
ANALYSING THE EFFECTS OF REFACTORING ON

SOFTWARE QUALITY ATTRIBUTES

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by:

PRIYA SINGH

(2K16/SWE/10)

Under the supervision of:

DR. RUCHIKA MALHOTRA

(ASSOCIATE PROFESSOR, CSE)

Department of CSE, DTU

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

JUNE 2018

i

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, PRIYA SINGH, 2K16/SWE/10 a student of M.TECH (Software Engineering) declare

that the project Dissertation titled “Analysing the Effects of Refactoring on Software

Quality Attributes” which is submitted by me to Department of Computer Science and

Engineering, Delhi Technological University, Delhi in partial fulfilment of the

requirement for the award of the degree of Master of Technology, is original and not

copied from any source without proper citation. This work has not previously formed

the basis for the award of any Degree, Diploma, Fellowship or other similar title or

recognition.

Place: DTU, Delhi PRIYA SINGH

Date: (2K16/SWE/10)

ii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

CERTIFICATE

I, hereby certify that the Project titled “Analysing the Effects of Refactoring on

Software Quality Attributes” submitted By PRIYA SINGH, Roll number:

2K16/SWE/10, Department of Computer Science and Engineering, Delhi Technological

University, Delhi in partial fulfilment of the requirement for the award of the degree of

Master of Technology, is a record of project work carried out by the student under my

supervision. To the best of my knowledge, this work has not been submitted in part or

full for any Degree or Diploma to this University or elsewhere.

Place: DTU, Delhi Dr. RUCHIKA MALHOTRA

Date: (Associate Professor, CSE, DTU)

 SUPERVISOR

iii

ACKNOWLEDGEMENT

I am very thankful to Dr. Ruchika Malhotra (Associate Professor, Computer Science

Eng. Dept.) and all the faculty members of the Computer Science Engineering Dept. of

DTU. They all provided immense support and guidance for the completion of the

project undertaken by me. It is with their supervision that this work came into existence.

I would also like to express my gratitude to the university for providing the laboratories,

infrastructure, test facilities and environment which allowed me to work without any

obstructions.

I would also like to appreciate the support provided by our lab assistants, seniors and

peer group who aided me with all the knowledge they had regarding various topics.

 PRIYA SINGH

 M.TECH (SWE)

 2K16/SWE/10

iv

ABSTRACT

Bad-smell indicates code-design flaws and poor software quality that weaken software

design and inversely affects software development. It also works as a catalyst for bugs

and failures in the software-system. Refactoring methods are used by software

practitioners as corrective actions for bad-smells. Refactoring is not only limited to

removing bad-smells but it does have a strong correlation with quality attributes.

Countless studies are present in the literature that studies the effect of refactoring-

methods on software quality attributes. It is said to improve certain aspects of quality.

Also, refactoring is a costly activity and the problem relies upon the fact that there are

over seventy refactoring-methods available in literature and multiple refactoring

methods can be used to nullify the effect of a particular bad-smell. So, it becomes very

difficult to apply refactoring on complete source-code and almost impossible if software

size is dramatically large. Thus, there arises a need for prioritizing classes in some way.

This study aims to first provide a systematic literature review on the correlation of

refactoring-methods and bad-smells and their improvement on internal as well as

external quality attributes and second, it comes up with a way to apply refactoring to

only severely affected classes to improve the overall software quality. The systematic

literature review helps software developers in identifying the commonly prevalent bad-

smell, their possible refactoring solution and effect of those refactoring methods on

software quality attributes and guide the researchers in conducting future research. In

the end, a framework is proposed that detects a small subset of classes from the entire

v

source-code instantly require refactoring. This prioritization of classes is based on two

factors-severity of the presence of bad-smells and object-oriented characteristics. The

approach is evaluated on eight open-source software-systems written in Java using ten

most common bad-smells and six widely known Chidamber & Kemerer metrics. Both

these factors help in calculating a new metric Quality Depreciation Index Rule (QDIR)

that exposes those classes that are highly affected by bad-smells and demand an

immediate refactoring solution. Results of the empirical study indicate that QDIR is an

effective metric to remove bad-smells in an environment of stringent time constraints

and limited cost, making the maintenance of software-system easier and effective with

enhanced software quality.

vi

CONTENTS

Title
Page

No.

CANDIDATE’S DECLARATION .. i

CERTIFICATE .. ii

ACKNOWLEDGEMENT .. iii

ABSTRACT ... iv

CONTENTS ... Error! Bookmark not defined.

LIST OF TABLES .. viii

LIST OF FIGURE .. ix

CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND & MOTIVATION ... 2

1.2 RESEARCH OBJECTIVE .. 4

1.3 PROPOSED WORK ... 5

1.4 ORGANIZATION OF THESIS... 5

CHAPTER 2 RELATED WORK .. 6

CHAPTER 3 SYSTEMATIC LITERATURE REVIEW .. 11

3.1 PHASES IN SYSTEMATIC LITERATURE REVIEW 12

3.2 RESEARCH QUESTIONS .. 13

3.3 SEARCH STRATEGY & STUDY SELECTION .. 14

3.4 QUALITY ASSESSMENT CRITERIA .. 17

3.5 DATA EXTRACTION AND DATA SYNTHESIS .. 18

3.6 RESULTS & FINDINGS OF SYSTEMATIC LITERATURE REVIEW 19

3.6.1 Description of Primary Studies .. 19

3.6.2 RQ1: What refactoring methods have been applied across primary studies?

 24

3.6.3 RQ2: What bad-smells are analyzed in the primary studies?....................... 26

3.6.4 RQ3: What quality attributes are selected across primary studies? 28

3.6.5 RQ4: What software-systems/data-sets are selected in primary studies to

perform refactoring methods? ... 34

3.6.6 RQ5: What statistical techniques are adopted by researchers? 38

3.6.7 RQ6: Do refactoring methods improve the quality attributes? 40

CHAPTER 4 RESEARCH METHODOLOGY ... 46

vii

4.1 OBJECT-ORIENTED CHARACTERISTICS CALCULATION 48

4.2 EMPIRICAL DATA COLLECTION ... 49

4.3 BAD-SMELL DETECTION .. 53

4.4 REFACTORING ... 55

4.5 QUALITY DEPRECIATION INDEX RULE (QDIR) .. 56

4.5.1 Calculation of Base of Bad-smell (BoB′) ... 56

4.5.2 Calculation of Base of Metric (BoM) ... 57

4.5.3 Calculation of Quality of Depreciation Rule (QDIR) 57

4.6 Prioritization of Classes .. 58

CHAPTER 5 RESULTS AND DISCUSSIONS .. 61

CHAPTER 6 THREATS TO VALIDITY .. 71

CHAPTER 7 CONCLUSION AND FUTURE WORK ... 72

Reference………………………………………………………………..72

viii

LIST OF TABLES

Table No. Title Page No.

Table 3.1 Research Questions addressed in SLR ... 13

Table 3.2 List of Electronic Databases explored .. 16

Table 3.3 Quality Assessment Questions ... 17

Table 3.4 Summary of Key Publication Sources .. 20

Table 3.9 Frequently used data-sets among Primary Studies ... 37

Table 3.10 Commonly used Statistical Tests among Primary Studies 39

Table 3.11 Overall Positive Impact of Refactoring Methods on Internal Quality

Attributes .. 42

Table 3.12 Overall Positive Impact of Refactoring Methods on External Quality

Attributes .. 43

Table 3.13 Refactoring Methods and their impact on Quality Attributes 44

Table 4.1 C&K metrics along with threshold values .. 48

Table 4.2 Details of the software-systems under study .. 51

Table 4.3 Descriptive Statistics of C&K metrics of selected Software-systems 52

Table 4.4 Selected Bad-smells and their respective Refactoring Solution 54

Table 4.5 Details of Refactoring Methods .. 55

Table 4.6 Four Severity Levels for Classes .. 59

Table 5.1 Range for various Severity Levels based on QDIR .. 67

Table 5.2 Division of classes of selected software-systems in various Severity Levels 68

Table 5.3 Average QDIR metric for Critical Severity Level .. 69

Table 5.4 Effort Estimation of Critically and Highly Affected Classes 70

Table 5.5 Average Effort Estimation of Critically and Highly Affected Classes 70

ix

LIST OF FIGURE

Figure No. Title Page No.

Figure 3.1 Phases in Systematic Literature Review ... 13

Figure 3.2 Steps for Study Selection .. 15

Figure 3.3 Inclusion-Exclusion Criteria.. 16

Figure 3.4 Distribution of Primary Studies across Electronic Data Sources 22

Figure 3.5Year-wise distribution of Primary Studies ... 23

Figure 3.6 Commonly used Refactoring Techniques ... 26

Figure 3.7 Percentage of Primary Studies analysing Bad-smells 27

Figure 3.8 Commonly detected Bad-smells in Primary Studies 28

Figure 3.9 Number of Data-sets used across Primary Studies .. 36

Figure 3.10 Venue of the Data-sets used in Primary Studies ... 36

Figure 3.11 Number of data-sets from each language .. 37

Figure 3.12 Percentage of Statistical Test performed among Primary Studies 39

Figure 4.1 Flow of Research Events ... 47

Figure 4.2 Algorithm to prioritize classes based on QDIR... 60

Figure 5.1 Percentages of Bad-smells in Software-systems ... 62

Figure 5.2 Distribution of selected Bad-Smells in Frogger .. 62

Figure 5.3 Distribution of selected Bad-Smells in Xerces-2.11.0 63

Figure 5.4 Distribution of selected Bad-Smells in ArtOfIllusion-3.0.3 63

Figure 5.5 Distribution of selected Bad-Smells in JEdit-5.5.0 64

Figure 5.6 Distribution of selected Bad-Smells in JSettlers-1.1.20 64

Figure 5.7 Distribution of selected Bad-Smells in JGraphX-3.9.3 65

Figure 5.8 Distribution of selected Bad-Smells in JVLT-1.3.3 65

Figure 5.9 Distribution of selected Bad-Smells in JHotDraw-7.0.6 66

x

LIST OF ABBREVIATIONS

BoB Base Of Bad-smell

BoM Base of Metric

C&K Chidamber &Kemerer

MOOD Metrics for Object Oriented Design

MV Metric Value

SLR Systematic Literature Review

SW Smell Weightage

QDIR Quality Depreciation Index Rule

QMOOD Quality Metrics for Object Oriented Development

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 1

CHAPTER 1

INTRODUCTION

Refactoring is a powerful technique to improve the internal source-code structure. It

is considered to improve the code and make it less error-prone. It also helps in achieving

better software quality by removing bad-smell, a design flaw poorly affecting the

source-code. Research in the field of bad-smell and refactoring is active in recent years.

Researchers are continuously identifying ways to detect bad-smells in the source-code

and remove them by coming up with automatic and semi-automatic approaches to apply

refactoring methods. Removing certain bad-smells by applying refactoring methods

improves the internal design of code and its quality attributes (internal/ external/both).

As software maintenance is a vital phase in software-development lifecycle because of

the need of keeping the software-system operational over years, software practitioners

are also relying on refactoring in order to keep their software maintainable and easily

understandable.

There are seventy refactoring methods and over twenty-two bad-smells identified by

Fowler [1] in his famous book in 1999. Since then, new refactoring methods have also

been detected by the software researchers. Refactoring is a tedious activity involving a

deep understanding of the code and good refactoring skills. Moreover, if software size is

large, it is not possible to detect bad-smell and then apply refactoring to every possible

portion of the source-code. So, there is a need to prioritize source-code portions that

require refactoring solutions as early as possible so that satisfactory results can be

achieved within time and budget.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 2

In this study, we first provide a systematic literature review (SLR) to assess and compare

the results of the primary studies that empirically evaluate the refactoring methods affecting

internal and external quality attributes. Second, we provide a mechanism to remove bad-

smells on a priority basis in order to apply refactoring to only a small portion of the

source-code that has poor design characteristics and is severely affected by bad-smells.

1.1 BACKGROUND & MOTIVATION

Software quality is defined as the degree to which a given software-system, product

or process adheres to desired requirements imposed on it and meets user’s expectations.

By quantifying the software quality, a better estimate of how a software-system adheres

to specified requirement and user expectations can be made. The term “quality

software” normally includes product-attributes of the software-system like

maintainability, reliability, reusability, adaptability, completeness, and understand-

ability [2]. An attribute means a property or characteristic of some entity (like number

of lines in a class or time required in class-testing). One can measure an attribute either

directly or indirectly: In the direct measurement of attributes of a source-code

component, one can easily calculate it by using the elements that make up the syntax or

behavior of the code-component [3]. On the other hand, in indirect measurement of an

attribute of a source-code component, one cannot calculate it simply in terms of the

elements that make up the syntax or behavior of the code-component. It requires

calculating one or more direct attributes first [2]. There are plenty of object-oriented

metrics proposed by researchers in the past to measure these quality aspects like

MOOD’s metrics [4], Chidamber & Kemerer metrics [5], Lorenz & Kidd metrics [6], Li

& Henry [7] to name a few.

According to Fowler and Beck [1], a bad-smell is a poor internal structure prevailing

in the source-code that does not stop it from executing but weakens its design and

serves as a ground for bugs thereby degrading the overall software quality and increases

the overhead of software maintenance. Fowler [1] has given a catalog of twenty-two

code bad-smells that marks flaws in the design and if not handled, can cause serious

damages.

Refactoring is regarded as a solution to bad-smells and can be defined as a technique

that refines the internal structure of the source-code without compromising its

functionality. As most of the cost in the entire software lifecycle is spent in maintaining

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 3

it rather than making it operational, refactoring appears promising. It tends to reduce the

source-code complexity and improve readability, maintainability and overall software

quality. Fowler [1] has identified over seventy refactoring methods specific to the

design flaws existing in the code. Refactoring is complex, error-prone and tiresome in

nature that is why it is not possible to refactor all available classes in the software-

system and there is a need to prioritize them in some way.

Many researchers have actively addressed the issue of bad-smells and their

refactoring solutions in recent years. Most of them concentrate on removing one or

more bad-smells, identifying opportunities of a particular refactoring, examining the

impact of refactoring activities on software’s internal as well as external quality,

studying the overall effect of refactoring on overall code quality and developing tools to

detect and apply refactoring. But there are only a few research articles that focus on

removing bad-smells on a priority basis. And even if a few studies have tried to address

it, they have not considered the severity of presence of bad-smells and object-oriented

design characteristics at the same time. The current research addresses the issue by

taking into consideration both the object-oriented characteristics and severity of

presence of bad-smells in classes to prioritize them and hence achieve better software

quality saving significant time and cost.

The motivation of this research work arrives from the need of a systematic literature

review that can help the software practitioners in determining which refactoring

methods are suitable for removing a particular design flaw in the source-code and

improving certain internal (cohesion, coupling, inheritance, polymorphism etc.) and

external (maintainability, adaptability, reusability etc.) that can ease out the

maintenance phase activity effectively as well as guide the researchers in determining

bad-smells and refactoring methods that are highly and least studied; techniques, tools

and methodologies commonly adopted by researchers, overall benefit of refactoring

methods on quality attributes and limitation of present literature. Also, we are

motivated to prioritize classes based on the severity of presence of bad-smells and

object-oriented characteristics of the software-system so that refactoring can be applied

to only highly severe classes (generally a very small portion as compared to complete

software-system) that help in achieving better software quality within budget in

timeliness manner.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 4

1.2 RESEARCH OBJECTIVE

The goal of this research work is to first provide a systematic literature review to answer

questions related to effect of refactoring methods on software quality attributes

(complete process and research questions addressed are discussed in detail in Chapter 3)

and then provide a way to prioritize classes present in the software-systems so that

refactoring can be applied to extremely severe classes in order to save overall

maintenance effort and at the same time improve code-quality by removing bad-smells

and improving object-oriented characteristics of the software. This work is based on the

eighty-twenty principle that states that one can improve 80% software quality by

concentrating on 20% of classes to apply refactoring on. For this purpose, a new metric,

Quality Depreciation Index Rule (QDIR) with certain modifications to that proposed by

Malhotra et al. [8] in 2015 is proposed. QDIR is computed using two other metrics-

Base of Bad-smell (BoB) and Base of Metric (BoM). They have considered only four

bad-smells in their preliminary study but in the current research work, we have selected

ten bad-smells. The reason behind the selection of a wider set of bad-smells is taking

into consideration the ill-effect of a larger number of bad-smells that are commonly

present in the software-systems and are having proper tool support for their detection.

This leads to reformation of BoB metric that helps us in ultimately improving the QDIR

metric to remove the effect of a larger number of bad-smells from the studied software-

systems. We have selected eight open-source software-systems having varying domains

and sizes (medium-large) written in Java language to empirically evaluate the effort

saved in prioritizing classes based on QDIR in contrast to only a single medium-sized

software-system used by Malhotra et al. [8] in their preliminary study. Ten bad-smells

and six C&K metrics [5] to capture object-oriented characteristics are selected to

compute QDIR. Following research questions are addressed in the current research:

RQ1: What percentage of classes is poorly affected by bad-smells?

RQ2: Which bad-smell predominantly harms classes in the selected software-systems?

RQ3: Is Quality of Depreciation Rule (QDIR) useful in providing treatment to critically

affected class?

RQ4: Do use of Quality of Depreciation Rule (QDIR) leads to a reduction in

Maintenance Effort?

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 5

1.3 PROPOSED WORK

To conduct the systematic literature review, 104 primary studies from January 1991

to January 2018 were selected from premier journals and reputed conferences that apply

refactoring methods on object-oriented systems to evaluate their effects on software

quality attributes. The results from various primary studies are compared based on their

impact on quality attributes and their statistical significance is also considered. To

prioritize classes based on Quality Depreciation Index Rule (QDIR), eight open-source

medium to large sized software-systems from various domains are selected for

generality and wider-acceptability of the results. Object-oriented characteristics are

captured by C&K metric-suite [5]. Ten most probable Bad-smells are identified for each

class. Then, the combined effect of both the object-oriented characteristics and severity

of presence of bad-smell is considered to calculate a new metric, QDIR to prioritize

classes for the application of refactoring methods.

1.4 ORGANIZATION OF THESIS

The rest of the thesis is divided into following Chapters.

Chapter 2 discusses the related work in the field applying refactoring to remove bad-

smells and thereby improve software quality. Chapter 3 provides Systematic Literature

Review in the field of Bad-Smells & Refactoring. Chapter 4 explains the research

methodology adopted in the current research work. Chapter 5 answers the research

questions imposed at the start of the research work and discusses the results in detail.

Chapter 6 discusses threats to validity and in the end; Chapter 7concludes the research

work with inferences drawn from analysis and gives directions for future work.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 6

CHAPTER 2

RELATED WORK

The research in the field of refactoring and bad-smells is quite popular. There are a

wide number of research articles that discuss bad-smells and refactoring or effect of

refactoring on object-oriented characteristics. In the current work, we first provide a

systematic literature review on the effect of refactoring methods on various internal and

external quality attributes. Second, we provide a way to prioritize classes for refactoring

based on the severity of presence of bad-smells and design characteristics of the source-

code.

We identified many systematic literature reviews (SLRs) in the field of bad-smells

and refactoring. Wangberg [9] in his master thesis reported results from the review on

bad-smells & refactoring. The results showed that most of the selected studies are

design-research contribution i.e. bad-smell detection’s methods, related tools and

refactoring support which account for sixty-one percent of the studies in contrast to only

twenty-four percent of empirical work in the field of refactoring. Among these, only

13.8% accounted for any type of validation and again half of it has gone through

thorough validation in the realistic setting. This SLR was conducted on studies prior to

2010 and its aim was not only to discuss empirical research in the field of refactoring.

Moreover, there is an increase in empirical research in past few years. Dallal [10]

conducted SLR to identify opportunities in refactoring object-oriented code with 47

selected primary studies. Most of the work in this area is done by academic researchers

using non-industrial data which is generally open-source and repeatable too. These data-

sets are generally small and generality of the results is in question. Results indicated that

Extract Class and Move Method are very popular. They found that only 29.8% of

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 7

studies are related to the evaluation of quality attributes. Singh and Kaur [11] conducted

SLR on 238 primary studies w.r.t. refactoring in general and detection of code bad-

smells and anti-patterns. Their SLR is an extension of Dallal’s [10] work with large no.

of primary studies. Their research indicated that god class and feature envy are mostly

studied in the literature. Also, they identified that approximately 28% researchers used

automatic detection of bad-smell while approximately 26% performed empirical studies

in the field of refactoring. Abebe and Yo [12] conducted SLR on 58 studies since 1999

to reveal research pattern, important concerns and statistical information regarding

published papers in the last fifteen years. They concluded that only 10.22% comprised

of empirical work regardless of code and non-code refactoring applied which is second

least after programming language and refactoring. Most of the work contributed to

Refactoring tools and bad-smells. Cinnéide et al. [13] conducted a survey on benefits of

refactoring to address various questions like whether it reduces bad-smells, whether

applying refactoring methods improve non-functional requirements, whether there is an

improvement in software quality metrics due to refactoring? They suggested making

many direct measures of software quality like the number of defects, effort etc. in place

of proxy -measures like maintainability-index, bad-smells, cohesion, coupling etc. and

need to be more systematic in terms of the context of refactoring. Bassey et al. [14]

performed analysis of empirical studies in refactoring of object-oriented systems based

on the metric-based evaluation. They considered sixteen primary studies to identify the

state-of-the-practice in finding refactoring opportunities by targeting, refactoring

methods, coding language and their effect on software quality. They indicated move

method and extract class are most commonly applied refactoring methods and software

metrics help in detecting bad-smell and making decisions on applying refactorings.

They suggested more empirical work should be done on languages other than java and a

generic tool to detect refactoring opportunities and suggest where refactoring is required

should be developed. Although it considered metric based measurements for empirically

evaluating quality, it took very less number of papers and was very brief and non-

systematic. Mens et al. [15] provided state-of-the-art in the field of refactoring based on

criteria like available refactoring techniques, formalisms, and techniques for these

refactoring, refactoring support for various software related artifacts etc. They followed

a running example in the entire paper to explain important refactoring concepts. They

also provided a list of open issues in the field of refactoring like appropriate tools, the

impact of refactoring related activities on software processes etc. Dallal and Abdi [16]

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 8

conducted an SLR to reflect the impact of refactoring-scenarios on quality attributes by

taking seventy-six papers published before completion of 2015 from digital sources

with the aim of identifying common refactoring methods, the impact of these

refactoring methods on quality attributes, most commonly used data-sets. They

concluded that move method and extract class are two most frequently used refactoring

scenarios and the effect of refactoring scenarios on coupling and cohesion is widely

analyzed. The results from their results are quite useful. This is the most significant

research that overlaps with research under study. But they did not focus on identifying

bad-smells that are common across the software-systems and identifying particular

refactoring methods that positively affect certain quality attributes (internal and

external). Also, they selected research papers published before 2015 and there are many

relevant studies in recent times that empirically evaluate the effect of refactoring

methods on internal and external quality attributes. Our study identified many such new

relevant studies that address this issue and we decided to conduct an SLR that identifies

common refactoring methods and studied bad-smells across relevant empirical studies,

frequently used data-sets across empirical studies, statistical significance of results,

commonly studied quality attributes, certain quality attributes improved by application

of specific refactoring methods and overall effect of refactoring methods on certain

quality attributes.

We also came across so many studies that studied techniques to identify and remove

bad-smells and provide refactoring methods solution to source-code. Ouni et al. [17]

proposed a technique on the basis of chemical reaction optimizations to expose

appropriate refactoring methods that maximize the number of fixed riskiest bad-smells

by also considering the preference of the software maintainer. They selected five

medium to large sized open-source software-systems and studied seven different bad-

smells to prioritize the bad-smell removal process. Results indicate that their meta-

heuristic approach is better than other popular meta-heuristics in search-based software

engineering as they use prioritization and preferences of maintainers to apply

refactoring methods. Ouni et al. [18] also provided an approach to provide

recommendations to fix prevailing bad-smells in source-code and improve software

quality in terms of quality attributes by using same seven bad-smells and five software-

systems used by Ouni et al. [17] with two additional software-systems, making a total of

seven software-systems to conduct the experiment. Their approach was good for large

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 9

size software-systems but they do not provide any prioritizing to apply refactoring

methods. Fokaefs et al. [19] and Oliveto et al. [20] worked on removing feature-envy

bad-smell. While Fokaefs et al. [19] came up with an Eclipse plug-in that helps in

detecting Feature Envy Bad-smell and providing move method refactoring suggestion

and its application, Oliveto et al. [20] provided an approach that studies two different

types of relations-structural and conceptual between the methods of the source-code and

identifies friend-methods (methods that share many responsibilities) using relational

topic models to find target envied class which are probable to move the friend method

to. Fokaefs et al. [19] evaluated the plug-in on two software-systems with a

demonstration of the application of the plug-in but thesis limited to only java source-

code and Oliveto et al. [20] evaluated it on a single project with preliminary results

suggesting acceptability of their approach by suggesting appropriate refactoring

suggestions in source-code. Higo et al. [21] generated a set of metrics to identify the

way in which code-clones can be refactored. They also developed a tool-Aries based on

their approach that gives metrics that are indicative of relevant refactoring methods

instead of providing refactoring methods’ themselves as suggestions. A case study of

using the tool Aries is also provided on an open-source software which is quite simple

to use. Fontana et al. [22] considered three smells- data class, duplicate code and god

class and identified them in twelve open-source systems of different domains and sizes

and focused on giving a recommendation on which design debt should be first paid, as

per the bad-smells identified. Their study answers questions if it is possible to detect

bad-smell that have more critical debts than others and if it is possible to detect such

bad-smells that are domain-dependent and should not be regarded as bad-smell debt in

particular domain. They suggested removing duplicate bad-smell prior to any other bad-

smell stating it the most dangerous bad-smell out of the studied three smells. They also

indicated improvement in complexity and cohesion metrics of the software thereby

reducing maintenance effort. Also, they discussed that data class and god class bad-

smells are dependent on the domain. Bavota et al. [23] proposed an approach to suggest

portions of source-code that require extract class refactoring methods based on game

theory. They evaluated it on two open-source java-based software-systems. The results

indicated game theory approach superior to other two already existing approaches and

applicability of preliminary results. Dallal [24] used univariate logistic regression

technique that empirically investigates the capabilities of twenty-five metrics (belonging

to size, cohesion, and coupling) to predict the classes requiring extract subclass

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 10

refactoring method opportunity. The results reflected a strong correlation between some

of the studied metrics and recommendation of whether extract subclass refactoring is

required or not. Stroggylos and Spinellis [25] studied version control logs to identify

refactoring requirement and examined how software code metrics vary correspondingly

to assess whether refactoring method is effectively being used for enhancing software

quality, particularly within an open-source software environment. Their results have

enlightened that either the refactoring methods not always yield improvement in

software quality or there is a lack of a proper way to be effectively apply refactoring

methods on the developer's side. Malhotra et al. [8] proposed a novel approach to

prioritize the classes demanding sudden treatment in terms of refactoring by giving

equal weightage to both the design characteristics and bad-smells presence in the

source-code. They developed a new metric to prioritize classes based on the severity of

bad-smells and evaluated it on a single, middle-sized, open-source software-system

written in java language considering C&K metric suite and four code bad-smells. The

preliminary results show that by applying refactoring methods to only 10% of highly

affected classes, 47% improvement can be achieved by saving quite a large amount of

effort and cost. To prioritize classes to remove bad-smells and apply refactoring, this

study adopts the idea of work done by Malhotra et al. [8]. We identified the need to

address other bad-smells also that are commonly present in software-systems and have

available tool support for their detection. For this, we have selected ten common bad-

smells whose detection tools are easily available in the literature. This helps in

removing the ill effect of a larger number of commonly prevailing bad-smells in the

software-systems. Malhotra et al. [8] evaluated their approach on a single middle sized

software-system written in java language whereas we evaluated the proposed approach

on eight medium to large sized software-systems. Due to the inclusion of ten bad-smells

in the current study, QDIR is modified and improved to take into consideration the

severity of ten bad-smells instead of four selected by Malhotra et al. [8]. We have

selected six other bad-smells along with four used by Malhotra et al. [8] in their

preliminary study. The aim of the study is to prioritize the classes and provide

refactoring methods as solutions to bad-smells to only those classes having both high

severity of presence of bad-smells and poor object-oriented characteristics.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 11

CHAPTER 3

SYSTEMATIC LITERATURE

REVIEW

Software refactoring is a popular technique while maintaining a software-system to

improve its complexity in terms of the internal structure without modifying how it

behaves functionally. Quality attributes, both internal and external are considered to be

indicators of overall software quality. In the past few years, research in the field of

software refactoring to improve software quality by improving various internal and

external quality attributes is quite active.

This systematic literature review (SLR) aims to assess and compare the results of

the empirical studies in the field of refactoring that actively evaluate the refactoring

methods affecting internal (coupling, cohesion, inheritance, abstraction, size etc.) and

external quality attributes (understandability, maintainability, adaptability etc.) by

applying refactoring methods on software-systems. Our study identified many relevant

studies that address this issue and we were motivated to conduct an SLR that identifies

common refactoring methods and studied bad-smells across relevant empirical studies,

frequently used data-sets, statistical significance of the empirical results, commonly

studied quality attributes, certain quality attributes improved by application of specific

refactoring methods and overall effect of refactoring methods on certain quality

attributes.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 12

In this SLR, 104 primary studies from January 1991 to January 2018 were selected

from premier journals and reputed conferences & workshops that apply refactoring

methods on object-oriented systems to evaluate their effects on software quality

attributes. The results from various primary studies are compared based on their impact

on quality attributes and their statistical significance is also considered.

3.1 PHASES IN SYSTEMATIC LITERATURE REVIEW

The whole process of systematic review is planned, conducted and reported on the

basis of the guidelines that are being provided by Kitchenham [26]. The complete

process consists of three main phases viz. planning, conducting and reporting the review

that is depicted in Figure 3.1. In the first phase, reasons for conducting review are

identified and a review protocol is established. Review protocol encompasses

identification of relevant research questions, designing search-strategy, adopting criteria

for study selection, assessment of study quality, and the process of extracting data and

finally the process of synthesis of data. It should be developed very wisely in order to

avoid or at least reduce research bias in SLR. Once review protocol is developed, all the

consequent steps to conduct SLR are carried out smoothly. In the second phase,

research questions are stated that aptly answered the issues addressed by SLR. Then, the

search strategy is identified that included identification of search term and key sources

to be explored form where primary studies are captured. Inclusion-Exclusion criterion is

set to include relevant primary studies in the context of empirical studies evaluating the

effect of refactoring on quality attributes (internal external, or both) and exclude

irrelevant studies w.r.t. context. Afterward, quality assessment is provided by

developing a questionnaire of quality questions to assess the acceptability of primary

studies for SLR. After the quality assessment is done, data extraction forms are prepared

from the primary studies to gather all the important aspects of the studies in order to be

able to answer the research questions. This extracted information is then synthesized i.e.

tabulated in a very consistent way with the research questions in SLR. The third phase

includes meaningfully and analytically reporting the findings from the SLR along with

limitations and any future directions.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 13

Figure 3.1 Phases in Systematic Literature Review

3.2 RESEARCH QUESTIONS

The aim of this SLR is to identify empirical evidence and evaluate consistency of

results by primary studies that empirically evaluated performance of refactoring

methods on various internal and external quality attributes, so that researchers,

academicians, and developers all are aware of the implications of refactoring methods

on quality attributes(internal, external, or both).

Table 3.1 presents six research questions addressed by the SLR. From primary

studies, we identified refactoring methods applied by researchers (RQ1) and bad-smells

detected in the primary studies (RQ2). Internal and external quality attributes that are

evaluated empirically by the researchers are answered in RQ3, RQ3.1, and RQ3.2. Also,

the software-systems/data-sets used by researchers to apply refactoring methods are

identified (RQ4). RQ5 captures whether any statistical analysis or correlation analysis is

being done to support the results. The impact of refactoring methods on various internal

and external quality attributes is discussed in RQ6, RQ6.1, and RQ6.2.

Table 3.1 Research Questions addressed in SLR

RQ# RQ Motivation

RQ1 What refactoring methods have

been applied across primary

studies?

Identify the commonly adopted

refactoring methods by researchers.

RQ2 What bad-smells are analyzed in

the primary studies?

Identify commonly detected bad-smells

by researchers.

RQ3 What quality attributes are Identify popular quality measures in the

1. Plan the
review

•1.1 Determine the need for review

•1.2 Create the review protocol

2. Conduct
the review

•2.1 State research questions

•2.2 Search strategy and Study Selection criteria

•2.3 Develop Quality Assurance Questions

•2.4 Extract and Synthesise the data

3. Report
the results

•3.1 Report the results and findings.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 14

selected across primary studies? field of refactoring.

RQ3.1 What internal quality attributes

(object-oriented characteristics)

are investigated in primary

studies?

Identify common internal quality

attribute and popular metric-suite for

object-oriented systems.

RQ3.2 What external quality attributes

are investigated in primary

studies?

Identify commonly studied external

quality measures by researchers.

RQ4 What software-systems/data-sets

are selected in primary studies to

perform refactoring methods?

Identify the data-sets found appropriate

for applying refactoring by the

researchers

RQ5 What statistical techniques are

adopted by researchers?

Identify the conclusions are analyzed

properly and are reliable enough.

RQ6 Does refactoring improve the

quality attributes?

Identify the performance of various

refactoring methods on the quality

metrics based on current research.

RQ6.1 Which quality attributes (internal/

external) are overall benefitted by

refactoring?

Find internal and external quality

attributes that have a positive impact of

refactoring in general.

RQ6.2 Which refactoring method and

quality attribute combination

yield a good result?

Find out which internal and external

quality attributes will have a positive

impact after applying a particular

refactoring method.

3.3 SEARCH STRATEGY & STUDY SELECTION

The purpose of Study Selection is to pick up those primary studies that are in

correspondence with providing direct evidence of research questions. To reduce bias-

likelihood, the selection criterion is established at the time of research-protocol

definition. Figure 3.2 depicts steps followed for study selection in the SLR. In the first

place, five popular electronic databases are searched to arrive at potentially relevant

articles against an exhaustive set of search terms. For this SLR, following set of

sophisticated search terms are created that are merged using Boolean OR for

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 15

alternatives and synonyms and important terms are grouped using Boolean AND. The

search terms are as below:

1) Refactor* OR Restructur*

2) Refactoring method OR Refactoring Technique

3) Object Oriented OR Object-Oriented OR Source-code OR Class OR Method OR

Attribute OR Code OR Software-system

4) Quality Attributes OR Quality Metrics OR Quality Measures OR Software

Quality Attributes OR Software Quality Measures OR Software Quality Metrics

OR Software Metrics

5) Evaluat* OR Estimat* OR Predict* OR Detect* OR Apply OR Applied OR

Study OR Studied

6) Software Quality OR Coupling OR Cohesion OR Maintainability OR

Adaptability OR Reusability OR Modifiability OR Understand-ability OR Size

OR Inheritance OR Flexibility OR Testability OR Extendibility OR Fault

Proneness OR Efficiency OR Integrity OR Readability OR Accuracy

The terms on refactoring and quality attributes were captured from textbooks in required

areas [1 and 7]. Once search terms are finalized, potential popular electronic databases

were selected. Table 3.2 represents details about selected five electronic databases that

were used to retrieve potentially relevant primary studies.

Figure 3.2 Steps for Study Selection

The search was made on articles from 1991 till January 2018. An initial search using

the search terms was made to capture potentially relevant articles as primary studies.

All these studies were collected in full-text and afterward inclusion and exclusion

criterion was applied that is discussed in next section. Studies that are found in the

reference section and seemed useful were also selected. We included those empirical

studies in SLR that empirically evaluate the effect of refactoring methods on software

quality attributes (internal and external, or both). We found 334 relevant studies after

exploring electronic databases using the defined search strategy and then further added

30 relevant studies after scanning the reference lists of relevant studied identified from

the electronic databases. As a result, overall 364 relevant studies were captured for

Apply search terms
in e-databases to
identify potential
relevant articles

Excluce
articles based
on titles and

abstracts

Apply
Inclusion-
Exclusiom

Criteria

Apply qualtity
assessment

questionarrie to arive
at final articles.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 16

subsequent processing. The following inclusion-exclusion criteria are applied to the

identified studies.

Figure 3.3 Inclusion-Exclusion Criteria

The papers related to computer science and engineering are only included. The SLR

incorporated articles from the initial dates of the electronic libraries to January 2018.

However same articles from different electronic data sources are removed so as to

remove duplicity. The inclusion-exclusion criteria as given in Figure 3.3 were tested by

two independent researchers to arrive at a same decision after meetings and discussions.

In case of doubt, thorough analysis of entire text was made to decide the inclusion or

exclusion for that article. The quality of the selected studies was also being identified so

as to capture their relevance regarding research questions. Adopting the aforementioned

inclusion-exclusion criteria, 123 studies were selected. In the end, the quality

questionnaire is prepared for each of the selected studies to arrive at a final list of

primary studies.

Table 3.2List of Electronic Databases explored

S. No. E-Resource Link to Access

1 IEEE Xplore ieeexplore.ieee.org/

2 Elsevier ScienceDirect www.sciencedirect.com

3 ACM Digital Library www.acm.org/

4 SpringerLink http://www.springer.com/in,

5 Wiley Online Library https://onlinelibrary.wiley.com/

•Empirical Studies using
refactoring methods on object-
oriented software systems

•Empirical Studies evaluating
effect of refactoring on internal
and external qualiy attributes

•The primary studies published in
a peer reviewed journal or
conference proceeding before
February,2018.

Inclusion Criteria

•Empirical Studies evaluating effect of
refactoring methods on non-source code
data

•Studies applying refactoring on source code
but not empirically evaluating its effect on
any internal and external quality attributes.

•Studies that mentioned theoritically the
potential effects of refactoring methods on
software quality attributes but did not
empirically evalauted it

•Studies that evaluated impact on quality due
to maintanence tasks including refactoring
but not specifically refactoring alone

•Review Studies

Exclusion Criteria

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 17

3.4 QUALITY ASSESSMENT CRITERIA

To achieve confidence in the relevant studies, a quality questionnaire is formed that

includes fifteen quality questions to assess their significance and provide weights to the

studies with regards to the research questions being addressed in the SLR. Table 3.3

represents all the selected fifteen questions and the percentage of primary studies

answering these quality assessment questions as per the suggestions of Wen et al. [27].

The articles are ranked from 0 to 1. 1 signifies YES, 0 signifies NO and 0.5 signifies

PARTLY. For each article, the rank for each question is summed to calculate the final

score. At max, any study could score a maximum of 15 and a minimum of 0.

Two independent researchers were occupied with assessing the quality questions

and preparing final scores for each of the selected studies. In case of any doubt or

disagreement, reviews and brainstorming sessions were performed to arrive at a

consensus.

Table 3.3 Quality Assessment Questions

QA# Quality Assurance Question Yes Partly No

Design

QA1 Are the refactoring methods stated and defined

appropriately?

63.6 49.1 14.5

QA2 Is aim of the primary study clearly stated? 100 0 0

QA3 Are evaluated internal quality attributes and external

quality attributes clearly stated and defined?

58.7 32.1 9.2

Conduct

QA4 Are methods used for collecting data properly

stated/described?

68.4 25.7 5.9

Analysis

QA5 Is the purpose of the analysis clear? 98.1 1.2 0.7

QA6 Are the results of applying the refactoring

techniques evaluated?

89.2 7.2 3.6

QA7 Are the datasets properly described? (programming

language, size, venue)

63.8 19.7 16.5

QA8 Are the statistical methods described? 29 1.2 69.8

QA9 Are the statistical methods justified? 29 0 75

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 18

QA10 Do the statistical significance of the results

reported?

12.9 2.2 89.4

Conclusion

QA11 Are all questions from the primary study answered? 75.2 9.6 `15.2

QA12 Are negative findings reported? 35.3 1.2 63.5

QA13 Do the results and findings contribute to the

literature?

38.4 40.4 21.2

QA14 Do the results support the conclusions? 96.9 2.8 0.3

QA15 Are validity threats discussed? 49.2 5.4 45.4

3.5 DATA EXTRACTION AND DATA SYNTHESIS

Data extraction was performed by following these steps:

(a) One author analyzed 104 primary studies selected quality assessment to extract

relevant data with respect to various parameters like refactoring methods

(number of refactoring methods performed, name of refactoring methods,

automated or manual), bad-smells (number of bad-smells analyzed, common

bad-smells), quality attributes (internal or external or both, number of each type

of attributes, effect of refactoring on quality attributes, process to evaluate

quality attributes), data-set (venue-open-source, academic, industrial,

programming language, size, source) etc.

(b) Another author, a prominent professor in the area of Software Engineering

validated the extracted data by evaluating the primary studies on selected

parameters.

(c) In case of any discrepancy among the results, a meeting was conducted to arrive

at an appropriate result.

By adopting above mentioned process, data extraction forms were filled for each of the

primary studies. The main aim to fill in these forms is to gain all the desired information

that is required to answer the research questions imposed by SLR. The final data is

saved in excel spreadsheets to use this data as input for data synthesis.

The data synthesis task consists of gathering, accumulating and summarizing the

facts and figures from the selected primary studies to answer research questions

imposed by SLR. It is a meta-analysis task to classify the results and findings by

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 19

different researchers so as to provide evidence to arrive at a certain conclusion that

answers the research questions. Both the quantitative aspects that contains impact of

refactoring methods on quality attributes (internal and external), number of refactoring

methods applied, number of quality attributes under study, as well as qualitative aspects

like the data-sets used, details and classification of refactoring methods, statistical

significance, strengths and weaknesses of refactoring methods with respect to their

effect on quality attributes, etc. are considered. To answer the research questions,

visualization mechanisms like pie-charts, bar-charts, line-graphs along with tables to

precisely represent the results are being used.

3.6 RESULTS & FINDINGS OF SYSTEMATIC LITERATURE

REVIEW

In this section, results captured from the selected primary studies are discussed.

Firstly, an overview of selected primary studies is presented here. Later, the results are

interpreted and presented meaningfully in form of suitable charts and tables.

3.6.1 Description of Primary Studies

Here, we briefly describe all the 104 selected primary studies. Out of 123 relevant

studies identified by us before quality assessment, we have selected 104 primary studies

based on the scores obtained in the quality assessment.

(a) Publication Source

Table 3.4 lists out the number and the corresponding percentage of primary studies

from top journals and conferences. Majority of publications were in Journal of Systems

and Software, IEEE Transactions on Software Engineering, Information and Software

Technology and Empirical Software Engineering, Asia Pacific Software Engineering

Conference (APSEC), IEEE Conference on Advances in Computing, Communications

and Informatics (ICACCI), IEEE International Working Conference on Source-code

Analysis and Manipulation (SCAM) and so on. The top 19 publication sources

encompass 57.31% of primary studies.

Also, Figure 3.4 shows that majority of primary studies are present in IEEE Xplore

followed by ACM and Springer.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 20

Table 3.4 Summary of Key Publication Sources

Publication Name Publication

Type

Primary

Studies

Count Percent

Asia Pacific Software

Engineering Conference

(APSEC)

Conference [56], [60],

[95], [110],

[119]

5 4.80

IEEE International Working

Conference on Source-code

Analysis and Manipulation

(SCAM)

Conference

[28], [107],

[114], [116]

4 3.84

IEEE Conference on Advances in

Computing, Communications

and Informatics (ICACCI)

Conference [46],[59],

[62], [63]

4 3.84

IEEE International Conference

on Software Engineering (ICSE)

Conference [40],[51],

[12]

3 2.88

IEEE International Conference

on Software Maintenance and

Evolution (ICSME)

Conference [58],

[73],[77]

3 2.88

IEEE Conference on Software

Maintenance and Reengineering

(CSMR)

Conference [35], [105],

[98] , [106]

4 3.84

IEEE International Software

Metrics Symposium

Conference [53], [57]

2 1.92

International Conference on the

Quality of Information and

Communications Technology

(QUATIC)

Conference [64], [75] 2 1.92

IEEE International Conference

on Software Analysis, Evolution

and Reengineering (SANER)

Conference [66],[70]

2 1.92

Journal of Systems and Software Journal [31],[42],

[82], [83],

6 5.77

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 21

[102], [117]

IEEE Transactions on Software

Engineering

Journal [72], [41],

[52], [61],

[65], [104]

6 5.77

Information and Software

Technology

Journal [39], [55],

[16], [84],

[85],[103]

6 5.77

Empirical Software Engineering Journal [30], [47],

[90]

3 2.88

ACM Transactions on Software

Engineering and Methodology

Journal [29], [91] 2 1.92

Arabian Journal of Science and

Engineering

Journal [36], [89] 2 1.92

Journal of Software Evolution

and Processes

Journal [88], [10] 2 1.92

Expert Systems with Applications Journal [54], [94] 2 1.92

Journal of Software Maintenance

and Evolution: Research &

Practice

Journal [81], [87] 2 1.92

Software Practice and

Experience

Journal [86], [90] 2 1.92

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 22

Figure 3.4 Distribution of Primary Studies across Electronic Data Sources

(b) Quality Assessment Questions

The quality assessment questions were assigned scores that were divided into three

categories i.e. high (13 ≤ scores ≤ 15), medium (10 ≤ scores ≤ 12) and low (0≤ score ≤

9). Six primary studies- [36], [39], [46], [50], [97] and [99] obtained highest scores.

Therefore, the willing readers can go through these studies for further reading. Studies

with the low score were discarded and as a result, nineteen studies- [125]-[143], having

a score of <=8 were removed from the relevant studies to arrive at a total of 104 primary

studies that are found fit for SLR.

(c) Publication Year

In Figure 3.5, distribution of primary studies from the year 2000 to 2017 is shown. It

can be observed that before 2006, only 8 primary studies evaluated the effect of one or

more refactoring methods on software quality attributes. Among these studies, mainly

all examined the effect of refactoring on quality attributes from 2006 onwards. Number

of studies in 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 and

2017 are 6, 2, 5, 8, 4, 13, 13, 7, 11, 8, 9 and 10 respectively. The maximum number of

relevant primary studies is in the years 2011, 2012, 2014, 2017 and 2016. In the recent,

54

43

12

16

7

11

35

29

10

16

6
8

IEEE Xplore ACM Springer Science Direct Wiley CiteSeer

Number of Overlapping Primary Studies Number of Unique Primary Studies

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 23

quite a good number of studies are focusing on evaluating the impact of refactoring

methods on quality attributes. This confirms the inclusion of related and current studies

in the SLR.

Also, 10 primary studies ([60], [61], [62], [63], [65], [67], [72], [73], [76] and [10])

in 2017, 9 primary studies ([46], [64], [66], [68], [69], [70], [71], [75] and [77]) in 2016,

8 primary studies in 2015 ([48],[55],[58], [74], [83], [90], [103] and [109]), 11 primary

studies in 2014 ([29], [32], [44], [52], [54], [56], [96], [99], [107], [114] and[118]), 7

primary studies in 2013 ([30], [49], [85], [104], [110], [115] and [121]), 13 primary

studies ([28], [33], [34], [38], [47], [59], [16], [84], [91], [92], [93], [14] and [102]) in

2012, 13 primary studies ([31], [36], [40], [42], [51], [79], [80], [89], [12], [97], [111]

and[37]) in 2011, 4 primary studies ([82], [15], [108] and [122]) n 2010, 8 primary

studies ([37], [41], [86], [94], [95], [106] and[119]) in 2009, 5 primary studies ([45],

[81], [13], [112], [123]) in 2008, 2 primary studies ([98] and [17]) in 2007, 6 primary

studies ([35], [43], [87], [88], [105] and [113]) in 2006, 1 primary study ([53]) in 2005,

2 primary studies ([100] and [120]) in 2004, 3 primary studies ([57], [101] and [117]) in

2003,1 primary study ([50]) in 2002 and 1 primary study ([78]) in 2000 are conducted.

Only in the year 2001, there is no relevant primary study.

Figure 3.5Year-wise distribution of Primary Studies

0

2

4

6

8

10

12

14

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Year-wise Distribution of Primary Studies

Number of Primary Studies

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 24

3.6.2 RQ1: What refactoring methods have been applied across primary studies?

Following results can be drawn from the selected primary studies:

1) Table 3.5 gives the number of refactoring methods used by listed primary studies. It

is evident from the table that there are two types of studies; first that identifies the

effect of a particular refactoring method on quality attributes and second that

identifies the effect of two or more refactoring methods on quality attributes.

25.96% primary studies belong to the first category and studied the impact of

applying a particular refactoring method on certain quality attributes whereas

50.96% primary studies studied the impact of two or more refactoring methods on

quality attributes. It should also be noted that 23.07% studies do not mention the

number of refactoring methods applied in their research.

Table 3.5 Number of Refactoring Methods performed in Primary Studies

Number of

Refactoring

Methods

Primary Studies

Number of

Primary

Studies

1 [29],[30], [31], [32], [40], [41], [42], [53], [55], [61], [65],

[71], [77], [16], [15], [12], [95], [96], [102], [103], [105],

[109], [110],[111] and [113]

27

2 [44], [57], [79], [84], [85], [91 and [104] 7

3 [54], [68], [72], [75], [78], [80], [87], [101], [107] and

[121]

10

4 [64], [106], [108] and[116] 4

5 [46], [98], [100], [119] and [120] 5

6 [35], [14] and [117] 3

7 [59] 1

8 ─ 0

9 [51], [63], [89] and [13] 4

10 [49], [73], [74] and [90] 4

>10 [28], [33], [34], [36], [38], [45], [47], [48], [62], [76],

[76], [81], [83], [10], [118] and [124]

15

Not [37], [39], [43], [50], [52], [56], [58], [60], [66], [67], 24

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 25

Mentioned [69], [70], [82], [86], [88], [92], [93], [94], [97], [99],

[112], [115], [122] and [123]

2) A total of 156 refactoring methods have been identified in the selected studies out of

which 70 have been used by two or more primary studies and rest 86 have been used

by a single primary study.

3) Out of 156 identified refactoring methods, there are several new refactoring methods

not identified by Fowler like test-based bad-smells (like resource optimism, indirect

testing, test run war) given in [73], accessibility/security related bad-smells (increase

security field, decrease security field) given in [76], new variants of move method

(like move a method to its parameter types, move a method to a type of a randomly

chosen attribute of the class the method belongs to, move a static method) etc.

4) Figure 3.6 shows the common refactoring methods among primary studies. Move

method, extract method and encapsulate field are among the most frequently used

refactoring methods as they are used in 30.76%, 29.80% and 28.84% of studies

respectively.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 26

Figure 3.6 Commonly used Refactoring Techniques

3.6.3 RQ2: What bad-smells are analyzed in the primary studies?

0

5

10

15

20

25

30

35

M
o

ve
 M

et
h

o
d

Ex
tr

ac
t

M
e

th
o

d

En
ca

p
su

la
te

 F
ie

ld

P
u

sh
 D

o
w

n
 F

ie
ld

M
o

ve
 F

ie
ld

Ex
tr

ac
t

Su
p

e
rc

la
ss

A
d

d
 P

ar
am

et
e

r

C
o

lla
p

se
 H

ie
ra

rc
h

y

Ex
tr

ac
t

In
te

rf
ac

e

Ex
tr

ac
t

H
ie

ra
rc

h
y

R
en

am
e

 M
et

h
o

d

R
ep

la
ce

 M
et

h
o

d
 W

it
h

 M
et

h
o

d
 O

b
je

ct

Fa
ct

o
ry

 M
et

h
o

d

In
lin

e
 M

et
h

o
d

R
ep

la
ce

 C
o

n
d

it
io

n
al

 w
it

h
 P

o
ly

m
o

rp
h

is
m

R
ep

la
ce

 In
h

e
ri

ta
n

ce
 w

it
h

 D
el

eg
at

io
n

D
ec

o
m

p
o

se
 C

o
n

d
it

io
n

al

In
lin

e
 T

em
p

M
ak

e
Su

p
er

cl
as

s
A

b
st

ra
ct

P
u

sh
 D

o
w

n

R
ep

la
ce

 T
yp

e
 C

o
d

e
w

it
h

 S
ta

te
/S

tr
at

eg
y

D
ec

re
as

e
Fi

el
d

 S
e

cu
ri

ty

D
ec

re
as

e
M

e
th

o
d

 S
ec

u
ri

ty

H
id

e
 D

el
e

ga
te

In
cr

e
as

e
Fi

el
d

 S
ec

u
ri

ty

In
cr

e
as

e
M

e
th

o
d

 S
e

cu
ri

ty

In
tr

o
d

u
ce

 E
xp

la
in

in
g

V
ar

ia
b

le

P
ar

am
et

er
iz

e
 M

et
h

o
d

R
em

o
ve

 S
et

ti
n

g
M

et
h

o
d

R
ep

la
ce

 C
o

n
st

ru
ct

o
r

W
it

h
 F

ac
to

ry
 M

e
th

o
d

R
ep

la
ce

 M
ag

ic
 n

u
m

b
er

 w
it

h
 c

o
n

st
an

t

R
et

h
ro

w
 w

it
h

 E
xc

ep
ti

o
n

Common Refactoring Method s acorss Primary Studies

Number of Primary Studies

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 27

Following results can be drawn about bad-smells from the selected primary studies:

1) Out of 104 primary studies, 24 primary studies tried to apply refactoring method

specific to bad-smells selected by them whereas remaining 80 primary studies do

not apply refactoring method to remove particular bad-smells. Figure 3.7 depicts

that only 23% of primary studies applied refactoring method to remove specific bad-

smells.

2) Out of 23% primary studies that tried to apply refactoring methods to remove

selected bad-smells, 37.5% primary studies ([32], [40], [41], [12], [95], [108],

[109], [116] and [121]) tried applying refactoring method for removing only one

bad-smell whereas remaining 62.5% primary studies ([54], [57], [59], [62], [63],

[70], [75], [80], [83], [85], [10], [14], [107] and [114]) applied refactoring method to

remove more than one bad-smell.

Figure 3.7 Percentage of Primary Studies analyzing Bad-smells

3) Figure 3.8 shows bad-smells that are commonly detected and removed after

applying appropriate refactoring methods. Feature Envy ([32], [41], [54], [57], [59],

[80], [83], [10], [12] and [109]), Long Method ([57], [59], [63], [75], [80], [83], [95]

Bad Smell
23%

No Bad Smell
77%

Analysis of Bad Smells across Primary Studies

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 28

and [114]), God Class ([40], [59], [63], [75], [10] and [14]), duplicate code/ code

clone ([29], [14], [108], [114], [116] and [121]), long parameter list ([59], [63], [70],

[75], [83 and [10]) are some of the most frequently detected bad-smells across

empirical studies. On the other hand, refused parent bequest ([83]), middle man

([104]) and inappropriate intimacy ([107]) are detected by only one primary study.

Figure 3.8 Commonly detected Bad-smells in Primary Studies

3.6.4 RQ3: What quality attributes are selected across primary studies?

Quality attributes are indicators of overall software quality. Two kinds of quality

attributes are present- internal and external. Internal quality attributes are measured by

software code-artifacts. On the contrary, external quality attributes cannot be directly

computed and require calculation of one or more internal quality attributes. Due to this,

internal and external quality attributes are respectively called direct and indirect

0

2

4

6

8

10

12

Number of Primary…

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 29

attributes. To evaluate external quality attributes, software environment and interactions

between software artifacts and environment are considered. Many times, all the desired

details to measure the external quality attributes is not available. As a result, some

researchers propose formulae and models to estimate the external quality attributes.

Internal quality attributes are used as independent variables to identify external quality

attributes that are treated as dependent variables.

(a) RQ3.1: What internal quality attributes (object-oriented characteristics)

are investigated in primary studies?

Following results can be drawn regarding internal quality attributes across the primary

studies:

1) Among the selected primary studies, we identified ten internal quality attributes that

are coupling, cohesion, size, complexity, inheritance, abstraction, polymorphism,

data encapsulation, composition and information hiding. Table 3.6 lists out the

details of the internal quality attributes studied in the primary studies.

2) Coupling, cohesion, size, and complexity are the highly studied internal quality

attributes that are evaluated by 70.19%, 58.65%, 47.11% and 39.42% primary

studies respectively. On the other hand, polymorphism, data encapsulation,

composition and information hiding are evaluated by least number of primary

studies as they are used in 6.73%, 6.73%, 6.73% and 2.88% of primary studies

respectively.

Table 3.6 Internal Quality Attributes evaluate in Primary Studies

Internal

Quality

Attribute

Number of

Primary

Studies

Primary Studies

Coupling 73 [29],[30], [31], [32], [33], [34], [35], [36], [37], [39],

[40], [41], [43], [45], [46], [50], [52], [56], [58], [59],

[62], [63], [65], [67], [71], [75], [76], [77], [80], [81],

[82], [83], [16], [85], [86], [87], [88], [10], [89], [90],

[92], [15], [93], [12], [94], [95], [14], [96], [97], [99],

[100], [101], [102], [13], [104], [105], [106], [107],

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 30

[108], [109], [110], [111], [113], [17], [114], [115],

[116], [119], [120], [121], [122], [123] and [124]

Cohesion 61 [30], [31], [33], [34], [35], [36], [39], [40], [41], [42],

[43], [45], [46], [52], [56], [59], [61], [62], [63], [65],

[67], [80], [81], [82], [83], [16], [85], [86], [10], [89],

[90], [91], [92], [15], [12], [95], [14], [96], [97], [100],

[101], [102], [3], [104], [106], [107], [108], [109],

[110], [111], [113], [17], [114], [115], [116], [120],

[121], [122], [123] and [124]

Size 49 [28], [29], [30], [33], [35], [36], [38], [39], [41], [43],

[44], [45], [57], [58], [62], [66], [68], [77], [78], [81],

[82], [83], [16], [84], [86], [87], [88], [10], [89], [90],

[93], [94], [96], [97], [98], [99], [104], [106], [108],

[113], [115], [119], [117], [119], [121], [123] and

[124]

Complexity 44 [36], [43], [44], [45], [46], [52], [58], [58], [59], [62],

[63], [66], [67], [68], [69], [71], [75], [77], [80], [83],

[84], [87], [12], [94], [95], [14], [97], [99], [101],

[103], [13], [104], [105], [106], [107], [109], [110],

[113], [114], [115], [117], [118], [119], [120], [121]

and [122]

Inheritance 28 [33], [35], [39], [45], [58], [63], [76], [81], [82], [83],

[88], [89], [95], [97], [98], [99], [101], [13], [106],

[107], [108], [109], [114], [115], [116], [120], [122]

and [124]

Abstraction 9 [45], [46], [76], [80], [10], [14], [108], [116] and [124]

Polymorphism 7 [45], [81], [10], [90], [108], [116] and [124]

Data

encapsulation

7 [33], [35], [10], [90], [108], [116] and [124]

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 31

Composition 7 [35], [45], [10], [90], [108], [116] and [124]

Information

Hiding

3 [59], [63] and [67]

3) Table 3.7 presents the common metrics used in primary studies to evaluate internal

quality attributes. Chidamber & Kemerer metrics suite [5], QMOOD metrics suite

[144], MOOD metrics suite [4], Lorenz & Kidd Metrics suite [6] and Li & Henry

metrics suite [7] are most commonly used metrics suite among the primary studies.

Chidamber & Kemerer and QMOOD are used in the majority of the primary studies.

Table 3.7 Metrics identified across primary study for respective quality attribute

Internal

Quality

Attribute

Metrics

Coupling Class Method Export Coupling (OCMEC), Afferent Coupling,

Aggregated import coupling, Coupling Between Objects (CBO),

Conceptual Coupling Between Classes(CCBC), Message Passing

Coupling (MPC), CCC, CDBC, Coupling Factor (CF), Class

Coupling (CC), Data Abstraction Coupling (DAC), Direct Class

Coupling (DCC), Efferent Coupling, Export Coupling, Fan In, Fan

Out, General Coupling, Information-flow-based-Coupling (ICP),

Low Data Coupling (LD), NOCM (Number of Outward Coupling

Methods), Number of Remote Methods (NR), Number of

Parameters, Response For a Class (RFC), Semantic Coupling ,

Structural Coupling, Access To Foreign Data (ATFD), Return Value

Coupling

Cohesion Conceptual Cohesion of Classes (C3), Classified Accessor Attribute

Interactions (CAAI), Classified Attribute Interaction Weight

(CAIW), Cohesion Among Methods of Class (CAM), Cohesion

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 32

Based on Member Connectivity (CBMC), Classified Mutator

Attribute Interactions (CMAI), Classified Methods Weight (CMW),

Coh, Connectivity, coverage, Degree of Cohesion Direct (DCD),

Degree of Cohesion Indirect (DCI), Improved Cohesion Based on

Member Connectivity (ICBMC), Information flow based cohesion

(ICH), Loose Class Cohesion (LCC), LCOM1, LCOM2, LCOM3,

LCOM4, LCOM5, Low level design Similarity-based Class

Cohesion (LSCC), Methods Similarity Cohesion (MSC), Non-

normalized Cohesion, Normalized Cohesion, Path Connectivity

Class Cohesion (PCCC), Semantic Cohesion, Structural Cohesion,

Tight Class Coupling (TCC), tightness, Locality of Attribute Access

(LAA), Class Cohesion (CC)

Size Number of Blocks, Number of Classes, Number of Functions,

Number of Local Variables, Number of Parameters, AMS, ANA,

Attributes/ Class, CIS, CS, DSC, Duplicate Code Blocks, Comment

Blocks, Lines of Code (LOC), Source Lines of Code (SLOC),

Number of Methods (NOM), Number of Static Methods, Class

design proportion (CDP), NLM, NOCL, NIV, NCV

Complexity Cyclomatic Complexity (CC), Class Definition Entropy (CDE),

Classes in a Cycle, Function Parameters, Immediate Base Class,

Lines of Code Per Class, Lines of Code Per Method, Max_Loc,

Max_MCC, McCabe Per Method (MVG), Member reads, Member

writes, Method Size, Methods lines of code per method (MLOC),

Number Of Attributes (NOA), Number Of Methods (NOM), Number

of Public Methods of a class (NPM), Type Declarations in Local

Method, Weighted Method per Class (WMC), Average Method

Weight (AMW), Average Line of Code per Method (ALCM), OCavg

Abstraction Measure of Functional Abstraction (MFA)

Polymorphism Number of Polymorphic Method (NOP)

Data Classified Class Data Accessibility (CCDA), Classified Instance

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 33

encapsulation Data Accessibility (CIDA), Classified Operation Accessibility

(COA), Data Access Metric (DAM)

Composition Measure Of Aggregation (MOA), Composite Part Critical Classes

(CPCC)

Inheritance Depth of Inheritance (DIT), Number of Children (NOC), Average

Number of Ancestors (ANA)

Information

Hiding

Attribute Hiding Factor (AHF), Method Hiding Factor (MHF)

(b) RQ3.2: What external quality attributes are investigated in primary

studies?

1) Among the selected primary studies, we identified fifteen external quality attributes

that are maintainability, reusability, understandability, flexibility, adaptability,

testability, extensibility, effectiveness, completeness, functionality, modularity,

reliability, security, modifiability, and traceability, Table 3.8 lists out the details of

the external quality attributes studied in the primary studies.

2) Maintainability, understandability, reusability, flexibility, extensibility are the

highly studied external quality attributes that are evaluated by 25%, 15.38%,

14.42%, 10.57% and 10.57% primary studies respectively. On the other hand,

adaptability, completeness, and traceability are evaluated by least studied external

quality attributes as they are evaluated by 1.92%, 1.92% and 0.96% primary studies

respectively.

3) Out of 104 primary studies, 24 primary studies evaluated the effect refactoring

method(s) on single external quality attribute whereas remaining 76.93% evaluated

the effect of refactoring method(s) on two or more external quality attributes.

Table 3.8 External Quality Attributes evaluated in Primary Studies

External

Quality

Attribute

Number

of

Primary

Primary Studies

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 34

Studies

Maintainabilit

y

26 [36], [38], [44], [45], [47], [49], [50], [55], [56], [57],

[58], [59], [66], [69], [72], [77], [85], [89], [98], [99],

[107], [117], [118], [122] and [123]

Reusability 15 [35], [36], [38], [43], [46], [48], [54], [70], [10], [89],

[90], [108], [116], [118] and [124]

Understandab

ility

16 [35], [36], [45], [46], [70], [72], [74], [81], [10], [89],

[90], [98], [102], [108], [116] and [118]

Flexibility 11 [35], [38], [45], [54], [70], [10], [89], [90], [108],

[116] and [124]

Adaptability 2 [36] and [89]

Testability 6 [36], [71], [73], [89], [118] and [119]

Extensibility 11 [38], [44], [45], [46], [54], [70], [10], [90], [108],

[116] and [124]

Effectiveness 9 [38], [45], [54], [70], [10], [90], [108], [116] and [124]

Completeness 3 [36], [108] and [118]

Functionality 6 [45], [10], [89], [90], [108] and [116]

Modularity 3 [38], [52] and [69]

Reliability 10 [28], [51], [52], [53], [62], [76], [77], [93], [112] and

[118]

Security 2 [33] and [79]

Modifiability 5 [46], [48], [49], [53] and [74]

Traceability 1 [64]

3.6.5 RQ4: What software-systems/data-sets are selected in primary studies to

perform refactoring methods?

With respect to the software-systems/data-sets used in the primary studies, following

results are drawn:

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 35

1) Figure 3.9 shows the number of data-sets used in primary studies. Majority of

primary studies evaluated the effect of refactoring methods using a single data-set

for study. It can be observed that on an average, researchers used less number of

data-sets in their studies. It means that generality and consistency are not

guaranteed.

2) A total of 178 unique data-sets are identified, out of which 144 are open-source, 10

are academic and 16 are industrial whereas 8 are unidentified. Figure 3.10 reflects

the venue of the primary studies reflecting that most of the data-sets are open-source

and hence repeatable.

3) The maximum number of data-sets is written using Java as the programming

language. Figure 3.11 represents that a large number of data-sets contributing to

86% are written in Java and only 3% and 7% of the total number of data-sets are

written in C++ and C# despite their huge popularity otherwise. It reflects a need to

involve primary studies from other languages as well.

4) Out of the total number of data-sets, 32.7% are large, 16.3% are medium and 48.8%

are small. 2.2% data-set sizes are unidentified. The size of almost half of the total

data-sets are small, therefore there is a need for including large and medium data-

sets for analysis among primary studies.

5) Table 3.9 reports the popular open-source data-sets among the primary studies.

JHotDraw, Apache, AgroUML are most frequently used open-source data-

sets/software-systems that are written in Java language and are of medium-large

size. The advantage of open-source data-sets is easy accessibility and repeatability

in similar types of studies.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 36

Figure 3.9 Number of Data-sets used across Primary Studies

Figure 3.10 Venue of the Data-sets used in Primary Studies

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 >=10

N
u

m
b

e
r

o
f

P
ri

m
ar

y
St

u
d

ie
s

Number of Datasets

Number of datasets used in Primary
Studies

81%

6% 9%

4%

Number of Datasets from different Venues

Open Source

Academic

Industrial

Unidentified

86%

3%
7%

3% 1%

Programming Language of Datasets

Java

C++

C#

.NET

SmallTalk

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 37

Figure 3.11 Number of data-sets from each language

Table 3.5 Frequently used data-sets among Primary Studies

Data-set Primary Studies

Number

of

Primary

Studies

Apache [28], [65], [71], [72], [83], [84], [88], [10], [97], [103] and

[121]

11

Agro UML [28], [31], [47], [70], [72], [83], [90], [92], [93], [12] and

[112]

11

Xerces [1], [54], [55], [72], [83], [10], [90], [93] and [103] 9

Gantt

Project

[29], [34], [70], [80], [16], [80], [90], [93], [14], [115], [120]

and [121]

12

jEdit [29], [32], [41], [51], [54], [56], [85] and [104] 8

jHotDraw [29], [31], [34],[62], [65], [70], [73], [78], [16], [10], [91],

[92], [14] and [102]

14

jFreeChart [32], [39], [42], [62], [73], [10], [103], [108] and [115] 9

ArtOfIllusi

on

[34], [62], [16], [10] and [115] 5

JabRef [34], [16] and [115] 3

JGraphX [34], [16] and [115] 3

JLOC [36] and [119] 2

J2Sharp [36], [119] 2

JNFS [36], [119] 2

log4J [54], [73], [82], [88] and [104] 5

Columba [55], [56], [85] and [14] 4

Jgit [55], [65] and [85] 3

Antlr [60], [66], [14] and [108] 4

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 38

Junit [60], [66] and [67] 3

MapDB [60] and [66] 2

mcMMO [60] and [66] 2

mct [60] and [66] 2

oryx [60[and [66] 2

Titan [60] and [66] 2

Apache

Nutch

[73], [84] and [103] 3

Apache

Struts

[73], [14] and [124] 3

Hibernate [73] and [17] 2

Mango [76] and [80] 2

Beaver [76] and [80] 2

Violet [84] and [103] 2

Jade [84] and [103] 2

3.6.6 RQ5: What statistical techniques are adopted by researchers?

Following results can be drawn corresponding to the use of statistical techniques among

primary studies:

1) As shown in Figure 3.12, out of 104 primary studies, only 30 primary studies (29%)

used statistical techniques to determine the effect of refactoring method on internal

and external quality attributes. Remaining 74 primary studies (71%) did not exploit

any statistical techniques in their research work.

2) The primary studies that do not use statistical techniques noted the values of the

studied quality attributes before and after applying refactoring method and arrive at

conclusions by looking at the difference/ percent of difference between quality

attributes (internal and external) values before and after applying refactoring method

without identifying if the changes in the observed quality attributes (internal and

external) are statistically significant or not. This reflects the lack of use of statistical

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 39

techniques across empirical studies identifying the effect of one or more refactoring

methods on the selected quality (internal/external/both) attributes.

3) Among the studies using statistical techniques, Wilcoxon Rank Sum Test, t-test and

Mann Whitney U Test are among the popular statistical tests as shown in Table

3.10. On the other hand, Z-Test, Logistic Regression, and Wilcoxon Signed Rank

Test are least used across the primary studies.

Figure 3.12 Percentage of Statistical Test performed among Primary Studies

Table 3.6Commonly used Statistical Tests among Primary Studies

Statistical Test Primary Studies
Number of

Primary Studies

Wilcoxon Rank Sum

Test

[31],[44], [53], [70] [10] and [90]
6

t-Test [34], [49], [51], [53], [54] and [60] 6

Spearman and

Pearson Correlation

[61], [115], [82], [49] and [48]
5

Mann Whitney U

Test

[48], [66] and [82]
3

Mann Whitney Test [29] and [30] 2

Wilcoxon Test [31] and [52] 2

Fisher's Exact Test [28] 1

PCA Proportion of [29] 1

29%

71%

Primary Studies (%) applying Statistical
Techniques

Statistical Test
Performed

Statistical Test Not
Performed

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 40

variance

ANOVA Test [31] 1

2 tail Test [46] 1

Wilcoxon Paired

Test

[47]
1

Mean Re-test [57] 1

Paired t-test [71] 1

Kendall's Rank

Correlation

[73]
1

Kruskal-Wallis Test [81] 1

Wilcoxon Signed

Rank Test

[82]
1

Logistic Regression [91] 1

z- Test [49] 1

3.6.7 RQ6: Do refactoring methods improve the quality attributes?

Before discussing the effect of refactoring methods on software quality attributes,

following observations can be noted:

1) While analyzing the selected primary studies, the effectiveness of refactoring

methods on two categories of internal and external quality attributes can't be

discussed. First, there are some internal as well as external quality attributes that are

not considered by more than one researcher. Second, there are some internal and

external quality attributes on which the effect is rather contradictory among studies

and arriving at either positive or negative impact is not possible. Therefore, the

effect of refactoring on such two categories of internal and external quality attributes

cannot be included as findings because it is not possible to comment on the

effectiveness of applying refactoring methods in improving such quality attributes.

2) During the research, it is identified that it is rather wrong in saying that refactoring

always improves quality aspects, both internal and external and that is good for

overall software quality. The effect of refactoring methods on various internal as

well as external quality attributes is contradictory among different studies. There can

be multiple reasons for this scenario. Firstly, many of the researchers do not pay

much attention to identifying portions of source-code that are in dire need of

refactoring. Some may overly apply to refactor while others may refactor the

source-code to only a little extent. One possible reason for this is 81% data-sets used

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 41

by the primary studies are open-source projects that are not written by the

researchers themselves and it becomes really difficult understanding someone else's

code and then also identifying potential problems in it to apply refactoring methods.

This has a direct effect on the values of studied internal and external quality

attributes and they are poorly affected. Secondly, as identified in RQ4, almost half

of the data-sets are small-sized; effect of refactoring is not truly visible to much

extent. Say, for example, there is a software-system that is very small and do not

have any inheritance feature, then the effect of refactoring on inheritance related

metrics can never be seen in such software-system. So, there is a need to include

many media and large sized software to actually see the effect of refactoring on

quality attributes.

3) Refactoring improves overall quality only when applied carefully while properly

identifying places in the source-code that really require refactoring solution. It is

therefore rightly said that refactoring is a time demanding, error-prone and tiresome

activity that can or cannot improve software quality in general. It depends on the

ability of the researcher as well in determining source-code portions that require

refactoring.

4) To arrive at the positive effectiveness of refactoring methods, we included only

those results that are at least in accordance with two or more researchers. Findings

of the effect of refactoring methods on internal and external quality attributes by

only single primary study cannot be resulted here. In case of a contradiction of

findings (positive/ negative) in different primary studies, we included that effect that

is supported by a maximum number of primary studies. This is because techniques

like meta-analysis are not suitable for identifying the effect of refactoring methods

on internal and external quality attributes. Based on this assumption, the results are

discussed.

a) RQ 6.1: Which quality attributes (internal/ external) are overall benefitted

by refactoring?

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 42

Following results can be derived from the overall benefit of refactoring methods on

internal and external quality attributes on the basis of findings achieved from the

primary studies:

i. The overall effect of refactoring methods is available for five out of ten internal

quality attributes that are cohesion, coupling, size, complexity, and inheritance.

For the rest, five internal quality attributes, i.e. abstraction, polymorphism, data

encapsulation, composition, information hiding, and the overall effect of

refactoring cannot be concluded.

ii. Cohesion, coupling, size, complexity, and inheritance are improved in

approximately 42.62%, 42.46%, 40.82%, 34.09% and 14.28% primary studies

respectively.

iii. It can be observed from Table 3.11 that cohesion and coupling are improved in

the maximum number of primary studies whereas size and inheritance are

improved in the least number of primary studies.

iv. The overall effect of refactoring methods is available for ten out of fifteen

external quality attributes that are maintainability, reusability, testability,

understandability, flexibility, effectiveness, extensibility, functionality,

reliability and modifiability whereas not available for adaptability,

completeness, modularity, traceability, and security.

v. As seen from Table 3.12, understandability, maintainability, reliability and

reusability are improved in the maximum number of primary studies as they

show the highest percentage of improvement in 68.75%, 57.69%, 90% and 40%

of primary studies respectively.

Table 3.7 Overall Positive Impact of Refactoring Methods on Internal Quality Attributes

Internal

Quality

Attribute

Number of

Primary

Studies

Positive Impact (+)

Coupling 31 [32], [33],[41], [43], [51], [55], [56], [65], [66], [67],

[68], [70], [71], [76], [82], [16], [85], [88], [10], [91],

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 43

[12], [96], [99], [102], [104], [106], [111], [113], [17]

and [123]

Cohesion 26 [32], [33],[35], [37], [41], [42], [55], [56], [65], [70],

[16], [84], [85], [10], [92], [12], [102], [106], [107],

[110], [111], [113], [17], [115] and [123]

Complexity 15 [44], [66], [67], [69], [87], [94], [95], [99], [103], [104],

[107], [109], [113], [117] and [123]

Size 20 [33], [44], [57], [66], [67], [70], [71], [77], [78], [82],

[16], [84], [87], [88], [10], [98], [99], [107], [117] and

[121]

Inheritance 4 [35], [88] and [109]

Table 3.8Overall Positive Impact of Refactoring Methods on External Quality Attributes

External Quality

Attribute

Number of

Primary

Studies

Positive Impact (+)

Maintainability 15 [53], [55], [56], [58], [59], [60], [63], [65], [69],

[77], [85], [98], [99], [107] and [117]

Understandabilit

y

11 [35], [40], [49], [60], [70], [74], [81], [10], [102],

[108] and [116]

Reusability 6 [43], [45], [70], [10], [108] and [116]

Flexibility 5 [35], [45], [10], [108], [116]

Testability 2 [71] and[73]

Effectiveness 5 [45], [70], [10], [108] and [116]

Extensibility 5 [45], [70], [10], [108] ad n[116]

Functionality 4 [45], [10], [108] and[116]

Reliability 9 [47], [51], [52], [62], [76], [77], [93], [112]

and[119]

Modifiability 4 PS33, [47], [49] and [74]

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 44

b) RQ6.2: Which refactoring method and quality attribute combination yield

good result?

As answered in RQ1, 150+ refactoring methods are identified in the primary studies but

the effect of only a few refactoring methods is consistent on internal as well as external

quality attributes.

Following comments can be made regarding refactoring method and quality attribute

combination that yields the good result:

i. Table 3.13 represents the refactoring methods along with corresponding internal

and external quality attributes that are benefitted by the application of that

refactoring method. Ten refactoring methods: move field, extract method, pull

up method, pull-down method, consolidate conditional expression, remove

assignment to parameter, move method, extract class, encapsulate field and

inline class are listed. They are considered to be improving corresponding

internal and external quality attributes listed along with them in Table 3.13 in the

majority of the primary studies. On the other hands, refactoring methods not

listed have either contradictory effects on internal and external quality attributes

or are studied by only one primary study. So, it is not possible to list them here.

Table 3.9 Refactoring Methods and their impact on Quality Attributes

Refactoring

Method

Positive Impact Negative Impact

Internal Quality

Attribute

External Quality

Attribute

Internal

Quality

Attribute

External

Quality

Attribute

Move Field Cohesion Reusability,

Understandability

Extract

Method

Cohesion, Size Modifiability,

Maintainability,

Understandability

Reusability,

Testability

Complexity,

Coupling

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 45

Pull Up

Method

 Coupling,

Inheritance

Pull Down

Method

 Reusability,

Reliability

Consolidate

Conditional

Expression

 Maintainability,

Understandability

Complexity,

Size

Remove

Assignment

to

Parameter

 Maintainability

Move

Method

Coupling,

Cohesion, Size,

Complexity,

Inheritance

Reusability,

Understandability,

Flexibility,

Extensibility

Extract

Class

Cohesion,

Coupling,

Complexity

Understandability,

Maintainability

Encapsulate

Field

Coupling,

Cohesion,

Complexity

Maintainability,

Reusability,

Testability

Inline Class

Cohesion,

Coupling

Reusability,

Understandability

Size

ii. Effect of refactoring methods on internal quality attributes based on the results

of the majority of primary studies:

Cohesion: It is benefitted by move field, extract method, move method, extract

class, inline class and encapsulate field tends to improve cohesion.

Coupling: It is benefitted by move method, extract class, and encapsulate field but

deteriorated by extract method and pull up method.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 46

Complexity: It is improved by move method, extract class and encapsulate field but

deteriorated by extract method and consolidate conditional expression.

Size: It is improved by extract method, move method but ill-affected by inline class

and consolidate conditional expression.

Inheritance: It tends to improve using move method but deteriorate using pull up

method.

iii. Effect of refactoring methods on external quality attributes based on the results

of the majority of primary studies:

Reusability: Move field, extract method, pull down field, move method,

encapsulate field and inline class tend to improve reusability.

Maintainability: Extract method, remove assignment to parameter, consolidate

conditional expression, extract class and encapsulate field improves maintainability.

Understandability: Move field, extract method, move method, consolidate

conditional expression, extract class and inline class improve understandability.

Testability: Encapsulate field and extract method improve testability.

Flexibility: Move method improves flexibility whereas the effect on flexibility by

other refactoring methods is not general.

Extensibility: Move method improves extensibility.

Reliability: Pull down method improves reliability.

iv. It can be observed that extract class, encapsulate field, inline class and extract

method are identified to be improving the maximum number of quality attributes

(internal and external) based on the findings of the majority of primary studies.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 47

CHAPTER 4

RESEARCH METHODOLOGY

In this section, the methodology that is followed in the current empirical research

has been discussed elaborately. Figure 4.1 depicts all the events followed while

conducting the empirical research. Section 4.1 details about the selected C&K metrics to

capture object-oriented characteristics of the software-system. Section 4.2 explains the

process of empirical data collection. Section 4.3 describes the selected bad-smells along

with the way of detecting way. Section 4.4 discusses the refactoring methods that are

selected as a remedy to bad-smells present in source-code and Section 4.5 explains the

way of evaluating Quality Depreciation Index Rule (QDIR) for each class by which we

can assign priorities to them. Finally, in Section 4.6, all the classes are prioritized based

on their QDIR values into one of the four types (Critical, Bad, Mild and Low) where the

Critical value for a class means that it requires instant refactoring whereas the Low

value for a class means it requires no or very little refactoring.

Figure 4.1 Flow of Research Events

1. Calculate QDIR

a. Calculate C&K
metrics

b. Calculate Severity of
presence of Bad-Smells

2. Bad-smell affected software
system

a. Identify highly
severe classes

b. Provide Refactoring
solution

3. Improved
Software
System

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 48

4.1 OBJECT-ORIENTED CHARACTERISTICS CALCULATION

Software metric is defined as the characteristic feature of the software product,

process, or resource [145]. Object-oriented characteristics for given software are

captured by software metrics. These object-oriented metrics are indicators of

inheritance, coupling, abstraction level, cohesion etc. for the system under study. There

are a large number of software metrics available in the literature to capture the design

characteristics of the software-systems like Li & Henry metrics [7], MOOD’s metrics

[4], Chidamber & Kemerer metrics [5], Lorenz & Kidd metrics [6]. We have selected

Chidamber & Kemerer (C&K) metric suite that evaluates the structural quality of

object-oriented software-systems. It consists of a set of six metrics namely Response for

a Class (RFC), Depth of Inheritance Tree (DIT), Lack of Cohesion on Methods

(LCOM), Number of Children (NOC), Coupling between Objects (CBO) and Weighted

Method per Class (WMC). It is worthwhile mentioning that DIT and NOC capture

inheritance, CBO and RFC capture the coupling, LCOM captures cohesion and WMC

captures complexity (size). These metrics have been computed using Understand

metric-tool [146] and the computed values are then compared with the threshold values

of the given metrics. These threshold values for C&K metrics are suggested by

Shatnawi et al. [147] and are listed in Table 4.1 below. The classes that have computed

values of metrics higher than their threshold values are treated as that of compromised

quality. And finally, these metric values together with the severity of presence of bad-

smells are used in order to prioritize classes.

Table 4.1 C&K metrics along with threshold values

C&K metric Definition
Threshold

Value

RFC

(Response For

a Class)

In response to a message received by an instance of a

given class, it gives the total count of class’ methods

that can potentially get executed. As a result, it

captures coupling.

44

DIT (Depth of

Inheritance

Tree)

It is the maximum path-length from a given node to

its root node in the entire inheritance tree. It,

therefore, captures inheritance for a class.

7

LCOM (Lack

of Cohesion on

It is the count of pair-wise methods in a class which

does not have shared instance variables minus the

7

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 49

Methods) count of pairs of methods in that class that has shared

instance variables. It is used to capture cohesion in a

class.

NOC (Number

of Children)

It represents the total number of classes that inherit a

given class i.e. the count of all its children.

1

CBO

(Coupling

between

Objects)

It gives the number of distinct classes that are coupled

to a given class (i.e. uses methods/attributes/both of

coupled class) except those classes that are

inheritance based related to the given class.

13

WMC

(Weighted

Methods per

Class)

It computes the sum of complexities of all the

methods present in a given class. It, therefore,

captures the complexity of the entire class.

24

4.2 EMPIRICAL DATA COLLECTION

This empirical study uses eight open-source software-systems for evaluation that are

written in Java language with different domains and sizes. The reason behind selecting a

larger set of software-systems for analysis is due to a wider acceptability of results

across software-systems with different domains and sizes. Table 4.2 shows the details of

eight selected software-systems. The analysis and review of the software-systems are

done using Eclipse [148] tool. All software-systems are downloaded from SourceForge

[149] except Frogger that is downloaded from GitHub [150].

A brief description of the selected software-systems is provided as under:

1) Frogger: Frogger is a popular open-source game that requires a player (treated

as a hopping frog) to cross the river safely with certain hurdles in the way like

moving cars and flying objects among others in order to win. It also offers

interesting global warming effects like wind-gusts and over-heated pavements to

make it even more interesting. It is the only small project selected for the

research work and is written in Java consisting of 20 classes and 1284 LOC

(lines of code) in studied version.

2) JEdit-5.5.0: JEdit is an open-source text-editor for programmers with built-in

macro language and extensible plug-in architecture that allows downloading

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 50

plug-ins easily from its Plug-in Manager. It allows a feature to automatically

indent and highlight syntax for over two hundred languages and so many

character encodings including ACIII, Unicode, UTF etc. It is written in Java and

has 1336 classes and 319404 LOC in studied version.

3) JGraphX-3.9.3: JGraph is an open-source Java Swing based library under BSD

license. It allows visualizing and interacting with graphs having nodes and

edges. It also supports XML stencils, automatic layouts, and import/export

convenience. One can write a variety of applications like organizational-charts,

UML tools, workflow editors to name a few. Its studied version has 572 classes

and 70,216 LOC.

4) Jsettlers-1.1.20: Jsettlers is an open-source board game- Settlers of Catan's web-

based version. It is based on client-server architecture and is written in Java

language. It supports multiple games to be played parallelly between players and

computer-based opponent. Its studied version consists of 255 classes and 54,226

LOC.

5) jVLT-1.3.3: jVLT is an open-source vocabulary learning tool that allows

improving one's vocabulary. One can generate one's own dictionary of words

and also participate in vocabulary quizzes. It is written in Java and studied

version contains 409 classes and 23,858 LOC.

6) jHotDraw-7.0.6: jHotDraw is a popular open-source Java-based GUI

framework for technical as well as structural graphics. It was initially developed

as a design exercise but gained instant popularity. The studied version has 1068

classes and 97553 LOC.

7) Xerces-2.11.0: Xerces is an open-source XML parser that simplifies the reading

and writing of XML data. It allows a shared library to parse, create, analyze and

validate XML documents using DOM, SAX and SAX2 APIs with high

performance and scalability. It is written in Java and studied version contains

976 classes and 141,609 LOC.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 51

8) ArtOfIllusion-3.0.3: ArtOfIllusion is an open-source 3D modeling and

rendering studio. Its features include subdivision surface modeling tools,

skeleton-based animations and graphical language support for procedural

textures and material objects.

Table 4.2 Details of the software-systems under study

Sr.

No.

Data-set Source Number of

Classes

Lines of

Code

1 Frogger https://github.com/denodell/frog

ger

20 1284

2 JEdit-5.5.0 https://sourceforge.net/projects/j

edit/

1336 319,404

3 JGraphX-

3.9.3

https://github.com/jgraph/jgraph

x

572 70,216

4 Jsettlers-

1.1.20

https://sourceforge.net/projects/j

settlers2/

255 54,226

5 jVLT-1.3.3 https://sourceforge.net/projects/j

vlt/

409 23,858

6 jHotDraw-

7.0.6

https://sourceforge.net/projects/t

erppaint/

1068 97,553

7 Xerces-

2.11.0

https://sourceforge.net/projects/x

ercesframework/

976 141,609

8 ArtOfIllusion

-3.0.3

https://sourceforge.net/projects/a

oi/

893 119,203

The descriptive statistics of the object-oriented metrics for each of the six selected

software-systems is computed. Table 4.3 represents the maximum, mean, minimum and

standard deviation values for C&K metrics for all the six selected software-systems.

The interesting observations and revelations from the descriptive statistics of C&K

metrics of software-systems in Table 4.3:

1) Inheritance in the software-systems is limited as for mean and mean values for

DIT are very less. The maximum level of inheritance present is 2.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 52

2) Value of LCOM for classes is quite large. Therefore, cohesion in classes is less.

The maximum value of cohesion for almost all systems is 100.

3) Coupling between classes is high as mean and median of CBO is large.

4) Complexity is high among classes as WMC and RFC are quite large.

Table 4.3 Descriptive Statistics of C&K metrics of selected Software-systems

Software-system Metric Value Min Max Mean Standard

Deviation

Frogger CBO 1 13 5.4 3.69

DIT 0 2 1.15 0.93

LCOM 0 100 27.91 39.16

NOC 0 10 0.5 2.24

RFC 16 33 18.8 3.79

WMC 1 17 4.8 3.68

jedit5.5.0 CBO 0 189 9.9 12.23

DIT 0 3 0.23 0.49

LCOM 0 100 27.46 34.18

NOC 0 38 0.22 1.68

RFC 0 987 134.26 16.08

WMC 0 351 6.1 16.08

JGraphX-3.9.3 CBO 0 80 7.94 9.54

DIT 0 3 0.19 0.47

LCOM 0 100 27.91 39.16

NOC 0 13 0.21 1.08

RFC 12 924 70.41 182.72

WMC 0 924 70.41 182.72

Jsettlers 1.1.20 CBO 0 173 9.98 19.95

DIT 0 3 0.57 0.67

LCOM 0 100 44.25 31.41

NOC 0 84 0.48 5.3

RFC 13 752 117.56 204.21

WMC 0 159 11.31 19.49

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 53

jVLT-1.3.3 CBO 0 126 9.99 12.63

DIT 0 4 0.45 0.72

LCOM 0 100 39.88 34.95

NOC 0 16 0.34 1.41

RFC 0 905 156.27 282.03

WMC 0 52 4.88 5.38

jHotDraw 7.0.6 CBO 0 98 11.15 11.32

DIT 0 6 0.56 1.07

LCOM 0 100 32.46 37.94

NOC 0 28 0.33 1.56

RFC 0 871 85.56 183.93

WMC 0 80 6.65 9.25

Xerces 2.11.10 CBO 0 115 9.18 11.66

DIT 0 5 1.02 1.6

LCOM 0 100 50.41 38.48

NOC 0 52 0.41 2.36

RFC 12 849 61.5 88.91

WMC 0 129 10.22 14.12

ArtOfIllusion

3.0.3

CBO 0 134 10.78 12.66

DIT 0 5 0.45 0.69

LCOM 0 100 33.72 35.07

NOC 023 55 0.26 2.

RFC 0 880 33.73 67.32

WMC 0 108 8.15 11.03

4.3 BAD-SMELL DETECTION

Bad-smells are poor design structures violating design principles that make the

system complex and difficult to manage. Often people confuse them with bugs but they

are not bugs and unlike bugs, they do not stop a program from executing. Instead, they,

if not handled properly, can weaken a program and attract bugs or even much serious

problems. Fowler [1] appropriately describes a bad-smell as a surface indication that

usually corresponds to a deeper problem in the system". It reflects poor design in the

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 54

software-system that has poor readability & understand-ability, high level of

complexity, less maintainability making it poor its quality. Fowler had provided a

catalog of twenty-two bad-smells. In this study, ten different bad-smells are selected and

they are identified for each class of all the eight studied software-systems. Table 4.4

lists all the selected bad-smells along with the possible refactoring methods to remove

it. Also, three Eclipse plug-ins namely: JDeodorant [151], JSpirit [152] and Robusta

[153] are used to detect bad-smells from all the classes of the selected software. Out of

the ten selected bad-smells. In the current research, four bad-smells- God Class, Feature

Envy, Long Method and Type Checking are those that were also selected by Malhotra et

al. [8] in their preliminary study whereas six new bad-smells- Nested Try Statement,

Empty Catch Block, Shotgun Surgery, Refused Parent Bequest, Brain Method, and

Intensive Coupling have been selected in the current study to take into consideration the

severity of a wider set of bad-smells in the selected software-systems.

Table 4.4 Selected Bad-smells and their respective Refactoring Solution

Bad-smell Definition

Bad-smell

Detection

tool

Refactoring

Method

God Class It refers to a large class in a system that

majorly controls all of its intelligence/

workings.

JDeodorant

Extract Class

Feature

Envy

It occurs when a method relies on

another object’s data more than that of

its own.

Move Method

Long

Method

It is a method that is very large in a

class and has got so much to do instead

of performing a single responsibility

well.

Extract Method

Type

Checking

It occurs when multiple methods are

assigned responsibility to perform a

single functionality instead of the need

for only one method.

Replace Type

Code with

State/Strategy

Nested

Try

It is a chain of a large number of try

statements just like an if-else ladder.

Robusta Extract Method

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 55

Statement

Empty

Catch

Block

It is a catch block without body

showing negligence of the developer in

handling the respective error condition.

Re-throw with

Exception

Shotgun

Surgery

It occurs when a method of one class is

being called extensively by methods of

another class.

JSpirit Move Method

Refused

Parent

Bequest

It happens when a child class either

can’t inherit base class’ data or it uses a

small subset of methods defined in its

base class and fields of its base class.

Replace

Inheritance

with

Delegation

Brain

Method

It is a method where the major

functionality of a class resides.

Move Method

Intensive

Coupling

It occurs when a client-method tends to

communicate too much with one or

more classes it depends upon.

Move Method

4.4 REFACTORING

As defined by Fowler [1], Refactoring is a technique that does not change how a

software-system behaves functionally yet improves its internal structure making it much

easier to read, understand, and manage. Following six refactoring methods are selected

to remove the studied bad-smells. A brief description of all of them is given below in

Table 4.5:

Table 4.5 Details of Refactoring Methods

Refactoring Method Definition

Move Method Create a new method in a class that most frequently use a

given method in a particular class and place the content of

this method in the newly created class. Finally, either

completely remove the method from that particular class or

provide it with reference to the new method, if required.

Extract Class For a given class that has too much responsibility to handle,

move all the desired fields and methods in a newly created

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 56

class.

Extract Method In a long method where some part of the code can be

grouped together, move that part of the code in a newly

created method and make a reference for this new method in

an old existing method.

Replace Type Code

with State/Strategy

Replace type-code with state-object in case there is a coded-

type that affects functionality base class can't be used to

avoid the related issue. Also, plug-in another state-object if it

is required to replace a field-value with its type-code.

Replace Inheritance

with Delegation

Put base-class’ object in a new field and delegate methods to

base-class’ objects instead of having generalization

relationship between class and get-rid-of inheritance.

Re-throw with

Exception

Re-throw an exception in catch block in spite of keeping it

empty or printing an error statement.

4.5 QUALITY DEPRECIATION INDEX RULE (QDIR)

A new metric, Quality Depreciation Index Rule (QDIR) with certain modifications,

as suggested by Malhotra et al. [8] is calculated based on the severity of presence of

bad-smells and object-oriented characteristics of software-systems under study. The

current study takes into consideration ten most common bad-smells with available tool

support in contrary to four bad-smells considered by Malhotra et al. [8] in their

preliminary study. The motivation behind selecting ten bad-smells is to remove the

effect of a wider set of bad-smells from the software-systems that are commonly present

in them and also have proper detection tool support. QDIR further helps in prioritizing

classes so that refactoring methods can be applied to severely affected classes only

saving considerable maintenance cost under strict time constraints and most importantly

improving overall software quality.

4.5.1 Calculation of Base of Bad-smell(BoB′)

 Malhotra et al. [8] in their preliminary study calculated BoB by giving equal

Smell Weightage (SW) of 0.25 to all the bad-smells and then taking an average of SW

of four identified bad-smells as shown in equation (1).

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 57

BaseofBadSmell (BoB) =
1

4
∑ SWi4

i=1 (1)

In the current study, we have detected ten different bad-smells in the classes and

given equal Smell Weightage (SW) to all the bad-smell which is 0.10. Afterward, BoB′

for a class is calculated by taking an average of SW of all the detected bad-smells in that

class to that of the ten selected bad-smells as shown in equation (2).

BaseofBadSmell′ (BoB’) =
1

10
∑ SWi10

i=1 (2)

4.5.2 Calculation of Base of Metric (BoM)

All the selected six metric values are first identified for each class of all the

software-systems under study as discussed in Section 4.1 and then compared to their

corresponding threshold values. This computed value is then divided by its

corresponding threshold value to arrive at Metric Value (MV) as shown in equation (3).

Metric Value(MV) =
CalculatedMetric

ThresholdMetric
 (3)

After this, BoM can be calculated by capturing average values of MV for all six selected

metrics as shown in equation (4).

BaseofMetric(BoM) =
1

6
∑ MVj6

j=1 (4)

4.5.3 Calculation of Quality of Depreciation Rule (QDIR)

Finally, QDIR is calculated using (2) and (4) as given in equation (4)

Quality Depreciation Index Rule (QDIR) =
1

2
BoB’ +

1

2
BoM (5)

QDIR is calculated in the same as calculated by Malhotra et al. [8]. The only

difference here is the modified BoB′ metric instead of BoB metric.

ILLUSTRATION BY EXAMPLE

To illustrate an example, a java class named ObjectViewer from ArtOfIllusion-3.0.3

software-system is considered.

Firstly, BoB′ for the selected class is calculated. For this, we identified the

presence of ten bad-smells under study in the class and found that it is affected

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 58

by five bad-smells, namely Long Method, Shotgun Surgery, Refused Parent

Bequest, Intensive Coupling, and Brain Method.

BoB′ =
(0.1 + 0.1 + 0.1 + 0.1 + 0.1)

10

 ∴ BoB′ = 0.05

Now, BoM is calculated for ObjectViewer class by first calculating MV for the

class. MVmetric is calculated by computing its values and dividing it by respective

threshold of that metric. LCOM, WMC, DIT, NOC and RFC for ObjectViewer

are 81, 22, 2, 1 and 118 respectively.

∴MVLCOM = 81/7 =11.571,

MVWMC =22/24 = 0.917,

MVCBO = 30/13 = 2.307,

MVDIT = 2/7= 0.286,

MVNOC = 1/1 =1 and

MVRFC = 118/44 = 2.681.

BoM =
11.571+0.917+2.307+0.286+1+2.681

6

∴BoM = 18.762/6 = 3.127.

Finally, QDIR is calculated by taking the average of BoB′ and BoM.

QDIR= (0.05+3.127)/2

QDIR= 3.177/2 = 1.588

Likewise, QDIR is calculated for all the available classes in the software-system

and based on the value of QDIR, ranges for the four severity levels i.e. Critical,

High, Mild and Low, ranges are identified.

4.6 Prioritization of Classes

This study aims to save cost and time by refactoring only highly severe classes

having poor object-oriented characteristics as well as high level of severity of presence

of bad-smells instead of refactoring the entire software-system as per Algorithm is

shown in Figure 4.2. As per the algorithm, we first compute Chidamber & Kemerer

(C&K) metrics for the classes and then calculate their Metric Value (MV) by dividing

C&K metric-values with their respective thresholds. MV is then used to find (Base of

Metric (BoM) by finding the average of MVs computed for a class. Afterward, ten

selected bad-smells are detected in all the classes. Each bad-smell is given equal Smell

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 59

Weightage (SW) of 0.1. The Base of Bad-smell (BoB’) is calculated by finding the

average of SWs present in a class. Quality Depreciation Index Rule (QDIR) metric is

then computed by adding BoM and BoB’ and dividing it by two. QDIR then helps in

assigning priority to classes so that refactoring to only a small subset of software-

system’s classes can be provided. For this purpose, we arrange the classes in decreasing

order of their QDIR value. A higher value of QDIR for a class indicates critical flaws in

the design and higher priority is assigned to it whereas a class having a lower value of

QDIR signifies better design and assigns less priority to it. Four severity levels are

suggested for the classes of the studied software-system as given in Table 4.6.

Table 4.6 Four Severity Levels for Classes

Severity

Level
Description Range

Critical Classes that are highly severe having and require refactoring at

the earliest.

10%

High Classes that are comparatively less severe and require refactoring

but not at the earliest.

25%

Mild Classes that require refactoring but not instantly. 25%

Low Classes that are least severe having no harmful bad-smells. 40%

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 60

Figure 4.2 Algorithm to prioritize classes based on QDIR

1. Capture C&K metrics for each class of the software.

2. Calculate MV by dividing C&K metric values with respective thresholds.

3. Calculate BoM for each class by dividing the sum of all C&K metrics of a
class by 6.

4. Detect all 10 selected bad smells for each class.

5. Calculate BoB for each class by multiplying 0.1 with number of bad smells
present in it.

6. Calculate QDIR by taking average of BoM and BoB.

7. Sort all classes in decreasing order of QDIR metric.

8. Assign severity levels to classes based on set criteria.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 61

CHAPTER 5

RESULTS AND DISCUSSIONS

This chapter is dedicated to report the findings and discuss the results arrived by

empirically evaluating our approach on eight open-source software-systems written in

java language. Research questions imposed at the start of conducting results are

discussed in detail.

The current empirical study is conducted on eight open-source java-based software-

systems of varying sizes and domains to reduce the maintenance-effort during

refactoring process by utilizing Quality Depreciation Index Rule (QDIR) metric. This

section is dedicated to discussing the results and answering the research questions that

were raised before conduction the empirical research.

RQ1: What percentage of classes is poorly affected by bad-smells?

Figure 5.1 represents the distribution of bad-smells in selected software-systems. It

is found that on an average, 30% of the classes are poorly affected by bad-smells. As a

considerable amount of classes are poorly-affected by the bad-smells, there is a need for

removing bad-smells. This revelation supports our attempt to remove bad-smells from

source-code by prioritizing them based on the severity of presence of bad-smells.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 62

Figure 5.1 Percentages of Bad-smells in Software-systems

RQ2: Which bad-smell predominantly harms classes in the selected software-

systems?

Figure 5.2 – 5.9 depicts the presence of ten selected bad-smells across eight studied

software-systems. As bad-smells are present in all the softwares in significant amount,

remedial actions are required in an efficient manner.

Figure 5.2 Distribution of selected Bad-Smells in Frogger

0

20

40

60

80

100

120

Bad Smell not

present

Bad Smell present

6%

35%

47%

6%
6%

Bad Smell Distribution: Frogger

Refused Parent Bequest

God Class

Long Method

Type Checking

Feature Envy

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 63

Frogger is the only small-sized software and it has the presence of five bad-smells out

of ten studied bad-smells as seen in Figure 5.2. The long method followed by god class

bad-smell is highly dominant across it.

Figure 5.3 Distribution of selected Bad-Smells in Xerces-2.11.0

In Xerces-2.11.0, it can be observed that brain method and refused parent bequest are

predominant whereas feature envy is present in less number of classes (see Figure 5.3).

Figure 5.4 Distribution of selected Bad-Smells in ArtOfIllusion-3.0.3

In Figure 5.4, it can be seen that refused parent bequest and long method are present in

the maximum number of classes whereas feature envy is present in the least number of

classes in ArtOfIllusion-3.0.3.

25%

4%

7%

7%

7%
13%

10%

14%

8%
5%

Bad Smell Distribution: Xerces-2.11.0

Long Method

Feature Envy

God Class

Type Checking

Shotgun Surgery

Refused Parent Bequest

Intensive Coupling

Brain Method

Empty Catch Block

Nested Try Statement

5%

10%

9%

11%

13%18%

11%

16%

2%

5%

Bad Smell Distribution: ArtOfIllusion-3.0.3

Long Method

Type Checking

Feature Envy

God Class

Shotgun Surgery

Refued Parent Bequest

Intensive Coupling

Brain Method

Nested Try Statement

Empty Catch Block

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 64

Figure 5.5 Distribution of selected Bad-Smells in JEdit-5.5.0

Jedit-5.5.0 has the maximum number of classes affected by long method and type

checking bad-smell and least number of classes affected by empty catch block and

feature envy bad-smell (see Figure 5.5).

Figure 5.6 Distribution of selected Bad-Smells in JSettlers-1.1.20

Jsettlers-1.1.20 is poorly affected by long method, god class and brain method in the

maximum number of classes whereas least affected by intensive coupling bad-smell as

visible in Figure 5.6.

11%

7%

5%

11%

16%
20%

8%

5%

9%

8%

Bad Smell Distribution: jedit-5.5.0

Intensive Coupling

Refused Parent Bequest

Shotgun Surgery

Brain Method

God Class

Long Method

Type Checking

Feature Envy

Empty Catch Block

Nested Try Statement

8%

6%

9%

12%

13%24%

8%

6%

3% 11%

Bad Smell Distribution: Jsettlers-1.1.20

Shotgun Surgery

Refused Parent Bequest

Intensive Coupling

Brain Method

God Class

Long Method

Type Checking

Feature Envy

Try Statement

Empty Catch Block

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 65

Figure 5.7 Distribution of selected Bad-Smells in JGraphX-3.9.3

In Figure 5.7, it can be seen that long method is present in a very large number of

classes whereas empty catch block and nested try statement is present in a negligible

number of classes of JGraphX-3.9.3.

Figure 5.8 Distribution of selected Bad-Smells in JVLT-1.3.3

In JVLT-1.3.3, a large portion of classes is badly affected by long method and god class

whereas not at all by empty catch block and nested try statement as shown in Figure 5.8.

8%

5%

11%

9%

12%

3%

16%

33%

1% 2%

Bad Smell Distribution: JGraphX-3.9.3

Refused Parent Bequest

Shotgun Surgery

Intensive Coupling

Brain Method

God Class

Type Checking

Feature Envy

Long Method

Empty Catch Block

Nested Try Statement

35%

25%0%

7%

8%

12%

8%
5%

0% 0%

Bad Smell Distribution: JVLT-1.3.3

Long Method

God Class

Feature Envy

Brain Method

Request Parent Bequest

Shotgun Surgery

Type Checking

Intensive Coupling

Empty Catch Block

Nested Try Statement

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 66

Figure 5.9 Distribution of selected Bad-Smells in JHotDraw-7.0.6

As shown in Figure 5.9, in JHotDraw-7.0.6, an alarming portion of code is poorly

affected by long method whereas least affected by nested try block and type checking

bad-smell.

Following general comments can be made from the results of eight selected software-

systems:

1) Bad-smells in decreasing order of their presence across selected software-systems:

long method, god class, brain method, refused parent bequest, intensive coupling,

shotgun surgery, empty catch block, type checking, feature envy and nested try block.

2) It can be noted that long method is present in the maximum number of classes.

Apart from it, god class and brain method are also highly present. These bad-smells

require immediate attention and need to be removed as early as possible.

3) Nested try block and feature envy are present in the least number of classes so they

can be given least importance.

4) It can also be observed that degree of presence of bad-smell increases as

complexity and size of a software-system increase, Xerces-2.11.10 and ArtofIllusion-

3.0.3 account for the largest amount of presence of bad-smells which corresponds to

39.04% and 32.59% respectively.

48%

0%
0%

4%
7%

16%

9%

8%

6%

2%

Bad Smell Distribution: JHotDraw-7.0.6

Long Method

Feature Envy

Type Checking

God Class

Shotgun Surgery

Request Parent Bequest

Intensive Coupling

Brain Method

Empty Catch Block

Nested Try Statement

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 67

RQ3: Is of Quality of Depreciation Rule (QDIR) useful in providing treatment to

critically affected class?

Once bad-smells are detected and C&K metrics are captured, QDIR is calculated.

Both bad-smells and C&K metrics are given equal weight-age in calculating QDIR. A

higher value of QDIR metric for a class is an indicator of high severity and reflects the

need for instant refactoring method application to that class. On the other hand, a lower

value of QDIR metric means less severity and no sooner or completely no need of

refactoring. Correspondingly, four severity levels have been identified (see Table 4.6)

after arranging QDIR values for a system in decreasing order. It is not possible to arrive

at a common range for eight systems to fit percentage requirement of 10, 25, 25 & 40 as

per Table 4.6 because all of them are having a completely different domain and a

difference in sizes. Table 5.1 provides ranges of four severity levels and Table 5.2 gives

the distribution of classes in each of those levels. Following observations can be made:

1) QDIR helps in reducing the number of refactoring operations and restricting it to

only a small portion of classes by putting highly severe classes into the critical level

which is only 10% of the total available classes (see Table 5.1 and 5.2).

2) On an average, classes with QDIR metric value >=1.75 fall under critical severity

level.

3) On an average, classes with QDIR value >= 1.75 surely falls under critical

severity level (see Table 5.3).

Table 5.1 Range for various Severity Levels based on QDIR

Software-system Severity Level Range

Frogger Critical >=1.28

High 1.27-1.06

Mild 1.05-1.0

Low <=1.0

jedit5.5.0 Critical >=1.84

High 0.83-1.83

Mild 0.11-0.82

Low <=0.10

JGraphX-3.9.3 Critical >=1.50

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 68

High 0.59-0.63

Mild 0.62-0.16

Low <=0.15

JSettlers-1.1.20 Critical >=2.11

High 0.95-2.10

Mild 0.65-0.94

Low <=0.64

jVLT-1.3.3 Critical >=2.45

High 1.05-2.44

Mild 0.50-1.04

Low <=0.49

JHotDraw-7.0.6 Critical >=1.70

High 0.95-1.69

Mild 0.14-0.94

Low <=0.13

Xerces-2.11.10 Critical >=1.70

High 1.15-1.69

Mild 0.66-1.14

Low <=0.65

ArtOfIllusion-3.0.3 Critical >=1.40

High 0.85-1.39

Mild 0.11-0.84

Low <=0.10

Table 5.2 Division of classes of selected software-systems in various Severity Levels

Software-system Critical Number of

Classes

%age of Classes

Frogger Critical 1 10

High 6 25

Mild 9 25

Low 4 40

Jedit-5.5.0 Critical 135 10

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 69

High 334 25

Mild 332 25

Low 535 40

JGraphX-3.9.3 Critical 56 10

High 143 25

Mild 140 25

Low 233 40

Jsettlers-1.1.20 Critical 25 10

High 63 25

Mild 60 25

Low 107 40

jVLT-1.3.3 Critical 38 10

High 99 25

Mild 108 25

Low 154 40

JHotDraw-7.0.6 Critical 108 10

High 266 25

Mild 264 25

Low 430 40

Xerces-2.11.10 Critical 95 10

High 240 25

Mild 247 25

Low 394 40

ArtOfIllusion-3.0.3 Critical 88 10

High 224 25

Mild 229 25

Low 352 40

Table 5.3 Average QDIR metric for Critical Severity Level

Severity Level Average QDIR value

Critical >=1.75

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 70

RQ4: Do use of Quality of Depreciation Rule (QDIR) leads to the reduction in

Maintenance Effort?

QDIR classifies classes in one of the four severity-levels so that refactoring methods

can be applied to only critically affected classes to save Maintenance Effort and time of

the developer. Table 5.4 represents the Effort Estimation (EE) and Effort Saved (ES) for

all the selected eight software-systems and Table 5.5 provides average Effort Estimation

(EE) and Effort Saved (ES) for Critical and High severity levels. CE and HE in Table

5.4 and 5.5 refer to Critically Effected and Highly Effected classes respectively.

1) It can be observed that on an average, EE (CE) and EE (HE) classes are 9.20

%and 25.45% respectively (see Table 3.8).

2) Also, on an average, ES (CE) and ES (HE) is 90.79% and 74.56% respectively

(see Table 3.8).

Table 5.4 Effort Estimation of Critically and Highly Affected Classes

Software-system EE(CE) ES (CE) EE (HE) ES(HE)

Frogger 5 95 30 70

JEdit-5.5.0 10.10 89.90 25 75

JSettlers-1.1.20 9.80 90.20 24.70 75.30

JGraphX-3.9.3 9.79 90.21 25 75

JVLT-1.3.3 9.29 90.71 24.20 75.80

JHotDraw-7.06 10.11 89.89 25 75

Xerces-2.11.10 9.73 90.27 24.59 75.41

ArtOfIllusion-3.0.3 9.85 90.15 25.08 74.92

Table 5.5 Average Effort Estimation of Critically and Highly Affected Classes

EE (CE) ES(CE) EE(HE) ES(HE)

9.20 90.79 25.45 74.56

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 71

CHAPTER 6

THREATS TO VALIDITY

By capturing object-oriented characteristics and identifying bad-smells in the classes

upon eight selected software-systems, we tried to arrive at the best possible generalized

results that are unbiased and true to our knowledge. But, the results of this empirical

study would not be complete, lacking the discussion of construct, internal and external

validity that are quite evident across empirical studies.

Construct validity is how much accurately the object-oriented characteristics are

calculated from the selected software-systems. To reduce this threat to the maximum,

we have used a professional industrial metric-tool Understand [147] to calculate these

object-oriented characteristics. Internal validity can be described as the extent to which

conclusions can be arrived at about the consequences of certain debts prevailing in the

design of the software-system. We have minimized this threat quite successfully by

investigating ten bad-smells and their effect on software quality. The results drawn from

the study are consistent in nature. External validity can be regarded as the extent to

which the results of an empirical study can be obtained in generalized form. To reduce

this threat, we have selected a wider set of medium to large sized open-source software-

systems written in Java language across different domains. For even more generality

across different object-oriented languages, we are further planning to repeat this

empirical work on languages like C#, C++, and Python so that developers working on

languages other than Java can also be benefitted from the results of this empirical study.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 72

CHAPTER 7

CONCLUSION AND FUTURE

WORK

In this empirical study, we tried to prioritize only small portion in the software-

system for application of refactoring on the basis of the bad-smell severity and their

object-oriented design characteristics. It is widely known that refactoring is a tedious

and time-consuming activity and that software developers constantly apply refactoring

to source-code for various reasons like reducing the likelihood of errors and improving

maintainability and understandability of the code. Therefore our research in the

direction of reducing considerable portions in the software-system to apply refactoring

appears appealing. Quality Depreciation Index Rule (QDIR) metric is proposed that

takes into effect both the object-oriented characteristics and bad-smell severity to help

prioritize classes into decided four priority levels. Four severity levels- Critical, High,

Mild and Low severity levels are assigned 10, 25, 25 and 40% of classes from the entire

range of classes. A range for all these four levels is then decided and classes falling in

the critical level of severity are given instant refactoring solution.

 First, we detected classes that are poorly affected by bad-smells in all the eight

selected software-systems. Second, we identified bad-smells that are dominant across

the software-systems so that we can target to remove them first. Third, we assessed the

usefulness of Quality Depreciation Index Rule (QDIR) to prioritize classes for

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 73

refactoring operations. Fourth, we determined if QDIR is useful in reducing

maintenance effort.

The main findings obtained from this empirical research are:

1) On an average, 30% classes in all the selected software-systems are

poorly affected by bad-smells.

2) Certain bad-smells like long method, god class, and brain method are

severely present across studied software-systems whereas Feature Envy

and Nested try block are present in the least number of software-systems.

3) Quality Depreciation Index Rule (QDIR) is effective in reducing the

number of classes in an object-oriented system for application of

refactoring and thereby reduces the number of refactoring operations.

4) It reduces Maintenance Effort to a great extent and on an average, 90%

of effort is saved while refactoring classes based on Quality Depreciation

Index Rule (QDIR).

Below given are the guidelines for software developers and researchers for carrying out

future research in the field of refactoring the source-code to on priority basis:

1) The current empirical study used a wide set of eight medium to large size

software-systems written in java language for the generality of results

corresponding to java language for the generality of results in java based

systems. For overall generality and wider acceptability of results across

different languages as well, a future direction would be analyzing the

results on other object-oriented languages like C++, python, and C#.

2) There are over seventy bad-smells present in literature and this research

captured most common ten bad-smells whereas there are other bad-

smells that can also be explored by researchers too.

3) In this study, widely known Chidamber & Kemerer metric-suite is used

to capture the design characteristics of the software-systems. But authors

can take into consideration other popular metric-suites like Li & Henry,

QMOOD, Li & Henry.

We finally hope that significant quality can be improved by providing refactoring

solution to only highly severe classes that have instant refactoring requirements saving

considerable maintenance effort and time.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 74

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison Wesley Longman

Publishing Co., Inc., 1999.

[2] K.P. Srinivasan, "Unique Fundamentals of Software Measurements and Software Metrics in Software

Engineering", International Journal of Computer Science & Information Technology, vol 7, no. 4, 2015.

[3] I. Sommerville, Software Engineering, 9th ed., Addison Wesley Publishing Company, , 2010.

[4] Fernando BeA, "The MOOD2 metrics set (in Portuguese)", Technical Report. Grupo de Engenharia

de Software, INESC, 1998.

[5] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object-oriented design," IEEE Transactions

on Software Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[6] M. Lorenz and J. Kidd, "Object-Oriented Software Metrics", Prentice Hall Object-Oriented Series,

Prentice Hall, 1994.

[7] W. Li and S. M. Henry. "Object-oriented metrics that predict maintainability". Journal of Systems and

Software, vol. 23, no. 2, pp. 111–122, 1993.

[8] R. Malhotra, A. Chug and P. Khosla, “Prioritization of Classes for Refactoring: A step towards

improvement in Software Quality”, In Proceedings of the Third International Symposium on Women in

Computing and Informatics, pp. 228-234. 2015.

[9] R. D. Wangberg, "A Literature Review on Code Smells and Refactoring," University of Oslo, 2010.

[10] J. Al. Dallal, "Identifying refactoring opportunities in object-oriented code: A systematic literature

review," Information and Software Technology, vol. 58, pp. 231-249, 2015.

[11] S. Singh, S. Kaur, "A systematic literature review: Refactoring for disclosing code smells in object-

oriented software," Ain Shams Engineering Journal , 2017.

[12] M.Abebe and C. J. Yoo "Trends, Opportunities and Challenges of Software Refactoring: A

Systematic Literature Review," International Journal of Software Engineering and Its Applications,

vol.8, no.6, pp.299-318, 2014.

[13] M. Ó. Cinnéide, A. Yamashita, S. Counsell "Measuring Refactoring Benefits: A Survey of the

Evidence," In Proceedings of the 1st International Workshop on Software Refactoring, pp. 9-12, 2016.

[14] I. Bassey, N. Dladlu, B. Ele "Object-Oriented Code Metric-Based Refactoring Opportunities

Identification Approaches: analysis," 4th Intternational Conference on Applied Computing and

Information Technology, 2016.

[15] T. Mens, T. Tourwé, and F. Muñoz, "Beyond the Refactoring Browser: Advanced Tool Support for

Software Refactoring," In Proceedings of the 6th International Workshop on Principles of Software

Evolution, 2003.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 75

[16] J. Al. Dallal and A. Abdin "Empirical Evaluation of the Impact of Object-Oriented Code Refactoring

on Quality Attributes: A Systematic Literature Review," IEEE Transactions on Software Engineering, pp.

44-69, 2016.

[17] A. Ouni, M. Kessentini, S. Bechikh and H. Sahraoni, “Prioritizing code-smells correction tasks using

chemical reaction optimization,” Software Quality Journal, vol. 23, no. 2, pp 323-361, Jun. 2015.

[18] A. Ouni, M. Kessentini, M. Houari, Sahraoui, K. Deb and K. Inoue1, “MORE: A multi objective

refactoring recommendation approach to introducing design patterns and fixing code smells”, Journal of

Software Evolution and Practices, vol. 29, no. 5, May. 2016.

[19] M. Fokaefs, N, Tsantails and A. Chatzigeorgiou, “JDeodorant: Identification and Removal of Feature

Envy Bad Smells,” IEEE International Conference on Software Maintenance, 2007.

[20] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk and A. Lucia, “Identifying Method Friendships to

Remove the Feature Envy Bad Smell (NIER Track)”, 13th International Conference on Software

Engineering, 2011.

[21] Y. Higo, S. Kusumoto and K. Inoue “A metric-based approach to identifying refactoring

opportunities for merging code clones in a Java software system”, Journal of Software Maintenance and

Evolution: Research and Practices, vol. 20, no. 6, pp 435-461, 2008.

[22] F. Fontana, V. Ferme and S. Spinelli, “Investigating the Impact of Code Smells Debt on Quality

Code Evaluation”, 3rd International Workshop on Managing Technical Debt, 2012.

[23] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol, G. Gueheneuc “Playing with refactoring:

Identifying extract class opportunities through game theory”, IEEE International Conference on Software

Maintenance, Timisoara, 2010.

[24] Al. Dallal, “Constructing models for predicting extract subclass refactoring opportunities using

object-oriented quality metrics”, Journal of Information and Software Technology, vol. 54, no. 10, pp

1125-1141, 2012.

[25] K. Stroggylos and D. Spinellis, “Refactoring–Does it improve software quality?”,5th International

Workshop on Software Quality, 2007.

[26] B. Kitchenham and S. Charters, "Guidelines for Performing Systematic Literature Reviews in

Software Engineering," Technical Report EBSE, Keele University, 2007.

[27] J. Wen, S. Li, Z. Lin, Y. Hu, C. Huang, “Systematic literature review of machine learning based

software development effort estimation models”, Information and Software Technology, vol. 54, no. 1,

pp. 41–59, 2012.

[28] G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto, and O. Strollo, "When Does a

Refactoring Induce Bugs? An Empirical Study," In Proceedings of the IEEE International Work-ing

Conference on Source Code Analysis and Manipulation, ser. (SCAM ’12), pp. 104–113, 2012.

[29] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A.D. Lucia, "Improving Software

Modularization Via Automated Analysis of Latent Topics and Dependencies," Transactions on Software

Engineering and Methodologies, vol. 23, no. 1, 2014.

[30] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, "Automating Extract Class Refactoring: An

Improved Method and Its Evaluation," Empirical Software Engineering, vol. 19, no. 6, pp. 1617-1664,

2014.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 76

[31] G. Bavota, A. De Lucia, and R. Oliveto, "Identifying Extract Class Refactoring Opportunities Using

Structural and Semantic Cohesion Measures," Journal of Systems and Software, vol. 84, pp. 397–414,

2011.

[32] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D. Lucia, "Methodbook: Recommending

Move Method Refactor-ings via Relational Topic Models," IEEE Transactions on Software Engineering,

vol. 40, no. 7, pp. 671-694, 2014.

[33] S. Ghaith and M. O. Cinnéide, "Improving Software Security Using Search-based Refactoring," In

Proceedings of the 4th international conference on Search Based Software Engineering, pp. 121–135,

2012.

[34] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. H. Moghadam, "Experimental Assessment

of Software Metrics Us-ing Automated Refactoring," In Proceedings of Empirical Software Engineering

and Management, pp. 49-58, 2012.

[35] M. O’Keeffe and M. O’Cinneide, "Search-Based Software Main-tenance," In Proceedings of

Conference on Software Maintenance and Reengineering, pp. 249-260, 2006.

[36] K. Elish and M. Alshayeb, "Classification of Refactoring Methods Based on Software Quality

Attributes," Arabian Journal for Science and Engineering, vol. 36, no. 7, pp. 1253-1267, 2011.

[37] M. Alshayeb, "Refactoring Effect on Cohesion Metrics," International Conference on Computing,

Engineering and Information, pp. 3-7, 2009

[38] M. Alshayeb and F. Banaeamah, "Approaches for Refactoring to Frameworks," International

Journal of Information Technology, vol. 18, no. 1, 2012.

[39] M. Alshayeb, "Empirical Investigation of Refactoring Effect on Software Quality," Information and

Software Technology, vol. 51, no. 9, pp. 1319-1326, 2009.

[40] M. Fokaefs, N. E. Stroulia, A. Chatzigeorgiou, "JDeodorant: Identification and Application of

Extract Class Refactorings," International Conference on Software Engineering, 2011.

[41] N. Tsantalis and A. Chatzigeorgiou, "Identification of Move Method Refactoring Opportunities,"

IEEE Transactions on Software Engineering, vol. 35, no. 3, pp. 347-367, 2009.

[42] N. Tsantalis and A. Chatzigeorgiou, "Identification of Extract Method Refactoring Opportunities for

the Decomposition of Methods," Journal of Systems and Software, vol. 84, no. 10, pp. 1757–1782, 2011.

[43] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, "Does Refactoring Improve Reusability?," In

Proceedings of the International Conference on Software Reuse, pp. 287-297, 2006.

[44] W. Liu, Z.G. Hu, H.T. Liu, and L. Yang, "Automated Pattern-directed Refactoring for Complex

Conditional Statements," Journal of Central South University, vol. 21,pp.1935-1945, 2014.

[45] H. Liu, G. Li ,Z.Y. Ma and W. Z. Shao, "Conflict aware schedule of software refactorings," The

Institution of Engineering and Technology, vol. 2, no. 5, pp. 446-460, 2008.

[46] R. Malhotra, ,A. Chug, "An Empirical Study to Assess the Effects of Refactoring on Software

Maintainability", International Conference on Advances in Computing, Communications and

Informatics, 2016.

[47] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, "How Changes Affect Software Entropy: An

Empirical Study," Empirical Software Engineering, vol. 19, no. 1, pp. 1–38, 2014.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 77

[48] M.Gatrell and S. Counsell, "The Effect of Refactoring on Change and Fault- proneness in

Commercial C# Software," Science of Computer Programming, vol. 102, pp. 44-56, 2015.

[49] S.H. Kannangara and W.M.J.I. Wijayanayake, "Impact of Refactoring on External Code Quality

Improvement: An Empirical Evaluation," International Conference on Advances in ICT for Emerging

Regions, pp. 60-67,2013.

[50] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, "A Quantitative Evaluation of Maintainability

Enhancement by Refactoring," In Proceedings of International Conference on Software Maintenance, pp.

576-585, 2002.

[51] M. Kim, D. Cai, and S. Kim, "An Empirical Investigation into the Role of Refactorings During

Software Evolution," In Proceedings of 33rd International Conference on Software Engineering, pp. 151-

160, 2011.

[52] M. Kim, T. Zimmermann, and N. Nagappan, "An Empirical Study of Refactoring Challenges and

Benefits at Microsoft," IEEE Transactions on Software Engineering, vol. 40, no. 7, pp. 633-649, 2014.

[53] B. Geppert, A. Mockus and F. Rößler, "Refactoring for Changeability: A way to go?," 11thIEEE

International Software Metrics Symposium, 2005.

[54] B. dos Santos Neto, M. Ribeiro, V. Silva, C. Braga b, C. de Lucena, E. de Barros Costa,

"AutoRefactoring: A Platform to Build Refactoring Agents," Expert Systems with Applications. vol. 42.

no. 3, pp. 1652-1664, 2015.

[55] A.R. Han, D.E. Bae, and S. Cha, "An Efficient Approach to Identify Multiple and Independent Move

Method Refactoring Candidates," Information and Software Technology, vol. 59, pp. 53-66, 2015.

[56] A.R. Han, and D.H. Bae, "An Efficient Method for Assessing the Impact of Refactoring Candidates

on Maintainability Based on Matrix Computation," 21st Asia Pacific Software Engineering Conference,

pp. 430-437, 2014.

[57] R. Leitch and E. Stroulia "Assessing the Maintainability Benefits of Design Restructuring Using

Dependency Analysis," International Software Metrics Symposium, 2003.

[58] G. Szoke, C. Nagy, P. Hegedus, R. Ferenc, and T. Gyimóthy, "Do Automatic Refactorings Improve

Maintainability? An In-dustrial Case Study" IEEE International Conference on Software Maintenance

and Evolution, 2015.

[59] S. Tarwani and A. Chug, "Sequencing of Refactoring Techniques by Greedy Algorithm for

maximizing Maintainability," Intl. Conference on Advances in Computing, Communications and

Informatics, 2012.

[60] L. Kumar and A. Sureka, "Application of LSSVM and SMOTE on Seven Open Source Projects for

Predicting Refactoring at Class Level," Asia Pacific Software Engineering Conference, 2017.

[61] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis and P. Avgeriou "Identifying

Extract Method Refactoring Opportunities based on Functional Relevance," IEEE Transactions on

Software Engineering, vol. 43, no. 10, pp. 954 - 974, 2017.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 78

[62] A. Chug and M. Gupta, "A Quality Enhancement through Defect Reduction using Refactoring

Operation,"International Conference on Advances in Computing, Communications and Informatics, 2017.

[63] A. Chug and S. Tarwani, "Determination of Optimum Refactoring Sequence using A* Algorithm

after Prioritization of Classes,"International Conference on Advances in Computing, Communications

and Informatics, 2017.

[64] F. Faiz, R. Easmin and A. Ul Gias, "Achieving better requirements to code traceability: Which

refactoring should be done first?" International Conference on the Quality of Information and

Communications Technology, 2016.

[65] A. R. Han and S. Cha, "Two phase Assessment Approach to Improve the Efficiency of Refactoring

Identification," IEEE Transactions on Software Engineering, pp. 1-1, 2017.

[66] I. Kadar, P. Heged˝us, R. Ferenc and T. Gyimothy, "A Code Refactoring Dataset and Its Assessment

Regarding Software Maintainability," IEEE International Conference on Software Analysis, Evolution,

and Reengineering, 2016.

[67] G. Kaur and B. Singh, "Improving the Quality of Software by Refactoring," International

Conference on Intelligent Computing and Control Systems, 2017.

[68] Y. Khrishe and M. Alshayeb, "An Empirical Study on the Effect of the Order ofApplying Software

Refactoring," International Conference on Computer Science and Information Technology, 2016.

[69] A. Mart, E. Sikander and N. Medlani, "Estimating and Quantifying the Benefits of Refactoring to

Improve a Component Modularity: a Case Study," Euromicro Conference on Software Engineering and

Advanced Applications, 2016.

[70] R. Morales, A. Sabané, P. Musavi, F. Khomh, F. Chicano and G. Antoniol, "Finding the Best

Compromise Between Design Quality and Testing Effort During Refactoring," IEEE International

Conference on Software Analysis, Evolution, and Reengineering, 2016.

[71] M. Badri, L. Badri, O. Hachemane and A. Ouellet, "Exploring the Impact of Clone Refactoring on

Test Code Size in Object Oriented Software," IEEE International Conference on Machine Learning and

Applications, 2016.

[72] F. Palomba, A. Zaidman, R. Oliveto and A. D. Lucia. "An Exploratory Study on the Relationship

between Changes and Refactoring, "IEEE/ACM International Conference on Program Comprehension,

2017.

[73] F. Palomba and Andy Zaidman, "Does Refactoring of Test Smells Induce Fixing Flaky

Tests?,"IEEE International Conference on Software Maintenance and Evolution, 2017.

[74] A. Shahjahan,W. H. Butt and A. Z. Ahmad, "Impact of Refactoring on Code Quality by using Graph

Theory: An Empirical Evaluation," 2015.

[75] A.Vasileva and D. Schmedding, "How to Improve Code Quality by Measurement and Refactoring,"

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 79

International Conference on the Quality of Information and Communications Technology, 2016.

[76] M. Vimaladevi and G. Zayaraz, "Stability Aware Software Refactoring Using Hybrid Search Based

Techniques," International Conference on Technical Advancements in Computers and Communications,

2017.

[77] M.Wahler and W. Snipes, "Improving Code Maintainability: A Case Study on the Impact of

Refactoring," IEEE International Conference on Software Maintenance and Evolution, 2016.

[78] S. Demeyer, S. Ducasse and O. Nierstrasz, "Finding Refactorings via Change Metrics," ACM

SIGPLAN Conference on object-oriented programming, systems, languages, and applications, 2007.

[79] K. Maruyama, and T. Omor, "A Security Aware Refactoring Tool for Java Programs," In

Proceedings of the 4th Workshop on Refactoring Tools, ACM, pp. 22-28, 2011.

[80] F. Arcelli Fontana and S. Spinelli, "Impact of Refactoring on Quality Code Evaluation," In

Proceedings of 4th Workshop on Refactoring Tools, pp. 37–40, 2011.

[81] M. O'. Keeffe and M. Ó. Cinnéide, "Search-based refactoring: an empirical study" Journal of

Software Maintainence and Evolution, vol. 20, no. 5, pp. 345-364, 2008.

[82] E. Nasseri, S. Counsell and M. Shepperd, "Class movement and relocation: An empirical study of

Java inheritance evolution," Journal of Systems and Software, vol. 3, no. 2, pp. 303-315, 2010.

[83] G. Bavota, A.D. Lucia, M. D. Penta, R. Oliveto, and F. Palomba, "An experimental investigation on

the innate relationship between quality and refactoring," Journal of Systems and Software, vol. 107, pp. 1-

14,2015.

[84] A. Christopoulou, E. A. Giakoumakis, V. E. Zafeiris, and V. Soukara, "Automated Refactoring to the

Strategy Design Pattern," Information and Software Technology, vol. 54, no. 11, pp. 1202–1214, 2012.

[85] A. R. Han and D. H. Bae, "Dynamic profiling based approach to identifying cost effective

refactorings," Information and Software Technology, vol. 55, no. 6, pp. 966-985, 2013.

[86] F. Castor, N´.Cacho and E. Figueiredo," Journal of Software: Practice and Experience, vol. 39, no.

17, pp. 1377-1417, 2009.

[87] R. Kolb, D. Muthig, T. Patzke and K.Yamauchi, "Refactoring a legacy component for reuse in a

software product line: a case study," Journal of Software Maintenance and Evolution: Research and

Practice IEEE International Conference on Software Maintenance, vol. 18, no. 2, pp. 109-132, 2006.

[88] Y. Bian, M. A. Parande, G.Koru and S. Zhao, "Testing the theory of relative dependency from an

evolutionary perspective: higher dependencies concentration in smaller modules over the lifetime of

software products," Journal of Software: Evolution and Process, vol. 28, no. 5, pp. 340-371, 2006.

[89] M. Alshayeb, "The Impact of Refactoring to Patterns on Software Quality Attributes," The Arabian

Journal for Science and En-gineering, vol. 36, 2011.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 80

[90] M. Wiem Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide and K. Deb, "On the use of many

quality attributes for software refactoring: a many objective search based software engineering approach,"

Empirical Software Engineering, vol. 21, no. 6, pp. 2503-2545, 2015.

[91] A. Dallal, L. C. Briand, "A Precise Method Method Interaction Based Cohesion Metric for Object

Oriented Classes," ACM Transactions on Software Engineering and Methodology, vol. 21, no. 2, 34

pages, 2012.

[92] G. Bavota, A.D. Lucia, A. Marcus and R. Oliveto, "Using structural and semantic measures to

improve software modularization," Empirical Software Engineering, vol. 18, no. 5, pp. 901-932, 2012.

[93] R. Mahouachi1, M. Kessentini and Khaled Ghedira, "A new design defects classification: marrying

detection and correction," International conference on Fundamental Approaches to Software

Engineering, 2012.

[94] Y. Kosker , B. Turhan and A. Bener, "An expert system for determining candidate software classes

for refactoring," Expert Systems with Applications, vol. 36, no. 6, pp. 10000-10003, 2009.

[95] L. Yang, H. Liu, and Z. Niu, "Identifying Fragments to be Ex-tracted from Long Methods," In

Proceedings of Software Engineering Conference, 2009, pp. 43 –49, 2009.

[96] G. Bavota, R. Oliveto A. De Lucia, and A. Marcus, "In Medio Stat Virtus: Extract Class Refactoring

Through Nash Equili-bria," IEEE Conference on Software Maintenance, Reengineering and Reverse

Engineering, Software Evolution Week, 2014.

[97] D. Boshnakoska and A. Mišev, "Correlation between Object-Oriented Metrics and Refactoring," ICT

Innovations, Communication in Computer and Information Science, vol. 83, pp. 226-235, 2011.

[98] F. Bourqun and R.K. Keller, "High Impact Refactoring Based on Architecture Violations," In

Proceedings of 11th European Conf. Software Maintenance and Reengineering., pp. 149-158, 2007.

[99] C. Dibble II and P. Gestwicki, "Refactoring Code to Increase Readability and Maintainability: A

Case Study," Journal of Computing Sciences in Colleges, vol. 30, no. 1, pp. 41-51, 2014.

[100] B. Du Bois, S. Demeyer, and J. Verelst, "Refactoring—Improving Coupling and Cohesion of

Existing Code," In Proceedings of 11th Working Conference on Reverse Engineering, pp. 144-151, 2004.

[101] B. DuBois and T. Mens, "Describing the Impact of Refactoring on Internal Program Quality," In

Proceedings of International Workshop on Evolution of Large-scale Industrial Software Applications, pp.

37-48, 2003.

[102] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, "Identification and Application of

Extract Class Refactorings in Object-Oriented Systems," Journal of Systems and Software, vol. 85, no.

10, pp. 2241-2260, 2012.

[103] M. Gaitani, V. Zafeiris, N. Diamantidis, E. Giakoumakis, "Automated Refactoring to the NULL

OBJECT Design Pattern," Information and Software Technology, vol. 59, pp. 33–52, 2015.

[104] H.C. Jiau, L.W. Mar, and J.C. Chen, "OBEY: Optimal Batched Refactoring Plan Execution for

Class Responsibility Redistribution," IEEE Transactions on Software Engineering, vol. 39, no. 9, pp.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 81

1245-1263, 2013.

[105] P.Joshi and R.K.Joshi, "Microscopic Coupling Metrics for Re-factoring," In Proceedings of 10th

European Conf. on Soft-ware Maintenance and Reengineering, pp. 145-152, 2006.

[106] P. Joshi and R.K. Joshi, "Concept Analysis for Class Cohesion," In Proceedinds of 13th European

Conference on Software Maintenance and Reengineering, pp. 237- 240, 2009.

[107] M. Kallen, S. Holmgren, and E. poraHvannberg, "Impact of Code Refactoring Using Object-

Oriented Methodology on a Scientific Computing Application," 14th International Working Conference

on Source Code Analysis and Manipulation, pp. 125-134, 2014.

[108] S. Lee, G. Bae, H. S. Chae, D. H. Bae and Y. R. Kwon, "Automated Scheduling for Clone based

Refactoring Using a Competent GA," Journal of Software: Practice and Experience, vol. 41, no. 5, pp.

521-550, 2010.

[109] K. Nongpong, "Feature Envy Factor: A Metric for Automatic Feature Envy Detection," 7th

International Conference on Knowledge and Smart Technology, IEEE, 2015.

[110] G. Pappalardo and E. Tramontana, "Suggesting Extract Class Refactoring Opportunities by

Measuring Strength of Method Interactions" In Proceedings of Asia Pacific Software Engineering

Conference (APSEC), 2013.

[111] A.A. Rao and K.N. Reddy, "Identifying Clusters of Concepts in a Low Cohesive Class for Extract

Class Refactoring Using Me-trics Supplemented Agglomerative Clustering Technique," International

Journal of Computer Science, vol. 8, no. 5, pp. 185-194, 2011.

[112] J. Ratzinger, T. Sigmund, and H.C. Gall, "On the Relation of Refactorings and Software Defect

Prediction", In Proceedings of International Working Conference on Mining Software Repositories, pp.

35-38, 2008.

[113] O. Seng, J. Stammel, and D. Burkhart, "Search-Based Determination of Refactorings for Improving

the Class Structure of Object-Oriented Systems," InProceedings of Genetic and Evolutionary

Computation Conference, pp. 1909-1916, 2006.

[114] G. Szoke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy, "Bulk Fixing Coding Issues and Its

Effects on Software Quality: Is it Worth Refactoring?" In Proceedings of 14th International Working

Conference on Source Code Analysis and Manipulation, pp. 95–104, 2014.

[115] V. Veerappa and R. Harrison, "An Empirical Validation of Coupling Metrics Using Automated

Refactoring," International Symposium on Empirical Software Engineering and Measurement, 2013.

[116] M. F. Zibran and C.K. Roy, "A Constraint Programming Approach to Conflict aware Optimal

Scheduling of Prioritized Code Clone Refactoring," IEEE International Working Conference on Source

Code Analysis and Manipulation, 2011.

[117] L. Tahvildari, K. Kontogiannis and J. Mylopoulos, "Quality-Driven Software Re Engineering,"

Journal of Systems and Software - Special issue on: Software architecture - Engineering quality

attributes, vol. 66, no. 3, pp. 225-239, 2003.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 82

[118] N. Kumari and A. Saha, " Effect of Refactoring on Software Quality," InProceedings of

Confenrence on Software Maintenance, 2014.

[119] K. O. Elish and Mohammad Alshayeb, "Investigating the effect of refactoring on software testing

effort," In Proceedings of Asia Pacific Software Engineering Conference, 2009.

[120] L. Tahvildari and K. Kontogiannis, "Improving Design Quality Using Meta-pattern

Transformations: A Metric-based Ap-proach," Journal of Software Maintenance and Evolution: Research

and Practice, vol. 16, no.4–5, pp. 331–361, 2004.

[121] F. Arcelli Fontana, M. Zanoni, A. Ranchetti, D. Ranchetti, "Software Clone Detection and

Refactoring." ISRN Software Engineering, vol. 2013, pp. 1-8, 2013.

[122] Č. Gerlec and M. Heričko, "Evaluating Refactoring with a Qual-ity Index," World Academy of

Science, Engineering and Technology 63, pp. 76-80, 2010.

[123] R. Moser, P. Abrahamsson, W. Pedrycz, A.Sillitti and G. Succi, "A Case Study on the Impact of

Refactoring on Quality and Productivity in an Agile Team," LNCS, vol. 5082, pp. 252-266, 2008.

[124] R. Shatnawi and W. Li., "An Empirical Assessment of Refactoring Impact on Software Quality

Using a Hierarchical Quality Model," International Journal of Software Engineering and Its Ap-

plications, vol. 5, no. 4, 2011.

[125] M. Alshayeb, H. Al. Jamimi and M. O. Elish, "Empirical taxonomy of refactoring methods for

aspect oriented programming," Journal of Software: Process and Evolution, vol. 25, no. 1, pp. 1-25,

2013.

[126] P. Meananeatra, "Identifying Refactoring Sequences for Improving Software Maintainability," In

Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, 2013.

[127] R. S. Bashir, S. P. Lee, C. C. Yung, K. A. Alam, R. W. Ahmad, "A methodology for impact

evaluation of refactoring on external quality attributes of a software design," International Conference on

Frontiers of Information Technology, 2017.

[128] H. Lu, S. Wang, T. Yue, S. Ali, J. F. Nygård, "Automated Refactoring of OCL Constraints with

Search," IEEE Transactions on Software Engineering, 2017.

[129] A. Imazato, Y. Higo, K. Hotta and S. Kusumoto"Finding Extract Method Refactoring Opportunities

by Analyzing Development History," IEEE 41st Annual Computer Software and Applications

Conference, 2017.

[130] Semih Okur, "Understanding, Refactoring, and Fixing Concurrency in C#," 30th IEEE/ACM

International Conference on Automated Software Engineering, 2015.

[131] C. Sahin, L. Pollock, J. Clause, "How Do Code Refactorings Affect Energy Usage?," International

Symposium on Empirical Software Engineering and Measurement, no. 36, 36 pages, 2014.

[132] B. Fonseca , M. Ribeiro , V.Torres,C. Braga, C. José, E. Costa, "AutoRefactoring: A platform to

build refactoring agents," Expert Systems with Applications, vol. 42, no. 3, pp. 1652-1664, 2015.

[133] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, "JDeodorant: Identification and Removal of Feature

Envy Bad Smells," IEEE International Conference on Software Maintenance, 2007.

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 83

[134] Y. Higo, T. Kamiya, S. Kusumoto1 K. Inoue, "ARIES: Refactoring support environment based on

code clone analysis," In Proceedings of the IASTED Conference on Software Engineering, 2004.

[135]Y. Higo, S. Kusumoto and K. Inoue, "A metric-based approach to identifying Refactoring

pportunities for merging code clones in a Java software system," Journal of Software Maintenance and

Evolution: Research and Practice, vol. 20, no. 6, pp. 435-461, 2008 .

[136] V. Sales, R. Terrayz, L. F. Miranda and M. T. Valente, Recommending Move Method Refactorings

using Dependency Sets," 20th Working Conference on Reverse Engineering, 2013.

[137] L. Zhao, J. H. Hayes, "Predicting Classes in Need of Refactoring: An Application of Static

Metrics," International Conference on Frontiers of Information Technology, 2009.

[138] M. Abbes, F. Khomh, Y. G. Gu´eh´eneuc, G. Antoniol, "An Empirical Study of the Impact of Two

Antipatterns, Blob and Spaghetti Code, On Program Comprehension," 15th European Conference on

Software Maintenance and Reengineering, 2011.

[139] F. S. Barbosa, A. Aguiar, "Removing Code Duplication with Roles," 12th IEEE International

Conference on Intelligent Software Methodologies, Tools and Techniques, pp. 22-24, 2013.

[140] I. Griffith, S. Wahl, C. Izurieta, "Evolution of Legacy System Comprehensibility through

Automated Refactoring," In Proceedings of the International Workshop on Machine Learning

Technologies in Software Engineering, pp. 35-42, 2011.

[141] W. F. Opdyke, "Object-oriented refactoring, legacy constraints and reuse," Bell Laboratories -

Innovations for Lucent Technologies, 8th Workshop on Institutionalizing Software Reuse ,1996.

[142] M. V. Mäntylä, "An Experiment on Subjective Evolvability Evaluation of Object-Oriented

Software: Explaining Factors and Interrater Agreement," International Symposium on Empirical

Software Engineering, 2005.

[143] J. Al. Dallal, "Qualitative Analysis for the Impact of Accounting for Special Methods in Object-

Oriented Class Cohesion Measurement ," Journal of Software, vol. 8, no. 2, pp. 327–336, 2013.

[144] J. Bansiya J, C. G. Davis, “ A hierarchical model for object-oriented design quality assessment”,

IEEE Transactions on Software Engineering 2002; vol. 28, no. 1, pp. 4–17, 2002.

[145] R. Pressman, Software Engineering: A Practitioner’s Approach, 6th edn., McGraw Hill, New York,

2005.

[146] Understand Metrics Tool, Available at: https://scitools.com/feature/metrics/ (Accessed: 20 May

2018).

[147] R. Shatnawi , W.L. James, Swain, T. Newman, Finding software metrics threshold values using

ROC curves, Journal of Software Evolution and Processes, 2010.

[148] Eclipse website, [Online], Available: https://www.eclipse.org (Accessed: 15 April, 2018).

[149] Github, Available: https://github.com/ (Accessed: 14 February, 2018).

[150] SourceForge, Available: https://sourceforge.net (Accessed: 14 February, 2018).

[151] JDeodorant plug-in, Available: http://jdeodorant.com/ (Accessed: 21 February, 2018)

[152] JSpirit plugin. Available: http://sites.google.com/site/santiagoavidal/projects/jsirit/ (Accessed: 21

February, 2018).

https://scitools.com/feature/metrics/
https://sourceforge.net/

Analysing the Effects of Refactoring on Software Quality Attributes

PRIYA SINGH 84

[153] Robusta plugin, Available: https://marketplace.eclipse.org/content/robusta-eclipse-plugin/

(Accessed: 21 February, 2018).

https://marketplace.eclipse.org/content/robusta-eclipse-plugin/

