DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I Prashant Mani Shandilya, 2K16/PTE/04 student of M.Tech Polymer Technology hereby declare that the project dissertation titled "**Studies on Carbon Fiber Reinforced Polyurethane-Epoxy Composite: Mechanical Properties Evaluation**" submitted by me to the Department of Applied Chemistry, Delhi Technological University, Delhi in the partial fulfillment of the requirement for the award of the degree of Master of Technology in Polymer Technology, is original and not copied from any source without proper citation. This work has not previously formed the basis for the award of any degree, diploma, associate-ship, fellowship or other similar title or recognition.

Place: Delhi

PRASHANT MANI SHANDILYA

Date:

DEPARTMENT OF APPLIED CHEMISTRY DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project dissertation titled "**Studies on Carbon Fiber Reinforced Polyurethane-Epoxy Composite: Mechanical Properties Evaluation**" submitted by Prashant Mani Shandilya (Roll No.: 2K16/PTE/04), Department of Applied Chemistry, Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of the degree of Master of Technology in Polymer Technology, is a record of the project work carried out by him under my supervision. To the best of my knowledge this work has not been submitted in part or full for any degree or diploma to this university or elsewhere.

Place: Delhi

Kaur

Date:

Dr.Raminder

SUPERVISOR

ACKNOWLEDGEMENT

The success and final outcome of this project required a lot of guidance and assistance from many people and I am extremely fortunate to have got this all along the completion of this project work.

I wish to express my gratitude towards my project supervisor, **Dr. Raminder Kaur,** Faculty of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, for providing me a golden opportunity to work under her able guidance. Her scholastic guidance and sagacious suggestions helped me to complete the project on time.

I wish to thank **Dr. Archna Rani**, Professor and Head of the Department of Applied Chemistry, Delhi Technological University, for providing all research facilities and valuable suggestions whenever needed.

I am thankful to and fortunate enough to get constant encouragement, support and guidance from all teaching as well as non-teaching staffs of Department of Applied Chemistry and Polymer Technology, which helped me to successfully complete this project work.

Finally, yet importantly, I would like to express my heartfelt thanks to my beloved family and friends who have endured my long working hours and whose motivation kept me going.

Prashant Mani Shandilya

ABSTRACT

In this study, Hydroxyl-terminated polyurethane (HTPU) pre-polymer was used to increase the mechanical properties of Bisphenol-A based epoxy resin. Sample of neat epoxy, different ratio of polyurethane modified epoxy samples and same amount of carbon fiber in different directions was used to reinforce polyurethane modified epoxy samples and were compared on the basis of their properties. Tests showed the excellent improvements in properties of the composites made by polyurethane-modified epoxy resin and further improvement in properties when reinforced with carbon fiber. In this experiment, prepared composite samples have been tested for tension test, compression test and characterized by Fourier-transform infrared spectroscopy and Thermo-gravimetric analysis. Tests showed the improvement of tensile, compression and load bearing capacity of polyurethane-modified epoxy composite. Further load bearing capacity in tensile test was observed in composite when reinforced by carbon fiber in longitudinal direction. Increase in content of the PU pre-polymer has shown increase in compressive properties, making the samples more brittle than epoxy. While, samples prepared by reinforcing carbon fiber randomly showed good results as compared to the transverse direction. PU-modified epoxy samples did not much affected by thermal degradation, showing thermal degradation value of all samples nearly same. TGA for 5% PU-modified epoxy samples showed two step degradation while others sample showed single step degradation.

TABLE OF CONTENTS

Candidate's Declaration i		i
Certificate		ii
Acknowledgement		iii
Abstract		iv
Contents		v
List of Tables		vii
List of Figures		viii
List of abbreviations		ix
CHAPTER 1	INTRODUCTION	
1.1.	Background	1
1.2.	Objective	4
CHAPTER 2	LITERATURE REVIEW	
2.1.	Polymer matrix composites	7
2.2.	Epoxy resin	10
2.3.	Polyurethane	11
2.4.	Polyurethane modified epoxy	13
2.5.	Carbon fibers	14
2.6.	Polyamines	16
CHAPTER 3	EXPERIMENTAL	

3.1.	Materials	17
3.1.	Materials	Γ

	3.1.1.	Raw materials/Chemicals	17
	3.1.2.	Specification and Sources of Raw Materials/Chemicals	17
	3.1.3.	Purification of Raw materials/Chemicals	19
3.2. N	Aethodo	ology	20
3.3. E	Experim	ental work	21
	3.3.1.	Synthesis of PU modified Epoxy	21
	3.3.2.	Preparation of samples	22
	3.3.3.	Characterization	23
		3.3.3.1.Infrared spectroscopy	23
		3.3.3.2.Thermal analysis	23
	3.3.4.	Mechanical test	24
		3.3.4.1.Tensile test	24
		3.3.4.2.Compression test	25
CHAPTER 4	RESU	LTS AND DISCUSSION	28
CHAPTER 5	CONC	LUSION	38
CHAPTER 6	FUTU	RE SCOPE	39
REFERENCES 4			40

LIST OF TABLES

Table	no. Content	Page
3.1	Specifications and Sources of Raw Materials/Chemicals	18
3.2	Properties of carbon fiber	19
3.3	Percentage purity of the chemicals	20

LIST OF FIGURES

Figu	re no. Content	Page
1.1	A composite material	3
2.1	Classification of matrix material	6
2.2	Classification of reinforcements	7
2.3	Structure of epoxy resin	10
2.4	A section of graphite	14
2.5	Structure of polyacrylonitrile	15
2.6	Structure of Triethyltetramine	16
3.1	Experimental setup	21
3.2	Prepared samples	23
3.3	Nicolet 380 FT-IR Spectrometer	24
3.4	Perkin-Elmer TGA 4000 analyser	25
3.5	Samples for tensile test	26
3.6	Specimen of tensile testing	26
3.7	Startest universal testing machine	27

LIST OF ABBREVATION

Symbol	Notation
CFRP	Carbon fiber reinforced polymer
OMC	Organic matrix composite
MMC	Metal matrix composite
CMC	Ceramic matrix composite
РМС	Polymer matrix composite
SMC	Sheet molding compound
GMT	Glass fiber mat reinforced thermoplastics
RTM	Resin transfer molding
PAN	Polyacrylonitrile
TETA	Triethylenetetramine
MDI	Methylene diphenyl diisocynate
PEG	Polyethylene glycol
DMF	Dimethyl formamide
FTIR	Fourier transform infrared spectroscopy
TGA	Thermal gravimetric analysis
UTM	Universal testing machine
ASTM	American society for testing and materials