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ABSTRACT 

 

Cross-project defect prediction (CPDP) recently gained considerable attention. Many 

studies have provided the success of cross-project defect prediction (CPDP) to predict 

defects. But, most of the datasets share the same limitations: as the metrics (independent 

variable) hardly follow a normal distribution. They are mostly skewed data. Hence, 

these metrics has to be transformed before the training and predicting the defect. 

Various transformations have been studied in the area of cross-project defect prediction 

like rank transformation, log transformation and Box-Cox transformation. The yeo-

johnson transformations (extended versions of the box-cox transformation) have not 

been used in the defect prediction area. Since, the metric values contain Zero as a value 

so most of the transformation did not work for Zero value, so we need to do some pre-

computation in data. But yeo-johnson transformation can be used for zero values as well 

as negative value. This study investigates the effectiveness of yeo-johnson 

transformation on cross-project defect prediction. we have conducted our experiment on 

publicly available Promise data sets. Comparing logistic regression model built using 

with and without yeo-johnson transformation, transformed approach gives better result 

than raw data in 53% cases and 70% project achieved better result using this 

transformation. Further, we also investigate which classifier is well suited for this 

transformation, which is statistically tested by Friedman's test. Naïve bayes outperforms 

better among all classifiers.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Defect prediction focuses on detecting fault-prone modules precisely and helps to allocate 

limited resources in testing and maintenance. As we know, most of the software are used in 

safety purposes, other important work where the severity to fault should be minimum. 

That‟s why defect prediction is the important area in the field of research. In defect 

prediction most of the approaches uses same data for training and predicting. These 

approaches typically use various features, e.g., process metrics, previous-defect metrics, 

source code metrics etc., to characterize a class/file/module and employ a classification 

algorithm to predict if a class/file/module is defective or not. Most defect prediction 

approaches are trained and applied on classes/files/modules from the same project. But for 

the new project, such historical data is not always available in practice. So the new projects 

don‟t have enough training data. One potential way of predicting defects in the new 

projects without historical data is to learn predictors from data of other projects. The 

method which uses other project for training predictors and testing different project data to 

analyze defect is known as ―cross-project defect prediction”. 

A cross project defect prediction can be with-in company defect prediction or cross- 

company defect prediction. In with-in company defect prediction we use only same project 

but different releases (versions) to train the predictor and perform prediction on other 

release. In cross company defect prediction we use similar project but not the same to train 

the predictor and perform prediction on other release. Software metrics (e.g. weighted 

method per class, depth of inheritance and lines of code) are the independent variable 

which is the major part of the training data used to build a defect prediction model. 
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Previous studies Louridas et al. [2], Concas et al. [1] and  Zhang [3] report that software 

metrics are heavily skewed and rarely follow a normal distribution, but they constitute the 

power-law distribution and this skewed behavior is the one of biggest threats to the fitness 

of classifiers to provide better prediction (Cohen et al. [4]. In the previous studies most 

widely methods used to normalize the metrics are boxcox, log and rank transformations as 

shown in the systematic literature review by Hosseini et al. [5]. The log transformation 

covert the original metric values by their logarithm and the rank transformation covert the 

original metric values with their ranks. But these transformations do not provide result for 

the zero values so we first need to first shift the metric values. Here in this thesis, we are 

first transforming our data using yeo-johnson which work for all values and then use 

logistic regression to predict the defect. We also use different machine learning algorithm 

logistic regression, random-forest, multi-layer perceptron and naïve bayes (implemented in 

R language) for investigating the effect of this transformation on classifier and to 

generalize the result.  

1.2 Motivation 

Defect prediction is an important aspect of a software development process. As we know 

maintaining software takes 67% of the cost of total software. So to reduce the cost we do 

defect predictions using historical data so that new software have least defect and hence 

cost reduces. In prior studies only few transformations have been studied but as best of our 

knowledge yeo-johnson has not been studied so far. We are studying this because this is a 

power law transformation extended version of BoxCox transformation which can be used 

for zero and negative values so that we don‟t need to shift original values of our data. 

Hence, originality of data can be maintained. 

1.3 Research objective  

In this thesis, we try to find empirical evidences to answer the following questions: 

RQ1: Is Yeo-johnson transformation effectively increases the normality of software 

metrices and improves the performance of CPDP? 
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The yeo-johnson transformation significantly improves the normality of software metrics 

and reduces both skewness and kurtosis. We use logisitic regression as classifier where 

53% of the total investigated pairs give better result with this transformation and 70% of 

project has best AUC and F-measure with this transformation. 

RQ2: Does this transformation approach work well for the other classifier?         

We generalize our study by investigating our approach with four classifiers (MLP, Logisitc 

regression, random forest and naïve bayes). We find that our approach generally out 

performs the better than model built without using this transformation.  

However, we conducted experiments on 10 public data sets obtained from 10 projects. All 

these data sets are available at the PROMISE Data Repository [6]. We employed 

yeojohnson transformation and four machine learning algorithms to construct prediction 

models by using R language and its framework RStudio [7].We transform both training 

and testing set so that the effect of this normalization is equivalent to both the datasets. 

1.4 Thesis Organization 

This thesis work is bifurcated into six different chapters. Starting with the abstract, six 

chapters and references.  

Chapter 1 gives the brief introduction about the issues discussed in this study. The chapter 

explains the need and use of cross project defect prediction. It defines the explaining how 

they affect the software systems and human life. It also addresses the heavily skewed data 

problem, how it has been leading to the inaccurate prediction of defect prone classes. The 

goals of this empirical research are stated in the form of questions at the end of this 

chapter. 

Chapter 2 sums up the related studies with respect to software cross project defect 

prediction. A lot of research has been carried out in defect prediction area and various 

transformations had been used in this context. This chapter summarizes the major 

contributions and findings of the previous studies. Many studies [8], [9], [10], [11], [12] 

have been investigating in this field by using various transformation techniques to increase 

the normality of data. Most of the studies use rank transformation and log transformation 
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while other methods are still unexplored in the area of defect prediction. Only few defect 

prediction study [8] has used boxcox method while the methods like yeo-johnson, 

lambertWxF are still novel. Furthermore, the related work describes the previous studies 

which have applied various ML techniques for building models. 

Chapter 3 provides the details regarding the experimental design of the study. It describes 

the dependent, independent variables used to carry out the research. The data collection 

method, different datasets and the various procedural metrics used in this study are 

mentioned in detail. The chapter further defines the performance measure used to evaluate 

the prediction models and discusses the statistical test selection briefly. 

Chapter 4 describes the research methodology used in the experiment. It briefly discusses 

the various prediction models together with the detailed explanation of the algorithms in 

the RStudio. A proposed transformation method yeo-johnson is also discussed with full 

details and implementation in RStudio. A detailed discussion is carried out regarding the 

impact of normalizing the data.  

In Chapter 5 the obtained results are stated and analyzed using statistical tests. This chapter 

answers the above stated questions in chapter 1. We have performed an extensive 

comparison between various prediction models using non-parametric tests, Friedman. This 

chapter also states the advantageous use of the proposed method yeo-johnson and 

describes how it is better to normalize the data. 

At last, Chapter 6 concludes the final outcome of the study. It states which method 

performed the best and guides the researchers to make use of yeo-johnson transformation 

to further improve the performance of defect prediction models. The chapter also provides 

the future scope of the research. 
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CHAPTER 2 

LITRATURE STUDY 

 

This section provides the prior related study in the field of defect prediction and use of 

different transformation technique for the cross project defect prediction. 

Distribution of data has a very big impact on the defect prediction models. Normal 

distribution can benefit statistical methods (Osborne [1]), and it also provide better 

performance of linear models (Kuhn et al. [31]). To measure normal distribution of data we 

see the skewness and kurtosis value of the data. Most of the software metrices are heavily 

skewed and doesn‟t follow the normal distribution [3] and to reduce the skewness and 

enhance normality, transformation is the one of most common method (Bishara et al. [32]). 

In prior studies many researcher used different transformation defects natural log 

transformation and the rank transformation (e.g., Jiang et al. [33], Menzies et al. [34], Song 

et al. 2011[35] and Cruz et al. [33]) method to normalize the data to predict defects on 

software metrics. However, use of the log transformation significantly improves the 

performance of only some Classifier (e.g., Naïve Bayes) but non-significant for other 

classifier as (e.g., decision tree) [34], [35]. Jiang et al. [33] studies shows that when 

different transformation applied on ten different classifier then it is concluded that 

classifiers has different impact of these transformation. Different results were produced on 

same classifier with different transformations. It has been shown that naïve bayes perform 

better with rank transforamation and random forest with log transformation. In the CPDP, 

He et al. [36] has studies distribution characteristics and use different transformation like 

rank transformation for Naive Bayes, but no transformation for logistic regression and 

random forest. 
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As technologies are growing and revolving so fast that we came across various new 

technologies. Software built using these technologies does not have enough training set to 

predict defects. As these projects may also differ in terms of software metric to measure all 

the aspects of the software. This cause the problem of data heterogeneity between the 

training and testing projects (Zimmermann et al. [37]). To address this problem, Menzies 

et al. [38] investigated that how can we relate two different based on these metric values.  

These studies observe that using only the similar instances of both training and testing 

project can achieves better performance in CPDP than using all instances. Another study 

Turhan et al. [39] recommend that within project data like for the latest release we can also 

use the previous release data for CPDP and it yield better result than other project. An 

alternative solution is to transfer the knowledge from training data to testing projects to 

improve the performance. Various methods have been used for this and a matrix matching 

which relate the different instance in training and testing set by finding the type of relation 

they share and on transfer component analysis (TCA) to transform the training and target 

projects together (Nam et al. [30]). In Zhang et al. [8], a study has been done which include 

the simple rank, log and boxcox transformation to transform the metric value and effect of 

all these transformation have been studies with six classifiers. Here in our study, We 

perform a different transformation yeo-johnson which is not studied in the field of defect 

.prediction and CPDP as best of our knowledge. We investigate that does this 

transformation can help in cross project defect prediction. We thoroughly compare the 

result of 10 projects with all possible 90 combination of training and testing pairs (i.e. 

RQ1) and also investigate for which classifier it produced better result among random 

forest, multilayer perceptron, naïve bayes and logistic regression(i.e. RQ2). We selected 

these classifier based on previous studies in the area. 
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CHAPTER 3 

EXPERIMENTAL DESIGN 

 

This section provides the details of design setting and tools used in our study. 

3.1 Independent And dependent variables 

This study uses „bug‟ as a dependent variable. Bug is a binary variable which indicates the 

defective nature of the class. A class is said to be defect prone if there is a probability of 

detecting a fault in the class in future versions otherwise, a class is termed as non-

defective. This binary variable is dependent on a number of other variables like Chidamber 

& Kemerer, Halstead and McCabe metrics. The dependence of defect proneness over static 

code metrics is considered practical as they have helped in successful detection of the 

defect prone nature of the class in the past [5], [13], [15], [16]. According to the survey by 

Malhotra in [19] procedural metrics are widely used metrics in more than 51% of previous 

defect prediction studies and can be calculated at reasonably low costs for both small and 

large systems.  

These independent variables are the set of value which rarely follow normal distribution 

and there skewed behavior does not produce better result. So in most of the studies these 

metric values are first transformed and then used for the prediction. 

3.2 Empirical Data collection 

We evaluate our models using defect datasets originally collected by Jureczko and 

Madeyski [23] from the PROMISE data repository [6] which consists of 10 releases from 

10 different open source projects. Each instance in the 10 datasets consists of two parts: 20 

static code metrics and a label (defective or clean). 
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PROJECT No. of classes no. of defect classes % of defect classes 

ant1.7 745 166 22.281 

camel1.6 965 188 19.481 

ivy 2.0 352 40 11.363 

jedit4.3 492 11 2.235 

log4j1.2 205 189 92.195 

lucene2.4 340 203 59.705 

poi3.0 442 281 63.574 

synapse1.2 255 86 33.725 

xalan2.7 909 889 97.799 

xerces1.4 573 426 74.345 

 

Table 1 Summary of Projects 

3.3 Performance measures 

Performance measure is a criteria through which we can evaluate our model. Various 

performance measure have been used in prior studies of cross project defect prediction like 

AUC, F-measure, G-mean, precision, recall, balance as shown in the literature study [5]. 

Here we are evaluating our result on the basis of AUC and f-measure with precision and 

recall. We are selecting AUC because it shows the tradeoff between correct and incorrect 

predictions And F-measure because it includes the combined effect of precision and recall 

so that our study will not be biased to these measures.  

These measures are evaluated on the basis of confusion matrix obtained by model‟s 

prediction. The confusion matrix contains the number of vales are predicted correctly and 

incorrectly. 

 

Table 2 Confusion matrix 
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3.3.1 Area under the Curve (ROC) 

Area under the ROC Curve (AUC is a combined measure of sensitivity and specificity. 

The ROC is a curve plotted between sensitivity (Recall) and (1-specificity) on the y and x-

coordinate axis respectively. It is a measure of how corrected our defective and non-

defective classes are predicted. The larger the area enclosed under the curve the better is 

the performance of the ML technique. 

3.3.2 Precision 

Precision is a measure which evaluates that how many values predicted defective are 

actually defective. So precision for defect prediction is given as:- 

Precision =
correctly predicted as defective

total predicted as defective
     

3.3.3 Recall 

Recall is a measure which evaluates that how many values are predicted defective out of 

actually defective values. So recall for defect prediction is given as:- 

Recall =
correctly predicted as defective

total actual defective
 

3.3.4 F-measure 

F-measure is a measure which is the harmonic mean of both precision and recall. We use 

this measure because this harmonic mean gives the best value when both precision and 

recall are the best. It gives the combined result of both precision and recall. F-measure is 

given as:-  

𝐹 =
2 × Precision × recall

precision + recall
 

3.4 Statistical test 

Statistical test are the test performed for inferential analysis. These are performed to find 

out that the two datasets are asymptotically significant or not. Here in our study, we 
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applied these test on AUC and F values that are to evaluate our null hypothesis is rejected 

or not. 

3.4.1 Friedman Test 

It is non- parametric test which is used to compare the two or more methods with multiple 

values. It is used when it contains duplicate values. When we have different techniques and 

multiple values we can‟t find out which one is better than other. Here we have four 

classifier as random forest, multi layer perceptron, naïve bayes and logistic regression. 

Here we used SPSS tool to perform this test and find that naïve bayes has the best ranking 

among all the classifiers. We had performed this test on two different performance measure 

AUC and F- measure , both concluded that naïve bayes is asymptotically significant in 

both the cases when applied with p value less than 0.05.this test is used to find that our null 

hypothesis is rejected or not. 

3.5 Tools used 

This includes the tools which are used to perform our experiment in the study. We broadly 

used two tools. 

3.5.1 RStudio 

RStudio is an IDE of R language, for programming and statistical analysis. RStudio is an 

open source which is freely available. It is available in two editions which are RStudio 

Desktop and RStudio server. We have used RStudio desktop application but with the use 

of RStudio server we can access our IDE with the help of a browser also. Here, we can 

import our data in various formats like CSV and various libraries are there which have the 

implementation of various method. We have used these libraries and modifies according to 

the work. We have chosen this IDE because it‟s not only a tool but had a methods which 

can be modifies according to the situation and made our work simple and efficient. 
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Fig 1 RStudio  

3.5.2 SPSS 

Statistical Package for the Social Sciences is a tool used for statistical analysis. This tool 

has various features which can be directly accessed by drop down menu. It is the most 

widely used tool for the market research. We have used this tool to validate our result by 

applying Friedman‟s.   



Anamika Agrawal Cross Project Defect Prediction Page 12 
 

 

Fig 2 SPSS 

 

 

 

 

 

 

 

 

 

 

 



Anamika Agrawal Cross Project Defect Prediction Page 13 
 

CHAPTER 4 

RESEARCH METHODOLOGIES 

 

The Fig 3(a) and Fig 3(b) describes the flow of the events occurred in this study.  

 

Fig 3(a) Data Preprocessing

 

Fig 3(b) Cross Project Defect Prediction 
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Firstly, we transformed our data using yeo-johnson transformation [24] and normalized to 

the scale of 0 to 1. This transformed data is used for further study. We preprocessed both 

training and testing set with each metrics independently so that the impact is equivalent to 

both the sets. 

Finally, we have a model having two steps a model building and prediction steps. Where 

model building includes the formation of all the possible combination of training and 

testing set. Here we have total 90 combinations of 10 projects. And prediction step chooses 

a classifier and apply the prediction to predict the label. 

4.1  Normality measurements 

Widely used measures of data normality are kurtosis and skewness. Here, we computed the 

skewness and kurtosis of these software metrics, using the R functions skewness [25] and 

kurtosis [25] in the R package e1071 [27]. 

4.1.1 Skewness 

It measures the degree of asymmetry in the probability distribution of the values of 

software metric. We find skewness of all the metrics and try to normalize the data so that 

skewness approaches to zero because normalized curve has zero skewness. Skewness can 

be either positive, negative or zero as illustrated in Fig. 4(a). If the values are greater than 1 

and less than -1 means data is heavily skewed. 

        

 

Fig 4(a) Skewness 
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4.1.2 Kurtosis 

It measures the peakness or flatness (e.g., the width of the peak) in the probability 

distribution of the values of software metric. The value of kurtosis should be zeros for 

normal distribution. It can either be positive, negative or zero. Positive and negative 

kurtosis are illustrated in Fig. 4(b).  

 
Fig. 4(b) Kurtosis 

4.2 Yeo-Johnson transformation 

YJ transformation is the extended version of boxcox power law transformation. Boxcox is 

used for strictly positive numbers. So it has a dependency on the value of values to be 

transformed but YJ does not have any restriction on the input value. YJ transformation is 

same as Boxcox for positive values and also works well for Zero and negative value 

without shifting the values. 

As per best of our knowledge YJ transformation has not been studied in the field of CPDP.  

BoxCox transformation is given as:- 

 

EQ(1) BoxCox Transformation 
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YJ transformation is given as:- 

 

 

EQ(2) Yeo-Johnson Transformation 

Here, y is the values to be transformed. As we can see in above equations BoxCox is only 

valid for the strictly positive values as when the value of ʎ=0 then there is log-

transformation and the log transformation of zero is infinity. So to use the BoxCox we first 

need to shift the data values. But in YJ transformation it does not depend on the value of y 

also where ʎ=0. YJ contains all the good properties of the BoxCox transformation that‟s 

why we want to explore this in our thesis.  

4.2.1 Estimating lambda value 

The value of lambda plays a very important role in this transformation.  

Values of  Lambda(ʎ) Type of power-law transformation 

0.0 Log transformation 

1.0 No transformation 

0.5 Square-root transformation 

-1.0 Inverse transformation 

     

Table-3 Power-law transformation based on lambda value 

Since the different metrics rarely follow the same distribution so we estimate the lambda 

parameter for each metrics using “yeojohnson” method of “BestNormalize” [28] library in 

R, which gives the best estimated value of lambda. This lambda values gives 

approximately minimum skewness to the metric value and transform values according to 
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the estimated lambda. Here in our work, we transform each software metric values 

independently for both training and testing datasets.  

4.2.2 Min Max transformation 

Most of the transformed values are in a wide range. So min-max transformation scales our 

values to the scale of 0 and 1, which is better for classification models (Han et al. [29], 

Nam et al. [30]).  

𝑋 =
𝑦 − min

𝑚𝑎𝑥 − min
+ 1 

EQ(3) Min-Max Transformation 

4.3  Machine learning techniques 

We have used logistic regression to find the impact of yeo-johnson transformation to the 

software metrics for predicting defect. We also used four machine learning classifier 

(logistic regression, random forest, multi layer perceptron and naïve bayes) to generalize 

the result of our study. 

4.3.1 Logistic Regression 

Logistic regression is the classification algorithm used when dependent variable is binary. 

Here bug is the binary dependent variable. This dependent variable has class as either zero 

(non-defective) or one (defective). Logistic regression model where the log-odds of the 

probability of an event is a linear combination of independent or predictor variables. The 

binary logistic regression is where the dependent variable is in two classes and multi 

logistic regression model is where dependent variable is in multiclass. These values are 

ordinal values which classify the data which describe according to the severity of the 

defects. Here we have implemented logistic regression in Rstudio using GLM library. 

 

 

 

https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Linear_function_(calculus)
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Fig. 5 Implementation of Logistic Regression in RStudio 

4.3.2 Random Forest 

Random Forest is an ensemble machine learning algorithm used for both regression and 

classification problems. It is the extended version of  of decision tress algorithm where 

multiple decision tree are formed, this forests of trees splitting with oblique hyperplanes 

can gain accuracy as they grow without suffering from overtraining, as long as the forests 

are randomly restricted to be sensitive to only selected feature dimensions. Here we have 

implemented random forest in Rstudio using rpart library. 

 

 

 

 

https://en.wikipedia.org/wiki/Feature_(machine_learning)
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Fig. 6 Implementation of Random Forest in RStudio 

 

4.3.3 Multilayer perceptron 

Basically, a multilayer perceptron (MLP) is a feed-forward artificial neural model. There is 

single hidden layer lies between input-output layers. Its functionality is mapping the set of 

inputs to a particular set of outputs means data row in one direction from input to the 

output layer. Each join is a neuron leaving the input joins and each join has an activation 

function (Y) corresponding to it. MLP is applying a back propagation algorithm for 

training the neural network. MLP is a revision of the standard linear perceptron and can 

solve the problem which is not linear-separable. 
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Fig. 7(a) Multi-layer Perceptron 

 

Fig. 7(b) Implementation of Multi-layer Perceptron in RStudio 
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4.3.4 Naïve Bayes 

Naïve Bayes belongs to family of classifier based on the probabilistic model. It assumes 

that the independent variables of a datasets has its independent impact on the classifier 

build and then find the correlation among the independent variables. It uses the bayes 

theorem to find the conditional probability of the model. This has been proved very 

efficient in supervised learning. Here we have implemented this in RStudio e1071 library.   

 

Fig. 8 Implementation of Naïve Bayes in RStudio 
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CHAPTER 5 

EMPERICAL RESULT & ANALYSIS 

 

In this section, we discuss and analyse the results obtained by applying logistic regression 

technique on yeo-johnson transformed as well as original datasets. We also try to find out 

which among four ML technique outperform the other when used with this transformation. 

In order to examine and equate the performance of yeojohnson transformation as well as 

MC learners, we use five performance metrics: sensitivity (recall), precision, AUC, Flase 

positive rate and F-measure. The results are assessed by using two non-parametric 

statistical tests: Friedman and Wilcoxon signed rank test. The investigation of results is 

carried out systematically by sequentially answering the research questions mentioned in 

chapter 1. 

5.1 RQ1: Is Yeo-johnson transformation effectively increases the normality of software 

metrices and improves the performance of CPDP? 

Table 4, provide the performance measure like AUC, F-measrue, precision and recall for 

the logistic regression without transformation as LR and with transformation as LR+. To 

empirical study shows that in more than 54% cases LR+ outperform than LR. To 

statistically validate our result we perform the Friedman test for the below hypothesis. 

    LR+ LR 

Training Testing AUC F AUC F 

ant1.7 

camel1.6 0.52 0.087 0.519 0.095 

ivy2.0 0.59 0.308 0.677 0.43 

jedit4.3 0.67 0.276 0.628 0.119 

log4j1.2 0.5 0.011 0.505 0.021 

lucene2.4 0.51 0.02 0.527 0.128 

poi3.0 0.5 0.014 0.521 0.113 

synapse1.2 0.55 0.186 0.622 0.42 
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xalan2.7 0.53 0.107 0.556 0.2 

xerces1.4 0.5 0.009 0.538 0.14 

camel1.6 

ant1.7 0.51 0.086 0.548 0.211 

ivy2.0 0.65 0.347 0.663 0.386 

jedit4.3 0.64 0.138 0.546 0.071 

log4j1.2 0.54 0.48 0.523 0.923 

lucene2.4 0.58 0.362 0.517 0.965 

poi3.0 0.52 0.247 0.509 0.111 

synapse1.2 0.62 0.436 0.552 0.243 

xalan2.7 0.53 0.111 0.517 0.965 

xerces1.4 0.59 0.357 0.533 0.147 

jedit4.3 

ant1.7 0.53 0.13 0.51 0.047 

camel1.6 0.51 0.051 0.501 0.03 

ivy2.0 0.5 NA 0.57 0.245 

log4j1.2 0.5 NA 0.5 NA 

lucene2.4 0.5 NA 0.505 0.02 

poi3.0 0.5 0.007 0.52 0.088 

synapse1.2 0.51 0.023 0.512 0.045 

xalan2.7 0.5 0.013 0.511 0.041 

xerces1.4 0.5 NA 0.5 0.028 

log4j1.2 

ant1.7 0.51 0.367 0.516 0.37 

camel1.6 0.51 0.321 0.506 0.327 

ivy2.0 0.51 0.206 0.504 0.205 

jedit4.3 0.51 0.044 0.53 0.046 

lucene2.4 0.59 0.406 0.507 0.742 

poi3.0 0.53 0.757 0.508 0.774 

synapse1.2 0.5 0.504 0.512 0.509 

xalan2.7 0.58 0.263 0.541 0.296 

xerces1.4 0.5 0.063 0.61 0.872 

lucene2.4 

ant1.7 0.63 0.43 0.661 0.46 

camel1.6 0.59 0.354 0.589 0.359 

ivy2.0 0.72 0.333 0.679 0.308 

jedit4.3 0.66 0.082 0.544 0.05 

log4j1.2 0.62 0.65 0.583 0.517 

poi3.0 0.7 0.714 0.7 0.719 

synapse1.2 0.64 0.555 0.647 0.57 

xalan2.7 0.63 0.418 0.813 0.77 

xerces1.4 0.71 0.63 0.613 0.561 

poi3.0 ant1.7 0.71 0.508 0.641 0.443 
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camel1.6 0.56 0.317 0.55 0.32 

ivy2.0 0.7 0.308 0.716 0.348 

jedit4.3 0.57 0.054 0.532 0.048 

log4j1.2 0.63 0.664 0.524 0.519 

lucene2.4 0.57 0.574 0.557 0.589 

synapse1.2 0.66 0.591 0.617 0.548 

xalan2.7 0.77 0.766 0.735 0.718 

xerces1.4 0.73 0.672 0.651 0.555 

ivy2.0 

ant1.7 0.5 NA 0.576 0.271 

camel1.6 0.5 NA 0.5 0.326 

jedit4.3 0.5 NA 0.61 0.154 

log4j1.2 0.51 0.031 0.505 0.021 

lucene2.4 0.53 0.111 0.52 0.076 

poi3.0 0.51 0.042 0.518 0.082 

synapse1.2 0.51 0.023 0.541 0.151 

xalan2.7 0.5 0.015 0.517 0.065 

xerces1.4 0.52 0.064 0.52 0.077 

synapse1.2 

ant1.7 0.66 0.47 0.702 0.538 

camel1.6 0.52 0.197 0.509 0.169 

ivy2.0 0.76 0.474 0.756 0.458 

jedit4.3 0.62 0.067 0.579 0.063 

log4j1.2 0.54 0.147 0.557 0.381 

lucene2.4 0.53 0.283 0.541 0.401 

poi3.0 0.54 0.185 0.772 0.754 

xalan2.7 0.7 0.663 0.62 0.498 

xerces1.4 0.61 0.38 0.636 0.444 

xalan2.7 

ant1.7 0.52 0.374 0.501 0.365 

camel1.6 0.5 0.323 0.513 0.052 

ivy2.0 0.56 0.224 0.554 0.203 

jedit4.3 0.55 0.048 0.504 0.044 

log4j1.2 0.56 0.296 0.5 0.959 

lucene2.4 0.6 0.698 0.5 0.748 

poi3.0 0.51 0.288 0.507 0.028 

synapse1.2 0.54 0.491 0.503 0.023 

xerces1.4 0.67 0.843 0.506 0.023 

xerces1.4 

ant1.7 0.54 0.381 0.536 0.379 

camel1.6 0.55 0.346 0.55 0.348 

ivy2.0 0.53 0.213 0.508 0.167 

jedit4.3 0.53 0.047 0.552 0.049 
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log4j1.2 0.54 0.156 0.514 0.264 

lucene2.4 0.5 0.736 0.525 0.736 

poi3.0 0.54 0.783 0.578 0.79 

synapse1.2 0.55 0.533 0.553 0.531 

xalan2.7 0.52 0.968 0.541 0.89 

Table 4 AUC and F value of LR and LR+ 

Null Hypothesis (H0): The (AUC, F-measure) results of CPDP models of the Logistic 

regression without yeo-johnson transformation (LR) and with transformation (LR+) 

approach are same when applied to 10 projects ( PROMISE repository datasets) with all 

possible 90 combinations.  

Alternate Hypothesis (H0a): The (AUC, F-measure) results of CPDP models of the 

Logistic regression without yeo-johnson transformation (LR) and with transformation 

(LR+) approach are different when applied to 10 projects ( PROMISE repository datasets) 

with all possible 90 combinations. 

Friedman Test analysis  

According to the test performed on the AUC and F values it is shown that LR+ result are 

non significant but in 53% of the results are better in LR+ than LR with p-value as 0.05.  

5.2 RQ2: Does this transformation approach work well for the other classifier? 

Table 5 and table 6 provide the performance measure like AUC and F-measure all 

classifier LR+, random forest, MLP and naïve respectively. To empirical study shows that 

in more than 54% cases LR+ outperform than LR. To statistically validate our result we 

perform the Friedman test for the below hypothesis. 

Null Hypothesis (H1): The (AUC, F-measure) results of CPDP models of all the classifier 

are same when applied to 10 projects (PROMISE repository datasets) with all possible 90 

combinations. 

Alternate Hypothesis (H1a): The (AUC, F-measure) results of CPDP models of all the 

classifier are different. When applied to 10 projects (PROMISE repository datasets) with 

all possible 90 combinations. 
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    AUC 

Training Testing NB RF MLP LR 

ant1.7 

camel1.6 0.621 0.592 0.602 0.518 

ivy2.0 0.79 0.834 0.808 0.594 

jedit4.3 0.636 0.616 0.617 0.667 

log4j1.2 0.671 0.556 0.51 0.503 

lucene2.4 0.705 0.686 0.631 0.505 

poi3.0 0.836 0.784 0.8 0.504 

synapse1.2 0.745 0.749 0.751 0.546 

xalan2.7 0.737 0.887 0.757 0.528 

xerces1.4 0.788 0.598 0.706 0.502 

camel1.6 

ant1.7 0.782 0.737 0.68 0.514 

ivy2.0 0.756 0.733 0.716 0.647 

jedit4.3 0.592 0.517 0.549 0.637 

log4j1.2 0.643 0.618 0.567 0.536 

lucene2.4 0.644 0.687 0.6 0.579 

poi3.0 0.705 0.72 0.541 0.522 

synapse1.2 0.681 0.689 0.676 0.615 

xalan2.7 0.651 0.819 0.539 0.53 

xerces1.4 0.725 0.702 0.823 0.59 

jedit4.3 

ant1.7 0.749 0.768 0.632 0.531 

camel1.6 0.515 0.562 0.602 0.511 

ivy2.0 0.739 0.8 0.71 0.5 

log4j1.2 0.614 0.663 0.618 0.5 

lucene2.4 0.605 0.71 0.598 0.5 

poi3.0 0.751 0.69 0.776 0.502 

synapse1.2 0.671 0.694 0.531 0.506 

xalan2.7 0.681 0.83 0.833 0.503 

xerces1.4 0.525 0.564 0.871 0.5 

log4j1.2 

ant1.7 0.756 0.564 0.698 0.508 

camel1.6 0.611 0.55 0.603 0.507 

ivy2.0 0.74 0.628 0.631 0.505 

jedit4.3 0.576 0.584 0.546 0.506 

lucene2.4 0.675 0.551 0.69 0.588 

poi3.0 0.758 0.618 0.674 0.525 

synapse1.2 0.742 0.563 0.59 0.5 

xalan2.7 0.802 0.664 0.601 0.576 

xerces1.4 0.659 0.527 0.529 0.503 

lucene2.4 ant1.7 0.785 0.767 0.744 0.634 
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camel1.6 0.632 0.637 0.644 0.594 

ivy2.0 0.81 0.78 0.756 0.717 

jedit4.3 0.621 0.567 0.621 0.659 

log4j1.2 0.65 0.594 0.716 0.621 

poi3.0 0.831 0.766 0.776 0.701 

synapse1.2 0.755 0.728 0.715 0.636 

xalan2.7 0.822 0.902 0.836 0.632 

xerces1.4 0.724 0.703 0.818 0.71 

poi3.0 

ant1.7 0.797 0.802 0.781 0.713 

camel1.6 0.612 0.639 0.578 0.559 

ivy2.0 0.8 0.796 0.784 0.697 

jedit4.3 0.614 0.637 0.613 0.566 

log4j1.2 0.624 0.581 0.647 0.629 

lucene2.4 0.69 0.739 0.683 0.574 

synapse1.2 0.76 0.763 0.741 0.658 

xalan2.7 0.772 0.664 0.738 0.765 

xerces1.4 0.794 0.734 0.723 0.728 

ivy2.0 

ant1.7 0.818 0.791 0.81 0.5 

camel1.6 0.605 0.551 0.614 0.5 

jedit4.3 0.623 0.636 0.617 0.5 

log4j1.2 0.627 0.677 0.525 0.508 

lucene2.4 0.699 0.679 0.619 0.526 

poi3.0 0.841 0.741 0.765 0.511 

synapse1.2 0.753 0.742 0.727 0.506 

xalan2.7 0.792 0.842 0.706 0.504 

xerces1.4 0.753 0.516 0.663 0.516 

synapse1.2 

ant1.7 0.798 0.8 0.777 0.658 

camel1.6 0.615 0.608 0.602 0.521 

ivy2.0 0.797 0.818 0.777 0.762 

jedit4.3 0.61 0.603 0.597 0.619 

log4j1.2 0.622 0.547 0.534 0.54 

lucene2.4 0.726 0.691 0.672 0.534 

poi3.0 0.84 0.806 0.806 0.539 

xalan2.7 0.799 0.873 0.781 0.703 

xerces1.4 0.824 0.817 0.847 0.614 

xalan2.7 

ant1.7 0.743 0.76 0.791 0.52 

camel1.6 0.598 0.586 0.588 0.5 

ivy2.0 0.754 0.738 0.776 0.557 

jedit4.3 0.512 0.679 0.62 0.547 
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log4j1.2 0.644 0.537 0.625 0.556 

lucene2.4 0.751 0.656 0.693 0.598 

poi3.0 0.811 0.716 0.772 0.506 

synapse1.2 0.754 0.689 0.732 0.535 

xerces1.4 0.629 0.537 0.769 0.673 

xerces1.4 

ant1.7 0.67 0.726 0.713 0.535 

camel1.6 0.576 0.589 0.607 0.545 

ivy2.0 0.678 0.619 0.723 0.528 

jedit4.3 0.514 0.529 0.682 0.531 

log4j1.2 0.554 0.53 0.514 0.542 

lucene2.4 0.674 0.629 0.669 0.503 

poi3.0 0.753 0.792 0.668 0.536 

synapse1.2 0.7 0.686 0.693 0.553 

xalan2.7 0.816 0.646 0.699 0.519 

Table 5 AUC value of all classifiers 

    F 

Training Testing NB RF MLP LR 

ant1.7 

camel1.6 0.306 0.276 0.135 0.087 

ivy2.0 0.374 0.479 0.455 0.308 

jedit4.3 0.097 0.111 0.132 0.276 

log4j1.2 0.421 0.225 0.256 0.011 

lucene2.4 0.517 0.323 0.16 0.02 

poi3.0 0.556 0.287 0.042 0.014 

synapse1.2 0.573 0.537 0.566 0.186 

xalan2.7 0.42 0.366 0.115 0.107 

xerces1.4 0.372 0.31 0.309 0.009 

camel1.6 

ant1.7 0.517 0.207 0.144 0.086 

ivy2.0 0.307 0.326 0.344 0.347 

jedit4.3 0.078 0.15 0.085 0.138 

log4j1.2 0.612 0.225 0.234 0.48 

lucene2.4 0.505 0.217 0.34 0.362 

poi3.0 0.41 0.12 0.75 0.247 

synapse1.2 0.556 0.367 0.557 0.436 

xalan2.7 0.428 0.121 0.101 0.111 

xerces1.4 0.516 0.206 0.225 0.357 

jedit4.3 

ant1.7 0.463 NA 0.364 0.13 

camel1.6 0.3 NA NA 0.051 

ivy2.0 0.337 NA NA NA 
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log4j1.2 0.225 NA 0.959 NA 

lucene2.4 0.179 NA 0.748 NA 

poi3.0 0.214 NA 0.777 0.007 

synapse1.2 0.384 NA 0.504 0.023 

xalan2.7 0.184 NA 0.994 0.013 

xerces1.4 0.265 NA 0.853 NA 

log4j1.2 

ant1.7 0.466 0.363 0.364 0.367 

camel1.6 0.34 0.326 0.326 0.321 

ivy2.0 0.269 0.205 0.204 0.206 

jedit4.3 0.051 0 0.044 0.044 

lucene2.4 0.714 0.748 0.748 0.406 

poi3.0 0.807 NA 0.777 0.757 

synapse1.2 0.6 0.504 0.504 0.504 

xalan2.7 0.706 0.069 0.994 0.263 

xerces1.4 0.728 NA NA 0.063 

lucene2.4 

ant1.7 0.498 0.443 0.418 0.43 

camel1.6 0.349 0.361 0.364 0.354 

ivy2.0 0.329 0.27 0.333 0.333 

jedit4.3 0.061 0.044 0.039 0.082 

log4j1.2 0.616 0.693 0.669 0.65 

poi3.0 0.839 0.75 0.801 0.714 

synapse1.2 0.606 0.576 0.566 0.555 

xalan2.7 0.645 0.802 0.785 0.418 

xerces1.4 0.692 0.78 0.611 0.63 

poi3.0 

ant1.7 0.498 0.493 0.55 0.508 

camel1.6 0.339 0.364 0.321 0.317 

ivy2.0 0.296 0.254 0.315 0.308 

jedit4.3 0.056 0.047 0.053 0.054 

log4j1.2 0.713 0.723 0.687 0.664 

lucene2.4 0.693 0.733 0.418 0.574 

synapse1.2 0.585 0.55 0.563 0.591 

xalan2.7 0.664 0.718 0.744 0.766 

xerces1.4 0.638 0.69 0.545 0.672 

ivy2.0 

ant1.7 0.558 0.124 0.012 NA 

camel1.6 0.24 0.011 0.107 NA 

jedit4.3 0.101 0.133 0 NA 

log4j1.2 0.346 NA NA 0.031 

lucene2.4 0.373 0.039 0.01 0.111 

poi3.0 0.374 0.014 0.007 0.042 
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synapse1.2 0.536 0.129 0.023 0.023 

xalan2.7 0.32 0.013 0.009 0.015 

xerces1.4 0.298 0.068 0.037 0.064 

synapse1.2 

ant1.7 0.525 0.503 0.522 0.47 

camel1.6 0.29 0.246 0.214 0.197 

ivy2.0 0.368 0.444 0.314 0.474 

jedit4.3 0.074 0.077 0.061 0.067 

log4j1.2 0.506 0.428 0.519 0.147 

lucene2.4 0.634 0.42 0.556 0.283 

poi3.0 0.674 0.208 0.427 0.185 

xalan2.7 0.54 0.42 0.355 0.663 

xerces1.4 0.557 0.452 0.63 0.38 

xalan2.7 

ant1.7 0.433 0.364 0.364 0.374 

camel1.6 0.342 0.326 0.326 0.323 

ivy2.0 0.244 0.204 0.204 0.224 

jedit4.3 0.04 0.044 0.044 0.048 

log4j1.2 0.855 0.959 0.959 0.296 

lucene2.4 0.776 0.748 0.748 0.698 

poi3.0 0.816 0.777 0.777 0.288 

synapse1.2 0.547 0.504 0.504 0.491 

xerces1.4 0.805 0.853 0.853 0.843 

xerces1.4 

ant1.7 0.41 0.364 0.369 0.381 

camel1.6 0.363 0.34 0.34 0.346 

ivy2.0 0.238 0.205 0.211 0.213 

jedit4.3 0.037 0.044 0.045 0.047 

log4j1.2 0.837 0.948 0.948 0.156 

lucene2.4 0.756 0.747 0.745 0.736 

poi3.0 0.818 0.783 0.777 0.783 

synapse1.2 0.551 0.51 0.517 0.533 

xalan2.7 0.865 0.956 0.927 0.968 

Table 6 F-measure of all classifiers 

Friedman Test analysis  

According to the test performed on the AUC and F values it is shown that naïve bayes 

result are asymptotically significant when compared with all other classifier with p-value 

as less than 0.01.Hence, we reject null hypothesis and conclude that Naïve bayes 

performed better than other classifier when applied on transformed data.    
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CHAPTER-6 

CONCLUSION AND FUTURE WORK 

 

CPDP is one of the most challenging areas. Here, we use different training and testing set 

having software metrics as independent variable. These metrices exhibit power law 

distribution. Data normality is one of the main causes behind inaccurate predictions. Many 

transformations (log, rank and boxcox) have been studied but these transformations have 

some inappropriate behavior to values close to zero so we first need to shift our data. To 

remove this problem we have studied yeo-johnoson transformation. This transformation 

can handle zero and negative data also. Here in this thesis, we investigated the effect of this 

transformation in CPDP. To generalize our study we also explored whether this 

transformation work well for other classifier or not. 

In this study we have seen that yeojohnson transformed data provide asymptotically better 

result than the without transformed data. We have used logistic regression for this 

experiment and by using Firedman‟s test on AUC and F-measure we have statistically 

validated our results. We further explored our studied with other classifiers such as random 

forest, naïve bayes and multilayer perceptron to generalize our result. Here naïve bayes out 

perform well than other classifier. We also validate our result with Friedman test. A pair-

wise comparison with wilcoxon signed rank test and it proves that naïve bayes outperform 

significantly with AUC and F-measure. 

For Future work, we will compare the other transformation like log, rank and boxcox with 

this transformation. We recommend future studies to experiment with this transformation 

for data normalization for potential gains in cross project defect prediction. We are also 

interested to apply more advanced ensemble learners with our approach. 
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