
CROSS PROJECT DEFECT PREDICTION

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by:

ANAMIKA AGRAWAL

(2K16/SWE/03)

Under the supervision of:

DR. RUCHIKA MALHOTRA

(ASSOCIATE PROFESSOR, CSE)

Department of CSE, DTU

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

2016-2018

ii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 DELHI TECHNOLOGICAL UNIVERSITY
 Formerly Delhi College of Engineering)

 Bawana Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, ANAMIKA AGRAWAL, 2K16/SWE/03 a student of M.TECH (Software

Engineering) declare that the project Dissertation titled “Cross Project Defect

Prediction” which is submitted by me to Department of Computer Science and

Engineering, Delhi Technological University, Delhi in partial fulfilment of the

requirement for the award of the degree of Master of Technology, is original and not

copied from any source without proper citation. This work has not previously formed

the basis for the award of any Degree, Diploma, Fellowship or other similar title or

recognition.

Place: DTU, Delhi ANAMIKA AGRAWAL

Date: M.Tech. (SWE)

 (2K16/SWE/03)

iii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

CERTIFICATE

This is to certify that the project report entitled “Cross Project Defect Prediction” is a

bonafide record of the work carried out by ANAMIKA AGRAWAL (roll no.

2K16/SWE/03) under my guidance and supervision during the academic session 2016-

2018 in the partial fulfilment of the requirement for the award of degree of Master of

Technology in Software Engineering from Delhi Technological University, Delhi. To

the best of my knowledge, the matter incorporated in the thesis has not been submitted

to any other University/Institute for the award of any Degree or Diploma.

Place: DTU, Delhi Dr. RUCHIKA MALHOTRA

Date: (Associate Professor, CSE, DTU)

 Supervisor

iv

ACKNOWLEDGEMENT

First of all I would like to thank the Almighty, who has always guided me to work on

the right path of the life. My greatest thanks are to my parents who bestowed ability and

strength in me to complete this work.

I owe a profound gratitude to my project guide Dr. Ruchika Malhotra Ma’am who has

been a constant source of inspiration to me throughout the period of this project. It was

her competent guidance, constant encouragement and critical evaluation that helped me

to develop a new insight into my project. Her calm, collected and professionally

exemplary style of handling situations not only steered me through every problem, but

also helped me to grow as a matured person.

I am also thankful to her for trusting my capabilities to develop this project under her

guidance.

 ANAMIKA AGRAWAL

 M.TECH (SWE)

 2K16/SWE/03

v

ABSTRACT

Cross-project defect prediction (CPDP) recently gained considerable attention. Many

studies have provided the success of cross-project defect prediction (CPDP) to predict

defects. But, most of the datasets share the same limitations: as the metrics (independent

variable) hardly follow a normal distribution. They are mostly skewed data. Hence,

these metrics has to be transformed before the training and predicting the defect.

Various transformations have been studied in the area of cross-project defect prediction

like rank transformation, log transformation and Box-Cox transformation. The yeo-

johnson transformations (extended versions of the box-cox transformation) have not

been used in the defect prediction area. Since, the metric values contain Zero as a value

so most of the transformation did not work for Zero value, so we need to do some pre-

computation in data. But yeo-johnson transformation can be used for zero values as well

as negative value. This study investigates the effectiveness of yeo-johnson

transformation on cross-project defect prediction. we have conducted our experiment on

publicly available Promise data sets. Comparing logistic regression model built using

with and without yeo-johnson transformation, transformed approach gives better result

than raw data in 53% cases and 70% project achieved better result using this

transformation. Further, we also investigate which classifier is well suited for this

transformation, which is statistically tested by Friedman's test. Naïve bayes outperforms

better among all classifiers.

vi

CONTENTS

Titles Page No.

CANDIDATE’S DECLARATION i

CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVATIONS ix

CHAPTER 1 INTODUCTION 1

1.1 Overview 1

1.2 Motivation 2

1.3 Research Objective 2

1.4 Organization of Thesis 3

CHAPTER 2 LITERATURE REVIEW 5

CHAPTER 3 EXPERIMENTAL DESIGN 7

3.1 Independent And dependent variables 7

3.2 Empirical data collection 7

3.3 Performance measures 8

3.3.1 AUC 9

3.3.2 Precision 9

3.3.3 Recall 9

3.3.4 F-measure 9

3.4 Statistical Test 9

3.3.1 Friedman Test 10

3.5 Tool used 10

3.5.1 RStudio 10

3.5.2 SPSS 11

CHAPTER 4 RESEARCH METHODOLOGY 13

4.1 Normality measurements 14

vii

4.1.1 Skewness 14

4.1.2 Kurtosis 15

4.2 Yeo-Johnson transformation 15

4.2.1 Estimating lambda value 16

4.2.2 Min Max transformation 17

4.3 Machine learning techniques 17

4.3.1 Logistic Regression 17

4.3.2 Random Forest 18

4.3.3 Multi-Layer Perceptron 19

4.3.4 Random Forest 21

CHAPTER 5 EMPERICAL RESULT & ANALYSIS 22

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 31

REFRENCES 32

viii

LIST OF TABLES

Table No. Title Page No.

Table 1 Summary of Projects 8

Table 2 Confusion matrix 8

Table 3 Power-law transformation based on lambda value 16

Table 4 AUC and F-value of LR and LR+ 23

Table 5 AUC value of all classifiers 26

Table 6 F-value of all classifiers 28

ix

LIST OF FIGURES

Figure No. Title Page No.

Fig. 1 RStudio 11

Fig. 2 SPSS 12

Fig 3(a) Data Preprocessing 13

Fig 3(b) Cross Project Defect Prediction 13

Fig 4(a) Skewness 14

Fig 4(a) Kurtosis 15

Fig. 5 Implementation of Logistic Regression in RStudio 18

Fig. 6 Implementation of Random Forest in RStudio 19

Fig. 7(a) Multi-layer Perceptron 20

Fig. 7(b) Implementation of Multi-layer Perceptron in RStudio 20

Fig. 8 Implementation of Naïve Bayes in RStudio 21

x

LIST OF ABBREVIATIONS

CPDP

Cross Project Defect Prediction

LR Logistic regression

LR+

Logistic regression with transformation

NB

Naïve Bayes

RF

Random Forest

ROC-AUC

Receiver Operating Characteristics-Area Under Curve

MLP

Multi-layer Perceptron

YJ

Yeo-johnson transformation

CHAPTER 1

INTRODUCTION

1.1 Overview

Defect prediction focuses on detecting fault-prone modules precisely and helps to allocate

limited resources in testing and maintenance. As we know, most of the software are used in

safety purposes, other important work where the severity to fault should be minimum.

That‟s why defect prediction is the important area in the field of research. In defect

prediction most of the approaches uses same data for training and predicting. These

approaches typically use various features, e.g., process metrics, previous-defect metrics,

source code metrics etc., to characterize a class/file/module and employ a classification

algorithm to predict if a class/file/module is defective or not. Most defect prediction

approaches are trained and applied on classes/files/modules from the same project. But for

the new project, such historical data is not always available in practice. So the new projects

don‟t have enough training data. One potential way of predicting defects in the new

projects without historical data is to learn predictors from data of other projects. The

method which uses other project for training predictors and testing different project data to

analyze defect is known as ―cross-project defect prediction”.

A cross project defect prediction can be with-in company defect prediction or cross-

company defect prediction. In with-in company defect prediction we use only same project

but different releases (versions) to train the predictor and perform prediction on other

release. In cross company defect prediction we use similar project but not the same to train

the predictor and perform prediction on other release. Software metrics (e.g. weighted

method per class, depth of inheritance and lines of code) are the independent variable

which is the major part of the training data used to build a defect prediction model.

Anamika Agrawal Cross Project Defect Prediction Page 2

Previous studies Louridas et al. [2], Concas et al. [1] and Zhang [3] report that software

metrics are heavily skewed and rarely follow a normal distribution, but they constitute the

power-law distribution and this skewed behavior is the one of biggest threats to the fitness

of classifiers to provide better prediction (Cohen et al. [4]. In the previous studies most

widely methods used to normalize the metrics are boxcox, log and rank transformations as

shown in the systematic literature review by Hosseini et al. [5]. The log transformation

covert the original metric values by their logarithm and the rank transformation covert the

original metric values with their ranks. But these transformations do not provide result for

the zero values so we first need to first shift the metric values. Here in this thesis, we are

first transforming our data using yeo-johnson which work for all values and then use

logistic regression to predict the defect. We also use different machine learning algorithm

logistic regression, random-forest, multi-layer perceptron and naïve bayes (implemented in

R language) for investigating the effect of this transformation on classifier and to

generalize the result.

1.2 Motivation

Defect prediction is an important aspect of a software development process. As we know

maintaining software takes 67% of the cost of total software. So to reduce the cost we do

defect predictions using historical data so that new software have least defect and hence

cost reduces. In prior studies only few transformations have been studied but as best of our

knowledge yeo-johnson has not been studied so far. We are studying this because this is a

power law transformation extended version of BoxCox transformation which can be used

for zero and negative values so that we don‟t need to shift original values of our data.

Hence, originality of data can be maintained.

1.3 Research objective

In this thesis, we try to find empirical evidences to answer the following questions:

RQ1: Is Yeo-johnson transformation effectively increases the normality of software

metrices and improves the performance of CPDP?

Anamika Agrawal Cross Project Defect Prediction Page 3

The yeo-johnson transformation significantly improves the normality of software metrics

and reduces both skewness and kurtosis. We use logisitic regression as classifier where

53% of the total investigated pairs give better result with this transformation and 70% of

project has best AUC and F-measure with this transformation.

RQ2: Does this transformation approach work well for the other classifier?

We generalize our study by investigating our approach with four classifiers (MLP, Logisitc

regression, random forest and naïve bayes). We find that our approach generally out

performs the better than model built without using this transformation.

However, we conducted experiments on 10 public data sets obtained from 10 projects. All

these data sets are available at the PROMISE Data Repository [6]. We employed

yeojohnson transformation and four machine learning algorithms to construct prediction

models by using R language and its framework RStudio [7].We transform both training

and testing set so that the effect of this normalization is equivalent to both the datasets.

1.4 Thesis Organization

This thesis work is bifurcated into six different chapters. Starting with the abstract, six

chapters and references.

Chapter 1 gives the brief introduction about the issues discussed in this study. The chapter

explains the need and use of cross project defect prediction. It defines the explaining how

they affect the software systems and human life. It also addresses the heavily skewed data

problem, how it has been leading to the inaccurate prediction of defect prone classes. The

goals of this empirical research are stated in the form of questions at the end of this

chapter.

Chapter 2 sums up the related studies with respect to software cross project defect

prediction. A lot of research has been carried out in defect prediction area and various

transformations had been used in this context. This chapter summarizes the major

contributions and findings of the previous studies. Many studies [8], [9], [10], [11], [12]

have been investigating in this field by using various transformation techniques to increase

the normality of data. Most of the studies use rank transformation and log transformation

Anamika Agrawal Cross Project Defect Prediction Page 4

while other methods are still unexplored in the area of defect prediction. Only few defect

prediction study [8] has used boxcox method while the methods like yeo-johnson,

lambertWxF are still novel. Furthermore, the related work describes the previous studies

which have applied various ML techniques for building models.

Chapter 3 provides the details regarding the experimental design of the study. It describes

the dependent, independent variables used to carry out the research. The data collection

method, different datasets and the various procedural metrics used in this study are

mentioned in detail. The chapter further defines the performance measure used to evaluate

the prediction models and discusses the statistical test selection briefly.

Chapter 4 describes the research methodology used in the experiment. It briefly discusses

the various prediction models together with the detailed explanation of the algorithms in

the RStudio. A proposed transformation method yeo-johnson is also discussed with full

details and implementation in RStudio. A detailed discussion is carried out regarding the

impact of normalizing the data.

In Chapter 5 the obtained results are stated and analyzed using statistical tests. This chapter

answers the above stated questions in chapter 1. We have performed an extensive

comparison between various prediction models using non-parametric tests, Friedman. This

chapter also states the advantageous use of the proposed method yeo-johnson and

describes how it is better to normalize the data.

At last, Chapter 6 concludes the final outcome of the study. It states which method

performed the best and guides the researchers to make use of yeo-johnson transformation

to further improve the performance of defect prediction models. The chapter also provides

the future scope of the research.

Anamika Agrawal Cross Project Defect Prediction Page 5

CHAPTER 2

LITRATURE STUDY

This section provides the prior related study in the field of defect prediction and use of

different transformation technique for the cross project defect prediction.

Distribution of data has a very big impact on the defect prediction models. Normal

distribution can benefit statistical methods (Osborne [1]), and it also provide better

performance of linear models (Kuhn et al. [31]). To measure normal distribution of data we

see the skewness and kurtosis value of the data. Most of the software metrices are heavily

skewed and doesn‟t follow the normal distribution [3] and to reduce the skewness and

enhance normality, transformation is the one of most common method (Bishara et al. [32]).

In prior studies many researcher used different transformation defects natural log

transformation and the rank transformation (e.g., Jiang et al. [33], Menzies et al. [34], Song

et al. 2011[35] and Cruz et al. [33]) method to normalize the data to predict defects on

software metrics. However, use of the log transformation significantly improves the

performance of only some Classifier (e.g., Naïve Bayes) but non-significant for other

classifier as (e.g., decision tree) [34], [35]. Jiang et al. [33] studies shows that when

different transformation applied on ten different classifier then it is concluded that

classifiers has different impact of these transformation. Different results were produced on

same classifier with different transformations. It has been shown that naïve bayes perform

better with rank transforamation and random forest with log transformation. In the CPDP,

He et al. [36] has studies distribution characteristics and use different transformation like

rank transformation for Naive Bayes, but no transformation for logistic regression and

random forest.

Anamika Agrawal Cross Project Defect Prediction Page 6

As technologies are growing and revolving so fast that we came across various new

technologies. Software built using these technologies does not have enough training set to

predict defects. As these projects may also differ in terms of software metric to measure all

the aspects of the software. This cause the problem of data heterogeneity between the

training and testing projects (Zimmermann et al. [37]). To address this problem, Menzies

et al. [38] investigated that how can we relate two different based on these metric values.

These studies observe that using only the similar instances of both training and testing

project can achieves better performance in CPDP than using all instances. Another study

Turhan et al. [39] recommend that within project data like for the latest release we can also

use the previous release data for CPDP and it yield better result than other project. An

alternative solution is to transfer the knowledge from training data to testing projects to

improve the performance. Various methods have been used for this and a matrix matching

which relate the different instance in training and testing set by finding the type of relation

they share and on transfer component analysis (TCA) to transform the training and target

projects together (Nam et al. [30]). In Zhang et al. [8], a study has been done which include

the simple rank, log and boxcox transformation to transform the metric value and effect of

all these transformation have been studies with six classifiers. Here in our study, We

perform a different transformation yeo-johnson which is not studied in the field of defect

.prediction and CPDP as best of our knowledge. We investigate that does this

transformation can help in cross project defect prediction. We thoroughly compare the

result of 10 projects with all possible 90 combination of training and testing pairs (i.e.

RQ1) and also investigate for which classifier it produced better result among random

forest, multilayer perceptron, naïve bayes and logistic regression(i.e. RQ2). We selected

these classifier based on previous studies in the area.

Anamika Agrawal Cross Project Defect Prediction Page 7

CHAPTER 3

EXPERIMENTAL DESIGN

This section provides the details of design setting and tools used in our study.

3.1 Independent And dependent variables

This study uses „bug‟ as a dependent variable. Bug is a binary variable which indicates the

defective nature of the class. A class is said to be defect prone if there is a probability of

detecting a fault in the class in future versions otherwise, a class is termed as non-

defective. This binary variable is dependent on a number of other variables like Chidamber

& Kemerer, Halstead and McCabe metrics. The dependence of defect proneness over static

code metrics is considered practical as they have helped in successful detection of the

defect prone nature of the class in the past [5], [13], [15], [16]. According to the survey by

Malhotra in [19] procedural metrics are widely used metrics in more than 51% of previous

defect prediction studies and can be calculated at reasonably low costs for both small and

large systems.

These independent variables are the set of value which rarely follow normal distribution

and there skewed behavior does not produce better result. So in most of the studies these

metric values are first transformed and then used for the prediction.

3.2 Empirical Data collection

We evaluate our models using defect datasets originally collected by Jureczko and

Madeyski [23] from the PROMISE data repository [6] which consists of 10 releases from

10 different open source projects. Each instance in the 10 datasets consists of two parts: 20

static code metrics and a label (defective or clean).

Anamika Agrawal Cross Project Defect Prediction Page 8

PROJECT No. of classes no. of defect classes % of defect classes

ant1.7 745 166 22.281

camel1.6 965 188 19.481

ivy 2.0 352 40 11.363

jedit4.3 492 11 2.235

log4j1.2 205 189 92.195

lucene2.4 340 203 59.705

poi3.0 442 281 63.574

synapse1.2 255 86 33.725

xalan2.7 909 889 97.799

xerces1.4 573 426 74.345

Table 1 Summary of Projects

3.3 Performance measures

Performance measure is a criteria through which we can evaluate our model. Various

performance measure have been used in prior studies of cross project defect prediction like

AUC, F-measure, G-mean, precision, recall, balance as shown in the literature study [5].

Here we are evaluating our result on the basis of AUC and f-measure with precision and

recall. We are selecting AUC because it shows the tradeoff between correct and incorrect

predictions And F-measure because it includes the combined effect of precision and recall

so that our study will not be biased to these measures.

These measures are evaluated on the basis of confusion matrix obtained by model‟s

prediction. The confusion matrix contains the number of vales are predicted correctly and

incorrectly.

Table 2 Confusion matrix

Anamika Agrawal Cross Project Defect Prediction Page 9

3.3.1 Area under the Curve (ROC)

Area under the ROC Curve (AUC is a combined measure of sensitivity and specificity.

The ROC is a curve plotted between sensitivity (Recall) and (1-specificity) on the y and x-

coordinate axis respectively. It is a measure of how corrected our defective and non-

defective classes are predicted. The larger the area enclosed under the curve the better is

the performance of the ML technique.

3.3.2 Precision

Precision is a measure which evaluates that how many values predicted defective are

actually defective. So precision for defect prediction is given as:-

Precision =
correctly predicted as defective

total predicted as defective

3.3.3 Recall

Recall is a measure which evaluates that how many values are predicted defective out of

actually defective values. So recall for defect prediction is given as:-

Recall =
correctly predicted as defective

total actual defective

3.3.4 F-measure

F-measure is a measure which is the harmonic mean of both precision and recall. We use

this measure because this harmonic mean gives the best value when both precision and

recall are the best. It gives the combined result of both precision and recall. F-measure is

given as:-

𝐹 =
2 × Precision × recall

precision + recall

3.4 Statistical test

Statistical test are the test performed for inferential analysis. These are performed to find

out that the two datasets are asymptotically significant or not. Here in our study, we

Anamika Agrawal Cross Project Defect Prediction Page 10

applied these test on AUC and F values that are to evaluate our null hypothesis is rejected

or not.

3.4.1 Friedman Test

It is non- parametric test which is used to compare the two or more methods with multiple

values. It is used when it contains duplicate values. When we have different techniques and

multiple values we can‟t find out which one is better than other. Here we have four

classifier as random forest, multi layer perceptron, naïve bayes and logistic regression.

Here we used SPSS tool to perform this test and find that naïve bayes has the best ranking

among all the classifiers. We had performed this test on two different performance measure

AUC and F- measure , both concluded that naïve bayes is asymptotically significant in

both the cases when applied with p value less than 0.05.this test is used to find that our null

hypothesis is rejected or not.

3.5 Tools used

This includes the tools which are used to perform our experiment in the study. We broadly

used two tools.

3.5.1 RStudio

RStudio is an IDE of R language, for programming and statistical analysis. RStudio is an

open source which is freely available. It is available in two editions which are RStudio

Desktop and RStudio server. We have used RStudio desktop application but with the use

of RStudio server we can access our IDE with the help of a browser also. Here, we can

import our data in various formats like CSV and various libraries are there which have the

implementation of various method. We have used these libraries and modifies according to

the work. We have chosen this IDE because it‟s not only a tool but had a methods which

can be modifies according to the situation and made our work simple and efficient.

Anamika Agrawal Cross Project Defect Prediction Page 11

Fig 1 RStudio

3.5.2 SPSS

Statistical Package for the Social Sciences is a tool used for statistical analysis. This tool

has various features which can be directly accessed by drop down menu. It is the most

widely used tool for the market research. We have used this tool to validate our result by

applying Friedman‟s.

Anamika Agrawal Cross Project Defect Prediction Page 12

Fig 2 SPSS

Anamika Agrawal Cross Project Defect Prediction Page 13

CHAPTER 4

RESEARCH METHODOLOGIES

The Fig 3(a) and Fig 3(b) describes the flow of the events occurred in this study.

Fig 3(a) Data Preprocessing

Fig 3(b) Cross Project Defect Prediction

Anamika Agrawal Cross Project Defect Prediction Page 14

Firstly, we transformed our data using yeo-johnson transformation [24] and normalized to

the scale of 0 to 1. This transformed data is used for further study. We preprocessed both

training and testing set with each metrics independently so that the impact is equivalent to

both the sets.

Finally, we have a model having two steps a model building and prediction steps. Where

model building includes the formation of all the possible combination of training and

testing set. Here we have total 90 combinations of 10 projects. And prediction step chooses

a classifier and apply the prediction to predict the label.

4.1 Normality measurements

Widely used measures of data normality are kurtosis and skewness. Here, we computed the

skewness and kurtosis of these software metrics, using the R functions skewness [25] and

kurtosis [25] in the R package e1071 [27].

4.1.1 Skewness

It measures the degree of asymmetry in the probability distribution of the values of

software metric. We find skewness of all the metrics and try to normalize the data so that

skewness approaches to zero because normalized curve has zero skewness. Skewness can

be either positive, negative or zero as illustrated in Fig. 4(a). If the values are greater than 1

and less than -1 means data is heavily skewed.

Fig 4(a) Skewness

Anamika Agrawal Cross Project Defect Prediction Page 15

4.1.2 Kurtosis

It measures the peakness or flatness (e.g., the width of the peak) in the probability

distribution of the values of software metric. The value of kurtosis should be zeros for

normal distribution. It can either be positive, negative or zero. Positive and negative

kurtosis are illustrated in Fig. 4(b).

Fig. 4(b) Kurtosis

4.2 Yeo-Johnson transformation

YJ transformation is the extended version of boxcox power law transformation. Boxcox is

used for strictly positive numbers. So it has a dependency on the value of values to be

transformed but YJ does not have any restriction on the input value. YJ transformation is

same as Boxcox for positive values and also works well for Zero and negative value

without shifting the values.

As per best of our knowledge YJ transformation has not been studied in the field of CPDP.

BoxCox transformation is given as:-

EQ(1) BoxCox Transformation

Anamika Agrawal Cross Project Defect Prediction Page 16

YJ transformation is given as:-

EQ(2) Yeo-Johnson Transformation

Here, y is the values to be transformed. As we can see in above equations BoxCox is only

valid for the strictly positive values as when the value of ʎ=0 then there is log-

transformation and the log transformation of zero is infinity. So to use the BoxCox we first

need to shift the data values. But in YJ transformation it does not depend on the value of y

also where ʎ=0. YJ contains all the good properties of the BoxCox transformation that‟s

why we want to explore this in our thesis.

4.2.1 Estimating lambda value

The value of lambda plays a very important role in this transformation.

Values of Lambda(ʎ) Type of power-law transformation

0.0 Log transformation

1.0 No transformation

0.5 Square-root transformation

-1.0 Inverse transformation

Table-3 Power-law transformation based on lambda value

Since the different metrics rarely follow the same distribution so we estimate the lambda

parameter for each metrics using “yeojohnson” method of “BestNormalize” [28] library in

R, which gives the best estimated value of lambda. This lambda values gives

approximately minimum skewness to the metric value and transform values according to

Anamika Agrawal Cross Project Defect Prediction Page 17

the estimated lambda. Here in our work, we transform each software metric values

independently for both training and testing datasets.

4.2.2 Min Max transformation

Most of the transformed values are in a wide range. So min-max transformation scales our

values to the scale of 0 and 1, which is better for classification models (Han et al. [29],

Nam et al. [30]).

𝑋 =
𝑦 − min

𝑚𝑎𝑥 − min
+ 1

EQ(3) Min-Max Transformation

4.3 Machine learning techniques

We have used logistic regression to find the impact of yeo-johnson transformation to the

software metrics for predicting defect. We also used four machine learning classifier

(logistic regression, random forest, multi layer perceptron and naïve bayes) to generalize

the result of our study.

4.3.1 Logistic Regression

Logistic regression is the classification algorithm used when dependent variable is binary.

Here bug is the binary dependent variable. This dependent variable has class as either zero

(non-defective) or one (defective). Logistic regression model where the log-odds of the

probability of an event is a linear combination of independent or predictor variables. The

binary logistic regression is where the dependent variable is in two classes and multi

logistic regression model is where dependent variable is in multiclass. These values are

ordinal values which classify the data which describe according to the severity of the

defects. Here we have implemented logistic regression in Rstudio using GLM library.

https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Linear_function_(calculus)

Anamika Agrawal Cross Project Defect Prediction Page 18

Fig. 5 Implementation of Logistic Regression in RStudio

4.3.2 Random Forest

Random Forest is an ensemble machine learning algorithm used for both regression and

classification problems. It is the extended version of of decision tress algorithm where

multiple decision tree are formed, this forests of trees splitting with oblique hyperplanes

can gain accuracy as they grow without suffering from overtraining, as long as the forests

are randomly restricted to be sensitive to only selected feature dimensions. Here we have

implemented random forest in Rstudio using rpart library.

https://en.wikipedia.org/wiki/Feature_(machine_learning)

Anamika Agrawal Cross Project Defect Prediction Page 19

Fig. 6 Implementation of Random Forest in RStudio

4.3.3 Multilayer perceptron

Basically, a multilayer perceptron (MLP) is a feed-forward artificial neural model. There is

single hidden layer lies between input-output layers. Its functionality is mapping the set of

inputs to a particular set of outputs means data row in one direction from input to the

output layer. Each join is a neuron leaving the input joins and each join has an activation

function (Y) corresponding to it. MLP is applying a back propagation algorithm for

training the neural network. MLP is a revision of the standard linear perceptron and can

solve the problem which is not linear-separable.

Anamika Agrawal Cross Project Defect Prediction Page 20

Fig. 7(a) Multi-layer Perceptron

Fig. 7(b) Implementation of Multi-layer Perceptron in RStudio

Anamika Agrawal Cross Project Defect Prediction Page 21

4.3.4 Naïve Bayes

Naïve Bayes belongs to family of classifier based on the probabilistic model. It assumes

that the independent variables of a datasets has its independent impact on the classifier

build and then find the correlation among the independent variables. It uses the bayes

theorem to find the conditional probability of the model. This has been proved very

efficient in supervised learning. Here we have implemented this in RStudio e1071 library.

Fig. 8 Implementation of Naïve Bayes in RStudio

Anamika Agrawal Cross Project Defect Prediction Page 22

CHAPTER 5

EMPERICAL RESULT & ANALYSIS

In this section, we discuss and analyse the results obtained by applying logistic regression

technique on yeo-johnson transformed as well as original datasets. We also try to find out

which among four ML technique outperform the other when used with this transformation.

In order to examine and equate the performance of yeojohnson transformation as well as

MC learners, we use five performance metrics: sensitivity (recall), precision, AUC, Flase

positive rate and F-measure. The results are assessed by using two non-parametric

statistical tests: Friedman and Wilcoxon signed rank test. The investigation of results is

carried out systematically by sequentially answering the research questions mentioned in

chapter 1.

5.1 RQ1: Is Yeo-johnson transformation effectively increases the normality of software

metrices and improves the performance of CPDP?

Table 4, provide the performance measure like AUC, F-measrue, precision and recall for

the logistic regression without transformation as LR and with transformation as LR+. To

empirical study shows that in more than 54% cases LR+ outperform than LR. To

statistically validate our result we perform the Friedman test for the below hypothesis.

 LR+ LR

Training Testing AUC F AUC F

ant1.7

camel1.6 0.52 0.087 0.519 0.095

ivy2.0 0.59 0.308 0.677 0.43

jedit4.3 0.67 0.276 0.628 0.119

log4j1.2 0.5 0.011 0.505 0.021

lucene2.4 0.51 0.02 0.527 0.128

poi3.0 0.5 0.014 0.521 0.113

synapse1.2 0.55 0.186 0.622 0.42

Anamika Agrawal Cross Project Defect Prediction Page 23

xalan2.7 0.53 0.107 0.556 0.2

xerces1.4 0.5 0.009 0.538 0.14

camel1.6

ant1.7 0.51 0.086 0.548 0.211

ivy2.0 0.65 0.347 0.663 0.386

jedit4.3 0.64 0.138 0.546 0.071

log4j1.2 0.54 0.48 0.523 0.923

lucene2.4 0.58 0.362 0.517 0.965

poi3.0 0.52 0.247 0.509 0.111

synapse1.2 0.62 0.436 0.552 0.243

xalan2.7 0.53 0.111 0.517 0.965

xerces1.4 0.59 0.357 0.533 0.147

jedit4.3

ant1.7 0.53 0.13 0.51 0.047

camel1.6 0.51 0.051 0.501 0.03

ivy2.0 0.5 NA 0.57 0.245

log4j1.2 0.5 NA 0.5 NA

lucene2.4 0.5 NA 0.505 0.02

poi3.0 0.5 0.007 0.52 0.088

synapse1.2 0.51 0.023 0.512 0.045

xalan2.7 0.5 0.013 0.511 0.041

xerces1.4 0.5 NA 0.5 0.028

log4j1.2

ant1.7 0.51 0.367 0.516 0.37

camel1.6 0.51 0.321 0.506 0.327

ivy2.0 0.51 0.206 0.504 0.205

jedit4.3 0.51 0.044 0.53 0.046

lucene2.4 0.59 0.406 0.507 0.742

poi3.0 0.53 0.757 0.508 0.774

synapse1.2 0.5 0.504 0.512 0.509

xalan2.7 0.58 0.263 0.541 0.296

xerces1.4 0.5 0.063 0.61 0.872

lucene2.4

ant1.7 0.63 0.43 0.661 0.46

camel1.6 0.59 0.354 0.589 0.359

ivy2.0 0.72 0.333 0.679 0.308

jedit4.3 0.66 0.082 0.544 0.05

log4j1.2 0.62 0.65 0.583 0.517

poi3.0 0.7 0.714 0.7 0.719

synapse1.2 0.64 0.555 0.647 0.57

xalan2.7 0.63 0.418 0.813 0.77

xerces1.4 0.71 0.63 0.613 0.561

poi3.0 ant1.7 0.71 0.508 0.641 0.443

Anamika Agrawal Cross Project Defect Prediction Page 24

camel1.6 0.56 0.317 0.55 0.32

ivy2.0 0.7 0.308 0.716 0.348

jedit4.3 0.57 0.054 0.532 0.048

log4j1.2 0.63 0.664 0.524 0.519

lucene2.4 0.57 0.574 0.557 0.589

synapse1.2 0.66 0.591 0.617 0.548

xalan2.7 0.77 0.766 0.735 0.718

xerces1.4 0.73 0.672 0.651 0.555

ivy2.0

ant1.7 0.5 NA 0.576 0.271

camel1.6 0.5 NA 0.5 0.326

jedit4.3 0.5 NA 0.61 0.154

log4j1.2 0.51 0.031 0.505 0.021

lucene2.4 0.53 0.111 0.52 0.076

poi3.0 0.51 0.042 0.518 0.082

synapse1.2 0.51 0.023 0.541 0.151

xalan2.7 0.5 0.015 0.517 0.065

xerces1.4 0.52 0.064 0.52 0.077

synapse1.2

ant1.7 0.66 0.47 0.702 0.538

camel1.6 0.52 0.197 0.509 0.169

ivy2.0 0.76 0.474 0.756 0.458

jedit4.3 0.62 0.067 0.579 0.063

log4j1.2 0.54 0.147 0.557 0.381

lucene2.4 0.53 0.283 0.541 0.401

poi3.0 0.54 0.185 0.772 0.754

xalan2.7 0.7 0.663 0.62 0.498

xerces1.4 0.61 0.38 0.636 0.444

xalan2.7

ant1.7 0.52 0.374 0.501 0.365

camel1.6 0.5 0.323 0.513 0.052

ivy2.0 0.56 0.224 0.554 0.203

jedit4.3 0.55 0.048 0.504 0.044

log4j1.2 0.56 0.296 0.5 0.959

lucene2.4 0.6 0.698 0.5 0.748

poi3.0 0.51 0.288 0.507 0.028

synapse1.2 0.54 0.491 0.503 0.023

xerces1.4 0.67 0.843 0.506 0.023

xerces1.4

ant1.7 0.54 0.381 0.536 0.379

camel1.6 0.55 0.346 0.55 0.348

ivy2.0 0.53 0.213 0.508 0.167

jedit4.3 0.53 0.047 0.552 0.049

Anamika Agrawal Cross Project Defect Prediction Page 25

log4j1.2 0.54 0.156 0.514 0.264

lucene2.4 0.5 0.736 0.525 0.736

poi3.0 0.54 0.783 0.578 0.79

synapse1.2 0.55 0.533 0.553 0.531

xalan2.7 0.52 0.968 0.541 0.89

Table 4 AUC and F value of LR and LR+

Null Hypothesis (H0): The (AUC, F-measure) results of CPDP models of the Logistic

regression without yeo-johnson transformation (LR) and with transformation (LR+)

approach are same when applied to 10 projects (PROMISE repository datasets) with all

possible 90 combinations.

Alternate Hypothesis (H0a): The (AUC, F-measure) results of CPDP models of the

Logistic regression without yeo-johnson transformation (LR) and with transformation

(LR+) approach are different when applied to 10 projects (PROMISE repository datasets)

with all possible 90 combinations.

Friedman Test analysis

According to the test performed on the AUC and F values it is shown that LR+ result are

non significant but in 53% of the results are better in LR+ than LR with p-value as 0.05.

5.2 RQ2: Does this transformation approach work well for the other classifier?

Table 5 and table 6 provide the performance measure like AUC and F-measure all

classifier LR+, random forest, MLP and naïve respectively. To empirical study shows that

in more than 54% cases LR+ outperform than LR. To statistically validate our result we

perform the Friedman test for the below hypothesis.

Null Hypothesis (H1): The (AUC, F-measure) results of CPDP models of all the classifier

are same when applied to 10 projects (PROMISE repository datasets) with all possible 90

combinations.

Alternate Hypothesis (H1a): The (AUC, F-measure) results of CPDP models of all the

classifier are different. When applied to 10 projects (PROMISE repository datasets) with

all possible 90 combinations.

Anamika Agrawal Cross Project Defect Prediction Page 26

 AUC

Training Testing NB RF MLP LR

ant1.7

camel1.6 0.621 0.592 0.602 0.518

ivy2.0 0.79 0.834 0.808 0.594

jedit4.3 0.636 0.616 0.617 0.667

log4j1.2 0.671 0.556 0.51 0.503

lucene2.4 0.705 0.686 0.631 0.505

poi3.0 0.836 0.784 0.8 0.504

synapse1.2 0.745 0.749 0.751 0.546

xalan2.7 0.737 0.887 0.757 0.528

xerces1.4 0.788 0.598 0.706 0.502

camel1.6

ant1.7 0.782 0.737 0.68 0.514

ivy2.0 0.756 0.733 0.716 0.647

jedit4.3 0.592 0.517 0.549 0.637

log4j1.2 0.643 0.618 0.567 0.536

lucene2.4 0.644 0.687 0.6 0.579

poi3.0 0.705 0.72 0.541 0.522

synapse1.2 0.681 0.689 0.676 0.615

xalan2.7 0.651 0.819 0.539 0.53

xerces1.4 0.725 0.702 0.823 0.59

jedit4.3

ant1.7 0.749 0.768 0.632 0.531

camel1.6 0.515 0.562 0.602 0.511

ivy2.0 0.739 0.8 0.71 0.5

log4j1.2 0.614 0.663 0.618 0.5

lucene2.4 0.605 0.71 0.598 0.5

poi3.0 0.751 0.69 0.776 0.502

synapse1.2 0.671 0.694 0.531 0.506

xalan2.7 0.681 0.83 0.833 0.503

xerces1.4 0.525 0.564 0.871 0.5

log4j1.2

ant1.7 0.756 0.564 0.698 0.508

camel1.6 0.611 0.55 0.603 0.507

ivy2.0 0.74 0.628 0.631 0.505

jedit4.3 0.576 0.584 0.546 0.506

lucene2.4 0.675 0.551 0.69 0.588

poi3.0 0.758 0.618 0.674 0.525

synapse1.2 0.742 0.563 0.59 0.5

xalan2.7 0.802 0.664 0.601 0.576

xerces1.4 0.659 0.527 0.529 0.503

lucene2.4 ant1.7 0.785 0.767 0.744 0.634

Anamika Agrawal Cross Project Defect Prediction Page 27

camel1.6 0.632 0.637 0.644 0.594

ivy2.0 0.81 0.78 0.756 0.717

jedit4.3 0.621 0.567 0.621 0.659

log4j1.2 0.65 0.594 0.716 0.621

poi3.0 0.831 0.766 0.776 0.701

synapse1.2 0.755 0.728 0.715 0.636

xalan2.7 0.822 0.902 0.836 0.632

xerces1.4 0.724 0.703 0.818 0.71

poi3.0

ant1.7 0.797 0.802 0.781 0.713

camel1.6 0.612 0.639 0.578 0.559

ivy2.0 0.8 0.796 0.784 0.697

jedit4.3 0.614 0.637 0.613 0.566

log4j1.2 0.624 0.581 0.647 0.629

lucene2.4 0.69 0.739 0.683 0.574

synapse1.2 0.76 0.763 0.741 0.658

xalan2.7 0.772 0.664 0.738 0.765

xerces1.4 0.794 0.734 0.723 0.728

ivy2.0

ant1.7 0.818 0.791 0.81 0.5

camel1.6 0.605 0.551 0.614 0.5

jedit4.3 0.623 0.636 0.617 0.5

log4j1.2 0.627 0.677 0.525 0.508

lucene2.4 0.699 0.679 0.619 0.526

poi3.0 0.841 0.741 0.765 0.511

synapse1.2 0.753 0.742 0.727 0.506

xalan2.7 0.792 0.842 0.706 0.504

xerces1.4 0.753 0.516 0.663 0.516

synapse1.2

ant1.7 0.798 0.8 0.777 0.658

camel1.6 0.615 0.608 0.602 0.521

ivy2.0 0.797 0.818 0.777 0.762

jedit4.3 0.61 0.603 0.597 0.619

log4j1.2 0.622 0.547 0.534 0.54

lucene2.4 0.726 0.691 0.672 0.534

poi3.0 0.84 0.806 0.806 0.539

xalan2.7 0.799 0.873 0.781 0.703

xerces1.4 0.824 0.817 0.847 0.614

xalan2.7

ant1.7 0.743 0.76 0.791 0.52

camel1.6 0.598 0.586 0.588 0.5

ivy2.0 0.754 0.738 0.776 0.557

jedit4.3 0.512 0.679 0.62 0.547

Anamika Agrawal Cross Project Defect Prediction Page 28

log4j1.2 0.644 0.537 0.625 0.556

lucene2.4 0.751 0.656 0.693 0.598

poi3.0 0.811 0.716 0.772 0.506

synapse1.2 0.754 0.689 0.732 0.535

xerces1.4 0.629 0.537 0.769 0.673

xerces1.4

ant1.7 0.67 0.726 0.713 0.535

camel1.6 0.576 0.589 0.607 0.545

ivy2.0 0.678 0.619 0.723 0.528

jedit4.3 0.514 0.529 0.682 0.531

log4j1.2 0.554 0.53 0.514 0.542

lucene2.4 0.674 0.629 0.669 0.503

poi3.0 0.753 0.792 0.668 0.536

synapse1.2 0.7 0.686 0.693 0.553

xalan2.7 0.816 0.646 0.699 0.519

Table 5 AUC value of all classifiers

 F

Training Testing NB RF MLP LR

ant1.7

camel1.6 0.306 0.276 0.135 0.087

ivy2.0 0.374 0.479 0.455 0.308

jedit4.3 0.097 0.111 0.132 0.276

log4j1.2 0.421 0.225 0.256 0.011

lucene2.4 0.517 0.323 0.16 0.02

poi3.0 0.556 0.287 0.042 0.014

synapse1.2 0.573 0.537 0.566 0.186

xalan2.7 0.42 0.366 0.115 0.107

xerces1.4 0.372 0.31 0.309 0.009

camel1.6

ant1.7 0.517 0.207 0.144 0.086

ivy2.0 0.307 0.326 0.344 0.347

jedit4.3 0.078 0.15 0.085 0.138

log4j1.2 0.612 0.225 0.234 0.48

lucene2.4 0.505 0.217 0.34 0.362

poi3.0 0.41 0.12 0.75 0.247

synapse1.2 0.556 0.367 0.557 0.436

xalan2.7 0.428 0.121 0.101 0.111

xerces1.4 0.516 0.206 0.225 0.357

jedit4.3

ant1.7 0.463 NA 0.364 0.13

camel1.6 0.3 NA NA 0.051

ivy2.0 0.337 NA NA NA

Anamika Agrawal Cross Project Defect Prediction Page 29

log4j1.2 0.225 NA 0.959 NA

lucene2.4 0.179 NA 0.748 NA

poi3.0 0.214 NA 0.777 0.007

synapse1.2 0.384 NA 0.504 0.023

xalan2.7 0.184 NA 0.994 0.013

xerces1.4 0.265 NA 0.853 NA

log4j1.2

ant1.7 0.466 0.363 0.364 0.367

camel1.6 0.34 0.326 0.326 0.321

ivy2.0 0.269 0.205 0.204 0.206

jedit4.3 0.051 0 0.044 0.044

lucene2.4 0.714 0.748 0.748 0.406

poi3.0 0.807 NA 0.777 0.757

synapse1.2 0.6 0.504 0.504 0.504

xalan2.7 0.706 0.069 0.994 0.263

xerces1.4 0.728 NA NA 0.063

lucene2.4

ant1.7 0.498 0.443 0.418 0.43

camel1.6 0.349 0.361 0.364 0.354

ivy2.0 0.329 0.27 0.333 0.333

jedit4.3 0.061 0.044 0.039 0.082

log4j1.2 0.616 0.693 0.669 0.65

poi3.0 0.839 0.75 0.801 0.714

synapse1.2 0.606 0.576 0.566 0.555

xalan2.7 0.645 0.802 0.785 0.418

xerces1.4 0.692 0.78 0.611 0.63

poi3.0

ant1.7 0.498 0.493 0.55 0.508

camel1.6 0.339 0.364 0.321 0.317

ivy2.0 0.296 0.254 0.315 0.308

jedit4.3 0.056 0.047 0.053 0.054

log4j1.2 0.713 0.723 0.687 0.664

lucene2.4 0.693 0.733 0.418 0.574

synapse1.2 0.585 0.55 0.563 0.591

xalan2.7 0.664 0.718 0.744 0.766

xerces1.4 0.638 0.69 0.545 0.672

ivy2.0

ant1.7 0.558 0.124 0.012 NA

camel1.6 0.24 0.011 0.107 NA

jedit4.3 0.101 0.133 0 NA

log4j1.2 0.346 NA NA 0.031

lucene2.4 0.373 0.039 0.01 0.111

poi3.0 0.374 0.014 0.007 0.042

Anamika Agrawal Cross Project Defect Prediction Page 30

synapse1.2 0.536 0.129 0.023 0.023

xalan2.7 0.32 0.013 0.009 0.015

xerces1.4 0.298 0.068 0.037 0.064

synapse1.2

ant1.7 0.525 0.503 0.522 0.47

camel1.6 0.29 0.246 0.214 0.197

ivy2.0 0.368 0.444 0.314 0.474

jedit4.3 0.074 0.077 0.061 0.067

log4j1.2 0.506 0.428 0.519 0.147

lucene2.4 0.634 0.42 0.556 0.283

poi3.0 0.674 0.208 0.427 0.185

xalan2.7 0.54 0.42 0.355 0.663

xerces1.4 0.557 0.452 0.63 0.38

xalan2.7

ant1.7 0.433 0.364 0.364 0.374

camel1.6 0.342 0.326 0.326 0.323

ivy2.0 0.244 0.204 0.204 0.224

jedit4.3 0.04 0.044 0.044 0.048

log4j1.2 0.855 0.959 0.959 0.296

lucene2.4 0.776 0.748 0.748 0.698

poi3.0 0.816 0.777 0.777 0.288

synapse1.2 0.547 0.504 0.504 0.491

xerces1.4 0.805 0.853 0.853 0.843

xerces1.4

ant1.7 0.41 0.364 0.369 0.381

camel1.6 0.363 0.34 0.34 0.346

ivy2.0 0.238 0.205 0.211 0.213

jedit4.3 0.037 0.044 0.045 0.047

log4j1.2 0.837 0.948 0.948 0.156

lucene2.4 0.756 0.747 0.745 0.736

poi3.0 0.818 0.783 0.777 0.783

synapse1.2 0.551 0.51 0.517 0.533

xalan2.7 0.865 0.956 0.927 0.968

Table 6 F-measure of all classifiers

Friedman Test analysis

According to the test performed on the AUC and F values it is shown that naïve bayes

result are asymptotically significant when compared with all other classifier with p-value

as less than 0.01.Hence, we reject null hypothesis and conclude that Naïve bayes

performed better than other classifier when applied on transformed data.

Anamika Agrawal Cross Project Defect Prediction Page 31

CHAPTER-6

CONCLUSION AND FUTURE WORK

CPDP is one of the most challenging areas. Here, we use different training and testing set

having software metrics as independent variable. These metrices exhibit power law

distribution. Data normality is one of the main causes behind inaccurate predictions. Many

transformations (log, rank and boxcox) have been studied but these transformations have

some inappropriate behavior to values close to zero so we first need to shift our data. To

remove this problem we have studied yeo-johnoson transformation. This transformation

can handle zero and negative data also. Here in this thesis, we investigated the effect of this

transformation in CPDP. To generalize our study we also explored whether this

transformation work well for other classifier or not.

In this study we have seen that yeojohnson transformed data provide asymptotically better

result than the without transformed data. We have used logistic regression for this

experiment and by using Firedman‟s test on AUC and F-measure we have statistically

validated our results. We further explored our studied with other classifiers such as random

forest, naïve bayes and multilayer perceptron to generalize our result. Here naïve bayes out

perform well than other classifier. We also validate our result with Friedman test. A pair-

wise comparison with wilcoxon signed rank test and it proves that naïve bayes outperform

significantly with AUC and F-measure.

For Future work, we will compare the other transformation like log, rank and boxcox with

this transformation. We recommend future studies to experiment with this transformation

for data normalization for potential gains in cross project defect prediction. We are also

interested to apply more advanced ensemble learners with our approach.

REFRENCES

[1] G. Concas , M. Marchesi , S. Pinna, N. Serra, “Power-laws in a large object-oriented software

system”, IEEE Trans Softw Eng, pp. 687–708, 2007.

[2] P. Louridas, D. Spinellis and V. Vlachos, “Power laws in software”, ACM Trans Softw Eng

Methodology, pp. 1-26, 2008.

[3] H. Zhang , “Discovering power laws in computer programs”, Inforcessing Process Manag, pp. 477–

483, 2009.

[4] J. Cohen, P. Cohen, S. West, L. Aiken, “Applied multiple Regression/Correlation analysis for the

behavioral sciences”, 3rd edition. Lawrence Erlbaum, Mahwah, NY, USA, 2003.

[5] S. Hosseini, B. Turhan, D. Gunarathna, “A systematic literature review and meta analysis on cross

project defect prediction” , IEEE trans. of soft Eng, 2016.

[6] T. Menzies, R. Krishna and D. Pryor, “The promise repository of empirical software engineering

data”, Dept Computer science, North Carolina State University, 2015, http://openscience.us/repo.

[7] RStudio Team, “RStudio: Integrated Development for R. RStudio”, Inc.,Boston, MA URL, 2016,

http://www.rstudio.com/.

[8] F. Zhang , I. Keivanloo, Y. Zou, “Data transformation in cross project defect prediction”, in Empir

Soft Eng, 2017.

[9] F. Zhang, A. Mockus, Y. Zou, F. Khomh, A.E. Hassan, “How does context affect the distribution of

software maintainability metrics?” , Proceedings of the 29th IEEE international conference on

software maintainability, ICSM ’13, pp 350–359, 2013.

[10] F. Zhang , A. Mockus, I. Keivanloo, Y. Zou, “Towards building a universal defect prediction

model”, Proceedings of the 11th working conference on mining software repositories, MSR ’14, pp

41–50, 2014.

[11] F. Zhang, A. Mockus, I. Keivanloo, Y. Zou, “Towards building a universal defect prediction model

with rank transformed predictors” , Empir Soft Eng, pp 1–39, 2015.

[12] F. Zhang, A. Mockus, Y. Zou, F. Khomh, A.E. Hassan, “Cross-project defect prediction using a

connectivity-based unsupervised classifier” , Proceedings of the 38th international conference on

software engineering, ICSE ’16, pp 309–320, 2016.

[13] R. Malhotra and A. Jain, "Fault Prediction Using Statistical and machine learning Methods for

Improving Software Quality," Journal of Information Processing Systems, vol. 8, no. 2, pp. 241-

262, 2012.

http://openscience.us/repo
http://www.rstudio.com/

[14] M. Tan, L. Tan, S. Dara and C. Mayeux, “Online Defect Prediction for Imbalanced Data”,

IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015.

[15] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics sets, and feature selection

techniques on software fault prediction problem”, Information Sciences 179, 1040–1058, 2009.

[16] C. Catal, “Software fault prediction: a literature review and current trends”, Expert Syst. Appl. 38,

4626–4636, 2011.

[17] I. Gondra, "Applying machine learning to software fault-proneness prediction," The Journal of

Systems and Software, vol. 81, pp. 186-195, 2008.

[18] T. Menzies, A. Dekhtyar, J. Distefance, J. Greenwald, “Problems with precision:a response to

comments on „data mining static code attributes to learn defectpredictors”, IEEE Trans. Softw. Eng.

33 637–640, 2007.

[19] R. Malhotra, “A systematic review of machine learning techniques for software fault prediction”,

Applied Soft Computing 27, 504-518, 2015.

[20] A. Shanthini and R. M. Chandrasekaran, “Applying machine learning for Fault Prediction Using

Software Metrics”, International Journal of Advanced Research in Computer Science and Software

Engineering, Volume 2, Issue 6, June 2012.

[21] Y. Singh, R. Malhotra, A. Kaur, “Empirical validation of object-oriented metrics for predicting fault

proneness at different severity levels using support vector machines”, Int. Journal of System Assur.

Eng. Management, 1(3):269–281, July-Sept, 2010.

[22] S. Lessmann, B. Baesans, C. Mues, S. Pietsch, “Benchmarking classification models for software

defect prediction: a proposed framework and novel finding,” IEEE Trans on Softw Eng,Vol 34,

485–496, july/august 2008.

[23] M. Jureczko and L. Madeyski, “Towards identifying software project clusters with regard to defect

prediction”, Proc. 6th Int. Conf. Predictive Models Software Engineering, pp. 9, 2010.

[24] Yeo, In-Kwon, Johnson, R.A, “A new family of power transformations to improve normality or

symmetry” , Biometrika 87 (4), 954–959, 2000.

[25] L. Komsta and F. Novomestky, “moments: Moments, cumulants, skewness, kurtosis and related

tests”, R package version 0.14, 2015. https://CRAN.R-project.org/package=moments

[26] C. Catal and B. Diri, "A systematic review of software fault prediction studies," Expert Systems with

Applications, vol. 36, pp. 7346-7354, 2009.

[27] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel and F. Leisch, “e1071: Misc Functions of the

Department of Statistics, Probability Theory Group (Formerly: E1071)”, TU Wien. R package

version 1.6-8, 2017. https://CRAN.R-project.org/package=e1071

[28] R.A. Peterson, “Estimating normalization transformations with bestNormalize”, 2017. URL

https://github.com/petersonR/bestNormalize

[29] J. Han, M. Kamber, J. Pei, “Data Mining: concepts and techniques”, 3rd edn. Morgan Kaufmann,

Boston, 2012.

[30] J. Nam , S. Kim, “Heterogeneous defect prediction”, Proceedings of the 2015 10th joint meeting on

foundations of software engineering, ACM, New York, NY, USA, ESEC/FSE, pp 508–519, 2015.

[31] M. Kuhn, K. Johnson, “Data pre-processing” , In the Applied predictive modeling. Springer, New

York, pp 27–59, 2013.

[32] A.J. Bishara, J.B. Hittner, “Reducing bias and error in the correlation coefficient due to non

normality”, Educational and Psychological Measurement, 2014.

http://epm.sagepub.com/content/early/2014/11/10/0013164414557639.full.pdf+html

[33] Y. Jiang, B. Cukic, T. Menzies, “Can data transformation help in the detection of fault-prone

modules?”, Proceedings of the 2008 workshop on defects in large software systems, DEFECTS ’08,

pp 16–20, 2008.

[34] T. Menzies , J. Greenwald , A. Frank, “Data mining static code attributes to learn defect predictors”

, IEEE Trans Softw Eng (TSE) 33(1):2–13, 2012.

[35] Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, “A general software defect-proneness prediction

framework”, IEEE Trans Softw Eng 37(3):356–370, 2011.

[36] Z. He, F. Peters, T. Menzies, Y. Yang, “Learning from open-source projects: an empirical study on

defect prediction.” , ACM/IEEE international symposium on empirical software engineering and

measurement, pp 45–54, 2013.

[37] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, “Cross-project defect prediction: a

large scale experiment on data vs. domain vs. process”, Proceedings of the the 7th joint meeting of

the European software engineering conference and the ACM SIGSOFT symposium on the

foundations of software engineering, ESEC/FSE ’09, pp 91–10, 2009.

[38] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull, B. Turhan, T. Zimmermann,

“Local versus global lessons for defect prediction and effort estimation.”, IEEE Trans Softw Eng

39(6):822–834, 2013.

[39] B. Turhan, A.T. Misirli, A.B. Bener, “Empirical evaluation of the effects of mixed project data on

learning defect predictors”, Inf Softw Technol 55(6):1101–1118, 2013.

[40] Y. Ma, G. Luo, X. Zeng, A. Chen, “Transfer learning for cross-company software defect

prediction”, Inf Softw Technol 54(3):248–256, 2012.

