 5α− 6)
(2− α)2(3− 2α)

B3
1 −

8
(2− α)2

B2
2

B1
+

9
(3− 2α)

B3

+
(9α2 − 20α + 12)
(2− α)2(3− 2α)

(B1 − 2B2) +
(1− α)(6 + 5α)

(2− α)2(3− 2α)
B1(B2 − B1)

}
c4

1

+
{4(9α2 − 20α + 12)

(2− α)2(3− 2α)
(B2 − B1) +

2(1− α)(6 + 5α)

(2− α)2(3− 2α)
B2

1

}
c2c2

1

− 32
(2− α)2 B1c2

2 +
36

(3− 2α)
B1c1c3

]
.

Since the function p(eiθz) (θ ∈ R) is in the class P for any p ∈ P , without loss of

generality, we can assume that c1 = c > 0. Substituting the values of c2 and c3 from

(4.3) and (4.4) in the above expression, we get

|a2a4 − a2
3| =

1
1152

B1

∣∣∣∣{ (1− α)(2α2 − 5α− 6)
(2− α)2(3− 2α)

B3
1 +

(1− α)(5α + 6)
(2− α)2(3− 2α)

B1B2

− 8
(2− α)2

B2
2

B1
+

8
(3− 2α)

B3

}
c4 +

{
2(9α2 − 20α + 12)
(2− α)2(3− 2α)

B2

+
(1− α)(6 + 5α)

(2− α)2(3− 2α)
B2

1

}
c2(4− c2)x−

{
(9α2 − 20α + 12)
(2− α)2(3− 2α)

c2

+
32

(2− α)2

}
B1(4− c2)x2 +

18
(3− 2α)

B1c(4− c2)(1− |x|2)y
∣∣∣∣.

Replacing |x| by µ and by making use of the triangle inequality and the fact that |y| ≤ 1

in the above expression, we get

|a2a4 − a2
3| ≤

1
1152

B1

[∣∣∣∣{ (1− α)(2α2 − 5α− 6)
(2− α)2(3− 2α)

B3
1 −

8
(2− α)2

B2
2

B1
+

8
(3− 2α)

B3

+
(1− α)(5α + 6)
(2− α)2(3− 2α)

B1B2

}∣∣∣∣c4 +
18c

(3− 2α)
B1(4− c2)

+

{
(1− α)(6 + 5α)

(2− α)2(3− 2α)
B2

1 +
2(9α2 − 20α + 12)
(2− α)2(3− 2α)

|B2|
}

c2(4− c2) µ

+

{
(9α2 − 20α + 12)c2

(2− α)2(3− 2α)
− 18c

(3− 2α)
+

32
(2− α)2

}
B1(4− c2)µ2

]
= F(c, µ). (4.27)
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We shall now maximize F(c, µ) for (c, µ) in [0, 2]× [0, 1]. On differentiating the function

F(c, µ) in (4.27) partially with respect to the parameter µ, we get

∂F
∂µ

=
1

1152
B1

[ (1− α)(6 + 5α)

(2− α)2(3− 2α)
c2(4− c2)B2

1 +
2(9α2 − 20α + 12)
(2− α)2(3− 2α)

c2(4− c2)|B2|

+ 2µB1(4− c2)
((9α2 − 20α + 12)
(2− α)2(3− 2α)

c2 − 18
(3− 2α)

c +
32

(2− α)2

)]
. (4.28)

For any fixed c ∈ [0, 2] and 0 < µ < 1, we observe that ∂F/∂µ > 0. Thus F(c, µ) is an

increasing function of µ, and for c ∈ [0, 2], the function F(c, µ) has a maximum value at

µ = 1. Thus, we have

max F(c, µ) = F(c, 1) = G(c). (4.29)

The equations (4.27) and (4.29), upon a little simplification, yield

G(c) =
B1

1152

[
c4
{∣∣∣− 8

(2− α)2
B2

B1
+

(1− α)(2α2 − 5α− 6)
(2− α)2(3− 2α)

B3
1 +

9
(3− 2α)

B3

+
(1− α)(6 + 5α)

(2− α)2(3− 2α)
B1B2

∣∣∣− (1− α)(6 + 5α)

(2− α)2(3− 2α)
B2

1 −
(9α2 − 20α + 12)
(2− α)2(3− 2α)

(B1 + 2|B2|)
}
+ 4c2

{2(9α2 − 20α + 12)
(2− α)2(3− 2α)

|B2|+
(1− α)(6 + 5α)

(2− α)2(3− 2α)
B2

1

+
(9α2 − 4α− 12)
(2− α)2(3− 2α)

B1

}
+

128
(2− α)2 B1

]
=

B1

1152
(Pc4 + Qc2 + R), (4.30)

where,

P = (2− α)−2(3− 2α)−1
(∣∣∣− 8(3− 2α)

B2
2

B1
+ (1− α)(2α2 − 5α− 6)B3

1 + 9(2− α)2B3

+ (1− α)(6 + 5α)B1B2

∣∣∣− 2(9α2 − 20α + 12)|B2| − (1− α)(6 + 5α)B2
1 (4.31)

− (9α2 − 20α + 12)B1

)
,

Q = (2− α)−2(3− 2α)−1
(

4(1− α)(6 + 5α)B2
1 + 4(9α2 − 4α− 12)(B1 + 2|B2|)

)
,

(4.32)

R = 128(2− α)−2B1. (4.33)
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Thus using (4.14) and (4.30) we get,

|a2a4 − a2
3| ≤

B1

1152


R, Q ≤ 0, P ≤ −Q

4 ;

16P + 4Q + R, Q ≥ 0, P ≥ −Q
8 or Q ≤ 0 , P ≥ −Q

4 ;
4PR−Q2

4P , Q > 0, P ≤ −Q
8 .

where P, Q, R are given by (4.31), (4.32) and (4.33), respectively.

REMARK 4.10. When α = 1 and ϕ = (1 + z)/(1− z), Theorem 4.9 reduces to [34,

Theorem 3.1]. When α = 0, Theorem 4.9 reduces to [45, Theorem 2].

4.2.4. The Class Kα(ϕ). Let the function ϕ : D → C be analytic and is given by

(4.1). For 0 ≤ α ≤ 1, the class Kα(ϕ) consists of functions f ∈ A satisfying the

following subordination (
f (z)

z

)α (z f ′(z)
f (z)

)1−α

≺ ϕ(z).

We see that K0(ϕ) = S∗(ϕ) is the Ma-Minda unified class of starlike functions.

THEOREM 4.11. Let the function f ∈ Kα(ϕ) be given by f (z) = z + a2z2 + a3z3 + · · · .
Then,

(1) If B1, B2 and B3 satisfy the conditions

2(1− α)2|B2|+ (1− α)αB2
1 ≤ (2− α2)B1,

and

| − (1− α)B4
1 − (3− 2α)B2

2 + (2− α)2B1B3 + α(1− α)B2
1B2|

− (3− 2α)B2
1 ≤ 0,

then

|a2a4 − a2
3| ≤

B2
1

(2− α)2 .

(2) If B1, B2 and B3 satisfy the conditions

2(1− α)2|B2|+ (1− α)αB2
1 ≥ (2− α2)B1,
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and

|−2(1− α)B4
1 − 2(3− 2α)B2

2 + 2(2− α)2B1B3 + 2α(1− α)B2
1B2|

− 2(1− α)2|B2|B1 − (1− α)αB3
1 − (2− α)2B2

1 ≥ 0,

or the conditions

2(1− α)2|B2|+ (1− α)αB2
1 ≤ (2− α2)B1,

and

| − (1− α)B4
1 − (3− 2α)B2

2 + (2− α)2B1B3 + α(1− α)B2
1B2|

− (3− 2α)B2
1 ≥ 0,

then

|a2a4 − a2
3| ≤

1
(2− α)2(3− 2α)

|−(3− 2α)B2
2 − (1− α)B4

1

+ (2− α)2B1B3 + α(1− α)B2
1B2|.

(3) If B1, B2 and B3 satisfy the conditions

2(1− α)2|B2|+ (1− α)αB2
1 > (2− α2)B1,

and

|−2(1− α)B4
1 − 2(3− 2α)B2

2 + 2(2− α)2B1B3 + 2α(1− α)B2
1B2|

− 2(1− α)2|B2|B1 − (1− α)αB3
1 − (2− α)2B2

1 ≤ 0,

then

|a2a4 − a2
3| ≤

B2
1 M

((2− α)2(3− 2α))N
,

where,

M = |−(1− α)(3− 2α)B4
1 − (3− 2α)2B2

2 + (2− α)2(3− 2α)B1B3

+ α(1− α)(3− 2α)B2
1B2| −

α

2
(1− α)(2− α)2B3

1 − (1− α)2(2− α)2B1|B2|
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− (2− α)4

4
B2

1 −
α2

4
(1− α)2B4

1 − (1− α)4B2
2 − α(1− α)3B2

1|B2|

and

N = |−(1− α)B4
1 − (3− 2α)B2

2 + (2− α)2B1B3 + α(1− α)B2
1B2|

− α(1− α)B3
1 − 2(1− α)2B1|B2| − (1− α)2B2

1.

PROOF. Since f ∈ Kα(ϕ), there exists an analytic function w(z) = w1z + w2z2 +

· · · ∈ Ω, satisfying ( f (z)
z

)α(z f ′(z)
f (z)

)1−α
= ϕ(w(z)). (4.34)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

which implies

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (4.35)

Also, the Taylor series expansion of f gives( f (z)
z

)α(z f ′(z)
f (z)

)1−α
= 1 + a2z + ((2− α)a3 − (1− α)a2

2)z
2 (4.36)

+ ((3− 2α)a4 − 3(1− α)a2a3 + (1− α)a3
2)z

3 + · · · .

Then from (4.34), (4.35) and (4.36), we get

a2 =
B1c1

2
.

a3 =
1

4(2− α)

[
2B1c2 −

(
(B1 − B2)− (1− α)B2

1

)
c2

1

]
.
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a4 =
1

8(3− 2α)

[
4B1c3 +

(
B1 −

3(1− α)

(2− α)
B2

1 +
(1− α)(1− 2α)

(2− α)
B3

1 − 2B2

+
3(1− α)

(2− α)
B1B2 + B3

)
c3

1 +
(
− 4B1 +

6(1− α)

(2− α)
B2

1 + 4B2

)
c1c2

]
.

Thus,

a2a4 − a2
3 =

1
16

B1

[{
− (1− α)

(2− α)2(3− 2α)
B3

1 −
1

(2− α)2
B2

2
B1

+
1

(3− 2α)
B3

+
(1− α)2

(2− α)2(3− 2α)
(B1 − 2B2) +

α(1− α)

(2− α)2(3− 2α)
B1(B2 − B1)

}
c4

1

+
{ 4(1− α)2

(2− α)2(3− 2α)
(B2 − B1) +

2α(1− α)

(2− α)2(3− 2α)
B2

1

}
c2c2

1

− 4
(2− α)2 B1c2

2 +
4

(3− 2α)
B1c1c3

]
.

Proceeding similarly as in the proof of Theorem 4.1, we would see that |a2a4 − a2
3| will

be bounded by

G(c) =
B1

16

[
c4
{∣∣∣− 1

(2− α)2
B2

2
B1
− (1− α)

(2− α)2(3− 2α)
B3

1 +
1

(3− 2α)
B3

+
α(1− α)

(2− α)2(3− 2α)
B1B2

∣∣∣− α(1− α)

(2− α)2(3− 2α)
B2

1 −
(1− α)2

(2− α)2(3− 2α)(
B1 + 2|B2|

)}
+ 4c2

{ 2(1− α)2

(2− α)2(3− 2α)
|B2|+

α(1− α)

(2− α)2(3− 2α)
B2

1

− (2− α2)

(2− α)2(3− 2α)
B1

}
+

16
(2− α)2 B1

]
=

B1

16
(Pc4 + Qc2 + R), (4.37)

where,

P = (2− α)−2(3− 2α)−1
(∣∣∣− (3− 2α)

B2
2

B1
− (1− α)B3

1 + (2− α)2B3 (4.38)

+ α(1− α)B1B2

∣∣∣− 2(1− α)2|B2| − α(1− α)B2
1 + (1− α)2B1

)
,

Q = 4(2− α)−2(3− 2α)−1
(

2(1− α)2|B2|+ α(1− α)B2
1 − (2− α2)B1

)
, (4.39)

R = 16(2− α)−2B1. (4.40)
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Thus using (4.14) and (4.37) we get,

|a2a4 − a2
3| ≤

B1

16


R, Q ≤ 0, P ≤ −Q

4 ;

16P + 4Q + R, Q ≥ 0, P ≥ −Q
8 or Q ≤ 0 , P ≥ −Q

4 ;
4PR−Q2

4P , Q > 0, P ≤ −Q
8 .

where P, Q, R are given by (4.38), (4.39) and (4.40), respectively.

REMARK 4.12. When α = 0, Theorem 4.11 reduces to [45, Theorem 2]. Then Corollary

4.6 comes as a particular case.

4.2.5. The Class Tα(ϕ). Let the analytic function ϕ : D → C be given by (4.1).

For 0 ≤ α ≤ 1, the class Tα(ϕ) consists of functions f ∈ A satisfying the following

subordination (
f (z)

z

)α (
1 +

z f ′′(z)
f ′(z)

)1−α

≺ ϕ(z).

We see that,

T0(ϕ) = K(ϕ) :=
{

f ∈ A : 1 +
z f ′(z)

f (z)
≺ ϕ(z)

}
is the generalised Ma-Minda class of convex functions.

THEOREM 4.13. Let the function f ∈ Tα(ϕ) be given by f (z) = z + a2z2 + a3z3 + · · · .
Then,

(1) If B1, B2 and B3 satisfy the conditions

4(1− α)(2− α)|6− 7α||B2|+ 2(1− α)|7α2 − 8α− 6|B2
1 ≤ ((2− α)2(12− 11α)

− 2(1− α)(2− α)|6− 7α|)B1,

and

|(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1 − 12(2− α)4(12− 11α)B2

2

+ 12(6− 5α)2(2− α)3B1B3 − 24(1− α)(2− α)2(7α2 − 8α− 6)B2
1B2|

− 12(2− α)4(12− 11α)B2
1 ≤ 0,
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then

|a2a4 − a2
3| ≤

B2
1

(6− 5α)2 .

(2) If B1, B2 and B3 satisfy the conditions

4(1− α)(2− α)|6− 7α||B2|+ 2(1− α)|7α2 − 8α− 6|B2
1 ≥ ((2− α)2(12− 11α)

− 2(1− α)(2− α)|6− 7α|)B1,

and

|(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1 − 12(2− α)4(12− 11α)B2

2

+ 12(6− 5α)2(2− α)3B1B3 − 24(1− α)(2− α)2(7α2 − 8α− 6)B2
1B2|

− 24(1− α)(2− α)3|6− 7α||B2|B1 − 12(1− α)(2− α)2|7α2 − 8α− 6|B3
1

− 6(2− α)3(2(1− α)|6− 7α|+ (2− α)(12− 11α))B2
1 ≥ 0,

or the conditions

4(1− α)(2− α)|6− 7α||B2|+ 2(1− α)|7α2 − 8α− 6|B2
1 ≤ ((2− α)2(12− 11α)

− 2(1− α)(2− α)|6− 7α|)B1,

and

|(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1 − 12(2− α)4(12− 11α)B2

2

+ 12(6− 5α)2(2− α)3B1B3 − 24(1− α)(2− α)2(7α2 − 8α− 6)B2
1B2|

− 12(2− α)4(12− 11α)B2
1 ≥ 0,

then

|a2a4 − a2
3| ≤

1
12(2− α)4(6− 5α)2(12− 11α)

∣∣∣−12(2− α)4(12− 11α)B2
2

+ (1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1

+ 12(2− α)3(6− 5α)2B1B3 − 24(1− α)(2− α)2

(7α2 − 8α− 6)B2
1B2

∣∣∣.
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(3) If B1, B2 and B3 satisfy the conditions

4(1− α)(2− α)|6− 7α||B2|+ 2(1− α)|7α2 − 8α− 6|B2
1 > ((2− α)2(12− 11α)

− 2(1− α)(2− α)|6− 7α|)B1,

and

|(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1 − 12(2− α)4(12− 11α)B2

2

+ 12(6− 5α)2(2− α)3B1B3 − 24(1− α)(2− α)2(7α2 − 8α− 6)B2
1B2|

− 24(1− α)(2− α)3|6− 7α||B2|B1 − 12(1− α)(2− α)2|7α2 − 8α− 6|B3
1

− 6(2− α)3(2(1− α)|6− 7α|+ (2− α)(12− 11α))B2
1 ≤ 0,

then

|a2a4 − a2
3| ≤

B2
1 M

(2(6− 5α)2(12− 11α))N
,

where,

M = |2(1− α)(12− 11α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1

− 24(2− α)4(12− 11α)2B2
2 + 24(2− α)3(12− 11α)(6− 5α)2B1B3

− 48(1− α)(2− α)2(12− 11α)(7α2 − 8α− 6)B2
1B2| − 24(1− α)(2− α)

|7α2 − 8α− 6|
(
(2− α)(12− 11α) + 2(1− α)|6− 7α|

)
B3

1

− 48(1− α)(2− α)2|6− 7α|
(

2(1− α)|6− 7α|+ (2− α)(12− 11α)
)

B1|B2|

− 6(2− α)2
(

4(1− α)|6− 7α|(2− α)(12− 11α) + (2− α)2(12− 11α)2

+ 4(1− α)2(6− 7α)2
)

B2
1 − 24(1− α)2(7α2 − 8α− 6)2B4

1

− 96(1− α)2(6− 7α)2(2− α)2B2
2 − 96(1− α)2(2− α)|6− 7α|

|7α2 − 8α− 6|B2
1|B2|

and

N = |(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B4
1 − 12(2− α)4(12− 11α)B2

2

+ 12(2− α)3(6− 5α)2B1B3 − 24(1− α)(2− α)2(7α2 − 8α− 6)B2
1B2|
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− 24(1− α)(2− α)2|7α2 − 8α− 6|B3
1 − 48(1− α)(2− α)3|6− 7α|B1|B2|

− 24(1− α)(2− α)3|6− 7α|B2
1.

PROOF. Since f ∈ Tα(ϕ), there exists an analytic function w(z) = w1z + w2z2 +

· · · ∈ Ω, such that ( f (z)
z

)α(
1 +

z f ′′(z)
f ′(z)

)1−α
= ϕ(w(z)). (4.41)

Define p1(z) by

p1(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · ,

then this implies

w(z) =
p1(z)− 1
p1(z) + 1

=
1
2

(
c1z +

(
c2 −

c2
1

2

)
z2 + · · ·

)
.

Clearly p1 is analytic in D with p1(0) = 1 and p1 ∈ P . Then, since ϕ(z) = 1 + B1z +

B2z2 + B3z3 + · · · , we get

ϕ

(
p1(z)− 1
p1(z) + 1

)
= 1 +

1
2

B1c1z +

(
1
2

B1

(
c2 −

c2
1

2

)
+

1
4

B2c2
1

)
z2 + · · · . (4.42)

Also, the Taylor series expansion of f gives( f (z)
z

)α(
1 +

z f ′′(z)
f ′(z)

)1−α
= 1 + (2− α)a2z +

(
(6− 5α)a3 −

1
2
(1− α)(8 + α)a2

2
)
z2

+
(
(12− 11α)a4 − (1− α)(18 + 5α)a2a3

+
1
6
(1− α)(α2 + 28α + 48)a3

2
)
z3 + · · · . (4.43)

Then from (4.41), (4.42) and (4.43), we get

a2 =
B1c1

2(2− α)
.

a3 =
1

8(6− 5α)

[
4B1c2 −

(2(B1 − B2)(2− α)2 − (1− α)(8 + α)B2
1

(2− α)2

)
c2

1

]
.

a4 =
1

8(12− 11α)

[
4B1c3 +

(
B1 −

(1− α)(18 + 5α)

(2− α)(6− 5α)
B2

1 − 2B2 + B3
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− (1− α)(10α3 + 25α2 + 186α− 144)
6(2− α)3(6− 5α)

B3
1 +

(1− α)(18 + 5α)

(2− α)(6− 5α)
B1B2

)
c3

1

+
(
− 4B1 +

2(1− α)(18 + 5α)

(2− α)(6− 5α)
B2

1 + 4B2

)
c1c2

]
.

Thus,

a2a4 − a2
3 =

1
8

B1

[{(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)
24(2− α)4(6− 5α)2(12− 11α)

B3
1 −

1
2(6− 5α)2

B2
2

B1

+
1

2(2− α)(12− 11α)
B3 +

(1− α)(6− 7α)

(2− α)(6− 5α)2(12− 11α)
(B1 − 4B2)

+
(1− α)(7α2 − 8α− 6)

(2− α)2(6− 5α)2(12− 11α)
B1(B1 − B2)

}
c4

1

+
{ 4(1− α)(6− 7α)

(2− α)(6− 5α)2(12− 11α)
(B2 − B1)−

2(1− α)(7α2 − 8α− 6)
(2− α)2(6− 5α)2(12− 11α)

B2
1

}
c2c2

1 −
2

(6− 5α)2 B1c2
2 +

2
(2− α)(12− 11α)

B1c1c3

]
.

Again, proceeding as in the proof of Theorem 4.1, we see that |a2a4− a2
3| is bounded by

G(c) =
B1

8

[
c4
{∣∣∣− 1

2(6− 5α)2
B2

2
B1

+
(1− α)(67α4 − 329α3 + 516α2 + 168α− 576)

24(2− α)4(6− 5α)2(12− 11α)
B3

1

+
1

2(2− α)(12− 11α)
B3 −

(1− α)(7α2 − 8α− 6)
(2− α)2(6− 5α)2(12− 11α)

B1B2

∣∣∣
− (1− α)|7α2 − 8α− 6|

(2− α)2(6− 5α)2(12− 11α)
B2

1 −
(1− α)|6− 7α|

(2− α)(6− 5α)2(12− 11α)
(B1 + 2|B2|)

}
+ 4c2

{ (1− α)|6− 7α|
(2− α)(6− 5α)2(12− 11α)

(B1 + 2|B2|) +
(1− α)|7α2 − 8α− 6|

(2− α)2(6− 5α)2(12− 11α)

B2
1 −

1
2(6− 5α)2 B1

}
+

8B1

(6− 5α)2

]
=

B1

8
(Pc4 + Qc2 + R), (4.44)

where,

P =
1

24
(2− α)−4(6− 5α)−2(12− 11α)−1

(∣∣∣− 12(2− α)4(12− 11α)
B2

2
B1

+ (1− α)(67α4 − 329α3 + 516α2 + 168α− 576)B3
1 + 12(2− α)3(6− 5α)2B3

− 24(1− α)(2− a)2(7α2 − 8α− 6)B1B2

∣∣∣− 48(1− α)(2− α)3|6− 7α||B2|
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− 24(1− α)(2− α)2|7α2 − 8α− 6|B2
1 − 24(1− α)(2− α)3|6− 7α|B1

)
, (4.45)

Q = 2(2− α)−2(6− 5α)−2(12− 11α)−1
(

2(1− α)(2− α)|6− 7α|(2|B2|+ B1)

+ 2(1− α)|7α2 − 8α− 6|B2
1 − (2− α)2(12− 11α)B1

)
, (4.46)

R = 8(6− 5α)−2B1. (4.47)

Thus using (4.14) and (4.44) we get,

|a2a4 − a2
3| ≤

B1

8


R, Q ≤ 0, P ≤ −Q

4 ;

16P + 4Q + R, Q ≥ 0, P ≥ −Q
8 or Q ≤ 0 , P ≥ −Q

4 ;
4PR−Q2

4P , Q > 0, P ≤ −Q
8 .

where P, Q, R are given by (4.45), (4.46) and (4.47), respectively.

REMARK 4.14. When α = 0, Theorem 4.13 reduces to [45, Theorem 2].

4.3. THIRD HANKEL DETERMINANT

We know that the qth Hankel determinant (denoted by Hq(n)) for q = 1, 2, . . . and

n = 1, 2, 3, . . . of the function f is the determinant of the q× q matrix given by Hq(n) :=

det(an+i+j−2). Here an+i+j−2 denotes the entry for the ith row and jth column of

the matrix. Thus, the third Hankel determinant is given by the expression H3(1) :=

a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2). Here, we have computed the bounds for

the third Hankel determinant for two very fascinating classes of analytic functions.

4.3.1. The ClassMα. The first theorem gives the coefficient bounds for the first five

coefficients for the functions in the classMα which is the class of all normalised analytic

univalent functions f in S satisfying

Re

(
( f ′(z))α

(
z f ′(z)

f (z)

)1−α
)

> 0.

Note that

S∗ =M0 :=
{

f ∈ S : Re
(

z f ′(z)
f (z)

)
> 0

}
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and

R =M1 := { f ∈ S : Re
(

f ′(z)
)
> 0}

are the renowned classes of starlike and a subclass of close-to-convex functions, re-

spectively. Thus as α varies from 0 to 1, our classMα furnishes a continuous passage

from the class of starlike functions to a class of functions whose derivative has a positive

real part. This class is a subclass of close-to-convex functions. The first theorem in this

section gives the bounds for he first five coefficient estimates for the function f ∈ Mα.

THEOREM 4.15. If the function f ∈ Mα, then the coefficients an (n = 2, 3, 4, · · · ) of f

satisfy

|a2| ≤
2

(1 + α)
,

|a3| ≤
2(3 + α)

(2 + α)(1 + α)2 ,

|a4| ≤
2
(
36 + 19α + 11α2 + 5α3 + α4)

3(1 + α)3(2 + α)(3 + α)
,

and

|a5| ≤
2
(
360 + 433α + 437α2 + 331α3 + 137α4 + 28α5 + 2α6)

3(1 + α)4(2 + α)2(3 + α)(4 + α)
.

PROOF. Since f ∈ Mα, there exists an analytic function p(z) = 1 + c1z + c2z2 +

· · · ∈ P such that

( f ′(z))α

(
z f ′(z)

f (z)

)1−α

= p(z). (4.48)

The Taylor series expansion of the function f gives

( f ′(z))α

(
z f ′(z)

f (z)

)1−α

= 1 + a2(1 + α)z +
1
2
((2 + α)(2a3 − (1− α)a2

2)z
2 (4.49)

+
1
6
(3 + α)(6a4 − 6(1− α)a2a3 + (1− α)(2− α)a3

2))z
3 + · · · .
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Then using (4.48), (4.49) and the expansion for the function p, the coefficients a2 − a5

can be expressed as a function of the coefficients ci of p ∈ P :

a2 =
c1

(1 + α)
, (4.50)

a3 =
1

2(2 + α)(1 + α)2

(
2(1 + α)2c2 + (1− α)(2 + α)c2

1
)
, (4.51)

a4 =
1

6(1 + α)3(2 + α)(3 + α)

(
(1− α)(2 + α)(3 + α)(1− 2α)c3

1 (4.52)

+ 6(1 + α)3(2 + α)c3 + 6(1 + α)2(1− α)(3 + α)c1c2
)
,

and

a5 =
1

24(1 + α)4(2 + α)2(3 + α)(4 + α)

(
24(1 + α)3(2 + α)2(1− α)(4 + α)c1c3

+ 24(1 + α)4(3 + α)(2 + α)2c4 + 12(1 + α)4(3 + α)(1− α)(4 + α)c2
2

+ 12(1 + α)2(1− α)(2 + α)(3 + α)(4 + α)(1− 2α)c2
1c2

+ (2 + α)2(1− α)(3 + α)(4 + α)(1− 2α)(1− 3α)c4
1
)
. (4.53)

Consequently, using the triangle inequality and the fact that |ck| ≤ 2 (k = 1, 2, 3, · · · ),
we arrive at the desired bounds for a2, a3, a4 and a5.

We now prove some results which will be required to estimate the third Hankel determi-

nant H3(1) for functions in the classMα.

THEOREM 4.16. Let α0 = 0.267554 ∈ [0, 1] be the root of

(18− α− 4α2 − α3)(7α + 4α2 + α3)1/2 = (1 + α)(6 + 3α + α2)(6 + 9α + 4α2 + α3)1/2.

For the function f ∈ Mα, the following coefficient bounds hold:

(1) When 0 ≤ α ≤ α0, then

|a2a3 − a4| ≤
2(18− α− 4α2 − α3)

3(1 + α)2(2 + α)(3 + α)
.
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(2) When α0 ≤ α ≤ 1, then

|a2a3 − a4| ≤
2(6 + 3α + α2)

√
6 + 9α + 4α2 + α3

3(1 + α)(2 + α)(3 + α)
√

7α + 4α2 + α3
.

PROOF. Using the expressions for a2, a3 and a4 from (4.50), (4.51) and (4.52), we

see that

|a2a3 − a4| =
1

3(1 + α)2(2 + α)(3 + α)

∣∣(3(1 + α)2(2 + α)c3 + 3α(1 + α)(3 + α)c1c2

− (1− α)(2 + α)(3 + α)c3
1)
∣∣.

Substituting the values for c2 and c3 from Lemma 4.3 in the above expression, we have

|a2a3 − a4| =
1

12(1 + α)2(2 + α)(3 + α)

∣∣(18− α− 4α2 − α3)c3
1 − 12(4− c2)(1 + α)c1x

+ 3(4− c2)(1 + α)2(2 + α)c1x2 − 6(4− c2)(1 + α)2(2 + α)(1− |x|2)y
∣∣.

≤ 1
12(1 + α)2(2 + α)(3 + α)

(
(18− α− 4α2 − α3)c3

1 + 12(4− c2)(1 + α)c1|x|

+ 3(4− c2)(1 + α)2(2 + α)c1|x|2 + 6(4− c2)(1 + α)2(2 + α)(1− |x|2)|y|
)
.

Choosing c1 = c ∈ [0, 2], replacing |x| by µ and using the fact that |y| ≤ 1 in the above

inequality, we get

|a2a3 − a4| ≤
1

12(1 + α)2(2 + α)(3 + α)

(
(18− α− 4α2 − α3)c3 + 12(4− c2)(1 + α)cµ

+ 3(4− c2)(1 + α)2(2 + α)cµ2 + 6(4− c2)(1 + α)2(2 + α)(1− µ2)
)
.

=F(c, µ).

We shall now maximize the function F(c, µ) for (c, µ) in [0, 2]× [0, 1]. On differentiating

F(c, µ) partially with respect to the parameter µ, we get

∂F
∂µ

=
(4− c2)

2(2 + α)(3 + α)

(
2c + (2 + α)µ(c− 2)

)
.

Then ∂F/∂µ = 0 for µ0 = (2c)/((2− c)(1 + α)(2 + α)) ∈ [0, 1] when c ∈ [0, 1]. As

observed from the graph of the function F(c, µ), when c ∈ [0, 1], maximum value of

F(c, µ) exists at µ0 and for c ∈ [1, 2], maximum exists at µ = 1. Thus, we maximize the

function G(c) given by
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G(c) =

 G1(c), 0 ≤ c ≤ 1;

G2(c), 1 ≤ c ≤ 2,

where

G1(c) =
24(1 + α)2(2 + α)2 + 6c2α(3 + α)(4 + 3α + α2) + c3(3 + α)(−16 + 3α2 + α3)

12(1 + α)2(2 + α)(3 + α)
,

and

G2(c) =
12c(4− c2)(1 + α) + 3c(4− c2)(1 + α)2(2 + α) + c3(18− α− 4α2 − α3)

12(1 + α)2(2 + α)(3 + α)
.

Firstly, we observe that G′1(c) = −c
(
4α(1 + α)(2 + α) + c(−16 + 3α2 + α3)

)
/(4(1 +

α)2(2 + α)2). When α ∈ [α∗, 1], G1(c) is an increasing function of c as G′1(c) > 0 for

all values of c ∈ [0, 1] and when α ∈ [α∗, 1], G1(c) is a decreasing function of c as

G′1(c) < 0 for all c ∈ [0, 1]. Thus, for α ∈ [0, α∗], maximum is attained at c = 1 and for

α ∈ [α∗, 1], maximum is at c = 0, and is given by

max
0≤c≤1

G1(c) =


144 + 232α + 225α2 + 102α3 + 17α4

12(1 + α)2(2 + α)2(3 + α)
, 0 ≤ α ≤ α∗,

2(2 + α)2

(2 + α)2(3 + α)
, α∗ ≤ α ≤ 1.

(4.54)

Here α∗ is the root of the equation 144 + 232α + 225α2 + 102α3 + 17α4 = 24(1 +

α)2(2 + α)2.

We now maximize G2(c). It is seen that G′2(c) =
(
− α(7 + 4α + α2)c2 + (1 + α)(6 +

3α + α2)
)
/
(
(1 + α)2(2 + α)(3 + α)

)
. When α ∈ [0, α′], G′2(c) > 0 for all c ∈ [1, 2],

thereby implying that G2(c) is an increasing function of c. For α ∈ [α′, 1], it can be seen

that

max
1≤c≤2

G2(c) = max
1≤c≤2

{G2(c0), G2(1), G2(2)} = G2(c0),

where c0 = ((6 + 9α + 4α2 + α3)/α(7 + 4α + α2))1/2 is the positive root of G′2(c) = 0.

Thus, it is seen that
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max
1≤c≤2

G2(c) =


2(18− α− 4α2 − α3)

3(1 + α)2(2 + α)(3 + α)
, 0 ≤ α ≤ α′,

2(6 + 3α + α2)
√

6 + 9α + 4α2 + α3

3(1 + α)(2 + α)(3 + α)
√

α(7 + 4α + α2)
, α′ ≤ α ≤ 1.

(4.55)

where α′ is the root of (18− α − 4α2 − α3)(α(7 + 4α + α2))1/2 = (1 + α)(6 + 3α +

α2)(6 + 9α + 4α2 + α3)1/2. The absolute maximum value of G(c) over the interval

c ∈ [0, 2] is given by

max
0≤c≤2

G(c) = max
0≤c≤2

{G1(c), G2(c)}

=


2(18− α− 4α2 − α3)

3(1 + α)2(2 + α)(3 + α)
, 0 ≤ α ≤ α0,

2(6 + 3α + α2)
√

6 + 9α + 4α2 + α3

3(1 + α)(2 + α)(3 + α)
√

α(7 + 4α + α2)
, α0 ≤ α ≤ 1.

(4.56)

where α0 is the root of (18− α − 4α2 − α3)(α(7 + 4α + α2))1/2 = (1 + α)(6 + 3α +

α2)(6 + 9α + 4α2 + α3)1/2.

For the third Hankel determinant, we thus have the following corollary:

COROLLARY 4.17. If f ∈ Mα, then the third Hankel determinant H3(1) satisfies

|H3(1)| ≤

 R, 0 ≤ α ≤ α0,

S, α0 ≤ α ≤ 1.

where

R =
4

9(1 + α)5(2 + α)3(3 + α)2(4 + α)

(
10368 + 22815α + 27229α2 + 22644α3

+ 12505α4 + 4190α5 + 739α6 + 32α7 − 9α8 − α9),
S =

4
9(1 + α)4(2 + α)3(3 + α)2(4 + α)(α(7 + 4α + α2))1/2{(2 + α)(4 + α)

(6 + 9α + 4α2 + α3)1/2(216 + 222α + 159α2 + 82α3 + 32α4 + 8α5 + α6)

+ 3(3 + α)(α(7 + 4α + α2))1/2(576 + 1063α + 1109α2 + 655α3 + 209α4

+ 34α5 + 2α6)},
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and α0 = 0.267554 is the root of the following equation:

(18− α− 4α2 − α3)(7α + 4α2 + α3)1/2 = (1+ α)(6+ 3α+ α2)(6+ 9α+ 4α2 + α3)1/2.

PROOF. Since f ∈ A, a1 = 1, so that we have

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|. (4.57)

By substituting Bi = 2 (i = 1, 2, 3, · · · ) and µ = 1 in [36, Theorem 2.11], we get the

following bound for the expression |a3 − a2
2| for f ∈ Mα:

|a3 − a2
2| ≤ 2/(2 + α).

Similarly, [36, Theorem 2.9] gives the following bound for f ∈ Mα:

|a2a4 − a2
3| ≤ 4/(2 + α)2.

Using these two bounds, the bound for the expression |a4 − a2a3| from Theorem 4.16

and the bounds for |ak| (k = 1, 2, 3, · · · ) from Theorem 4.15 in the equation (4.57), the

desired estimates for the thrid Hankel determinant follows.

REMARK 4.18. For α = 0, Corollary 4.17 reduces to H3(1) ≤ 16 for starlike functions

[10].

4.3.2. The Class Lα. Our next theorem gives bounds for the first five coefficients for

functions in the class Lα which is the class of all normalised analytic functions f ∈ S
satisfying

Re

(
( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)1−α
)

> 0.

We see that,

K = L0 :=
{

f ∈ A : Re
(

1 +
z f ′′(z)
f ′(z)

)
> 0

}
and

R = L1 := { f ∈ A : Re
(

f ′(z)
)
> 0}
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are the classes of convex functions and a subclass of close-to-convex functions respec-

tively. Thus as α varies from 0 to 1, our class Lα provides a continuous passage from

the class of convex functions to a subclass of close-to-convex functions. The following

theorem gives the bounds for the first five coefficient estimates for f ∈ Lα

THEOREM 4.19. If the function f ∈ Lα, then

|a2| ≤1,

|a3| ≤
2

3(2− α)
(3− 2α),

|a4| ≤
1

2(2− α)(3− 2α)

(
(8− 7α) + 4(1− α)|1− 2α|

)
,

and

|a5| ≤
1

10(2− α)2(3− 2α)(4− 3α)

(
4(56− 101α + 54α2 − 8α3)

+ 16(1− α)|1− 2α|((12− 7α) + |4− 13α + 6α2|)
)
.

PROOF. Since the function f ∈ Lα, there exists an analytic function p(z) = 1 +

c1z + c2z2 + · · · ∈ P , such that

( f ′(z))α

(
1 +

z f ′′(z)
f ′(z)

)1−α

= p(z). (4.58)

The Taylor series expansion of the function f gives

( f ′(z))α
(

1 +
z f ′′(z)
f ′(z)

)1−α
= 1 + 2a2z + (3(2− α)a3 − 4(1− α)a2

2)z
2 (4.59)

+ (4(3− 2α)a4 − 18(1− α)a2a3 + 8(1− α)a3
2)z

3 + · · · .

Then using (4.58), (4.59) and the expansion for the function p, we express an in terms

of the coefficients ci of p ∈ P :

a2 =
c1

2
, (4.60)

a3 =
1

3(2− α)

(
c2 + (1− α)c2

1
)
, (4.61)

a4 =
1

4(2− α)(3− 2α)

(
(1− α)(1− 2α)c3

1 + (2− α)c3 + 3(1− α)c1c2
)
, (4.62)
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and

a5 =
1

10(2− α)2(3− 2α)(4− 3α)

(
8(2− α)2(1− α)c1c3 + 2(2− α)2(3− 2α)c4

(4.63)

+ (1− α)(4 + α)(3− 2α)c2
2 + 2(1− α)(1− 2α)(12− 7α)c2

1c2

+ (1− α)(1− 2α)(4− 13α + 6α2)c4
1
)
.

Therefore, by making use of the triangle inequality and the fact that |ck| ≤ 2 (k =

1, 2, 3, · · · ), for p ∈ P , we get the desired bounds for a2, a3, a4 and a5.

Next, we prove certain results which will be required later to estimate the third hankel

determinant H3(1) for the class Lα. To begin with, first we find an upper bound for

|a2a3 − a4| for the function f ∈ Lα.

THEOREM 4.20. Let α0 = 0.852183 ∈ [0, 1] be the root of the equation (24− 19α)3/2 =

9
√

3(2− α)3/2(3− 2α)1/2. If f ∈ Lα, then

|a2a3 − a4| ≤


(24−19α)3/2

18
√

3(2−α)(3−2α)
√

6−7α+2α2 , 0 ≤ α < α0;

1
2(3−2α)

, α0 ≤ α ≤ 1.

PROOF. By making use of the equations (4.60), (4.61) and (4.62), we get

a2a3 − a4 =
1

12(2− α)(3− 2α)

(
− 3(2− α)c3 − (3− 5α)c1c2 + (1− α)(3− 2α)c3

1
)
.

Substituting the values for c2 and c3 from Lemma 4.3 in the above expression, we have

|a2a3 − a4| =
1

48(2− α)(3− 2α)

∣∣α(9− 8α)c3
1 − 2(4− c2)(9− 8α)c1x

+ 3(4− c2)(2− α)c1x2 − 6(4− c2)(2− α)(1− |x|2)y
∣∣.

≤ 1
48(2− α)(3− 2α)

(
α(9− 8α)c3

1 + 2(4− c2)(9− 8α)c1|x|

+ 3(4− c2)(2− α)c1|x|2 + 6(4− c2)(2− α)(1− |x|2)|y|
)
.
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Choosing c1 = c ∈ [0, 2], replacing |x| by µ and using the fact that |y| ≤ 1 in the above

inequality, we get

|a2a3 − a4| ≤
1

48(2− α)(3− 2α)

(
α(9− 8α)c3 + 2(4− c2)(9− 8α)cµ

+ 3(4− c2)(2− α)cµ2 + 6(4− c2)(2− α)(1− µ2)
)
.

=F(c, µ).

We shall now maximize the function F(c, µ) for (c, µ) ∈ [0, 2] × [0, 1]. Differentiating

F(c, µ) partially with respect to µ, we get

∂F
∂µ

=
(4− c2)

48(2− α)(3− 2α)

(
2(9− 8α)c + 6µ(2− α)(c− 2)

)
.

Then ∂F/∂µ = 0 for µ0 = ((9− 8α)c)/(3(2− c)(2− α)) ∈ [0, 1] when c ∈ [0, 0.8]. As

observed from the graph of the function F(c, µ), when c ∈ [0, 0.8], maximum of F(c, µ)

occurs at µ0 and for c ∈ [0.8, 2], maximum occurs at µ = 1. Thus, we have:

max
0≤µ≤1

F(c, µ) = G(c) =

 G1(c), 0 ≤ c ≤ 0.8;

G2(c), 0.8 ≤ c ≤ 2,

where

G1(c) =
72(2− α)2 + 2c2(3− 5α)(15− 11α)− c3(9− 8α)(−9 + 2α + 3α2)

144(2− α)2(3− 2α)
,

and

G2(c) =
4c((24− 19α)− c2(2− α)(3− 2α))

48(2− α)(3− 2α)
.

Note that G′1(c) =
(
4c(3 − 5α)(15 − 11α) − 3c2(9 − 8α)(3α2 + 2α − 9)

)
/(144(2 −

α)2(3 − 2α)). The function G′1(c) = 0 implies c = 0 and c0 = (4(3 − 5α)(15 −
11α))/((9 − 8α)(3α2 + 2α − 9)). In order to find the maximum value for G1(c), we

check the behaviour of G1(c) at the end points of the interval [0, 0.8] and at c = c0. It can

be observed that there exists some α∗ ∈ [0, 0.8] such that for all values of c ∈ [0, 0.8]
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and α ∈ [0, α∗], G′1(c) > 0, thereby implying that G1(c) is an increasing function of

c ∈ [0, 0.8] and maximum occurs at c = 0.8. Similarly, using a similar argument, it is

observed that when α ∈ [α∗, 0.8], G1(c) decreases as c ∈ [0, 0.8] and hence, maximum

occurs at c = 0 and is given as:

max
0≤c≤0.8

G1(c) =


G1(0.8), 0 ≤ α ≤ α∗;

1
2(3− 2α)

, α∗ ≤ α ≤ 1.
(4.64)

Here α∗ is the root of the equation 2(3− 2α)G1(0.8) = 1. We now maximize G2(c). It is

seen that G′2(c) =
(
(24− 19α)− 3c2(2− α)(3− 2α)

)
/
(
12(2− α)(3− 2α)

)
. On solving

G′2(c) = 0, the critical points as obtained are c = ±
√
(24− 19α)/

√
3(2− α)(3− 2α).

Since c cannot be negative, thus the only points of consideration in finding the maximum

of G2(c) are the end points of the interval [0.8, 2] and c0 = ((24− 19α)/3(2− α)(3−
2α))1/2 ∈ [0.8, 2] for all α ∈ [0, 1]. It is observed that G′2(c) > 0 for c ∈ [0.8, c0] and

G′2(c) < 0 when c ∈ [c0, 1], thereby implying that the function G2(c) increases first in the

interval [0.8, c0] and then decreases in the interval [c0, 1]. Hence the maximum occurs

at c = c0 and is given by:

max
0.8≤c≤2

G2(c) =
1

18
√

3

(
(24− 19α)

(2− α)(3− 2α)

)3/2

. (4.65)

In order to find the find the absolute maximum value of G(c) over the interval c ∈ [0, 2],

we compare the maximum values of G1(c) and G2(c) as obtained in (4.64) and (4.65)

to get:

max
0≤c≤2

G(c) =


1

18
√

3

(
(24− 19α)

(2− α)(3− 2α)

)3/2

, 0 ≤ α ≤ α0;

1
2(3− 2α)

, α0 ≤ α ≤ 1.
(4.66)

where α0 is the root of (24− 19α)3/2 = 9
√

3(2− α)3/2(3− 2α)1/2.

Thus, the following bound for the third Hankel determinant H3(1) for the function f ∈ Lα

comes as a corollary to Theorem 4.19 and 4.20.
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COROLLARY 4.21. If f ∈ Lα, then the third Hankel determinant H3(1) satisfies

|H3(1)| ≤
1

540(2− α)3

(
P + Q + R

)
where

P =
5
√

3(24− 19α)3/2(2− α){8− 7α + 4(1− α)|1− 2α|}
(6− 7α + 2α2)1/2(3− 2α)2 ,

Q =
5{(72− 78α + 17α)2 − 32α(3− 2α)|18− 27α + 8α2|}

48− 62α + 17α2 − α|18− 27α + 8α2| ,

R =
144{56− 101α + 54α2 − 8α3 + 4(1− α)|1− 2α|(12− 7α + |4− 13α + 6α2|)}

(4− 3α)(3− 2α)
.

PROOF. By substituting Bi = 2 (i = 1, 2, 3, · · · ) and µ = 1 in [36, Theorem 2.15],

we get the following bound for the expression |a3 − a2
2| for f ∈ Lα:

|a3 − a2
2| ≤ 2/(3(2− α)).

Similarly, [36, Theorem 2.13] gives the following bound for f ∈ Lα:

|a2a4 − a2
3| ≤

32α(3− 2α)| − 18 + 27α− 8α2| − (72− 78α + 17α2)2

72(2− α)2(3− 2α){α|18− 27α + 8α2|+ (−48 + 62α− 17α2)} .

Using these two bounds, the bound for the expression |a4 − a2a3| from Theorem 4.20

and the bounds for |ak| (k = 1, 2, 3, · · · ) from Theorem 4.19 in the equation (4.57), the

desired estimates for the third Hankel determinant follows.

REMARK 4.22. For α = 0, Corollary 4.21 reduces to H3(1) ≤ 1/8 obtained in [10] for

the function f ∈ K, the class of convex functions.



Chapter 5
Janowski Starlikeness and Convexity

This chapter deals mainly with the univalent functions having negative coefficients. Pre-

cisely, we consider the class T of analytic univalent functions on D := {z ∈ C : |z| < 1}
of the form

f (z) = z−
∞

∑
n=2

anzn, an ≥ 0. (5.1)

These functions are indeed from the class A of all normalized functions analytic in D of

the form f (z) = z + ∑∞
n=2 anzn and the class S of univalent functions.

5.1. PRELIMINARIES

For −1 ≤ B < A ≤ 1, let S∗[A, B] and K[A, B] be the subclasses of S consisting of

Janowski starlike and Janowski convex functions respectively, defined analytically as:

S∗[A, B] :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + Az

1 + Bz

}
and

K[A, B] :=
{

f ∈ S : 1 +
z f ′′(z)
f ′(z)

≺ 1 + Az
1 + Bz

}
.

The contents of this chapter appeared in K. Khatter, V. Ravichandran and S. S. Kumar, Janowski starlike-

ness and convexity, Proc. Jangjeon Math. Soc. 20 (2017), no. 4, 623–639.
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When A = 1− 2α, (0 ≤ α < 1) and B = −1, the above mentioned classes reduce

to the classes of starlike functions of order α denoted by S∗(α) and convex functions of

order α denoted by K(α) respectively. When A = 0 and B = 0, then S∗[0, 0] =: S∗ and

K[0, 0] =: K are the familiar classes of starlike and convex functions. A function f ∈ S
is k-uniformly convex (k ≥ 0), if f maps every circular arc γ contained in D with center

ζ, |ζ| ≤ k, onto a convex arc. This class of such functions introduced by Kanas and

Wisniowska [35] is an extension of the class of uniformly convex functions introduced by

Goodman [23]. They showed that f is k-uniformly convex [35, Theorem 2.2, p. 329] (see

also [6] for details) if and only if f satisfies the inequality

k
∣∣∣∣z f ′′(z)

f ′(z)

∣∣∣∣ < Re
(

1 +
z f ′′(z)
f ′(z)

)
,

and presented the following theorem over the series of coefficients of f ∈ T to be

k-uniformly convex.

THEOREM 5.1 ( [35, Theorem 3.3, p. 334]). If f (z) = z + ∑∞
n=2 anzn satisfies the in-

equality ∑∞
n=2 n(n − 1)|an| ≤ 1/(k + 2) (k ≥ 0), then f is k-uniformly convex. The

bound 1/(k + 2) cannot be replaced by a larger number.

Note that, Theorem 5.1 is an extension of [23, Theorem 6] to k-uniformly convex function-

s. It is well-known that a function f (z) = z + ∑∞
n=2 anzn ∈ A satisfying ∑∞

n=2 n|an| ≤ 1

is necessarily univalent. This follows easily from the fact that derivative of such functions

has positive real part. There are other coefficient conditions that are relevant.

A function f ∈ A is parabolic starlike of order α if∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣ < 1− 2α + Re

(
z f ′(z)

f (z)

)
.

Ali [4] gave the following sufficient condition over the series of coefficients for functions

f ∈ S to be parabolic starlike of order α.

THEOREM 5.2 ( [4, Theorem 3.1, p. 564]). If f (z) = z + ∑∞
n=2 anzn satisfies the inequal-

ity ∑∞
n=2(n − 1)|an| ≤ (1 − α)/(2 − α), then f is parabolic starlike of order α. The

bound (1− α)/(2− α) cannot be replaced by a larger number.
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Ali et al. also investigated the condition on β so that the inequality ∑∞
n=2 n(n− 1)|an| ≤

β implies either f is starlike or convex of some positive order. Our primary interest is

the investigation of some similar sufficient coefficient conditions for functions to be in the

classes T S∗[A, B] := T ∩ S∗[A, B], and T C[A, B] := T ∩ K[A, B]. We obtain here

certain necessary and sufficient conditions in terms of the series of the coefficients a1,

a2, a3, · · · for the functions in the class T to be in the classes T S∗[A, B] and T C[A, B].

We also investigate the class R(A, B, α) (α ∈ R) defined by

R(A, B, α) :=
{

f ∈ S :
z f ′(z)

f (z)

(
α

z f ′′(z)
f ′(z)

+ 1
)
≺ 1 + Az

1 + Bz

}
(5.2)

We let T R(A, B, α) := T ∩R(A, B, α). When α = 0, R(A, B, α) is the class S∗[A, B].

Finally, the reverse implications are investigated for functions to be in the above men-

tioned subclasses.

5.2. COEFFICIENT INEQUALITIES FOR STARLIKENESS AND CONVEXITY

In this section, we obtain some conditions over the coefficients of the function f ∈ T to

belong the classes T S∗[A, B] and T C[A, B]. We prove our results using the following

lemma:

LEMMA 5.3. [9] Let −1 ≤ B < A ≤ 1. A function f ∈ T S∗[A, B] if and only if it satisfies

the following inequality:

∞

∑
n=2

(
(n− 1)(1− B) + (A− B)

)
an ≤ A− B. (5.3)

and the function f ∈ T C[A, B] if and only if it satisfies the inequality

∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
an ≤ A− B. (5.4)

With the help of the preceding lemma, we now prove the sufficient condition for the

function f to belong to the classes T S∗[A, B] and T C[A, B] respectively.

THEOREM 5.4. Let −1 ≤ B < A ≤ 1. A function f of the form (5.1) belongs to

T S∗[A, B] if it satisfies any one of the inequalities:
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(1) ∑∞
n=2 n(n− 1)an ≤ 2(A− B)/(1 + A− 2B);

(2) ∑∞
n=2(n− 1)an ≤ (A− B)/(1 + A− 2B);

(3) ∑∞
n=2 nan ≤ 2(A− B)/(2− 3B + A);

(4) ∑∞
n=2 n2an ≤ 4(A− B)/(1− 2B + A).

The bounds are sharp.

PROOF. Let f satisfies (1). It can be easily seen that, for n ≥ 2, the following in-

equality holds:

(n− 1)(1− B) + (A− B) ≤ 1 + A− 2B
2

n(n− 1).

Consequently, the hypothesis yields

∞

∑
n=2

(
(n− 1)(1− B) + (A− B)

)
an ≤

1 + A− 2B
2

∞

∑
n=2

n(n− 1)an ≤ A− B.

Therefore, by Lemma 5.3, f ∈ T S∗[A, B].

Let us now assume that f satisfies (2). Then since, for n ≥ 2, the following inequality

can be easily proved:

(n− 1)(1− B) + (A− B) ≤ (1 + A− 2B)(n− 1)

Thus,

∞

∑
n=2

(
(n− 1)(1− B) + (A− B)

)
an ≤(1 + A− 2B)

∞

∑
n=2

(n− 1)an ≤ A− B.

Thus the result holds as a consequence of Lemma 5.3.

We next suppose that f satisfies (3). Then in order to show that f belongs to the class

T S∗[A, B], we use Lemma 5.3 and the following inequality for n ≥ 2:

(n− 1)(1− B) + (A− B) ≤ (2− 3B + A)

2
n

We, therefore, have the desired result by Lemma 5.3 as f satisfies

∞

∑
n=2

(
(n− 1)(1− B) + (A− B)

)
an ≤

(2− 3B + A)

2

∞

∑
n=2

nan ≤ A− B.
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Finally, let (4) holds. Then, for n ≥ 2, we have the following inequality:

(n− 1)(1− B) + (A− B) ≤ (1− 2B + A)

4
n2.

Thus,

∞

∑
n=2

(
(n− 1)(1− B) + (A− B)

)
an ≤

(1− 2B + A)

4

∞

∑
n=2

n2an ≤ A− B.

Hence, by equation (5.3) f belongs to the class T S∗[A, B] and this completes the proof

of the theorem.

REMARK 5.5. When A = 1− α and B = 0, clearly the class T S∗(A, B) reduces to the

subclass T S∗α of T , and hence we get the the following results:

(1) If the inequality ∑∞
n=2 n(n− 1)an ≤ 2(1− α)/(2− α) holds, then f ∈ T S∗α.

(2) If the inequality ∑∞
n=2(n− 1)an ≤ (1− α)/(2− α) holds, then f ∈ T S∗α.

(3) If the inequality ∑∞
n=2 nan ≤ 2(1− α)/(3− α) holds, then f ∈ T S∗α.

(4) If the inequality ∑∞
n=2 n2an ≤ 4(1− α)/(2− α) holds, then f ∈ T S∗α.

The first two results and the last result obtained here are same as proved in [8, Theo-

rem 2.1], [8, Corollary 2.3], and [8, Theorem 2.5] whereas the third coefficient inequality

obtained above is an improvement of the already known coefficient bound as in [8, The-

orem 2.5].

THEOREM 5.6. Let −1 ≤ B < A ≤ 1. If the function f ∈ T satisfies any of the following

inequalities:

(1) ∑∞
n=2 n(n− 1)an ≤ (A− B)/(1 + A− 2B);

(2) ∑∞
n=2 n2an ≤ (A− B)/(2− 3B + A).

then f ∈ T C[A, B]. The bounds obtained above is sharp.

PROOF. Let the function f satisfies the inequality (1). We see that the following

inequality holds trivially for n ≥ 2:

n
(
(n− 1)(1− B) + (A− B)

)
≤ (1 + A− 2B)n(n− 1).
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Therefore, the above inequality leads to

∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
an ≤(1 + A− 2B)

∞

∑
n=2

n(n− 1)an ≤ A− B

Thus by Lemma 5.3, f ∈ T C[A, B]. For proving the second part of the theorem, we

again make use of the Lemma 5.3 and the following inequality for n ≥ 2:

n
(
(n− 1)(1− B) + (A− B)

)
≤ (2− 3B + A)n2.

We, therefore see that

∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
an ≤(2− 3B + A)

∞

∑
n=2

n2an ≤ A− B

which immediately proves the result using the equation (5.4).

REMARK 5.7. When A = 1− α and B = 0, clearly the class T C(A, B) reduces to the

subclass T Cα of T , and hence we get the the following coefficient inequalities:

(1) If the inequality ∑∞
n=2 n(n− 1)an ≤ (1− α)/(2− α) holds, then f ∈ T Cα.

(2) If the inequality ∑∞
n=2 n2an ≤ (1− α)/(3− α) holds, then f ∈ T Cα.

The second coefficient inequality obtained above is an improvement of the already

known coefficient inequality as in [8, Theorem 2.5] and the first one is same as obtained

in [8, Theorem 2.1].

Our next theorem aims at finding some necessary conditions for the functions belonging

to the class T C[A, B].

THEOREM 5.8. If f ∈ T C[A, B], then the following holds:

(1) The inequality ∑∞
n=2 nan ≤ (A − B)/(1 + A − 2B) holds and the bound is

sharp.

(2) The inequality ∑∞
n=2 n(n− 1)an ≤ (A− B)/(1− B) holds.

(3) The inequality ∑∞
n=2(n− 1)an ≤ (A− B)/2(1 + A− 2B) holds and the bound

is sharp.
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(4) The inequality ∑∞
n=2 n2an ≤ 2(A − B)/(1 + A − 2B) holds and the bound is

sharp.

PROOF. (1) Since f ∈ T C[A, B], then by Lemma 5.3, the coefficients of the

function f satisfy:

∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
an ≤ A− B. (5.5)

It can be seen that for n ≥ 2, the following inequality holds,

(1 + A− 2B)n ≤ n((n− 1)(1− B) + (A− B)). (5.6)

Thus, making use of equations (5.5) and (5.6), we get:

∞

∑
n=2

nan ≤
∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
(1 + A− 2B)

an ≤
A− B

(1 + A− 2B)
.

(2) Lemma 5.3 along with the inequality

n(n− 1)(1− B) ≤ n
(
(n− 1)(1− B) + (A− B)

)
, n ≥ 2

immediately yields

∞

∑
n=2

n(n− 1)an ≤
∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
(1− B)

an ≤
A− B
(1− B)

.

(3) For n ≥ 2, the following inequality holds true:

2(n− 1)(1 + A− 2B) ≤ n
(
(n− 1)(1− B) + (A− B)

)
. (5.7)

Now, Lemma 5.3 together with (5.7) clearly gives

∞

∑
n=2

(n− 1)an ≤
∞

∑
n=2

n
(
(n− 1)(1− B) + (A− B)

)
2(1 + A− 2B)

an ≤
(A− B)

2(1 + A− 2B)
.

(4) The following inequality holds for n ≥ 2:

n2(1 + A− 2B) ≤ 2n
(
(n− 1)(1− B) + (A− B)

)
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Thus, using the above inequality along with Lemma 5.3 we get:

∞

∑
n=2

n2an ≤
∞

∑
n=2

2n
(
(n− 1)(1− B) + (A− B)

)
(1 + A− 2B)

an ≤
2(A− B)

(1 + A− 2B)
.

This completes the proof of the theorem.

COROLLARY 5.9. If f ∈ T S∗[A, B], then:

(1) the inequality ∑∞
n=2 an ≤ (A− B)/(1 + A− 2B) holds and the bound is sharp.

(2) the inequality ∑∞
n=2(n− 1)an ≤ (A− B)/(1− B) holds.

(3) the inequality ∑∞
n=2 nan ≤ 2(A − B)/(1 + A − 2B) holds and the bound is

sharp.

PROOF. The results follow from Theorem 5.8 and the Alexander relation between

the classes T S∗[A, B] and T C[A, B]. It can be directly proved by using Lemma 5.3

by using the inequalities (1 + A − 2B) ≤ (n − 1)(1 − B) + (A − B), (1 − B)(n −
1) ≤ (n− 1)(1− B) + (A− B) and (1 + A− 2B)n ≤ 2((n− 1)(1− B) + (A− B))

respectively for n ≥ 2.

REMARK 5.10. For A = 1− 2α and B = −1, the above results reduce to [8, Theorem

2.1,2.5,4.4,4.5].

5.3. THE SUBCLASS T R(A, B, α)

Recall that the class R(A, B, α) (α ∈ R) is defined by

R(A, B, α) :=
{

f ∈ S :
z f ′(z)

f (z)

(
α

z f ′′(z)
f ′(z)

+ 1
)
≺ 1 + Az

1 + Bz

}
(5.8)

and T R(A, B, α) := T ∩ R(A, B, α). The class R(β, α) = R(1 − 2β,−1, α) was

studied earlier in [8, 50]. Note that R(A, B, 0) = S∗[A, B] and the following lemma

extends Lemma 5.3 and provides a necessary and sufficient condition for function f to

belong to the class T R(A, B, α).

LEMMA 5.11. Let α ∈ R and −1 ≤ B < A ≤ 1. Let f be of the form f (z) = z −

∑∞
n=2 anzn, an ≥ 0. Then f ∈ T R(A, B, α) if and only if f satisfies the following
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coefficient inequality:

∞

∑
n=2

(n2α(1− B) + n(1− α)(1− B) + A− 1)an ≤ (A− B). (5.9)

PROOF. Let f ∈ R(A, B, α). Then(
z f ′(z)

f (z)

(
α

z f ′′(z)
f ′(z)

+ 1
))

=
1 + Aw(z)
1 + Bw(z)

, (−1 ≤ B < A ≤ 1) (5.10)

where w(z) is the Schwartz function satisfying w(0) = 0, |w(z)| < 1, z ∈ D. That is

w(z) =
z f ′(z) + αz2 f ′′(z)− f (z)

A f (z)− Bz f ′(z)− Bαz2 f ′′(z)
, w(0) = 0

and

|w(z)| =
∣∣∣ z f ′(z) + αz2 f ′′(z)− f (z)

A f (z)− Bz f ′(z)− Bαz2 f ′′(z)

∣∣∣
=
∣∣∣ ∑∞

n=2 anzn(− n− αn(n− 1) + 1
)

(A− B)z + ∑∞
n=2 anzn

(
− A + Bn + Bαn(n− 1)

) ∣∣∣ < 1.

Thus, this implies

Re
{ ∑∞

n=2 anzn(− n− αn(n− 1) + 1
)

(A− B)z + ∑∞
n=2 anzn

(
− A + Bn + Bαn(n− 1)

)} < 1

On further solving we get,

∞

∑
n=2

(
n2α(1− B) + n(1− α + Bα− B) + A− 1

)
anrn < (A− B)r,

that is

∞

∑
n=2

(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
anrn < (A− B)r,

Letting r → 1, we get

∞

∑
n=2

(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
an < A− B.



92 5. JANOWSKI STARLIKENESS AND CONVEXITY

Conversely, let (5.9) holds. We now have to show that f ∈ R(A, B, α). For this, we

prove that (5.10) holds and therefore, it is sufficient to show that(αz2 f ′′(z) + z f ′(z)
f (z)

)
=

1 + Aw(z)
1 + Bw(z)

,

Equivalently, we can show

|αz2 f ′′(z) + z f ′(z)− f (z)| − |A f (z)− B(αz2 f ′′(z) + z f ′(z))| ≤ 0.

Consider∣∣∣αz2 f ′′(z) + z f ′(z)− f (z)| − |A f (z)− B(αz2 f ′′(z) + z f ′(z))
∣∣∣

=
∣∣∣− α

∞

∑
n=2

n(n− 1)anzn −
∞

∑
n=2

nanzn +
∞

∑
n=2

anzn
∣∣∣− ∣∣∣(A− B)z− A

∞

∑
n=2

anzn

+ αB
∞

∑
n=2

n(n− 1)anzn + B
∞

∑
n=2

nanzn
∣∣∣

=
∣∣∣ ∞

∑
n=2

anzn(− αn(n− 1)− (n− 1)
)∣∣∣− ∣∣∣(A− B)z +

∞

∑
n=2

anzn(− A + αBn(n− 1)

+ Bn
)∣∣∣

=
∞

∑
n=2

(
n2α + n− nα− 1 + A− nB− n2Bα + nBα

)
an − (A− B)

=
∞

∑
n=2

(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
an − (A− B) ≤ 0.

which completes the proof of the lemma.

The first theorem in this section gives a sufficient condition for the functions to belong to

the classes T R(A, B, α) ∩ T S∗[C, D] or T R(A, B, α) ∩ T C[C, D] respectively.

THEOREM 5.12. Let α > 0. If f ∈ T satisfies (5.9), then the following results hold:

(1) The function f is in the class T S∗[C, D] for

C ≥ A− B + D(1− A) + 2αD(1− B)
(1− B)(1 + 2α)

.



5.3. THE SUBCLASS T R(A, B, α) 93

(2) The function f is in the class T C[C, D] for

C ≥ A− B + D(α− A) + BD(1− α)

α(1− B)
.

The bounds obtained are sharp.

PROOF. (1) In [83, Theorem 2], Silverman and Silvia proved that S∗[C, D] ⊂
S∗[A, B] (or K[C, D] ⊂ K[A, B]) if and only if the following inequalities hold:

1− A
1− B

≤ 1− C
1− D

and
1 + C
1 + D

≤ 1 + A
1 + B

.

In particular, when B = D, both of the above conditions reduce to A ≥ C. Con-

sequently, if C ≥ C0 = (A− B + D(1− A) + 2αD(1− B))/((1− B)(1 + 2α)),

then T S∗[C0, D] ⊂ T S∗[C, D]. Hence, we only need to prove that f ∈
T S∗[C0, D]. Here we make use the following inequality for n ≥ 2,

(n− 1)(1− B)(1 + 2α) + (A− B) ≤ α(1− B)n2 + (1− α)(1− B)n + A− 1 (5.11)

Now, using (5.9) and (5.11), it readily follows that:

∞

∑
n=2

((n− 1)(1− D) + (C0 − D))an

=
∞

∑
n=2

(
(n− 1)(1− D) +

(A− B)(1− D)

(1− B)(1 + 2α)

)
an

=
∞

∑
n=2

(1− D)×
((n− 1)(1 + 2α)(1− B) + (A− B)

(1− B)(1 + 2α)

)
an

≤
∞

∑
n=2

(1− D)×
(n2(1− B)α + n(1− B)(1− α) + A− 1

(1− B)(1 + 2α)

)
an

≤ (1− D)(A− B)
(1− B)(1 + 2α)

= C0 − D

Thus by Lemma 5.3, f ∈ T S∗[C0, D].

(2) If C ≥ C0 = (A− B + D(α− A) + BD(1− α))/α(1− B), then T C[C0, D] ⊂
T C[C, D]. Thus, it is enough to show that f belongs to T C[C0, D]. The follow-

ing inequality holds for n ≥ 2:

n
(
(n− 1)α(1− B) + (A− B)

)
≤ n2(1− B)α + (1− B)(1− α)n + A− 1
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Now, the above inequality together with (5.9) shows that

∞

∑
n=2

n
(
(n− 1)(1− D) + (C0 − D)

)
an

=
∞

∑
n=2

n
(
(n− 1)(1− D) +

(A− B)(1− D)

(1− B)α

)
an

=
∞

∑
n=2

(1− D)n
((n− 1)α(1− B) + (A− B)

(1− B)α

)
an

≤ (1− D)

α(1− B)

∞

∑
n=2

(n2(1− B)α + (1− B)(1− α)n + A− 1)an

≤ (1− D)(A− B)
(1− B)α

= C0 − D.

Thus by making use of Lemma 5.3, we get that the function f belongs to the class

T C[C0, D].

The next theorem provides a sufficient coefficient inequality for the functions of the form

(5.1) to belong to the class T R(A, B, α).

THEOREM 5.13. Let α ∈ R. If the function f defined by (5.1) satisfies the inequality

∞

∑
n=2

n(n− 1)an ≤
2(A− B)

2α− 2Bα− 2B + A + 1
, (5.12)

then f ∈ T R(A, B, α). The bound obtained is sharp.

PROOF. Since, for n ≥ 2, the following inequality holds,

2
(
n2(1− B)α + (1− B)(1− α)n + A− 1

)
≤ (2α(1− B)− 2B + A + 1)n(n− 1),

and using this, we see that

∞

∑
n=2

(
n2(1− B)α + (1− B)(1− α)n + A− 1

)
an

≤ 1
2

∞

∑
n=2

(
2α(1− B)− 2B + A + 1

)
n(n− 1)an ≤ A− B.

Thus, by Lemma 5.11, f ∈ T R(A, B, α).
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In our next result, we determine the condition on C so that T C[C, D] ⊆ T R(A, B, α).

THEOREM 5.14. Let α > 0. If C ≤ (2A − 2B + (1 + 2α − 3A + 2B − 2αB)D)/(1−
A− 2α(−1 + B)), then T C[C, D] ⊆ T R(A, B, α).

PROOF. For C ≤ C0, T C[C, D] ⊂ T C[C0, D]. Thus it is enough to show that

T C[C0, D] ⊆ T R(A, B, α), where C0 = (2A− 2B+(1+ 2α− 3A+ 2B− 2αB)D)/(1−
A− 2α(−1 + B)). For n ≥ 2, the following inequality holds:

2(n2(1− B)α + (1− B)(1− α)n + A− 1) ≤ A(3− n) + (n− 1)(1 + 2α)

+ 2B(−1 + α− nα)

This yields,

∞

∑
n=2

(
n2(1− B)α + (1− B)(1− α)n + A− 1

)
an

≤
∞

∑
n=2

A(3− n) + (n− 1)(1 + 2α) + 2B(−1 + α− nα)

2
an

=
∞

∑
n=2

(n− 1)(1− D) + (C0 − D)

2(1− D)
×
(
1− A− 2α(−1 + B)

)
an

≤ (C0 − D)

2(1− D)
× (1− A− 2α(−1 + B))an

=
2(1− D)(A− B)

2(1− D)(1− A− 2α(−1 + B))
×
(
1− A− 2α(−1 + B)

)
an

= A− B

Thus by Lemma 5.11 we get f ∈ T R(A, B, α).

Finally, we prove certain necessary conditions for the functions to belong to the class

R(A, B, α).

THEOREM 5.15. Let −1 ≤ B < A ≤ 1, and α ∈ R. If f ∈ T R(A, B, α), then

(1) ∑∞
n=2 n(n− 1)an ≤ (A− B)/(α(1− B)), where α > 0



96 5. JANOWSKI STARLIKENESS AND CONVEXITY

(2) ∑∞
n=2(n− 1)an ≤ γ where

γ =


A−B

(1−B)(1−α)
, (1 + 3α)B < 3α + A;

A−B
(1+A+2α−2B−2αB) , (1 + 3α)B ≥ 3α + A.

The result is sharp when (1 + 3α)B > 3α + A .

(3) ∑∞
n=2 n2an ≤ γ where

γ =


A−B

(1−B)α , (A + 1) > 2(α + B− αB);
4(A−B)

(1+A+2α−2B−2αB) , (A + 1) ≤ 2(α + B− αB).

The result is sharp when (A + 1) < 2(α + B− αB)

(4) ∑∞
n=2 nan ≤ 2(A− B)/(1 + 2α + A− 2B− 2αB). The result is sharp.

PROOF. (1) Since f ∈ T R(A, B, α), by Lemma 5.11 we have

∞

∑
n=2

(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
an ≤ (A− B). (5.13)

For n ≥ 2, the following inequality holds:

α(1− B)n(n− 1) ≤
(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
. (5.14)

Then, equations (5.13) and (5.14) readily give

∞

∑
n=2

n(n− 1)an ≤
∞

∑
n=2

(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
α(1− B)

an

≤ (A− B)
α(1− B)

.

(2) When (1 + 3α)B < 3α + A, then for n ≥ 2,

(1− α)(1− B)(n− 1) ≤ n2α(1− B) + n(1− α)(1− B) + A− 1. (5.15)

Then, equations (5.15) and (5.13) give

∞

∑
n=2

(n− 1)an ≤
∞

∑
n=2

n2α(1− B) + n(1− α)(1− B) + A− 1
(1− α)(1− B)

an

≤ (A− B)
(1− α)(1− B)

.
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When (1 + 3α)B ≥ 3α + A, then for n ≥ 2 the following inequality holds,

(1 + A + 2α− 2B− 2αB)(n− 1) ≤ n2α(1− B) + n(1− α)(1− B) + A− 1. (5.16)

Using (5.13) and (5.16), we get

∞

∑
n=2

(n− 1)an ≤
∞

∑
n=2

(
n2α(1− B) + n(1− α)(1− B) + A− 1

(1 + A + 2α− 2B− 2αB)

)
an

≤ (A− B)
(1 + A + 2α− 2B− 2αB)

.

(3) When (A + 1) > 2(α + B− αB), then the inequality,

α(1− B)n2 ≤ n2α(1− B) + n(1− α)(1− B) + A− 1 n ≥ 2, (5.17)

together with the equation (5.13) give

∞

∑
n=2

n2an ≤
∞

∑
n=2

n2α(1− B) + n(1− α)(1− B) + A− 1
α(1− B)

an ≤
(A− B)
α(1− B)

.

When (A + 1) ≤ 2(α + B− αB), then for n ≥ 2 the following inequality holds,

(1 + A + 2α− 2B− 2αB)n2

4
≤ n2α(1− B) + n(1− α)(1− B) + A− 1. (5.18)

Using (5.13) and (5.18), we get

∞

∑
n=2

n2an ≤
∞

∑
n=2

4(n2α(1− B) + n(1− α)(1− B) + A− 1)
(1 + A + 2α− 2B− 2αB)

an

≤ 4(A− B)
(1 + A + 2α− 2B− 2αB)

.

(4) For α > 0, the inequality

(1 + A + 2α− 2B− 2αB)n ≤ 2
(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
.

together with (5.13) shows that

∞

∑
n=2

nan ≤
∞

∑
n=2

2
(
n2α(1− B) + n(1− α)(1− B) + A− 1

)
(1 + A + 2α− 2B− 2αB)

an

≤ 2(A− B)
(1 + A + 2α− 2B− 2αB)

.
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REMARK 5.16. Replacing C = 1− 2α and D = −1, our results reduce to the results

obtained in [8] for the class T R(α, β).

5.4. COEFFICIENT INEQUALITIES FOR STARLIKENESS

The functions f represented in the form:(
z

f (z)

)µ

= 1 +
∞

∑
n=1

bnzn, µ ∈ C. (5.19)

were studied in detail in [44]. Motivated by this, we determine the necessary and suffi-

cient conditions for the functions given by (5.19) to be in the class S∗[A, B].

We need the following lemma to prove our results:

LEMMA 5.17. [44] Suppose that f ∈ A has the representation (5.19) and the coefficients

bn satisfy the inequality

∞

∑
n=1

(
n + |(A− B)µ + Bn|

)
|bn| ≤ (A− B)µ, (5.20)

where −1 ≤ B ≤ A ≤ 1. Then f ∈ S∗[A, B].

However, if B > 0 and µ ≥ −B/(A− B), then inequality (5.20) reduces to:

∞

∑
n=1

(
(1 + B)n + (A− B)µ

)
|bn| ≤ (A− B)µ. (5.21)

And if B < 0 and µ ≤ −B/(A− B), then equation (5.20) reduces to:

∞

∑
n=1

(
(1− B)n− (A− B)µ

)
|bn| ≤ (A− B)µ. (5.22)

The following theorem provides sufficient condition over the series of coefficients in-

equality for the normalised analytic functions f with the representation (5.19) to be in

the class S∗[A, B]
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THEOREM 5.18. Let −1 ≤ B < A ≤ 1 and B > 0 and µ ≥ −B/(A − B). Then

if f ∈ A has the representation of the form (5.19) and bn satisfies any one of the

coefficient inequalities:

(1) ∑∞
n=2 n(n− 1)|bn| ≤

2
(
(A− B)µ− ((1 + B) + (A− B)µ)|b1|

)
2(1 + B) + (A− B)µ

;

(2) ∑∞
n=2(n− 1)|bn| ≤

(A− B)µ−
(
(1 + B) + (A− B)µ

)
|b1|

2(1 + B) + (A− B)µ
;

(3) ∑∞
n=1 n|bn| ≤

(A− B)µ
(1 + B) + (A− B)µ

;

(4) ∑∞
n=1 n2|bn| ≤

(A− B)µ
(1 + B) + (A− B)µ

.

Then f ∈ S∗[A, B].

PROOF. (1) For n ≥ 2, the following inequality holds:

(
(1 + B)n + (A− B)µ

)
≤
(
(1 + B) +

(A− B)
2

µ

)
n(n− 1). (5.23)

Using the inequality (5.23), we see that

∞

∑
n=1

(
(1 + B)n + (A− B)µ

)
|bn|

=
(
(1 + B) + (A− B)µ

)
|b1|+

∞

∑
n=2

(
(1 + B)n + (A− B)µ

)
|bn|

≤
(
(1 + B) + (A− B)µ

)
|b1|+

∞

∑
n=2

(
(1 + B) +

(A− B)
2

µ

)
n(n− 1)|bn|

≤
(
(1 + B) + (A− B)µ

)
|b1|

+

(
2(1 + B) + (A− B)µ

2

)
×
(

2((A− B)µ− (1 + B) + (A− B)µ|b1|)
2(1 + B) + (A− B)µ

)
≤ (A− B)µ

Thus by Lemma 5.17, we see that f ∈ S∗[A, B].

(2) For n ≥ 2, the following inequality holds

(
(1 + B)n + (A− B)µ

)
≤
(
2(1 + B) + (A− B)µ

)
(n− 1). (5.24)
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Using equation (5.24) we see that

∞

∑
n=1

(
(1 + B)n + (A− B)µ

)
|bn|

=
(
(1 + B) + (A− B)µ

)
|b1|+

∞

∑
n=2

(
(1 + B)n + (A− B)µ

)
|bn|

≤
(
(1 + B) + (A− B)µ

)
|b1|+

∞

∑
n=2

(
2(1 + B) + (A− B)µ

)
(n− 1)|bn|

≤
(
(1 + B) + (A− B)µ

)
|b1|+

(
2(1 + B) + (A− B)µ

)
×
(
(A− B)µ− ((1 + B) + (A− B)µ)|b1|

2(1 + B) + (A− B)µ

)
≤ (A− B)µ

Thus by using Lemma 5.17, f ∈ S∗[A, B].

(3) For n ≥ 1, the following inequality holds:

(1 + B)n + (A− B)µ ≤
(
(1 + B) + (A− B)µ

)
n (5.25)

Thus using the inequality (5.25), we see that

∞

∑
n=1

(
(1 + B)n + (A− B)µ

)
|bn| ≤

(
(1 + B) + (A− B)µ

)
n|bn|

≤ (A− B)µ.

Hence by Lemma 5.17, f ∈ S∗[A, B].

(4) For n ≥ 1, the following inequality holds:

(1 + B)n + (A− B)µ ≤
(
(1 + B) + (A− B)µ

)
n2 (5.26)

Thus using the inequality (5.26), we see that

∞

∑
n=1

(
(1 + B)n + (A− B)µ

)
|bn| ≤

(
(1 + B) + (A− B)µ

)
n2|bn| ≤ (A− B)µ.

Thus by Lemma 5.17, f ∈ S∗[A, B].

THEOREM 5.19. Let −1 ≤ B < A ≤ 1 and B < 0 and µ ≤ −B/(A− B). If f ∈ A has

the form (5.19) and satisfies any one of the coefficient inequalities

(1) ∑∞
n=2 n(n− 1)|bn| ≤

(A− B)µ−
(
(1− B)− (A− B)µ

)
|b1|

(1− B)
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(2) ∑∞
n=2(n− 1)|bn| ≤

(A− B)µ−
(
(1− B)− (A− B)µ|b1|

)
2(1− B)

(3) ∑∞
n=1 n|bn| ≤

(A− B)µ
(1− B)

Then f ∈ S∗[A, B].

PROOF. (1) For proving the first part of the theorem, we observe that the follow-

ing inequality holds for n ≥ 2:

(
(1− B)n− (A− B)µ

)
≤ (1 + B)n(n− 1). (5.27)

Therefore, using (5.27) and (5.22) and the fact that B < 0 and µ ≤ −B/(A−
B), we see that

∞

∑
n=1

((1− B)n− (A− B)µ)|bn|

=
(
(1− B)− (A− B)µ

)
|b1|+

∞

∑
n=2

(
(1− B)n− (A− B)µ

)
|bn|

≤
(
(1− B)− (A− B)µ

)
|b1|+

∞

∑
n=2

(1− B)n(n− 1)|bn|

≤
(
(1− B)− (A− B)µ

)
|b1|+ (1− B)×(

(A− B)µ−
(
(1− B)− (A− B)µ

)
|b1|

(1− B)

)
≤ (A− B)µ.

Thus, by Lemma 5.17, f ∈ S∗[A, B].

(2) For the second part, the following inequality can be proved easily for n ≥ 2:

(
(1− B)n− (A− B)µ

)
≤ 2(1 + B)(n− 1). (5.28)

Therefore, using equation (5.28) and (5.22) we see that

∞

∑
n=1

(
(1− B)n− (A− B)µ

)
|bn|

=
(
(1− B)− (A− B)µ

)
|b1|+

∞

∑
n=2

(
(1− B)n− (A− B)µ

)
|bn|
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≤
(
(1− B)− (A− B)µ

)
|b1|+

∞

∑
n=2

2(1− B)(n− 1)|bn|

≤
(
(1− B)− (A− B)

)
|b1|+ 2(1− B)×(

(A− B)µ−
(
(1− B)− (A− B)µ|b1|

)
2(1− B)

)
≤ (A− B)µ.

Thus by using Lemma 5.17 f ∈ S∗[A, B].

(3) Finally, we see that the following inequality holds for n ≥ 1:

(
(1− B)n− (A− B)µ

)
≤ (1− B)n. (5.29)

Therefore, using equations (5.29) and (5.22) we see that

∞

∑
n=1

(
(1− B)n− (A− B)µ

)
|bn| ≤

∞

∑
n=1

(1− B)n|bn|

≤ (1− B)×
(
(A− B)µ
(1− B)

)
≤ (A− B)µ.

Hence, by Lemma 5.17 f ∈ S∗[A, B].

We now obtain certain properties of the functions of the form (5.19) in the class S∗[A, B].

We prove our results using the following lemma:

LEMMA 5.20. [44] Every function f ∈ S∗[A, B] (−1 ≤ B < A ≤ 1) which has the form

(5.19) with 0 < µ < (1− B)/(A− B) satisfies the coefficient inequality

∞

∑
n=1

(
(1− B2)n2 − 2nB(A− B)µ− (A− B)2µ2)|bn|2 ≤ µ2(A− B)2.

THEOREM 5.21. If f ∈ S∗[A, B], then the following holds:

(1) The inequality

∞

∑
n=1

n|bn|2 ≤
(A− B)2µ2

(1− B2)− 2B(A− B)µ− (A− B)2µ2 ,
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holds.

(2) The inequality

∞

∑
n=1

n2|bn|2 ≤
(A− B)2µ2

(1− B2)− 2B(A− B)µ− (A− B)2µ2

holds.

PROOF. For n ≥ 1, the following inequality holds

(
(1− B2)− 2B(A− B)µ− (A− B)2µ2)n ≤ (1− B2)n2− 2nB(A− B)µ− (A− B)2µ2

(5.30)

Therefore, using (5.30) and Lemma 5.20

∞

∑
n=1

n|bn|2 ≤
∞

∑
n=1

(1− B2)n2 − 2nB(A− B)µ− (A− B)2µ2(
(1− B2)− 2B(A− B)µ− (A− B)2µ2

) |bn|2

≤ (A− B)2µ2(
(1− B2)− 2B(A− B)µ− (A− B)2µ2

) ,

and hence the result. In order to prove the second part of the theorem, we see that the

following inequality holds for all n ≥ 1

∞

∑
n=1

(
(1− B2)− 2B(A− B)µ− (A− B)2µ2)n2 ≤ (1− B2)n2 − 2nB(A− B)µ

− (A− B)2µ2 (5.31)

Proceeding as in the proof of the first part, the result follows trivially using (5.31) and

Lemma 5.20.





Chapter 6
The Classes S∗α,e and SL∗(α)

6.1. INTRODUCTION AND PRELIMINARIES

The concept of subordination plays a crucial role in the study of univalent functions and

several important subclasses of univalent functions have been introduced and studied by

using this. For instance, in 1985, Padmanabhan and Parvatham [67] used the concept of

Hadamard product and subordination and introduced the class of functions f satisfying

z(ka ∗ f (z))′/(ka ∗ f (z)) ≺ h where ka = z/(1− z)α, α ∈ R, f ∈ A and h is a convex

function. Later on, in the year 1989, Shanmugam [82] studied the class S∗g (ω) of all

functions f ∈ A which satisfy z( f ∗ g)′/( f ∗ g) ≺ ω where ω is a convex function, g

is a fixed function in A. Replacing g by the functions z/(1− z) and z/(1− z)2, we get

the subclasses S∗(ω) and K(ω) respectively. Let ϕ be a univalent function with the

positive real part satisfying ϕ(0) = 1 and ϕ′(0) > 0. Recall that for such a function ϕ,

Ma and Minda [51] introduced the following two unified subclasses using the concept of

subordination:

S∗(ϕ) =

{
f ∈ S :

z f ′(z)
f (z)

≺ ϕ(z)
}

and K(ϕ) =

{
f ∈ S : 1 +

z f ′′(z)
f ′(z)

≺ ϕ(z)
}

.

The importance of these classes comes from the fact that for different values of ϕ, these

subclasses reduce to some renowned subclasses of univalent functions. For instance,

when ϕ(z) = (1 + z)/(1 − z), S∗(ϕ) and K(ϕ) reduce to the class S∗ of starlike

and K of convex functions respectively. For −1 ≤ B < A ≤ 1, when ϕ(z) = (1 +

105
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Az)/(1+ Bz), the classes S∗(ϕ) andK(ϕ) reduce to the classes S∗[A, B] andK[A, B]

respectively, which are the familiar classes consisting of Janowski starlike and convex

functions. On replacing A = 1− 2α and B = −1 where 0 ≤ α < 1, the class S∗[A, B]

reduces to the subclass S∗(α), the class of the starlike functions of order α, whereas the

class K[A, B] reduces to the subclass K(α) of S , the class of convex functions of order

α. These classes were introduced and extensively studied by Robertson [78]. Similarly,

when ϕ =
√

1 + z, we get S∗L = S∗(
√

1 + z) which consists of the functions f ∈ A
such that z f ′(z)/ f (z) lies in the domain bounded by the right half of the lemniscate of

Bernoulli given by |w2 − 1| < 1. Sokól and Stankiewicz [86,87] introduced and studied

this subclass.

Therefore, various authors investigated many attractive subclasses of the starlike and

convex functions using the Ma - Minda classes of starlike and convex functions. In

this chapter, we define two very fascinating subclasses of S∗, namely S∗α,e and SL∗(α)
respectively, where 0 ≤ α < 1 and study these classes extensively. The classes are

defined as follows:

S∗α,e = S∗(α + (1− α)ez) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ α + (1− α)ez

}
,

and

SL∗(α) = S∗(α + (1− α)
√

1 + z) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ α + (1− α)

√
1 + z

}
.

As a consequence of the Alexander’s two way bridge relation between the class S∗

of starlike and K of convex functions, which states that f ∈ K ⇔ z f ′ ∈ S∗, similar

properties for the functions in K(ϕ0) can be obtained from the corresponding properties

for S∗(ϕ0), where ϕ0 = α + (1− α)ez or α + (1− α)
√

1 + z.

We now discuss certain examples of functions in the classes S∗α,e and SL∗(α) which

serve as an extremal function for many problems over the two respective subclasses.

Define the function kn (n = 2, 3, 4, · · · ) by kn(0) = k′n(0)− 1 = 0 and

zk′n(z)
kn(z)

= ϕ(zn−1)
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where ϕ = α + (1− α)ez. Then, clearly the function kn ∈ S∗α,e where n = 2, 3, · · · . In

view of this, it can be seen that the function

k(z) = k2(z) = z + (1− α)z2 +
1
4
(1− α)(3− 2α)z3 + · · · , (6.1)

serves as an extremal function for various problems for the class S∗α,e. In a similar

fashion, we find the extremal function for the class SL∗(α) and it can be seen that the

following function

h(z) = h2(z) = z + (1− α)z2 +
1

16
(1− α)(1− 2α)z3 + · · · (6.2)

serves as an extremal function for various extremal problems for the class SL∗(α).

The bound for the Fekete- Szegö inequality for the classes S∗α,e and SL∗(α) can be

estimated as in [8, Theorem 1, p.38]. If f (z) = z + ∑∞
k=2 akzk ∈ S∗α,e, then

|a3 − µa2
2| ≤



(1− α)

4
(1 + 2(1− 2µ)(1− α)), µ ≤ 1

4
(1− 2α)

(1− α)
;

(1− α)

2
,

1
4
(1− 2α)

(1− α)
≤ µ ≤ 1

4
(5− 2α)

(1− α)
;

−(1− α)

4
(1 + 2(1− 2µ)(1− α)), µ ≥ 1

4
(5− 2α)

(1− α)
.

and if f (z) = z + ∑∞
k=2 akzk ∈ SL∗(α), then

|a3 − µa2
2| ≤



(1− α)

16
(2(1− α)(1− 2µ)− 1), µ ≤ −1

4
(3 + 2α)

(1− α)
;

(1− α)

4
, −1

4
(3 + 2α)

(1− α)
≤ µ ≤ 1

4
(5− 2α)

(1− α)
;

(1− α)

16
(1− 2(1− α)(1− 2µ)), µ ≥ 1

4
(5− 2α)

(1− α)
.

When α = 0, the above estimated bound for the class S∗α,e reduces to the bound for the

Fekete- Szegö inequality for the subclass S∗e as in [54, Section 2.2], whereas bound for

the class SL∗(α) reduces to the bound for the Fekete- Szegö inequality for the subclass
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SL. If f (z) = z + ∑∞
k=2 akzk ∈ SL, then

|a3 − µa2
2| ≤


1

16
(1− 4µ), µ ≤ −3

4
;

1
4

, −3
4
≤ µ ≤ 5

4
;

− 1
16

(1− 4µ), µ ≥ 5
4

.

The Fekete- Szegö inequality together with [8, Theorem 1, p.38] gives the sharp first four

coefficient bounds for both the classes S∗α,e and SL∗(α), which are as follows:

If f (z) = z + ∑∞
k=2 akzk ∈ S∗α,e, then

|a2| ≤ 1− α, |a3| ≤

 (1− α)(3− 2α)/4, 0 < α < 1/2;

(1− α)(1− 2α)/4, 1/2 ≤ α < 1,

and

|a4| ≤
(1− α)

36
(17− 21α + 6α2).

These bounds are sharp. Also, when α = 0, the above estimated bounds reduce to the

coefficient bounds for the class S∗e as in [54, Thoerem 2.3].

If f (z) = z + ∑∞
k=2 akzk ∈ SL∗(α), then

|a2| ≤ (1− α)/2, |a3| ≤ (1− α)/4 and |a4| ≤
(1− α)

6
.

These bounds are sharp. When, α = 0, these bounds reduce to the first four sharp

coefficient bounds for the functions in the class SL, i.e. if f (z) = z + ∑∞
k=2 akzk ∈ SL,

then |a2| ≤ 1/2, |a3| ≤ 1/4 and |a4| ≤ 1/6.

6.2. TWO SUBCLASSES

In the following section, we obtain certain inclusion relations, radius problems and cer-

tain coefficient estimates for functions in the classes S∗α,e and SL∗(α).
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LEMMA 6.1. For r ∈ (0, 1), the function Φ0, where Φ0(z) = α + (1− α)ez or α + (1−
α)
√

1 + z satisfies the following:

min
|z|=r

Re Φ0(z) = Φ0(−r) = min
|z|=r
|Φ0(z)|

and

max
|z|=r

Re Φ0(z) = Φ0(r) = max
|z|=r
|Φ0(z)|

PROOF. For 0 ≤ θ < 2π, the function Ψ0(θ) = Re Φ0(reιθ) = α+(1− α)er cos θ cos(r sin θ)

its maximum is attained at θ = 0 whereas the minimum ocurs at θ = π and. Thus,

min
|z|=r

Re Φ0(z) = α + (1− α)e−r = Φ0(−r)

and

max
|z|=r

Re Φ0(z) = α + (1− α)er = Φ0(r).

The proof for the function Φ0(z) = α + (1− α)
√

1 + z is similar and therefore has been

skipped.

LEMMA 6.2. For α + (1− α)/e < a < α + (1− α)e, let ra be given by

ra =

 (a− α)− (1− α)/e, α + (1− α)/e < a ≤ α + (1− α)(e + e−1)/2;

e(1− α)− (a− α), α + (1− α)(e + e−1)/2 ≤ a < α + (1− α)e.

and Ra be given by

Ra =

 e(1− α)− (a− α), α + (1− α)/e < a ≤ α + (1− α)e/2;√
z(θa), α + (1− α)e/2 < a < α + (1− α)e.

Then,

{w : |w− a| < ra} ⊂
{

w :
∣∣∣ log

(w− α

1− α

)∣∣∣ < 1
}
⊂ {w : |w− a| < Ra}.
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PROOF. Let ϕ0(z) = α + (1− α)ez. Then any boundary point on the curve ϕ0(D) is

of the form:

ϕ0(eιθ) = α + (1− α)
(
ecos θ cos(sin θ) + ιecos θ sin(sin θ)

)
.

It can be observed that the curve w = ϕ0(eιθ) is symmetric with respect to x-axis,

thereby reducing the interval under consideration to θ ∈ [0, π]. Also,computing the

distance between any arbitrary point on the curve w = ϕ0(eιθ) to the point (a, 0) and

squaring, we arrive at

z(θ) =
(
a− (α + (1− α)ecos θ cos(sin θ))

)2
+
(
e2 cos θ sin2(sin θ)(1− α)2)

= (α− a)2 + (1− α)2e2 cos θ + 2(1− α)ecos θ cos(sin θ)(α− a)

Now, we have the following two cases:

Case 1: Let us first assume that α + (1− α)/e < a ≤ α + (1− α)e/2. Then, it

can be observed that z(θ) is a decreasing function of θ, where 0 ≤ θ ≤ π. We

consequently have the following

ra = min
θ∈[0,π]

√
z(θ) =

√
z(π) = (a− α)− 1− α

e
.

Case 2: Next, we assume that α + (1 − α)e/2 < a ≤ α + (1 − α)e. Then, a

simple calculation leads to

z′(θ) = −2(1− α)2e2 cos θ sin θ + 2(1− α)(a− α)ecos θ sin(sin θ) cos θ

+ 2(1− α)(a− α) cos(sin θ)ecos θ sin θ,

and it is observed

z′(0) = z′(θa) = z′(π) = 0.

Here 0 < θa < π is the real root of the following equation ecos θ(1− α) sin θ =

(a − α) sin(sin θ + θ). Note that, θa1 < θa2 for a1 < a2. Moreover, it can be

observed that the z(θ) is an increasing function for θ belonging to the interval

[0, θa] and decreasing function for θ belonging to the interval [θa, π]. A simple
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calculation further leads to:

z(π)− z(0) = 2(1− α)
(

e− 1
e

)(
a− α− (1− α)

2

(
e +

1
e

))
. (6.3)

Using equation (6.3), we finally arrive at the following two subcases:

Subcase 1: α + (1− α)e/2 ≤ a ≤ α + (1− α)(e + e−1)/2.

Here, we see that

min{z(0), z(θa), z(π)} = z(π).

Thus, the minimum value of z(θ) is attained at θ = π and hence,

ra = min
√

z(θ) = (a− α)− (1− α)

e
.

Subcase 2: α + (1− α)(e + e−1)/2 ≤ a ≤ α + (1− α)e.

In this case, it can be easily seen that:

min{z(0), z(θa), z(π)} = z(0)

and therefore,

ra = min
√

z(θ) = e(1− α) + (α− a).

which completes the proof of the first half of the lemma.

In order to prove the second part of the lemma, we compute the distance between any

arbitrary point on the curve w = ϕ0(eιθ) and the point (a, 0) and square it to get

z(θ) =
(
a− (α + (1− α)ecos θ cos(sin θ))

)2
+
(
e2 cos θ sin2(sin θ)(1− α)2)

= (α− a)2 + (1− α)2e2 cos θ + 2(1− α)ecos θ cos(sin θ)(α− a)

Then, it can be easily deduced that the following two cases arise:

Case 1.: α + (1− α)/e < a ≤ α + (1− α)e/2

And in this case z(θ) is a decreasing function of 0 ≤ θ ≤ π. Therefore,

max{z(0), z(θa), z(π)} = z(0),
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i.e., the maximum value of z(θ)is attained θ = 0 and hence,

Ra = max
√

z(θ) = e(1− α) + (α− a).

Case 2.: α + (1− α)e/2 < a < α + (1− α)e

In this case, the function z(θ) increases initially for θ ∈ [0, θa] and decreases for

θ ∈ [θa, π] for the entire range of a, and thus

max{z(0), z(θa), z(π)} = z(θa).

which implies

Ra = max
√

z(θ) =
√

z(θa).

Thus the proof is complete.

LEMMA 6.3. For α < a < α + (1− α)
√

2, let ra be given by

ra =

 P, α < a ≤ 3α+2
√

2(1−α)
3 ;

Q, 3α+2
√

2(1−α)
3 ≤ a < α + (1− α)

√
2.

where

P =
(√

(1− a)(1 + a− 2α)(1− α) + (1− a)(2α− 1− a)
)1/2,

and

Q =
√

2(1− α)− (a− α).

and Ra be given by

Ra =


√

2(1− α)− (a− α), α < a ≤
√

2α + (1− α)/
√

2;

a− α,
√

2α + (1− α)/
√

2 < a < α + (1− α)
√

2.

Then,

{w : |w− a| < ra} ⊂
{

w :
∣∣∣(w− α

1− α

)2
− 1
∣∣∣ < 1

}
⊂ {w : |w− a| < Ra}. (6.4)
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PROOF. Let ϕ0(z) = α + (1− α)
√

1 + z. The parametric equation of the right half

of this subclass of lemniscate of Bernoulli is given as follows

x(t) =α + (1− α)

√
2 cos t

1 + sin2 t
, y(t) = (1− α)

√
2 sin t cos t
1 + sin2 t

(
− π

2
≤ t ≤ π

2

)
.

Here, the interval under consideration is −π/2 ≤ t ≤ π/2. The square of the distance

from any point on the lemniscate to the point (a, 0) is given by

z(t) =(a− x(t))2 + (y(t))2

=
(

a−
(
α + (1− α)

√
2 cos t

1 + sin2 t

))2
+ 2(1− α)2

(sin2 t cos2 t
1 + sin2 t

)
=(a− α)2 + 2(1− α)2 cos2 t

1 + sin2 t
− 2
√

2(1− α)(a− α)
cos t

1 + sin2 t
. (6.5)

Differentiating both sides with respect to t yields

z′(t) =
1

(1 + sin2 t)2

(
(1− α) sin t

{√
2(a− α)(4 + 2 cos2 t)− 8(1− α) cos t

})
.

and

z′(0) = z′(ta) = 0,

where 0 < ta < π is the real root of the equation 4(1 − α) cos t =
√

2(a − α)(2 +

cos2 t), which on simplifying gives

cos t =
√

2
(a− α)

{
(1− α)±

(
(1− a2)− 2α(1− a)

)1/2}.

Note that for a > 1, the numbers
√

2
{
(1− α)±

(
(1− a2)− 2α(1− a)

)1/2}/(a− α)

are complex, and for 0 < a ≤ 1, the number
√

2
{
(1 − α) +

(
(1 − a2) − 2α(1 −

a)
)1/2}/(a− α) > 1 and for 0 < a < 1, the number

√
2
{
(1− α)−

(
(1− a2)− 2α(1−

a)
)1/2}/(a− α) lies between -1 and 1 if and only if α < a < (3α + 2

√
2(1− α))/3.

We therefore arrive at the following two cases:

Case 1.: When α < a <
(
3α + 2

√
2(1− α)

)
/3 and t = t0 is given by

cos t0 =

√
2

(a− α)

{
(1− α)−

(
(1− a2)− 2α(1− a)

)1/2} (6.6)
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Here, it is observed that

min{z(0), z(π/2), z(−π/2), z(t0)} = z(t0)

Thus minimum of z(t) occurs at t = t0 and

r(a) =min
√

z(t) =
√

z(t0)

=
(√

(1− a)(1 + a− 2α)(1− α) + (1− a)(2α− 1− a)
)1/2.

Case 2.: When
(
3α + 2

√
2(1− α)

)
/3 < a < α + (1− α)

√
2. Here

min{z(0), z(π/2), z(−π/2)} = z(0),

and thus the minimum value of z(t) is attained at t = 0, and thus

r(a) =min
√

z(t) =
√

z(0) =
√

2(1− α)− (a− α)

and therefore, the first inclusion in (6.4) follows.

For proving the second inclusion in (6.4), we maximize z(t) as in (6.5). It is observed as

in the previous case that z′(t) = 0 for t = 0 and cos t0 =
√

2
{
(1− α)−

(
(1− a2)−

2α(1− a)
)1/2}/(a− α) and hence the following two cases arise:

Case 1.: When α < a ≤ 1 +
√

2α(1−
√

2) + α2(1−
√

3)√
2(1− α)

and t = t0 is as in

equation (6.6). It is seen that

max{z(0), z(π/2), z(−π/2), z(t0)} = z(0)

Thus z(t) attains its maximum value at t = 0 and

R(a) =max
√

z(t) =
√

z(0) =
√

2(1− α)− (a− α).

Case 2.: When
1 +
√

2α(1−
√

2) + α2(1−
√

3)√
2(1− α)

< a ≤ α + (1− α)
√

2.

max{z(0), z(π/2), z(−π/2)} = z(π/2)
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Thus z(t) attains its maximum value at t = π/2 and

R(a) =max
√

z(t) =
√

z(π/2) = (a− α).

6.3. SOME INCLUSION RELATIONS

The class of starlike functions of order β (0 ≤ β < 1) is characterised by the condition

Re
(
z f ′(z)/ f (z)

)
> β. We denote this class by S∗(β). The class k − S∗, (k > 0)

of k-starlike functions was introduced by Kanas and Wisniowska [35]. This class is

analytically defined by the following condition

Re
z f ′(z)

f (z)
> k

∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣ z ∈ D.

This class furnishes a continuous passage from the class of starlike functions to the

class of parabolic starlike functions as k varies from 0 to 1. Uralegaddi et al. [91] studied

a very interesting classM(β), which is defined as follows

M(β) :=
{

f ∈ A : Re
z f ′(z)

f (z)
< β

}
z ∈ D. (6.7)

In this section, we discuss some inclusion relations between the classesM(β) (β > 1),

k− S∗, S∗(β) and S∗α,e and SL∗(α).

THEOREM 6.4. The class S∗α,e satisfies the following relationships:

(1) S∗α,e ⊂ S∗(β) ⊂ S∗ for 0 ≤ β ≤ α + (1− α)/e.

(2) S∗α,e ⊂M(β) for β ≥ α + (1− α)e.

(3) k− S∗ ⊂ S∗α,e for k ≥ (α + (1− α)e)/(e− 1)(1− α).

The constants obtained here are the best possible.

PROOF. Let the function f ∈ S∗α,e. Then z f ′(z)/ f (z) ≺ α+(1− α)ez. Using Lemma

6.1, it can be easily seen that

min
|z|=1

Re(α + (1− α)ez) < Re
z f ′(z)

f (z)
< max
|z|=1

Re(α + (1− α)ez),
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which immediately yields

α + (1− α)
1
e
≤ Re

z f ′(z)
f (z)

≤ α + (1− α)e z ∈ D.

From the definitions of S∗(β) and M(β), it is clear that f ∈ S∗(α + (1− α)/e) and

f ∈ M(α + (1− α)e) which proves the first two parts of the theorem. For the third part,

let the function f ∈ k− S∗ and let us consider the following conic domain Γk = {w ∈
C : Re w > k|w− 1|}. For k > 1, the curve ∂Γk is an ellipse γk : x2 = k2(x− 1)2 + k2y2

which may be rewritten as

(x− x0)
2

a2 +
(y− y0)

2

b2 = 1,

where x0 = k2/(k2 − 1), y0 = 0, a = k/(k2 − 1) and b = 1/
√

k2 − 1. For the above

defined ellipse γk to lie inside the domain | log((w− α)/(1− α))| ≤ 1, it is necessary

that x0 + a ≤ α + (1− α)e, which is equivalent to k ≥ (α + (1− α)e)/(e− 1)(1− α).

Also, since Γk1 ⊂ Γk2 for k1 ≥ k2, it follows that k − S∗ ⊂ S∗α,e for k ≥ (α + (1 −
α)e)/(e− 1)(1− α), thereby completing the proof.

REMARK 6.5. When α = 0, Theorem 6.4 reduces to [54, Theorem 2.1].

THEOREM 6.6. The class SL∗(α) satisfies the following relationships:

(1) SL∗(α) ⊂ S∗(β) ⊂ S∗ for 0 ≤ β ≤ α.

(2) SL∗(α) ⊂M(β) for β ≥ α + (1− α)
√

2.

(3) k− S∗ ⊂ SL∗(α) for k ≥ (α + (1− α)
√

2)/(
√

2− 1)(1− α).

The constants obtained here are the best possible.

PROOF. Let f ∈ SL∗(α). Then z f ′(z)/ f (z) ≺ α + (1− α)
√

1 + z. Using Lemma

6.1, it can be easily seen that

min
|z|=1

Re(α + (1− α)
√

1 + z) < Re
z f ′(z)

f (z)
< max
|z|=1

Re(α + (1− α)
√

1 + z),

which immediately yields

α ≤ Re
z f ′(z)

f (z)
≤ α + (1− α)

√
2 z ∈ D.
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From the definitions of S∗(β) andM(β), it is clear that f ∈ S∗(α) and f ∈ M(α+(1−
α)
√

2) which proves the first two parts of the theorem. For the third part, let f ∈ k− S∗

and let us consider the following conic domain Γk = {w ∈ C : Re w > k|w− 1|}. For

k > 1, ∂Γk is an ellipse γk : x2 = k2(x− 1)2 + k2y2 which may be rewritten as

(x− x0)
2

a2 +
(y− y0)

2

b2 = 1,

where x0 = k2/(k2 − 1), y0 = 0, a = k/(k2 − 1) and b = 1/
√

k2 − 1. For the above

defined ellipse γk to lie inside the domain |((w− α)/(1− α))2− 1| ≤ 1, it is necessary

that x0 + a ≤ α + (1− α)
√

2, which is equivalent to k ≥ (α + (1− α)e)/(e− 1)(1− α).

Also, since Γk1 ⊂ Γk2 for k1 ≥ k2, it follows that k − S∗ ⊂ S∗α,e for k ≥ (α + (1 −
α)
√

2)/(
√

2− 1)(1− α), which completes the proof of the theorem.

When α = 0, the class SL∗(α) reduces to the class SL which consists of functions f

of the form z + ∑∞
n=1 anzn satisfying z f ′(z)/ f (z) ≺

√
1 + z and hence, we have the

following corollary to Theorem 6.6:

COROLLARY 6.7. The class SL satisfies the following relationships:

(1) SL ⊂ S∗.
(2) SL ⊂ M(β) for β ≥

√
2.

(3) k− S∗ ⊂ SL for k ≥ (
√

2)/(
√

2− 1).

The constants obtained here are the best possible.

Assume −1 ≤ B < A ≤ 1. For this range, we define the class P [A, B] consisting of

all analytic functions p of the form p(z) = 1 + c1z + c2z2 + · · · which satisfy p(z) ≺
(1 + Az)/(1 + Bz) where z ∈ D. Note that, when A = 1− 2α and B = −1, the class

P [A, B] reduces to the class P(α) (0 ≤ α < 1). Whereas, replacing A = B = 0, the

classP [A, B] becomes the renowned Carathéodory classP . Our next result determines

the conditions on the parameters A and B such that the class S∗[A, B] becomes a

subclass of S∗α,e and SL∗(α) respectively. In order to prove our results, the following

lemma will be needed:
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LEMMA 6.8. If the function p ∈ P [A, B], then∣∣∣p(z)− 1− ABr2

1− B2r2

∣∣∣ ≤ (A− B)r
1− B2r2 (|z| = r < 1).

Moreover, if p(z) ∈ P(α), then∣∣∣p(z)− 1 + (1− 2α)r2

1− r2

∣∣∣ ≤ 2(1− α)r
1− r2 ,

and ∣∣∣zp′(z)
p(z)

∣∣∣ ≤ 2r(1− α)

(1− r)(1 + (1− 2α)r)
(|z| = r < 1).

THEOREM 6.9. Let −1 ≤ B < A ≤ 1 and either

(1) 2(1− B2)(αe+ (1− α)) ≤ 2(1− AB)e ≤ (1− B2)((e2 + 1)(1− α) + 2αe) and

1− B ≤ (1− A)e/(1 + α(e− 1)); or

(2) (2αe + (1− α)(1 + e2))(1− B2) ≤ 2(1− AB) ≤ 2(1− B2)(αe + (1− α)e2)

and 1 + A ≤ (1 + B)(α + (1− α)e);

Then S∗[A, B] ⊂ S∗α,e.

PROOF. Let the function f ∈ S∗[A, B] which implies z f ′(z)/ f (z) ∈ P [A, B]. Next,

using the above stated Lemma 6.8, we get,∣∣∣z f ′(z)
f (z)

− 1− AB
1− B2

∣∣∣ < A− B
1− B2 . (6.8)

Assume that both the condition in part (1) hold and let a = (1− AB)/(1− B2). Multi-

plying the inequality 1− B ≤ (1− A)e/(1 + α(e− 1)) by the constant quantity 1 + B

on both sides, we obtain

(A− B)
e

(1 + α(e− 1))
≤ (1− AB)

e
(1 + α(e− 1))

− (1− B2).

On dividing by (1− B2)e/(1 + α(e− 1), we get

A− B
1− B2 ≤

1− AB
1− B2 −

1 + α(e− 1)
e

,
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which is equivalent to

A− B
1− B2 ≤ (a− α)− 1− α

e
.

Proceeding as above, the condition

2(1− B2)
(
αe + (1− α)

)
≤ 2(1− AB)e ≤ (1− B2)

(
(e2 + 1)(1− α) + 2αe

)
is equivalent to

α + (1− α)
1
e
≤ a ≤ α + (1− α)

(e + e−1)

2
.

From (6.8), it is clear that the values of w = z f ′(z)/ f (z) lie in the following disk |w−
a| < ra, where ra = (a− α)− (1− α)/e and α + (1− α)e−1 ≤ a ≤ α + (1− α)(e +

e−1)/2. Hence, f ∈ S∗α,e by Lemma 6.3. Following a similar argument we can see that

f ∈ S∗α,e if the condition (2) holds and hence, the proof has been omitted.

REMARK 6.10. When α = 0, Theorem 6.9 reduces to [54, Theorem 2.2].

THEOREM 6.11. Let −1 ≤ B < A ≤ 1 and either

(1)
(
2
√

2(1− α) + 3α
)
(1− B2) < 3(1− AB) ≤ 3(α + (1− α)

√
2)(1− B2) and

1 + A ≤ (1 + B)(α + (1− α)
√

2); or

(2) 3α(1 − B2) ≤ 3(1 − AB) <
(
2
√

2(1 − α) + 3α
)
(1 − B2) and (A − B)2 +

(1 − B2)2 ≤ (1 − B2)(1 − α)
√(

(1− B2)(1− 2α) + (1− AB)
)

B(A− B) +

(1− AB)2 + 2α(1− B2)B(A− B).

Then the class S∗[A, B] ⊂ SL∗(α).

PROOF. Let the function f ∈ S∗[A, B] which implies z f ′(z)/ f (z) is in P [A, B]. Thus

Lemma 6.8 gives ∣∣∣z f ′(z)
f (z)

− 1− AB
1− B2

∣∣∣ < A− B
1− B2 . (6.9)

Let both the conditions in (1) hold and assume a = (1− AB)/(1− B2). On multiplying

the inequality 1 + A ≤ (1 + B)(α + (1− α)
√

2) by 1− B on both sides and rewriting,
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we obtain

(A− B) ≤
√

2(1− α)(1− B2)− (1− AB− α(1− B2)).

On dividing by (1− B2), we get

A− B
1− B2 ≤

√
2(1− α)−

(1− AB
1− B2 − α

)
,

which is equivalent to

A− B
1− B2 ≤

√
2(1− α)− (a− α).

Proceeding as above, the condition

(
2
√

2(1− α) + 3α
)
(1− B2) < 3(1− AB) ≤ 3

(
α + (1− α)

√
2
)
(1− B2)

is equivalent to

3α + 2
√

2(1− α)

3
≤ a < α + (1− α)

√
2.

From equation (6.9), it follows that the values of w = z f ′(z)/ f (z) lies in the disk |w−
a| < ra, where ra =

√
2(1− α) − (a − α) and 3α + 2

√
2(1− α)/3 ≤ a < α + (1−

α)
√

2. Hence, f ∈ S∗α,e by Lemma 6.3. Following a similar argument we can see that

f ∈ S∗α,e if the condition (2) holds and hence, the proof has been omitted.

When α = 0, we arrive at the following corollary for the class SL:

COROLLARY 6.12. Let −1 ≤ B < A ≤ 1 and either

(1) 2
√

2(1− B2) < 3(1− AB) ≤ 3
√

2(1− B2) and 1 + A ≤
√

2(1 + B); or

(2) 0 ≤ 3(1− AB) < 2
√

2(1− B2) and (A− B)2 + (1− B2)2 ≤ (1− AB)2

+ (1− B2)
√
(2− B2 − AB)B(A− B).

Then S∗[A, B] ⊂ SL.
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6.4. RADIUS PROBLEMS

In the first two theorems, we determine the sharp S∗(β) (0 < β < 1),M(β) (β > 1)

and k−S∗ (k ≥ 0) radii for the functions in the class S∗α,e and SL∗(α). By Theorem 6.4,

it can obviously be seen that RS∗(β)(S∗α,e) = RM(β)(S∗α,e) = 1 for 0 ≤ β ≤ α + (1−
α)/e, and β ≥ α + (1− α)e. Also Theorem 6.6 clearly tells us that RS∗(β)(SL∗(α)) =
RM(β)(SL∗(α)) = 1 in the domains 0 ≤ β ≤ α, and β ≥ α + (1− α)

√
2 respectively.

THEOREM 6.13. Let f ∈ S∗α,e. Then the following hold:

(1) If α + (1− α)/e ≤ β < 1, then f is starlike of order β in |z| < − log
(
(β −

α)/(1− α)
)
;

(2) If 1 < β ≤ α + (1− α)e, then f ∈ M(β) in |z| < log
(
(β− α)/(1− α)

)
;

(3) If k > 0, then f is k-starlike in |z| < log((1− α)(k + 1)/(k − α(k + 1))). In

particular, f is parabolic starlike in |z| < log
(
2(1− α)/(1− 2α)

)
.

The results are sharp.

PROOF. Since f ∈ S∗α,e implies z f ′(z)/ f (z) ≺ α+(1− α)ez. Thus, by using Lemma

6.1, we see that

α + (1− α)e−r ≤ Re
z f ′(z)

f (z)
≤ α + (1− α)er, |z| = r < 1

which clearly proves the first two parts of the theorem. The function k given by (6.1)

proves that the constants obtained in the first two cases are best possible.

For the third part, we see that for the function f to be k-starlike in |z| < r, it must satisfy

Re(α + (1− α)ew(z)) > k|α + (1− α)ew(z) − 1|. Obviously Re(α + (1− α)ew(z)) >

(α + (1− α)e−r) and |α + (1− α)ew(z) − 1| < 1− (α + (1− α)e−r). Thus, in order

to prove our result, it is sufficient to prove that the inequality (α + (1− α)e−r) > k(1−
(α + (1− α)e−r)) holds. On solving the above inequality for r, we immediately obtain

r < log
(
(1− α)(k+ 1)/(k− α(k+ 1))

)
. Sharpness follows by considering the function
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k defined in (6.1) and for z0 = − log
(
(1− α)(k + 1)/(k− α(k + 1))

)
,

Re
z0h′(z0)

h(z0)
= Re

(
α + (1− α)ez0

)
= α +

(k− α(k + 1))
(k + 1)

=
k

k + 1
= k|1− (α + (1− α)ez0)|

= k
∣∣∣1− z0h′(z0)

h(z0)

∣∣∣.
This completes the proof of the theorem.

REMARK 6.14. When α = 0, Theorem 6.13 reduces to [54, Theorem 3.1].

THEOREM 6.15. Let f ∈ SL∗(α). Then the following hold:

(1) If α ≤ β < 1, then the function f is starlike of order β for |z| < 1 −
(
(β −

α)/(1− α)
)2;

(2) If 1 < β ≤ α+(1− α)
√

2, then the function f ∈ M(β) for |z| <
(
(β− α)/(1−

α)
)2 − 1;

(3) If k > 0, then the function f is k-starlike for |z| <
(
(1+ 2k)− 2α(1+ k)

)
/
(
(1−

α)2(1 + k)2). In particular, the function f is parabolic starlike for |z| <
(
3(1−

2α)
)
/4(1− α)2.

The results are sharp.

PROOF. Since f ∈ SL∗(α) implies z f ′(z)/ f (z) ≺ α + (1− α)
√

1 + z. Thus, by

using Lemma 6.1, we see that

α + (1− α)
√

1− r ≤ Re
z f ′(z)

f (z)
≤ α + (1− α)

√
1 + r, |z| = r < 1

which clearly proves the first two parts of the theorem. The constants are best possible

which can be seen considering the function obtained in (6.2).

For the third part, we see that for the function f to be k-starlike in |z| < r, it must satisfy

Re
(
α + (1− α)

√
1 + w(z)

)
> k|α + (1− α)

√
1 + w(z)− 1|. Obviously Re

(
α + (1−

α)
√

1 + w(z)
)
> α + (1 − α)

√
1− r and |α + (1 − α)

√
1 + w(z) − 1| < 1 −

(
α +
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(1 − α)
√

1− r
)
. Thus, in order to prove our result, it is sufficient to prove that the

inequality α + (1 − α)
√

1− r > k
(
1 − (α + (1 − α)

√
1− r)

)
holds. On solving the

above inequality for r, we immediately obtain r <
(
(1 + 2k)− 2α(1 + k)

)
/(1− α)2(1 +

k)2. In view of the function k(z) defined in (6.2) and for z0 = −
(
(1 + 2k) − 2α(1 +

k)
)
/(1− α)2(1 + k)2), we have

Re
z0k′(z0)

k(z0)
= Re

(
α + (1− α)

√
1 + z0

)
= Re

(
α + (1− α)

√
1− 1 + 2k− 2α(1 + k)

(1− α)2(1 + k)2

)
=

k
k + 1

= k
∣∣1− (α + (1− α)

√
1 + z

)∣∣
= k

∣∣∣∣1− z0k′(z0)

k(z0)

∣∣∣∣ ,

which completes the proof.

COROLLARY 6.16. Let f ∈ SL. Then the following hold:

(1) If 0 ≤ β < 1, then the function f is starlike of order β for |z| < 1− β2;

(2) If 1 < β ≤
√

2, then the function f ∈ M(β) for |z| < β2 − 1;

(3) If k > 0, then the function f is k-starlike for |z| < (1 + 2k)/(1 + k)2. In particu-

lar, the function f is parabolic starlike for |z| < 3/4.

The results are sharp.

Let us now discuss a few subclasses of A. Let the classW consist of analytic functions

f which satisfy f (z)/z ∈ P . Let F1 be the class consisting of analytic functions f ∈ A
which satisfy f /g ∈ P where g ∈ W and let F2 be the class of all analytic functions

f ∈ A which satisfy the following inequality∣∣∣∣ f (z)
g(z)

− 1
∣∣∣∣ < 1 (z ∈ D) (6.10)

where g ∈ W . The next theorem determines the sharp S∗α,e-radius for the classes

S∗[A, B],W , F1 and F2.
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THEOREM 6.17. (1) Let 0 ≤ B < A ≤ 1. Then the S∗α,e-radius for the class

S∗[A, B] is given by

RS∗α,e(S
∗[A, B]) = min

{
1,

(1− α)(1− e)
B− Ae− Bα(1− e)

}
.

(2) Let −1 ≤ B < A ≤ 1, with B < 0. Let

R1 =
(e− 1)

√
1− α√

B2((1− α)(1 + e2) + 2eα)− 2ABe
, R2 =

(e− 1)(1− α)

e(A− Bα)− B(1− α)

and

R3 =
(1− α)(e− 1)

A− Bα− Be(1− α)
.

Then the S∗α,e-radius for the class S∗[A, B] is given by

RS∗α,e(S
∗[A, B]) =

 R2, R2 ≤ R1;

R3, R2 > R1.

(3) The S∗α,e-radius for the classW is given by

RS∗α,e(W) =
(e− 1)(1− α)

e +
√

e2 + (e− 1)2(1− α)2
.

(4) The S∗α,e-radius for the class F1 is

RS∗α,e(F1) =
(e− 1)(1− α)

2e +
√

4e2 + (e− 1)2(1− α)2
.

(5) The S∗α,e-radius for the class F2 is given by

RS∗α,e(F2) =
2(e− 1)(1− α)

3e +
√

9e2 + 4(e− 1)(1− α)(e(2− α)− (1− α))
.

PROOF. (1) Let f ∈ S∗[A, B]. Then, by definition z f ′(z)/ f (z) belongs to the

class P [A, B]. Therefore, using Lemma 6.8 we get:∣∣∣∣z f ′(z)
f (z)

− 1− ABr2

1− B2r2

∣∣∣∣ ≤ (A− B)r
1− B2r2 , |z| = r < 1.

Since B ≥ 0, clearly a = (1 − ABr2)/(1− B2r2) ≤ 1. Furthermore, using

Lemma 6.3, the function f satisfies | log
(
(z f ′(z)/ f (z) − α)/(1 − α)

)
| ≤ 1
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provided

(A− B)r
1− B2r2 ≤

1− ABr2

1− B2r2 − α− 1− α

e
,

which after a little simplification implies:

r ≤ (1− α)(1− e)
B− Ae− Bα(1− e)

.

The result is sharp for the function given by

f (z) =

 z(1 + Bz)
A−B

B , B 6= 0;

zeAz, B = 0.
(6.11)

Clearly the function f ∈ S∗[A, B] and thus∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ =
∣∣∣∣∣log

1+Az0
1+Bz0

− α

1− α

∣∣∣∣∣
Putting z0 = (1− α)(1− e)/(B− Ae− Bα(1− e)) in the above expression,

we have ∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ = | log(1/e)| = 1,

which completes the proof of the first part of the theorem.

(2) Let f ∈ S∗[A, B]. Then on using Lemma 6.8, we see that w = z f ′(z)/ f (z) lies

in the disk |w− a| ≤ R, where

a :=
1− ABr2

1− B2r2 > 1 and R :=
(A− B)r
1− B2r2 .

We next determine the numbers R1, R2 and R3 in the following manner: r ≤
R1 if and only if a ≤ α + (1− α)(e + e−1)/2, r ≤ R2 if and only if R ≤ a− α−
(1− α)/e and r ≤ R3 if and only if R ≤ e(1− α) + α− a.

Let us now suppose that R2 ≤ R1. Since r ≤ R1 is equivalent to a ≤ α +

(1− α)(e + e−1)/2, for 0 ≤ r ≤ R2, it follows that a ≤ α + (1− α)(e + e−1)/2.

From Lemma 6.3, the S∗α,e-radius satisfies the inequality R ≤ a − α − (1−α)
e .

This shows that f ∈ S∗α,e in |z| ≤ R2.
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We next assume that R2 > R1. In this case, since r ≥ R1 if and only if

a ≥ α + (1− α)(e + e−1)/2, for r = R2, we have a ≥ α + (1− α)(e + e−1)/2.

Lemma 6.3 shows that f ∈ S∗α,e in |z| ≤ r if R ≤ e(1− α) + α− a, or equiva-

lently, r ≤ R3.

(3) Next, let f ∈ W . Then, by definition, the function g(z) = f (z)/z ∈ P and

thereby using Lemma 6.8, we can easily deduce that∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ 2r

1− r2 . (6.12)

Further, by making use of Lemma 6.3, the disk (6.12) lies inside the disk
∣∣ log

(
(w−

α)/(1− α)
)∣∣ ≤ 1 if

2r
1− r2 ≤ 1− α− (1− α)

e
,

which yields r ≤ (e − 1)(1− α)/(e +
√

e2 + (e− 1)2(1− α)2). The result is

sharp for the function given by f (z) = z(1 + z)/(1− z) Clearly the function

f ∈ W and thus∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣log

1−2z0−z2
0

1−z2
0
− α

1− α

∣∣∣∣∣∣∣
Putting z0 = (e− 1)(1− α)/(e+

√
e2 + (e− 1)2(1− α)2) in the above expres-

sion, we have ∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ = | log(1/e)| = 1.

(4) Let f ∈ F1 and define p, q : D → C by p(z) = g(z)/z and q(z) = f (z)/g(z).

Then p, q ∈ P and using Lemma 6.8, it follows that∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ ∣∣∣∣zp′(z)

p(z)

∣∣∣∣+ ∣∣∣∣zq′(z)
q(z)

∣∣∣∣ ≤ 4r
1− r2 (|z| = r).

Now, using Lemma 6.3, f ∈ S∗α,e provided 4r/1− r2 ≤ 1− α− (1− α)/e. This

immediately implies that r ≤ (e− 1)(1− α)/(2e +
√

4e2 + (e− 1)2(1− α)2).

The result is sharp for the function given by f (z) = z(1 + z)2/(1− z)2. Clearly
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the function f ∈ F1 and thus∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣log

1−4z0−z2
0

1−z2
0
− α

1− α

∣∣∣∣∣∣∣
Putting z0 = (e− 1)(1− α)/(2e +

√
4e2 + (e− 1)2(1− α)2) in the above ex-

pression, we have∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ = | log(1/e)| = 1.

(5) Let f ∈ F2 and define p, q : D → C by p(z) = g(z)/z and q(z) = g(z)/ f (z).

Since the inequality (6.10) is equivalent to Re g(z)/ f (z) > 1/2, therefore p ∈
P and q ∈ P(1/2). The following identity holds obviously:

z f ′(z)
f (z)

= 1 +
zp′(z)
p(z)

− zq′(z)
q(z)

and applying Lemma 6.8 in this, we obtain∣∣∣∣z f ′(z)
f (z)

− 1
∣∣∣∣ ≤ r(3 + r)

1− r2 .

And finally, using Lemma 6.3, the function f satisfies | log((z f ′(z)/ f (z) −
α)/(1− α))| ≤ 1 provided r(3 + r)/1− r2 ≤ (1− α)(1− e−1), which on solv-

ing for r yields

r ≤ 2(e− 1)(1− α)

3e +
√

9e2 + 4(e− 1)(1− α)
(
e(2− α)− (1− α)

) .

The result is sharp for the function given by f (z) = z(1 + z)2/(1− z) Clearly

the function f ∈ F1 and thus∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣log

1−3z0−2z2
0

1−z2
0
− α

1− α

∣∣∣∣∣∣∣
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Putting z0 = 2(e− 1)(1− α)/(3e +
√

9e2 + 4(e− 1)(1− α)(e(2− α)− (1− α)))

in the above expression, we have∣∣∣∣∣∣log
z0 f ′(z0)

f (z0)
− α

1− α

∣∣∣∣∣∣ = | log(1/e)| = 1.

REMARK 6.18. When α = 0, Theorem 6.17 reduces to [54, Theorem 3.3-3.7].

COROLLARY 6.19. The S∗α,e-radius for the class K is

RS∗α,e(K) =
(1− α)(e− 1)
α + (1− α)e

.

PROOF. Marx Strohhäcker theorem states that K ⊂ S∗(1/2). Also, it can be seen

that S∗(1/2) = S∗[0,−1]. Therefore, using Theorem 6.17(2), the S∗α,e-radius for the

class K will be at least (1− α)(e− 1)/(α + (1− α)e).

REMARK 6.20. When α = 0, Corollary 6.19 reduces to [54, Corollary 3.1].

THEOREM 6.21. (1) Let −1 < B < A ≤ 1 and B ≤ 0. Then the SL∗(α)- radius for

the class S∗[A, B] is

RSL∗(�)(S∗[A, B]) = min

{
1,

(
√

2− 1)(1− α)

(A− Bα)−
√

2B(1− α)

}
.

(2) Let 0 < B < A ≤ 1, with B < 0. Let

R1 =

(
2
√

2(1− α)− 3(1− α)

2
√

2B2(1− α)− 3B(A− Bα)

)1/2

,

and R2 be the largest number as in

(A− B)2r2 + (1− B2r2)2 − (1− ABr2)2 − (1− B2r2)
(
2α(AB− B2)r2

+ (1− α)
√
(AB− B2)r2(1− B2r2 − ABr2)

)
≤ 0,

for all 0 ≤ r ≤ R2 and R3 is given by

R3 =
(
√

2− 1)(1− α)

(A− Bα)−
√

2B(1− α)
.
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Then the SL∗(α)-radius for the class S∗[A, B] is given by

RSL∗(α)(S∗[A, B]) =

 R2, R2 ≤ R1;

R3, R2 > R1.

PROOF. (1) Let f ∈ S∗[A, B]. Then, by definition z f ′(z)/ f (z) belongs to the

class P [A, B]. Therefore, using Lemma 6.8 we get:∣∣∣∣z f ′(z)
f (z)

− 1− ABr2

1− B2r2

∣∣∣∣ ≤ (A− B)r
1− B2r2 , |z| = r < 1.

Since B ≤ 0, clearly a = (1 − ABr2)/(1− B2r2) ≥ 1. Furthermore, using

Lemma 6.3, the function f satisfies∣∣∣∣∣∣∣
 z f ′(z)

f (z) − α

1− α

2

− 1

∣∣∣∣∣∣∣ < 1

provided

(A− B)r
1− B2r2 <

√
2(1− α)−

(1− ABr2

1− B2r2 − α
)

,

that is

(
√

2(1− α)B− A + αB)Br2 + (A− B)r− (
√

2− 1)(1− α) < 0

which after simplification yields:

r ≤ (
√

2− 1)(1− α)

(A− Bα)−
√

2B(1− α)
.

The result is sharp for the function given by

f (z) =

 z(1 + Bz)
A−B

B , B 6= 0;

zeAz, B = 0.
(6.13)

The function f ∈ S∗[A, B] and thus at the point

z0 = (
√

2− 1)(1− α)/(A− Bα)−
√

2B(1− α), we have

∣∣∣( z0 f ′(z0)
f (z0)

− α

1− α

)2
− 1
∣∣∣ = ∣∣∣( 1+Az0

1+Bz0
− α

1− α
− 1
)2
− 1
∣∣∣ = |(√2)2 − 1| = 1



130 6. THE CLASSES S∗α,E AND SL∗(α)

which completes the proof of the first part of the theorem.

(2) Let f ∈ S∗[A, B]. Then on using Lemma 6.8, we see that w = z f ′(z)/ f (z) lies

in the disk |w− a| ≤ R, where

a :=
1− ABr2

1− B2r2 > 1 and R :=
(A− B)r
1− B2r2 .

We next determine the numbers R1, R2 and R3 in the following manner: r ≤
R1 if and only if a ≤ (3α + 2

√
2(1− α))/3, r ≤ R2 if and only if R ≤

(
(1−

a)(2α − 1− a) +
√
(1− a)(1 + a− 2α)(1− α)

)1/2 and r ≤ R3 if and only if

R ≤
√

2(1− α)− (a− α).

Let us now suppose that R2 ≤ R1. Since r ≤ R1 is equivalent to a ≤
(3α + 2

√
2(1− α))/3, for 0 ≤ r ≤ R2, it follows that a ≤ (3α + 2

√
2(1− α))/3.

From Lemma 6.3, the SL∗(α)-radius satisfies the inequality R ≤
(
(1− a)(2α−

1 − a) +
√
(1− a)(1 + a− 2α)(1 − α)

)1/2. This shows that f ∈ SL∗(α) in

|z| ≤ R2.

Let us now consider the case where R2 > R1. Here, since r ≥ R1 if and only

if a ≥ (3α + 2
√

2(1− α))/3, for r = R2, we have a ≥ (3α + 2
√

2(1− α))/3.

Lemma 6.3 shows that f ∈ SL∗(α) in |z| ≤ r if R ≤
√

2(1− α)− (a− α), or

equivalently, r ≤ R3.

When α = 0, we get the following result for the functions in the class SL as a corollary

to Theorem 6.21.

COROLLARY 6.22. (1) Let −1 < B < A ≤ 1 and B ≤ 0. The SL- radius for the

class S∗[A, B] is given as follows

RSL(S∗[A, B]) = min

{
1,

(
√

2− 1)
A−
√

2B

}
.

(2) Let 0 < B < A ≤ 1, with B < 0. Let

R1 =

(
2
√

2− 3
2
√

2B2 − 3AB

)1/2

,
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and R2 be the largest number as in

(A− B)2r2 + (1− B2r2)2 − (1− ABr2)2 − (1− B2r2)
(
r2

+
√
(AB− B2)r2(1− B2r2 − ABr2)

)
≤ 0,

for all 0 ≤ r ≤ R2 and R3 is given by

R3 =
(
√

2− 1)(1− α)

A−
√

2B
.

Then, the SL-radius for the class S∗[A, B] is given by

RSL(S∗[A, B]) =

 R2, R2 ≤ R1;

R3, R2 > R1.

6.5. COEFFICIENT ESTIMATES

THEOREM 6.23. If f (z) = z + ∑∞
n=2 anzn ∈ S∗α,e, then

∞

∑
n=2

(
n2 − (α + (1− α)e)2)|an|2 ≤

(
α + (1− α)e

)2 − 1.

PROOF. Let the function f ∈ S∗α,e. This implies that z f ′(z)/ f (z) = α + (1− α)eω(z),

where ω is a function which is analytic in D and satisfies ω(0) = 0 and |ω(z)| ≤ 1

where z ∈ D. It can be easily seen that f 2(z) = (z f ′(z))2/(α + (1− α)eω(z))2, and

therefore we have,

2π
∞

∑
n=1
|an|2r2n =

∫ 2π

0
| f (reιθ)|2dθ

=
∫ 2π

0

|reιθ f ′(reιθ)|2

(α + (1− α)eω(z))2
dθ

≥ 1
(α + (1− α)e)2

∫ 2π

0
|reιθ f ′(reιθ)|2dθ

=
2π

(α + (1− α)e)2

∞

∑
n=1

n2|an|2r2n
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where 0 < r < 1 and a1 = 1. Thus,

∞

∑
n=1

(
n2 − (α + (1− α)e)2)|an|2r2n ≤ 0.

On letting r → 1−, we obtain the desired result.

REMARK 6.24. When α = 0, Theorem 6.23 reduces to [54, Theorem 2.5].

THEOREM 6.25. If the function f (z) = z + ∑∞
n=2 anzn ∈ SL∗(α), then

∞

∑
n=2

(
n2 − (α + (1− α)

√
2)2)|an|2 ≤ (α + (1− α)

√
2)2 − 1. (6.14)

PROOF. Let the funtion f ∈ SL∗(α). This implies that z f ′(z)/ f (z) = α + (1 −
α)
√

1 + ω(z), where ω is a Schwarz function in D satisfying ω(0) = 0 and |ω(z)| ≤ 1

for all z ∈ D. It can be easily seen that f 2(z) = (z f ′(z))2/(α + (1− α)
√

1 + ω(z))2,

and therefore we have,

2π
∞

∑
n=1
|an|2r2n =

∫ 2π

0
| f (reιθ)|2dθ

=
∫ 2π

0

|reιθ f ′(reιθ)|2

(α + (1− α)
√

1 + ω(z))2
dθ

≥ 1
(α + (1− α)

√
2)2

∫ 2π

0
|reιθ f ′(reιθ)|2dθ

=
2π

(α + (1− α)
√

2)2

∞

∑
n=1

n2|an|2r2n

where 0 < r < 1 and a1 = 1. Thus,

∞

∑
n=1

(
n2 − (α + (1− α)

√
2)2)|an|2r2n ≤ 0.

On letting r → 1−, we get the desired result.

When α = 0, Theorem 6.25 yields the following corollary.

COROLLARY 6.26. If the function f (z) = z + ∑∞
n=2 anzn ∈ SL, then

∞

∑
n=2

(n2 − 2)|an|2 ≤ 1.
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Using Lemma 6.3, our next result determines certain condition over the nth coefficient

for a special type of function to be in the class S∗α,e.

THEOREM 6.27. The function given by f (z) = z + anzn (n = 2, 3, · · · ) is in the class

S∗α,e if and only if it satisfies |an| ≤ (1− α)(e− 1)/(e(n− α)− (1− α)).

PROOF. Since S∗α,e ⊂ S∗, implies that |an| ≤ 1/n. In order to obtain the desired

result, it can be observed that w = z f ′(z)/ f (z) = (1 + nanzn − 1)/(1 + anzn − 1)

maps the open unit disk onto the following disk∣∣∣w− 1− n|an|2
1− |an|2

∣∣∣ < (n− 1)|an|
1− |an|2

. (6.15)

Since, (1− n|an|2)/(1− |an|2) ≤ 1, therefore by using Lemma 6.3, the disk (6.15) lies

inside | log((w− α)/(1− α))| ≤ 1 if and only if

(n− 1)|an|
1− |an|2

≤ 1− n|an|2
1− |an|2

− α− (1− α)

e
,

which on a little simplification immediately yields |an| ≤ (1− α)(e − 1)/(e(n − α) −
(1− α)).

REMARK 6.28. When α = 0, Theorem 6.27 reduces to [54, Theorem 2.6(i)].





Chapter 7
Conclusion and Future Scope

In this final chapter of the thesis, we will conclude the research contributions of this

thesis, as well as discuss the directions for future research. In the present work, sev-

eral very interesting subclasses of univalent functions have been defined using the ex-

tremely important concept of subordination and many wonderful problems have been

solved, including the various kinds of coefficient estimate problems, the radius prob-

lems, obtaining some inclusion relations etc. To begin with, it is a known fact that no

bounds are known for the nth coefficients of functions f satisfying 2z f ′(z)/( f (z) −
f (−z)) ≺ ϕ(z), except for n = 2, 3. We denote the class of such functions by S∗s (ϕ).

Therefore, the sharp fourth coefficient bound has been estimated for this subclass.

Note that, when ϕ = ez,
√

1 + z and
√

2 − (
√

2 − 1)
√
(1− z)/(1 + 2(

√
2− 1)z),

the class S∗s (ϕ) reduces to the subclasses S∗s (ez), S∗s (
√

1 + z) and S∗s
(√

2− (
√

2−

1)
√
(1− z)/(1 + 2(

√
2− 1)z)

)
respectively. For these special subclasses of S∗s (ϕ),

sharp bounds for the first five coefficients have been obtained. The generalised nth

(n ≥ 5) coefficient bound for the class S∗s (ϕ) is still an open problem as it involves

complex computations. It can be attempted as a future task.

We also obtained Fekete Szegö coefficient functional for five important subclasses of

analytic functions defined by us namely: Vα(ϕ), Mα(ϕ), Lα(ϕ), Kα(ϕ) and Tα(ϕ).

The computations here were quite complicated and the results so obtained yield some

135
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previously known results. We also obtained the second and the third coefficient bound-

s for the functions in the above mentioned subclasses as a corollary to our results.

It is worth noting the fact that the classes considered here have been studied quite

extensively in our thesis in the sense that we also obtained the bound for the sec-

ond Hankel determinant H2(2) = a2a4 − a2
3 for these subclasses. For 0 ≤ α ≤ 1,

these classes reduce to many previously known classes such as the class S∗ and K,

etc., thereby yielding many corollaries to our results. Another problem that we incor-

porated in our research is the third Hankel determinant bound. We studied a couple

of quite interesting subclasses namely Mα and Lα respectively and obtained the first

five coefficient’s bounds for them and also the bound for the third Hankel determinan-

t H3(1) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2). For further investigation, the

unification of the various classes considered can be done so that the results can be

merged together. Higher order Hankel determinants can be investigated in the future.

Furthermore, Toeplitz determinants can also be explored.

Motivated by the paper by Kanas and Wisniowska [35], wherein they have given certain

sufficient conditions for the function f to be k− uniformly convex, we have also obtained

certain necessary and sufficient conditions in terms of the coefficients an for the function

f ∈ T to be in certain subclasses of T , namely T S∗[A, B], T C[A, B] and R(A, B, α)

(α ∈ R). Another extremely important subclass has been studied defined by(
z

f (z)

)µ

= 1 +
∞

∑
n=1

bnzn, µ ∈ C.

and the necessary and sufficient conditions have been obtained for the functions in the

above said class to belong to S∗[A, B].

Finally, in the concluding chapter of the thesis, the two prime subclasses S∗(α + (1−
α)ez) and S∗(α + (1− α)

√
1 + z) of A, 0 ≤ α < 1 have been studied extensively. Sev-

eral enriching problems have been solved for these subclasses including the bounds for

Fekete Szegö inequality, the bound for the first four coefficients, radius problems, various

inclusion relations with the other important subclasses of analytic functions and many

interesting coefficient inequalities. An interesting observation is that for α = 0, all the

results obtained yield the results for the classes S∗e and SL respectively as corollaries to
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our results. For further study, we can obtain similar results by taking convex combination

of univalent functions in place of α + (1− α)ez. Also, many other radii problems can be

explored.
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Japan 59 (2007), no. 3, 707–727.

[16] R. N. Das and P. Singh, On subclasses of schlicht mapping, Indian J. Pure Appl. Math. 8 (1977), no. 8,

864–872.

[17] P. L. Duren, Univalent Functions, GTM 259, Springer-Verlag, New York, 1983.

[18] M. M. Elhosh, On the second Hankel determinant of univalent functions, Bull. Malays. Math. Soc. (2) 9

(1986), no. 1, 23–25.

[19] M. M. Elhosh, On the second Hankel determinant of close-to-convex functions, Bull. Malaysian Math.

Soc. (2) 9 (1986), no. 2, 67–68.

[20]

[21] G. M. Goluzin, On distortion theorems in the theory of conformal mappings, Mat. Sb., 43 (1936), no. 1,

127–135.

[22] G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Mono-

graphs, Vol. 26, American Mathematical Society, Providence, RI, 1969.

[23] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87–92.

[24] A. W. Goodman, Univalent Functions. Vol. I, Mariner, Tampa, FL, 1983.

[25] A. W. Goodman, Univalent Functions. Vol. II, Mariner, Tampa, FL, 1983.

[26] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Monographs and

Textbooks in Pure and Applied Mathematics, 255, Marcel Dekker, Inc., New York, 2003.
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