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Combined sequence and sequence-structure 

based analysis of SNPs associated with genes 

involved in Parkinson disease. 

Deepak Kumar 

Delhi Technological University, Delhi, India 

 

ABSTRACT 

Mutations in SNCA, LRRK2, PINK and DJ1 plays a very important part in pathological 

process of Parkinson’s disease therefore SNPs associated with these genes were picked for 

detailed examination of their unfavourable effects on human body. SNPs were taken from 

NCBI dbSNP and only missense and mutations with unknown significance were taken into 

consideration. To study the deleterious effect of these SNPs we followed sequence specific and 

sequence-structure specific methods in order to provide more accurate results. SIFT, PolyPhen-

2, SNP & Go and iMutant3.0 were used for detection of deleterious SNPs and MD simulations 

were performed using NAMD to validate the results. The study suggested that V1598E and 

P2119L of LRRK2 gene could indirectly or directly affect the Hydrogen bonding pattern and 

destabilize the amino acid interactions of gene to certain extent. 

Keywords: Parkinson’s Disease, SNP analysis, SNCA, LRRK2, PINK, DJ1 
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INTRODUCTION 

A SNP known as Single Nucleotide Polymorphism is a single point mutation in the stretch of 

a gene. They are most commonly occurring type of mutations found in genome (approx. 90 

percent of whole human DNA polymorphism in genome are SNPs). There are various publicly 

available online directories for SNPs for example GWAS Central, SwissVar and dsSNPs. Of 

all the mutations, only nonsynonymous SNPs or simply nsSNPs are of particular importance 

as they bring in change of amino acid residue, they are also known as missense mutations for 

the very same reason. Such changes in amino acid residue can result in protein instability by 

reducing protein dissolving ability or by altering hydrogen bonding pattern of protein. 

 

PD is largely a neuro degenerative condition that is caused by the degeneration of dopamine 

producing neurons in the midbrain. The effect of PD increments with age, with 2% of people 

beyond 80 years old being affected making it the second most common neurodegenerative 

disease among human population. Currently PD genetics nomenclature includes 17 specific 

chromosomal locus regions that are termed PARK and numbered in chronological order of their 

identification (Table 1). 
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Table 1: 

 

 

LRRK2 is undoubtedly the most common gene responsible for both familial and idiopathic 

Parkinson's disease (PD). LRRK2 is a unique multidomain structured protein having molecular 

weight of 286kDa (Figure 1), consisting of Ankyrin repeats (ARK), Armadillo repeats (ARM), 

a C-terminal of Roc (COR), leucine-rich repeats (LRR), a Ras of complex proteins (Roc), a 

kinase domain, and WD40 repeats [9]. LRRK2 gene gives instruction to form a protein named 

dardarin. It is functions in brain region and other tissues all through the body. Dardarin has a 

section of leucine-rich region which plays an important role in transferring of signals. 
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Mutations in LRRK2 are linked with Parkinson’s type 8. The most common mutation in 

LRRK2 is Gly2019Ser. 

 

 

 

 

Figure 1: Schematic diagram of the domain architecture of LRRK2. Above, the most common known 

mutations of LRRK2 in Parkinson's disease are shown (arrows).  

 

It’s important to identify SNPs associated with disease from the available SNP pool through 

experimental data but the amount of data available in database is humongous therefore it is 

important to carry out computational studies to help in minimizing costs and prioritise SNPs 

for examination. In such case subsequent studies through various independent sources can help 

in establishing the validity of results. In this work, we applied both sequence specific and 

sequence-structure specific computational approach to examine the SNPs present in SNCA, 

LRRK2, DJ1 & PINK1. 
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REVIEW OF LITERATURE 

SNPs 

There are various sort of mutations that alter the gene structure and function but Single 

nucleotide polymorphisms, simply called SNPs (snips), are the most common known type of 

genetic alteration in a being. SNP is basically a deviation in a single nucleotide that results in 

change of amino acid. For instance, a SNP may result in replacement of the nucleotide adenine 

(A) to nucleotide guanine (G) in a certain section of a gene/DNA. 

 

SNPs arise throughout an individual’s DNA. They arise once every several hundred basepair 

on an average, that means there are about 10 million SNPs in the exclusively within human 

genome. They help in locating genes linked with disease by functioning as biomarkers. When 

SNPs arise within coding region of the gene they might affect gene’s function 

 

Experimental studies are important to validate the identified disease linked SNPs from the pool 

of SNPs and to understand working role of SNPs. Although much research has been conducted 

on finding out the disease associated SNPs, it is hard to confirm it by following discrete studies. 

In this case, in-silico studies can help in saving time and costs. It also helps in analysing and 

ranking functionally important SNPs. 

 

Parkinson’s Disease  (PD) 

idiopathic or familial parkinson's disease or simply PD is a neuro degenerative condition that 

result in progressive loss of the dopaminergic cells of the substantia nigra. It’s hard to 

differentiate Parkinson’s disease from other neuro degenerative conditions having similar 

clinical symptoms. Therefore, diagnosis is mainly based on history and examination of patient. 

 

People with PD normally shows signs and symptoms of parkinsonism i.e.  

1. rest tremor  

2. hypokinesia (poverty of movement) 

3. bradykinesia (slowness of movement) 

4. rigidity  

5. impaired posture  

6. speech change  
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7. writing change 

Although PD is mainly related to movement impairment, other issues such as 

dementia and depression may also arise.  

 

Neurochemical and Neuropathological Features of PD 

 

 

 

Figure 2: Neuropathology of Parkinson's Disease 

 

(A) Pictorial description of the standard nigrostriatal bundle. It is constituted of dopamine nerve 

cells located in the pars compacta which is a particular region in substantia nigra. These nerve 

cells point to the synapse in the striatum of basal ganglia. The picture shows the normal 

colouring of the Synuclein pc, yield by neuro melanin within the dopaminergic neurons. 
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(B) Pictorial description of the standard nigrostriatal bundle. The nigrostriatal bundle 

undergoes deterioration in Parkinson’s disease. There is a noticeable loss of dopamine nerve 

cells that point to the putamen and a much smaller loss of those that point to the caudate. The 

figure depicts decolouration of the Synuclein pc due to the noticeable loss of dopamine nerve 

cells. 

 

(C) Immuno histochemical tagging of intraneuronal elementary bodies, called Lewy bodies, in 

a Synuclein pc dopamine nerve cells. Tagging with an antibody against α-syn reveals a Lewy 

body with an intensely immunoreactive middle zone encircled by a faintly immunoreactive 

outer zone (left picture). On the contrary, immune-tagging with an antibody against ubiquitin 

produce more spread out immune reactivity within Lewy body (right picture). 
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OBJECTIVE 
 

The main purpose of our research was to recognise diseased SNPs from the collection of SNPs 

retrieved from NCBI SNP database using various tools. Using sequence specific and sequence-

structure specific method simultaneously we eliminated the shortcomings of a single method 

towards prediction of deleterious SNPs that might be associated with Parkinson’s disease. 
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WORK PLAN 
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METHODOLOGY 

Firstly, disease related SNP sequence of SNCA, LRRK2, DJ1 and PINK1 were fetched from 

NCBI database of SNPs (http://www.ncbi.nlm.nih.gov./SNP/). We restricted our list to 

missense mutations having unknown significance. 
Sequence specific and sequence-structure specific methods are the two of the most regularly 

used approaches towards detection of disease related SNPs via computational analysis. 

Sequence-structure based analysis is more precise then sequence-based analysis because it 

involves various effect at protein level. [29,19,25]. Whereas sequence-specific analysis fails to 

describe the underlying medium of how a SNP will alter the protein function. Therefore, we 

use both the methods to overcome the shortcomings of only using one method [30,25]. 
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SIFT 

SIFT sorts intolerant nsSNPs from tolerant nsSNPs from dbSNP database. It takes SNP id as 

input along with the amino acid substitution and position 

(http://sift.jcvi.org/www/SIFT_dbSNP.html). SIFT tool predictions are highly based on 

sequence homology and physiochemical properties of amino acid [21]. 

 

SIFT predicts weather an amino acid mutation will have a change on the protein functionality. 

It compares the conserved region of the gene with closely related sequences collected through 

PSIoBLAST. SIFT score of greater than 0.05 is consider to be tolerant [26]. SIFT interface 

(Figure 3). 

 

 

Figure 3: SIFT Interface 
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SNP&GO 

SNP&GO predicts disease associated variations using GO terms. SNP&GO predicts if a given 

single point mutation can be classified as disease associated or not. It takes protein sequence, 

GO terms, amino acid substitution and position as input and return a table listing weather the 

mutation is Diseased or Normal along with RI (reliability index). A mutation is estimated to be 

damaging for a score greater than 0.05. SNP&GO interface (Figure 4) 

 

 

Figure 4: SNP & GO interface 
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PolyPhen-2 

The polymorphism phenotyping version 2.0 predicts the potential impact of an amino acid on 

the structure and function of a gene (http://genetics.bwh.harvard.edu/pph2/) utilizing physical 

and relative factors. The outcome from the PolyPhen2 output provides a particular score that 

ranges from the value of 0 to 1. The 0 suggest the no deleterious effect of a SNP on protein 

structure while a value closer to 1 suggest that the mutation may have deleterious consequences 

[23, 28]. PolyPhen2 interface (Figure 5). 

 

 

Figure 5: PolyPhen-2 interface 
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I-Mutant 3.0 

I-Mutant is neural network-based web server that calculate protein stability upon single point 

mutation. The tool uses a archived data taken from ProTherm [1]. It had been tested to predict 

protein stability with 80% accuracy. Free energy changes are predicted with energy base 

FOLD-X tool. By coupling FOLD-X with I-Mutant, along with reliability index of later one 

can achieve very high accuracy of prediction (Guerois et al., 2002).  

 

 

Figure 6: I-Mutant 3.0 interface 
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Site-directed Mutagenesis of LRRK2 

LRRK2 gene was found to be the most important gene involved in Parkinson’s Disease but the 

complete structure of LRRK2 gene was not resolved therefore in order to study the effects of 

mutations we modelled LRRK2 gene from structure of rocCOR domain of Rab family protein 

(PDB id: 3DPU) (Figure 7) which is a microbial homologous of LRRK2 human gene.   

 

Mutagenesis was performed using Chimera and following substitutions were made V1598E, 

P2119L, L119P and V366M. After mutagenesis, protein optimization, solvation and 

minimization were performed using charmm force field from NAMD (MD simulation) and 

finally total energy plot were drawn. 

 

 
Figure 7: Ribbon structure of RocCOR domain (PDB id: 3DPU) 
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Mutagenesis Steps: 

1. Load the wild LRRK2 gene in chimera  

 

Figure 8: wild LRRK2 gene in chimera 

 

2. Go to Favourites tab and select Sequence option from drop down menu. 

 

Figure 9: Sequence of wild and mutated LRRK2 gene 
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3. Select the residue from the sequence that you want to mutate. 

 

Figure 10: Selected residue highlighted in green colour.  

 

4. Go to Select tab and choose Zone option from drop down menu. Zone should be within          

angstrom. 

 

Figure 11: Parameter window 

 

5. Go to Tools > Structure Editing > Rotamers. 
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6. Now change the Rotamer type i.e. Amino acid (In our study we will be substituting Valine 

for Glutamic acid at position 1598 of LRRK2 gene) 

 

Figure 12: Rotamer Parameters 

 

8. Select the conformation with highest probability. 

 
Figure 13: Dunbrack GLU rotamers 

 

9. Now Save the newly formed structure as PDB file. 
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STATISTICAL ANALYSIS 

In statistical analysis process we mainly refer three cross-validation methods for validating the 

success rate of predictor tools mentioned above. These tests are sub-sampling, independent 

dataset test and jack-knife test [7]. Out of all the three, only jack-knife test gives slightest 

random values and most unbiased according to the Equations 28 to 32 mentioned in chou,2011. 

Therefore, jack-knife test has been used throughout to check success rate of predictor tools 

[6, 4, 5, 2, 3, 13, 14, 16, 17, 15, 18, 22, 11, 12].  

 

Prediction quality is determined using six widely known parameters viz sensitivity, precision, 

accuracy, specificity, Matthews correlation coefficient (MCC) and negative predictive value 

(NPV).  In the subsequent equations true negatives, true positives, false negatives and false 

positives are written as tn, tp, fn and fp respectively. 

 

 

 

Sadly, these equations are hard to understand from a biologist point of view. Therefore, we 

considered the equations given by Chou et al. (2012). Going by these equations, the above four 

metrics can be written as 
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In the above equation 𝑁 + represent the total no. of SNPs analysed and 𝑁 − represent the non-

synonymous SNPs. Whereas, disease predicted incorrectly as neutral are represented by 𝑁 ± 

and 𝑁 ∓ is wrongly predicted deleterious SNPs among non-synonymous SNPs. 

 

Use of these matrices have been justified in various studies [2, 3, 11, 12, 15, 18].  
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RESULTS 

The main objective of our study was to identify diseased SNPs from the pool of SNPs retrieved 

from NCBI SNP database using various tools. Using sequence and sequence-structure based 

method simultaneously we eliminated the shortcomings of a single method towards prediction 

of deleterious SNPs that might be associated with Parkinson’s disease. Workflow of the 

following study is shown in figure 14.  

 

 

Figure 14: Workflow followed in study 

 

The accuracy of SNP & GO has been reported to be (0.82) which is comparably good with 

PolyPhen-2 (0.69) and SIFT (0.65). Precision value of SNP & GO (0.90) predicted to be highest 

among all by Thusberg et al. (2011). 

 

In the initial study we took 130 SNPs and analysed them with SIFT. SIFT predicted whether 

SNPs would have an impact on the functionality of protein by aligning the similar proteins. 

The output range of SIFT is from 0 to 1, where 0 represent highly deleterious SNP and 1 

represents neutral SNP. The cut-off score was set to 0.05, above which an amino acid 

substitution is tolerated (no effect).  
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Among the total nsSNPs analysed, 15 nsSNPs were found to be deleterious with a tolerance 

index score of <0.05. Four nsSNPs showed a highly deleterious tolerance index score of 0.00 

(i.e. <0.01) (Table 2). 

 

Table 2. 

 

Gene Involved SNP id Substitution SIFT Score 

LRRK2 rs721710 V1598E <0.01 

LRRK2 rs12423862 P2119L <0.01 

LRRK2 rs33995463 L119P <0.01 

LRRK2 rs60185966 S1228I   0.01 

LRRK2 rs145364431 R1728L   0.02 

LRRK2 rs113065049 V366M   0.01 

LRRK2 rs17519916 D944Y   0.01 

LRRK2 rs72546335 S52F   0.02 

LRRK2 rs72546337 I810V   0.02 

LRRK2 rs74681492 P1446L <0.01 

LRRK2 rs78154388 S663P   0.02 

LRRK2 rs80179604 S1228T   0.03 

LRRK2 rs72547981 D2175H   0.04 

LRRK2 rs111910483 L1795F   0.01 

DJ1 rs886046545 G75S   0.02 

 

Further these 15 SNPs were submitted to PolyPhen-2. PolyPhen-2 score ranges from 0 to 1. If 

score is <0.5 then mutation is considered benign, if it ranges between 0.5 to 0.9 then mutation 

is probably damaging and if score is >0.9 then mutation is possibly damaging. PolyPhen-2 

predicted 12 SNPs to be deleterious, 11 belong to LRRK2 gene and 1 from DJ1 gene (rs721710, 

rs12423862, rs33995463, rs17519916, rs74681492, rs80179604, rs72547981, rs111910483, 

rs60185966, rs145364431, rs113065049 and rs886046545). 
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Table 3. 

 

Gene Involved  SNP id Substitution  PolyPhen-2 score 

LRRK2 rs721710 V1598E 0.986 

LRRK2 rs12423862 P2119L 1.000 

LRRK2 rs33995463 L119P 0.996 

LRRK2 rs17519916 D944Y 0.947 

LRRK2 rs74681492 P1446L 1.000 

LRRK2 rs80179604 S1228T 0.568 

LRRK2 rs72547981 D2175H 0.710 

LRRK2 rs145364431 R1728L 0.993 

LRRK2 rs111910483 L1795F 1.000 

LRRK2 rs60185966 S1228I 0.903 

LRRK2 rs113065049 V366M 1.000 

DJ1 rs886046545 G75S 1.000 

 

After PolyPhen-2 SNPs were submitted to SNP&GO for further analysis. SNP&GO predicted 

7 SNPs out of 12 to be deleterious (rs721710, rs12423862, rs33995463, rs60185966, 

rs145364431, rs113065049 and rs886046545). 

 

Table 4. 

 

Gene Involved  SNP id Substitution SNP&GO 

LRRK2 rs721710 V1598E Disease (0.781) 

LRRK2 rs12423862 P2119L Disease (0.666) 

LRRK2 rs33995463 L119P Disease (0.822) 

LRRK2 rs60185966 S1228I Disease (0.797) 

LRRK2 rs145364431 R1728L Disease (0.711) 

LRRK2 rs113065049 V366M Disease (0.729) 

DJ1 rs886046545 G75S Disease (0.984) 

 

Finally, remaining SNPs were submitted to I-Mutant. I-Mutant checks the stability of protein 

by calculating change in Gibbs free energy between native and variant protein. Only those 

SNPs having reliability index (RI) of 5 or more were predicted to be diseased. I-Mutant 

predicted 4 SNPs to have deleterious effect (rs721710, rs12423862, rs33995463 and 

rs113065049) (Table 3). Figure 3 shows superimposed structure of native and mutated LRRK2 

protein. 
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Table 5. 

 

Gene 

Involved 

SNP id Substitution SIFT score SNP&GO PolyPhen-2 I-Mutant 

LRRK2 rs721710 V1598E <0.01 Disease 

(0.781) 

Probably 

Damaging 

(0.991) 

Disease 

 RI (5) 

LRRK2 rs12423862 P2119L <0.01 Disease 

(0.666) 

Probably 

Damaging 

(1.000) 

Disease 

 RI (7) 

LRRK2 rs33995463 L119P <0.01 Disease 

(0.822) 

Probably 

Damaging 

(0.996) 

Disease 

 RI (6) 

LRRK2 rs113065049 V366M   0.01 Disease 

(0.729) 

Probably 

Damaging 

(1.000) 

Disease 

 RI (6) 

 

Additionally, wild type LRRK2 protein was mutated using UCSF Chimera 

(https://www.cgl.ucsf.edu/chimera/). Further mutated protein was energy minimized using 

NAMD (MD simulation tool) and Total energy values of native and mutated protein were 

plotted. 

 

 

Figure 15: The relative total energy values of native LRRK2 gene vs mutated LRRK2 gene 

(Blue line represent mutated gene and orange represent native gene). 

 

-750000

-650000

-550000

-450000

-350000

-250000

-150000

-50000

50000

150000

0 100 200 300 400 500 600

E 
(K

C
al

/M
o

l

Time Step

Total energy values 



34 
 

From the graph it can be interpreted that the total energy values of mutated protein are shifting 

from more negative to less negative values. Therefore, it can be said that mutations in LRRK2 

gene (rs721710, rs12423862, rs33995463 and rs113065049) are indeed destabilising the 

protein structure and could potentially alter its function. Figure 16 Shows the superimposed 

structure of native and mutated LRRK2 gene. 

 

 

 

Figure 16: Superimposed structure of wild type LRRK2 and V1598E mutant, (superimposed 

structure of P2119L, L119P and V366M could not made because LRRK2 gene was not fully 

resolved). 
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DISCUSSION 

Detection of disease causing mutations from functionally neutral mutation is important to 

understand the pathophysiology behind the disease. Normally each individual has around 10 

million of SNPs throughout person’s entire DNA, which makes it nearly impossible to 

experimentally distinguish between disease causing mutation and functionally neutral 

mutations. Analysing vast number of SNPs through in-vitro methods might not be the ideal 

solution for researchers. In such cases Bioinformatics came to the rescue. With the vast number 

of tools available online we can narrow down our search to potentially harmful SNPs from the 

pool of SNPs available in online databases. Identification of disease causing SNPs from neutral 

SNPs with the help of bioinformatics tools saves a great deal of time and money. The 

potentially harmful SNPs detected through bioinformatics tools can be validated 

experimentally without having to go through each and every SNP. 

 

In this paper, we attempted to predict the SNPs associated with Parkinson’s genes (SNCA, 

PINK, LRRK2 and DJ1) which could be potentially harmful. For this purpose, we adopted two 

methods namely sequence-based and sequence-structure based methods. Both the methods 

were used together in-order to minimize false positive results. 

 

Out of the 130 missense SNPs reported in dbSNP, we found 4 SNPs to be in coding region 

which could affect the normal functioning of the gene. All of the 4 SNPs happen to be in 

LRRK2 gene. Further total energy values of native LRRK2 gene and mutated LRRK2 gene 

was plotted. Thus, revealing that these mutations in LRKK2 gene leads to decreased protein 

stability.  
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CONCLUSION 

In the present study, we investigated the functional and structural effects of SNPs caused by 

the Parkinson associated genes (SNCA, LRRK2, PINK and DJ1) using different computational 

prediction tools. 4 SNPs were predicted to be deleterious by four different algorithms. Out of 

which 2 SNPs (V1598E and P2119L) of LRRK2 were found in coding region. Further, 

experimental studies need to be carried to better understand the role of SNPs reported in Table 

3. 

 

The in-silico data shows the computational approach towards identifying the disease-causing 

SNPs from functionally neutral SNPs which is a fast and reliable technique to analyse large 

number of SNPs. Also, the method used for detection of SNPs from dbSNPs is claimed to be 

best since it uses four different tools which eliminates the shortcomings of using a single tool 

for detection of SNPs (Nagamani et al., 1999). 
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