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Preface

Important observational developments in the last two decades have much enlarged

the scope of cosmological studies. Therefore, cosmology has become a precision sci-

ence to understand early as well as late time evolutionary behaviour of the Universe.

The rapid development in observational cosmology which started during late 1990s

shows that the Universe passes two phases of cosmic acceleration:

The first cosmic accelerated phase, which is known as the inflationary phase as

proposed by Alan Guth in 1981, is believed to have occurred prior to the radiation-

dominated era. Inflationary phase is basically a short period of rapid expansion in

the very early Universe, at the end of which the description of the standard big bang

model is applied. The inflationary scenario actually means a period of phase transition

which is controlled by a scalar field. The scalar field may contribute to the negative

pressure and once the phase transition is over, the scalar field decays away and

the inflationary expansion terminates. This phase not only resolves the flatness and

horizon problems, but also explains a nearly flat spectrum of temperature anisotropies

observed in Cosmic Microwave Background (CMB).

The second cosmic accelerated phase, which is known as the late time acceleration,

is assumed to have started after the matter-dominated phase. This recent transition

from decelerating phase to the accelerating phase has been observed by a number of

observations such as the measurements of SNe Ia, CMB, Large Scale Structures

(LSS), Baryon Acoustic Oscillations (BAO),Wilkinson Microwave Anisotropy Probe

(WMAP) and very recent Planck Collaboration. These observations predict that some

unknown matter with negative pressure gives rise to this late time cosmic accelera-

tion, which is popularly known as “Dark Energy”. It is a hypothetical type of energy

that fills all of space and is responsible to increase the expansion rate of the Universe.

Nowadays, the quest to understand this cosmic acceleration is the most competitive

challenge in the current cosmology. To explain the accelerated expansion, the modern
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cosmology requires two outstanding concepts: (i) the matter which does not interact

with the electromagnetic force - known as dark matter (DM) and (ii) the hypothetical

energy that is responsible to increase the expansion rate of the Universe, known as

dark energy (DE).

Nowadays, the study of dark energy models are of great interest in general theory

of relativity as well as in modified theories of gravitation. This thesis is devoted to in-

vestigate both isotropic Friedmann-Robertson-Wlaker (FRW) and anisotropic Bianchi

models in general theory of relativity and modified theories of gravitation, namely,

Brans–Dicke, f (R,T ) gravity theory. The holographic dark energy is also a possible

choice to explain current acceleration of the Universe. It has been investigated that

bulk viscosity may be one of the possible candidate to explain such phenomena of

the Universe. A theoretical approach has been followed to understand the cosmic

acceleration in the framework of these theories of gravitation.

The central problem investigated in this thesis is the role of scalar field and bulk vis-

cosity in explaining the dark energy phenomena in cosmology. In doing this we have

studied holographic dark energy with and without bulk viscosity. The thesis entitled

“Dark Energy Phenomena in Cosmology” comprises eight chapters. The bibliography

and the list of publications have been given at the end of the thesis.

Chapter 1 offers a general introduction of the study in general relativity. It includes

the brief overview of the cosmology with tensor calculus to build the cosmological

models. Some important cosmological parameters, which describe the physical and

the geometrical properties of the Universe, have been discussed. The concept of DE

and DM with equation of state parameter have been discussed. The exotic matter

like scalar field and its energy-momentum tensor has been described briefly. The

bulk viscosity has been introduced in the model to explore the possible candidate for

an accelerating Universe. The holographic dark energy and new holographic dark

energy have been discussed for explaining the concept of DE. The modified theories

of gravitation like Brans–Dicke theory and modified f (R,T ) gravity theory have been

discussed in detail. The purpose of this chapter is to provide the motivation of the

work carried out in the thesis.

Chapter 2 deals with the dynamics of non-interacting and interacting holographic

dark energy models in Brans–Dicke theory. We have considered the future even-

t horizon as an infrared cutoff. The field equations have been solved by assuming

the Brans–Dicke scalar field as a logarithmic form of scale factor instead of gener-
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al power-law form of scale factor. This assumption gives the time-dependent value

of the deceleration parameter which explains the phase transition of the evolution of

the Universe. We have noticed that the model is able to explain the early time infla-

tion as well as late time acceleration. It has also been observed that in late time the

crossing of phantom divide line may be possible for the equation of state parameter.

The model is more appropriate to achieve a less acute coincidence problem in non-

interacting model whereas a soft coincidence can be achieved if coupling parameter

in interacting model has small value. The content of this work has been published as a

research paper entitled “Cosmological evolution of non-interacting and interact-

ing holographic dark energy model in Brans-Dicke theory, International Journal

of Geometric Methods in Modern Physics, 15, 1850124 (2018)”.

In chapter 3, we have explored bulk viscosity as a candidate of DE. Viscous new

holographic DE model has been discussed with Ricci scalar as an infrared cutoff,

proposed by Granda and Oliveros. It is thought that the negative pressure caused

by the bulk viscosity can behave as a DE component and drive the acceleration of

the Universe. We have presented four possible solutions of the model based on the

choice of the different forms of the bulk viscosity. The solutions for scale factor as

well as deceleration parameter have been obtained to discuss the evolution of the

Universe. We have also studied two independent geometrical diagnostics: statefinder

pair and Om, to discriminate this model with other available DE models. The content

of this chapter has been published as a research paper entitled, “Viscous cosmology

in new holographic dark energy model and the cosmic acceleration, European

Physical Journal C 78, 190 (2018)”.

Chapter 4 is the extension of above work in f (R,T ) gravity theory. We have investi-

gated constant bulk viscous new holographic DE model in f (R,T ) gravity theory. From

the viewpoint of the fluid description and the current observational data, there is no

reason for excluding the imperfect fluid due to the presence of bulk viscosity. We have

obtained the solution for both cases, without viscous and with constant viscous new

holographic DE models. In the model without viscosity, the scale factor has the form as

power-law type and deceleration parameter is constant so this model can not explain

the phenomena of phase transition. In constant viscous model, the scale factor is of

exponential type. In early time it expands with decelerated rate whereas in late time it

expands with accelerated rate. The expansion rate depends on the coefficient of bulk

viscosity. The phase transition of the Universe from deceleration to acceleration has
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been observed as the deceleration parameter is time-dependent. We have studied

statefinder and Om(z) diagnostics for viscous new holographic DE in f (R,T ) gravity

to compare this model with the other available DE models. The thermodynamics and

the local entropy have been discussed for this model. The model preserves the va-

lidity of the second law of thermodynamics as the bulk viscous coefficient is always

positive during the evolution of the Universe. We have also discussed the finite-time

future singularity and found that the model shows the Type I (Big-Rip) singularity and

Type III singularity. The content of this chapter has been published in the form of

research paper entitled “New holographic dark energy model with constant bulk

viscosity in modified f (R,T ) gravity theory, Astrophysics and Space Science 363,

117 (2018)”.

In chapter 5, we extend our work with a most general form of bulk viscosity in new

holographic DE in f (R,T ) gravity. We have classified all possible evolutions with differ-

ent parameters constraints. Some analysis have been carried out by plotting the graph

between scale factor with time. The phase transition from deceleration to acceleration

is observed at early or late time depending on bulk viscous coefficients. We have also

discussed the nature of deceleration parameter. Statefinder and Om(z) diagnostics

have been carried out for viscous new holographic dark energy model. The nature

of bulk viscous coefficient has been discussed through the graph which shows that it

is positive for a range of viscous term. The entropy and the generalized second law

of thermodynamics has been investigated. We have observed that the generalized

second law of thermodynamics always valid under certain restrictions on bulk viscous

coefficients. The content of this chapter is submitted for publication in the form of

research paper entitled “Evolution and thermodynamics of new holographic dark

energy with bulk viscosity in modified f (R,T ) gravity; [arXiv:1804.05693 [gr-qc]]”.

In chapter 6, we have investigated the spatially homogeneous and anisotropic Bianchi-

I model with a minimally coupled scalar field. A non-interacting combination of scalar

field and perfect fluid as a source of matter components has been considered. To

solve the system of equations, an exponential form of average scale factor with s-

calar field has been assumed. We have considered the solution for two cases: flat

potential and exponential potential. Explicit form of average scale factor, energy den-

sity and pressure of the scalar field and perfect fluid, and their respective equation

of state parameters have been obtained. Other geometrical and physical parameters

like expansion scalar, deceleration parameter, anisotropy parameter, and shear scalar
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have been calculated and their physical interpretations have been discussed. In flat

potential and exponential potential models we have obtained power-law scale factor

which expands with decelerated rate. We have found the scalar field as logarithmic

form. The scalar potential decreases with time and vanishes in late time. We have

observed that the universe is expanding but rate of expansion , measure of anisotropy

and shear scalar decrease to zero and become isotropic in late time. This chapter is

based on a published research paper entitled “Minimally coupled scalar field cos-

mology in anisotropic cosmological model, Pramana Journal of Physics 88, 22

(2017)”.

Chapter 7 deals with the dynamical evolution of a homogeneous and anisotropic

Bianchi-V model filled with perfect fluid and scalar field. These two sources are as-

sumed to be non-interacting. We have assumed that the average scale factor and

scalar potential are of exponential functions of scalar field. We have used the obser-

vational data to find the parameters used in the model. The role of scalar field through

the variable equation of state parameters are studied. It has been observed that e-

quation of state parameters change from phantom region to quintessence region for

small values of parameters, respectively. We have concluded that the model shows

phantom behavior in early time and quintessence in late time evolution. For large

values of parameters, it varies in quintessence region only. We have also studied the

statefinder parameters and obtained that the model behaves like ΛCDM or SCDM de-

pending on the values of parameters. This chapter has been published in a research

paper entitled “Dynamics of Bianchi V anisotropic model with perfect fluid and

scalar field, Indian Journal of Physics 91, 1645 (2017)”.

At the last, we summarize what results have come out in this thesis. We have also

presented the future scope of the current work. As we have seen that the bulk vis-

cosity may play a vital role in explaining the dark energy phenomena, therefore, the

further investigation is needed to understand the role of bulk viscosity. The investiga-

tion carried out in the present work provides the explanation of early as well as late

time evolution of the Universe. It would be interesting to investigate in modified theory

with different exotic matter of content which could possibly solve the problems related

to the late time evolution of the Universe.

Finally, the bibliography and list of author’s publications have been given at the end

of the thesis.
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Chapter 1

Introduction

The introductory chapter includes the brief overview of the cosmology which explains

the evolution of the Universe. In this chapter, we discuss general theory of relativity,

early time inflation, late-time acceleration and the modified theory of gravity, especially

the Brans–Dicke theory and f (R,T ) theory. The cosmological parameters and the

geometrical parameters of cosmological models are also explained. The viscosity

mechanism in cosmology is discussed. This chapter also includes the motivation of

the thesis work.

1



2

The origin and evolution of the Universe are two of the most actively researched ar-

eas in cosmology. Cosmologists convince that the Universe came into existence at

a definite moment in time, some 13.6 billion years ago, in the form of a super hot,

super dense fireball of energetic radiation known as the Big Bang event. Recent cos-

mological observations have completely changed the prospective of the researchers

about the understanding of the Universe. The Universe which is expanding with an

accelerated rate, is the most important observational result of the modern cosmology,

which was first discovered by Hubble in 1929 [1]. Let us start this chapter with the

brief introduction of the Einstein’s general theory of relativity [2].

1.1 General theory of relativity

There are two fundamental theories in physics which study the behavior of matter:

Newtonian theory of gravitation which describes the behavior of one mass point on

the other, and the electrodynamics describing the behavior of charged matter in the

presence of electromagnetic fields. The theory of relativity is divided into two parts:

Special theory of relativity (STR) which had its origin in the development of electro-

dynamics, and General theory of relativity (GTR) which is the relativistic theory of

gravitation. The STR leads with the systems known as inertial systems, that is, the

systems which move in uniform rectilinear motion relative to one another. According

to this “All systems of co-ordinates are equally suitable for description of physical phe-

nomena”. Only two years after the publication of his STR, Einstein in 1907 wrote a

paper attempting to modify Newton’s theory of gravitation to fit STR. Einstein extend-

ed this principle to accelerated systems, i.e., the systems moving with accelerated

velocity relative to one another, the theory of relativity is called “general theory of

relativity (GTR)”, which was published by Albert Einstein in 1916. GTR explains that

the force of gravity which we perceive arises from the curvature of space and time.

The GTR is applicable to the laws of gravitation and explains it in a more refined man-

ner than given by Isaac Newton.

General theory of relativity, with its fundamental feature of a dynamical space-time,

offers a natural conceptual framework for cosmology. Furthermore, GTR can simply

accommodate the possibility of a constant “vacuum energy density” giving rise to a

repulsive gravitational force. Such an agent is the key ingredient of modern cosmo-
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logical theories of the Big Bang (the inflationary cosmology) and of the accelerating

Universe (having a dark energy). GTR successfully passes the solar system tests,

and explains the perihelion of mercury and bending of light near the Sun. GTR is

based on two main principles:-

• The principle of general covariance:- The laws of Physics retain their same

form in all coordinate systems, i.e., the laws of physics remain covariant inde-

pendent of the frame of reference. According to this principle the equations

governing the laws of the physics must be expressed in the tensorial form.

• The principle of equivalence:- In a local experiment, the gravitational field can

be obtained by a suitable accelerating frame of reference. In other words, an

inertial observer is locally equivalent to a free-falling observer in a gravitational

field. Any local experiment can’t distinguish these two situations.

1.2 The Metric or line element

Einstein’s general theory of relativity is a geometric theory of gravity. An expression

which expresses the distance between two adjacent points is called a metric or line

element. It also explains the space-time geometry. In GTR, one time coordinate

(x0 = ct) along with the three space coordinates (x1,x2,x3) are used to represent the

coordinates of the four dimensional space-time (xµ , i.e., x0,x1,x2,x3). The most general

tensorial form of the line-element, ds2 in general relativity, which is related to the

coordinates dxµ of the space-time manifold through metric tensor gµν , is represented

by

ds2 = gµν dxµdxν . (1.2.1)

The Greek indices µ and ν run from 0 to 3 and gµν denotes the covariant form of the

metric tensor of rank 2 and its components are the functions of coordinates xµ subject

to the restriction g = determinant of gµν , i.e., |gµν | ̸= 0. Since the coordinate lines

are orthogonal to each other, thus the diagonal metric is formed in an orthogonal

coordinate system. In this thesis we use only orthogonal coordinate systems. The

line-element (1.2.1) represents the curved geometry of space-time. The metric tensor

obeys the transformation law

¯gµν =
∂xi

∂ x̄µ
∂x j

∂ x̄ν gi j, (1.2.2)
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where the quantities carrying bar correspond to the new coordinate system. The

contravariant metric tensor gµν can be defined as

gµν =
cofactor of gµν in g

g
. (1.2.3)

The metric tensor gµν is reciprocal of gµν . This is also a symmetric tensor of rank

two and is called the conjugate metric tensor. Greek indices running from 0 to 3

has been used in this thesis for the summation convention and geometrized units are

used.

1.3 Basic formalism

We start by the outline of the general relativity theory, setting speed of light (c) e-

quals to one. With gµν being a fundamental tensor (metric tensor) we introduce the

projection tensor

hµν = gµν +UµUν , (1.3.1)

and rotation tensor

ωµν = hα
µ hβ

νU(α;β ) =
1
2

(
Uµ;αhα

ν −Uν ;αhα
µ

)
. (1.3.2)

The expansion scalar is

θµν = hα
µ hβ

νU(α ;β ) =
1
2

(
Uµ;αhα

ν +Uν ;αhα
µ

)
, (1.3.3)

and has the trace θ ≡ θ µ
µ =U µ

;µ . The shear tensor is

σµν = θµν −
1
3

hµνθ , (1.3.4)

which satisfies σ µ
µ = 0. The fluid velocity is

Uµ;ν = ωµν +σµν +
1
3

hµνθ −AµUν , (1.3.5)

where Aµ stands for the four-acceleration, namely Aµ = U̇µ =UνUµ;ν .

The above formalism is for a general geometry. In the following we will focus on

Friedmann-Robertson-Walker (FRW) geometry, which is of main interest in cosmolo-
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gy.

1.3.1 Homogeneous and isotropic metric

The most general representation of the curved space-time line-element is defined by

(1.2.1) but it is being very difficult to study the cosmological models with this met-

ric. Therefore, Friedmann [3] used cosmological principle to simplify the models. To

build the standard cosmological model at a large scale in the framework of GTR, the

cosmological principle (CP) is taken into consideration which is the most simplest as-

sumption for it. In modern cosmology, the CP states that at a very large scale the

distribution of the galaxies is uniform and the appearance of it is same at every di-

rection. Thus, CP has two most important mathematical properties of the Universe:

homogeneous and isotropic nature of the Universe at a very large scale (≫ 100 Mpc)

at each instant of cosmic time. This implies that the appearance of the Universe is

same at every place and same in every direction too. It may change only along the

time axis. Then the Universe has to be maximally symmetric as far as three dimen-

sionally space is concerned. In case of homogeneous and isotropy 1, the line-element

can be described by a simplest way as

ds2 = dt2 −a2(t)
[
dx2 +dy2 +dz2] , (1.3.6)

where we consider speed of light c = 1 throughout the thesis, a(t) stands for the scale

factor, depends on the cosmic time t, which is related to the expansion (possible

contraction) of the Universe. The line-element (1.3.6) is called the flat Robertson-

Walker metric (RW). It is called the Friedmann-Robertson-Walker (FRW) metric when

the scale factor obeys the Einstein’s field equations (see, section 1.4). In case of

spherical coordinate system where x0 = t, x1 = r sinθ cosφ, x2 = r sinθ sinφ, x3 = r cosθ ,

the line-element (1.3.6) can be rewritten as [4]

ds2 = dt2 −a2(t)
[

dr2

1− kr2 + r2(dθ 2 + sin2θdφ2)

]
, (1.3.7)

where k represents the curvature of the spatial sections. It can have three values

−1, 0 and +1 for open, flat and closed Universes, respectively, and 0 ≤ θ ≤ π and

1Homogeneity means that space “looks the same everywhere” and spatial isotropy means that space “looks
the same in every direction”
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0 ≤ φ ≤ 2π. The FRW model (1.3.7) describes the time evolution of a homogeneous

and isotropic Universe that gets larger in time as a(t) increases and smaller as a(t)

decreases. All the information about the evolution of the Universe is contained in this

one function determined by the Einstein’s field equations. The coordinates (t, r, θ , φ)

of FRW metric shows comoving coordinates 2. Most of the thesis work are based on

FRW line-element (1.3.6).

1.3.2 Homogeneous and anisotropic metric

Many observations, like Cosmic Microwave Background (CMB) [5] and Wilkinson Mi-

crowave Anisotropy Probe (WMAP) [6], confirm that the Universe is anisotropic, which

is quiet interesting to know. Many theoretical models also confirm that initially the U-

niverse was in anisotropic stage but in late-time of the evolution it corresponds to an

isotropic one. Anisotropic model have a significant place in description of evolution of

the early phase of the Universe. The Bianchi type models are spatially homogeneous

cosmological models that in general are anisotropic. These models are the general-

ization of standard homogeneous and isotropic FRW models. Bianchi models I to IX

present a middle way between FRW model and inhomogeneous and anisotropic Uni-

verse and thus important in modern cosmology. Bianchi type I - IX line elements are

the most common anisotropic line-elements which are widely used [7]. The most sim-

plest model among all the types of Bianchi is the Bianchi type-I (B-I). The line-element

of the homogeneous and anisotropic B-I is defined as

ds2 = dt2 −A2(t)dx2 −B2(t)dy2 −C2(t)dz2, (1.3.8)

where A(t), B(t) and C(t) stand for the directional scale factors in the respective

direction of the coordinate axes x, y, z, respectively. For the particular case when

A = B =C, the line-element (1.3.8) reduces to flat FRW model (1.3.6), and if A ̸= B =C

(or A=B ̸=C or A=C ̸=B), the line-element (1.3.8) is said to be the locally-rotationally-

symmetric (LRS) B-I model whereas A ̸= B ̸= C gives totally anisotropic B-I model.

Bianchi type-V (B-V) model is also one among all the homogeneous and anisotropic

Bianchi types. The line-element of homogeneous and anisotropic B-V is described by

ds2 = dt2 −A2(t)dx2 − e2mx[B2(t)dy2 −C2(t)dz2], (1.3.9)

2Comoving means that the coordinate system follows the expansion of space, so that the space coordinates of
objects which do not move remains the same.
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where A(t), B(t) and C(t) have their usual meanings and m is a constant.

1.4 Einstein’s field equations

The key equation of general relativity is Einstein’s field equations, which is relativis-

tic equivalent of Poisson’s equation of Newtonian dynamics. According to Newton’s

theory of gravitation the field equations in the presence of matter are given by [8]

▽2Φ = 4πGρ , (1.4.1)

where Φ is the gravitational potential, ρ is the density of matter and G is gravitational

constant. Equation (1.4.1) is the Poisson’s equation which gives a mathematical re-

lation between the gravitational potential Φ at a point in space and the mass density

ρ at that point. Since in non-relativistic limit g00 plays the role of gravitational poten-

tial, therefore, Φ must be replaced by the metric tensor gµν in the relativistic theory

of gravitation. Hence, from Eq. (1.4.1) it follows that the left hand side must be ex-

pressed in terms of the second order derivatives of gµν . As ρ is the density of matter

which is one of the components of second rank energy-momentum tensor, the right

hand side of (1.4.1) must be expressed in terms of the material energy tensor Tµν in

relativistic theory of gravitation such that the divergence of Tµν must vanishes. Thus,

the generalization of (1.4.1) for relativistic theory of gravitation can be written as

Gµν = Rµν −
1
2

gµνR = κTµν , (1.4.2)

where Gµν is the Einstein tensor, κ = 8πG with G as a Newton’s gravitational constant

and R = gµνRµν is the Ricci scalar curvature with Rµν as a Ricci curvature tensor.

Equations (1.4.2) are the required field equations in GTR in the presence of matter and

represent the Einstein’s field equations for naturally curved material world. Einstein’s

field equations give a mathematical relation between the metric of space-time at a

point and the energy and the pressure at that space-time point. The trajectories of

freely moving objects then correspond to geodesics curved space-time.

A gravitational action, known as Einstein-Hilbert (EH) action can also describe GTR

and yield the Einstein’s field equations. In general relativity, the action is usually

assumed to be a function of metric tensor gµν . On including the matter field, the
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EH action for gravity proposed in 1915 by David Hilbert can be written as [4]

S =
∫ ( 1

2κ
R+Lm

)√
−g d4x, (1.4.3)

where Lm is the matter Lagrangian density of any matter fields. The action principle

then requires the variation of this action with respect to the inverse metric gµν to vanish

δS = 0. After mathematical calculations, we get same Einstein’s field equations (1.4.2).

The right hand side of the Einstein’s equations (1.4.2) represents the densities of

energy and momentum which are the sources of space-time curvature and give the

information about the energy density, momentum density, pressure. According to

Einstein’s theory the matter content is described by energy-momentum tensor which

is also known as stress-energy tensor. It is represented by a quantity Tµν , which is

a second-rank tensor and symmetrical. The energy-momentum tensor for a perfect

fluid is

Tµν = (ρ + p) uµ uν − p gµν , (1.4.4)

where ρ and p represent the energy density and pressure of the fluid, respectively and

uµ is the four-velocity vector such that gµνuµuν = 1. Tµν does not depend on θ and φ

even though it is only a function of t due to spatial homogeneity. Thus, the distribution

of matter content of the Universe only depends on t. Bianchi identity states that the

Einstein tensor Gµν has zero divergence, i.e., Gµν
;ν =

(
Rµν − 1

2gµνR
)

;ν = 0. Then,

from equation (1.4.2), we can say that T µν
;ν = 0, which is known as the conservation

law of energy and momentum. This conservation law is physical requirement.

The energy-momentum tensor Tµν is the sum of the stress-energy tensors for the

various components of energy, baryons, radiation, neutrinos, dark matter and possible

other forms. Einstein’s formula (1.4.2) expresses that the energy densities, pressures

and shears embodied by the stress-energy tensor determine the geometry of space-

time, which, in turn, determine the motion of matter.

1.5 Friedmann cosmology

Let us now discuss a model describing a homogeneous and isotropic Universe for

which the Robertson-Walker metric in Eq. (1.3.6) is given.
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1.5.1 Friedmann equations

In 1922, a Soviet mathematician and meteorologist, Alexander A. Friedmann was the

first person who mathematically predicted an expanding Universe [3]. He derived two

independent field equations based on an isotropic and homogeneous Universe from

Einstein’s field equations (1.4.2) as

ȧ2

a2 +
k
a2 =

8πG
3

ρ, (1.5.1)

2ä
a
+

ȧ2

a2 +
k
a2 =−8πGp, (1.5.2)

where an over dot is used to represent the differentiation with respect to cosmic time

t. These equations were derived in 1922 by Friedmann, seven years before Hubble’s

discovery, at a time when even Einstein did not believe in his own equations because

they did not allow the Universe to be static. Friedmann’s equations did not gain gen-

eral recognition until after his death, when they were confirmed by an independent

derivation (in 1927) by Georges Lemaitre [9].

The expansion (or contraction) of the Universe is inherent to Friedmann’s equations.

Equation (1.5.1) shows that the rate of expansion, ȧ, increases with the mass density

ρ in the Universe, and Equation (1.5.2) shows that it may accelerate.

We can obtain the following equation, known as ‘acceleration equation’ by sub-

tracting (1.5.1) from (1.5.2), which is important in discussing the different evolutionary

phases of the Universe.
ä
a
=−4πG

3
(ρ +3p). (1.5.3)

The above equation is also called the Raychauduri equation. From equation (1.5.3),

one can observe that for non-exotic perfect fluid (matter and radiation), we always

get ä
a < 0 which implies the non-static behavior of the Universe, i.e., the decelerated

expansion of the Universe. But, initially Einstein just considered Friedman’s equations

as a mathematical curiosity and dismissed these equations and its non-static expla-

nation about the evolution of the Universe. Even, in 1923 Eddington [10] pointed out

that the Einstein Universe was unstable.

Further, in 1927, Georges Lemaître [9] independently concluded the same expand-

ing nature of the Universe. Later, in 1929 it was experimentally confirmed by Edwin

Hubble [1] that the nature of the Universe is expanding. After this, Einstein stated that

introducing the cosmological constant, i.e., the Λ– term, into the equations, was the
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“biggest blunder of his life”. Then, the Λ– term was abandoned for a long time. After

some years Einstein’s biggest blunder turned out to be strong candidate for the “dark

energy” (the major constituent of the present Universe) in the later development of

cosmology to explain the accelerating Universe.

1.5.2 Einstein Universe

Consider the static Universe proposed by Einstein. In case of static Universe, the

scale factor a(t) would be constant so that ȧ = 0 and ä = 0 and the age of the Universe

is infinite. Equations (1.5.1) and (1.5.2) then reduces to

k =
8πG

3
ρ0 =−8πGp0, (1.5.4)

where ρ0 stands for present energy density and p0 stands for present pressure at

present time t = t0. Here, we consider a(t0) = 1. In order that the energy density ρ0 be

positive today, k must be +1. This leads to the negative pressure.

Einstein corrected this in 1917 by introducing a constant Lorentz-invariant term Λgµν

into the equation (1.4.2). Equation (1.4.2) then becomes

Rµν −
1
2

gµνR−Λgµν = 8πG Tµν , (1.5.5)

where Λ is known as cosmological constant. The constant Λ is such that its effect

is negligible for phenomena of the solar system or even in our own galaxy but be-

comes important when the Universe as a whole is considered. With this addition,

Friedmann’s equations take the form

ȧ2

a2 +
k
a2 −

Λ
3
=

8πG
3

ρ, , (1.5.6)

2ä
a
+

ȧ2

a2 +
k
a2 −Λ =−8πGp, . (1.5.7)

A positive value of Λ curves space-time so as to counteract the attractive gravitation

of matter. Einstein adjusted Λ to give a static solution, which is called the Einstein

Universe. In the static case, Eq. (1.5.6) becomes

k− Λ
3
=

8πG
3

ρ0. (1.5.8)
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It follows that for a spatially flat Universe

ρΛ =
Λ

8πG
=−ρ0. (1.5.9)

But Einstein did not notice that the static solution is unstable. This flaw was only no-

ticed by Eddington in 1930, soon after Hubble’s discovery about the expansion of the

Universe, in 1929. After that Einstein abandoned his static Universe and withdrew the

cosmological constant. H he called this as the ‘greatest blunder of my lifetime’.

The Eqs. (1.5.6) and (1.5.7) with a positive Λ is called the Friedmann-Lemaitre U-

niverse or concordance model. Lemaitre noted that if the physics of the vacuum

looks the same to inertial observer, its contribution to the energy-momentum tensor is

the same as Einstein’s cosmological constant Λ. The mathematical contents of Eqs.

(1.5.6) and (1.5.7) are not changed if the Λ term moved to the right-hand side, where

they appear as corrections to Tµν .

1.5.3 Energy conservation law

Let us discuss the conservation of energy-momentum tensor Tµν . Differentiating Eq.

(1.5.1) with respect to time

d
dt
(ȧ2 + k) =

8πG
3

d
dt
(ρa2), (1.5.10)

we obtain an equation of second order in the time derivative

2ȧä =
8πG

3
(ρ̇a2 +2ρaȧ). (1.5.11)

Using (1.5.3) and multiplying by 1/a2 into (1.5.11), we obtain

ρ̇ +3(ρ + p)
ȧ
a
= 0. (1.5.12)

This equation does not contain Λ and k, but that is not a consequence of having

started from Eqs. (1.5.1) and (1.5.2). If, instead, we start from Eqs. (1.5.6) and (1.5.7),

we will get the same equation (1.5.12).

Note that all terms here have dimension of energy density per time. In other words,

Equation (1.5.12) states that the change of energy density per time is zero, so we

can interpret it as the local energy conservation law. In a volume element dV , ρdV
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represents the local decrease of gravitational energy due to the expansion, whereas

pdV is the work done by the expansion. Energy does not have a global meaning in the

curved spacetime of general relativity, whereas work does. If different forms of energy

do not transform into one another, each form obeys Equation (1.5.12) separately.

Equation (1.5.12) can also be derived through thermodynamic point of view. Let the

total energy content in a comoving volume a3 be

E = (ρ + p)a3. (1.5.13)

If the expansion is adiabatic, i.e., if there is no net inflow or outflow of energy, then

dE
dt

=
d
dt
[(ρ + p)a3] = 0. (1.5.14)

If p does not vary with time, change in ρ and a compensate and equation (1.5.12)

immediately follows.

1.5.4 Equation of state

Of the above three equations (1.5.1), (1.5.2) and (1.5.12), only two are independent,

since equation (1.5.2) can be derived from Eqs. (1.5.1) and (1.5.12). Thus, we have a

system of two independent equations in three unknowns, namely, a(t), ρ(t) and p(t).

To solve these unknowns, we need another equation. For this purpose, we use a

barotropic equation of state (EoS); a mathematical relation between the pressure and

energy density of the stuff that fills up the Universe and is given by

p = p(ρ). (1.5.15)

In general, EoS can be dauntingly complicated. Condensed matter physicists fre-

quently deal with substances in which the pressure is a complicated nonlinear function

of the density. Fortunately, cosmology usually deals with dilute gases, for which the

EoS is simple. For substances of cosmological importance, the EoS can be written in

a simple linear form:

p = (γ −1)ρ = ωρ , (1.5.16)

where ω = (γ − 1) is a dimensionless number known as EoS parameter. In general

relativity, γ is treated as a constant and its value lies in the range 0 ≤ γ ≤ 2. In reality,

the evolution of our Universe is complicated by the fact that it contains different com-
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ponents with different EoS.

Using (1.5.16) into (1.5.12), we find a relation between energy density and scale

factor as

ρ(a) ∝ a−3(1+ω) = (1+ z)3(1+ω), (1.5.17)

where z is the redshift. The value of ω follows from the adiabaticity condition. We shall

here discuss its value in three cases of great importance.

Case I. A Matter-dominated Universe filled with nonrelativistic cold matter in the form

of pressureless nonradiating dust for which p = 0. Then, from (1.5.16), we have ω = 0,

and energy density evolves according to ρ ∝ a−3 = (1+ z)3. Inserting this into (1.5.1)

for k = 0, we get a ∝ t2/3.

In matter-dominated Einstein-de Sitter Universe which is flat and Λ = 0, Friedmann

equation (1.5.1) can be integrated to give

t(z) =
2

3H0
(1+ z)−3/2. (1.5.18)

The present age of the Universe at z = 0 would be

t0 =
2

3H0
. (1.5.19)

Case II. A radiation-dominated Universe filled with an ultra-relativistic hot gas. In this

case, the EoS parameter ω = 1/3 so that the radiation density evolves as ρ ∝ a−4 for

which we get a ∝ t1/2.

Case III. A vacuum-energy state corresponds to a flat, static Universe (ȧ = 0, ä = 0)

without dust and radiation, but with a cosmological constant term where pΛ = −ρΛ,

ω =−1 for which a ∝ e(const.) t .

1.5.5 de Sitter Universe

Let us consider the flat homogeneous and isotropic Robertson-Walker metric in which

the density of pressureless dust is constant, i.e., ρ(t) = ρ0. The Friedmann equation

(1.5.6) gives
ȧ
a
=

√
8πG

3
ρ0 +

Λ
3
= H, (1.5.20)
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where Hubble parameter H is now constant. This is even true for k ̸= 0 since due to

constant density and a increases without limit, k/a2 will be eventually negligible. The

solution of above equation is given by

a(t) ∝ eHt , (1.5.21)

which is obviously exponentially expanding Universe. The above solution can be ob-

tained for p= ρ = 0 where H is directly related to Λ. The same solution can be followed

even if Λ = 0 and density is constant. This solution is the de Sitter solution for which

Eddington described it as “motion without matter”.

1.6 Cosmic Inflation

In this section, we will discuss the problems caused by the expansion of space-time:

horizon problem associated with its size at different epochs, the flatness problem

associated with its metric, the monopole problem related to topological defects and

the entropy problem.

1. The Horizon Problem: The horizon problem which is also known as homo-

geneity problem, is a cosmological fine-tuning problem within Big Bang model.

These problems were part of the main motivation for the original proposal of

the idea of inflation. The horizon problem is the existence of background ra-

diation with a high degree of isotropy (uniformity in all directions): the Cosmic

Microwave Background (CMB)3. In every direction we observe the CMB to have

the spectrum of a thermal blackbody with a temperature T0 of 2.725 Kelvin, and

departing from perfect isotropy only to one part in 100,000.

The Hot Big Bang is based on the cosmological principle which predicts that

the Universe as a whole is spatially homogeneous and isotropic. The CMB is

isotropic for every fundamental observer in the Universe, i.e., the present tem-

perature of CMB is inferred to be everywhere 2.725 Kelvin. This implies that

the distant opposite parts of the Universe would be in thermal equilibrium in the

past. Since the radiation from two distant opposite parts could not possibly be

causally connected to each other because information can not travel faster than

the speed of light. Nor could the regions they traveled from even have been
3The CMB is called “background radiation” because it originates from cosmos and not from the discrete

sources such as stars, quasars, etc.
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in communication. Then, why are we measuring the same temperature in all

directions with great accuracy?

2. The Flatness Problem: The geometry of the Universe is nearly flat determined

by the CMB data. A Universe as flat as we see it today would require an ex-

treme fine–tuning of conditions in the past, which would be an unbelievable co-

incidence. This strange coincidence is known as the flatness problem4 of the

standard cosmological model. This problem arises because we appear to live

in a Universe that has an observed density parameter (Ω) very close to 1 or can

say very close to critical density. There is no known reason for the density of the

Universe to be so close to the critical density and this appears to be an unac-

ceptably strange coincidence.

We can understand it as, a flat Universe is one in which the amount of matter

present is just sufficient to halt its expansion, but insufficient to re–collapse it.

This would represent a very fine–balancing act. This seems like a truly remark-

able coincidence and is known as the flatness problem.

3. The Monopole Problem: The Grand Unified theory (GUT) of particle physics

predicts that in very early Universe magnetic monopoles were produced with

high abundance. They are supposed to be extra ordinary massive, about 1016

GeV. Monopoles are highly stable particles and once they have been created,

they are indestructible. Therefore, they would survive as relics in the present

epoch. As we don’t observe magnetic monopoles at present, this imposes a

problem on the standard model of cosmology called the monopole problem.

4. The Entropy Problem: This is the restatement of the flatness problem and the

horizon problem in a somewhat different form. The entropy in a given comoving

volume stays constant in an adiabatic expansion. However, we have found that

in the flatness problem this hypothesis led to fine tuning, whereas for the horizon

problem it gave an extremely small size of homogeneity. It therefore appears

that the trouble lies in entropy=constant: it could be resolved if the adiabatic

assumption were violated at some stage and entropy boosted to its present

value by an enormously large factor. It is obvious that this problem has the

same origin as the horizon problem.

4The flatness problem is occasionally called the “age problem".
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1.7 Inflation and the Accelerating Universe

Alan H. Guth [11] proposed an inflationary theory as a solution to the above discussed

problems of standard cosmology, which is the most accepted theory. Inflationary theo-

ry suggests that the Universe underwent a phase of accelerated expansion very early

in its history. The word inflation means a rapid expansion in the early Universe. The

inflationary theory was based on Weinberg’s grand unified theory (GUT) which sug-

gests that the particle interactions possess certain symmetry. Linde [12,13], Albrecht

and Steinhardt [14] and Albrecht et al. [15] have also discussed and modified this the-

ory. It was accepted in the scientific community due to its promising and elegant way

to understand the very early Universe. According to this theory of inflation, the early

Universe expanded exponentially fast for a fraction of a second after the Big Bang.

This phase not only resolves the flatness and horizon problems, but also explains a

nearly flat spectrum of temperature anisotropies observed in cosmic microwave back-

ground (CMB).

It is still not clear to scientists the cause of inflationary phase, however, the best

guess being some kind of a negative “vacuum energy density” triggered by the sep-

aration of strong nuclear force from the other elementary forces at that time. The

scalar field was supposed to initiate inflation, which decayed into radiation and matter

to stop this scenario. The kinetic energy of the scalar field was dominant during infla-

tion which allowed de Sitter like expansion of the Universe. Inflation happened for a

very short time in the very early Universe and the Universe experienced a very rapid

expansion in this duration. Due to very rapid expansion of the Universe during the

time of inflation, the small size of the Universe was increased to a much larger size.

Thus, the small size of the Universe which was able to achieve thermal equilibrium

before inflation has been expanded to a greatly large size and it might even be larger

than our observable Universe.

Thus, inflation provides the mechanism through which distant opposite sides of the

Universe may have come close in very early times to establish thermal equilibrium.

Therefore, the horizon problem has been solved. The monopole problem has also

been resolved by inflation. The rapid expansion of the Universe during the inflation-

ary era has diluted the density of magnetic monopoles. Therefore, we don’t observe

monopoles at the present time.

In addition to the flatness, horizon, and monopole problems, inflation naturally solves
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the initial low entropy problem. As we know already, the energy of a vacuum stays

constant despite the expansion. In this way, room for matter full of energy could have

been created. If there is mechanism to convert vacuum energy into particles and ra-

diation at some later stage, then the observed huge entropy will be created and the

problem of entropy will be solved. Potentially, this mechanism works for any inflation-

ary scenario, since the product ρa3 is guaranteed to grow whenever ä > 0.

Thus, the inflation resolves the problems of Hot Big Bang cosmology successfully.

Inflation is an active field of research. In the literature, mainly scalar field theory and

supersymmetry theory are being used to get inflation.

The rapid development in observational cosmology which started during late 1990s

shows that the Universe passes two phases of cosmic acceleration: The first cosmic

accelerated phase is the inflationary phase which has been discussed above. Before

1998, the cosmologists assured that the Universe was expanding with decelerated

rate after a very short and rapid expansion (inflation). But, in 1998 two separate

teams headed by Perlmutter et al. [16] and Riess et al. [17] who were working on the

observations of distant Supernovae Ia (SN Ia) to measure the rate of expansion of

the Universe, announced that our Universe is currently experiencing a phase of ac-

celerated expansion. Thus, the second cosmic accelerated phase which is known as

the late time cosmic acceleration, is assumed to have started after the decelerated

phase. According to the theoretical point of view, the expansion of the Universe after

the inflationary phase of the Universe had to be slow. This behaviour of the Universe,

i.e., the phase transition from deceleration to acceleration, has been affirmed by many

observational results such as Wilkinson Microwave Anisotropy Probe (WMAP) [6,18],

Planck collaboration [19], Sloan Digital Sky Survey (SDSS) [20], etc. This event has

brought many challenges to the cosmologists. The observations show that the accel-

erating expansion of the Universe is due to a mysterious form of energy with negative

pressure which is dubbed as “dark energy” (DE) [16,17].

Nowadays, the DE has become one of the most active field in physics and as-

tronomy. Many models have been proposed to describe this late time accelerated

expansion of the Universe. There are two ways to discuss the acceleration of the U-

niverse. First: one can consider an exotic type of energy content which could provide

sufficient amount of negative pressure to observe the acceleration, which is known as

the modification in the matter part of the Einstein equations and is called DE models

of the Universe. Second: one can modify the geometric part of Einstein equations,

which is known as modified theories of gravity models. Let us study the evolution of
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the Universe based on these two concepts.

1.7.1 Dark Energy

In the early 1990s, the researchers were clear about the expansion of the Universe.

The Universe might have enough energy density to stop its expansion and recollapse,

it might have so little energy density that it would never stop expanding, but gravity

was certain to slow the expansion as time went on. In 1998 the Hubble Space Tele-

scope (HST) observations of very distant supernovae showed that, a long time ago,

the Universe was actually expanding more slowly than it is today. So the expansion

of the universe has not been slowing due to gravity, as everyone thought, it has been

accelerating. No one expected this, no one knew how to explain it. But something

was causing it.

To explain this phenomena, theorists came up with three sorts of explanations. It

may be a result of a long-discarded “cosmological constant” which was introduced

by Einstein in his theory of gravitation to obtain the static Universe. It may be some

strange kind of energy-fluid that filled space. May be there is something wrong with

Einstein’s theory of gravity and a new theory could include some kind of field that cre-

ates this cosmic acceleration. Theorists still don’t know what the correct explanation

is, but they have given the solution a name which is known as “Dark energy” (DE).

The Universe roughly contains 68% of DE where as dark matter makes up about 27%

and rest 5% contains everything all normal matter.

The Standard ΛCDM model

The Lambda cold dark matter (ΛCDM) model of the Universe which contains cosmo-

logical constant Λ and cold dark matter (CDM) are known as the standard model of

cosmology [21–25]. Cosmologists believe that dark matter (DM) comprises of cold

slow moving particles that can not emit electromagnetic radiation or scatter light. The

Lambda accounts for the presence of DE, a hypothetical force that appears to be ac-

celerating the expansion of the Universe. Although ΛCDM model is compatible with

observations very well, even this model is able to explain almost all the aspects of

cosmic evolution like structure formation, black hole phenomenon, accelerated ex-

pansion etc., but still it has some theoretical problems, namely cosmic coincidence

and fine–tuning.
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Steinhardt [26] and Zlatev et al. [27] were the first who addressed the cosmic coin-

cidence problem. According to the observations, at present the ratio of the DE and

matter is of order unity. With respect to the standard model, very fine tuned initial

conditions of the early Universe are required to observe this ratio of order unity. This

means, it is like a coincidence that we are living in a time where the densities of DE

and matter are of same order. The fine–tuning problem of the ΛCDM model is related

to its observed value and theoretical value. The observations predict a very tiny value

in comparison to the theoretical value of it which is about to 120 orders higher. It is a

huge difference.

The ΛCDM model is the incarnation of our understanding about the origin of the

Cosmos. It can also be understood as a model which is a parametrization of the Big

Bang cosmological model in which the Universe contains a cosmological constant Λ,

associated with DE, and cold dark matter (CDM). It is frequently referred as the stan-

dard cosmological model of Big Bang cosmology because it is the simplest model that

provides a reasonably good account with the properties of the cosmos.

From (1.5.5), we observe that in Einstein’s modified equations the cosmological con-

stant Λ was included in the left hand side, i.e., the geometric part of the equations. In

the case of the standard cosmological model it has been considered as a candidate

of the DE. Therefore, it could be introduced in the matter part of the equations, i.e., in

the right hand side. Then, the modified form of the Einstein equations (1.5.5) may be

written as

Rµν −
1
2

gµνR = 8πG (Tµν +T Λ
µν), (1.7.1)

where T Λ
µν stands for the energy-momentum tensor of the cosmological constant and

its energy is supposed to be the energy of the space (vacuum) itself. It remains

constant during the evolution. The energy-momentum tensor of the vacuum energy is

defined as

T (vac)
µν =−ρΛgµν = T Λ

µν . (1.7.2)

The vacuum energy density and cosmological constant have the relation ρΛ = Λ
8πG .

For the cosmological constant the EoS parameter is ω =−1. It can also be explained

as, for ΛCDM model the pressure-energy relation is pΛ =−ρΛ.

Dynamical Dark Energy Models

The fine–tuning and coincidence problems, occurred with the cosmological constant

have led to the search for dynamical DE models [28]. A phenomenological solution of
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these problems is to consider a time dependent cosmological term [29,30]. One of the

simplest and probably the most common candidate of dynamical DE is ‘quintessence’

[27,31–38]. The concept of quintessence basically uses a scalar particle field [39,40].

Historically, scalar fields are used as the responsible candiadate for inflation [41]; to

seed the primordial perturbation for structure formation during an early inflationary

epoch; and as a candidate for cold dark matter, responsible for the formation of the

actual cosmological structures [42].

Due to remarkable qualitative similarity between the present DE and primordial DE

that derives inflation in the early Universe, the inflationary models based on scalar

fields have also been applied for a description of the late time cosmic acceleration [27,

28, 34–36, 38, 43, 44]. Therefore, the scalar field cosmological models have acquired

great popularity in recent decades. The outcomes from different observational data

[45–49] also show a possibility of the existence of some strange kind of fields in the

Universe such as the phantom field as proposed by Caldwell [50] having negative

kinetic energy [51,52]. Some other candidates of such dynamical DE are the quintom

(a combination of quintessence and phantom scalar fields) [53], tachyonic field [54–

56], k-essence [56–58], Chaplygin gas [59,60].

Nowadays, it is a common issue to make the use of such exotic matters as the

responsible candidate to describe the late time acceleration of the Universe [28,38,54,

56,60–62]. Apart from these DE candidates, some other candidates like holographic

dark energy (HDE), new holographic dark energy, agegraphic dark enery (ADE) and

new agegraphic dark energy, etc.

Scalar Field Cosmology

Instead of arguing about Λ, we could postulate the existence of a new kind of ener-

gy, described by a slowly evolving scalar field ϕ(t) that contributes to the total energy

density together with the background (matter and radiation) energy density. This s-

calar field is assumed to interact only with gravity and itself. The natural and simple

model for dynamical DE is the scalar field model [32, 43]. The cosmological models

based on scalar fields have been discussed by many authors for explaining the pos-

sible early inflationary scenarios [11] as well as for describing the dark energy [63].

The dynamics of the evolution of the Universe is often realized by scalar field ϕ with

a proper scalar potential V (ϕ). The self-interacting potential can act like an effective

cosmological constant which drives a period of inflation. It depends on the specific

form of the potential as a function of scalar field. It has been observed that the scalar



21

potential V (ϕ) in a scalar field cosmology has very important role as it radically affects

the cosmological behavior.

The EH action of a Universe constituted with matter and a scalar field minimally

coupled to gravity, in the system of units 8πG = 1 = c, is

S =
∫

d4x
√
−g
[

1
2

R+Lϕ +Lm

]
, (1.7.3)

where, Lm is the total matter content in the Universe (including CDM) and Lϕ is the

scalar field Lagrangian which is defined as

Lϕ =−1
2

∇δ ϕ∇δ ϕ −V (ϕ), (1.7.4)

where ϕ is the scalar field and V (ϕ) is the self -interacting scalar potential. The fluid

energy density ρm and scalar field ϕ are functions of a time like coordinate t. In the

scalar field cosmology, the Einstein field equations (1.4.2) become as

Rµν −
1
2

gµνR = T (m)
µν +T (ϕ)

µν , (1.7.5)

where T (m)
µν is the energy-momentum tensor of perfect fluid given in Eq. (1.4.4) and

T (ϕ)
µν is the energy-momentum tensor associated with the scalar field ϕ , which is given

by

T (ϕ)
µν = ∇µϕ∇νϕ −

[
1
2

∇δ ϕ∇δ ϕ +V (ϕ)
]

gµν . (1.7.6)

The scalar field itself obeys the Klein-Gordon (wave) equation

gµν∇µ∇νϕ +
dV (ϕ)

dϕ
= 0. (1.7.7)

Here, ρϕ and pϕ are respectively the energy density and pressure for the canonical

scalar field, which are given by

ρϕ =
ϕ̇ 2

2
+V (ϕ), pϕ =

ϕ̇ 2

2
−V (ϕ). (1.7.8)

Clearly the pressure is always negative if the evolution is so slow that the kinetic

energy density 1
2 ϕ̇ 2 is less than the potential energy density. Under the assumption

that all matter fields are minimally coupled to the metric gµν , which means that the

principle of equivalence is guaranteed.

Assuming negligible interaction between matter and scalar field, the conservation
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equation for perfect fluid leads to

ρ̇m +3H(1+ωm)ρm = 0, (1.7.9)

and the evolution equation of the scalar field (1.7.7) gives

ϕ̈ +3Hϕ̇ +
dV (ϕ)

dϕ
= 0, (1.7.10)

which can be equivalently written as

ρ̇ϕ +3H(1+ωϕ )ρϕ = 0. (1.7.11)

The energy density of scalar field decreases as a−3(1+ωϕ ). The pressure and energy

density of these scalar fields are connected by a relation pϕ = ωϕ ρϕ , where, ωϕ is

known as the EoS parameter of the scalar field. The parameter ωϕ can be expressed

as

ωϕ =
pϕ

ρϕ
=

ϕ̇ 2 −2V (ϕ)
ϕ̇ 2 +2V (ϕ)

. (1.7.12)

It is well known from observational data that −1 < ωϕ < −1/3 gives the region for

quintessence, ωϕ = −1 corresponds to the cosmological constant and ωϕ < −1 rep-

resents phantom region. Therefore, the conditions for acceleration are ωϕ < −1/3,

a(t) ∝ td with d > 1 so that pϕ < 0 or ρϕ ∝ a−2.

The potential V (ϕ) is not known and one must assume the specific form as a func-

tion of the scalar field ϕ . There are many such proposals available of this potential

like power-law, exponential, zero, constant potentials etc. Hence, it is of interest to

understand the early inflation and late time acceleration of the Universe with scalar

fields along with the various form of scalar potentials.

Holographic Dark Energy

The most important issue of the modern cosmology is the origin of DE. The HDE,

which possesses some significant properties of the quantum theory, has been pro-

posed as a candidate for DE to explain the recent phase transition of the Universe.

The origin of HDE contains more scientific approach in comparison to other DE can-

didates, and presents a better way to deal with the accelerated expansion. The HDE

is based on the holographic principle proposed by Gerard ’t Hooft [64].According to

the holographic principle, the information contained in a volume of space can be rep-
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resented as a hologram, which corresponds to a theory locating on the boundary of

that space. It can also be stated as the number of degrees of freedom in a bounded

system should be finite and has a relation with the area of its boundary. Soon af-

ter, Leonard Susskind [65] gave a precise string-theory interpretation of this principle.

Moreover, in 1999, Juan Maldacena [66] proposed the famous AdS/CFT correspon-

dence, which is the most successful realization of the holographic principle. Now, it

is widely believed that the holographic principle should be a fundamental principle of

quantum gravity. Therefore, as the most fundamental principle of quantum gravity,

holographic principle may play an important role in solving the DE problem.

For a system with size L and ultraviolet (UV) cutoff Λ without decaying into a black

hole, it is required that the total energy in a region of size L should not exceed the

mass of a black hole of same size, thus L3ρΛ ≤ LM2
P, where MP is the reduced Planck

mass which is equal to M2
P = 1/8πG. In 2004, after applying the holographic principle

to the DE problem, Miao Li [67] proposed a new DE model, called holographic dark

energy (HDE) model. In this model, the energy density of DE only relies on two phys-

ical quantities on the boundary of the Universe: one is the reduced Planck mass Mp

and another is the cosmological length scale L. Li assumed that the largest infrared

(IR) cutoff to saturate the inequality imposed by black hole formation and obtained the

density of HDE as

ρh = 3d2
1M2

pL−2, (1.7.13)

where d2
1 is a dimensionless constant which is taken to be of the order of unity and

L represents the IR cutoff. It means that there must be a duality between UV cutoff

and IR cutoff. Therefore, the UV cutoff is related to the vacuum energy and IR cutoff

is related to the large scale of the Universe. The large scale of the Universe can be

taken as, for example Hubble horizon, particle horizon or event horizon [67,68]. It has

been shown that HDE model is favored by the latest observational data including the

sample of Type Ia supernovae (SNe Ia), the shift parameter of the cosmic microwave

background (CMB), and the baryon acoustic oscillation (BAO) measurement [69].

Li [67] discussed three choices for the length scale L which is supposed to provide

an IR cutoff. The first choice is to identify L with the Hubble radius, H−1. In the

formalism of HDE, the Hubble horizon is a most natural choice for the IR cutoff, but

Hsu [68] in general relativity and Xu et al. [70] in Brans–Dicke (BD) theory have shown

that the Hubble horizon as an IR cutoff is not a suitable candidate to explain the

recent accelerated expansion. The second option is the particle horizon radius but it
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also does not give an accelerated expansion. The third choice is the identification of

L with the radius of the future event horizon which gives the desired result, namely

a sufficiently negative EoS to obtain an accelerated Universe. Soon after, it was

shown by Pavón and Zimdahl [71] that if there is an interaction between two dark

components of the Universe, the identification of L with the Hubble horizon, L = H−1,

may give a suitable EoS for DE. It was also shown that it necessarily implies a constant

ratio of the energy densities of the two components regardless of the details of the

interaction. Nojiri and Odintsov [72] have studied a generalized model of HDE and

found that a unified model of the Universe may be achieved. The authors also claimed

that the coincidence problem may be resolved in a generalized HDE model. Thus,

HDE models may also alleviate the cosmic coincidence problem which provides an

advantage of HDE models over the other DE models.

The HDE model is the first theoretical model of DE inspired by the holographic

principle, and is in good agreement with the current cosmological observations at the

same time. This makes HDE a very competitive candidate of DE. In recent years, the

paradigm of HDE has drawn a lot of attention and has been widely studied.

New Holographic Dark Energy

As the origin of the HDE is still unknown, Granda and Oliveros [73] proposed a new IR

cutoff for HDE, known as new holographic dark energy, which besides the square of

the Hubble scale also contains the time derivative of the Hubble scale. As suggested

by Granda and Oliveros in paper [73] the energy density of HDE with the new IR cutoff

is given by

ρd = 3(αH2 +β Ḣ), (1.7.14)

where α and β are the dimensionless parameters, which must satisfy the restric-

tions imposed by the current observational data. Wang and Xu [74] found the best-

fit values in order to make this cutoff to be consistent with observational data as

α = 0.8502+0.0984+0.1299
−0.0875−0.1064 and β = 0.4817+0.0842+0.1176

−0.0773−0.0955 with 1σ and 2σ errors in flat mod-

el. In this thesis work we shall take α = 0.8502 and β = 0.4817.

The advantage is that this new HDE model depends on local quantities and avoids

the causality problem appearing with event horizon IR cutoff. The authors, in their

other paper [75], reconstructed the scalar field models for HDE by using this new

IR cutoff in flat Friedmann-Robertson-Walker (FRW) Universe with only DE content.

Karami and Fehri [76] generated the results of ref. [73] for non-flat FRW Universe.
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Malekjani et al. [77] have studied the statefinder diagnostic with new IR cutoff pro-

posed in [73] in a non-flat model. Sharif and Jawad [78] have investigated interacting

new HDE model in non-flat Universe. Debnath and Chattopadhyay [79] have consid-

ered flat FRW model filled with mixture of dark matter and new HDE, and have studied

the statefinder and Om diagnostics. Oliveros and Acero [80] have studied new HDE

model with a non-linear interaction between the DE and dark matter (DM) in flat FRW

Universe.

Although, the DE models explain the recent accelerated expansion of the Universe

very well and also accommodate the observations but the origin and evolution of DE

is still mysterious and unknown. Many other problems like the fine–tuning problem,

coincidence problem etc. associated with DE models compel us to think beyond the

standard model and other DE models.

Undoubtedly, the DE models are the most popular explanation of the current epoch

of the accelerating Universe, but they do not seem to be as well motivated theoretically

as one would desire. Therefore, the mystery is continued with the existence and

nature of such exotic matters. In the absence of an evidence for the existence of

DE, there leaves a space to explore other possible ways to alleviate the most crucial

problem of cosmic acceleration.

1.7.2 Modified Theories of Gravity

Let us discuss theories of gravity which are the candidates both for inflation and for

the present accelerated expansion. The modified theories of gravity are just an ex-

tension of the GTR to study the behaviour of the Universe. The idea of an alternative

theory to Einstein’s GTR is not new in the literature. A large number of models with-

in modified theories can explain the DE phenomena. After Einstein’s GTR, the first

modification has done by Weyl [81] in 1919 who proposed the scale invariant theory,

and in 1923, Eddington’s theory of connections [10] was presented. The Kaluza-Klein

theory [82,83] and string theory [84,85] are examples of higher dimensional theories,

and scalar tensor theories [86, 87] are example of extra fields included in the field

equations. In last two decades, considerable developments have been made in the

study of the most potential candidate of quantum gravity, which is string theory. An-

other well established and extensively studied theories of gravity are the scalar-tensor

theories, in which the model Newton’s constant G is more often taken as a variable.

One of the most simplest and well studied scalar-tensor theory is Brans-Dicke (BD)
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scalar-tensor theory.

The well known modification of GTR is done by replacing Ricci scalar R by a gen-

eral function f (R), known as f (R) gravity. This concept to modify GTR using higher

order terms of scalar curvature R have been performed by Utiyama and De Witt [88] in

1962. In 1980, Starobinsky [89] came up with an inflationary model using the higher

order corrections to GTR which has became a successful model of inflation. In 1970,

Buchdahl [90] was the first who considered the general function f (R) in the EH action

and presented a more general model of modified gravity. This theory is consistent

with the observations [91–93].

A number of modified theories of gravity are available in the literature namely, f (R)

theories [93–97], Gauss-Bonnet f (G) theory [98, 99], Brans-Dicke theory [100, 101],

Brane World gravity [102, 103], Horava-Lifshitz gravity [104, 105] and f (T ) theory

[106, 107], f (R,T ) theory [108, 109]. In recent years the modified gravity models

have become an active area of the research. However, none of these presents a

complete theory of gravity [110] which can completely solve the mysteries of the Uni-

verse. However, the search for a complete theory of gravity continues. In this thesis,

we have done some work in the framework of Brans–Dicke scalar–tensor theory and

modified f (R,T ) gravity theory to analyse the different evolutionary behaviour of the

Universe. Let us discuss about these two theories in details.

Brans–Dicke Theory

In theoretical physics, the Brans–Dicke (BD) theory of gravitation (sometimes called

the Jordan–Brans–Dicke theory) is a theoretical framework to explain gravitation. The

BD theory was proposed by Brans and Dicke [100] in 1961. It describes the gravitation

through spacetime metric (gµν ) and a massless scalar field (ϕ ). It is a modification or

rather generalization of the GTR. It is considered as a viable alternative to GTR. The

pioneering study on scalar-tensor theories was carried out by Brans and Dicke [100] to

incorporate Mach’s principle into gravity which is known as Brans–Dicke (BD) theory.

This was the first gravity theory in which the dynamics of gravity was described by a

scalar field while spacetime dynamics was represented by the metric tensor. In the

BD theory, it is to be noted that ϕ = (8πG)−1, and this scalar field couples to gravity

with a coupling parameter w. Since the BD theory passes the experimental tests from

the solar system [111] and provides an explanation of the accelerated expansion of

the Universe, it is worthwhile to discuss dark energy models in this framework.
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The canonical form of the (Jordan frame) Brans–Dicke action is

SBD =
∫

d4x
√
−g
(
−ϕR+

w
ϕ

∇µϕ ∇µϕ +Lm

)
, (1.7.15)

where ϕ is a time-dependent scalar field called BD scalar field and w is the BD con-

stant known as coupling constant. One important point about BD theory is its varying

gravitational constant, G. In BD gravity the G−1
e f f = 2πϕ 2/w, where Ge f f is the effective

gravitational constant as long as the scalar field ϕ varies slowly.

The variation of the action (1.7.15) with respect to the metric tensor, gµν yield the

following field equations

Rµν −
1
2

gµνR =
8π
ϕ

Tµν +
w
ϕ 2

(
∂µϕ∂νϕ − 1

2
gµν∂σ ϕ∂ σ ϕ

)
+

1
ϕ
(
∇µ∇νϕ −gµν�ϕ

)
.

(1.7.16)

The wave equation for scalar field is given by

�ϕ =
8π

8+3w
T. (1.7.17)

In the above field equations, w is dimensionless coupling constant, T = T µ
µ the trace

of energy-momentum tensor, � is the d’Alembert operator or covariant wave operator,

�ϕ = ∂δ ∂ δ ϕ .

This theory [101, 112, 113] is widely used to study the inflationary epoch of the

Universe. A second order thermodynamic viscous model in the framework of BD

theory has been discussed by Banerjee and Beesham [114]. The exact solutions of

the FRW model have been obtained by the authors under the power–law form of BD

scalar field. This theory has also been used by Ram and Singh [115] to study the flat

FRW model with variable EoS parameter. In 1998, Liddle et al. [116] have studied

the transition from the radiation to the matter dominated epoch and constrained the

BD parameter using microwave anisotropy and large–scale structure data in Jordan–

Brans–Dicke theory. This BD theory is also used to investigate the emergent Universe

model by Campo et al. [117] in 2007. Early time cosmology with particle creation was

studied by Singh [118] to analyze its thermodynamical effect in open thermodynamical

systems within the framework of BD theory. The various aspects of black hole have

been investigated in BD theory in Refs. [119–123].

Nowadays, BD theory has got interest to explain the accelerated expansion due

to its association with string theory and higher dimensional theories. This theory
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describes the latest acceleration of the Universe and verifies the observational data

as well [124–126]. DE models like HDE model, new agegraphic DE model, Ricci

DE model etc. have been discussed to explain the accelerated expansion, cosmic

coincidence problem, etc. in BD theory.

f (R,T ) Gravity

Since the modification of the gravitational theory is a way to overcome the problems

of DE and accelerating Universe but it is not an easy task because there may be a

numerous way to deviate from GTR. Even the EH action in GTR has a additive struc-

ture in Ricci scalar R and matter Lagrangian Lm, both of which have very different

conceptual levels without any interaction between them. However, there is no any

fundamental guiding principle for considering the matter and geometry to be additive.

Moreover, a more generalised EH action requires a general coupling between matter

and geometry.

The generalised f (R) gravity was introduced by Bertolami et al. [126] in 2000 by

assuming the maximal coupling between the curvature term R and the matter La-

grangian density. In 2008, this model was extended by Harko [127] for the case of

the arbitrary couplings in both geometry and matter. Further in 2010, Harko and

Lobo [128] presented f (R,Lm) gravity theory where the gravitational Lagrangian is an

arbitrary function of the Ricci scalar R and matter Lagrangian density Lm.

The f (R,T ) gravity theory was proposed by Harko et al. [108] as an extension of

the f (R) theories, for which besides geometrical correction terms, proportional to the

Ricci scalar R, one has also material correction terms, proportional to the trace of

the energy-momentum tensor T . The f (R,T ) gravity presents a maximal coupling be-

tween geometry and matter. Following the Harko et al. [108], the EH action for f (R,T )

gravity is written as

S =
1
2

∫
d4x

√
−g[ f (R,T )+2Lm], (1.7.18)

where f (R,T ) is the function of Ricci scalar, R and trace of energy-momentum tensor,

T , and Lm represents the matter Lagrangian density. If Lm depends only on the metric

components and not on its derivatives, one has, for the energy-momentum tensor, Tµν

the following [129]

Tµν =− 2√
−g

δ (
√
−gLm)

δgµν , (1.7.19)

so that T = gµνTµν .

Varying the action (1.7.18) with respect to gµν , we obtain the field equations of f (R,T )
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theory as

fR(R,T )Rµν −
1
2

f (R,T )gµν +(gµν�−∇µ∇ν) fR(R,T ) = Tµν − fT (R,T )(Tµν +⊖µν),

(1.7.20)

where fR and fT denote the partial derivatives of f (R,T ) with respect to R and T ,

respectively, ∇µ is the covariant derivative, �≡ ∇µ∇µ is the d’Alembert operator, and

⊖µν is defined by

⊖µν ≡ gi j δTi j

δgµν , i, j = 0,1,2,3. (1.7.21)

Using (1.7.19) into (1.7.21), we obtain

⊖µν =−2Tµν +gµνLm −2gςτ ∂ 2Lm

∂gµν∂gςτ . (1.7.22)

It has been suggested that the f (R,T ) gravity depend on a source term and this

source term is a function of the matter Lagrangian Lm. Therefore, the choice of Lm

will decide the field equations of the model. Let us take matter lagrangian Lm = −p,

then from Eq. (1.7.22), we obtain

⊖=−2Tµν − pgµν . (1.7.23)

As f (R,T ) gravity depends on the source term, various theoretical models may be

obtained for different choices of matter source. In this thesis, we have assumed the

form f (R,T ) = R+ f (T ). With this assumption, the Eq. (1.7.20) become as

Rµν −
1
2

Rgµν = Tµν − (Tµν +⊖µν) f ′(T )+
1
2

f (T )gµν , (1.7.24)

where a prime represents the differentiation with respect to T . Using (1.7.23), the field

equations (1.7.24) become

Rµν −
1
2

Rgµν = Tµν +(Tµν + pgµν) f ′(T )+
1
2

f (T )gµν . (1.7.25)

Friedmann models in general relativity ensure the energy conservation through the

continuity equation (1.5.12), which implies that d(ρV ) = −pdV . Here, V = a3 is the

volume scale factor of the Universe and the quantity ρV gives an account of the total

energy. However, in modified gravity theories, one may get a different picture.

The f (R,T ) gravity has the intriguing property that once geometry-matter coupling
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is introduced, the four-divergence of the energy-momentum tensor is nonzero. Taking

into account the covariant divergence of (1.7.20), with the use of the mathematical

identity of Eq. (20) of Ref. [130], we obtain for divergence of the energy-momentum

tensor Tµν

▽µTµν =− fT (R,T )
1+ fT (R,T )

[
(Tµν +⊖µν)▽µ ln fT (R,T )+▽µ ⊖µν −

1
2

gµν▽µT
]
. (1.7.26)

Thus, one of the common features of this modified gravity is the non-conservation

of the matter energy-momentum tensor. This extra terms is generated by the nonmin-

imal geometry -matter coupling which is considered as particle production, with the

gravitational field acting as a particle source.

Using the value of ⊖µν , defined above, the energy non-conservation equation (1.7.26)

for a perfect fluid Tµν = (ρ + p)uµuν − pgµν with energy density ρ, thermodynamical

pressure p and normalized four velocity uν , satisfying the condition uνuν = 1, gives

ρ̇ +3(ρ + p)H =− fT (R,T )
1+ fT (R,T )

[
(ρ + p)▽µ ln fT (R,T )+▽ν

ρ − p
2

]
. (1.7.27)

Thus, the divergence of the energy-momentum tensor is nonzero. Let us interpret

(1.7.27) from a thermodynamic point of view as describing adiabatic irreversible parti-

cle creation in a cosmological context. The above equation can be written as

ρ̇ +3(ρ + p)H = (ρ + p) Γ, (1.7.28)

where

Γ =− fT (R,T )
1+ fT (R,T )

[
▽µ ln fT (R,T )+▽ν

ρ − p
2(ρ + p)

]
, (1.7.29)

describes the particle creation rate.

The various evolutionary issues of the Universe have been discussed and studied

under the framework of f (R,T ) gravity. Houndjo et al. [131] have investigated the cos-

mological model in f (R,T ) gravity for finite-time future singularities. Reconstruction

of modified holographic Ricci dark energy have been studied with a particular form

of f (R,T ) gravity in [109]. Thermodynamical aspects with apparent horizon in f (R,T )

gravity under the FRW Universe have been investigated by Sharif and Zubair [132].

Azizi [133] has presented a discussion over the wormhole geometries in f (R,T ) grav-

ity and showed that in this modified gravity scenario, the effective stress–energy may

be considered as a responsible candidate for violation of the null energy condition.
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Considering the assumption that the conservation equation holds for f (R,T ) gravity,

Chakraborty [134] has studied the energy conditions in this modified gravity theory

both generally and a particular case of perfect fluid with constant EoS. Alvarenga et

al. [135] have studied the evolution of scalar cosmological perturbations in the metric

formalism in f (R,T ) gravity under the assumption that the considered model is modi-

fied in such a way that it guarantee the standard continuity equation. In a paper [136],

authors have discussed the dynamics and stability of the model in f (R,T ) gravity.

They showed that the model presents stability for both the de Sitter and power-law

solutions for both the low-redshift and high-redshift regimes, and satisfies the obser-

vational data.

Along with the cosmological consequences, the solar system consequences of the

f (R,T ) gravity have been investigated by Shabani and Farhoudi [137]. The study of

f (R,T ) gravity models is not limited with the isotropic and homogeneous Universe, a

number of authors have done a lot of work to observe the cosmological consequences

in the anisotropic and homogeneous Universe under the framework of f (R,T ) gravity.

Like, Fayaz et al. [138] have explored the discussion of HDE and new agegraph-

ic DE in the anisotropic cosmological model under the framework of f (R,T ) gravity.

Harko [130] generalized the conservation equation of f (R,T ) gravity by using the con-

cept of irreversible matter creation in open thermodynamic systems. There are many

authors who have considered the f (R,T ) gravity to discuss the consequences of the

Universe and tried to give a fruitful outcome to understand the evolution of the the

Universe. Many authors [139–142] have successfully explained the history of the U-

niverse by reconstructing the f (R,T ) gravity with different matter content. Many other

works have been carried out to discuss the evolutionary behaviour of the Universe in

f (R,T ) gravity considering different energy contents and formalisms [143–150].

Thus, a number of pioneer papers in the literature have motivate us to analyse the

evolutionary behaviour of the Universe in f (R,T ) gravity. In this thesis, we shall dis-

cuss new HDE in f (R,T ) gravity to investigate the different aspects of the evolution of

the Universe.

1.8 Viscous Cosmology

The perfect fluid in cosmological models constitutes an idealized case, but not al-

ways. Many aspects of the evolution of the Universe have been explained by the
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perfect fluid, still some processes can’t be explained without the investigation of dissi-

pative phenomena arising in the cosmic fluid. The concept of viscosity is introduced

from fluid mechanics. From a hydrodynamics point of view the inclusion of viscosity

concepts in the macroscopic theory of the cosmic fluid would appear most natural. It

is due to shear and bulk viscosity characterized by shear viscosity parameter η and

bulk viscosity parameter ζ . In viscous cosmology, shear viscosity comes into play in

connection with spacetime anisotropy. A bulk viscosity usually functions in an isotrop-

ic Universe.

From a thermodynamical viewpoint the bulk viscosity in a physical system is ap-

peared due to its deviation from the local thermodynamical equilibrium. In a cos-

mological setting, the bulk viscosity may arise when the cosmic fluid expands (or

contracts) too fast so that the system does not have enough time to restore the local

thermal equilibrium. The bulk viscosity, therefore, is a measure of the pressure re-

quired to restore equilibrium to a compressed of expanding system. It is natural for

such a term to exist in expanding Universe anytime the fluid is out of equilibrium. Usu-

ally, in cosmology the restoration processes are taken to be so rapid that the recover

of equilibrium is almost immediate. However, there is a finite time for the system to

adjust to the change of EoS induced by particle decays. This leads to non-trivial de-

pendence of pressure on density as Universe expands, and therefore a bulk viscosity.

Since, the evolution of the Universe involves a sequence of dissipative processes.

These processes include bulk viscosity, shear viscosity and heat transport. The in-

troduction of viscosity coefficients in cosmology has itself a long history. Its physical

importance of these phenomenological parameters has traditionally been assumed to

be weak. The general theory of dissipation in relativistic imperfect fluid was put on a

firm foundation by Eckart [151] in 1940 and the full causal theory was developed by

Israel and Stewart [152]. However, this theory faces causality problem as dissipative

perturbations propagate at infinite speed. According to Eckart theory, if p denotes

the thermodynamic pressure of matter content and cosmic fluid has viscosity then the

effective pressure is given by

p̃ = p−Π, (1.8.1)

where, Π = 3ζ H is the viscous pressure which occur due to viscosity. Here, ζ is the

coefficient of bulk viscosity. The homogeneous and isotropic FRW models have been

considered in this thesis to study the viscous cosmological models. In the case of

isotropic and homogeneous model, the dissipative process is modeled as a bulk vis-
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cosity, see Refs. [153–160]. The viscosity concept in cosmology was first used by

Misner [161] in 1968.

Eckart’s theory is only the first order deviation from equilibrium and may has a

causality problem. The full causal theory was developed by Israel and Stewart [152],

which has been studied in the evolution of the early Universe. His causal theory of

relativistic viscosity is nothing but a second-order dissipative thermodynamic theory.

In this theory, the dissipative variables were included to describe non-equilibrium s-

tates due to which this theory is causal and stable. The full Israel-Stewart transport

equation is given by [162]

τΠ̇+Π =−3ζ H − ετΠ
2

[
3H +

τ̇
τ
− ζ̇

ζ
− Ṫ

T

]
, (1.8.2)

where τ denotes relaxation time associated with the dissipative effect. Scalar dissipa-

tion processes in cosmology may be treated via the relativistic theory of bulk viscosity.

The effects of bulk viscosity in an expanding Universe is to reduce the equilibrium

pressure. Therefore, sufficient large bulk viscous pressure could make the effective

pressure negative. Thermodynamics states with negative pressure are meta stable

and cannot be excluded by any law of nature. These states are connected with phase

transitions. We know that there is a problem of singularity either in GTR or modified

gravity models. Many authors [162–164] have shown that the bulk viscosity removes

the initial singularity. Modified gravity models with bulk viscosity have been discussed

in many ways to describe the evolution of the Universe. However, because of the sim-

ple form of Eckart theory, it has been widely used by several authors to characterize

the bulk viscous fluid. The Eckart approach has been used in models explaining the

recent acceleration of the Universe with bulk viscous fluid. Many authors [165–172]

have studied the DE phenomenon as an effect of the bulk viscosity in the cosmic

medium.

All the above cited works are pioneer papers on bulk viscosity which show that for

an appropriate viscosity coefficient, an accelerating cosmology can be achieved with-

out the need of a cosmological constant. At the late times, since we do not know the

nature of the Universe content very clearly, concern about the bulk viscosity is reason-

able and practical. To our knowledge, such a possibility has been investigated only

in the context of the primordial Universe, concerning also the search of non-singular

models. But many investigations show that the viscous pressure can play the role of
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an agent that drives the present acceleration of the Universe. Therefore, the interest

in viscosity theories in cosmology has increased in recent years, for various reasons,

perhaps especially from a fundamental viewpoint.

1.9 Cosmological Parameters

Now before going further, it is useful to define some of the cosmological parameters

because these parameters play a very important role in the study of the evolution of

the Universe. Let us bring our attention towards some parameters which are used to

study the cosmological phenomena in this thesis.

1.9.1 Hubble Parameter

The rate of expansion of the Universe is measured by the Hubble parameter. The

Hubble parameter is denoted by H(t) and is defined as

H(t) =
ȧ(t)
a(t)

, (1.9.1)

where a as usual denotes the cosmic scale factor and an over dot defines a derivative

with respect to time t. Note that Hubble parameter is not a constant. The Hubble

constant is the Hubble parameter measured today- we denote it by H0. The Universe

contracts for negative values and expands for positive values of the Hubble parame-

ter. Our Universe is expanding because we observe a positive value of the Hubble

parameter. The present value H0 has been obtained using various observational da-

ta. The latest data of the SDSS-III Baryon Oscillation Spectroscopic Survey gives

H0 = 67.6+0.7
−0.6 km s−1Mpc−1 [173].

The time-varying Hubble parameter (1.9.1) measures the rate of change of the scale

factor a(t) and provides a way to link the observations with a proposed model using

the scale factor. It is to be noted that we can expect the constant expansion rate

throughout its history, H(t) = H0 only in a empty space.
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1.9.2 Critical density

The density of the Universe which is required for the Universe to be flat is known as

the critical density of the Universe. It is denoted by ρc and is defined as

ρc =
3H2

8πG
. (1.9.2)

Since critical density depends on Hubble parameter, hence the critical density also

evolves with time. The present value of the critical density can be calculated from the

known value of H0.

1.9.3 Density parameter

It is very useful to express cosmological quantities and cosmic field equations in the

terms of the density parameter Ω. It is defined as the ratio of the matter density of the

Universe to the critical density of the Universe at the same time, that is,

Ω =
ρ
ρc

=
8πGρ
3H2 , (1.9.3)

where ρ may be the density of matter, DE, scalar field etc. Although current research

suggests that Ω is very close to 1, it is still of great importance to know whether Ω is

slightly greater than 1, less than 1, or exactly equal to 1, as this reveals the ultimate

fate of the Universe. If Ω is less than 1, the Universe is open and will continue to

expand forever. If Ω is greater than 1, the Universe is closed and will eventually halt

its expansion and recollapse. If Ω is exactly equal to 1 then the Universe is flat and

contains enough matter to halt the expansion but not enough to recollapse it. Obser-

vations have shown that the present Universe is very close to a spatially flat geometry

(Ω ≃ 1).

The total energy content of the Universe may be divided in two parts, matter (Bary-

onic + Dark matter) and DE. The density of both are represented by ρm and ρΛ, re-

spectively, and the total density given by ρ = ρm + ρΛ. The density parameters for

matter and DE are given as

Ωm =
ρm

ρc
; ΩΛ =

ρΛ
ρc

, (1.9.4)

where Ω = Ωm +ΩΛ.
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1.9.4 Deceleration Parameter

The deceleration parameter (DP) is the simplest cosmological parameter which is very

useful parameter to discuss the behaviour of the Universe. The positive or negative

sign of DP explains whether the Universe decelerates or accelerates, respectively. It

is represented by q and is defined as

q =−aä
ȧ2 , (1.9.5)

where a and the overdot have their usual meanings. Our Universe has experienced

two phase transitions, early time inflation to decelerated expansion and decelerated

expansion to late time accelerated expansion. When DP changes its sign from pos-

itive to negative or negative to positive, then it becomes more useful to explain the

phase transition of the Universe.

1.10 Kinematical Parameters

We introduce some kinematical parameters of the observational interest in cosmology,

which are helpful to study the homogeneous and anisotropic Universe.

1.10.1 Expansion Scalar

The expansion scalar represents the rate of expansion and is denoted by θ . In case

of homogeneous and isotropic FRW model, it is defined as

θ = ui
; i = 3

ȧ
a
= 3H, (1.10.1)

and in case of homogeneous and anisotropic models, it is defined as

θ =

(
Ȧ
A
+

Ḃ
B
+

Ċ
C

)
, (1.10.2)

where A, B, C and overdot have their usual meaning.



37

1.10.2 Anisotropy Parameter

The anisotropy parameter is used to study the anisotropic behaviour of the Universe. It

gives the measure of departure from isotropy, i.e., with this parameter we can observe

at which phase the anisotropy is greater or lesser, or at which phase the anisotropy is

removed from the Universe. This parameter is represented by Ap and is defined as

Ap =
1
3

3

∑
i=1

(
Hi −H

H

)2

, (1.10.3)

where Hi (i= 1,2,3) represent the directional Hubble parameters along x, y and z-axes,

respectively. The Hubble parameter in the anisotropic Universe is defined as

H =
ȧ
a
=

1
3

(
Ȧ
A
+

Ḃ
B
+

Ċ
C

)
, (1.10.4)

and the corresponding directional Hubble parameters are defined as

H1 =
Ȧ
A
, H2 =

Ḃ
B
, H3 =

Ċ
C
. (1.10.5)

1.10.3 Shear Scalar

In the case of the anisotropic Universe the shear is measured by the observations.

It places a vital role in the study of the homogeneous and anisotropic Universe. It is

denoted by σ2 and is defined as

σ2 =
1
2

σi jσ i j =
1
2

[(
Ȧ
A

)2

+

(
Ḃ
B

)2

+

(
Ċ
C

)2
]
− θ 2

6
, (1.10.6)

where σ i j is the shear tensor and is defined as σ i j = 1
2(uµ;αhα

ν + uν ;αhα
µ )− 1

3θhµν ,

where hµν = gµν −uµuν is the projection tensor.

1.11 Geometrical Parameters

The study of cosmological parameters like the Hubble parameter H, the DP q and the

EoS parameter ω have attracted a lot of attention in present day cosmology. Since d-

ifferent DE models give a positive Hubble parameter and a negative DP at the present

epoch, we can clearly understand that H and q can not effectively discriminate the
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different DE energy density models. Therefore, a higher order of time derivatives of

a(t) is then required if we want to have a better understanding of the DE model con-

sidered. Rapid advances in observational cosmology are leading to the establishment

of the first precision cosmological model, with many of the key cosmological parame-

ters. Geometrical parameters have traditionally played a key role in cosmology. Let us

discuss some geometrical parameters here which are used to study the cosmological

phenomena in this thesis.

1.11.1 Statefinder Parameter

Since a number of dynamical DE models have been proposed to explain the cos-

mic acceleration, a sensitive and diagnostic tool is required to discriminate these DE

models with other existing DE models. In this context, Sahni et al. [174] and Alam

et al. [175] proposed a new geometrical diagnostic parameter for DE, which is known

as statefinder pair and is denoted as {r,s}. The statefinder parameter probes the ex-

pansion dynamics of the Universe through higher derivatives of the scale factor and

is a geometrical diagnosis in the sense that it depends on the scale factor and hence

describes the spacetime. The statefinder parameter can be defined as

r =
...a

aH3 and s =
r−1

3(q−1/2)
. (1.11.1)

This diagnostic tool has been used to study the various DE models. It has been used

to diagnose different cases of the model, like different model parameters and various

spatial curvature contributions. The various DE models have different evolutionary

trajectories in r − s plane. For example, the well-known Lambda cold dark matter

(ΛCDM) model corresponds to a fixed point {r,s} = {1,0} and standard cold dark

matter (SCDM) model corresponds to {r,s}= {1,1} [174,175]. We may plot trajectories

in the r − s and r − q planes to discriminate among DE models. In the present era

where a number of DE model are available in the literature, the statefinder parameters

{r,s} play an important role to discriminate among the DE models.

1.11.2 Om Diagnostic

In addition to statefinder {r,s}, another diagnostic tool, Om(z) is widely used to dis-

criminate DE density in DE models. It is a new geometrical diagnostic which com-

bines Hubble parameter H and redshift z. Since it depends only on the first derivative
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of scale factor so it is more convenient to find out Om(z) as compare to statefinder

parameters. The Om(z) diagnostic [176] has been proposed to differentiate ΛCDM to

other DE models. Many authors [177–179] have been studied the DE models based

on Om(z) diagnostic. The constant value of Om(z) tells that DE behaves as cosmo-

logical constant (ΛCDM), whereas its positive and negative slopes with respect to z

shows that the DE behaves like phantom and quintessence, respectively. According

to ref. [176], Om(z) parameter for spatially flat Universe is defined as

Om(z) =

H2(z)
H2

0
−1

(1+ z)3 −1
. (1.11.2)

It is easier to reconstruct Om(z) than statefinder pair because it depends only on the

first derivative of scale factor. As we know that the curvature of Om(z) can discrimi-

nate dynamical DE from the cosmological constant in a robust manner, both with and

without the reference of matter density.

1.12 Motivation

Motivated by the discussion in previous Sections, in this thesis, we propose to in-

vestigate the isotropic and anisotropic cosmological models in general relativity and

modified gravity theories to observe the accelerated expansion of the Universe.

In recent years, the holographic dark energy has been studied as a possible candi-

date for dark energy which is based on holographic principle. The holographic energy

density is given by (1.7.13), where L is the IR cutoff. There are various choices of IR

cutoff for the cosmological length scale available in the literature, for instance, Hubble

horizon (L = H−1), particle horizon (L = a(t)
∫ t

0
dt ′

a(t ′)), future event horizon. In recent

studies, some new IR cutoffs have been proposed. Gao et al. [180] proposed IR cut-

off as a function of Ricci scalar. So, the length L is given by the average radius of

Ricci scalar curvature. This type of HDE is called Ricci dark energy (RDE). Granda

and Oliveros [73] proposed a new IR cutoff for HDE, known as new holographic dark

energy. However, in this thesis, we will consider two types of IR cutoff: future event

horizon and new HDE proposed by Granda and Oliveros [73].

The introduction of a scalar field potential augmented by a scalar field dependent

coupling constant solved many problems and provided hints to the solutions of many

outstanding cosmological problems in Brans–Dicke (BD) theory. The relativistic the-
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ory of gravity based on the Einstein’s theory of general relativity was proposed by

Brans and Dicke [100] in the early 1960s. In this gravity theory, first time the scalar

field was used to describe the dynamics of gravity while the metric tensor was used

to represent the dynamics of spacetime. The basic notion is that the BD scalar field

plays the role of quintessence or K-essence and leads to cosmic acceleration.

Thus, we can conclude that scalar field may be considered as a candidate of DE in

the BD gravity. In this context, we can relate the energy density of HDE (or, can say

any other form of DE) and BD scalar field. The BD scalar ϕ plays a role of the inverse

of Newtonian constant (ϕ ∝ 1/G). Thus, from Eq. (1.7.13), the relation of HDE with BD

scalar field can be written as

ρd = 3d1ϕL−2. (1.12.1)

Most of the authors have assumed the BD scalar field as a power-law form of scale

factor in HDE models to explain the evolution of the Universe. They claimed that this

assumption gives time-dependent DP which shows the transition from deceleration

one to acceleration. However, some authors claimed that this relation gives the con-

stant DP which does not show the phase transition. Now, the problem is that which

physical interpretation is valid to explain the evolutionary phases of the Universe.

In a paper, Kumar and Singh [181, 182] analyzed this problem and found that field

equations in BD theory always gives constant value of DP using BD scalar field as a

power-law form of scale factor irrespective of the matter content. They have proposed

the BD scalar field as a logarithmic form of scale factor which always gives time-

dependent DP. In chapter 2, motivated by this work, we have studied non-interacting

and interacting HDE models with future event horizon as an IR cutoff in BD theory

with logarithmic form of BD scalar field. It not only describes the phase transition but

also solves the coincidence problem.

The bulk viscous fluid is a well known concept to produce the accelerated expansion

without the need of any cosmological constant or DE component. Even, this concept

has been known since several years ago before of the discovery of the present ac-

celerated expansion of the Universe. In a cosmological fluid, the bulk viscosity may

arise when the fluid expands (or contracts) too fast so that the system does not have

enough time to restore its local thermodynamic equilibrium. Initially, the bulk viscosity

was proposed to explain an inflationary period occurred in the early Universe. Nowa-

days, it has been studied in the context of present day Universe. Therefore, it is natural

to assume the possibility that the expansion process is actually a collection of states
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out of thermal equilibrium in a small fraction of time giving rise to the existence of a

bulk viscosity.

In chapters 3, 4 and 5, we have analyzed the new HDE models with bulk viscosity

in general relativity and f (R,T ) gravity with reference to the question whether the bulk

viscous fluid can cause the recent acceleration of the Universe. The New HDE model

is composed of pressureless fluid (dust) with bulk viscosity of the form ζ = ζ0 + ζ1H,

where ζ0 and ζ1 are constants and H stands for Hubble parameter. The simplest

parametrization for the bulk viscosity is its constant value, i.e., the term “ζ0” and the

term “ζ1H” characterizes the possibility of a bulk viscosity proportional to the expan-

sion rate of the Universe.

The discovery of the accelerated expansion of the Universe has opened a new win-

dow in cosmological studies. An alternative method of describing the matter content

of the Universe is to adopt the energy momentum tensor of a scalar field ϕ with the

kinetic part and the potential V =V (ϕ). The energy-momentum tensor for scalar field

is given by (1.7.6). Within the framework of general relativity, scalar fields provide pos-

sible dark energy models which can describe, but not so far explain, this acceleration.

Scalar field models require the choice of a self-interaction potential V (ϕ) for scalar

field ϕ . Obviously it is important to proposed potentials which are realistic and at the

same time lead to exactly soluble models in the FRW spacetime. Various candidates

have been proposed in the literature, such as an inverse power law, exponential, hy-

perbolic and the list goes on to discuss the behavior of the models. In Chapters 6 and

7, we have studied scalar field cosmology with exponential potential in anisotropic

Bianchi types I and V cosmological models.

At last, the summary and further scope of the work have been carried out. The

bibliography and list of publications have been enlisted at the end of this thesis.





Chapter 2

Holographic dark energy model in

Brans-Dicke theory

In this chapter1, we study the dynamics of non-interacting and interacting holograph-

ic dark energy models in the framework of Brans–Dicke cosmology with future event

horizon as an infrared cutoff. We consider the logarithmic form of Brans–Dicke scalar

field to obtain the time-dependent value of equation of state parameter and decel-

eration parameter which describe the phase transition of the Universe. We observe

that the model explains the early time inflation and late time acceleration. It is also

observed that the EoS parameter may cross phantom divide line in late time evolu-

tion. The cosmic coincidence problem is also discussed for both the models. We

observe that it is more appropriate to achieve a less acute coincidence problem in

non-interacting model whereas a soft coincidence can be achieved if coupling param-

eter in interacting model has small value.

1The result of this chapter has been published as a research paper “Cosmological evolution of non-interacting
and interacting holographic dark energy model in Brans-Dicke theory, International Journal of Geometric Meth-
ods in Modern Physics 15, 1850124 (2018)”.

43
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2.1 Introduction

It is well known that the observations from Supernovae Type Ia (SNeIa) provide strong

evidence for an accelerating Universe. In relativistic cosmology, such a phenomenon

is usually explained by the existence of a new dark components, an exotic fluid en-

dowed with negative pressure called as DE. Many candidates for DE have been

proposed in literature to describe this late time acceleration of the Universe. Holo-

graphic dark energy is one of the strong candidate of this DE. In recent years, the

HDE [67–71,182–187] has been studied as a possible candidate for DE.

HDE is a great arena for modified gravity for a few reasons. As a non-renormalizable

theory, and currently the only known non-renormalizable theory, gravity is ultraviolet

sensitive. In HDE the UV cutoff of the theory depends on the IR cutoff. The IR cutoff

is set at the cosmological scale for the concern of DE. As a result, the UV cutoff is

much affected. As we do not have a firm general relativity equation for quantum grav-

ity, the best we can do is to take a modified gravity theory with the presence of HDE

as a candidate of the infrared gravity theory. For this reason, actually, even if a mod-

ified theory is ruled out on earth, solar system or galactic scale experiments, it may

still be considered together with HDE because cosmological scales is a completely

different scale. For many modified models to work as DE, they still have to solve the

old cosmological constant problem and coincidence problem of GTR. HDE solves the

problem for this modified theories. Thus, the modified theory in HDE can focus on the

naturalness from first principle, dynamics of DE, agreement with observations, etc.

In this chapter, we consider non-interacting and interacting HDE models with IR cut-

off as future event horizon in BD theory. It is worthwhile to investigate the HDE density

in the framework of the BD theory. Since HDE density belongs to a dynamical cosmo-

logical constant, we need a dynamical frame to accommodate it instead of GTR. It is

well known that the BD theory explains the dynamics of gravity, described by a scalar

field.

In the literature, almost all the models have been discussed in BD theory by assum-

ing the power-law form of BD scalar field ϕ ∝ an, where a is the scale factor and n is a

constant. Many authors [114,118,188,189] have studied the evolution of the Universe

in BD theory by assuming the above power-law relation of BD scalar field. They have

observed that this assumption leads to a constant value of DP. The constant value of

DP can be obtained irrespective of matter content of the Universe. If it is constant,
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then it can not describe the phase transition of the Universe.

However, some authors [70, 183, 187, 190] have studied HDE model in BD theory

with the same form of BD scalar field and have obtained a time-dependent DP, which

describes the phase transition. Similarly, some authors [191–193] have studied the

new agegraphic dark energy models in BD theory by assuming the same power-law

form of BD scalar field. They have also claimed for a time-dependent DP.

Now, the question arises that why does the same form of BD scalar field lead to two

different values of DP, constant and time-dependent for the same model? In a pa-

per [181, 182], the authors have analyzed this problem and have concluded that one

can always find constant DP irrespective of matter content with power-law scale fac-

tor. Therefore, the power-law assumption can not describe the phase transition of the

Universe. Taking into consideration this problem, the authors [181] have proposed

a logarithmic form of BD scalar field. Using the logarithmic form of BD scalar they

have found the time-dependent DP which explains the transition phase. This model

also solves the cosmic coincidence problem successfully. Further, in a paper [182]

authors have considered this logarithmic form for the HDE model in BD theory with

Hubble horizon as an IR cutoff and obtained the same type of results which explains

the phase transition as well as the cosmic coincidence problem.

In the present chapter, we extend this work to non-interacting and interacting HDE

models with future event horizon in BD theory. We revisit the Ref. [187] and consider

HDE model in BD theory with logarithmic form of scalar field. We obtain the time-

dependent DP and EoS parameter which describe the phase transition of the evolu-

tion of the Universe. We further discuss a cosmological model where the pressureless

dark matter and HDE are not conserved separately but interact with each other. We

also discuss the cosmic coincidence problem which has not been discussed in previ-

ous work [183,187]. It is found that the HDE model successfully resolves the cosmic

coincidence problem in BD theory with this logarithmic form of the scalar field.

2.2 Holographic dark energy in Brans-Dicke Theory

We consider a homogeneous and isotropic non-flat Friedmann-Robertson-Walker (FR-

W) Universe described by (1.3.7). We assume that the Universe is filled with perfect

fluid containing pressureless dark matter (excluding baryonic matter) and HDE whose
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energy-momentum tensor can be written as

Tµν = (ρm +ρh + ph) uµ uν − ph gµν , (2.2.1)

where ρm is the energy density of dark matter and ρh and ph are the energy density

and pressure of HDE, respectively.

The field equations of Brans–Dicke for the line element (1.3.7) and energy-momentum

tensor (2.2.1) yield

3
4w

(
H2 +

k
a2

)
− 1

2
ϕ̇ 2

ϕ 2 +
3H
2w

ϕ̇
ϕ
=

ρm +ρh

ϕ 2 , (2.2.2)

1
4w

(
2

ä
a
+H2 +

k
a2

)
+

H
w

ϕ̇
ϕ
+

1
2w

ϕ̈
ϕ
+

1
2

(
1+

1
w

)
ϕ̇ 2

ϕ 2 =− ph

ϕ 2 . (2.2.3)

The wave equation (1.7.17) for the scalar field ϕ is given by

ϕ̈ +3Hϕ̇ − 3
2w

(
ä
a
+H2 +

k
a2

)
ϕ = 0. (2.2.4)

The HDE density defined in (1.7.13), can be written as

ρh =
3d2

1
8πG

L−2. (2.2.5)

In canonical form G−1
e f f =

2π
w ϕ 2, the HDE density (2.2.5) now become as

ρh =
3d2

1ϕ 2

4wL2 . (2.2.6)

If the IR cutoff is taken as the radius of the Hubble horizon then the energy density

of HDE and the critical density match identically. Generally, this condition arises in

the inflationary scenarios where L = H−1. Since, there are various other choices of IR

cutoff for the cosmological length scale L available in the literature, such as particle

horizon, event horizon, Ricci length, Granda-Oliveros cutoff, etc. However, particle

horizon is not suitable to drive the acceleration. A suitable choice of future event

horizon as an IR cutoff was suggested by Li et al. [194]. By this choice of system’s IR

cutoff, the cosmological length L for the event horizon is

L = ar(t), (2.2.7)
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where the function r(t) can be obtained by the relation

∫ r(t)

0

dr√
1− kr2

=
∫ ∞

t

dt
a(t)

=
RE

a(t)
, (2.2.8)

where RE is the event horizon, defined by

RE = a
∫ ∞

t

dt
a(t)

= a
∫ ∞

a

da
Ha2 . (2.2.9)

The general solution of r(t) from Eq.(2.2.8) for non-flat FRW model is given by

r(t) =
1√
k

siny, (2.2.10)

where, y =
√

kRE
a(t) . The critical energy density ρcr and the energy density of the curva-

ture ρk are, respectively, defined as

ρcr =
3ϕ 2H2

4w
, (2.2.11)

ρk =
3kϕ 2

4wa2 . (2.2.12)

To analyse the results in a better way, we convert the quantities in terms of fractional

energy densities. The fractional energy densities in their usual form are given by

Ωm =
ρm

ρcr
=

4wρm

3ϕ 2H2 , (2.2.13)

Ωk =
ρk

ρcr
=

k
H2a2 , (2.2.14)

Ωh =
ρh

ρcr
=

d2
1

H2L2 . (2.2.15)

We can also write the Eq. (2.2.15) as

HL =
d1√
Ωh

. (2.2.16)

On differentiating (2.2.7) with respect to the cosmic time t, and using (2.2.10) and

(2.2.16), we obtain

L̇ = HL+a ˙r(t) =
d1√
Ωh

− cosy. (2.2.17)
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2.2.1 Non-interacting HDE model

Let us first consider the case where HDE and dark matter do not interact. In this case,

the conservation equations for HDE and dark matter are respectively given by

ρ̇h +3(1+ωh)ρhH = 0, (2.2.18)

ρ̇m +3ρmH = 0, (2.2.19)

where ωh =
ph
ρh

is the EoS parameter of HDE.

To discuss the physical behaviors of HDE model, we assume the following logarith-

mic relation between BD scalar field and scale factor [181,182], which is claimed that

it may avoid a constant result for the DP.

ϕ = ϕ0 ln(l1 +m1a), (2.2.20)

where ϕ0 > 0, l1 > 1 and m1 > 0 are some constants. If m1 = 0, we have ϕ = const.,

thus it reduces to GTR case.

On taking the first and second order derivative of (2.2.20) with respect to time, we

get

ϕ̇ = ϕ0
m1aH

(l1 +m1a)
, (2.2.21)

ϕ̈ = ϕ0

{
m1aḢ

(l1 +m1a)
+

m1aH2

(l1 +m1a)
−

m2
1a2H2

(l1 +m1a)2

}
. (2.2.22)

Using (2.2.17) and (2.2.21) into (2.2.6), we get

ρ̇h = 2Hρh

(
−1+

√
Ωh

d1
cosy+

m1a
(l1 +m1a) ln(l1 +m1a)

)
. (2.2.23)

Using (2.2.23) into (2.2.18), we obtain the EoS parameter for HDE

ωh =−1
3
− 2m1a

3(l1 +m1a) ln(l1 +m1a)
− 2

√
Ωh

3d1
cosy. (2.2.24)

The EoS parameter ωh is bounded from below by

ωh =−1
3
− 2m1a

3(l1 +m1a) ln(l1 +m1a)
− 2

√
Ωh

3d1
. (2.2.25)

From (2.2.24), we observe that for m1 = 0 the EoS parameter ωh of HDE reduces to its
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respective form of non-flat standard cosmology [195], which is given by

ωh =−1
3
− 2

√
Ωh

3d1
cosy. (2.2.26)

It is to be noted that for power-law form ϕ ∝ an of BD scalar field [183, 187], the

second term in the value of ωh of Eq. (2.2.25) is a constant term 2n
3 whereas we get

a time-dependent term 2m1a
3(l1+m1a) ln(l1+m1a) due to logarithmic form of BD scalar field.

Therefore, the value of ωh in our model is more dynamic in comparison to power-law

in BD theory.

From (2.2.25), it is clear that ωh always has a negative value such that ωh <−1
3 . The

value of ωh at the beginning of the evolution, i.e., a = 0 is same as in Eq. (2.2.26) for

GTR because the second term is zero at a = 0. Thus, we find a negative value of ωh in

the very early Universe. It is observed that the second term attains its maximum value

during the evolution and approaches to zero in late time evolution. The maximum

value depends on sufficiently small values of l1 and large values of m1 during the

process of evolution. However, the maximum value only depends on the parameter l1

and it is found that max
{

m1a
(l1+m1a) ln(l1+m1a)

}
→ 1 as l1 → 1, i.e., ωh <−1. Therefore, ωh

may cross phantom divide line for this condition. It may also possible that ωh crosses

the phantom divide line for
√

Ωh > d1[1− m1a
(l1+m1a) ln(l1+m1a) ], i.e., for both conditions HDE

model may cross the phantom divide line (ωh = −1) and approaches to the phantom

region.

It is also interesting to note that as the logarithmic term converges to zero in the late

time of evolution and also cosy → 1 in late time as a → ∞, the EoS parameter starts

behaving like its respective form in standard GTR [195] and it will depend only on the

values of Ωh and d1. The form of ωh in the late time is given by

ωh =−1
3
− 2

√
Ωh

3d1
. (2.2.27)

In this model, the value of parameter d1 determines the property of HDE in late time.

Since, the observation predicts Ωh → 1 for the present time, therefore, at d1 = 1, ωh

approaches to −1, i.e., our model behaves like cosmological constant. We get ωh >

−1 but less than −1/3 at d1 > 1, i.e., our model shows the quintessence region and

if d1 < 1, we get ωh <−1, i.e., the phantom type behaviour occur. Thus, we conclude

that when d1 > 1, d1 = 1 and d1 < 1, one can generate quintessence, cosmological

constant and phantom, respectively, for non-interacting HDE model in BD theory.
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In the study of the Universe, the DP place a very important role which is defined in

section 1.9.4 by Eq. (1.9.5). The DP in terms of Hubble parameter can be represented

as

q =−1− Ḣ
H2 . (2.2.28)

Now dividing Eq. (2.2.3) by H2 and using Eqs. (2.2.6), (2.2.14), (2.2.16), (2.2.21) and

(2.2.22), we get

Ḣ
H2 =

−3−Ωk −3Ωhωh − 6m1a
(l1+m1a) ln(l1+m1a) +

2m2
1a2

(l1+m1a)2 ln(l1+m1a) −
2(w+1)m2

1a2

(l1+m1a)2 [ln(l1+m1a)]2

2
(

1+ m1a
(l1+m1a) ln(l1+m1a)

) .

(2.2.29)

On substituting the above value in the (2.2.28), we get the DP as

q =
1+Ωk +3ωhΩh +

4m1a
(l1+m1a) ln(l1+m1a) −

2m2
1a2

(l1+m1a)2 ln(l1+m1a) +
2(w+1)m2

1a2

(l1+m1a)2 [ln(l1+m1a)]2

2
(

1+ m1a
(l1+m1a) ln(l1+m1a)

) .

(2.2.30)

The term m2
1a2

(l1+m1a)2 ln(l1+m1a) has the same behaviour as the term m1a
(l1+m1a) ln(l1+m1a) ex-

cept it has maximum value lies in (0, 0.41) depending on the value of l1. The BD pa-

rameter w also plays an important role in the value of q. The solar system experiment

Cassini gave a very high bound on w as |w| > 40000 [111, 196], whereas the cosmo-

logical observations provide the relatively lower bounds on |w| [197–200]. The obser-

vations suggest that |w| has large value so the last term of numerator of Eq.(2.2.30)

containing w will dominate during the evolution of the Universe. This shows that q

may attain some positive value, i.e., the decelerated expansion of the Universe may

occur during the evolution. Thus, HDE model explains the matter-dominated phase of

the Universe. As in the late time of evolution, ωh →−1 and the terms m1a
(l1+m1a) ln(l1+m1a)

and m2
1a2

(l1+m1a)2 ln(l1+m1a) converge to zero as a → ∞. Thus, the value of q in late time of

evolution is obtained as

q ≈ 1+Ωk −3Ωh

2
. (2.2.31)

Since the observations indicate that our present Universe is almost flat, i.e., k = 0

(Ωk = 0), Eq.(2.2.31) gives q ≈ 1−3Ωh
2 . Thus, it is observed that q is negative for Ωh >

1/3, i.e., the accelerated expansion is obtained for Ωh > 1/3. It can also be noticed

that if we consider the open Universe, i.e., k < 0 (Ωk < 0), the accelerated expansion

can be obtained more easily. Even for the closed geometry case of the Universe we

can also get an accelerated expansion of the Universe but for this we must have a
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very large value of Ωh which will give a negative value of q. Thus, we can conclude

that the HDE model describes the phase transition from early time inflation to the

matter-dominated phase and then matter-dominated phase to late time accelerated

phase.

Cosmic Coincidence Problem

Let us discuss the cosmological coincidence problem which were raised by Steinhardt

and Zlatev et al. [26, 27]. The problem may be resolved by making the density ratio

r1 = ρm
ρh

is of order unity, i.e., (r1)0 ∼ O(1) for a wide range of initial condition. The

second way is that either r1 converses to a constant value or evolves very slowly in

late time of evolution. From (2.2.2), the energy density ratio is given by

r1 =−1+
1

Ωh

[
Ωk +1−

2 wm2
1a2

3(l1 +m1a)2 [ln(l1 +m1a)]2
+

2m1a
(l1 +m1a) ln(l1 +m1a)

]
. (2.2.32)

Therefore, we obtain a time-dependent value of r1. At the beginning of evolution the

value of r1 is
{
−1+ (Ωk+1)

Ωh

}
as the last two terms vanish at a = 0. In the late time of

evolution we obtain the same expression of r1 as the last two terms approach to zero

as a → ∞. Now, the evolution of energy density ratio r1 can be obtained as

ṙ1 = 3r1Hωh. (2.2.33)

According to ΛCDM model, r1 evolves as | ṙ1
r1
|0 = 3H0. Throughout the chapter the

subscript zero represents the present value of the quantity. Since, for d1 = 1 our model

shows ωh0 =−1 in late time, therefore, we get | ṙ1
r1
|0 = 3H0, which is same as for ΛCDM

model. This shows that there is no reduction in the acuteness of the coincidence

problem. Since, the EoS parameter ωh is time-dependent, therefore, the less acute

coincidence problem can be obtained if we have a quintessence like EoS parameter

(ωh >−1). Also, we may achieve ωh0 >−1 for
√

Ωh <
d1

cosy [1−
m1a

(l1+m1a) ln(l1+m1a) ]. Since,

the second term converges to zero as a → ∞, we can get quintessence like EoS

parameter more conveniently due to the logarithmic form as compared to the power-

law form of BD scalar field where we get second term as a constant. Thus, we can

conclude that this logarithmic form of BD scalar field is more appropriate to achieve

a less acute coincidence problem. Now, let us assume ωh0 = −2/3, we obtained

| ṙ1
r1
|0 = 2H0. Clearly, it shows less acuteness in the coincidence problem as compared

to the ΛCDM model. But, the problem is more acute in the case of phantom like EoS



52

parameter (ωh0 < −1). This case shows the more complex condition of coincidence

problem as compared to the ΛCDM model.

2.3 Interacting HDE model

In a paper, Amendola [201] showed that it is possible to find the attractor solutions in

nonminimal coupling models. He found a class of models in which the dynamics of the

system is independent of the coupling and of the potential, and depends only on their

relation. In other paper, Amendola [202] investigated the cosmological consequences

of a coupled quintessence model, assuming an exponential potential and a linear

coupling. He tried to write in covariant form of interacting sources. He considered two

components, a scalar field ϕ and ordinary matter described by the energy momentum

tensor Tµν(ϕ) and Tµν(m), respectively. General covariance requires the conservation

of their sum, so that it is possible to consider a coupling such that, for instance,

T µ
ν(ϕ);µ =CT(m)ϕ;ν , (2.3.1)

T µ
ν(m);µ =−CT(m)ϕ;ν . (2.3.2)

Such a coupling arises for instance in string theory, or after a conformal transforma-

tion of BD theory. The specific coupling (2.3.1) and (2.3.2) are only one of the possible

forms, other forms may be possible. Zimdhal et al. [37] demonstrated that a suitable

coupling between a quintessence scalar field and a pressureless cold dark matter fluid

leads to a constant ratio of the energy densities of both components which is com-

patible with an accelerated expansion of the Universe. Zimdhal et al. [37] assumed

the interaction described by a source (loss) term in energy balances. They found this

attractor form in terms of density.

In this section, we extend our study to the case where both dark components, the

pressureless dark matter and the HDE, interact with each other. If we proceed to

consider a scenario of interacting dark energy, ρm and ρh do not satisfy independent

conservation laws, they instead satisfy

ρ̇h +3H(1+ωh)ρh =−Q, (2.3.3)

and

ρ̇m +3Hρm = Q, (2.3.4)
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where Q = 3b2H(ρm +ρh) is a particular interacting term [203] with the coupling con-

stant b2. This interacting term can be rewritten in terms of ratio of density parameter

r1 = ρm/ρh as

Q = 3b2Hρh(1+ r1). (2.3.5)

Using (2.2.23) and (2.3.5) into (2.3.3), the EoS parameter of HDE is given by

ωh = −1
3
− 2

√
Ωh

3d1
cosy− 2m1a

3(l1 +m1a) ln(l1 +m1a)

− b2

Ωh

[
1+Ωk +

2m1a
(l1 +m1a) ln(l1 +m1a)

−
2wm2

1a2

3(l1 +m1a)2 [ln(l1 +m1a)]2

]
,

(2.3.6)

which is a time-dependent value. It is to be noted that the term m1a
(l1+m1a) ln(l1+m1a) has

the same behaviour as discussed earlier for non-interacting case. It is easy to find out

that, in the limit of m1 → 0, the standard cosmology is recovered. In the beginning of

the evolution, the term m1a
(l1+m1a) ln(l1+m1a) is zero and hence the EoS parameter of HDE

(2.3.6) gives

ωh =−1
3
− 2

√
Ωh

3d1
cosy− b2(1+Ωk)

Ωh
, (2.3.7)

which is same as the standard non-flat HDE model in BD theory. We find that ωh

is always negative and less than −1/3 in the early of the evolution which shows the

inflation in early time. The solar system experiments [111] predict a very high bound

value of w which is |w| > 40000. However, Acquaviva and Verde [204] found that

|w| may be smaller than 40000 in cosmological scale. Due to a large value of |w|

suggested by the experiments, the last term containing w will dominate during early

phase of the evolution of the Universe. Thus, we observe a positive value of ωh. Thus,

the decelerated phase occurs during the evolution of the Universe. It means that the

Universe passes through the matter-dominated phase. During the late time evolution,

the EoS parameter of HDE becomes

ωh =−1
3
− 2

√
Ωh

3d1
− b2(1+Ωk)

Ωh
, (2.3.8)

which gives a negative value. Analysing ωh in (2.3.8), one can observe that ωh will

definitely cross the phantom divide line in the late time evolution. The late time value

of ωh depends on the values of coupling constant b2, d1, Ωh and Ωk.

Using (2.2.29) and (2.3.6) in the definition of DP, we get
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q =
(1+3b2)(1+Ωk)−Ωh

(
1+ 2

√
Ωh

d1
cosy

)
2
(

1+ m1a
(l1+m1a) ln(l1+m1a)

)
+

2m1a(−Ωh+3b2+2)
(l1+m1a) ln(l1+m1a) −

2m2
1a2

(l1+m1a)2 ln(l1+m1a) +
2(w+1−3wb2)m2

1a2

(l1+m1a)2 [ln(l1+m1a)]2

2
(

1+ m1a
(l1+m1a) ln(l1+m1a)

) . (2.3.9)

From (2.3.9), we observe that the last term will dominate during the evolution due

to the large value of the BD parameter w provided (1+ 3b2) > 0, which means that

q becomes positive and hence it describes the decelerated phase. In the late time

of the evolution, the terms m1a
(l1+m1a) ln(l1+m1a) ,

m2
1a2

(l1+m1a)2 ln(l1+m1a) and m2
1a2

(l1+m1a)2 [ln(l1+m1a)]2

converge to zero and cosy converges to 1. Then, the value of q is given by

q =
(1+3b2)(1+Ωk)−Ωh(1+

2
√

Ωh
d1

)

2
. (2.3.10)

From above equation we observe that q is negative for b2 <
Ωh(1+

2
√

Ωh
d1

)

3(1+Ωk)
− 1

3 .

Cosmic Coincidence Problem

Let us discuss the coincidence problem in interacting HDE model. Using (2.2.23),

(2.3.4) and (2.3.5), the evolution of r1 can be expressed as

ṙ1 = 3Hr1

[
ωh +

b2(1+ r1)
2

r1

]
. (2.3.11)

In the above expression the value within the bracket can be positive or negative but

for a suitable value of b2, we can get |ωh +
b2(1+r1)

2

r1
|<< |ωh|. Thus, from Eqs. (2.2.33)

and (2.3.11) we can conclude that the energy density ratio r1 may evolve more slowly

in interacting HDE model as compared to the non-interacting HDE model. This imply

that the interaction between dark matter and HDE plays a vital role to discuss the

coincidence problem. As we know that the model must satisfy the condition | ṙ1
r1
|0 ≤ H0

for getting the soft coincidence. In our model we can achieve the soft coincidence

if b2 satisfies the condition b2 ≤ (1−3ωh0)r10
3(1+r10)2 . According to the present observational

values r10 = 3/7 and ωh0 = −1, we get b2 ≤ 7
25 . Thus, the soft coincidence can be

achieved at present if b2 ≤ 7
25 . It can also be concluded that the smaller the value of

b2, the energy density ratio may evolve more slowly. This explanation can resolve the

problem of cosmic coincidence and it can be checked by taking any suitable small
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value of b2 along with ωh0 = −1. This represents that the variation in r1 is more slow

as compared to the conventional ΛCDM model. Thus, the coupling constant b2 plays

an important role to resolve the cosmic coincidence problem and also this small value

of coupling constant is compatible with the observations. The same is also analyzed

by Feng et al. [205]. Thus, we observe that interacting HDE along with the logarithmic

form of BD scalar field in the framework of BD theory may capable to resolve the

cosmic coincidence problem.

2.4 Conclusion

In this work, we have studied non-interacting and interacting HDE model with future

event horizon as an IR cutoff in the framework of BD theory. Motivated by work [181,

182], we have considered the logarithmic form of BD scalar field to discuss the early

and late time evolution of the Universe. We have discussed the dynamical view of

early and late time evolution of the Universe with the help of EoS parameter and DP.

We have also discussed the cosmic coincident problem. The result of both, non-

interacting and interacting models are summarized below.

In non-interacting HDE model, we have observed that the EoS parameter starts be-

having like in its respective form in GTR. In late time of evolution, our model behaves

like cosmological constant at d1 = 1, it shows the quintessence region at d1 > 1, and it

mimic like phantom type at d1 < 1. Initially, the value of DP is negative but it may attain

the positive value during the evolution when the very high bound on BD parameter

w dominates the other terms, and it is also observed that it again attain a negative

value in late time, i.e., it shows the phase transition from decelerated to accelerated

Universe during the evolution. Further, we have shown that a less acute coincidence

problem than conventional ΛCDM model may be achieved. Thus, the logarithmic form

of BD scalar field is more suitable to achieve a less acute coincidence problem than

the power-law form.

In the interacting HDE model, we have found a time-dependent value of EoS pa-

rameter which behaves same as its respective form of GTR in early time and late time

evolution of the Universe. In the beginning, it gives a negative value which is <−1/3,

this shows the early time inflation. Due to the presence of the BD parameter w, which

have a very high positive value (according to the observations), in the EoS parameter

the value of ωh may get some positive value at any time during the evolution depending
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upon the values of l1, m1 and w. This means that during the evolution the decelerat-

ed phase of the Universe may occur. In the late time of the evolution it again gives

the negative value which is <−1/3. This shows that the Universe accelerates during

late time. Also, in this case we have obtained a time-dependent DP. The presence of

the BD coupling parameter shows that during the evolution of the Universe under the

condition (1+3b2)> 0, q may attain a positive value. In late time q will show the accel-

erated expansion of the Universe under the condition b2 <
Ωh(1+

2
√

Ωh
d1

)

3(1+Ωk)
− 1

3 . Thus, we

conclude that the interacting HDE case in our model shows the phase transition from

deceleration to acceleration, which is a good harmony with the current observations.

We have observed that the soft coincidence can be achieved if b2 ≤ 7
25 . Thus, we can

conclude that in the framework of BD theory the interacting HDE with the logarithmic

form of BD scalar field may resolve the cosmic coincidence problem.

Thus, we can say that the logarithmic form of BD scalar field is suitable to explain

the recent accelerated expansion of the Universe in HDE model. This model shows

that the phase transition of the evolution of the Universe. It may also resolves the

cosmic coincidence problem effectively. Therefore, this form of BD scalar field may

play an important role in explaining the present dat Universe.



Chapter 3

Viscous cosmology in new holographic

dark energy model

In this chapter1, we study some viscous new HDE model in the framework of flat FRW

Universe. We assume the viscous coefficient as: ζ = ζ0 + ζ1H, where ζ0 and ζ1 are

constants. We obtain all possible solutions with viscous term and analyzed the ex-

pansion history of the Universe. We graphically observe the evolutionary behaviour of

the scale factor as well as the deceleration parameter. We observe that the Universe

transits from deceleration to acceleration for small values of ζ in late time. We also

discuss two independent geometrical diagnostics: statefinder and Om to compare the

model with other available dark energy models. The r− s, r−q and Om− z trajectories

are plotted to interpret the results.

1The result of this chapter is based on a research paper “Viscous cosmology in new holographic dark energy
model and the cosmic acceleration, European Physical Journal C 78, 190 (2018)”.

57
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3.1 Introduction

Recent observations have strongly indicated that DE leads to the late time accel-

erated expansion of the Universe. Nevertheless, the nature of such a DE is still the

source of debate. Many theoretical models have been proposed to describe this late

time acceleration of the Universe. In recent years, the considerable interest has been

noticed in the study of HDE model to explain the recent phase transition of the Uni-

verse. The idea of HDE is based on the holographic principle [64,65,206]. According

to holographic principle a short distance (UV) cutoff Λ is related to the long distance

(IR) cutoff L due to the limit set by the formation of a black hole [207]. The UV cutoff

is related to the vacuum energy, and the IR cutoff is related to the large scale struc-

ture of the Universe, i.e., Hubble horizon, particle horizon, event horizon, Ricci scalar,

etc. The HDE model faces the problem about the choice of IR cutoff. As the origin

of the HDE is still unknown, Granda and Oliveros [73] proposed a new IR cutoff for

HDE, known as new holographic dark energy (new HDE) as defined and explained in

section 1.7.1.

In general, many cosmological models have been studied by considering that the

Universe has to be filled with perfect fluid. Eventhough, it is most important to inves-

tigate more realistic models in which the dissipative processes due to viscosity have

been taken into account. The theory of dissipation was proposed by Eckart [151] and

the full causal theory was developed by Israel and Stewart [152]. The first suggestion

was investigated by Misner [161] who proposed that the neutrino viscosity acting in

the early era might have considerably reduced the present anisotropy of the black–

body radiation during the process of evolution. Murphy [163] showed that the bulk

viscosity can push the initial singularity in FRW model to the infinite past.

The main motive of the work of this chapter is to explain the accelerated expansion in

the presence of bulk viscosity for new HDE in GTR which has not been studied sofar.

The bulk viscosity introduces dissipation by only redefining the effective pressure,

which is defined in section 1.8 by Eq. (1.8.1). In this chapter, we are interested when

the Universe is dominated by viscous HDE and dark matter with Granda- Oliveros IR

cutoff to study the effects of bulk viscosity to the cosmic evolution. We consider the

general form of bulk viscosity ζ = ζ0 +ζ1H, where ζ0 and ζ1 are the constants and H

stands for Hubble parameter, see Ref. [153,208].

Here, we study the non-viscous new HDE model to find out the exact solution of the
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field equations and also study the constant and varying bulk viscous new HDE model.

We find the exact forms of scale factor, DP and transition redshift and discuss the evo-

lution through the graphs. We also study the geometrical diagnostics like statefinder

parameter and Om to compare our model with ΛCDM. We plot the trajectories of these

parameters and observe the effects of bulk viscous coefficient.

3.2 Non-Viscous new HDE model

We consider a spatially homogeneous and isotropic flat FRW spacetime, specified by

the line element

ds2 = dt2 −a2(t)
[
dr2 + r2(dθ 2 + sin2θdϕ 2)

]
, (3.2.1)

where (r,θ ,ϕ) are the comoving coordinates and a(t) has its usual meaning.

We consider that the Universe is filled with new HDE plus pressureless DM (ex-

cluding the contribution of the baryonic matter here for simplicity) whose energy-

momentum tensor can be written as

Tµν = (ρm +ρd + pd) uµ uν − pd gµν . (3.2.2)

For Einstein field equations Rµν − gµνR/2 = Tµν in the units where 8πG = c = 1, we

obtain the Friedmann equations for the metric (3.2.1) as

3H2 = ρm +ρd, (3.2.3)

2Ḣ +3H2 =−pd, (3.2.4)

where ρm and ρd are the energy density of DM and new HDE, respectively, and pd

stands for the pressure of the new HDE. The EoS parameter for new HDE is ωd =

pd/ρd. An over dot has its usual meaning.

Using the energy density of new HDE defined by (1.7.14), Eqs. (3.2.3) and (3.2.4)

give

Ḣ +
3(1+α ωd)

(2+3β ωd)
H2 = 0. (3.2.5)

The solution of (3.2.5) is given by

H =
1

c0 +
3(1+α ωd)
(2+3β ωd)

t
, (3.2.6)
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where c0 is the constant of integration. The Hubble parameter (3.2.6) can be rewritten

as

H =
H0{

1+ 3H0(1+α ωd)
(2+3β ωd)

(t − t0)
} , (3.2.7)

where H0 is the value of Hubble parameter at t = t0, when new HDE starts to dominate.

As we know H = ȧ/a, Eq. (3.2.7) gives the scale factor value as

a = a0

{
1+

3(1+α ωd)H0

(2+3β ωd)
(t − t0)

} (2+3β ωd )
3(1+α ωd )

, for α ̸=−1/ωd, β ̸=−2/3ωd, (3.2.8)

where a0 is the present value of the scale factor at a cosmic time t = t0. Equation

(3.2.8) shows the power-law a ∝ tn, where n is a constant, type expansion of the scale

factor. As we know that the Universe will undergo with decelerated expansion for

n < 1, i.e., (2+ 3βωd) < (3+ 3αωd) in our case whereas it accelerates for n > 1, i.e.,

(2+ 3βωd) > (3+ 3αωd). For n = 1, i.e., (2+ 3βωd) = (3+ 3αωd), the Universe will

show marginal inflation. In the absence of new HDE, i.e., for α = β = 0, we get the

dark matter dominated scale factor, a = a0(1+ 3
2H0(t − t0))2/3.

The DP which is very useful parameter to discuss the behaviour of the Universe.

The sign (positive or negative) of DP explains whether the Universe decelerates or

accelerates. On substituting the required values in the definition of DP (1.9.5), we get

the DP for non-viscous new HDE model in the framework of GR

q =
3(1+αωd)

(2+3βωd)
−1, (3.2.9)

which does not depend on time so it remains constant during the evolution of the U-

niverse. The Universe will expand with decelerated rate for q > 0, i.e., (2+ 3βωd) <

(3+3αωd), accelerated rate for q < 0, i.e., (2+3βωd)> (3+3αωd) and marginal infla-

tion for q= 0, i.e., (2+3βωd) = (3+3αωd). One can explicitly observe the dependence

of DP q on the model parameters α, β and EoS parameter ωd under above constraints.

Thus, the deceleration or acceleration of the Universe can be obtained depending on

the suitable choices of these parameters. This non-viscous model does not show

the phase transition due to power-law expansion or constant DP. The model shows

marginal inflation, q = 0 when ωd = 1/3(β −α). Using Markov Chain Monte Carlo

method on latest observational data, Wang and Xu [74] have constrained the new

HDE model and obtained the best fit values of the parameters α = 0.8502+0.0984+0.1299
−0.0875−0.1064

and β = 0.4817+0.0842+0.1176
−0.0773−0.0955 with 1σ and 2σ errors in flat model. In the best fit new
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HDE models, they have obtained the EoS parameter ωd = −1.1414± 0.0608. Putting

these values of parameters (excluding the errors) in Eq. (3.2.9), we get q = −0.7468,

which shows that our new HDE model is compatible with current observational data

given in [74].

In order to discriminate among the available DE models, we use the geometrical

parameters defined by Sahni et al. [174] and Alam et al. [175] as in Eq. (1.11.1),

which is known as statefinder pair and is denoted as {r,s}. The statefinder probes the

expansion dynamics of the Universe through higher derivatives of the scale factor and

is a geometrical diagnosis in the sense that it depends on the scale factor and hence

describes the spacetime. On substituting the required values into (1.11.1), we get

r = 1− 9(1+αωd)

(2+3βωd)
+

18(1+αωd)
2

(2+3βωd)2 , (3.2.10)

and

s =
2(1+αωd)

2+3βωd
. (3.2.11)

From (3.2.10) and (3.2.11), we can observe that these statefinder parameters are

constant whose values depend on α, β and ωd. Putting the values of parameters [74]

as mentioned above, we observe that this set of data do not favor the new HDE model

over the ΛCDM as well as SCDM model. However, new HDE model behaves like

SCDM model for α = 3β/2. We can also observe that this model tends to {r,s}→{1,0}

in the limiting case when α →−1/ωd but no such fixed value of parameters exist for

which it would clearly repesents the ΛCDM.

3.3 Viscous new HDE model

Since, non-viscous new HDE model gives constant DP which is unable to represent

the phase transition. However, the observations show that the phase transition has

a significant importance in describing the evolution of the Universe. Therefore, it

will be interesting to explore the new HDE model with viscous to investigate either

a viscous new HDE model with Granda-Oliveros IR cutoff would be able to find the

phase transition or not.

In an isotropic and homogeneous FRW Universe, the dissipative effects arise due to

the presence of bulk viscosity in cosmic fluids as shear viscosity plays no role. DE with

bulk viscosity has a peculiar property to cause accelerated expansion of phantom type
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in the late time evolution of the Universe [209–211]. It can also alleviate the problem

like age problem and coincidence problem.

Let us consider that the effective pressure of new HDE is a sum of pressure of new

HDE and bulk viscosity, i.e., the Universe is filled with bulk viscous new HDE plus

pressureless DM whose energy-momentum tensor can be written as

Tµν = (ρm +ρd)uµuν − (gµν +uµuν)p̃d. (3.3.1)

Then, the field equations (3.2.3) and (3.2.4) modify to

3H2 = ρm +ρd, (3.3.2)

2Ḣ +3H2 =−p̃d, (3.3.3)

where p̃d = pd −3Hζ is the effective pressure of new HDE. This form of effective pres-

sure was originally proposed by Eckart [151] in the context of relativistic dissipative

process occurring in thermodynamic systems went out of local thermal equilibrium.

The term ζ is the bulk viscosity coefficient [37, 212, 213]. On the thermodynamical

grounds, ζ is conventionally chosen to be a positive quantity and generically depends

on the cosmic time t, or redshift z, or the scale factor a, or the energy density ρd,

or a more complicated combination form. Maartens [214] assumed the bulk viscous

coefficient as ζ ∝ ρm, where m is a constant. In the Refs. [153, 154, 208], the most

general form of bulk viscosity has been considered with generalized EoS. Follow-

ing [153,154,208,215], we consider the bulk viscosity coefficient as

ζ = ζ0 +ζ1H, (3.3.4)

where ζ0 and ζ1 are positive constants. The motivation for considering this bulk vis-

cosity has been discussed in Refs. [153,154,208].

From the dynamical equations (3.3.2) and (3.3.3), we can obtain the single evolution

equation for the Hubble parameter by using Eqs. (1.7.14) and (3.3.4) as,

Ḣ +
3(1+αωd)

(2+3βωd)
H2 − 3ζ

(2+3βωd)
H = 0. (3.3.5)

It can be observed that Eq. (3.3.5) reduces to the non-viscous equation (3.2.5) for

ζ = 0 as discussed in previous section.
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Now, we classify different viscous new HDE models arises due to the constant and

variable bulk viscous coefficient. We analyze the behavior of the scale factor, DP,

statefinder parameter and Om diagnostic of these different cases.

3.3.1 New HDE Model with constant bulk viscosity

The simplest case of viscous new HDE model is to be taken with constant bulk viscous

coefficient. Therefore, assuming ζ1 = 0 in Eq. (3.3.4), the bulk viscous coefficient

reduces to

ζ = ζ0 = const. (3.3.6)

Using (3.3.6) into (3.3.5), we get

Ḣ +
3(1+αωd)

(2+3βωd)
H2 − 3ζ0

(2+3βωd)
H = 0. (3.3.7)

The solution of (3.3.7) in terms of cosmic time t can be given by

H = e
3ζ0t

(2+3βωd )

[
c1 +

(1+αωd)

ζ0
e

3ζ0t
(2+3βωd )

]−1

, (3.3.8)

where c1 is the constant of integration. From (3.3.8), we get the evolution of the scale

factor as

a = c2

[
c1 +

(1+αωd)

ζ0
e

3ζ0t
(2+3βωd )

] (2+3βωd )
3(1+αωd )

, (3.3.9)

where c2 is an integration constant. The above scale factor can be rewritten as

a =

[
1+

H0(1+αωd)

ζ0

{
e

3ζ0(t−t0)
(2+3βωd ) −1

}] (2+3βωd )
3(1+αωd )

, for α ̸=−1/ωd, ζ0 ̸= 0 (3.3.10)

where t0 is the present cosmic time. Here, the scale factor is obtained as an expo-

nential form which shows non-singular solution. Equation (3.3.10) shows that in early

stages of the evolution, the scale factor can be approximated as

a(t)∼
[
1+ 3H0(1+αωd)

(2+3βωd)
(t − t0)

] (2+3βωd )
3(1+αωd ) , and as (t−t0)→∞, the scale factor approaches to

a form like that of the de Sitter Universe, i.e., a(t)→ exp
[

3ζ0(t−t0)
(2+3βωd)

]
. Thus, we observe

that the Universe starts with a finite volume followed by an early decelerated epoch,

then making a transition into the accelerated epoch in the late time of the evolution.
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From (3.3.10), we can obtain the Hubble parameter in terms of scale factor a as

H(a) =
H0

(1+αωd)

[
ζ0

H0
+

{
(1+αωd)−

ζ0

H0

}
a
− (3+3αωd )

(2+3βωd )

]
, (3.3.11)

where H0 has its usual meaning and we have made the assumption that the present

value of scale factor is a0 = 1. The derivative of ȧ with respect to a can be obtained

as [215]

dȧ
da

=
H0

(1+αωd)

[
ζ0

H0
−
{
(1+αωd)−

ζ0

H0

}(
(1+3(α −β )ωd)

2+3βωd

)
a
− 3(1+αωd )

(2+3βωd )

]
. (3.3.12)

Equating (3.3.12) to zero, the transition scale factor aT can be obtained as

aT =

[
(1+3(α −β )ωd){(1+αωd)H0 −ζ0}

(2+3βωd)ζ0

] (2+3βωd )
3(1+αωd )

. (3.3.13)

Using the relation a = (1+ z)−1, we can obtain the transition redshift zT as

zT =

[
(1+3(α −β )ωd){(1+αωd)H0 −ζ0}

(2+3βωd)ζ0

]− (2+3βωd )
3(1+αωd ) −1. (3.3.14)

From (3.3.13) or (3.3.14), we observe that for ζ0 =
{1+3(α−β )ωd}H0

3 , the transition from

deceleration to acceleration occurs at aT = 1 or zT = 0, i.e., at present time of the

Universe. On taking the observed values of α = 0.8502 and β = 0.4817 [74], H0 = 1

and ωd = −0.5 in this expression of ζ0, we get ζ0 = 0.15. Figure 3.1 represents the

evolution of the scale factor a(t) versus time (t − t0) for various values of ζ0 > 0. It is

observed that the transition from decelerated to accelerated phase occure in late time

for small values of ζ0, i.e., in 0 < ζ0 < 0.15. The transition from deceleration to acceler-

ation occurs at aT = 1, i.e., at present time for ζ0 = 0.15. However, the transition takes

place at early stages of the evolution for large values of ζ0, i.e., for ζ0 > 0.15. Thus, as

the value of ζ0 increases, the scale factor expands more rapidly with exponential rate.

The result regarding the transition of the Universe into the accelerated epoch dis-

cussed above can be further verified by studying the evolution of DP q. In this case,

DP is given by

q(t) =
3
{
(1+αωd)− ζ0

H0

}
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) −1. (3.3.15)

Thus, we find a time-varying DP for the constant viscous new HDE model, which

explains the transition of the evolutionary phases of the Universe. DP must change
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Figure 3.1: The evolution of the scale factor for ζ0 > 0 with ωd = −0.5, α = 0.8502 and
β = 0.4817.

its sign at t = t0, i.e., the time at which the viscous new HDE begins to dominate. This

time can be achieved if [1+ 3(α −β )ωd]H0 = 3ζ0. The Universe must decelerate for

t < t0 and accelerate for t > t0 for any parametric values of α, β and ωd.

From (3.3.15), DP in terms of scale factor is

q(a) =
{3(1+αωd)−3ζ0}

(2+3βωd)

 (1+αωd)

(a
3+3αωd
2+3βωd −1)ζ0 +(1+αωd)

−1. (3.3.16)

Now, the DP in terms of red shift z is

q(z) =
{3(1+αωd)−3ζ0}

(2+3βωd)

 (1+αωd)(
(1+ z)

− 3+3αωd
2+3βωd −1

)
ζ0 +(1+αωd)

−1. (3.3.17)

In the absence of model parameter and viscosity coefficient, the value of DP(q)

is 1/2, which represents the decelerating matter-dominated Universe with null bulk

viscosity. However, when only the bulk viscous term ζ0 = 0, the value of q is same as

obtained in Eq. (3.2.9) for non-viscous new HDE model.

The present value of q corresponds to z = 0 or a = 1 is,

q0 = q(a = 1) =
3(1+αωd)−3ζ0

(2+3βωd)
−1. (3.3.18)

This equation shows that if 3ζ0 = [1+ 3(α − β )ωd], the DP q0 = 0. This implies

that the transition from deceleration to acceleration takes place at the present time.

The current DP q0 < 0 if 3ζ0 > [1+ 3(α − β )ωd], this shows that the transition from
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Figure 3.2: Plot of DP with respect to a for ζ0 > 0 taking ωd = −0.5, α = 0.8502 and β =
0.4817.

0 1 2 3 4 5 6 7
-1.0

-0.5

0.0

0.5

a

q

Α = 0.82 , Β = 0.42

Α = 0.78 , Β = 0.4817

Α = 0.8502 , Β = 0.55

Α = 0.8502 , Β = 0.4817

Figure 3.3: Plot of DP with respect to a for different combinations of α and β taking ζ0 = 0.2
and ωd =−0.5

deceleration to acceleration takes place at an early stage. But we observe that q0 > 0

if 3ζ0 < [1+ 3(α −β )ωd], this shows that the present time the Universe expand with

decelerated rate and the transition from deceleration to acceleration takes place in a

future time. The evolution of q with a is shown in Figs. 3.2 and 3.3 by taking fixed

constant α and β (or ζ0), from which we can see that the evolution of the Universe is

from deceleration to acceleration. Figure 3.2 illustrates the evolutionary history of DP

for different value of ζ0 with ωd = −0.5, α = 0.8502 and β = 0.4817. On considering

α = 0.8502, β = 0.4817 [74] and ωd =−0.5 in Eq. (3.3.18), we get ζ0 = 0.15 which gives

q0 = 0. Thus, the transition from deceleration to acceleration would take place at

present time. For the large value ζ0 > 0.15, q0 < 0, i.e., for this value of ζ0 the Universe

experience the acceleration at present time and the transition from deceleration to

acceleration take place at an early stage. For the small value ζ0 < 0.15, q0 > 0, i.e.,

for this value of ζ0 the Universe experience the deceleration at present time and the

transition from deceleration to acceleration take place in future. Thus, the larger the

value ζ0 is, the earlier acceleration occurs. The similar results for a fixed ζ0 also
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appear in Fig. 3.3. The larger the values α and β is, the earlier q changes it sign from

q > 0 to q < 0 for a fixed ζ0. In both Figs. 3.2 and 3.3, we observe that in late time the

DP tends to −1.

Statefinder diagnostic

From above discussion we conclude that there is a phase transition from deceleration

to acceleration in future for small bulk viscous coefficient, 0 < ζ0 < 0.15. It takes place

to the present time for ζ = 0.15. However, the transition takes place in past for ζ > 0.15.

The behavior of scale factor and DP shows that the constant bulk viscous coefficient

plays the role of DE. In what follows, we will present the statefinder diagnostic of the

viscous new HDE model. In this model, the statefinder parameters defined in (1.11.1)

can be obtained as

r = 1+
9
(

ζ0
H0

− (1+αωd)
)(

1− 1+αωd
(2+3βωd)

)
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) +
9
(

ζ0
H0

− (1+αωd)
)2

(2+3βωd)
2 e

− 6ζ0(t−t0)
(2+3βωd ) ,

(3.3.19)

and

s =

2
(

ζ0
H0

−(1+αωd)
)(

1− 1+αωd
(2+3βωd )

)
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) +
2
(

ζ0
H0

−(1+αωd)
)2

(2+3βωd)2 e
− 6ζ0(t−t0)

(2+3βωd )

2
(
(1+αωd)−

ζ0
H0

)
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) −1

. (3.3.20)

Here, these values of statefinder parameter are time-dependent due to the bulk

viscous coefficient ζ0. In the case of non-viscous new HDE model, we get the constant

value of statefinder pair. As we can observe from the above two equations that in the

limit of (t − t0)→ ∞, the model corresponds to {r,s} → {1,0} and for this limit we get

q →−1. We draw the trajectories of the statefinder pair {r,s} in r− s plane for different

values of constant ζ0 with ωd =−0.5, H0 = t0 = 1, α = 0.8502 and β = 0.4817 as shown

in Fig. 3.4. Here, we observe that the model tends to {r,s} → {1,0} for all positive

values of ζ0. In Fig. 3.4, the fixed point values of SCDM model ({r,s} = {1,1}) and

ΛCDM model ({r,s}= {1,0}) are shown by dots.

It is observed from figures that the statefinder diagnostic of our model can discrim-

inate from other DE models. For example, in quiessence with constant EoS parame-

ter [174,175] and the Ricci dark energy (RDE) model [216], the trajectory in r−s plane

is a vertical segment, i.e., s is constant during the evolution of the Universe whereas

the trajectories for the chaplygin gas (CG) [217] and the quintessence (inverse power-

law) models (Q) [174, 175] are similar to arcs of a parabola (downward and upward)
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lying in the regions s < 0, r > 1 and s > 0, r < 1, respectively. In modified new HDE

model [218], the trajectory in r− s is from left to right. In HDE model with future event

horizon [219,220] its evolution starts from the point s = 2/3, r = 1 and ends at ΛCDM

model fixed point in future.

In Fig. 3.4, the plot reveals that the r − s plane can be divided into two regions

r < 1,s > 0 and r > 1,s < 0 which are showing the similar characteristics to Q and

CG models, respectively. The present model starts in both regions r < 1,s > 0 and

r > 1,s < 0, and end on the ΛCDM point in the r− s plane in far future. The trajectories

in the right side of the vertical line correspond to the different values of ζ0, i.e., ζ0 =

0.02, ζ0 = 0.10, ζ0 = 0.15 and ζ0 = 0.30 lying in the range 0 < ζ0 ≤ 0.57 whereas the

trajectories to the left side of the vertical line correspond to ζ0 > 0.57, i.e., ζ0 = 0.60,

ζ0 = 0.70, ζ0 = 0.80 and ζ0 = 1.00. This reveals that smaller values of ζ0 give the model

similar to Q model and larger values correspond to the CG model. We find that the

evolutions are coinciding each other for all different values of ζ0 in both regions.
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Figure 3.4: The r − s trajectories are plotted in r − s plane for ζ0 > 0 taking ωd = −0.5,
α = 0.8502 and β = 0.4817.

We also study the evolutionary behaviour of constant viscous new HDE model in

r−q plane. For different values of ζ0, as taken in {r,s}, the trajectories are shown in

Fig. 3.5 for ωd =−0.5, H0 = t0 = 1, α = 0.8502 and β = 0.4817. The fixed point values

of SCDM model ({r,q} = {1,0.5}) and steady state (SS) model ({r,q} = {1,−1}) are

shown by dots in the figure. The sign change from +ve to −ve in the value of q shows

the phase transition of the Universe which can be easily observed by the figure. The

trajectories show that viscous new HDE models commence evolving from different
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Figure 3.5: The r − q trajectories are plotted in r − q plane for ζ0 > 0 taking ωd = −0.5,
α = 0.8502 and β = 0.4817.

points for different values of ζ0 with respect to ΛCDM which starts from SCDM fixed

point. We also observe that the viscous new HDE model always tends to SS model as

ΛCDM, Q and CG models behaves in late time evolution of the Universe. Thus, this

case is compatible with both Q and CG models.

The effect of constant viscous term in new HDE model is explained above. Now, we

are interested to investigate the model behaviour in prospect of model parameters α

and β . Figures 3.6 and 3.7 represents the r − s trajectories in r − s plane and r − q

trajectories in r− q plane, respectively, for the various combinations of α and β with

ωd = −0.5, H0 = t0 = 1 and ζ0 = 0.02. In the figures, the evolution direction of the

statefinder trajectories and r−q trajectories represented by arrows. From Fig. 3.6, we

notice that for the fixed value of ζ0 all the trajectories lie in the region r < 1 and s > 0,

i.e., Q region. For some values of α and β , e.g., (α,β ) = (0.8502,0.55), the trajectory

may start from the neighbourhood of SCDM model in early time of evolution. For all

values of α and β the constant bulk viscous new HDE model always tends to ΛCDM

model in late time of the evolution.

Figure 3.7 represents the r−q trajectories in r−q plane for the various combinations

of α and β with ωd =−0.5, H0 = t0 = 1 and ζ0 = 0.02. The time evolution of the ΛCDM

model is represented by the horizontal line at r = 1. The sign change of the value

of q from +ve to −ve shows that this model represents the phase transition of the

Universe. The constant viscous new HDE model may start from the neighbourhood of

the SCDM model for some values of α and β (e.g., α = 0.8502,β = 0.55). However, the
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constant viscous new HDE model tends to the SS model as the ΛCDM and Q models

in future. Thus, the constant viscous new HDE model is compatible with the ΛCDM

and Q models with variables model parameters and constant value of ζ0.

Thus, we conclude that our model corresponds to both Q and CG models for the

different values of viscous coefficient ζ0 whereas for the different values of model

parameters α and β with respect to the fixed value of ζ0, our model only corresponds

to Q model. Hence, we can conclude that due to the viscosity new HDE model is

compatible with the Q and CG models. By above analysis, we can say that the bulk

viscous coefficient and model parameters play the vital roles in the evolution of the

Universe.

Om Diagnostic:

In addition to statefinder {r,s}, another diagnostic, Om(z) is widely used to discrimi-

nate DE models. It is a new geometrical diagnostic which combines Hubble param-

eter H and redshift z. It is defined in section 1.11.2 by Eq. (1.11.2). It is easier to

reconstruct it as compare to statefinder parameters. Since, the slope of Om(z) can

distinguish dynamical DE from the cosmological constant in a robust manner, both

with and without reference to the value of the matter density. Now, substituting the

required value of H(z) from (3.3.11) in (1.11.2), we get the value of Om(z) as

Om(z) =

[
ζ0
H0

+{1+αωd − ζ0
H0
}(1+ z)

3(1+αωd )
2+3βωd

]2

− (1+αωd)
2

(1+αωd)2[(1+ z)3 −1]
. (3.3.21)
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Figure 3.8: The Om(z) evolutionary diagram of viscous new HDE for different values of ζ0 > 0
with fixed ωd =−0.5, α = 0.8502 and β = 0.4817.

For comparison, the evolutionary trajectories of Om(z) versus z have been plotted
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in Figs. 3.8 and 3.9 for various values of ζ0 > 0 (or α and β ) with fixed α and β (or

ζ0), with H0 = 1 and ωd = −0.5. From Fig. 3.8, we observe that for 0 < ζ0 ≤ 0.57, the

trajectory shows the negative slope, i.e., the DE behaves like quintessence and for

ζ0 > 0.57, the positive slope of the Om trajectory is observed, i.e., the DE behaves

as phantom. For the late future stage of evolution when z = −1, we get Om(z) =

1− ζ 2
0

H2
0 (1+αωd)2 , which is the constant value of Om(z). Thus for z = −1, the DE will

correspond to ΛCDM.

The Fig. 3.9 shows the Om(z) trajectory for different values of model parameters

α and β with fixed ζ0 = 0.02, ωd = −0.5 and H0 = 1. This trajectory only shows the

negative curvature which imply that the DE behaves like quintessence.

From the above discussion with constant bulk viscous coefficient, we find that the

constant ζ0 ( or cosmological parameters α and β ) play an important roles in the

evolution of the Universe, i.e., they both determine the evolutionary behavior as well

as the ultimate fate of the Universe.

3.3.2 Solution with bulk viscosity

In this section, we consider two cases: (i) ζ0 = 0 and ζ1 ̸= 0, and (ii) ζ0 ̸= 0 and ζ1 ̸= 0.

Case(i) ζ0 = 0 and ζ1 ̸= 0 :

In this case, the bulk viscosity coefficient given in (3.3.4) reduces to

ζ = ζ1H, (3.3.22)

which shows that the bulk viscous coefficient is directly proportional to Hubble param-

eter.
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Using (3.3.22) into (3.3.5), we get

Ḣ +
3(1−ζ1 +αωd)

(2+3βωd)
H2 = 0. (3.3.23)

The above equation is similar to the Eq. (3.2.5) obtained in the case of non-viscous

new HDE model in section 3.2. The solution of (3.3.23) for H in terms of t is given by

H =
1

c3 +
3(1−ζ1+αωd)
(2+3βωd)

t
, (3.3.24)

where c3 represents the constant of integration. The scale factor can be obtained as

a = a0

[
1+

3(1−ζ1 +αωd)H0

(2+3βωd)
(t − t0)

] (2+3βωd )
3(1−ζ1+αωd )

, for ζ1 ̸= (1+αωd), β ̸=− 2
3ωd
(3.3.25)

The scale factor varies as power-law expansion. Now, the DP is

q =
3(1−ζ1 +αωd)

(2+3βωd)
−1. (3.3.26)

which is a constant value. Such form of ζ gives no transition phase. The positive

or negative sign of q depends on whether 3ζ1 < (1+ 3(α −β )ωd) or 3ζ1 > (1+ 3(α −

β )ωd), respectively.

Now, the statefinder pair is

r = 1− 9(1+αωd −ζ1)

(2+3βωd)
+

18(1+αωd −ζ1)
2

(2+3βωd)2 , (3.3.27)

and

s =
2(1+αωd −ζ1)

(2+3βωd)
. (3.3.28)

In this case the constant value of statefinder parameter is obtained. In the limit of

ζ1 → (1+αωd), the statefinder pair {r,s} → {1,0} and for ζ1 = (2α−3β )ωd
2 , this model

has the fixed value {r,s}= {1,1}, i.e., it behaves as SCDM model.

Case(ii) ζ0 ̸= 0 and ζ1 ̸= 0:

Let us consider the more general form of the bulk viscous coefficient, i.e., ζ = ζ0+ζ1H.

Using (3.3.4) into (3.3.5), we get

Ḣ +
3(1−ζ1 +αωd)

(2+3βωd)
H2 − 3ζ0

(2+3βωd)
H = 0. (3.3.29)
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Solving the above equation, we get the Hubble parameter in terms of t as

H = H0e
3ζ0(t−t0)
(2+3βωd )

[
1+

H0(1−ζ1 +αωd)

ζ0

{
e

3ζ0(t−t0)
(2+3βωd ) −1

}]−1

, (3.3.30)

where H0 is the present value of the Hubble parameter and we have made the as-

sumption that the present value of scale factor is a0 = 1. The solution of (3.3.30) for

the scale factor a in terms of t is given by

a =

[
1+

H0(1−ζ1 +αωd)

ζ0

{
e

3ζ0(t−t0)
(2+3βωd ) −1

}] (2+3βωd )
3(1−ζ1+αωd )

, for ζ0 ̸= 0, ζ1 ̸= (1+αωd)

(3.3.31)

Here, we get an exponential type scale factor with the viscous terms. As (t − t0)→ 0,

the scale factor behaves as

a →
[

1+
3H0(1−ζ1 +αωd)(t − t0)

(2+3βωd)

] (2+3βωd )
3(1−ζ1+αωd )

, (3.3.32)

which shows power-law expansion in early time. On the other hand, if ζ0 = H0(1−ζ1+

αωd) or (t − t0)→ ∞, we obtain

a(t) = exp
(

3ζ0(t − t0)
(2+3βωd)

)
. (3.3.33)

This case corresponds the de Sitter Universe which shows accelerated expansion in

the later time of evolution.

Now, from (3.3.31), the Hubble parameter in terms of a can be written as

H(a) =
H0

(1−ζ1 +αωd)

[
ζ0

H0
+

{
(1−ζ1 +αωd)−

ζ0

H0

}
a
− 3(1−ζ1+αωd )

(2+3βωd )

]
. (3.3.34)

This equations shows that if both ζ0 and ζ1 are zero, the Hubble parameter, H =

H0a
−3(1+αωd )
(2+3αωd ) , which corresponds to non-viscous new HDE model. When ζ1 = 0, H

reduces to Eq. (3.3.11) which is the case of constant viscosity.

The derivative of ȧ with respect to a can be obtained from (3.3.34), which is given by

dȧ
da

=
H0

(1−ζ1 +αωd)

[
ζ0

H0
−
{
(1−ζ1 +αωd)−

ζ0

H0

}(
(1+3(α −β )ωd −3ζ1)

2+3βωd

)
a
− 3(1−ζ1+αωd )

(2+3βωd )

]
.

(3.3.35)
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Equating (3.3.35) to zero to get the transition scale factor aT as

aT =

[
(1+3(α −β )ωd −3ζ1){(1−ζ1 +αωd)H0 −ζ0}

(2+3βωd)ζ0

] (2+3βωd )
3(1−ζ1+αωd )

. (3.3.36)

The corresponding transition redshift zT is

zT =

[
(1+(α −β )ωd −3ζ1){(1−ζ1 +αωd)H0 −ζ0}

(2+3βωd)ζ0

]− (2+3βωd )
3(1−ζ1+αωd ) −1. (3.3.37)

It can be observed that for (ζ0+ζ1H0) =
{1+3(α−β )ωd}H0

3 , the transition from decelerated

phase to accelerated phase occurs at aT = 1 or zT = 0, which corresponds to the

present time of the Universe. By considering the observational value α = 0.8502 and

β = 0.4817 along with ωd = −0.5, H0 = 1, we get (ζ0 + ζ1) = 0.15. The evolution of

the scale factor is represented by Fig. 3.10. We observe that the transition from

deceleration to acceleration take place in later stage of the evolution for 0 < (ζ0+ζ1)≤

0.15. The transition from the deceleration to acceleration depends on the viscosity ζ0

and ζ1 as shown above. The transition from deceleration to acceleration take place at

early time of the Universe for (ζ0 +ζ1)> 0.15.

The DP is also a very vital parameter to explain the phase transition of the Universe.

(Ζ0 , Ζ 1) = (0.2, 0.3)

(Ζ0 , Ζ 1) = (0.5, 0.5)

(Ζ0 , Ζ 1) = (0.02, 0.03)

(Ζ0 , Ζ 1) = (0.08, 0.07)
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8

t- t0

a

Figure 3.10: The evolution of a versus (t − t0) for ζ0 > 0 and ζ1 > 0 with ωd = −0.5, α =
0.8502 and β = 0.4817.

Thus, in this case the DP is obtained as

q(t) =
3
{
(1−ζ1 +αωd)− ζ0

H0

}
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) −1. (3.3.38)

From (3.3.38), we observe that for this general case we get the time-dependent DP.

Thus, it may be possible to explain the phase transition scenario of the Universe with
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DP. It can be noticed that DP must change its sign at t = t0 and this time can be

achieved if 3(ζ0 + ζ1H0) = {1+3(α −β )ωd}H0. The sign of q is positive for t < t0 and

it is negative for t > t0. The values of ζ0 and ζ1 can be obtained for a given values of

ωd, α and β , which may be obtained from observation, or vice-versa.

From (3.3.38), DP can be written in terms of scale factor as

q(a) =
{3(1−ζ1 +αωd)−3ζ0}

(2+3βωd)

 (1−ζ1 +αωd)

(a
3(1−ζ1+αωd )

2+3βωd −1)ζ0 +(1−ζ1 +αωd)

−1. (3.3.39)

The DP in terms of redshift z is

q(z) =
{3(1−ζ1 +αωd)−3ζ0}

(2+3βωd)

 (1−ζ1 +αωd)(
(1+ z)

− 3(1−ζ1+αωd )
2+3βωd −1

)
ζ0 +(1−ζ1 +αωd)

−1.

(3.3.40)

In the absence of bulk viscous parameter and all other parameter, the DP q has

value 1/2, which represents a decelerating matter dominated Universe with null bulk

viscosity. However, when only the bulk viscous term ζ0 = 0 and ζ1 ̸= 0, the value of q

is same as obtained in Eq. (3.3.26) for case (i) of variable viscous new HDE model,

and when ζ0 ̸= 0 and ζ1 = 0 , Eq. (3.3.39) reduces to Eq. (3.3.16) of constant viscous

coefficient.

The present value of q corresponds to z = 0 or a = 1 is,

q0 = q(a = 1) =
3(1−ζ1 +αωd)−3ζ0

(2+3βωd)
−1. (3.3.41)

This equation implies that if 3(ζ0 + ζ1) = [1 + 3(α − β )ωd], the DP q0 = 0. This

shows that the phase transition from deceleration to acceleration take place at the

present time. The DP q0 < 0 if 3(ζ0 + ζ1) > [1 + 3(α − β )ωd], this shows that Uni-

verse experiencing the accelerating phase at present, i.e., the transition from decel-

eration to acceleration takes place at an early stage. But we observe that q0 > 0 if

3(ζ0 + ζ1) < [1+ 3(α − β )ωd], this shows that the present time the Universe expand

with decelerated rate and the transition from deceleration to acceleration takes place

in a future time. For the observational value α = 0.8502 and β = 0.4817 with ωd =−0.5

and H0 = 1, we get (ζ0+ζ1) = 0.15 which gives q0 = 0. Thus for this value set, the tran-

sition into accelerating phase would occur at present time. If (ζ0 +ζ1) > 0.15, q0 < 0,

i.e., this shows that the present time the Universe experience the accelerating phase
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and the transition from deceleration to acceleration takes place at an early stage. If

(ζ0+ζ1)< 0.15, q0 > 0, i.e., this shows that the present time the Universe expand with

decelerated rate and the transition from deceleration to acceleration takes place in a

future time. This result is verified graphically which is represented by Fig. 3.11. Fig-

ure 3.12 shows the q−a graph in q−a plane to discuss the evolution of the Universe

with respect to model parameters α and β . Here, the signature change in the value

of DP can be seen by the figure. From above discussion we say that both viscous

coefficient and model parameter have their own role in the evolution of the Universe.

Some values of bulk viscous term gives the accelerated phase from the beginning

and continues to be accelerated in late time.

HΖ0 , Ζ1M = H0.02 , 0.03L

HΖ0 , Ζ1) = (0.08 , 0.07)

HΖ0 , Ζ1) = (0.2 , 0.3)

0 1 2 3 4 5 6 7
-1.0

-0.5

0.0

0.5

a

q

Figure 3.11: The q−a graph in q−a plane for ζ0 > 0 and ζ1 > 0 with ωd =−0.5, α = 0.8502
and β = 0.4817.
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Α = 0.8502 , Β = 0.59

Α = 0.8502 , Β = 0.4817

Figure 3.12: The q−a graph in q−a plane for different combinations of α and β with ζ0 = 0.2,
ζ1 = 0.3 and ωd =−0.5.

Statefinder diagnostic:

As we have mentioned above, the scale factor and DP have been discussed to explain

the accelerating Universe with viscous term or model parameters. So it is necessary

to distinguish these models in a model-independent manner. In what follows we will



78

apply two geometrical approaches to viscous new HDE model, i.e., the statefinder

and Om diagnostic from which we can compute the evolutionary trajectories with ones

of the ΛCDM model to show the difference among them.

In this case, the statefinder parameters defined in Eq. (1.11.1) can be evaluated as

r = 1+
9
(

ζ0
H0

− (1−ζ1 +αωd)
)(

1− (1−ζ1+αωd)
(2+3βωd)

)
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd )

+
9
(

ζ0
H0

− (1−ζ1 +αωd)
)2

(2+3βωd)2 e
− 6ζ0(t−t0)

(2+3βωd ) , (3.3.42)

and

s =

2
(

ζ0
H0

−(1−ζ1+αωd)
)(

1− 1−ζ1+αωd
(2+3βωd )

)
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) +
2
(

ζ0
H0

−(1−ζ1+αωd)
)2

(2+3βωd)2 e
− 6ζ0(t−t0)

(2+3βωd )

2
(
(1−ζ1+αωd)−

ζ0
H0

)
(2+3βωd)

e
− 3ζ0(t−t0)

(2+3βωd ) −1

. (3.3.43)
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Figure 3.13: The r − s trajectories are plotted in r − s plane for ζ0 > 0 and ζ1 > 0 taking
ωd =−0.5, α = 0.8502 and β = 0.4817.

From (3.3.42) and (3.3.43) it can be observed that the viscous new HDE model con-

verges to {r,s} → {1,0} in the limit of (t − t0) → ∞. This can also be achieved at

(ζ0+H0ζ1) =H0(1+αωd) but this is a very fixed point. Thus, the statefinder diagnostic

fails to discriminate between ΛCDM and the new HDE model. Here, we obtain time-

dependent statefinder pair which needs to study the general behavior. Let us see the
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Figure 3.14: The r − q trajectories are plotted in r − q plane for ζ0 > 0 and ζ1 > 0 taking
ωd =−0.5, α = 0.8502 and β = 0.4817.

effect of viscosity coefficients ζ0,ζ1 and model parameters α,β for the general form of

variable viscous new HDE model. Figure 3.13 shows the r− s trajectory in r− s plane

for different values of ζ0 and ζ1 with H0 = t0 = 1, α = 0.8502 and β = 0.4817. The model

behaviors to Q models for 0 < (ζ0+ζ1)≤ 0.57 and CG models for (ζ0+ζ1)> 0.57. The

trajectories in Q-model and CG-model both converge to the ΛCDM model in late time

of evolution.

Figure 3.14 shows the time evolution of {r,q} pair in r−q plane for different combi-

nations of the values of ζ0 and ζ1 with H0 = t0 = 1, α = 0.8502 and β = 0.4817. The

fixed points {r,q}= {1,0.5} and {r,q}= {1,−1} represents the SCDM and SS models,

respectively. Since q changes its sign from positive to negative with respect to time

which shows the phase transition of the Universe from deceleration to acceleration. In

beginning this model behaves different from the ΛCDM but in future it behaves same

as ΛCDM which converges to SS model in late time. Hence the variable viscous new

HDE model always converges to SS model as ΛCDM, Q and CG models in late time

evolution of the Universe. For all the ranges of (ζ0 + ζ1) the trajectories correspond

to Q and CG models as in Fig. 3.13. Thus, the variable viscous new HDE model is

compatible with both Q and CG models.

Thus, the viscosity coefficients are able to correspond to both Q and CG models for

different combinations of ζ0,ζ1 and also explain the phase transition of the Universe.

Now, we are curious to know the behaviour of variable viscous new HDE model with

respect to the model parameters α and β . Here, Figs. 3.15 and 3.16 represents the
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Figure 3.15: The r− s trajectories are plotted in r− s plane for various combinations of α and
β taking ωd =−0.5, ζ0 = 0.02 and ζ1 = 0.03.
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r− s and r−q trajectories in r− s and r−q plane, respectively, for the different values

of α and β close to it’s observational value with ωd =−0.5, H0 = t0 = 1, ζ0 = 0.02 and

ζ1 = 0.03. The evolutionary directions of both the trajectories are shown in the figures

by the arrows. In Fig. 3.15, we analysed that for this fixed value of ζ0 and ζ1 the r− s

trajectories are lying in the region corresponds to r < 1, s > 0 which shows that our

model is similar to the Q model. It also starts from the vicinity of SCDM model in early

time of evolution for some values of α and β , e.g., (α ,β ) = (0.8502,0.59). It is different

from RDE model and quiessence model as it produces the curved trajectories for any

values of (α,β ) close to observational value which approach to ΛCDM in late time of

evolution as the Q model tends to ΛCDM model in late time of evolution.

The r− q trajectories in r− q plane are shown by the Fig. 3.16. This model is also

able to explain the phase transition of the Universe. It also starts from the neighbour-

hood of the SCDM model for some values of α and β (e.g., α = 0.8502,β = 0.55) and

approaches to SS model in late time for any value of α and β close to the observation-

al value. In future the variable viscous new HDE model approaches to the SS model

same as the ΛCDM and Q models. Thus the viscous new HDE model is compatible

with the ΛCDM and Q models.

Thus, we observed from Figs. 3.13–3.16 that viscous new HDE model is compatible

to Q and CG models for different ranges of viscosity coefficients in the presence of the

fixed observational value of model parameters whereas the model parameter in the

presence of fixed value of viscosity coefficients approaches only to Q model.

Om Diagnostic:

Let us discuss the another geometrical parameter, i.e., Om(z) diagnostic in viscous

new HDE model. By substituting the required values in Eq. (1.11.2), we get the Om(z)

diagnostic for ζ = ζ0 +ζ1H as

Om(z) =

[
ζ0
H0

+
{
(1−ζ1 +αωd)− ζ0

H0

}
(1+ z)

3(1−ζ1+αωd )
2+3βωd

]2

− (1−ζ1 +αωd)
2

(1−ζ1 +αωd)2[(1+ z)3 −1]
. (3.3.44)

Figure 3.17 shows the Om(z) trajectory with respect to z for different values of ζ0 > 0

and ζ1 > 0 corresponding to α = 0.8502, β = 0.4817, H0 = 1 and ωd =−0.5. Here, the

trajectory represents the negative curvature, i.e., the viscous new HDE behaves as

quintessence for the limit 0 < (ζ0 +ζ1)≤ 0.57 and it shows the positive curvature, i.e.,

the viscous DE behaves as phantom, for (ζ0 + ζ1) > 0.57 whereas for z = −1, i.e., in
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future time we get Om(z) = 1− ζ 2
0

H2
0 (1−ζ1+αωd)2 , which is the constant value of Om(z).

Thus, for z =−1, the viscous new HDE will correspond to ΛCDM.
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Figure 3.17: The Om(z) evolutionary diagram of viscous new HDE for different values of
ζ0 > 0 and ζ1 > 0 with ωd =−0.5, α = 0.8502 and β = 0.4817.
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Figure 3.18: The Om(z) evolutionary diagram of viscous new HDE for different values of α
and β with ζ0 = 0.02, ζ1 = 0.03 and ωd =−0.5.

Figure 3.18 plot the Om(z) versus z for different model parameters α and β corre-

spond to fixed ζ0 and ζ1. The graph shows that there is always negative curvature

for any values of model parameters. This shows that the model behaviors similar to

quintessence model.

3.4 Conclusion

We have studied some viscous cosmological new HDE models on the evolution of

the Universe, where the IR cutoff is given by the modified Ricci scalar, proposed by

Granda and Olivers [73, 75]. It has been tried to demonstrate that the bulk viscosity

can also play the role as a possible candidate of DE. We have performed a detailed

study of both non-viscous and viscous new HDE models. The component of this
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model is DE and pressureless DM. We have obtained the solutions for scale factor

and DP. We have also studied these models from two independent geometrical point

of view, namely the statefinder parameter and Om diagnostic. We have studied the

different possible scenarios of viscous new HDE and analyzed the evolution of the

Universe according to the assumption of bulk viscous coefficient ζ .

In section 3.2, we have investigated non-viscous new HDE in flat FRW Universe.

We have obtained power-law form of scale factor for which the model may decelerate

or accelerate depending on the constraint of model parameters. The DP is constant in

this case. Therefore, the model can not describe the transition phase of the Universe.

The statefinder parameters are also constant. We have observed that the observed

set of data of model parameters do not favor the new HDE model over the ΛCDM

as well as SCDM model. However, new HDE model behaves like SCDM model for

α → 3β/2. It has been observed that this model approaches to {r,s} → {1,0} in the

limit of α →−1/ωd but there is no such value of parameters which would clearly show

the ΛCDM.

In viscous new HDE model as discussed in section 3.3, we have considered that

the matter consists of viscous holographic dark energy and pressureless DM. We

have assumed a most general form ζ = ζ0 +ζ1H to observe the effect of bulk viscous

coefficient in the evolution of the Universe during early and late time. We have studied

three cases: (ζ0 ̸= 0, ζ1 = 0); (ζ0 = 0, ζ1 ̸= 0) and (ζ0 ̸= 0, ζ1 ̸= 0).

In the first case where we have constant bulk viscous coefficient, i.e., ζ = ζ0, an

exponential form of the scale factor is obtained. Therefore, the Universe starts from a

finite volume followed by an early decelerated phase and then transits into an accel-

erated phase in late time of evolution. The evolution of scale factor has been shown

is figure 3.1. The viscous new HDE model gives time-dependent DP which would de-

scribe the phase transition. We have obtained q in terms of a and z. The variation of q

with a has been shown in Figs. 3.2 and 3.3 with varying ζ0 and constant model param-

eters, and varying model parameters and constant ζ0, respectively. Both the figures

clearly show the phase transition of the Universe from deceleration to acceleration.

As the model predicts the late time acceleration, we have analyzed the model us-

ing statefinder parameter and Om diagnostic to distinguish it from other DE models

especially from ΛCDM model. The evolution of the viscous new HDE model in the

r− s plane is shown in Fig. 3.4 with different values of ζ0 with constant α and β . It

shows that the evolution of {r,s} parameter is in such a way that r < 1, s > 0, a feature
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of quintessence (Q) model where as r > 1, s < 0 corresponds to the Chaplygin gas

(CG) model. In both models, the trajectories are coinciding with each other for any

value of ζ0. The viscous new HDE model behaving Q and CG models in early time

for different ζ0 untimely approaches to ΛCDM model in late time. We have also dis-

cussed the evolutionary behavior of {r,q} to discriminate the viscous new HDE model.

The trajectory of {r,q} has been plotted in Fig. 3.5 which shows the phase transition

from decelerated to accelerated phase. If 0 < ζ0 ≤ 0.57, the transition takes place

from quintessence region and approaches to SS model in late time as ΛCDM model

approaches from SCDM. However, if ζ0 > 0.57, the transition starts from Chaplygin

gas model and approaches to SS model in late time. Both the trajectories in Q model

and CG model are coinciding on each other for any value of ζ0.

A study of Om diagnostic of viscous new HDE model has been carried out in Fig.

3.3.21 for different values of ζ0 and fixed α and β . The trajectory shows that if 0 < ζ0 ≤

0.57, the Om(z) trajectory shows the negative slope which means viscous new HDE

behaves like quintessence and if ζ0 > 0.57, the positive slope of the Om(z) trajectory

is observed, i.e., the viscous new HDE behaves like phantom. In future as z → −1,

the Om(z) becomes constant, i.e, it may approach to ΛCDM model.

The above discussion shows that effect of bulk viscous coefficient on new HDE

model with different values of ζ0. We have also discussed the viscous new HDE

model with varying model parameters α and β taking fixed ζ0. The trajectory for q

versus a as shown in Fig. 3.3 shows that the transition takes place from decelerated

to accelerated phase in future for any values of α and β and approaches to q =−1 in

late time. The trajectory for {r,s} and {r,q} have also been plotted respectively in Figs.

3.6 and 3.7 for different values of α and β with fixed value of ζ0. The r− s trajectory

as shown in Fig. 3.6 shows that the trajectory starts from the quintessence region,

even though some starts from the vicinity of SCDM and approaches to ΛCDM in late

time. The signature change of q from positive to negative has been observed in r−q

plane as shown in Fig. 3.7. The viscous new HDE model approaches to SS model in

late time as ΛCDM does. The Om trajectory has been plotted in Fig. 3.9 for different

values of α and β for fixed ζ0. This trajectory only shows the negative curvature which

imply that the viscous new HDE behaves like quintessence only.

From the above discussion with constant bulk viscous coefficient, we find that the

constant ζ0 ( or cosmological parameters α and β ) play important roles in the evolution

of the Universe, i.e., they both determine the evolutionary behavior as well as the
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ultimate fate of the Universe.

In second viscous new HDE model we have assumed ζ = ζ1H. The solution of this

model is similar to the non-viscous new HDE one. We have obtained power-law form

of scale factor which gives constant values of DP and statefinder pairs.

In last case, we have taken the most general form of bulk viscous coefficient ζ =

ζ0 +ζ1H. The solution of this model is similar to the constant bulk viscous coefficient

ζ0. The effect of both non-zero values of ζ0 and ζ1 have been discussed. We have ob-

tained exponential scale factor which gives time-dependent DP and statefinder pairs.

The transition from decelerated to accelerated epoch has been discussed. The DP is

time-dependent which shows phase transition from decelerated to accelerated phase.

The DP has been written in terms of scale factor or redshift. We have calculated the

present value q0. We have plotted q versus a for different values of (ζ0,ζ1) with fixed

model parameters and others as shown in Fig. 3.11. The Fig. 3.12 plots the q−a for

different models parameters α ,β with fixed ζ0,ζ1 and others.

Figure 3.13 shows the r − s trajectory in r − s plane for different values of ζ0 and

ζ1 with constant model parameters and others. The model behaviors to Q models

for 0 < (ζ0 + ζ1) ≤ 0.57 and CG models for (ζ0 + ζ1) > 0.57. The trajectories in Q-

model and CG model both converge to the ΛCDM model in late time of evolution.

Figure 3.14 plots the trajectory of r − q for different values of (ζ0,ζ1) with constant

model parameters and others. The DP changes its sign from positive to negative with

respect to time which shows the phase transition of the Universe from deceleration to

acceleration. In beginning this model behaves different from the ΛCDM but in future it

behaves same as ΛCDM which converges to SS model in late time. Thus, the variable

viscous new HDE model is compatible with both Q and CG model. Figure 3.15 and

3.16 plot the trajectories of r− s and r− q for different model parameters (α ,β ) with

fixed ζ0,ζ1 and others. In Fig. 3.15, we have analysed that for this fixed value of ζ0 and

ζ1 the {r,s} trajectories are lying in the region corresponds to r < 1, s > 0 which shows

that our model is similar to the Q model. Figure 3.16 shows that this model is also able

to explain the phase transition of the Universe. It also starts from the neighbourhood

of the SCDM model for some values of α and β . In future the variable viscous new

HDE model approaches to the SS model same as the ΛCDM and Q models. Thus the

viscous new HDE model is compatible with the ΛCDM and Q models.

We conclude that the trajectory of r − s and r − q suggest a different behavior as

compare to Ricci dark energy done by Feng [221] where it was found that the r − s
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trajectory is a vertical segment, i.e., s is constant during the evolution of the Universe.

The trajectory in our viscous new HDE model is mostly confined a parabolic curve

and approaches to {r,s}= {1,0} in r− s plane and {r,q}= {1,−1} in r−q plane.

From Om diagnostic we find that the trajectory represents the negative curvature,

i.e, viscous new HDE behaves as a quintessence for 0 < (ζ0+ζ1)≤ 0.57 and it shows

the positive curvature, i.e., the viscous DE behaves as phantom, for (ζ0 + ζ1) > 0.57,

which is graphically represented by Fig. 3.17. We have also concluded that as z→−1,

we get the constant value of Om, which corresponds to ΛCDM model. However, plot

of Om as shown in Fig. 3.18 for different model parameters with constant ζ0 and ζ1

reveal that there is always negative curvature for any values of model parameters.

This shows that the viscous new HDE behaviors similar to quintessence.

In concluding remarks, we compare our work with respect to the earlier studied in

this direction. Feng and Li [166] who investigated the viscous Ricci DE model by

assuming bulk viscous coefficient proportional to the velocity vector of the fluid. Chat-

topadhyay [222] reported a study on modified Chaplygin gas based reconstructed

scheme for extended HDE in the presence of bulk viscosity. In comparison to the

said work, the present work lies not only in its choice of different bulk viscous co-

efficient but also in its different approach to discuss the evolution of the Universe.

The present viscous new HDE model successfully describes the present accelerat-

ed epoch. The ΛCDM model is attainable by present model. The new HDE model

behaves quintessence model and Chaplygin gas model in early time due to viscous

effect. However, it behaves only quintessence if we consider the model parameters

with fixed viscous coefficient. Our work implies the theoretical basis for future obser-

vations to constraint the viscous new HDE.

In concluding remark we can say that the bulk viscosity with new HDE in the frame-

work of GTR plays a vital role to explain the accelerated expansion of the Universe.



Chapter 4

Constant bulk viscous new holographic

dark energy model in f (R,T ) gravity

In this chapter1, we extend the study of previous chapter in the modified f (R,T ) grav-

ity theory within the framework of flat FRW model with constant bulk viscous matter

content. The exact solution of field equations are obtained by assuming a particular

form f (R,T ) = R+λT and bulk viscosity as constant, ζ = ζ0 = const. We obtain the

time-dependent DP and classify all possible scenarios (deceleration, acceleration and

their transition) with possible positive and negative ranges of λ over the constraint on

ζ0 to analyze the evolution of the Universe. We observe the finite-time singularities

of type I and III at a finite time under certain constraints on λ . We also investigate

the statefinder and Om diagnostics of the model to discriminate with other existing DE

models. We also graphically describe it by plotting r− s, r−q and Om− z trajectories.

At the end, we also discuss the thermodynamics and entropy of the model and find

that it satisfy the second law of thermodynamics.

1The content of this chapter is based on research paper “New holographic dark energy model with constant
bulk viscosity in modified f (R,T ) gravity theory, Astrophysics and Space Science 363, 117 (2018)”.

87



88

4.1 Introduction

The modification in the geometrical part of Einstein-Hilbert action is very attractive

way to resolve many problems in cosmology. The most famous modification of GTR

is the f (R) gravity in which the Ricci scalar R is replaced by a general function f (R).

This theory is consistent with the observations [91, 223]. In 2011, Harko et al. [108]

proposed a new modified theory known as f (R,T ) gravity theory, where R is the Ricci

Scalar and T stands for the trace of energy-momentum tensor. This modified theory

presents a maximal coupling between geometry and matter. Many authors [130–148]

have studied modified f (R,T ) theory in different context to explain early and late time

evolution of the Universe. The new HDE model has not been yet discussed in detail in

framework of f (R,T ) theory. Therefore, our aim is to study new HDE model with bulk

viscosity in f (R,T ) gravity theory to explain the accelerated expansion of the Universe.

In chapter 3, we have investigated the effects of bulk viscosity in the GTR. In the

present chapter, we extend our study in the f (R,T ) gravity with constant bulk viscosity.

The purpose of this chapter is to observe the effect of constant bulk viscous coefficient

on new HDE model in modified f (R,T ) gravity theory by considering the dark matter

coupled with viscous fluid. We briefly discuss how the presence of viscous fluid could

produce the late time acceleration. We present the solutions for non-viscous and con-

stant viscous new HDE model in f (R,T ) gravity theory. The bulk viscous coefficient ζ

is assumed to be a constant, i.e., ζ = ζ0 = const. as it is the simplest parametrization

for the bulk viscosity.

The theoretical solutions of this model are analyzed in detail. We analyze the be-

haviour of the scale factor for the possible scenario that the model predicts for the

Universe according to the value of ζ0. The finite-time singularity are discussed for

non-viscous and constant viscous new HDE models. The constant viscous new HDE

model gives time-dependent DP which shows phase transition. We discuss the be-

havior of DP by constraining on ζ and gravity parameter λ which are given in table.

We also find the two independent geometrical diagnostics, namely statefinder pair

and Om to discriminate the new HDE model with other existing DE models.
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4.2 Non-viscous new HDE model in f (R,T ) Gravity

We assume that the universe is filled with pressureless DM (excluding baryonic mat-

ter) and new HDE. Then the field equations (1.7.25) for the metric (3.2.1) yield

3H2 = ρm +ρd +(ρm +ρd + pd) f ′(T )+
1
2

f (T ), (4.2.1)

2Ḣ +3H2 =−pd +
1
2

f (T ), (4.2.2)

where ρm, ρd, pd and H have their usual meanings. An overdot represents the deriva-

tive with respect to the cosmic time t.

The field equations (4.2.1) and (4.2.2) are highly non-linear, therefore, let us assume

f (T ) = λT [108], where λ is a coupling parameter. Using this form, the field equations

(4.2.1) and (4.2.2) reduce to

3H2 = ρm +ρd +(ρm +ρd + pd)λ +
1
2

λT, (4.2.3)

2Ḣ +3H2 =−pd +
1
2

λT. (4.2.4)

A relation between pd and ρd is connected by EoS, pd = ωdρd, where ωd is the

EoS parameter of new HDE. The trace of energy-momentum tensor is given by T =

ρm +ρd −3pd.

Now, Combining (4.2.3) and (4.2.4), a single evolution equation for H can be written

as

2Ḣ +(1+λ )[ρm +(1+ωd)ρd] = 0. (4.2.5)

Using the energy density of new HDE defined by (1.7.14), into (4.2.3), the energy

density ρm of DM can be obtained as

ρm =
3[(2−2α −3λα +λαωd)H2 −β (2+3λ −λωd)Ḣ]

2+3λ
. (4.2.6)

4.2.1 Evolution of the scale factor

Using (1.7.14) and (4.2.6) into (4.2.5), we get

Ḣ +(1+2λαωd +αωd)XH2 = 0, (4.2.7)
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where, X = 3(1+λ )
[2+3λ+3β (1+λ )(1+2λ )ωd ]

.

On integration, we get

H(t) =
1

c4 +(1+2λαωd +αωd)X t
, (4.2.8)

where c4 is a constant of integration. Since H = ȧ/a, then the cosmic scale factor a

can be obtained as

a(t) = c5

[
c4 +(1+2λαωd +αωd)X t

] 2+3λ+3β (1+λ )(1+2λ )ωd
3(1+λ )(1+2λαωd+αωd ) , (4.2.9)

where c5 is another constant of integration. Equation (4.2.8) can be rewritten as

H(t) =
H0

1+(1+2λαωd +αωd)H0 X (t − t0)
, (4.2.10)

where H0 has its usual meaning, and at t = t0 the new HDE starts to dominate. Now,

the scale factor (4.2.9) takes the form

a(t) = a0

[
1+(1+2λαωd +αωd)H0 X (t − t0)

] 2+3λ+3β (1+λ )(1+2λ )ωd
3(1+λ )(1+2λαωd+αωd ) . (4.2.11)

Here and there after, we assume a0 = 1. Equation (4.2.11) shows power-law type

scale factor, i.e., a ∝ tn, where n is a constant. The Universe corresponds to the de-

celerated expansion for n < 1, i.e., 1+3(1+λ )(1+2λ )(α −β )ωd > 0 and corresponds

to the accelerated expansion for n > 1, i.e., 1+3(1+λ )(1+2λ )(α −β )ωd < 0 and for

n= 1, i.e., 1+3(1+λ )(1+2λ )(α−β )ωd = 0, the Universe shows the marginal inflation.

In the absence of α = β = 0, we get the scale factor as

a(t) =
[

1+
3(1+λ )H0

(2+3λ )
(t − t0)

] (2+3λ )
3(1+λ )

, (4.2.12)

In the absence of parameter λ , we get a(t) =
[
1+ 3H0

2 (t − t0)
] 2

3 , which is the case of

matter-dominated phase.

4.2.2 Future finite-time singularity

Nojiri et al. [224], Nojiri and Odintsov [225], and Capozziello et al. [226] have classi-

fied the finite-time singularities into four classes. The classifications of the finite-time

singularities was suggested in the following way:
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(i) Type I (big rip): For t → ts, a → ∞, ρ → ∞, |p| → ∞. This also includes the case

of ρ, p being finite at ts,

(ii) Type II (sudden): For t → ts, a → as, ρ → ρs, |p| → ∞,

(iii) Type III : For t → ts, a → as, ρ → ∞, |p| → ∞.

(iv) Type IV: For t → ts, a → ∞, ρ → 0, |p| → 0, and higher derivatives of H diverge.

Here, ts, as, and ρs are constants. Meng et al. [153], Sebastiani [171], Myrzakul

et al. [227] and Khadekar et al. [228] studied finite-time singularity in viscous FRW

models.

In the following, we show that the different choice of parameters may lead to different

finite-time singularity.

The total energy density, i.e., ρ = ρm +ρd is given by

ρ = ρ0 [1+(1+2λαωd +αωd)H0X(t − t0)]
−2 , (4.2.13)

where ρ0 =
3H2

0 [2+λαωd−βλωdX(1+2λαωd+αωd)]
(2+3λ ) .

The total pressure is only the pressure of new HDE model which is given by

p = pd =
3H2

0 ωd [α −βX(1+2λαωd +αωd)]

[1+(1+2λαωd +αωd)H0X(t − t0)]
2 . (4.2.14)

In the above equations, we assume α = 0.8502, β = 0.4817 [74] and ωd = −0.5.

Using these values we get the restriction on λ only. Therefore, if −1 < λ < −0.69533

or 0.676194 < λ < 1.27131 (as calculated by Mathematica software), we find that as

t → ts, a → ∞, ρ → ∞ and |p| → ∞. Thus, we get Type I big-rip singularity at finite time

ts =− 1
(1+2λαωd +αωd)H0 X

+ t0. (4.2.15)

It is also observed that for other values of λ which do not belong to the above ranges,

a → 0, ρ → ∞ and |p| → ∞, which gives Type III singularity.

In the absence of model parameters, i.e., α = 0 and β = 0 we find that a → ∞, ρ → ∞

and |p| → ∞ for λ < −2/3 at a finite time t = ts = − (2+3λ )
3(1+λ )H0

+ t0 which shows big-rip

singularity. It is to be noted that in the absence of λ too, we find there is no future

singularity in this case. We get Big-Bang singularity as a → 0 and ρ → ∞. The elapsed

time between the Big-Bang time till today is tb = t0 − 2
3H0

.
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4.2.3 Behavior of deceleration parameter

To discuss the transition phase, we consider one more parameter which depends

only on the scale factor and its derivatives, known as DP. It is represented by q and

is defined by (1.9.5). It gives a measure of the rate at which the expansion of the

Universe is taking place. The positive value of DP shows that the Universe expands

with decelerated rate and negative value of it imply that the Universe has accelerated

expansion whereas the marginal inflation occurs at q = 0. Using (4.2.11) into (1.9.5),

we get

q = (1+2λαωd +αωd) X −1, (4.2.16)

which is a constant. Therefore, the DP is unable to explain the phase transition of

the Universe. From (4.2.16), we observe that the Universe accelerates for 1+ 3(1+

λ )(1+2λ )(α −β )ωd < 0 and decelerates for 1+3(1+λ )(1+2λ )(α −β )ωd > 0 and has

marginal inflation for 1+3(1+λ )(1+2λ )(α −β )ωd = 0.

4.2.4 Statefinder diagnostic

Now, we discuss this model on the context of geometrical parameter. A new geometri-

cal diagnostic pair to discriminate among dark energy models has been introduced by

Sahni et al. [174] and Alam et al. [175] and are defined by Eq. (1.11.1). These pair are

known as statefinder parameters and are represented as {r,s}. Now, by substituting

the required values in (1.11.1) we get the statefinder pair for non-viscous new HDE

model as

r = 1−3(1+2λαωd +αωd) X +2(1+2λαωd +αωd)
2 X2. (4.2.17)

Similarly, the corresponding value of s can be obtained as

s =
2(1+2λαωd +αωd) X

3
, (4.2.18)

which are independent of the cosmic time and depend on λ , α, β and ωd. This pair

will correspond to the SCDM model for the particular combination which satisfy the

restriction (2α −3β ) = λ
(1+λ )(1+2λ )ωd

. There is no such values of the parameter which

can directly corresponds to ΛCDM model but in the limiting case when λ →−1, our

model will approach to ΛCDM model.

Thus, we conclude that the non-viscous new HDE model in f (R,T ) theory is un-
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able to explain the phase-transition. Therefore, to observe the possibility of phase

transition, we extend our work to constant viscous new HDE model in f (R,T ) theory.

4.3 Bulk viscous new HDE model in f (R,T ) gravity

Now, we discuss bulk viscous new HDE model in f (R,T ) gravity theory. Because of

the assumed isotropic and homogeneity of the model, the shear viscosity plays no

role, and only the bulk viscosity ζ has to be considered. In general, the presence of

ζ does not have any influence upon the (00)-component of the equations of motion.

The only change in the formalism because of viscosity is that the thermodynamical

pressure p replaced with the effective pressure p̃d, defined as p̃d = pd −3ζ H, where ζ

stands for bulk viscosity coefficient. This form was originally proposed by Eckart [151].

Many authors [155, 170, 229, 230] have used Eckart approach to explain the recent

acceleration of the Universe with bulk viscous fluid. This motivates us to use Eckart

formalism on viscous term, especially when one tries to look at recent acceleration of

the Universe with f (R,T ) gravity.

In f (R,T ) theory when it is considered the effective pressure, the matter Lagrangian

is Lm = −p̃d. Therefore, Eq. (1.7.22) gives ⊖ = −2Tµν − p̃dgµν , where the trace T

takes the form of T = ρm +ρd −3(pd −3ζ H).

Using f (T ) = λT , the field equations (4.2.1) and (4.2.2) for the viscous new HDE

model in f (R,T ) theory modify to

3H2 = ρm +ρd +λ (ρm +ρd + pd −3ζ H)+
1
2

λT, (4.3.1)

2Ḣ +3H2 =−pd +3ζ H +
1
2

λT. (4.3.2)

From dynamical equations (4.3.1) and (4.3.2), a single evolution equation for H can be

obtained as

2Ḣ +(1+λ )[ρm +(1+ωd)ρd]−3(1+λ )ζ H = 0. (4.3.3)

Using Granda and Oliveros [73] new HDE density as defined in (1.7.14) into (4.3.1),

we get

ρm =
3

(2+3λ )

[
(2−2α −3λα +λαωd)H2 −λζ H −β (2+3λ −λωd)Ḣ

]
. (4.3.4)
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Using (4.3.4) into (4.3.3), we finally get

Ḣ +(1+2λαωd +αωd) X H2 − (1+2λ )ζ X H = 0. (4.3.5)

4.4 Solution with constant bulk viscous new HDE model

In this section we solve (4.3.5) with constant bulk viscous coefficient (ζ = ζ0 = const.)

to get the solution for the scale factor, future finite-time singularity, DP, statefinder pair

and Om diagnostic.

4.4.1 Evolution of the scale factor

On solving (4.3.5), we get the Hubble parameter H in terms of cosmic time t as

H(t) =
H0e(1+2λ )ζ0X(t−t0)

1+ (1+2λαωd+αωd)H0
(1+2λ )ζ0

{
e(1+2λ )ζ0X(t−t0)−1

} . (4.4.1)

The corresponding scale factor is obtained as

a(t) =
[
1+

(1+2λαωd +αωd)H0

(1+2λ )ζ0

{
e(1+2λ )ζ0X(t−t0)−1

}] 1
(1+2λαωd+αωd ) X

. (4.4.2)

Here, in the flat case, we can safely choose a0 = 1 as the present scale factor. From

(4.4.2), it is observed that the scale factor is of the exponential form. We can observe

the phase transition in the evolution of the Universe. In early stages of evolution of the

Universe, the scale factor can be approximated as,

a(t)→
[
1+H0(1+2λαωd +αωd)X(t − t0)

] 1
(1+2λαωd+αωd )X , (4.4.3)

which shows a power-law expansion. As (t − t0)→ ∞, the scale factor behaves as

a(t)→
[
exp((1+2λ )ζ0X(t − t0))

]
. (4.4.4)

Thus, a de Sitter type Universe is obtained in late time evolution. Therefore, the

scale factor is approximately power-law expansion at sufficiently early time, which

corresponds to the decelerated epoch, and it evolves exponentially with time in future

epoch, corresponding to the de Sitter phase. This asymptotic behavior indicates the

transition from the early decelerated phase to a late time accelerated phase. The
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behavior of scale factor with (t − t0) for best values of parameters is shown in Fig. 4.1.

We consider the observational values of model parameters α = 0.8502, β = 0.4817

[74], ωd =−0.5 and λ = 0.06. It is to be noted that if one can assume negative value

of λ but the evolution of the scale factor is similar. The value of the scale factor at

which the phase transition from deceleration to acceleration take place, is depend on

the bulk viscous coefficient ζ0.

Ζ0= 0

Ζ0= 0.05

Ζ0= 0.09Ζ0= 0.2

Ζ0= 0.45

Ζ0= 0.01

0 2 4 6
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Figure 4.1: The evolution of the a versus (t − t0) for ζ0 > 0 taking α = 0.8502, β = 0.4817,
ωd =−0.5 and λ = 0.06. The dot on each curve denotes the transition time.

Now, for further analysis about the evolution, let us rewrite the Hubble parameter as

H(a) =
(1+2λ )H0

(1+2λαωd +αωd)

[ ζ0

H0
+
{(1+2λαωd +αωd)

(1+2λ )
− ζ0

H0

}
a−(1+2λαωd+αωd)X

]
.

(4.4.5)

From (4.4.5), we can obtain dȧ
da as,

dȧ
da

=
(1+2λ )H0

(1+2λαωd +αωd)

[
ζ0

H0
−
{
(1+2λαωd +αωd)

(1+2λ )
− ζ0

H0

}

×
(

1+3(1+λ )(1+2λ )(α −β )ωd

2+3λ +3β (1+λ )(1+2λ )ωd

)
a−(1+2λαωd+αωd)X

]
. (4.4.6)

Equating to zero, we can obtain the transition scale factor aT as

aT =

[{
{1+3(1+λ )(1+2λ )(α −β )ωd}

(1+2λ ){2+3λ +3β (1+λ )(1+2λ )ωd}ζ0

}

×

{
(1+2λαωd +αωd)H0 − (1+2λ )ζ0

}] 1
(1+2λαωd+αωd )X

. (4.4.7)

where the subscript T stands for transition. Using the relation a = (1+ z)−1, we can
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obtain the corresponding transition redshift zT as

zT =

[{
{1+3(1+λ )(1+2λ )(α −β )ωd}

(1+2λ ){2+3λ +3β (1+λ )(1+2λ )ωd}ζ0

}

×

{
(1+2λαωd +αωd)H0 − (1+2λ )ζ0

}]− 1
(1+2λαωd+αωd )X

−1. (4.4.8)

From (4.4.7) and (4.4.8), we observe that the phase transition from deceleration to

acceleration occurs at present time (aT = 1 or zT = 0) for

ζ0 =
{1+3(1+λ )(1+2λ )(α −β )ωd}H0

3(1+λ )(1+2λ )

The transition from deceleration to acceleration take place in late time (a(t)> 1) for

ζ0 <
{1+3(1+λ )(1+2λ )(α −β )ωd}H0

3(1+λ )(1+2λ )

and it takes place in past (0 < a(t)< 1) for

ζ0 >
{1+3(1+λ )(1+2λ )(α −β )ωd}H0

3(1+λ )(1+2λ )

As ζ0 → 0, aT → ∞ in future.

The transition expression with respect to time can be obtained by equating the sec-

ond derivative of a with respect to time. Then, the second derivative of (4.4.2) with

respect t can be obtain as

d2a
dt2 = H2

0

(
e2(1+2λ )ζ0 X (t−t0)

)[
1+

X [(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

H0 e(1+2λ )ζ0 X (t−t0)

]

×

[
1+

(1+2λαωd +αωd)H0

(1+2λ )ζ0

{
e(1+2λ )ζ0 X (t−t0)−1

}] 1
(1+2λαωd+αωd ) X − 2

. (4.4.9)

Now, the transition cosmic time (ttrans) between decelerated to accelerated epochs

is calculated by equating (4.4.9) to zero. Thus, we get

ttrans = t0 +
1

X (1+2λ )ζ0
ln

{
X [(1+2λαωd +αωd)H0 − (1+2λ )ζ0]

H0

}
. (4.4.10)

Figure 4.1 shows that the acceleration can be achieved in future for the small values

of ζ0, however, it can be achieved in early for large values of ζ0. It can be observed
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that the scale factor begins to accelerate from infinite past for ζ0 = 0.45 and it begins

to accelerate in very late time for ζ0 = 0.01. For ζ0 > 0.45, we have an Universe which

expands forever. In the absence of viscous term, i.e., ζ0 = 0, the scale factor has the

power-law form and the expansion takes place with decelerated rate as shown by the

first trajectory in Fig. 4.1.

4.4.2 Future finite-time singularity

We have already defined the four types of singularities in subsection 4.2.2. Here, we

will discuss these four singularities in case of constant viscous new HDE model in

f (R,T ) gravity.

Let us find the total energy density which is given by

ρ =
3H0e(1+2λ )ζ0 X (t−t0)

(1+2λ )(2+3λ )

[
(2+3λ )H0e(1+2λ )ζ0 X (t−t0)−λ{1−αβ X ωd(1+2λ )}

× [(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

]

×

[
1+

(1+2λαωd +αωd)H0

(1+2λ )ζ0

{
e(1+2λ )ζ0 X (t−t0)−1

}]−2

. (4.4.11)

The total pressure of the new HDE in the presence of viscosity is pe f f = p̃d = pd −

3ζ H, can be evaluated as

pe f f =
3H0e(1+2λ )ζ0 X (t−t0)

(1+2λ )

[
{β X ωd(1+2λ )−1}[(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

−H0e(1+2λ )ζ0 X (t−t0)

][
1+

(1+2λαωd +αωd)H0

(1+2λ )ζ0

{
e(1+2λ )ζ0 X (t−t0)−1

}]−2

.

(4.4.12)

On considering ωd =−0.5, α = 0.8502, β = 0.4817 and H0 = 1, we obtain that for −1<

λ <−0.69533 or 0.676194 < λ < 1.27131 (as calculated by Mathematica software), we

have a → ∞, ρ → ∞ and |p̃d| → ∞, which shows the Type I big-rip singularity at a finite

time

ts =
1

X ζ0(1+2λ )
ln

[
1− (1+2λ )ζ0

(1+2λαωdαωd)H0

]
+ t0. (4.4.13)

For other values of λ (excluding the mentioned interval), we obtain that at this finite

time a → 0, ρ → ∞ and |pe f f | → ∞, which shows the Type III singularity.
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In the absence of model parameters α and β , the big-rip singularity depends on

only λ . Thus, for λ <−2/3 we have a → ∞, ρ → ∞ and |pe f f | → ∞ at finite-time

ts =
(2+3λ )

3ζ0(1+λ )(1+2λ )
ln
(

1− (1+2λ )ζ0

H0

)
+ t0. (4.4.14)

The age of the Universe can be deduced from the scale factor (4.4.2) by equating it

to zero. The time elapsed since the Big Bang is given by Eq. (4.4.13) replacing ts by

tb. Hence the age of the Universe since Big bang is

Age ≡ t0 − tb

=− (2+3λ )
3ζ0(1+λ )(1+2λ )

ln
(

1− (1+2λ )ζ0

H0

)
. (4.4.15)

4.4.3 Behavior of deceleration parameter

Now, we verify the results with the help of DP which is defined in (1.9.5). The DP for

constant viscous new HDE model in f (R,T ) is calculated as

q(t) =
{{(1+2λαωd +αωd)H0 − (1+2λ )ζ0} X

H0

}
e−(1+2λ )ζ0 X (t−t0)−1. (4.4.16)

We observe that the DP is time-dependent when we include the constant bulk vis-

cosity in the matter. It is now possible to describe the phase transition of the Universe.

The DP from Eq. (4.4.16) can be rewritten as

q(a) = X [(1+2λαωd +αωd)H0 − (1+2λ )ζ0]

×

[
(1+2λαωd +αωd)(

a(1+2λαωd+αωd) X −1
)
(1+2λ )ζ0 +(1+2λαωd +αωd)H0

]
−1.

(4.4.17)

The DP in terms of redshift z is

q(z) = X [(1+2λαωd +αωd)H0 − (1+2λ )ζ0]

×

[
(1+2λαωd +αωd)(

(1+ z)−(1+2λαωd+αωd) X −1
)
(1+2λ )ζ0 +(1+2λαωd +αωd)H0

]
−1.

(4.4.18)
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In the absence of bulk viscous parameter and all other model parameters, the value

of DP q is 1/2, which corresponds to a decelerating matter-dominated Universe with

null bulk viscosity. However, when only the bulk viscous term ζ0 = 0, the value of q is

same as obtained in Eq. (4.2.16) for non-viscous new HDE model.

The present value of q corresponds to z = 0 or a = 1 is,

q0 =
{(1+2λαωd +αωd)H0 − (1+2λ )ζ0} X

H0
−1. (4.4.19)

Note that when the whole fraction part on right hand side of (4.4.19) equals to 1, the

transition from decelerated to accelerated epochs takes place today. If the same term

is less than one, we have an accelerated epoch while if it is greater than one, the

decelerated epoch occurs.

We can observe the evolution of the Universe for different ranges of λ with respec-

t to the viscous coefficient ζ0 for ωd > −1, ωd = −1 and ωd < −1. We summarize

the evolution in Tables 4.1– 4.3 for different ranges of λ which shows deceleration or

acceleration or phase transition according to the constraint on the bulk viscous coeffi-

cient ζ0. We assume the observational value of the model parameters α = 0.8502 and

β = 0.4817 [74].

In Table 4.1, we analyse the evolution of the Universe for ωd = −0.5 along with

the observational values of model parameters α = 0.8502 and β = 0.4817. We ob-

serve that for any positive value of ζ0, i.e., ζ0 > 0, the model corresponds to the

decelerated expansion throughout the evolution for λ ≥ 1.272, −0.69 ≤ λ ≤ −0.5 and

λ < −1.73, and the model corresponds to the accelerated expansion throughout the

evolution for 0.24 ≤ λ < 1.272 and −1 ≤ λ < −0.69. For smaller values of ζ0, i.e.,

0 < ζ0 < {1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) , the Universe shows the phase transition from posi-

tive to negative for −0.5 < λ < 0.24 and shows the phase transition from negative to

positive for −1.73 ≤ λ <−1. The larger values of ζ0, i.e., ζ0 ≥ {1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) ,

shows that the Universe represents the accelerated expansion throughout the evo-

lution for −0.5 < λ < 0.24 and represents the decelerated expansion throughout the

evolution for −1.73 ≤ λ <−1.

Table 4.2 represents the analysis of the evolution of the Universe for ωd = −1 a-

long with the same observational values of model parameters. We observe that

for any positive value of ζ0, the model corresponds to the decelerated expansion

throughout the evolution for λ ≥ 0.265, −0.727 < λ ≤ −0.5 and λ < −1.46 ranges
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Table 4.1: Variation of q for ωd =−0.5, α = 0.8502, β = 0.4817

λ Constraints on ζ0 q Evolution of Universe
λ ≥ 1.272 For all ζ0 > 0 Positive Decelerated expansion

0.24 ≤ λ < 1.272 For all ζ0 > 0 Negative Accelerated expansion
−0.5 < λ < 0.24 0 < ζ0 <

{1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) +ve to −ve Trans. from dec. to acc.

ζ0 ≥ {1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.69 ≤ λ ≤−0.5 For all ζ0 > 0 Positive Decelerated expansion
−1 ≤ λ <−0.69 For all ζ0 > 0 Negative Accelerated expansion
−1.73 ≤ λ <−1 0 < ζ0 <

{1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) −ve to +ve Trans. from acc. to dec.

ζ0 ≥ {1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.73 For all ζ0 > 0 Positive Decelerated expansion

of λ , and the model corresponds to the accelerated expansion throughout the evo-

lution for −0.032 ≤ λ < 0.265 and −1 ≤ λ ≤ −0.727. For smaller values of ζ0, i.e.,

0 < ζ0 < {1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) , the Universe shows the phase transition from decel-

eration to acceleration for −0.5 < λ < −0.032 and shows the phase transition from

acceleration to deceleration for −1.46 ≤ λ < −1. The larger values of ζ0, i.e., ζ0 ≥
{1−1.1055(1+λ )(1+2λ )}H0

3(1+λ )(1+2λ ) , shows that the Universe represents the accelerated expansion

throughout the evolution for −0.5 < λ < −0.032 and represents the decelerated ex-

pansion throughout the evolution for −1.46 ≤ λ <−1.

In Table 4.3, we consider the value of ωd < −1, e.g., ωd = −1.1414 and the same

observational values of model parameters. In this we observe that for any posi-

tive value of ζ0, the model shows the decelerated expansion throughout the evolu-

tion for λ ≥ 0.145, −0.735 ≤ λ ≤ −0.5 and λ < −1.42, and the model corresponds

to the accelerated expansion throughout the evolution for −0.072 ≤ λ < 0.145 and

−1 ≤ λ < −0.735. The smaller values of ζ0, i.e., 0 < ζ0 <
{1−1.26182(1+λ )(1+2λ )}H0

3(1+λ )(1+2λ ) , the

Universe transits from decelerated to accelerated one for −0.5 < λ <−0.072 and tran-

sits from accelerated to decelerated one for −1.42 ≤ λ < −1. For the larger values

of ζ0, i.e., ζ0 ≥ {1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) , the Universe represents the accelerated ex-

pansion throughout the evolution for −0.5 < λ < −0.072 and shows the decelerated

expansion throughout the evolution for −1.42 ≤ λ <−1.
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Table 4.2: Variation of q for ωd =−1, α = 0.8502, β = 0.4817

λ Constraints on ζ0 q Evolution of Universe
λ ≥ 0.265 For all ζ0 > 0 Positive Decelerated expansion

−0.032 ≤ λ < 0.265 For all ζ0 > 0 Negative Accelerated expansion
−0.5 < λ <−0.032 0 < ζ0 <

{1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) +ve to −ve Trans. from dec. to acc.

ζ0 ≥ {1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.727 < λ ≤−0.5 For all ζ0 > 0 Positive Decelerated expansion
−1 ≤ λ ≤−0.727 For all ζ0 > 0 Negative Accelerated expansion
−1.46 ≤ λ <−1 0 < ζ0 <

{1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) −ve to +ve Trans. from acc. to dec.

ζ0 ≥ {1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.46 For all ζ0 > 0 Positive Decelerated expansion

Table 4.3: Variation of q for ωd =−1.1414, α = 0.8502, β = 0.4817

λ Constraints on ζ0 q Evolution of Universe
λ ≥ 0.145 For all ζ0 > 0 Positive Decelerated expansion

−0.072 ≤ λ < 0.145 For all ζ0 > 0 Negative Accelerated expansion
−0.5 < λ <−0.072 0 < ζ0 <

{1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) +ve to −ve Trans. from dec. to acc.

ζ0 ≥ {1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.735 ≤ λ ≤−0.5 For all ζ0 > 0 Positive Decelerated expansion
−1 ≤ λ <−0.735 For all ζ0 > 0 Negative Accelerated expansion
−1.42 ≤ λ <−1 0 < ζ0 <

{1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) −ve to +ve Trans. from acc. to dec.

ζ0 ≥ {1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.42 For all ζ0 > 0 Positive Decelerated expansion
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4.4.4 Statefinder diagnostic

In the presence of constant bulk viscous coefficient, we get the exponential form of

scale factor and time-dependent value of the DP which explain the phase transition

of the Universe. Let us evaluate the statefinder parameters for the constant viscous

new HDE model to discriminate our model with respect to existing DE models. In this

case, the statefinder parameters are calculated as

r = 1+

[(
1− X (1+2λαωd +αωd)

3

)(
3 X [(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

H0 e(1+2λ )ζ0 X (t−t0)

)]

+

[
X2[(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

2

H2
0 e2(1+2λ )ζ0 X (t−t0)

]
, (4.4.20)

and

s =

2 X
(

1− X (1+2λαωd+αωd )
3

)
[(1+2λ )ζ0−(1+2λαωd+αωd)H0]

3H0e(1+2λ )ζ0 X (t−t0)
+ 2 X2[(1+2λ )ζ0−(1+2λαωd+αωd)H0]

2

9H2
0 e2(1+2λ )ζ0 X (t−t0)

2 X [(1+2λαωd+αωd)H0−(1+2λ )ζ0]

3H0e(1+2λ )ζ0 X (t−t0)
−1

.

(4.4.21)

From (4.4.20) and (4.4.21), it is clear that due to the presence of viscosity, we get

the time-dependent values of the statefinder parameters. The trajectories in r− s and

r− q planes for different values of ζ0 and fixed positive value of λ are shown in Fig.

4.2 and Fig. 4.3, respectively. Similarly, the trajectories in r− s and r− q planes for

different values of ζ0 and fixed negative value of λ are shown in Fig. 4.4 and Fig. 4.5,

respectively. In all figures we take α = 0.8502, β = 0.4817, ωd =−0.5 and H0 = 1.

If we look Fig. 4.2 and Fig. 4.4, we find that a vertical line passing through (1,0)

divides r− s plane into two regions. The right side of the vertical region which is r < 1,

s > 0, belongs to a model similar to quintessence(Q model) [174, 175]. The other

region on left side of vertical line which has r > 1, s < 0, belongs to a model similar to

Chaplygin gas (CG) model [217]. Fig. 4.2 and Fig. 4.4 represent the r− s trajectories

for λ = 0.06 and λ = −0.06 for different values of ζ0, respectively. In figures stars

represent the fixed point values of the parameters, i.e., {r,s}= {1,1} and {r,s}= {1,0}

with respect to SCDM and ΛCDM, respectively and arrows show the direction of the

trajectories. For the present Universe, the statefinder parameters take the form
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r0 = 1+

[(
1− X (1+2λαωd +αωd)

3

)(
3 X [(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

H0

)]

+

[
X2[(1+2λ )ζ0 − (1+2λαωd +αωd)H0]

2

H2
0

]
, (4.4.22)

and

s0 =

2 X
(

1− X (1+2λαωd+αωd )
3

)
[(1+2λ )ζ0−(1+2λαωd+αωd)H0]

3H0
+ 2 X2[(1+2λ )ζ0−(1+2λαωd+αωd)H0]

2

9H2
0

2 X [(1+2λαωd+αωd)H0−(1+2λ )ζ0]
3H0

−1
.

(4.4.23)
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Figure 4.2: The r − s trajectory of the bulk viscous new HDE model for ζ0 > 0 and fixed
positive value λ = 0.06 and ωd =−0.5.

In Fig. 4.2, for 0 < ζ0 ≤ 0.46, the trajectories during the early time lie in the region

r < 1, s > 0, which is the general behavior of any Q model and approaches to ΛCDM

in late time. However, the trajectories lie in r > 1, s < 0 for ζ0 > 0.46, which is the

general behavior of CG model and tends to ΛCDM in late time. Similarly, in Fig. 4.4

for 0 < ζ0 ≤ 0.71, the trajectory starts in Q region during early time and tends to ΛCDM

in late time. It starts from CG region for ζ0 > 0.71 and approaches to ΛCDM in late

time. Thus, the constant viscous new HDE model is compatible with Q model for small

values of ζ0 whereas it is compatible with CG model for large values of ζ0, irrespective

of values of λ , either positive or negative. It is to be noted that all the trajectories
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Figure 4.3: The r − q trajectory of the bulk viscous new HDE model for ζ0 > 0 and fixed
positive value λ = 0.06 and ωd =−0.5.

of Q and CG regions coincide on each other for any value of ζ0 with λ = 0.06 and

λ =−0.06, respectively.

In Fig. 4.4, we observe that for some small values of ζ0 (e.g., ζ0 = 0.05) the tra-

jectory starts from the vicinity of the SCDM model. Our constant viscous new HDE

model also discriminates from HDE model with event horizon as the IR cutoff in which

the evolution starts in r ∼ 1, s ∼ 2/3 and ends on the ΛCDM model. This model is

also discriminated from Ricci dark energy model [216], where the r− s trajectory is a

vertical segment, i.e., s is a constant during the evolution of the Universe.

The r−q trajectories are plotted in Fig. 4.3 and Fig. 4.5 for λ = 0.06 and λ =−0.06,

respectively, along with the observational value of model parameters α = 0.8502 and

β = 0.4817 for different values of ζ0. Here, the stars represent the fixed point values

{r,q}= {1,0.5} and {r,q}= {1,−1} for SCDM and Steady State (SS) models, respec-

tively, and the horizontal line at r = 1 shows the time evolution of the ΛCDM. The

direction of evolution is shown by arrow. In both the figures, there is the change of

sign in q, i.e., from +ve to −ve in quintessence region for small values of ζ0 and q

transits from phantom region to SS for large values of ζ0. This shows that the phase

transition occurs for both positive and negative values of λ . In both cases, the model

approaches to SS model in future time from both regions as ΛCDM, Q and CG models

approach to SS model in late time. The trajectories for different values of ζ0 coincide

to each other. Some trajectories start earlier and some starts in later. From Fig. 4.5,

we observe that for small values of ζ0 (e.g., ζ0 = 0.05), the r−q trajectory starts from
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Figure 4.4: The r − s trajectory of the bulk viscous new HDE model for ζ0 > 0 and fixed
negative value λ =−0.06 and ωd =−0.5.
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Figure 4.5: The r − q trajectory of the bulk viscous new HDE model for ζ0 > 0 and fixed
negative value λ =−0.06 and ωd =−0.5.
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the neighbourhood of the SCDM model in Q region.

4.4.5 Om diagnostic

Now, we discuss the nature of new HDE density with respect to a geometrical tool

which is defined by (1.11.2) and known as Om diagnostic. By substituting the required

values in (1.11.2), we get

Om(z) =

(1+2λ )2
{

ζ0
H0

+
(

1+2λαωd+αωd
(1+2λ ) − ζ0

H0

)
(1+z) X (1+2λαωd+αωd )

}2

(1+2λαωd+αωd)2 −1

[(1+ z)3 −1]
. (4.4.24)

To analyze the behaviour of viscous new HDE, we plot the graph for Om(z) trajectory

for different values of ζ0 and fixed positive and negative values of λ with observational

value of model parameters α = 0.8502 and β = 0.4817. Fig. 4.6 represents the Om(z)

trajectory with respect to redshift z for different values of ζ0 and the fixed positive value

of λ = 0.06, H0 = 1, ωd =−0.5. It is observed that for 0 < ζ0 ≤ 0.46, the negative slope

of Om trajectory is observed, i.e., the new HDE behaves as quintessence like for this

range of ζ0, whereas, the positive slope of the Om trajectory is observed for ζ0 > 0.46,

i.e., in this range the new HDE mimic to the phantom like.
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Figure 4.6: The Om(z) evolutionary diagram for ζ0 > 0 and fixed λ = 0.06

Fig. 4.7 shows the Om(z) trajectory for the negative value of λ (e.g., λ = −0.06),

H0 = 1 and ωd = −0.5. We observe that the Om(z) trajectory shows the negative

curvature for 0 < ζ0 ≤ 0.71, i.e., the new HDE corresponds to the quintessence for

this range and the positive curvature is observed for ζ0 > 0.71, i.e., the new HDE

behaves as phantom. In the late time of evolution when z = −1, we get Om(z) =

1− (1+2λ )2ζ 2
0

(1+2αλωd+αωd)2H2
0
, which is the constant value of Om(z), i.e., zero curvature. Thus,
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Figure 4.7: The Om(z) evolutionary diagram for ζ0 > 0 and fixed λ =−0.06

in late time the new HDE corresponds to ΛCDM.

4.4.6 Thermodynamics and local entropy

In the FRW line element, the law of generation of the local entropy is found to be

[4,231]

T▽νsν = ζ (▽νuν)2 = 9H2ζ , (4.4.25)

where T stands for temperature and ▽νsν represents the rate at which entropy is being

generated in unit volume. The second law of thermodynamics is

T▽νsν ≥ 0, (4.4.26)

which implies from (4.4.25) that 9H2ζ ≥ 0. Since for the expanding Universe, the value

of Hubble parameter is positive, then to satisfy the second law of thermodynamics,

the viscous coefficient ζ0 must be positive. Therefore, Eq. (4.4.26) implies that

ζ = ζ0 ≥ 0. (4.4.27)

Thus from Eq. (4.4.27), we observe that the viscous coefficient is always positive, i.e.,

ζ0 > 0 which shows the validity of the local second law of thermodynamics.

4.5 Conclusion

From the viewpoint of the fluid description and the current cosmological observational

data, there is no reason for excluding the imperfect fluid due to the presence of a bulk

viscosity. This bulk viscosity is introduced in energy-momentum tensor through an
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additional term −3ζ H, where the whole term represents the bulk viscous pressure of

the fluid.

In this chapter, we have performed a detailed dynamical analysis for viscous cosmol-

ogy in the Eckart’s formalism. In our study we have considered the total cosmic fluid

constituted by pressureless DM and viscous new HDE. The bulk viscous coefficient ζ

is assumed as a constant, whereas the other components are assumed to behave as

perfect fluids with constant EoS parameter. We have discussed the non-viscous and

constant viscous cosmological new HDE model in f (R,T ) theory with new IR cutoff

proposed by Granda and Oliveros [73]. Since this new HDE model depends only on

local quantities, so it avoids the causality problem which occur while studying the HDE

model based on event horizon. Thus, this new HDE model can be considered as a

phenomenological model for HDE. We have investigated the actions of some viscous

cosmology in new HDE model, with the hope to demonstrate that the bulk viscosity

can also play the role as a possible candidate of DE. We have performed a detailed s-

tudy of both non-viscous and constant viscous new HDE models. Some cosmological

parameters and their evolution have been computed. Some geometrical parameters:

statefinder and Om, have also been studies.

In section 4.2, we have presented a non-viscous new HDE model in f (R,T ) gravity

theory. The scale factor has been obtained for this model which gives power-law

expansion. The nature of the expansion depends on the constraint of parameters

used in the model. The model decelerates, accelerates or show marginal expansion

under the constraints. Type I (big-rip) and Type III singularities have been discussed

which occur under certain constraints of λ . In the absence of all parameters the model

behaves like matter-dominated which has big bang singularity at tb = t0 − 2
3H0

. We

could see that the model we discussed above falls basically into the Type I category,

that is, the so-called “Big Rip” singularity. The DP comes out to be constant and

hence the transition can not be observed for this case. However, the constant value of

statefinder pair is obtained and there exist no such exact value of parameters which

clearly represent the ΛCDM.

Section 4.3 provides the field equations of viscous new HDE model in f (R,T ) grav-

ity theory. The bulk viscous coefficient is taken as a constant, i.e., ζ = ζ0 =const.. In

section 4.4, the solutions of different cosmological parameters have been obtained.

We have found the scale factor as an exponential type which shows accelerated ex-

pansion of the Universe. The asymptotic behavior of the scale factor shows that the
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transition from an early deceleration to late acceleration. This shows that the constant

viscous new HDE model has an earlier decelerated phase followed by an accelerated

phase in late time. The evolution of scale factor is shown in Fig. 4.1. In this case,

we have discussed future finite-time singularity and observed the finite-time Type I

(big-rip) and Type III singularities under the constraints on λ . The transition scale

factor and redshift are obtained and transition at present time is calculated. We have

also obtained the transition time between decelerated to accelerated epochs. Fig. 4.1

shows that for small values of ζ0, we get late time acceleration for positive or negative

value of λ . However, we get early acceleration for large values of ζ0. The trend of the

evolution of scale factor is: the larger the bulk viscosity, more early acceleration and

smaller the value of ζ0, late time acceleration occur during the evolution.

The evolution of DP is obtained, which is time-dependent and describes the phase

transition of the Universe. We have expressed q in terms of a and z and have analyzed

starting of the present time transition from decelerated to accelerated phase. We have

observed the evolution of the Universe for different ranges of λ and corresponding

constraints of ζ0 for ωd >−1, ωd =−1 and ωd <−1 and α = 0.8502 and β = 0.4817. The

nature of q and its corresponding evolution of the Universe (deceleration, acceleration

or transition between these two epochs) are summarized in tables 4.1–4.3.

We have studied this model from viewpoint of statefinder and Om diagnostics. As we

know the statefinder diagnostic is a crucial tool for discriminating different DE models.

We have calculated the evolution of new HDE model in the statefinder plane r− s for

different values of viscous coefficient ζ0. The statefinder trajectory are dependent on

viscous term ζ0 and geometry term λ . We have plotted two r−s planes in Fig. 4.2 and

Fig.4.4 for positive and negative values of λ , respectively. We have obtained curved

trajectory starting from both regions (quintessence and Chaplygin gas) depending

on the values of ζ0. The trajectory starts from quintessence region for the range

0 < ζ0 ≤ 0.46 and it starts from Chaplygin gas region for ζ0 > 0.46 as shown in Fig.

4.2. Similarly, in Fig. 4.4 the trajectory starts from quintessence region for the range

0 < ζ0 ≤ 0.71 and it starts from Chaplygin gas region for ζ0 > 0.71. The trajectories are

coinciding with each other in both quintessence and Chaplygin gas regions. However,

the trajectory approaches to ΛCDM in late time from both the regions. This constant

viscous new HDE model discriminates from viscous Ricci dark energy [216] where

the value of s is constant. It also discriminates from HDE model with event horizon as

an IR cutoff.
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We have also performed the statefinder diagnostic in r−q plane for constant viscous

new HDE model for different values of ζ0 by taking positive and negative value of λ ,

which are shown in Figs. 4.3 and 4.5, respectively. The evolutionary trajectories in

r−q plane start from positive q in quintessence region and tend to q =−1, r = 1 in late

time for the range 0 < ζ0 ≤ 0.46, but the trajectories in r−q plane start from negative

q in phantom region and tend to q = −1, r = 1 in late time for ζ0 > 0.46 as shown in

Fig. 4.3. Similar trajectories can be seen in Fig. 4.5 for negative λ and 0 < ζ0 ≤ 0.71

and ζ0 > 0.71, respectively. The trajectory clearly shows that there is transition from

decelerated phase to accelerated phase whereas some trajectories show that there

is through out acceleration.

We have also studied Om for this model. We have plotted the trajectory in Om− z

plane as shown in Figs. 4.6 and 4.7 for different values of ζ0 with fixed positive and

negative values of λ , respectively. In Fig. 4.6, it is observed that for 0 < ζ0 ≤ 0.46, the

Om− z trajectory shows the negative slope, i.e., new HDE mimic like quintessence

and for ζ0 > 0.46, we have observed the positive slope of Om, i.e., new HDE behaves

as phantom. Similar trajectory can be observed in Fig. 4.7 for negative λ and 0 < ζ0 ≤

0.71 and ζ0 > 0.71, respectively. In late time when z → −1, Om tends to a constant

value, i.e., zero curvature, which corresponds to ΛCDM.

Finally, the thermodynamics and the local entropy have been discussed for the mod-

el. It has been observed that the model preserves the validity of the second law of

thermodynamics as ζ0 remains positive through out the evolution of the Universe.

In conclusion, we can say that the constant bulk viscosity plays an important role

in defining the DE. By addition of constant viscous term, one can observe that the

Universe shows the transition from decelerated phase to accelerated phase. The vis-

cous new HDE model is compatible with quintessence and Chaplygin gas like models

for small and large values of ζ0, but approaches to ΛCDM in late time. The model

also discriminates with other model like Ricci dark energy and HDE with event hori-

zon. Thus, the new HDE model suitably describes the DE concept in f (R,T ) in the

presence of constant bulk viscosity.



Chapter 5

Thermodynamics of bulk viscous new

holographic dark energy in f (R,T )

gravity

This chapter1 is the extension of the previous chapter for the most general form of bulk

viscosity ζ = ζ0+ζ1H, where ζ0 and ζ1 are constants, in f (R,T ) gravity. We obtain the

scale factor and DP and classify all the possible scenarios (deceleration, acceleration

and their transition) with different parameter regions chosen properly for positive and

negative ranges of λ , and ζ0 and ζ1 to analyze the evolution of the Universe. We

also graphically discuss the evolution of scale factor and obtained the transition from

decelerated phase to accelerated phase. We investigate the statefinder pair {r,s} and

Om diagnostic for this viscous model to discriminate from other existing DE models.

The model evolution behaviors are shown in the planes of r − s, r − q and Om− z.

The evolution of effective EoS parameter is also shown graphically. The entropy and

generalized second law of thermodynamics are found to be valid for this model under

some constraints on bulk viscous coefficient.

1The work presented in this chapter comprises the results of a research paper entitled “Evolution and ther-
modynamics of bulk viscous new holographic dark energy in f (R,T ) gravity, Communicated in a journal, [arX-
iv:1804.05693 [gr-qc]], (2018)”.
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5.1 Introduction

In literature [130–148], a number of work has been done to explain the different phas-

es of the Universe in the framework of the f (R,T ) theory. Modified gravity theories

have rich dynamics. It is thus interesting to study reconstructing those modified gravi-

ty theories using the dynamics of HDE. Thus, here we study the new HDE model with

variable bulk viscosity in the framework of the f (R,T ) theory to explain the different

consequences of the expansion of the Universe.

In the previous work, we have studied new HDE with constant bulk viscosity in

f (R,T ) gravity and have discussed the evolution of the Universe. In this chapter,

a most general form of bulk viscous coefficient ζ = ζ0 + ζ1H, where ζ0 and ζ1 are

constants, has been assumed to discuss the evolution of the Universe. The effect

of time-dependent bulk viscous term in new HDE model within the context of f (R,T )

gravity, on the study of the evolution of the Universe is discussed in detail.

In this model, we discuss how the presence of viscous fluid could produce the late

time acceleration. The viscous new HDE model gives time-dependent deceleration

parameter which shows phase transition. We also frame table representation to ex-

plain all scenarios (deceleration or acceleration or phase transition) of the evolution of

the Universe with respect to deceleration parameter by constraining the coefficient ζ0.

ζ1 and coupling parameter λ . We also extend the work to discriminate the new HDE

model with other existing DE models with the help of two independent geometrical di-

agnostics, namely statefinder pair and Om. The effective equation of state parameter,

entropy and generalized second law of thermodynamics are also discussed.

5.2 Solution with variable bulk viscous new HDE model

We extend our study for the most general form of the bulk viscous coefficient in the

framework of f (R,T ) gravity theory. We find the cosmological parameters, Hubble

parameter, scale factor, DP in terms of cosmic time t and scale factor a and discuss

the behavior in detail. We also discuss here the geometrical parameters and also

discuss the thermodynamical validity of the model.
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5.2.1 Field Equations

We consider that the contents of the Universe are bulk viscous new HDE fluid and

dust dark matter. Using the predefined form of f (R,T ) = R+ f (T ) with f (T ) = λT , λ

is a coupling parameter, the field equations (1.7.20) become as

Rµν −
1
2

R gµν = Tµν −λ (Tµν +⊖µν)+
1
2

λ gµν T, (5.2.1)

Harko et al. [108], have suggested that the matter Lagrangian Lm is considered in

such a way that Lm = −p, where p stands as a thermodynamical pressure of matter

of the universe. Then, Eq. (1.7.22) becomes as ⊖µν =−2Tµν − p gµν . Using this value

into Eq. (5.2.1), we get

Rµν −
1
2

R gµν = Tµν +λ (Tµν + p gµν)+
1
2

λT gµν . (5.2.2)

The stress-energy-momentum tensor in the presence of bulk viscous term is given

by

Tµν = (ρm +ρd)uµuν +(gµν +uµuν)p̃d, (5.2.3)

where, ρm, ρd and p̃d have their usual meanings and p̃d = pd −3ζ H.

Now, the field equations (5.2.2) for the spatially flat FRW metric (3.2.1) and the

energy-momentum tensor (5.2.3) yield

3H2 = ρm +ρd +λ (ρm +ρd + pd −3ζ H)+
1
2

λ T, (5.2.4)

2Ḣ +3H2 =−pd +3ζ H +
1
2

λ T, (5.2.5)

where ζ is the bulk viscosity coefficient.

On considering the general form of bulk viscous coefficient as ζ = ζ0 +Hζ1 in the

field equations (5.2.4) and (5.2.5), we get the single evolution equation as

Ḣ +{1+(1+2λ )(αωd −ζ1)} X H2 − (1+2λ )ζ0 X H = 0, (5.2.6)

where X = [ 3(1+λ )
2+3λ+3β (1+λ )(1+2λ )ωd

].
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5.2.2 Evolution of the scale factor

On solving (5.2.6), we get

H =
e(1+2λ ) X ζ0t

c6 +
{1+(1+2λ )(αωd−ζ1)}

(1+2λ )ζ0
e(1+2λ ) X ζ0t

, (5.2.7)

where c6 is the constant of integration. Now, using H = ȧ/a, we can obtained the scale

factor as

a = c7

[
c6 +

{1+(1+2λ )(αωd −ζ1)}
(1+2λ )ζ0

e(1+2λ ) X ζ0t
] 1

X {1+(1+2λ )(αωd−ζ1)}
, (5.2.8)

where c7 is another integration constant.

Eq. (5.2.7) can be written as

H(t) = H0e(1+2λ ) X ζ0(t−t0)
[

1+
{1+(1+2λ )(αωd −ζ1)}H0

(1+2λ )ζ0

(
e(1+2λ ) X ζ0(t−t0)−1

)]−1

,

(5.2.9)

If we consider a = a0 = 1 at t = t0, then the scale factor (5.2.8) can be written as

a(t) =
[

1+
{1+(1+2λ )(αωd −ζ1)}H0

(1+2λ )ζ0

(
e(1+2λ )ζ0 X (t−t0)−1

)] 1
X {1+(1+2λ )(αωd−ζ1)}

,

(5.2.10)

where λ ̸=−1/2 and ζ0 ̸= 0. It is observed that the scale factor is of exponential form

which can explain the phase transition. We can analyze the behavior of the scale

factor in all possible combination of values of (ζ0,ζ1) and model parameter λ . Taking

a(t) = 0, we obtain the cosmic time when the Big-Bang happens

t(at big-Bang) = t0 +
1

(1+2λ ) X ζ0
ln
[

1− (1+2λ )ζ0

{1+(1+2λ )(αωd −ζ1)}H0

]
(5.2.11)

In early time of evolution, the scale factor (5.2.10) can be approximated by

a →
[

1+
3H0(1+λ ){1+(1+2λ )(αωd −ζ1)}

2+3λ +3β (1+λ )(1+2λ )
(t − t0)

] 1
X{1+(1+2λ )(αωd−ζ1)}

. (5.2.12)

which shows that the decelerated expansion in early time. In late time of evolution,

the scale factor behaves as

a(t)→ exp [(1+2λ )ζ0 X (t − t0)] . (5.2.13)



115

which shows the de Sitter Universe, i.e., the Universe expands with accelerated rate

in the late time of the evolution. This shows that the scale factor at the respective

limits has an earlier decelerated phase followed by an accelerated phase in the later

stage of the evolution.

Let us compute the second order derivatives of (5.2.10), which is given by

d2a
dt2 = H2

0

(
e2(1+2λ )ζ0 X (t−t0)

)[
1+

[(1+2λ )ζ0 −{1+(1+2λ )(αωd −ζ1)}H0] X
H0 e(1+2λ )ζ0 X (t−t0)

]

×

[
1+

{1+(1+2λ )(αωd −ζ1)}H0

(1+2λ )ζ0

(
e(1+2λ )ζ0 X (t−t0)−1

)] 1
X {1+(1+2λ )(αωd−ζ1)}

−2

,

(5.2.14)

Equating to zero the above equation to get the transition time t trans between the de-

celerated to the accelerated expansion epochs, which is given by

t trans = t0 +
1

X (1+2λ )ζ0
ln

{
X [{1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0]

H0

}
. (5.2.15)

Using (5.2.10) into (5.2.9), the Hubble parameter in terms of the scale factor can be

written as

H(a) =
(1+2λ )H0

[1+(1+2λ )(αωd −ζ1)]

[
ζ0

H0
+

{
[1+(1+2λ )(αωd −ζ1)]

(1+2λ )
− ζ0

H0

}

× a− X{1+(1+2λ )(αωd−ζ1)}

]
. (5.2.16)

Differentiating (5.2.16) with respect to a, we obtain

dȧ
da

=
(1+2λ )H0

[1+(1+2λ )(αωd −ζ1)]

[
ζ0

H0
−
(
[1+(1+2λ )(αωd −ζ1)]

(1+2λ )
− ζ0

H0

)

×
(

1+3(1+λ )(1+2λ ){(α −β )ωd −ζ1}
2+3λ +3β (1+λ )(1+2λ )ωd

)
a− X{1+(1+2λ )(αωd−ζ1)}

]
.

(5.2.17)

Equating (5.2.17) to zero, the transition between the decelerated to the accelerated
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phase in terms of the scale factor can be written as

aT =

[{ 1+3(1+λ )(1+2λ )[(α −β )ωd −ζ1]

(1+2λ ){2+3λ +3β (1+λ )(1+2λ )ωd}ζ0

}

×
{
[1+(1+2λ )(αωd −ζ1)]H0 − (1+2λ )ζ0

}] 1
X [1+(1+2λ )(αωd−ζ1)]

. (5.2.18)

and the corresponding transition redshift z = a−1 −1 is

zT =

[{ 1+3(1+λ )(1+2λ )[(α −β )ωd −ζ1]

(1+2λ ){2+3λ +3β (1+λ )(1+2λ )ωd}ζ0

}

×
{
[1+(1+2λ )(αωd −ζ1)]H0 − (1+2λ )ζ0

}]− 1
X [1+(1+2λ )(αωd−ζ1)]

−1.

(5.2.19)

Here, T stands for transition. From (5.2.18) and (5.2.19), we observe that the transi-

HΖ0 , Ζ1M = H0.02, 0.03L

HΖ0, Ζ1) = (0.08 , 0.02)

HΖ0, Ζ1) = (0.004 , 0.006)

HΖ0, Ζ1) = (0.2 , 0.05)
HΖ0, Ζ1) = (0.27 , 0.3)

-1 0 1 2 3 4 5
0

2

4

6

8

t- t0

a

Figure 5.1: The evolution of a versus (t−t0) for ζ0 > 0 and ζ1 > 0 taking ωd =−0.5, λ = 0.06,
α = 0.8502 and β = 0.4817.

tion from decelerated to accelerated epoch takes place at present time, i.e., at aT = 1

or zT = 0 for (ζ0 +H0ζ1) =
{1+3(1+λ )(1+2λ )(α−β )ωd}H0

3(1+λ )(1+2λ ) depending on positive or nega-

tive value of λ . Especially, substituting the observational values of model parameters

α = 0.8502 and β = 0.4817 [74] along with ωd = −0.5, H0 = 1, we get ζ0 + ζ1 = 0.096

for positive value of λ = 0.06 and ζ0 + ζ1 = 0.218 for negative value of λ = −0.06,

respectively. Thus, for the present time transition from deceleration to acceleration

takes place at ζ0 +ζ1 = 0.096 for positive values of λ = 0.06 and for negative value of

λ =−0.06, we get ζ0 +ζ1 = 0.218. A plot of the evolution of the scale factor is given in

Fig. 5.1 for different values of a combination of ζ0 and ζ1 and positive value of λ . For
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0 < (ζ0+ζ1)< 0.096, the scale factor has a decelerated phase followed by an acceler-

ated phase in late time. For (ζ0+ζ1) = 0.096, the transition takes place at present time

and for (ζ0 +ζ1) > 0.096, the transition from decelerated phase to accelerated phase

occurs at early time. For higher combination of (ζ0,ζ1), acceleration takes place in

infinite past. Similar behavior can be observed for the negative value of λ . Fig. 5.1

plots the graph of the scale factor versus time for different combinations of (ζ0,ζ1). A

dot on each trajectory denotes the present time transition from decelerated phase to

accelerated phase.

5.2.3 Behavior of the deceleration parameter

Now, the evolutionary behavior of the Universe can also be discussed by the DP,

which is defined by (1.9.5). Using (5.2.10), the DP can be obtained as

q(t) =
{ [{1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0] X

H0

}
e−(1+2λ )ζ0 X (t−t0)−1. (5.2.20)

Equation (5.2.20) shows that the DP is time-dependent which may describe the

phase transition. It can be observed that DP must change its sign at t = t0. The

sign of q is positive for t < t0 and it is negative for t > t0.

The DP in terms of a can be obtained as

q(a) = X [{1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0]

×

[
[1+(1+2λ )(αωd −ζ1)]

(1+2λ )ζ0
(
aX [1+(1+2λ )(αωd−ζ1)]−1

)
+[1+(1+2λ )(αωd −ζ1)]H0

]
−1.

(5.2.21)

In the terms of redshift, the DP is given by

q(z) = X [{1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0]

×

[
[1+(1+2λ )(αωd −ζ1)]

(1+2λ )ζ0
(
(1+ z)−X [1+(1+2λ )(αωd−ζ1)]−1

)
+[1+(1+2λ )(αωd −ζ1)]H0

]
−1.

(5.2.22)

The present value of q corresponds to z = 0 or a = 1 is,

q0 =
[{1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0] X

H0
−1. (5.2.23)



118

Table 5.1: Variation of q for ωd =−0.5, α = 0.8502, β = 0.4817

λ Constraints on ζ0 and ζ1 q Evolution of Universe
λ ≥ 1.272 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion

0.24 ≤ λ < 1.272 For all ζ0 > 0 and ζ1 > 0 Negative Accelerated expansion
−0.5 < λ < 0.24 0 < (ζ0 +H0ζ1)<

{1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) +ve to −ve Trans. from dec. to acc.

(ζ0 +H0ζ1)≥ {1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.69 ≤ λ ≤−0.5 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion
−1 ≤ λ <−0.69 For all ζ0 > 0 and ζ1 > 0 Negative Accelerated expansion
−1.73 ≤ λ <−1 0 < (ζ0 +H0ζ1)<

{1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) −ve to +ve Trans. from acc. to dec.

(ζ0 +H0ζ1)≥ {1−0.55275(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.73 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion

Table 5.2: Variation of q for ωd =−1, α = 0.8502, β = 0.4817

λ Constraints on ζ0 and ζ1 q Evolution of Universe
λ ≥ 0.265 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion

−0.032 ≤ λ < 0.265 For all ζ0 > 0 and ζ1 > 0 Negative Accelerated expansion
−0.5 < λ <−0.032 0 < (ζ0 +H0ζ1)<

{1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) +ve to −ve Trans. from dec. to acc.

(ζ0 +H0ζ1)≥ {1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.727 < λ ≤−0.5 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion
−1 ≤ λ ≤−0.727 For all ζ0 > 0 and ζ1 > 0 Negative Accelerated expansion
−1.46 ≤ λ <−1 0 < (ζ0 +H0ζ1)<

{1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) −ve to +ve Trans. from acc. to dec.

(ζ0 +H0ζ1)≥ {1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.46 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion

This equation shows that if (ζ0 +H0ζ1) =
{1+3(1+λ )(1+2λ )(α−β )ωd}H0

3(1+λ )(1+2λ ) , the value of q0 =

0. Thus, the transition into accelerating phase would occur at present time for this

combination of (ζ0,ζ1). Especially, taking α = 0.8502, β = 0.4817, ωd = −0.5, H0 = 1

and λ = 0.06 in above expression, we get ζ0 +ζ1 = 0.096, which gives q0 = 0.

Tables 5.1– 5.3 discuss the behavior of DP and corresponding evolution for different

ranges of λ under constraints on (ζ0+H0ζ1). We consider three different values of ωd

of three different phases, e.g., ωd =−0.5, −1 and −1.1414, respectively. We assume

the observational values of the model parameters are α = 0.8502 and β = 0.4817 [74].
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Table 5.3: Variation of q for ωd =−1.1414, α = 0.8502, β = 0.4817

λ Constraints on ζ0 and ζ1 q Evolution of Universe
λ ≥ 0.145 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion

−0.072 ≤ λ < 0.145 For all ζ0 > 0 and ζ1 > 0 Negative Accelerated expansion
−0.5 < λ <−0.072 0 < (ζ0 +H0ζ1)<

{1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) +ve to −ve Trans. from dec. to acc.

(ζ0 +H0ζ1)≥ {1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.735 ≤ λ ≤−0.5 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion
−1 ≤ λ <−0.735 For all ζ0 > 0 and ζ1 > 0 Negative Accelerated expansion
−1.42 ≤ λ <−1 0 < (ζ0 +H0ζ1)<

{1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) −ve to +ve Trans. from acc. to dec.

(ζ0 +H0ζ1)≥ {1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.42 For all ζ0 > 0 and ζ1 > 0 Positive Decelerated expansion

In table 5.1, we analyse that for any positive value of ζ0 and ζ1, the model shows

only the decelerated expansion of the Universe in the complete evolution for λ ≥ 1.272,

−0.69 ≤ λ ≤ −0.5 and λ < −1.73, and the model represents the Universe accelerate

exponentially throughout the evolution for 0.24 ≤ λ < 1.272 and −1 ≤ λ <−0.69. If we

choose the small values of ζ0 and ζ1, i.e., 0 < (ζ0 +H0ζ1) <
{1−0.55275(1+λ )(1+2λ )}H0

3(1+λ )(1+2λ ) ,

the phase transition occurs from +ve to −ve for −0.5 < λ < 0.24 and from −ve to +ve

for −1.73 ≤ λ < −1. As we go for the higher values of ζ0 and ζ1, i.e., (ζ0 +H0ζ1) ≥
{1−0.55275(1+λ )(1+2λ )}H0

3(1+λ )(1+2λ ) , the Universe accelerate exponentially throughout the evolution

for −0.5 < λ < 0.24 and decelerate for the complete evolution for −1.73 ≤ λ <−1.

In Table 5.2, the evolution of the Universe is analysed for ωd =−1. We analyse that

for any positive value of ζ0 and ζ1, the model shows the expansion of the Universe

with decelerated rate in the complete evolution for λ ≥ 0.265, −0.727 < λ ≤−0.5 and

λ <−1.46, and the model represents the expansion of the Universe with accelerated

rate throughout the evolution for −0.032 ≤ λ < 0.265 and −1 ≤ λ ≤ −0.727. If we go

with the small values of ζ0 and ζ1, i.e., 0< (ζ0+H0ζ1)<
{1−1.1055(1+λ )(1+2λ )}H0

3(1+λ )(1+2λ ) , it shows

the phase transition of the Universe from +ve to −ve for −0.5 < λ <−0.032 and phase

transition from −ve to +ve for −1.46 ≤ λ < −1. If we go with the higher values of ζ0

and ζ1, i.e., (ζ0+H0ζ1)≥ {1−1.1055(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) , it represents that the Universe always

accelerate for −0.5 < λ <−0.032 and always decelerate for −1.46 ≤ λ <−1.

In Table 5.3, the evolution of the Universe is discussed with ωd < −1, e.g., ωd =

−1.1414. We analyse that for any positive value of ζ0 and ζ1, the model represents

the decelerated expansion of the Universe throughout the evolution for λ ≥ 0.145,

−0.735≤ λ ≤−0.5 and λ <−1.42, and the expansion of the Universe with accelerated

rate in the complete evolution for −0.072 ≤ λ < 0.145 and −1 ≤ λ < −0.735. If we

consider the small values of ζ0 and ζ1 , i.e., 0 < (ζ0 +H0ζ1) <
{1−1.26182(1+λ )(1+2λ )}H0

3(1+λ )(1+2λ ) ,
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represents phase transition of the Universe from +ve to −ve for −0.5< λ <−0.072 and

phase transition from −ve to +ve for −1.42 ≤ λ <−1. On considering the high values

of ζ0 and ζ1, i.e., (ζ0+H0ζ1)≥ {1−1.26182(1+λ )(1+2λ )}H0
3(1+λ )(1+2λ ) , the Universe always accelerate

for −0.5 < λ <−0.072 and always decelerate for −1.42 ≤ λ <−1.

5.2.4 Statefinder diagnostic

Let us evaluate the statefinder parameters for the viscous new HDE model to dis-

criminate our model with respect to existing DE models. In this general case, the

statefinder parameters are calculated as

r = 1+

3 X
{

1− X [(1+(1+2λ )(αωd−ζ1)]
3

}
[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

H0 e(1+2λ )ζ0 X (t−t0)


+

[
X2[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

2

H2
0 e2(1+2λ )ζ0 X (t−t0)

]
,

(5.2.24)

and

s =

[
2 X

{
1− X [(1+(1+2λ )(αωd−ζ1)]

3

}
[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

3H0 e(1+2λ )ζ0 X (t−t0)

+
2X2[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

2

9H2
0 e2(1+2λ )ζ0 X (t−t0)

]
/[

2 X [{(1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0]

3H0 e(1+2λ )ζ0 X (t−t0)
−1

]
, (5.2.25)

which are time-dependent due to the presence of bulk viscosity coefficient. Equations

(5.2.24) and (5.2.25) show that in the limit (t − t0) → ∞, the statefinder parameters

{r,s} → {1,0}, a value corresponding to the ΛCDM model. Hence, the viscous new

HDE model resembles the ΛCDM model in future. Now, we can plot the r−s trajectory

in r− s plane and r−q trajectory in r−q plane to analyse viscous new HDE model in

the framework of f (R,T ) theory. It can be observed that the values of {r,s} depend on

the choice of coupling parameter λ and the viscosity coefficients (ζ0,ζ1). We consider

the observational values of model parameters α = 0.8502, β = 0.4817 and H0 = 1,

t0 = 1, ωd = −0.5 to plot these trajectories for positive and negative value of λ along

with the different combinations of (ζ0,ζ1). The r− s and r− q trajectories for different
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combinations of (ζ0,ζ1) and positive value of λ (e.g., λ = 0.06) are shown in Figs. 5.2

and 5.3, respectively. Figs. 5.4 and 5.5 show the respective r− s and r−q trajectories

for different combinations of (ζ0,ζ1) and negative value of λ (e.g., λ = −0.06). The

present value of the statefinder pair are

r0 = 1+

3 X
{

1− X [(1+(1+2λ )(αωd−ζ1)]
3

}
[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

H0


+

[
X2[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

2

H2
0

]
, (5.2.26)

and

s0 =

[
2 X

{
1− X [(1+(1+2λ )(αωd−ζ1)]

3

}
[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

3H0

+
2X2[(1+2λ )ζ0 −{(1+(1+2λ )(αωd −ζ1)}H0]

2

9H2
0

]
/[

2 X [{(1+(1+2λ )(αωd −ζ1)}H0 − (1+2λ )ζ0]

3H0
−1

]
, (5.2.27)

In Figs. 5.2 and 5.4, stars represent the fixed point values of ΛCDM and SCDM
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Figure 5.2: The r − s trajectories are plotted in r − s plane for ζ0 > 0 and ζ1 > 0 taking
ωd =−0.5, α = 0.8502, β = 0.4817 and λ = 0.06.

models, dots represent the present time values of {r,s}= {r0,s0} and {r,q}= {r0,q0},

and the arrows represent the direction of the trajectories. The r − s planes in Figs.
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Figure 5.3: The r − q trajectories are plotted in r − q plane for ζ0 > 0 and ζ1 > 0 taking
ωd =−0.5, α = 0.8502, β = 0.4817 and λ = 0.06.

5.2 and 5.4 are divided into two regions r < 1, s > 0 and r > 1, s < 0 by a vertical line

passing through the point (1,0). The trajectories in the r− s planes lying in the region

r < 1, s > 0, a feature similar to the Q model of DE [174, 175]. The trajectories in

the r− s planes lying in the region r > 1, s < 0, a feature similar to the CG model of

DE [217]. Here, we obtain a parabolic trajectory for both cases on λ . From Fig. 5.2,

for λ = 0.06 we notice that the model behaves like Q model for 0 < (ζ0 + ζ1) ≤ 0.46,

whereas for (ζ0 + ζ1) > 0.46 the model mimic like CG model. The trajectories in both

the regions converge to ΛCDM model in late time of evolution. In the case λ =−0.06,

we observe from Fig. 5.4 that all the r− s trajectories lie in the region (r < 1,s > 0)

for 0 < (ζ0 + ζ1) ≤ 0.71 which imply that the viscous new HDE model corresponds to

Q model while the trajectories lie in (r > 1,s < 0) region for (ζ0 + ζ1) > 0.71, i.e., the

model behaves like CG model. In late time the viscous new HDE model approaches

to ΛCDM. For some combinations like (ζ0,ζ1) = (0.08,0.02), the trajectory starts in

the vicinity of the SCDM model and approaches to ΛCDM. Thus, we can conclude

that for any value of λ (either positive or negative), our viscous new HDE model in the

framework of f (R,T ) theory mimic like Q and CG models for specific range of viscosity

coefficients and in late time of evolution it always converges to ΛCDM model.

The r − q trajectories in r − q plane for positive and negative values of λ and for

different combinations of (ζ0,ζ1) are shown in Figs 5.3 and 5.5, respectively. Here,

in both the figures stars represent the fixed point values {r,q} = {1,0.5} for SCDM

model and {r,q} = {1,−1} for Steady State (SS) model. In figures arrows are used

to show the direction of the trajectories and the time evolution of the ΛCDM model
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Figure 5.4: The r − s trajectories are plotted in r − s plane for ζ0 > 0 and ζ1 > 0 taking
ωd =−0.5, α = 0.8502, β = 0.4817 and λ =−0.06.

is represented by the horizontal line at r = 1. It can be observed that q changes its

sign from positive to negative with respect to time in case of λ = 0.06 as well as for

λ = −0.06, which show the Universe transits from decelerated to accelerated phase.

For (ζ0 + ζ1) > 0.46 when λ = 0.06 and (ζ0 + ζ1) > 0.71 when λ = −0.06, q is always

negative showing behavior of phantom. In the beginning this model behaves different

from ΛCDM model but in late time it behaves the same as ΛCDM which converges to

SS model in late time evolution. From Fig. 5.5, we analyse that for some small values

of (ζ0,ζ1), like (ζ0,ζ1) = (0.08,0.02), the r − q trajectory starts in the neighbourhood

of the SCDM model. The present position of {r,s} = {r0,s0} and {r,q} = {r0,q0} is

indicated by dot in the plot. This means that the present viscous new HDE model

is distinguishably different from the ΛCDM model but in late time it converges to SS

model.

The present viscous new HDE model can also be discriminated from the holographic

dark energy model with event horizon as the IR cut–off, in which the r− s evolution

starts from a region r ∼ 1, s ∼ 2/3 and ends on the ΛCDM point [232]. It can also

be discriminated from Ricci dark energy model in which r − s trajectory is a vertical

segment, i.e., s is a constant during the evolution of the Universe [216].
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Figure 5.5: The r − q trajectories are plotted in r − q plane for ζ0 > 0 and ζ1 > 0 taking
ωd =−0.5, α = 0.8502, β = 0.4817 and λ =−0.06.

5.2.5 Om diagnostic

Further, we investigate the viscous new HDE behaviour with respect to Om diagnostic.

This tool was proposed by Sahni et al. [176] in 2008. It is defined by Eq. 1.11.2 and

for this viscous new HDE model the Om(z) is obtained as

Om(z)=
(1+2λ )2

[1+(1+2λ )(αωd−ζ1)]2

[
ζ0
H0

+
{

[1+(1+2λ )(αωd−ζ1)]
(1+2λ ) − ζ0

H0

}
(1+ z)X [1+(1+2λ )(αωd−ζ1)]

]2
−1

[(1+ z)3 −1]
.

(5.2.28)

Now, we plot the Om(z)− z trajectories to discuss it graphically. In Fig. 5.6, we plot the

evolution of Om(z) against redshift z corresponding to different values of a combination

of (ζ0,ζ1), α = 0.8502, β = 0.4817, ωd = −0.5 H0 = 1 and λ = 0.06. Similarly, in Fig.

5.7, we plot the evolution of Om(z) against redshift z corresponding to different values

of a combination of (ζ0,ζ1), α = 0.8502, β = 0.4817, ωd =−0.5 H0 = 1 and λ =−0.06.

The trajectory in Fig. 5.6 is divided horizontally into two regions. In lower region, it

may be seen that Om(z) decreases as z decreases for (ζ0 + ζ1) > 0.46, so positive

slope of Om(z) suggests phantom (ωd <−1) like behavior in the presence of viscosity

with positive values of λ = 0.06. However, in upper region, Om(z) increases as z

decreases for 0 < (ζ0+ζ1)≤ 0.46, so negative slope of Om(z) indicating quintessence

like behavior in the presence of viscosity.

Similarly, the trajectory in Fig. 5.7 is divided horizontally into two regions. In lower

region, it may be seen that Om(z) decreases as z decreases for (ζ0 + ζ1) > 0.71, so
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Figure 5.6: The Om(z) evolutionary diagram for ζ0 > 0 and ζ1 > 0 taking ωd = −0.5 and
λ = 0.06 along with the observational value of α = 0.8502 and β = 0.4817.

positive slope of Om(z) suggests phantom (ωd < −1) like behavior in the presence

of viscosity with positive values of λ = −0.06. However, in upper region, Om(z) in-

creases as z decreases for 0 < (ζ0 +ζ1)≤ 0.71, so negative slope of Om(z) indicating

quintessence like behavior in the presence of viscosity. In the late time of evolution

when z = −1, we get Om(z) = 1− (1+2λ )2ζ 2
0

[1+(1+2λ )(αωd−ζ1)]2H2
0
, which is the constant value of

Om(z), i.e., zero curvature. Thus, in late time the variable viscous new HDE corre-

sponds to ΛCDM.
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Figure 5.7: The Om(z) evolutionary diagram for ζ0 > 0 and ζ1 > 0 taking ωd = −0.5 and
λ =−0.06 along with the observational value of α = 0.8502 and β = 0.4817.

5.2.6 Effective Equation of state parameter

Let us discuss the bulk viscous effect on effective EoS parameter, ωe f f which is given

by

ωe f f =
pd −3ζ H
ρm +ρd

, (5.2.29)
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where pm = 0. On substituting the values of pd, ζ , H, ρm and ρd in Eq. 5.2.29, we get

ωe f f =
(2+3λ )

[
{(1+2λ ) X βωd−1}[(1+2λ )ζ0−{1+(1+2λ )(αωd−ζ1)}H0]

e(1+2λ ) X ζ0(t−t0)
−H0

]
[
{(1+2λ ) X βωd−1}[(1+2λ )ζ0−{1+(1+2λ )(αωd−ζ1)}H0]λ

e(1+2λ ) X ζ0(t−t0)
+(2+3λ +αλ +2αλ 2)H0

] .
(5.2.30)

The evolutions of ωe f f versus t are shown in Figs. 5.8 and 5.9 for different pairs of
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Figure 5.8: The evolution of ωe f f for different combinations of (ζ0,ζ1) in respect of λ = 0.06.
We take H0 = 1, ωd =−0.5, α = 0.8502 and β = 0.4817.
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Figure 5.9: The evolution of ωe f f for different combinations of (ζ0,ζ1) in respect of λ =
−0.06. We take H0 = 1, ωd =−0.5, α = 0.8502 and β = 0.4817.

(ζ0,ζ1) in respect of λ = 0.06 and λ = −0.06, respectively. Figure 5.8 shows that the

trajectories of ωe f f start from ωe f f >−1 (it may also start from matter-dominated era)

for small values and ωe f f < −1 for large values of (ζ0,ζ1) in respect of λ = 0.06. As

t → ∞, ωe f f approaches to a constant for all values of (ζ0,ζ1), i.e., ωe f f → −0.9745.

There is no ωe f f = −1 crossing for small values of (ζ0,ζ1) but for large values of

(ζ0,ζ1) it will cross the ωe f f = −1. In Fig. 5.9 where we have λ = −0.06, we can

observe the similar evolution of ωe f f . However, ωe f f → −1.0252 in late times, i.e., it

crosses ωe f f = −1 for small values of (ζ0,ζ1) but it will not cross for large values of

(ζ0,ζ1). Thus, the effective EoS parameter for both models shows consistency with the
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observational data given in Ref. [233]. We can say that the dark energy phenomena

may be obtained in the presence of viscous fluid.

5.2.7 Entropy and second law of thermodynamics

The local entropy production for a fluid on a flat FRW spacetime is expressed as [4]

T▽νsν = ζ (▽νuν)2 = 9H2ζ , (5.2.31)

where T is the temperature, ▽νsν is the rate at which entropy is being generated in

unit volume, and ζ is the total bulk viscosity.

The second law of thermodynamics can be stated as

T▽νsν ≥ 0. (5.2.32)

Since the Hubble parameter H is positive in an expanding Universe, then ζ has to be

positive in order to preserve the validity of the second law of thermodynamics. Thus,

equation (5.2.32) implies that

ζ ≥ 0. (5.2.33)

Thus, for the present model the inequality (5.2.33) can be written as

ζ = ζ0 +ζ1H ≥ 0. (5.2.34)

Using (5.2.16), we find the expression for the total bulk viscosity ζ (a) as

ζ (a) = ζ0 +ζ1

[
(1+2λ )H0

[1+(1+2λ )(αωd −ζ1)]

(
ζ0

H0
+

{
[1+(1+2λ )(αωd −ζ1)]

(1+2λ )
− ζ0

H0

}

× a−X{1+(1+2λ )(αωd−ζ1)}

)]
. (5.2.35)

The value of the scale factor, at which the transition of the total bulk viscosity from

negative to positive values happen, is

anp =

[
{1+(1+2λ )αωd}ζ0

{(1+2λ )(ζ0 +ζ1H0 −αωd)−1}ζ1

]− 1
X [1+(1+2λ )(αωd−ζ1)]

, (5.2.36)

where, the subscript “np” stands for “negative to positive” values. In late time of evo-
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lution, i.e., at a → ∞ the total bulk viscosity is ζ (a) = {1+(1+2λ )αωd}ζ0
{1+(1+2λ )(αωd−ζ1)}

.
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Figure 5.10: The evolution of ζ (a) for different combination of ζ0 and ζ1 with ωd = −0.5,
λ = 0.06, α = 0.8502 and β = 0.4817.
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Figure 5.11: The evolution of ζ (a) for different combination of ζ0 and ζ1 with ωd = −0.5,
λ =−0.06, α = 0.8502 and β = 0.4817.

Figures 5.10 and 5.11 represent the evolution of the total bulk viscous coefficient ζ

with respect to the scale factor for the different combinations of the (ζ0,ζ1) with positive

(λ = 0.06) and negative (λ = −0.06) values of the coupling parameter, respectively.

The Figs. 5.10 and 5.11 show that the total bulk viscosity is positive throughout the

evolution of the Universe for 0 < (ζ0+ζ1)≤ 0.46 with λ = 0.06, and 0 < (ζ0+ζ1)≤ 0.71

with λ = −0.06, respectively. These curves have been shown above the line (0,0).

Therefore, the model does not violate the entropy law for these ranges. The figures

also show that the total bulk viscous coefficient is evolving from negative to positive

value for (ζ0 + ζ1) ≥ 0.46 and (ζ0 + ζ1) ≥ 0.71, respectively. Thus, the rate of entropy

production is negative for large values of (ζ0 + ζ1) in early epoch and positive in the

later epoch. Hence the entropy law violates in the early epoch and obeys in the later

epoch for these values of (ζ0 +ζ1).
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In an absolute way the status of the second law of thermodynamics should be con-

sidered along with the accounting of the entropy generation from the horizon. In those

circumstances, the second law becomes the generalised second law (GSL) of thermo-

dynamics, according to which the total sum of the entropies of the fluid components

of the Universe plus that of the horizon entropy should never decrease [234, 235].

In the present model this means the rate of change of complete entropy along with

horizon must be greater than or equal to 0. Mathew et al. [235] have discussed the

status of GSL for flat FRW Universe with matter and cosmological vacuum. Karami et

al. [236] have discussed the status of GSL in a flat Universe with viscous dark ener-

gy and have shown that the GSL is valid in FRW Universe with apparent horizon as

the boundary. Many authors [172, 237] have verified the status of GSL with apparent

horizon as the boundary. The status of GSL in the modified gravity theories have al-

so been discussed by many authors [132, 238–240] with the apparent horizon as the

boundary.

Let us verify the GSL of thermodynamics for this model. As stated above we con-

sider the apparent horizon as the boundary of the Universe. Then, the GSL can be

stated as
d
dt
(Stot) =

d
dt
(Sm +Sd +Sp + S̃h)≥ 0, (5.2.37)

where Sm, Sd, Sp and S̃h are the entropies of the dark matter, dark energy, the entropy

production and the entropy of the apparent horizon, respectively.

From the first law of thermodynamics the change of entropy of the viscous matter

inside the apparent horizon can be obtained using Gibbs equation

TidSi = d(ρiV )+ pidV, (5.2.38)

where Ti is the temperature and Si = Sm + Sd, is the sum of the entropies of the dark

matter and dark energy, ρi represents the sum of the densities of the dark matter and

dark energy, V = 4π r̃h
3

3 is the volume of the apparent horizon with r̃h as a radius of the

apparent horizon and pi = p̃d = pd −3ζ H as the effective pressure.

In the present viscous model the above Gibbs equation modifies to [132,239,240]

TidSi = d(ρiV )+ pidV −TidSp. (5.2.39)
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The radius r̃h of the apparent horizon for a flat FRW Universe, is defined as [240]

r̃h =
1
H
. (5.2.40)

In the f (R,T ) theories the entropy associated with the apparent horizon is defined as

S̃h =
Ãh

4
fR(R,T )(

1
8π + fT (R,T )

8π

) =
2πÃh

(1+λ )
=

8π2r̃h
2

(1+λ )
, (5.2.41)

where Ãh = 4π r̃h
2 is the area of the apparent horizon. Here, we have taken 8πG = 1.

Taking the derivative of Eq. (5.2.41) with respect to time t, we get

˙̃Sh =
16π2r̃h ˙̃rh

(1+λ )
=

16π2

(1+λ )H

(
− Ḣ

H2

)
. (5.2.42)

Now, from (5.2.39) we have

Ti(Ṡm + Ṡd + Ṡp) = 4π r̃h
2( ˙̃rh −1){ρm +(1+ωd)ρd −3ζ0H −3ζ1H2}. (5.2.43)

Under the thermal equilibrium conditions between the fluids and the horizon, we have

Ti = T̃h. We take the temperature T̃h =
H
2π , which is equal to the Hawking temperature

of the horizon with the assumption that the fluid within the horizon is in equilibrium

with the horizon, so there is no effective flow of the fluid toward the horizon [241].

Now, Eq. (5.2.43) become as

Ṡm + Ṡd + Ṡp =
8π2

H3

(
− Ḣ

H2 −1
)
{ρm +(1+ωd)ρd −3ζ0H −3ζ1H2}. (5.2.44)

Now, using the definition of DP q =
(
− Ḣ

H2 −1
)

and Eqs. (5.2.42) and (5.2.44) into

(5.2.37), we get the change of the sum of all the entropies as

Ṡtot = Ṡm + Ṡd + Ṡp +
˙̃Sh

=
8π2q
H3 {ρm +(1+ωd)ρd −3ζ0H −3ζ1H2}+ 16π2(q+1)

(1+λ )H
. (5.2.45)

On substituting the required values in above equation and simplifying, we get the
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change in total entropy as

Ṡtot =

16π2[{1+(1+2λ )(αωd−ζ1)}H0−(1+2λ )ζ0]

{
1+

{1+(1+2λ )(αωd−ζ1)}H0
(

e(1+2λ ) X ζ0(t−t0)−1
)

(1+2λ )ζ0

}
H2

0 e2(1+2λ )ζ0 X (t−t0)


×
[

X
(1+λ ) +

3{1−(1+2λ ) X βωd}
(2+3λ )H0

{
[{1+(1+2λ )(αωd−ζ1)}H0−(1+2λ )ζ0] X

e(1+2λ )X ζ0(t−t0)
−H0

}]
. (5.2.46)
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Figure 5.12: The change in total entropy versus t for various combination of ζ0 and ζ1 with
ωd =−0.5, λ = 0.06, α = 0.8502 and β = 0.4817.
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Figure 5.13: The change in total entropy versus t for various combination of ζ0 and ζ1 with
ωd =−0.5, λ =−0.06, α = 0.8502 and β = 0.4817.

From Eq. (5.2.46), it is noticed that the rate of change of entropy can not clearly state

either the change in entropy is greater than and equal to zero. We plot the evolution

of Ṡ in Figs. 5.12 and 5.13, respectively for positive and negative values of the λ

(e.g., λ = 0.06, λ =−0.06) taking α = 0.8502, β = 0.4817, ωd =−0.5, H0 = 1 and t0 = 1

for different values of viscosity coefficients (ζ0,ζ1). Figure 5.12 shows that the GSL is

always valid for ζ0 > 0 and 0.27≤ ζ1 ≤ 0.85 whereas it holds for ζ0 > 0 and 0.39≤ ζ1 ≤ 1

in Fig. 5.12. We also notice that in both the cases, the total entropy corresponds to
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zero in late time of the evolution.

5.3 Conclusion

In this Chapter, we have explored the new HDE model in modified f (R,T ) gravity with

bulk viscosity of the form ζ = ζ0 +ζ1H. We have considered that the Universe is filled

with the pressureless DM and the new HDE proposed by Granda and Oliveros [73].

We have analyzed the different possible phases of the Universe according to the bulk

viscous parameters ζ0 and ζ1.

The field equations of viscous new HDE model in modified f (R,T ) gravity have been

solved for a most general bulk viscous coefficient. The scale factor has been obtained

in the form of exponential which describes the phase transition of the Universe. We

have analyzed the behavior of the scale factor for all possible combination of (ζ0,ζ1)

and model parameter λ . We have obtained that the scale factor at the respective

limits has an earlier decelerated phase followed by an accelerated phase in the later

stage of the evolution. We have calculated the transition time between decelerated to

accelerated epoch. We have expressed Hubble parameter in terms of scale factor to

get the transition between decelerated to accelerated epoch in terms of scale factor

aT and redshift zT . A plot of the evolution of the scale factor is given in Fig. 5.1

for difference values of a combination of ζ0 and ζ1 and positive value of λ . Similar

behavior can be observed for the negative value of λ . We have also studied the

evolution of the DP q. We have obtained time-dependent DP. As (t − t0)→ ∞, we get

q →−1, which shows that the model accelerates in late time. We have discussed the

behavior of q and corresponding evolution for different ranges of coupling parameter

λ and constraints on (ζ0 +H0ζ1). The results are summarized in tables 5.1– 5.3 for

ωd =−0.5, ωd =−1 and ωd =−1.1414, and model parameters α = 0.8502, β = 0.4817.

The tables show that the deceleration or acceleration or their transition depend on the

values of ζ0, ζ1 and λ .

We have discussed two geometrical diagnostics, namely statefinder and Om to ob-

serve the discrimination with the other existing DE models. We have obtained the

time-dependent value of the statefinder parameter for viscous new HDE model. In

the late time as (t − t0)→ ∞, the statefinder pair {r,s} for the viscous new HDE model

tends to {1,0}, a value corresponding to ΛCDM model. We have plotted the trajectory

of statefinder pair {r,s} in r − s plane for different combinations of (ζ0,ζ1) as shown
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in Fig. 5.2 and Fig. 5.4 for positive and negative values of coupling parameter λ ,

respectively. It has been observed that for any value of λ (either positive or negative),

our viscous new HDE model in the framework of f (R,T ) theory mimics like Q and CG

models for specific range of viscosity coefficients and in late time of evolution it always

converges to ΛCDM model.

We have also plotted the trajectory of {r,q} for different combinations of (ζ0,ζ1) and

positive and negative values of λ as shown in Fig. 5.3 and Fig. 5.5. It can be observed

that q changes its sign from positive to negative with respect to time in both the cases

λ = 0.06 and λ = −0.06, which show the phase transition from decelerated phase

to accelerated phase. For (ζ0 + ζ1) > 0.46 when λ = 0.06 and (ζ0 + ζ1) > 0.71 when

λ =−0.06, q is always negative showing behavior of phantom. Thus, in the beginning

this model behaves different from ΛCDM model but in late time it behaves the same

as ΛCDM which converges to SS model in late time evolution. The present viscous

new HDE model can also be discriminated from the HDE model with event horizon as

the IR cut–off, in which the r− s evolution starts from a region r ∼ 1, s ∼ 2/3 and ends

on the ΛCDM point [232]. It can also be discriminated from Ricci dark energy model

in which r− s trajectory is a vertical segment, i.e., s is a constant during the evolution

of the Universe [216].

The second geometrical diagnostic, namely Om has been carried out in section

5.2.5 . We have plotted the Om(z)− z trajectories for different combinations of (ζ0,ζ1)

in respect of positive and negative values of λ as shown in Fig. 5.6 and Fig. 5.7,

respectively. We have observed two types of trajectory, one has the positive curvature

which suggests the phantom like behavior and second has the negative curvature

which suggests the quintessence like behavior.

We have calculated the effective EoS parameter for this model and analyzed the

evolution of it graphically for different suitable values of viscosity coefficients. We have

observed that ωe f f →−0.9745 and −1.0252, respectively as t → ∞ in case positive and

negative values of λ which is very close to −0.93 predicted in the Ref. [242].

At the end, we have discussed the entropy and second law of thermodynamics

for viscous new HDE model. Figures 5.10 and 5.11 plot the evolution of the total

bulk viscous coefficient. It has been observed that the total bulk viscosity is positive

throughout the evolution of the Universe for 0 < (ζ0 + ζ1) ≤ 0.46 with λ = 0.06, and

0 < (ζ0+ζ1)≤ 0.71 with λ =−0.06, respectively. Therefore, the model does not violate

the entropy law for these ranges. The figures also show that ζ (a) is evolving from
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negative to positive value for (ζ0 +ζ1)> 0.46 and (ζ0 +ζ1)> 0.71, respectively. Thus,

the rate of entropy production is negative for large values of (ζ0 + ζ1) in early epoch

and positive in the later epoch. Hence the entropy law violates in the early epoch

and obeys in the later epoch for these values of (ζ0 + ζ1). We have also studied the

generalized second law of thermodynamics. It has been observed that it is always

valid for ζ0 > 0 and 0.27 ≤ ζ1 ≤ 0.85 when λ is positive whereas it holds for ζ0 > 0 and

0.39 ≤ ζ1 ≤ 1 when λ is negative which are shown in Figs. 5.12 and 5.13, respectively.

We have also noticed that in both the cases, the total entropy corresponds to zero in

late time of the evolution.

Let us Summarize the results with the outcome of this work. In cosmology, the idea

of viscous dark energy models has been presented in different ways to understand

the evolution of the Universe. The notion of bulk viscosity has also been extensively

studied in modified theories. This paper has explored the behavior of viscosity by

considering dust matter and new HDE in the background of modified f (R,T ) gravity.

The above investigations show that this model predicts an early deceleration followed

by late time acceleration. We can conclude that the dark energy era may be obtained

in the presence of bulk viscous fluid.



Chapter 6

Scalar field cosmology in Bianch I

anisotropic model

In this chapter1, we study scalar field cosmology in a spatially homogeneous and

anisotropic cosmological model within the framework of Einstein gravitational theory.

We consider non-interacting scalar field and perfect fluid as the source of matter com-

ponents. We obtain the exact solution of the field equations under the assumption

on relation between average scale factor and scalar field potential as a = a0 el2ϕ(t),

where a0 represents the present average scale factor and l2 is an arbitrary positive

constant. We consider the solution for two cases: flat potential, i.e., V (ϕ) = 0 and ex-

ponential potential, i.e., V (ϕ) =V0 e−m2ϕ , where V0 and m2 are non-negative constants.

We obtain that the zero-rest-mass model expands with decelerated rate and behaves

like a stiff matter. In case of exponential potential function, the model expands with

decelerated, accelerated or shows the transition depending on the parameters. The

isotropization is observed at late-time evolution of the Universe in exponential poten-

tial model.

1The work presented in this chapter comprises the results of a research paper “Minimally coupled Scalar field
cosmology in anisotropic cosmological model, Pramana Journal of Physics 88, 22 (2017)”.
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6.1 Introduction

It is assumed that the Universe is filled with a perfect fluid. But the observations

suggest that the cosmological dynamics can not be fully explained by this standard

matter. The observational results lead to the search of some kinds of exotic mat-

ter which would generate sufficient negative pressure to drive the late time cosmic

acceleration. One of such exotic matter is the scalar field which provides the neces-

sary negative pressure causing acceleration [32,43]. Thus, the cosmological models

with scalar field play a vital role in the current modern cosmology to explain the early

inflation and the late time acceleration. The recent discovery of cosmic accelera-

tion [6, 16, 17, 19, 243] has stimulated the interest to study the cosmological models

based on scalar fields. The cosmological models based on scalar fields have been

discussed by many authors for explaining the possible early inflationary scenarios [11]

as well as for describing the dark energy [63].

The dynamics of the evolution of the Universe is often realized by scalar field with a

proper scalar potential. The self-interacting potential can act like an effective cosmo-

logical constant which drives a period of inflation. It depends on the specific form of

the potential as a function of scalar field. Many authors [40,41,244–252] have studied

the scalar field cosmology in FRW model with different forms of scalar potential like

flat, constant and exponential potentials.

The simplest field having the property to provide an accelerated expansion at late

time, is a canonical scalar field with a scalar potential. It is well known that the evo-

lution of the Universe admits a scenario of anisotropic expansion and gains a lot of

interest, under the light of the recently announced Planck Probe results [19]. The

Bianchi models, which describe homogeneous but anisotropic space times, have

been discussed to explain the significance of anisotropy in the cosmic microwave

background (CMB) and large scale structures (LSS) [242, 253, 254]. Therefore, mo-

tivated by the anomalies found in the CMB anisotropies [255], which violate the sta-

tistical isotropy [256], and on the increasing interest on Bianchi cosmologies [7, 257],

we are interested to investigate the dynamics of a perfect fluid anisotropic Bianchi-I

(B-I) cosmological model with a scalar field minimally coupled with gravity. Demianski

et al. [258] have studied the dynamics of anisotropic model filled with scalar field min-

imally coupled to gravity. Saha and Boyadjiev [259] have considered a self-consistent

system of interacting spinor and scalar fields within the framework of a B-I cosmolog-
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ical model filled with perfect fluid. Do et al. [260] have studied anisotropic power-law

inflation for a two scalar fields model. Sharif and Zubair [145] have studied the be-

havior of perfect fluid and massless scalar field for homogeneous and anisotropic B-I

Universe model in f (R,T ) gravity.

The exact solutions of the field equations play a very important role in cosmology,

because these allow us to analyze the qualitative and quantitative behavior of the

Universe as a whole. The number of exact solutions based on scalar field with various

form of scalar potential are limited. It has been observed that in a cosmological model

the scalar potential has very important role as it radically affects the cosmological

behavior.

Therefore, in the present chapter, our motivation is to find the exact cosmological

solutions for a totally homogeneous and anisotropic perfect fluid B-I model with scalar

field for various forms of scalar potential. We calculate the various observable cos-

mological parameters like expansion scalar, DP, anisotropy parameter, shear scalar,

EoS parameters of scalar field and perfect fluid matter, and the isotropization measure

to analysis the dynamics of the evolution of the Universe. We observe that the per-

fect fluid anisotropic models behave like an isotropic one with the inclusion of exotic

matter like scalar field at late time of evolution. Fadragas et al. [261] have performed

an analysis of anisotropic locally-rotationally-symmetric Bianchi models with scalar

field for a wide range of potentials. We extend this work for a totally anisotropic and

homogeneous B-I model by assuming two different forms of scalar potential.

6.2 Field equations

We consider the B-I cosmological model (1.3.8), which is spatially homogeneous and

anisotropic. Let us consider that the Universe is filled with ordinary matter as a perfect

fluid (1.4.4) and a scalar field (ϕ ) with potential (V (ϕ)) minimally coupled with gravity

(1.7.6).

The Einstein field equations (1.7.5) yield the following equations

B̈
B
+

C̈
C
+

ḂĊ
BC

=−
(

pm + pϕ
)
, (6.2.1)

Ä
A
+

C̈
C
+

ȦĊ
AC

=−
(

pm + pϕ
)
, (6.2.2)
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Ä
A
+

B̈
B
+

ȦḂ
AB

=−
(

pm + pϕ
)
, (6.2.3)

ȦḂ
AB

+
ḂĊ
BC

+
ĊȦ
CA

=
(
ρm +ρϕ

)
, (6.2.4)

where A, B, C, ρm, pm and an overdot have there usual meanings and ωm = pm/ρm

is the EoS parameter of DM. Here, ρϕ and pϕ are respectively the energy density

and pressure for the canonical scalar field. The EoS parameter ωϕ is represented by

ωϕ = ϕ̇ 2−2V (ϕ)
ϕ̇ 2+2V (ϕ) .

The quintessence cosmological model accommodates a late time cosmic acceler-

ation in the case of ωϕ < −1/3 which implies that ϕ̇ 2 < V (ϕ). On the other hand, if

the kinetic term of the scalar field is negligible with respect to the potential energy,

i.e., ϕ̇ 2 ≪ 2V (ϕ) then the EoS is ωϕ = −1. It is important to notice that the usual re-

lation T i j
; j = 0, establishing the conservation laws satisfied by the matter fields, hold

true. In this model the conservation equation for a perfect fluid and the correspond-

ing evolution equation of the scalar field (1.7.7) is represented by (1.7.9) and (1.7.10),

respectively.

For an anisotropic model, the average scale factor can be defined as [262,263]

a(t) = (ABC)1/3. (6.2.5)

Using the definitions of Hubble parameter (H), DP (q) and shear scalar (σ2) from

Eqs. (1.10.2)–(1.10.6), (2.2.28), (6.2.5), the field Eqs. (6.2.1)–(6.2.4) can be rewritten in

terms of H, q and σ2 as

ρm = 3H2 −σ2 −ρϕ , (6.2.6)

pm = H2(2q−1)−σ2 − pϕ . (6.2.7)

6.3 Solution of Field Equations

Following the method described in [264,265], Eq. (6.2.1) and Eq. (6.2.2) gives

Ȧ
A
− Ḃ

B
=

x1

ABC
, (6.3.1)

where x1 is a constant of integration. The solution of (6.3.1) can be written as

A
B
= k1 exp

(
x1

∫
(ABC)−1dt

)
, (6.3.2)
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where k1 is an another constant of integration. Analogously, from Eq. (6.2.1) and Eq.

(6.2.3), and Eq. (6.2.2) and Eq. (6.2.3), we get

A
C

= k2 exp
(

x2

∫
(ABC)−1dt

)
, (6.3.3)

B
C

= k3 exp
(

x3

∫
(ABC)−1dt

)
, (6.3.4)

where k2, k3 and x2, x3 are constants of integration.

Using Eq. (6.2.5) into Eqs.(6.3.2)–(6.3.4), we get the metric functions as

A(t) = b1 a(t)exp
(

a1

∫
a−3dt

)
, (6.3.5)

B(t) = b2 a(t)exp
(

a2

∫
a−3dt

)
, (6.3.6)

C(t) = b3 a(t)exp
(

a3

∫
a−3dt

)
, (6.3.7)

where

a1 =
x1+x2

3 , a2 =
x3−x1

3 , a3 =−x3+x2
3 ,

and

b1 =
3
√

k1k2, b2 =
3
√

k−1
1 k3, b3 =

3
√

k2k−1
3 .

The constants a1, a2, a3, and b1, b2, b3 satisfy the following relations

a1 +a2 +a3 = 0 and b1b2b3 = 1. (6.3.8)

The unknown quantities of the problem are A, B, C, pm, ρm, ϕ and V (ϕ) whereas we

have only five equations available namely Eqs. (6.2.1)–(6.2.4) and (1.7.10). Therefore,

in order to solve the system of differential equations we need to assume two more

relations among the unknown quantities. Thus, for any arbitrary average scale factor

a and scalar field potential V (ϕ), Eq. (1.7.10) gives ϕ(t) and Eqs. (6.3.5)–(6.3.7) give

A(t), B(t) and C(t).

In general, the cosmological expansion will vary as the scalar field ϕ evolves along

the potential V (ϕ). A convenient approach to the more general case is to express the

cosmological expansion directly as a function of scalar field ϕ instead of the function

of time, a = a(ϕ). This involves the use of the inflation as an effective time coordinate

and allows the full dynamical behavior of the field to be investigated (see ref., [266]).
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Also, in BD theory [100], many authors [118, 267, 268] have solve the field equations

by assuming a relation between scale factor and scalar field. Here, in this chapter

we adopt a similar assumption between scale factor and scalar field. For this, let us

assume that the average scale factor a is an exponential functions of scalar field ϕ ,

which is given as [269,270]

a = a0el2ϕ(t), (6.3.9)

where a0 represents the average scale factor at present time and l2 is an arbitrary

positive constant.

Thus, the Hubble parameter simply gives

H = l2ϕ̇(t). (6.3.10)

To illustrate our analysis, we assume a specific forms of V (ϕ). In the literature, due to

the unknown nature of DE, there are various forms of this potential (for a detail review,

see [28,271–277]) which describes the physical features of the scalar field cosmology.

Therefore, as long as potential V (ϕ) is given, we can solve other geometrical and

physical parameters correspondingly. Thus, here we consider two most common and

genuine form of scalar potential, which are discussed in following subsections.

6.3.1 Solution with zero potential

First, we consider the case where the scalar potential is zero [275,276], that is,

V (ϕ) = 0, (6.3.11)

Using (6.3.10) and (6.3.11), Eq. (1.7.10) reduces to

ϕ̈ +3l2ϕ̇ 2 = 0. (6.3.12)

The solution of (6.3.12) is given by

ϕ =
1

3l2
ln[3 l2(c8t + t0)], (6.3.13)

where c8 is a positive constant of integration. We observe that at the beginning, i.e.,

at t = − t0
c8

, ϕ → −∞. It increases with time and it tends to +∞ at t → ∞. Thus, the

kinetic energy vanishes at the end of the evolution (an infinite expansion).
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Using (6.3.13) into (6.3.9), the average scale factor in terms of t for an expanding

Universe is given by

a = a0[3 l2(c8t + t0)]1/3. (6.3.14)

This is of the power-law form a ∝ tn which represents a generalized inflation for n > 1.

But, in our case we have n= 1/3< 1, therefore, the model will expand with decelerated

rate.

Using (6.3.14) into the metric functions (6.3.5)–(6.3.7), we get

A(t) = a0b1[3l2(c8t + t0)]
1
3

(
1+ a1

l2c8a3
0

)
, (6.3.15)

B(t) = a0b2[3l2(c8t + t0)]
1
3

(
1+ a2

l2c8a3
0

)
, (6.3.16)

C(t) = a0b3[3l2(c8t + t0)]
1
3

(
1+ a3

l2c8a3
0

)
. (6.3.17)

Equations (6.3.15)–(6.3.17) show that the directional scale factors have power-law ex-

pansion form. These three spatial scale factors are zero at t = − t0
c8

and all tend to

infinity at t → ∞. The model has a point singularity at t =− t0
c8

. The directional Hubble

parameters have the expressions

Hi = l2c8

(
1+

ai

l2c8a3
0

)
[3l2(c8t + t0)]−1, (i = 1,2,3). (6.3.18)

Using the constraint a1 + a2 + a3 = 0, the generalized mean Hubble’s parameter is

given by

H =
c8

3(c8t + t0)
. (6.3.19)

As H is a function of time, the model is not a steady-state model. The DP, defined in

(2.2.28), gives

q = 2, (6.3.20)

which shows that the model expands with decelerated rate.

Now, the kinematical quantities for this model can be obtained by substituting the

required values in Eqs. (1.10.2), (1.10.3) and (1.10.6). Thus, we have the following

values of physical quantities

θ = c8(c8t + t0)−1, (6.3.21)

Ap =
2M

3l2
2c2

8a6
0
, (6.3.22)
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σ2 =
M

9l2
2a6

0

1

(c8t + t0)
2 , (6.3.23)

where, M =
a2

1+a2
2+a2

3
2 .

The values of ρϕ and pϕ are given by

ρϕ =
c2

8
2
[3l2(c8t + t0)]−2 = pϕ , (6.3.24)

which gives ωϕ = 1 throughout the evolution and this is the case of stiff-matter state.

We observe that θ , σ , ρϕ and pϕ are decreasing functions of time which have infinite

value at t = − t0
c8

but tend to zero in late time evolution. The anisotropy parameter is

constant, which shows that the nature of the model is always anisotropy throughout

the evolution. Also, limt→∞
σ
θ = const., i.e., the measure of shear scalar to expansion

rate is constant and continues through out the evolution, which shows that the shear

does not tend to zero faster than the expansion scalar and hence the model has

anisotropy behavior.

Now, Eqs. (6.2.6) and (6.2.7) give

ρm =

(
3l2

2c2
8 −

M
a6

0
−

c2
8

2

)
[3l2(c8t + t0)]−2 = pm. (6.3.25)

For energy density to be positive we must have the positive value within the first

bracket, i.e., 6l2
2c2

8a6
0 − c2

8a6
0 −2M > 0. From Eq.(6.3.25), we get ωm = 1, which is again

the case of stiff-matter. The effective density (ρe f f = ρm +ρϕ ) and pressure (pe f f =

pm + pϕ ) are respectively given by

ρe f f =

(
3l2

2c2
8 −

M
a6

0

)
[3l2(c8t + t0)]−2 = pe f f . (6.3.26)

From (6.3.26), we find that ωe f f = 1. Thus, the Universe is filled with stiff-matter in the

presence of scalar field with zero potential and gives decelerating Universe as q > 0.

6.3.2 Solution with exponential potential

Let us assume the exponential potential of the form [41,271,273]

V (ϕ) =V0 e−m2ϕ , (6.3.27)
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where V0 and m2 are non-negative constants.

Using (6.3.10) and (6.3.27), Eq.(1.7.10) reduces to

ϕ̈ +3l2 ϕ̇ 2 −V0 m2 e−m2ϕ = 0. (6.3.28)

The solution of Eq.(6.3.28) is given by

ϕ =
2

m2

[
ln

(
m2

2
c9 +

m2
√

D
2

t

)]
, (6.3.29)

where c9 > 0 is a constant of integration and D = 2V0m2
(6l2−m2)

. The real solution of ϕ exists

provided D > 0, i.e., 0 < m2 < 6l2. We shall choose the positive sign within the bracket,

without loosing any generality to obtain an expanding model. We find that ϕ is time-

dependent and is increasing function of cosmic time. Therefore, during the evolution

the scalar field is growing and hence kinetic energy vanishes at late time evolution.

Using (6.3.29) into (6.3.9), the solution of the average scale factor for an expanding

Universe is given by

a = a0

[
m2

2
c9 +

m2
√

D
2

t

]2l2/m2

. (6.3.30)

In this case we again get the power-law form a ∝ tn. The model will accelerate or

decelerate according as 0 < m2 ≤ 2l2 or 2l2 < m2 < 6l2. From Eq. (6.3.27) and (6.3.29),

the potential turns out to be

V (ϕ) =V0

(
m2

2
c9 +

m2
√

D
2

t

)−2

, (6.3.31)

which shows that V decreases with time and vanishes as t → ∞.

By use of Eq. (6.3.30) in Eqs. (6.3.5)–(6.3.7), the spatial scale factors can be obtained

as

A(t) = a0b1

(
m2

2
c9 +

m2
√

D
2

t

)2l2/m2

exp

− 2a1

a3
0

√
D(6l2 −m2)

1(
m2
2 c9 +

m2
√

D
2 t

)( 6l2−m2
m2

)
 ,

(6.3.32)
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B(t) = a0b2

(
m2

2
c9 +

m2
√

D
2

t

)2l2/m2

exp

− 2a2

a3
0

√
D(6l2 −m2)

1(
m2
2 c9 +

m2
√

D
2 t

)( 6l2−m2
m2

)
 ,

(6.3.33)

C(t) = a0b3

(
m2

2
c9 +

m2
√

D
2

t

)2l2/m2

exp

− 2a3

a3
0

√
D(6l2 −m2)

1(
m2
2 c9 +

m2
√

D
2 t

)( 6l2−m2
m2

)
 .

(6.3.34)

Equations (6.3.32)–(6.3.34) show that the scale factors have hybrid (a combination of

power-law and exponential) type expansion. As we know that the power-law behaviour

dominates in the early phase of the cosmic evolution where as the exponential factor

dominates at late phase. Therefore, this form of scale factor describes both types of

expansion depending on the dominating factor. The model has a point singularity at

t = − c9√
D

. This solution describes an evolution from a point singularity to an infinite

expansion. The directional Hubble parameters in this model are given by

Hi = l2
√

D

(
m2

2
c9 +

m2
√

D
2

t

)−1

+
ai

a3
0

(
m2

2
c9 +

m2
√

D
2

t

)−6l2/m2

, (i = 1,2,3).

(6.3.35)

Now, the generalized mean Hubble’s parameter is obtained as

H = l2
√

D

(
m2

2
c9 +

m2
√

D
2

t

)−1

, (a1 +a2 +a3 = 0). (6.3.36)

For this case the DP can be evaluated as

q =
m2

2l2
−1. (6.3.37)

Equation (6.3.37) clearly shows that q is constant and therefore, its nature (q < 0,

q = 0, or q > 0) depends on the values of l2 and m2. Therefore, for an accelerating

Universe where −1 < q < 0, we must have 0 < m2 < 2l2, for marginal inflation where

q = 0, we have m2 = 2l2 and for a decelerating Universe where q > 0, we must have

the constraints 2l2 < m2 < 6l2. It is to be noted that m2 > 6l2 gives the imaginary value.
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The scalar field density and pressure are respectively given by

ρϕ =
6l2V0

(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)−2

, (6.3.38)

pϕ =
2V0(m2 −3l2)
(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)−2

. (6.3.39)

We observe that ρϕ is always positive as m2 < 6l2, and both ρϕ and pϕ are decreasing

functions of time. The corresponding EoS parameter is given by

ωϕ =
m2

3l2
−1 =

2q−1
3

. (6.3.40)

As we know that the EoS parameter to a quintessence region is −1 < ωϕ < −1
3 , and

this can be achieved when 0 < m2 < 2l2. Also, 2l2 < m2 < 6l2 gives the EoS parameter

−1
3 < ωϕ < 1.

For this case, the kinematical parameters θ , Ap and σ2 are respectively obtained as

θ = 3l2
√

D

(
m2

2
c9 +

m2
√

D
2

t

)−1

, (6.3.41)

Ap =
2M

3l2
2D a6

0

(
m2

2
c9 +

m2
√

D
2

t

)(−12 l2/m2)+2

, (6.3.42)

σ2 =
M
a6

0

(
m2

2
c9 +

m2
√

D
2

t

)−12 l2/m2

. (6.3.43)

From Eqs. (6.3.41)–(6.3.43), we observe that θ , Ap and σ2 are infinite at the point

of singularity but they decrease with time and all tend to zero in late time evolution.

Thus, the Universe is expanding with the increase of time but the rate of expansion,

measure of anisotropy and shear scalar decrease to zero and becomes isotropic in

late time. It is also observed that limt→∞
σ
θ = 0 for m2 < 6l2 which shows that the model

approaches to isotropy in late time. Therefore, the anisotropy of the Universe damp

out during the course of evolution which is consistent with the present observation.

Now, Eqs. (6.2.6) and (6.2.7) give

ρm =
6l2V0(l2m2 −1)

(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)−2

− M
a6

0

(
m2

2
c9 +

m2
√

D
2

t

)−12 l2/m2

, (6.3.44)
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pm =
2V0(l2m2 −1)(m2 −3l2)

(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)−2

− M
a6

0

(
m2

2
c9 +

m2
√

D
2

t

)−12 l2/m2

.

(6.3.45)

The condition ρm ≥ 0 gives t ≥ ( 2d2
m2

√
D
− c9√

D
), where d2 =

[
M(6 l2−m2)

6 l2 V0 a6
0 (l2 m2−1)

] m2
2(6 l2−m2) with

l2 m2 ≥ 1.

The corresponding perfect fluid EoS parameter ωm is given by

ωm =

2V0(l2 m2−1)(m2−3l2)
(

m2
2 c9+

m2
√

D
2 t

)−2

(6 l2−m2)
−

M
(

m2
2 c9+

m2
√

D
2 t

)−12 l2/m2

a6
0

6 l2V0(l2 m2−1)
(

m2
2 c9+

m2
√

D
2 t

)−2

(6 l2−m2)
−

M
(

m2
2 c9+

m2
√

D
2 t

)−12 l2/m2

a6
0

. (6.3.46)

From the EoS parameter (6.3.46), it is obvious that as long as both ρm and pm are

positive, 0 < ωm < 1 only when 3l2 < m2 < 6l2 and as pm is negative, −1 ≤ ωm ≤ 0 only

when 0 < m2 ≤ 3l2. We can also calculate ρe f f = ρϕ +ρm and pe f f = pϕ + pm but we

avoid here to write the expressions of these quantities. The effective EoS parameter

is calculated as

ωe f f =

2V0l2 m2(m2−3l2)
(

m2
2 c9+

m2
√

D
2 t

)−2

(6 l2−m2)
−

M
(

m2
2 c9+

m2
√

D
2 t

)−12 l2/m2

a6
0

6 l2
2 m2 V0

(
m2
2 c9+

m2
√

D
2 t

)−2

(6 l2−m2)
−

M
(

m2
2 c9+

m2
√

D
2 t

)−12 l2/m2

a6
0

. (6.3.47)

Here, we can give the similar interpretation. As long as both ρe f f and pe f f are positive,

0 < ωe f f < 1 only when 3l2 < m2 < 6l2 and as pe f f is negative, −1 ≤ ωe f f ≤ 0 only when

0 < m2 ≤ 3l2.

2 4 6 8 10
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ΩmHtL

l2=1.5 , m2=4

l2=1.2 , m2=4

l2=0.97 , m2=3

l2=0.75 , m2=2.46

Figure 6.1: ωm versus t for c9 = 1, V0 = 1 and some values of l2 and m2.
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Figure 6.2: ωe f f versus t for c9 = 1, V0 = 1 and some values of l2 and m2.

Figures 6.1 and 6.2 plot the graphs of ωm and ωe f f , respectively with respect to time

t for some values of l2 and m2 satisfying the above mentioned constraints. It is to

be noted that one can take those values of l2 and m2 which make ρm and ρe f f to be

positive. We observe that for some values of parameters, e.g., l2 = 0.97 and m2 = 3,

both ωm and ωe f f show a transition from negative value to positive one. Therefore, the

model shows transition from early inflationary phase to decelerated phase. There are

some values like l2 = 0.75 and m2 = 2.46, where ωm shows the transition from negative

to positive but ωe f f is always positive. However, there are some values of l2 and m2

for which ωm and ωe f f are only positive or negative. Thus, for any arbitrary values of

l2 and m2 we can observe any one of the behavior in EoS parameters: ωm and ωe f f

may be only positive or negative throughout the evolution or may vary from negative

to positive.

6.4 Conclusion

In this chapter, we have presented a detailed discussion on the evolution of a ho-

mogeneous and anisotropic B-I Universe with a perfect fluid and a scalar field. We

have studied two types of models, namely, zero potential and an exponential potential

respectively. Exact solutions of the field equations for the both models have been

obtained by assuming the average scale factor as an exponential function of scalar

field.

In the first model, we have considered a mass-less scalar field by assuming the av-

erage scale factor as an exponential function of scalar field. In this case the average

scale factor as well as the directional scale factors have power-law expansion which

expand with decelerated rate. The model has a point singularity at t = − t0
c8

. At the
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beginning of the evolution, i.e., at t =− t0
c8

, the scalar field ϕ →−∞. During the evolu-

tion, ϕ increases and at the end of the evolution (an infinite expansion) when t → ∞,

it tends to +∞. The kinetic energy vanishes at t → ∞. The positive constant value of

DP shows that the model expands but with decelerated rate. The nature of the model

is always anisotropic throughout the evolution because of the constant behaviour of

anisotropy parameter. All the physical parameters like energy density, pressure, ex-

pansion scalar and shear scalar are decreasing functions of time. The measure of

shear scalar to expansion scale is constant throughout the evolution. Thus, the shear

scalar does not tend faster than the expansion scalar. The EoS parameters of scalar

field and perfect fluid come out to be one. Hence, we have found that the anisotropic

perfect fluid model behaves like stiff-matter in the presence of scalar field.

In the second model, we have considered an exponential potential. We have ob-

tained the logarithmic form of scalar field and power-law form of average scale factor.

The directional scale factors have hybrid type expansion which is a combination of

power-law and exponential forms. This form of scale factor describes both types of

expansion depending on the dominating factor. The model has a point singularity at

t =− c9√
D

. It has been observed that at the beginning of the evolution, i.e., at t =− c8√
D

,

ϕ tends to −∞ while V (ϕ) tends to +∞. During the evolution ϕ increases where as

V (ϕ) decreases and at late time evolution ϕ tends to +∞ while V (ϕ) vanishes. The

kinetic energy and potential energy tend to +∞ at the beginning but both vanish at the

end of evolution. This means that the Universe is born from the singularity at t =− c9√
D

.

The DP is constant whose nature depends on the values of l2 and m2. The physical

quantities like θ , Ap, σ2, ρm, pm, ρϕ , pϕ are decreasing functions of time and tend to

zero in late time evolution. The model approaches isotropy in late time. The EoS pa-

rameter of matter and the effective EoS parameter of matter plus scalar field are time

dependent which show the deceleration or acceleration or transition from one phase

to other depending on the constraint 0 < m2 ≤ 3l2 or 3l2 < m2 < 6l2 which have been

shown in Figs. 6.1 and 6.2. We have find out that the physically valid range for m2 is

0 < m2 < 6l2, where l2 is any positive constant.



Chapter 7

Dynamics of Bianchi V anisotropic model

This chapter1 is the extension of the previous chapter. It deals with the dynamical

evolution of a homogeneous and anisotropic Bianchi type-V model filled with perfect

fluid and scalar field. The two sources are assumed to be non-interacting. The aver-

age scale factor and scalar potential are assumed to be the exponential functions of

the scalar field, i.e., a = a0 el2ϕ(t) and V =V0 e−m2ϕ(t), where l2, V0, and m2 are arbitrary

constants. We use the observational data to find the parameters l2 and m2. The role

of scalar field through the variable EoS parameters are studied. It is also observed

that EoS parameters change from phantom region to quintessence region for small

values of l2 and m2, respectively. We conclude that the model shows phantom be-

havior during early time and quintessence in late time evolution. For large values of l2

and m2 it varies in quintessence region only. We also study the statefinder parameters

and found that the model behaves like ΛCDM or SCDM depending on the values of l2

and m2.

1The work presented in this chapter comprises the results of a research paper entitled “Dynamics of Bianchi
V anisotropic model with perfect fluid and scalar field, Indian Journal of Physics 91, 1645 (2017)”.
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7.1 Introduction

In the present chapter, we extend the work carried out in chapter 6 for the Bianchi type-

V (B-V) homogeneous and anisotropic Universe filled with ordinary matter as a perfect

fluid and a scalar field (ϕ ) with potential (V (ϕ)) minimally coupled with gravity. In the

last few years, there has been considerable interest, primarily due to the observations

of distant supernovae, in the possibility that a significant fraction of the energy of the

Universe today is in a coherent zero mode of a very weakly coupled scalar field. The

scalar fields are being used for exploration of possible inflationary scenario [13] and

for description of DE [63].

It has been observed that the scalar potential V (ϕ) in a scalar field cosmology has

very important role as it radically affects the cosmological behavior. There are a

number of quintessence models which have been put forward in recent years. These

fields involve a scalar field rolling down its potential dominating over the kinetic energy

of the field. A purely exponential potential V (ϕ) = V0em2ϕ is one of the widely studied

case [278]. Some other forms of the scalar potential have been assumed to describe

the early and late time evolution of the Universe.

The standard Friedmann cosmology which is isotropic and homogeneous has been

very successful in describing the evolution of the Universe. The present Universe,

however, is not as simple as the Universe was in the early epoch. The large s-

cale matter distribution in the observable Universe, largely manifested in the form

of discrete structures, does not exhibit a high degree of homogeneity. Recent space

investigations detect anisotropy in the cosmic microwave background. The Cosmic

Background Explorers differential radiometer has detected and measured cosmic mi-

crowave background anisotropies at different angular scales. The theoretical argu-

ments [161] and recent experimental data that support the existence of an anisotropic

phase approaches to the isotropic phase. It leads one to consider Universe models

with an anisotropic background.

In the last few years, observational results indicate that anisotropic Bianchi type

models play the vital role in cosmology. Many authors [279–283] have studied the

anisotropic models and found that the situation observed by the FRW model remain-

s unchanged in the anisotropic model before the inflationary period. That’s why the

anisotropic Bianchi models have become more interesting. Spatially homogeneous

Bianchi type models are more general than the FRW models and have anisotropic
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spatial sections. These models provide an opportunity to consider asymmetric ex-

pansion along different spatial sections.

Bianchi type-I (B-I) is the simplest generalization of isotropic and homogeneous flat

FRW models. The Bianchi type-V (B-V) model is the natural generalization of the open

FRW model, which finally becomes isotropic. B-V cosmological models have been

discussed by many authors (see, refs. [284–294]). Pradhan and Amirhashchi [295],

Kumar and Yadav [296], Kumar [297], Chandel and ShriRam [298], and Farajollahi

and Tayebi [299] have studied B-V models with dark energy component in different

physical context.

Fadragas et al. [261] have studied anisotropic locally-rotationally-symmetric (LRS)

B-I with scalar field for a wide range of potentials. The effect of the scalar fields with

exponential potential in anisotropic cosmology is of interest. We have extended this

work in the previous chapter to totally anisotropic B-I model and discussed the effect

of scalar field [300].

In the present chapter, we find out the exact solutions of the Einstein field equa-

tions with the help of an exponential form of the scalar potential in B-V cosmological

model to discuss the early and late time evolution of the Universe. We desire to im-

pose observational constraints on scalar field cosmology along with the matter fluid

in which the average scale factor is an exponential function of scalar field. We use

the observational data from SNe Ia (Gold Sample) and H(z)+SNe Ia [301] in order to

find the suitable values of model parameters. We discuss the behavior of various cos-

mological parameters, like shear scalar, anisotropy parameter and expansion scalar.

We also discuss the statefinder parameter to observe the behavior of the anisotropic

model.

7.2 The Field Equations

Let us consider a spatially homogeneous and anisotropic B-V line element, defined by

(1.3.9). We consider that the Universe is filled with perfect fluid and scalar field where

energy-momentum tensors are given by (1.4.4) and (1.7.6) respectively.

The Einstein field equations (1.7.5) for the B-V metric (1.3.9) and energy-momentum

tensor (1.4.4) and (1.7.6) yield

Ä
A
+

B̈
B
+

ȦḂ
AB

− m2

A2 =−(pm + pϕ ), (7.2.1)
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Ä
A
+

C̈
C
+

ȦĊ
AC

− m2

A2 =−(pm + pϕ ), (7.2.2)

B̈
B
+

C̈
C
+

ḂĊ
BC

− m2

A2 =−(pm + pϕ ), (7.2.3)

ȦḂ
AB

+
ḂĊ
BC

+
ȦĊ
AC

− 3m2

A2 = (ρm +ρϕ ), (7.2.4)

2
Ȧ
A
− Ḃ

B
− Ċ

C
= 0, (7.2.5)

where, ρm, ρϕ , pm and pϕ have their usual meaning as defined in Chapter 6. We

assume that there are no interaction between matter and the scalar field, so that they

separately obey the energy conservation and Klein-Gordon equations, respectively as

ρ̇m +3H(1+ωm)ρm = 0, (7.2.6)

ϕ̈ +3Hϕ̇ +
dV (ϕ)

dϕ
= 0. (7.2.7)

The field equations (7.2.1)–(7.2.4) can be rewritten in terms of H, q, σ2 as

ρm = 3H2 −σ2 − 3m2

A2 −ρϕ , (7.2.8)

pm = H2(2q−1)−σ2 +
m2

A2 − pϕ , (7.2.9)

where, σ2 is the shear scalar.

7.3 Solution of the Field Equations

We follow the approaches of [291, 292, 302–304] to solve the field equations (7.2.1)–

(7.2.5). Considering (6.2.5), from (7.2.1)–(7.2.4), we have the following metric potentials

A(t) = b4 a(t)exp
(

a4

∫
a−3dt

)
, (7.3.1)

B(t) = b5 a(t)exp
(

a5

∫
a−3dt

)
, (7.3.2)

C(t) = b6 a(t)exp
(

a6

∫
a−3dt

)
, (7.3.3)
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where the constants a4, a5, a6 and b4, b5, b6 are chosen in such a way that they must

satisfy the constraints

a4 +a5 +a6 = 0 and b4b5b6 = 1. (7.3.4)

Integrating (7.2.5) and absorbing the integration constant into B or C without loss of

generality, we obtain

A2 = BC. (7.3.5)

Using (7.3.1)–(7.3.3) with the relations (7.3.4) into (7.3.5), we obtain a4 = 0, a5 =−a6 =

d3(say), b4 = 1, b5 = b−1
6 , where d3 is another constant. Finally, using above relations,

Eqs. (7.3.1)–(7.3.3) can be written as

A(t) = a(t), (7.3.6)

B(t) = b5a(t)exp
(

d3

∫
a−3dt

)
, (7.3.7)

C(t) = b−1
5 a(t)exp

(
−d3

∫
a−3dt

)
. (7.3.8)

Thus, we get the metric potentials explicitly in terms of the average scale factor a. It

is very obvious from the Eqs. (7.3.6)–(7.3.8) and (7.2.7) that if once we get the average

scale factor and scalar field potential then we can compute the metric functions A(t),

B(t), C(t), scalar field (ϕ), and with the help of these parameters we can also compute

all other remaining quantities, such as ρm, and pm. Here, in this chapter we adopt a

similar assumption between scale factor and scalar field. For this, let us assume that

the average scale factor a is an exponential functions of scalar field ϕ , which is given

as in Eq. (6.3.9) [269,270].

Let us address the question of choice of potential of the scalar field which would

lead to a viable cosmological model. The obvious restriction on the evolution is that,

starting from Planck’s time, the scalar field should survive till today (to account for the

observed late time accelerated expansion) without interfering with the nucleosynthesis

of the standard model.

Exponential potentials lead to the solutions which are the attractors of evolution e-

quations and provide backdrop for the understanding of the dynamics in our case. The

potential of this form is of interest because it arrives generally in a number of circum-

stances. Although, it does not possess minima, it can model the gradient of a potential
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which possess a minimum in an orthogonal degree of freedom. Halliwell [305] has al-

so pointed out that most theories undergoing dimensional reduction to an effective

four dimensional theory result in a combination of exponential potentials and one of

these will always dominate asymptotically. It is also known that an analogous struc-

ture exist in quadratic Lagrange’s theories of gravity, which are conformally equivalent

to a general relativity plus a scalar field which asymptotically tends to an exponential

form. Let us assume scalar field potential V as [41, 271, 273] defined in the previous

chapter by (6.3.27).

Using (6.3.9), the Hubble parameter is obtained as

H =
ȧ
a
= l2ϕ̇ . (7.3.9)

Solving the Eq. (1.7.10), for the ansatz (6.3.9) and (6.3.27), we get the scalar field in

terms of time t which is same as obtained in chapter 6, Eq. (6.3.29). Using this value

of scalar field, the average scale factor and scalar field potential is obtained same as

in chapter 6 by Eqs. (6.3.30) and (6.3.31), respectively.

If we insert the value of a(t) from (6.3.30) into (7.3.6)–(7.3.8), we get the following

metric potentials in terms of t

A(t) = a0

(
m2

2
c9 +

m2
√

D
2

t

)2 l2/m2

, (7.3.10)

B(t)= b5a0

(
m2

2
c9 +

m2
√

D
2

t

)2l2/m2

exp

− 2d3

a3
0

√
D(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)− 6l2
m2

+1
 ,

(7.3.11)

C(t)= b−1
5 a0

(
m2

2
c9 +

m2
√

D
2

t

)2 l2/m2

exp

 2d3

a3
0

√
D(6 l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)− 6l2
m2

+1
 .

(7.3.12)

where, c9 > 0 is a constant of integration and D = 2V0m2
(6l2−m2)

. From Eqs. (7.3.10)–

(7.3.12), we can observe that only scale factor A(t) is of the form of power-law expan-

sion type whereas the other two scale factors B(t) and C(t) have hybrid (a combination

of the power-law and exponential) type expansions. So the dominating factor decides

the expansion. The scalar functions A(t), B(t) and C(t) tend to infinity as t → ∞.
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The physical parameters such as directional Hubble’s parameters (H1,H2,H3), Hub-

ble’s parameter (H), DP (q), expansion scalar (θ), shear scalar (σ2) and anisotropy

parameter (Ap) for the model are respectively calculated as

H1 = l2
√

D

(
m2

2
c9 +

m2
√

D
2

t

)−1

, (7.3.13)

H2 = l2
√

D
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2
c9 +

m2
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D
2

t

)−1

+
d3

a3
0

(
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2
c9 +

m2
√

D
2

t

)− 6 l2
m2

, (7.3.14)

H3 = l2
√

D

(
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2
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m2
√

D
2

t

)−1

− d3

a3
0

(
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2
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D
2

t

)− 6 l2
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, (7.3.15)

H = l2
√

D

(
m2

2
c9 +

m2
√

D
2

t

)−1

, (7.3.16)

q =
m2

2l2
−1, (7.3.17)

θ = 3l2
√

D

(
m2

2
c9 +

m2
√

D
2

t

)−1

, (7.3.18)

σ2 =
d2

3

a6
0

(
m2

2
c9 +

m2
√

D
2

t

)− 12 l2
m2

, (7.3.19)

Ap =
2d2

3

3a6
0 l2

2D

(
m2

2
c9 +

m2
√

D
2

t

)−
(

12 l2
m2

−2
)
. (7.3.20)

From Eq. (7.3.17), we can analyse that DP remains constant throughout the evolu-

tion and its sign depends on the values of the constants l2 and m2. For the considered

model the Universe accelerates, i.e., −1 < q < 0 for 0 < m2 < 2l2, the Universe has

marginal inflation, i.e., q = 0 for m2 = 2l2 and the Universe decelerates, i.e., q > 0 for

2l2 < m2 < 6l2.

We observe that Ap is decreasing function of time in interval 0 < m2 < 6l2 and tends

to zero as t → ∞. This indicates that our model has transition from initial anisotropy to

isotropy at present epoch which is in good harmony with current observations. Thus,

observed isotropy of the Universe can be achieved in our model at present epoch.

The parameters, such as H1, H2, H3, H, θ , σ2 also decrease with time and all tend to

zero at t → ∞, which indicate that the model tends to isotropic at large time. It is also

observed that limt→∞
σ
θ = 0 for 0 < m2 < 6l2, which indicates that in late time the model
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damp out the anisotropy of the Universe and approaches to isotropy.

The scalar field energy density and pressure are respectively evaluated as

ρϕ =
6l2V0

(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)−2

, (7.3.21)

pϕ =
2V0(m2 −3l2)
(6l2 −m2)

(
m2

2
c9 +

m2
√

D
2

t

)−2

. (7.3.22)

It is clear from Eqs. (7.3.21) and (7.3.22) that ρϕ is always positive for 0 < m2 < 6l2

which is the viable range for the existence of the solution as discussed above. We

find that ρϕ and pϕ tend to zero as t → ∞. The EoS parameter gives

ωϕ =
m2

3l2
−1 =

2q−1
3

. (7.3.23)

The model behaves as quintessence (−1 < ωϕ ≤ 1
3 ) for 0 < m2 ≤ 2l2, whereas it goes

from accelerated phase to decelerated phase (−1
3 < ωϕ < 1) for 2l2 < m2 < 6l2.

From (7.2.8) and (7.2.9), we get
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and
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For reality of ρm, we must have m2 >
√

6 and m2 < 6l2. The corresponding EoS pa-

rameter for the perfect fluid is

ωm =
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(7.3.26)
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Table 7.1: The constraints on ωm and ωe f f for different values of l2 and m2 using observational data.

Data 1/1+q 2l2/m2 m2 >
√

6 l2 ωm ωeff

SNe Ia (Gold Sample) 1.04+0.07
−0.06 1.04+0.07

−0.06 2.3 1.196 −−− −1.92369 ≤ ωe f f ≤−0.358974

2.6 1.352 −1.55876 ≤ ωm ≤−0.358974 −0.632776 ≤ ωe f f ≤−0.358974

3.351 1.74252 −0.413721 ≤ ωm ≤−0.358974 −0.39934 ≤ ωeff ≤−0.358974

3.502 1.82104 −0.399347 ≤ ωm ≤−0.358974 −0.390097 ≤ ωe f f ≤−0.358974

4 2.08 −0.377332 ≤ ωm ≤−0.358974 −0.374444 ≤ ωe f f ≤−0.358974

5 2.6 −0.365668 ≤ ωm ≤−0.358974 −0.365064 ≤ ωe f f ≤−0.358974

H(z)+SNe Ia 1.31+0.06
−0.05 1.31+0.06

−0.05 2.3 1.5065 −−− −1.24084 ≤ ωe f f ≤−0.491094

2.54 1.6637 −1.01038 ≤ ωm ≤−0.491094 −0.764679 ≤ ωe f f ≤−0.491094

4 2.62 −0.52214 ≤ ωm ≤−0.491094 −0.518695 ≤ ωe f f ≤−0.491094

4.266 2.79423 −0.515664 ≤ ωm ≤−0.491094 −0.513327 ≤ ωeff ≤−0.491094

4.39 2.87545 −0.513338 ≤ ωm ≤−0.491094 −0.511359 ≤ ωe f f ≤−0.491094

5 3.275 −0.505636 ≤ ωm ≤−0.491094 −0.504673 ≤ ωe f f ≤−0.491094

To observe the behaviour of ωm, we need the values of parameters l2 and m2. From

(7.3.17), we get 2l2
m2

= (1+q)−1. On using the constraints on (q+1)−1 from the SNe Ia

(Gold Sample) and H(z)+ SNe Ia [301], respectively in this relation, we get the values

of l2 and m2 keeping the constraints m2 >
√

6 and m2 < 6l2, which are necessary for

the existence of model and positivity of energy density. It is to be noted that these two

constraints of l2 and m2 are obtained from Eq. (7.3.24) to make the energy density as

positive quantity. Some values of l2 and m2 are listed in table 7.1.

Substituting these values of l2 and m2 and taking other parameters as unity in Eq.

(7.3.26), we get different ranges of ωm which are listed in table 7.1. We plot the graphs

ωm versus t for these values of l2 and m2 which are shown in Fig. 7.1 corresponding to

SNe Ia (Gold sample) and in Fig. 7.2 with respect to H(z)+SNe Ia. It is observed that

the EoS parameter varies from phantom phase to quintessence phase crossing the

dividing line ωm =−1 for smaller values of l2 and m2, say m2 = 2.6 and l2 = 1.352 with

respect to SNe Ia and l2 = 2.54 and m2 = 1.6637 corresponding to H(z)+ SNe Ia, re-

spectively. Thus, the model shows phantom behavior in early time and quintessence

in late time evolution. However, it shows quintessence to quintessence for larger val-

ues of l2 and m2 during whole evolution. The SNe Ia (Gold Sample) data suggests that

−0.3993994≤ωde ≤−0.3197279 while the limit imposed by a combination of H(z)+SNe

Ia data is −0.513382 ≤ ωde ≤−0.4708995 for open model. The table 7.1 clearly shows

that our result for ωm evolves within a range of SNe Ia (Gold Sample) at m2 = 3.502

and l2 = 1.82104 whereas a range of ωm as per H(z)+SNe Ia is obtained at m2 = 4.39
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and l2 = 2.87545 which are nice agreement with both observational data.
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l2=1.82104 , m2=3.502

l2=1.74252 , m2=3.351

l2=1.352 , m2=2.6

Figure 7.1: The evolution of EoS parameter of matter vs. time with d3 = 1, a0 = 1, V0 = 1
using SNe Ia(Gold Sample) data.
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l2=2.62 , m2=4

l2=1.6637 , m2=2.54

Figure 7.2: The evolution of EoS parameter of matter vs. time with d3 = 1, a0 = 1, V0 = 1
using H(z)+SNe Ia data.

Now, we compute the effective density (ρe f f = ρm + ρϕ ), the effective pressure

(pe f f = pm + pϕ ) and the effective EoS parameter (ωe f f = pe f f /ρe f f ) for the model.

These quantities have the following forms, respectively
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, (7.3.27)
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, (7.3.28)
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Figure 7.3: The evolution of effective EoS parameter vs. time with d3 = 1, a0 = 1, V0 = 1
using SNe Ia(Gold Sample) data.
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Figure 7.4: The evolution of effective EoS parameter vs. time with d3 = 1, a0 = 1, V0 = 1
using H(z)+ SNe Ia data.

The constraints on ωe f f are calculated and listed in table 7.1 for the values of l2 and

m2, obtained from the data of SNe Ia(Gold Sample) and H(z)+SNe Ia [301]. In this

case, m2 > 0 and l2 > m2/6 must have the constraints to make the effective density

to be positive. We plot ωe f f versus t in Figs. 7.3 and 7.4 corresponding to the data

of SNe Ia(Gold Sample) and H(z)+ SNe Ia, respectively. The Universe starts from

phantom region and approaches to ωe f f = −1
3 in late time evolution for the small

values of l2 and m2, say, m2 = 2.3 and l2 = 1.196 with SNe Ia data and m2 = 2.3 and

l2 = 1.5065 with H(z)+SNe Ia data, respectively. It means that there is a transition

from phantom region to quintessence region corresponding to the both observational

data. For the large values of l2 and m2, ωe f f varies in the quintessence region only.
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We find that m2 = 3.351 and l2 = 1.74252 gives the range of effective EoS parameter of

SNe Ia and m2 = 4.266 and l2 = 2.79423 gives the range of ωe f f of H(z)+SNe Ia. Thus,

we find that our model is best fitted corresponding to these two observational data for

the above values of l2 and m2.

Let us discuss the anisotropy parameter in term of redshift z. The relation between

scale factor a and redshift z is given by

a0

a
= 1+ z. (7.3.30)

Now, the anisotropy parameter Ap given in Eq. (7.3.20) in terms of z can be written as

Ap =
2d2

3

3a6
0 l2

2 D
(1+ z)

6l2−m2
l2 , where 6l2 > m2 (7.3.31)

Using the suitable values of l2 and m2 given in table 7.1 as obtained through the ob-

servations SNe Ia and H(z)+SNe Ia, we can obtain the constraint for Ap. We have

observed that the suitable values of l2 and m2 are 2.79423 and 4.266, respectively

for H(z)+SNe Ia data. Therefore, from Eq. (7.3.31) the constraint for Ap comes to

0.183925 ≤ Ap ≤ 11.5473 with 0.09 ≤ z ≤ 1.75 [301]. It means that at early time the

measure of anisotropy was very high at the redshift of z = 1.75 but ultimately it de-

creases during the process of evolution. If we consider the present value, i.e., at

z = 0, we find Ap = 0.12509 and at late time, i.e, z →−1, we get Ap → 0. Therefore, the

anisotropic model behaves as isotropic.

Statefinder Parameter

Now, we discuss our model with another important parameter known as statefinder

parameter. In this model, we obtain the statefinder parameters r and s as

r =
(2l2 −m2)(l2 −m2)

2 l2
2

, (7.3.32)

and

s =
m2

3 l2
. (7.3.33)

It has been observed that our model approaches from initial anisotropic to isotropic

state at late time. Therefore it is worthwhile to compare the statefinder parameters of

our model with the ΛCDM model, available to an isotropic and homogeneous geom-

etry. Now, from (7.3.32) and (7.3.33), we observe that the state finder parameters are
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constants and the values of these parameters depend on the parameters l2 and m2.

With the help of Eq. (7.3.32), we get m2 = 0 or m2 = 3l2 for r = 1. Also from Eq. (7.3.23),

we observe that at m2 = 0 the scalar field behaves like a cosmological constant. For

m2 = 0, we get s = 0, i.e., r = 1,s = 0 which shows the ΛCDM behaviour of the model.

For m2 = 3l2, we get s = 1, i.e., r = 1,s = 1 which shows the SCDM behaviour of the

model. Also, from Eqs. (7.3.22), (7.3.23) and (7.3.17), we observe that at m2 = 3l2 we

get pϕ = 0, ωϕ = 0 and q = 0.5, respectively which shows that scalar field anisotropic

model behaves like SCDM model at m2 = 3l2.

7.4 Conclusion

In this chapter, we have discussed the physical and geometrical behaviors of homo-

geneous and anisotropic B-V Universe with perfect fluid and scalar field. The exact

solutions of Einstein’s field equations have been obtained by taking the assumptions

on scalar potential and scale factor. We have assumed an average scale factor and

scalar potential as an exponential functions of scalar field.

We have found that the scalar field increases with time and tends to infinity as t →∞.

The scalar potential decreases with time and tends to zero in late time evolution. The

average scale factor is power-law form and the Universe accelerates for m2 ≤ 2l2.

The directional scale factors showed power-law expansion in only x-direction but in

y-direction and z-direction it shows the hybrid expansion. Thus, the dominating one

decides the behaviour of the expansion of the Universe. The anisotropy parameter

Ap depends on cosmic time. It decreases with time and it tends to zero at late time

evolution. Thus, our model approaches to isotropy state from initial anisotropy at

present epoch which shows the good harmony with the current observations. We

have observed that limt→∞
σ
θ = 0 for 6l2 −m2 > 0 which also indicates that in late time

the anisotropic Universe approaches to an isotropic one. The other parameters such

as H1, H2, H3, H, θ , σ2 etc. are decreasing functions of time, they all are tending to

zero at t → ∞. We have observed that the conservation equation is satisfied provided

a1 = 0.

In this model, the DP is independent of time, so it remains constant throughout

the evolution and its value depends on the parameters l2 and m2. We have calculat-

ed the EoS parameter of perfect fluid and effective EoS parameter which are time-

dependent. We have used observational data such as SNe Ia (Gold sample) and
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H(z)+ SNe Ia to observe the behavior of ωm and ωe f f . Using this observational data

we have found the values of parameters l2 and m2 and then the values of ωm and

ωe f f as given in table 7.1. For these values of l2 and m2, the energy density is found

to be positive and pressure is negative. We have also plotted the graphs for ωm and

ωe f f as shown in Figs. 7.1–7.4. We have observed that during the evolution of the

Universe the EoS parameter ωm varies from phantom region to quintessence region

for some small values of l2 and m2. Thus, the model shows phantom behavior during

early time and quintessence in late time evolution. The EoS parameter also has the

value ωm > −1 and ωe f f > −1 for the large values of l2 and m2, which show that the

model behaviors like quintessence for these values of arbitrary parameters. We have

listed some values of l2 and m2 which give the ranges of ωm and ωe f f of SNe Ia (Gold

Sample) and H(z)+ SNe Ia observational data, respectively. Very recently, Berezhiani

et al. [306] have presented a research paper on “Universe without dark energy: cos-

mic acceleration from dark matter-Baryon interactions”. They have presented a new

idea for generating for cosmic acceleration without a source of negative pressure and

without new degree of freedom beyond of Einstein gravity. The mechanism relies on

the coupling between dark matter and baryons through an effective metric. We have

discussed the statefinder parameters to test the viability of our model. We have found

that the model would behavior like ΛCDM model for m2 = 0, i.e., for constant potential.

However, the scalar field model behaviors like SCDM model for m2 = 3l2.

It can be concluded that the model presented in this chapter is very crucial for

further investigations as the issue of accelerated expansion of the Universe has been

discussed through anisotropic scalar field model along with perfect fluid.
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Summary
In the thesis, we have carried out a dark energy phenomena of the Universe which

has been predicted by many cosmological observations. In chapter 2, we have stud-

ied HDE model in well motivated and established BD theory. We have assumed a

logarithmic form of BD scalar field, proposed by Kumar and Singh [181]. We have

extended our study to HDE model with future event horizon as an IR cutoff and have

shown that this model explains the evolution and solve the coincidence problem more

effectively with the logarithmic form of BD scalar field in comparison of power-law

form.

In chapter 3, the concept of bulk viscosity with new HDE has been analysed to ex-

plain the recent accelerated expansion of the Universe. It is thought that the negative

pressure caused by the bulk viscosity can play the role of dark energy component and

drive the accelerated expansion of the Universe. We have observed that the acceler-

ated expansion may be possible for non-viscous case but the phase transition is not

possible. It has been tried to demonstrate that the bulk viscosity can play the role as a

possible candidate of dark energy. Using statefinder parameters and Om diagnostic,

it has been found that our model shows the similar behavior as quintessence model

and Chaplygin gas model for different values of the viscosity coefficient.

Chapter 4 is the extension of the work carried out in chapter 3, in f (R,T ) gravity the-

ory. We have studied new HDE model with constant bulk viscosity in f (R,T ) gravity

theory. We have observed that the accelerated expansion may be possible for non-

viscous case in f (R,T ) gravity but does not show phase transition. The introduction of

bulk viscosity not only makes the phase transition possible but also presents a wide

range of possible evolutions of the Universe depending on parameters of the model.

We have also distinguished this model from other existing dark energy models using

two geometrical diagnostics: statefinder parameter and Om diagnostic. The ther-
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modynamics and the local entropy have been discussed for this model. The model

preserves the validity of the second law of thermodynamics as bulk viscous coeffi-

cient remains positive through the evolution of the Universe. Big-Rip and Type III

singularities are obtained depending on values of model parameter.

In chapter 5, we have generalised the previous work for more general form of the

bulk viscous coefficient with new HDE in the framework of f (R,T ) gravity theory. We

have classified all possible scenarios (deceleration, acceleration and their transition)

with different parameter regions chosen properly for positive and negative ranges of

model parameter and viscosity coefficients to analyze the evolution of the Universe.

We have also investigated the statefinder pair and Om diagnostic for this viscous mod-

el to discriminate from other existing DE models. The model evolution behaviors are

shown by plotting the statefinder and Om− z trajectories. The evolution of effective

EoS parameter is also shown graphically. The entropy and generalized second law of

thermodynamics are found to be valid for this model under some constraints on bulk

viscous coefficients.

Thus, we have observed that GTR as well as f (R,T ) gravity have potential to explain

the recent accelerated expansion of the Universe in the presence of bulk viscosity with

new HDE. The concept of bulk viscosity presents a mechanism to observe accelerat-

ed expansion as well as phase transition of the Universe.

The spatially homogeneous and anisotropic Bianchi-I and Bianchi-V models with

the scalar field have been studied in the chapter 6 and 7. In chapter 6, we have in-

vestigated the effect of non-interacting scalar field in the framework of Bianchi-I. We

have assumed the average scale factor as an exponential function of scalar field. We

have considered the solution for two cases: flat potential and exponential potential.

We have obtained that the zero-rest-mass model expands with decelerated rate and

behaves like a stiff matter. In case of exponential potential function, the model ex-

pands with decelerated, accelerated or shows the transition depending on the model

parameters. The isotropization is observed at late-time evolution of the Universe in

exponential potential model.

Chapter 7 is the extension of the previous chapter for homogeneous and anisotropic

Bianchi-V model filled with perfect fluid and scalar field. The two sources have been

assumed to be non-interacting. The average scale factor and scalar potential have

been considered as an exponential functions of the scalar field. The observational

data has been used here to find out the values of model parameters. The model
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behaves like ΛCDM or SCDM depending on the values of model parameters. The

anisotropic models explains that in late time of evolution the anisotropic behaviour is

damped out and the Universe become isotropic one which is the good harmony with

the current observational data.

Future Scope
Our motive is to develop some cosmological models in the framework of BD, GTR and

f (R,T ) theories of gravity which may be helpful in order to explain accelerated expan-

sion of the Universe. We have considered BD theory which is a simple extension of

GTR to discuss accelerated expansion. We have studied HDE model in this theory.

The concepts of bulk viscosity, HDE and new HDE have been analyzed in GTR as

well as in f (R,T ) theory.

The BD theory is an important scalar-tensor theory which provides a natural exten-

sion of GTR. We have used a logarithmic form of BD scalar field and have shown

that HDE model with the future event horizon and this form of BD scalar field provides

some significant results in BD theory. It may be interesting to study the behavior of

perturbation of BD theory with this form of BD scalar field. It will be worthwhile to

analyze whether this form of BD scalar field may provide a mechanism for structure

formation to take place. There are many other area like Black hole study, DM problem

etc. to discuss with this form of BD scalar field in BD theory.

As the f (R,T ) theory of gravitation presents a maximal coupling between matter and

geometry of the Universe, therefore, it has potential to explain the problems of modern

cosmology. Although, a wide range of models have been studied in this theory but still

there is a good scope to do work. We have studied only first order Eckart theory of

bulk viscosity in GTR and f (R,T ) gravity, therefore, it may be worthy to discuss the full

causal theory of bulk viscosity which may provide better and more general results. The

observational cosmology have not been studied considerably in this theory, therefore,

there is a lot of scope in this area. The study of structure formation and perturbation

theory are another main fields where a considerable work can be done.

We have assumed bulk viscous coefficient as ζ = ζ0+ζ1H, however a second order

bulk viscous coefficient as ζ = ζ0 + ζ1H + ζ2(
Ḣ
H2 +H) may be considered to describe

the late time evolution. In forthcoming paper, we will try to assume such form of ζ in

GTR as well as in f (R,T ) gravity theory. We will also try to observationally fit these

parameters and provide the best fit values to the parameters.
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In case of anisotropic models, we can extend the concept of scalar field for oth-

er Bianchi models and can also do observational study to conclude more about the

anisotropic behaviour of the Universe.
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