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Combined sequence and sequence-structure
based analysis of SNPs associated with genes
Involved in Parkinson disease.

Deepak Kumar

Delhi Technological University, Delhi, India

ABSTRACT

Mutations in SNCA, LRRK2, PINK and DJ1 plays a very important part in pathological
process of Parkinson’s disease therefore SNPs associated with these genes were picked for
detailed examination of their unfavourable effects on human body. SNPs were taken from
NCBI dbSNP and only missense and mutations with unknown significance were taken into
consideration. To study the deleterious effect of these SNPs we followed sequence specific and
sequence-structure specific methods in order to provide more accurate results. SIFT, PolyPhen-
2, SNP & Go and iMutant3.0 were used for detection of deleterious SNPs and MD simulations
were performed using NAMD to validate the results. The study suggested that V1598E and
P2119L of LRRK?2 gene could indirectly or directly affect the Hydrogen bonding pattern and

destabilize the amino acid interactions of gene to certain extent.

Keywords: Parkinson’s Disease, SNP analysis, SNCA, LRRK2, PINK, DJ1

10




INTRODUCTION

A SNP known as Single Nucleotide Polymorphism is a single point mutation in the stretch of
a gene. They are most commonly occurring type of mutations found in genome (approx. 90
percent of whole human DNA polymorphism in genome are SNPs). There are various publicly
available online directories for SNPs for example GWAS Central, SwissVar and dsSNPs. Of
all the mutations, only nonsynonymous SNPs or simply nsSNPs are of particular importance
as they bring in change of amino acid residue, they are also known as missense mutations for
the very same reason. Such changes in amino acid residue can result in protein instability by

reducing protein dissolving ability or by altering hydrogen bonding pattern of protein.

PD is largely a neuro degenerative condition that is caused by the degeneration of dopamine
producing neurons in the midbrain. The effect of PD increments with age, with 2% of people
beyond 80 years old being affected making it the second most common neurodegenerative
disease among human population. Currently PD genetics nomenclature includes 17 specific
chromosomal locus regions that are termed PARK and numbered in chronological order of their
identification (Table 1).
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Table 1:

Approved Approved Name Previous Chromosome
Symbol Symbols
SNCA synuclein alpha PARK4, PARK1 4022.1
PRKN parkin RBR E3 ubiquitin protein ligase PARK2 Boy26
PARK3 Parkinson disease 3 (autosomal dominant, 213
Lewy hody)
UCHL1 ubiguitin C-terminal hydrolase L1 PARKS 4p13
PINK?1 PTEN induced putative kinase 1 PARKE 1p36.12
PARKY Parkinsonism associated deglycase 1p36.23
LRRK?Z leucinerichrepeatkinase 2 PARKS 12012
ATP13A2 ATPase cationtransporting 13A2 PARKY 1p36.13
PARK10 Parkinson disease 10 (susceptibility) 1p32
PARKT1 Parkinson disease 11 (autosomal recessive, 2036-937

eatly onset)

PARK12 Parkinson disease 12 (susceptihility) ®o21-g25
HTRAZ Hira serine peptidase 2 PRSS525 2p13.1
PLAZGE phospholipase A2 group VI 220131
FBXO7 F-box protein 7 229123
PARK16 Parkinson disease 16 (susceptibility) 1932
YPS35 VPS35, retromer complex component 16g11.2
EIF4G1 eukaryotic translation initiation factor 4 EIF4G, EIF4F 39271
gamma1

LRRK2 is undoubtedly the most common gene responsible for both familial and idiopathic
Parkinson's disease (PD). LRRK2 is a unique multidomain structured protein having molecular
weight of 286kDa (Figure 1), consisting of Ankyrin repeats (ARK), Armadillo repeats (ARM),
a C-terminal of Roc (COR), leucine-rich repeats (LRR), a Ras of complex proteins (Roc), a
kinase domain, and WDA40 repeats [9]. LRRK2 gene gives instruction to form a protein named
dardarin. It is functions in brain region and other tissues all through the body. Dardarin has a

section of leucine-rich region which plays an important role in transferring of signals.
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Mutations in LRRK2 are linked with Parkinson’s type 8. The most common mutation in

LRRK?2 is Gly2019Ser.

ARM ARK LRR ROC COR KINASE WD40

R1441G/C/H Y1699C G20195 12020T

Figure 1: Schematic diagram of the domain architecture of LRRK2. Above, the most common known

mutations of LRRK2 in Parkinson's disease are shown (arrows).

It’s important to identify SNPs associated with disease from the available SNP pool through
experimental data but the amount of data available in database is humongous therefore it is
important to carry out computational studies to help in minimizing costs and prioritise SNPs
for examination. In such case subsequent studies through various independent sources can help
in establishing the validity of results. In this work, we applied both sequence specific and
sequence-structure specific computational approach to examine the SNPs present in SNCA,
LRRK2, DJ1 & PINK1.
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REVIEW OF LITERATURE
SNPs

There are various sort of mutations that alter the gene structure and function but Single
nucleotide polymorphisms, simply called SNPs (snips), are the most common known type of
genetic alteration in a being. SNP is basically a deviation in a single nucleotide that results in
change of amino acid. For instance, a SNP may result in replacement of the nucleotide adenine

(A) to nucleotide guanine (G) in a certain section of a gene/DNA.

SNPs arise throughout an individual’s DNA. They arise once every several hundred basepair
on an average, that means there are about 10 million SNPs in the exclusively within human
genome. They help in locating genes linked with disease by functioning as biomarkers. When

SNPs arise within coding region of the gene they might affect gene’s function

Experimental studies are important to validate the identified disease linked SNPs from the pool
of SNPs and to understand working role of SNPs. Although much research has been conducted
on finding out the disease associated SNPs, it is hard to confirm it by following discrete studies.
In this case, in-silico studies can help in saving time and costs. It also helps in analysing and

ranking functionally important SNPs.

Parkinson’s Disease (PD)

idiopathic or familial parkinson's disease or simply PD is a neuro degenerative condition that
result in progressive loss of the dopaminergic cells of the substantia nigra. It’s hard to
differentiate Parkinson’s disease from other neuro degenerative conditions having similar

clinical symptoms. Therefore, diagnosis is mainly based on history and examination of patient.

People with PD normally shows signs and symptoms of parkinsonism i.e.
1. resttremor

2. hypokinesia (poverty of movement)

3. bradykinesia (slowness of movement)
4. rigidity

5. impaired posture

6. speech change

14




7. writing change
Although PD is mainly related to movement impairment, other issues such as

dementia and depression may also arise.

Neurochemical and Neuropathological Features of PD

A. Normal : B. Parkinson’s )
Disease

Caudate

Putamen

~—

{§ «——  Nigrostriatal ——

pathway

; Synuclein

S

Figure 2: Neuropathology of Parkinson's Disease

(A) Pictorial description of the standard nigrostriatal bundle. It is constituted of dopamine nerve
cells located in the pars compacta which is a particular region in substantia nigra. These nerve
cells point to the synapse in the striatum of basal ganglia. The picture shows the normal
colouring of the Synuclein pc, yield by neuro melanin within the dopaminergic neurons.

15




(B) Pictorial description of the standard nigrostriatal bundle. The nigrostriatal bundle
undergoes deterioration in Parkinson’s disease. There is a noticeable loss of dopamine nerve
cells that point to the putamen and a much smaller loss of those that point to the caudate. The
figure depicts decolouration of the Synuclein pc due to the noticeable loss of dopamine nerve

cells.

(C) Immuno histochemical tagging of intraneuronal elementary bodies, called Lewy bodies, in
a Synuclein pc dopamine nerve cells. Tagging with an antibody against a-syn reveals a Lewy
body with an intensely immunoreactive middle zone encircled by a faintly immunoreactive
outer zone (left picture). On the contrary, immune-tagging with an antibody against ubiquitin

produce more spread out immune reactivity within Lewy body (right picture).
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OBJECTIVE

The main purpose of our research was to recognise diseased SNPs from the collection of SNPs
retrieved from NCBI SNP database using various tools. Using sequence specific and sequence-
structure specific method simultaneously we eliminated the shortcomings of a single method
towards prediction of deleterious SNPs that might be associated with Parkinson’s disease.

17




WORK PLAN

Literature Survey

Data Collection and study

Data analysis

Prediction of Disease causing SNP
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METHODOLOGY

Firstly, disease related SNP sequence of SNCA, LRRK2, DJ1 and PINK1 were fetched from
NCBI database of SNPs (http://www.ncbi.nlm.nih.gov./SNP/). We restricted our list to
missense mutations having unknown significance.

Sequence specific and sequence-structure specific methods are the two of the most regularly
used approaches towards detection of disease related SNPs via computational analysis.
Sequence-structure based analysis is more precise then sequence-based analysis because it
involves various effect at protein level. [29,19,25]. Whereas sequence-specific analysis fails to
describe the underlying medium of how a SNP will alter the protein function. Therefore, we
use both the methods to overcome the shortcomings of only using one method [30,25].

19




SIFT
SIFT sorts intolerant nsSNPs from tolerant nsSNPs from dbSNP database. It takes SNP id as

input along with the amino acid substitution and position
(http://sift.jcvi.org/www/SIFT_dbSNP.html). SIFT tool predictions are highly based on
sequence homology and physiochemical properties of amino acid [21].

SIFT predicts weather an amino acid mutation will have a change on the protein functionality.
It compares the conserved region of the gene with closely related sequences collected through
PSI BLAST. SIFT score of greater than 0.05 is consider to be tolerant [26]. SIFT interface
(Figure 3).

iyt lono SIFT dbSNP rsIDs

JCNVI Home SIFT Home Help Team Contact us

-A

Choose File

Figure 3: SIFT Interface
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SNP&GO

SNP&GO predicts disease associated variations using GO terms. SNP&GO predicts if a given

single point mutation can be classified as disease associated or not. It takes protein sequence,

GO terms, amino acid substitution and position as input and return a table listing weather the

mutation is Diseased or Normal along with RI (reliability index). A mutation is estimated to be

damaging for a score greater than 0.05. SNP&GO interface (Figure 4)

SNPs&GO

Predicting disease associated variations using GO terms

Protein Sequence:

Sequence File: | Choose File | No file chosen

Swiss-Prot Code:

GO terms:

Mutations:

All methods: ¢

e-mail:

Clear || Submitﬁ

Figure 4: SNP & GO interface

One letter residue code
example 1 -> output 1

or Seguence file

or Swiss-Prot protein code
example 2 -» output 2

Gene Ontology terms

Comma or blank separated
mutations

Returns also PhD-SNP predictions

e-mail address (optional)
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PolyPhen-2

The polymorphism phenotyping version 2.0 predicts the potential impact of an amino acid on
the structure and function of a gene (http://genetics.bwh.harvard.edu/pph2/) utilizing physical
and relative factors. The outcome from the PolyPhen2 output provides a particular score that
ranges from the value of 0 to 1. The 0 suggest the no deleterious effect of a SNP on protein
structure while a value closer to 1 suggest that the mutation may have deleterious consequences
[23, 28]. PolyPhen2 interface (Figure 5).

PolyPhen-2 (Polymorphism Phenatyping 2) is & tool which predicts possible impact of an aming acid substtution on the structure and function of & human pratein using straightforward physical and
comparative considerations. Please, use the farm helow to submit your query.

Query Data

Protein or SNP identifier

Protein sequence
in FASTA format

Position

. MARNDCEQGHILKMFPSTWYV
Substitution
AMyARNDCEQGHILKMFPSTWYYVY

Query description
Submit Query| |Clear| (Check Status

Display advanced query options

Figure 5: PolyPhen-2 interface
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I-Mutant 3.0

I-Mutant is neural network-based web server that calculate protein stability upon single point
mutation. The tool uses a archived data taken from ProTherm [1]. It had been tested to predict
protein stability with 80% accuracy. Free energy changes are predicted with energy base
FOLD-X tool. By coupling FOLD-X with I-Mutant, along with reliability index of later one

can achieve very high accuracy of prediction (Guerois et al., 2002).

I-Mutant Disease

Predictor of the effects of SNPs on human health

|-Mutant Suite Home

|-Mutant Suite Help Protein Sequence: One letter residue code

Biocomputing Unit

Position: Sequence residue number

Contact us %
New Residue: New Residue

Prediction: {
Last Update 251206 Seguzice fad

Sequence and Profile Based
e-mail:

Submit

Figure 6: I-Mutant 3.0 interface
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Site-directed Mutagenesis of LRRK2

LRRK?2 gene was found to be the most important gene involved in Parkinson’s Disease but the
complete structure of LRRK2 gene was not resolved therefore in order to study the effects of
mutations we modelled LRRK2 gene from structure of rocCOR domain of Rab family protein
(PDB id: 3DPU) (Figure 7) which is a microbial homologous of LRRK2 human gene.

Mutagenesis was performed using Chimera and following substitutions were made V1598E,
P2119L, L119P and V366M. After mutagenesis, protein optimization, solvation and
minimization were performed using charmm force field from NAMD (MD simulation) and

finally total energy plot were drawn.

Figure 7: Ribbon structure of RocCOR domain (PDB id: 3DPU)
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Mutagenesis Steps:
1. Load the wild LRRK2 gene in chimera

Figure 8: wild LRRK2 gene in chimera

2. Go to Favourites tab and select Sequence option from drop down menu.

File Edit Structure Headers Mumberings Tree Info Preferences

Irrk2_orignal.pdb {(#0) chain A 1309 KH | GCKAKD | IRFLQAQRLKKAVPYNRMKLMI VIGNTGSGKTTLLQALMKTK
Irrk2_orignal.pdb (#0) chain A 1359 KSDLGMQSATVG I DVKDWP| |1 Q | RDKRKRDLVLNVWDFAGREEFYSTHPHF
Irrk2_orignal.pdb (#0) chain A 1409 MTQRALYLAVYDLSKGQAEVDAMKPWLFEN | KARASSSPV I LVGTHLDVSD
Irrk2_orignal.pdb (#0) chain A 1459 EKQRKACMSK | TKELILNKRGFPA IRDYHFVNATEESDALAKLRKT I INES
Irrk2_orignal.pdb (#0) chain A 1509 LNF K | RDQLVVGQL IPDCYVELEK | I LSERKNVPIEFPV IDRKRLLQLVR
Irrk2_orignal.pdb (#0) chain A 1559 ENQLQLDENELPHAVHF LNESGVLLHFQDPALQLSDLYFMEPKWLCK I MA
Irrk2_orignal.pdb (#0) chain A 1609 Q | L TVKVEGCPKHPKG | | SRRDVEKF LISKKRKFPKNYMSQYFKLLEKFQ |
Irrk2_orignal.pdb {(#0) chain A 1659 ALP | GEEYLLVPSSILSDHRPV IELPHCENSE ||| IRLYEMPYFPMGFWSRL
Irrk2_orignal.pdb {(#0) chain A 1709 | NRLLE | SPYMLSGRERALRPNRMYWRQG | YLINWSPEAYCLVGSEVLDNH
Irrk2_orignal.pdb (#0) chain A 1759 PESF LK | TVPSCRKGC | LLGQVVDH IDSLMEEWFPGLLE ID ICGEGETLL
Irrk2_orignal.pdb (#0) chain A 1809 KKWALYSFNDGEEHQK | LLDDLMKKAEEGDLLYVNPDQPRLT IPISQIAPD

File Edit Structure Headers Numberings Tree Info Preferences

Irrk2_v1598E.pdb (#1) chain A 1309 KH | GCKAKD | IRFLQARLKKAVPYNRMKLMI VGNTGSGKTTLLQQALMKTK
Irrk2_v1898E.pdb (#1) chain A 1359 KSDLGMQSATVG I DVKDWP|1 Q | RDKRKRDLVLNVWDFAGREEFYSTHPHF
Irrk2_v1598E.pdb (#1) chain A 1408 MTQRALYLAVYDLSKGQAEVDAMKPWLFEN | KARASSSPV I LVGTHLDVSD
Irrk2_v1898E.pdb (#1) chain A 1459 EKQRKACMSK | TKELLNKRGFPA IRDYHFVNATEESDALAKLRKT I INES
Irrk2_v1898E.pdb (#1) chain A 1509 L NFK | RDQLVVGQL IPDCYVELEK | ILSERKNVP IEFPV IDRKRLLQLVR
Irrk2_v1598E.pdb (#1) chain A 1559 ENQLQLDENELPHAVHF LNESGYLLHFQDPALQLSDLYFEEPKWLCK I MA
Irrk2_v1598E.pdb (#1) chain A 1609 Q | LTVKVEGCPKHPKG/ I | SRRDVEKF LISKKRKFPKNYMSQYFKLLEKFQ |
Irrk2_v1598E.pdb {#1) chain A 1659 ALP | GEEYLLIVPSSLSDHRPY | ELPHCENSE I[I IRLYEMPYFPMGFWSRL
Irrk2_v1598E.pdb (#1) chain A 1709 | NRILLE | SPYMLSGRERALRPNRMYWRQG | YLNWSPEAYCLVGSEYLDNH
Irrk2_v1598E.pdb (#1) chain A 1759 PESF LK | TVPSCRKGC | LLGQVVDH IDSLMEEWFPGLLE ID ICGEGETLL
Irrk2_v1598E.pdb (#1) chain A 1808 KKWALYSFNDGEEHQK | LLDDLMKKAEEGDLLYNPDQPRLT IPISQIAPD

quit | Hide | Help |

Figure 9: Sequence of wild and mutated LRRK2 gene
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3. Select the residue from the sequence that you want to mutate.

Figure 10: Selected residue highlighted in green colour.

4. Go to Select tab and choose Zone option from drop down menu. Zone should be within

angstrom.

o

-~

Select all atoms/bonds that meet all the chosen criteria below
v = IS.D angstroms from currently selected atoms

r > IS.D angstroms from currently selected atoms

[ Select all atoms/bonds of any residue in selection zone

[O—K] Cancel | Help |

Figure 11: Parameter window

5. Go to Tools > Structure Editing > Rotamers.
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6. Now change the Rotamer type i.e. Amino acid (In our study we will be substituting Valine

for Glutamic acid at position 1598 of LRRK2 gene)

| =Y Choose Rotarner Paramet., =
Show rotamers for selected residues...

Rotamer type: VAL -—l|
Rotamer library: Dunbrack —l|

[Dunbrack backbone-dependent rotamer library -- May '02
{Publications using Dunbrack rotamers should cite:
R L. Dunbrack, Jr. (2002)
Rotamer libraries in the 21st century W
Curr. Opin. Struct. Biol 12, 431-440. .
OK | Apply | Close | Help |

Figure 12: Rotamer Parameters

8. Select the conformation with highest probability.

oy #0VAL 15, — H
Select  Columns

Dunbrack GLU rotamers

Clh ' c; ' C3h| Probability |
-66.1 -177.6 -0.9 0.221802
-62.7 -178.8 -56.8 0.141131
1797 178.2 46 0.129575 ___
-61.4 1798 577 0.034990
-62.5 -74.8 9.4 0.076824
-176.2 179.2 62,3 0.067798
-179.6 1789 -62.1 0.067040
-63.3 -68.4 -47.2 0.060518
61.2 -177.9 2.2 0.026071
735 785 54,7 0.024999 =

Existing side chain(s): replace — |

0K | Anply Irclose | Help |

Figure 13: Dunbrack GLU rotamers

9. Now Save the newly formed structure as PDB file.
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STATISTICAL ANALYSIS

In statistical analysis process we mainly refer three cross-validation methods for validating the

success rate of predictor tools mentioned above. These tests are sub-sampling, independent

dataset test and jack-knife test [7]. Out of all the three, only jack-knife test gives slightest

random values and most unbiased according to the Equations 28 to 32 mentioned in chou,2011.

Therefore, jack-knife test has been used throughout to check success rate of predictor tools

[6, 4,5, 2, 3, 13, 14, 16, 17,

15, 18, 22, 11, 12].

Prediction quality is determined using six widely known parameters viz sensitivity, precision,

accuracy, specificity, Matthews correlation coefficient (MCC) and negative predictive value

(NPV). In the subsequent equations true negatives, true positives, false negatives and false

positives are written as tn, tp, fn and fp respectively.

ACCURACY= — 2+
tp+tnt+fp+fn
tn
SPECIFICITY =
fpt+tn
tp
SENSTIVITY =
tp+fn
MCC tprtn—fnx fp

- V(tp+fn)(tp+fp)(tn+fn)(tn+fp)

Sadly, these equations are hard to understand from a biologist point of view. Therefore, we

considered the equations given by Chou et al. (2012). Going by these equations, the above four

metrics can be written as
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N+ +NF

ACCURACY =1-
N+ +N—

SENSTIVITY = 1- *&
N+

SPECIFICITY = 1- -~
N+N—+ NFN+

MCC — — N+N—
\-'r(l = N+N+Ni)(l , NiNtN+)

In the above equation N + represent the total no. of SNPs analysed and N — represent the non-

synonymous SNPs. Whereas, disease predicted incorrectly as neutral are represented by N +

and N + is wrongly predicted deleterious SNPs among non-synonymous SNPs.

Use of these matrices have been justified in various studies [2, 3, 11, 12, 15, 18].
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RESULTS

The main objective of our study was to identify diseased SNPs from the pool of SNPs retrieved
from NCBI SNP database using various tools. Using sequence and sequence-structure based
method simultaneously we eliminated the shortcomings of a single method towards prediction
of deleterious SNPs that might be associated with Parkinson’s disease. Workflow of the

following study is shown in figure 14.

130 SNPs

Sequence I Sequence-structure
Based - Based
PolyPhen-2,
SIFT, SNP & GO l  MRtERES

Molecular Modelling and Energy
determination

I

4 SNPs Found to be
deleterious

Figure 14: Workflow followed in study

The accuracy of SNP & GO has been reported to be (0.82) which is comparably good with
PolyPhen-2 (0.69) and SIFT (0.65). Precision value of SNP & GO (0.90) predicted to be highest
among all by Thusberg et al. (2011).

In the initial study we took 130 SNPs and analysed them with SIFT. SIFT predicted whether
SNPs would have an impact on the functionality of protein by aligning the similar proteins.
The output range of SIFT is from 0 to 1, where O represent highly deleterious SNP and 1
represents neutral SNP. The cut-off score was set to 0.05, above which an amino acid

substitution is tolerated (no effect).
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Among the total nsSNPs analysed, 15 nsSNPs were found to be deleterious with a tolerance

index score of <0.05. Four nsSNPs showed a highly deleterious tolerance index score of 0.00

(i.e. <0.01) (Table 2).

Table 2.
Gene Involved SNP id Substitution SIFT Score
LRRK2 rs721710 V1598E <0.01
LRRK2 rs12423862 P2119L <0.01
LRRK2 rs33995463 L119P <0.01
LRRK2 rs60185966 S1228I 0.01
LRRK2 rs145364431 R1728L 0.02
LRRK2 rs113065049 V366M 0.01
LRRK2 rs17519916 D944y 0.01
LRRK2 rs72546335 S52F 0.02
LRRK2 rs72546337 1810V 0.02
LRRK2 rs74681492 P1446L <0.01
LRRK2 rs78154388 S663P 0.02
LRRK2 rs80179604 S1228T 0.03
LRRK2 rs72547981 D2175H 0.04
LRRK2 rs111910483 L1795F 0.01
DJ1 rs886046545 G75S 0.02

Further these 15 SNPs were submitted to PolyPhen-2. PolyPhen-2 score ranges from 0 to 1. If

score is <0.5 then mutation is considered benign, if it ranges between 0.5 to 0.9 then mutation

is probably damaging and if score is >0.9 then mutation is possibly damaging. PolyPhen-2
predicted 12 SNPs to be deleterious, 11 belong to LRRK2 gene and 1 from DJ1 gene (rs721710,
rs12423862, rs33995463, rs17519916, rs74681492, rs80179604, rs72547981, rs111910483,

rs60185966, rs145364431, rs113065049 and rs886046545).
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Table 3.

Gene Involved SNP id Substitution PolyPhen-2 score
LRRK2 rs721710 V1598E 0.986
LRRK2 rs12423862 P2119L 1.000
LRRK2 rs33995463 L119P 0.996
LRRK2 rs17519916 D944Y 0.947
LRRK2 rs74681492 P1446L 1.000
LRRK2 rs80179604 S1228T 0.568
LRRK2 rs72547981 D2175H 0.710
LRRK2 rs145364431 R1728L 0.993
LRRK2 rs111910483 L1795F 1.000
LRRK2 rs60185966 S1228I 0.903
LRRK2 rs113065049 V366M 1.000
DJ1 rs886046545 G75S 1.000

After PolyPhen-2 SNPs were submitted to SNP&GO for further analysis. SNP&GO predicted
7 SNPs out of 12 to be deleterious (rs721710, rs12423862, rs33995463, rs60185966,

rs145364431, rs113065049 and rs886046545).

Table 4.

Gene Involved SNP id Substitution SNP&GO

LRRK2 rs721710 V1598E Disease (0.781)
LRRK2 rs12423862 P2119L Disease (0.666)
LRRK2 rs33995463 L119P Disease (0.822)
LRRK2 rs60185966 S1228I Disease (0.797)
LRRK2 rs145364431 R1728L Disease (0.711)
LRRK2 rs113065049 V366M Disease (0.729)
DJ1 rs886046545 G75S Disease (0.984)

Finally, remaining SNPs were submitted to I-Mutant. I-Mutant checks the stability of protein

by calculating change in Gibbs free energy between native and variant protein. Only those

SNPs having reliability index (RI) of 5 or more were predicted to be diseased. I-Mutant
predicted 4 SNPs to have deleterious effect (rs721710, rs12423862, rs33995463 and
rs113065049) (Table 3). Figure 3 shows superimposed structure of native and mutated LRRK2

protein.
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Table 5.

Gene SNP id Substitution | SIFT score SNP&GO PolyPhen-2 I-Mutant
Involved
LRRK2 rs721710 V1598E <0.01 Disease Probably Disease
(0.781) Damaging RI (5)
(0.991)
LRRK2 rs12423862 P2119L <0.01 Disease Probably Disease
(0.666) Damaging RI (7)
(1.000)
LRRK2 rs33995463 L119P <0.01 Disease Probably Disease
(0.822) Damaging RI (6)
(0.996)
LRRK2 rs113065049 V366M 0.01 Disease Probably Disease
(0.729) Damaging RI (6)
(1.000)
Additionally, wild type LRRK2 protein mutated using UCSF Chimera

(https://www.cgl.ucsf.edu/chimera/). Further mutated protein was energy minimized using
NAMD (MD simulation tool) and Total energy values of native and mutated protein were

plotted.
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Figure 15: The relative total energy values of native LRRK2 gene vs mutated LRRK2 gene

(Blue line represent mutated gene and orange represent native gene).
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From the graph it can be interpreted that the total energy values of mutated protein are shifting
from more negative to less negative values. Therefore, it can be said that mutations in LRRK2
gene (rs721710, rs12423862, rs33995463 and rs113065049) are indeed destabilising the
protein structure and could potentially alter its function. Figure 16 Shows the superimposed

structure of native and mutated LRRK2 gene.

Figure 16: Superimposed structure of wild type LRRK2 and V1598E mutant, (superimposed
structure of P2119L, L119P and V366M could not made because LRRK2 gene was not fully

resolved).
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DISCUSSION

Detection of disease causing mutations from functionally neutral mutation is important to
understand the pathophysiology behind the disease. Normally each individual has around 10
million of SNPs throughout person’s entire DNA, which makes it nearly impossible to
experimentally distinguish between disease causing mutation and functionally neutral
mutations. Analysing vast number of SNPs through in-vitro methods might not be the ideal
solution for researchers. In such cases Bioinformatics came to the rescue. With the vast number
of tools available online we can narrow down our search to potentially harmful SNPs from the
pool of SNPs available in online databases. Identification of disease causing SNPs from neutral
SNPs with the help of bioinformatics tools saves a great deal of time and money. The
potentially harmful SNPs detected through bioinformatics tools can be validated

experimentally without having to go through each and every SNP.

In this paper, we attempted to predict the SNPs associated with Parkinson’s genes (SNCA,
PINK, LRRK2 and DJ1) which could be potentially harmful. For this purpose, we adopted two
methods namely sequence-based and sequence-structure based methods. Both the methods

were used together in-order to minimize false positive results.

Out of the 130 missense SNPs reported in doSNP, we found 4 SNPs to be in coding region
which could affect the normal functioning of the gene. All of the 4 SNPs happen to be in
LRRK2 gene. Further total energy values of native LRRK2 gene and mutated LRRK2 gene
was plotted. Thus, revealing that these mutations in LRKK2 gene leads to decreased protein

stability.
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CONCLUSION

In the present study, we investigated the functional and structural effects of SNPs caused by
the Parkinson associated genes (SNCA, LRRK2, PINK and DJ1) using different computational
prediction tools. 4 SNPs were predicted to be deleterious by four different algorithms. Out of
which 2 SNPs (V1598E and P2119L) of LRRK2 were found in coding region. Further,
experimental studies need to be carried to better understand the role of SNPs reported in Table
3.

The in-silico data shows the computational approach towards identifying the disease-causing
SNPs from functionally neutral SNPs which is a fast and reliable technique to analyse large
number of SNPs. Also, the method used for detection of SNPs from dbSNPs is claimed to be
best since it uses four different tools which eliminates the shortcomings of using a single tool

for detection of SNPs (Nagamani et al., 1999).
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