SOFTWARE DEFECT PREDICTION USING MACHINE
LEARNING TECHNIQUES

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE AWARD OF DEGREE
OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by:

KISHWAR KHAN
(2K16/SWE/08)

Under the supervision of:

DR. RUCHIKA MALHOTRA
(ASSOCIATE PROFESSOR, CSE)
Department of CSE, DTU

-)
e
T Ty
L
! % b,

h k-
TEcH

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042

JULY 2018

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042

CANDIDATE’S DECLARATION

I, KISHWAR KHAN, 2K16/SWE/08 a student of M.TECH (Software Engineering)
declare that the project Dissertation titled “Software Defect Prediction Using Machine
Learning Techniques” which is submitted by me to Department of Computer Science
and Engineering, Delhi Technological University, Delhi in partial fulfilment of the
requirement for the award of the degree of Master of Technology, is original and not
copied from any source without proper citation. This work has not previously formed
the basis for the award of any Degree, Diploma, Fellowship or other similar title or

recognition.

Place: DTU, Delhi KISHWAR KHAN
Date: (2K16/SWE/08)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Bawana Road, Delhi — 110042

CERTIFICATE

I, hereby certify that the Project titled “Software Defect Prediction Using Machine
Learning Techniques” submitted By KISHWAR KHAN, Roll number: 2K16/SWE/08,
Department of Computer Science and Engineering, Delhi Technological University,
Delhi in partial fulfilment of the requirement for the award of the degree of Master of
Technology, is a record of project work carried out by the student under my supervision.
To the best of my knowledge, this work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

Place: DTU, Delhi Dr. RUCHIKA MALHOTRA
Date: (Associate Professor, CSE, DTU)

Supervisor

ACKNOWLEDGEMENT

First of all I would like to thank the Almighty, who has always guided me to work on
the right path of the life. My greatest thanks are to my parents who bestowed ability and

strength in me to complete this work.

| owe a profound gratitude to my project guide Dr. Ruchika Malhotra Ma’am who has
been a constant source of inspiration to me throughout the period of this project. It was
her competent guidance, constant encouragement and critical evaluation that helped me
to develop a new insight into my project. Her calm, collected and professionally
exemplary style of handling situations not only steered me through every problem, but

also helped me to grow as a matured person.

| am also thankful to her for trusting my capabilities to develop this project under her

guidance.

KISHWAR KHAN
M.TECH (SWE)
2K16/SWE/08

ABSTRACT

Software defect prediction is a process of classification which determines whether a
software module is defective or not. A defect prediction model is a method where a set
of independent variables (the predictors) are used to predict the value of a dependent

variable (the defect-proneness of a class) using a machine learning classifier.

Innumerable studies are present in literature that studies the effect of dimensionality
reduction on performance of models developed for Software Defect Prediction. It is said
to improve certain models. Also, Software defect prediction is a costly activity and the
problem relies in the fact that many feature-extraction methods based on traditional as
well as novel like deep learning are there for dimensionality reduction. So, it becomes
very difficult to choose any method based on its working, its pros and cons and its
performance for dimensionality reduction. Thus, there arises a need of comparison
study for feature extraction technique which exists earlier in literature.

This study aims to provide literature review on the previously existing feature reduction
techniques in software defect prediction. The study helps software developers in
identifying the commonly prevalent as well as novel feature extraction techniques, their
characteristics and their performance in area of software defect prediction and guides
the researchers in conducting future research. The comparison is performed on nine
open-source software-systems written in Java using four mostly used feature extraction
technique and a machine learning classifier. The model validation is performed by 10
fold cross validation method and the performance measure used is accuracy and ROC-
AUC. Results of the study indicate that autoencoders is an effective method to reduce
the dimensions of a dataset successfully.

CONTENTS

| Titles |

CANDIDATE’S DECLARATION
CERTIFICATE

1.2 Research Objective
1.3 Proposed Work
1.4 Organization of Thesis
CHAPTER 2 LITERATURE REVIEW

3.3.1 Principal Component Analysis (PCA)
3.3.2 Linear Discriminant Analysis (LDA)
3.3.3 Kernel-PCA (K-PCA)
3.3.4. Autoencoders (AE)
3.4 Classification Techniques
3.4.1 Support Vector Machine (SVM)
3.5 Model validation Technique

3.6 Performance Measures

3.6.1 Accuracy
3.6.2 ROC - AUC

about:blank

3.7.1 Friedman Test

4.1 Variable Selection

4.2 Hypothesis Formulation
4.3 Tools Used

4.3.1 SPYDER
4.3.2 SPSS

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

20
22
22
23
23
24
25
26
29

Vi

vii

LIST OF TABLES
Table No. | Title Page No.
Table 3.1 Dataset Details 10
Table 3.2 Comparison of various Feature extraction techniques___ 12
Table 5.1 Accuracy calculated for each technique 26

Table 5.1 ROC-AUC value calculated for each technique 27

viii

LIST OF FIGURES

Figure No. Title Page No.
Fig. 3.1 Research methodology for SDP 9
Fig. 3.2 Implementation of PCA technique in SPYDER . 12
Fig. 3.3 Implementation of LDA technique in SPYDER . 13
Fig. 3.4 Implementation of K- PCA technique in SPYDER . 14
Fig. 3.5 Implementation of Autoencoders technique in SPYDER 15
Fig. 3.6 Optimal hyperplane in Support vector machine 17
Fig. 3.7 10-fold cross-validation 18
Fig. 3.8 ROC-AUC curve representation___ 19
Fig. 3.9 Friedman test statistics 20
Fig. 4.1 Relationship between independent and dependent variable 22
Fig. 4.2 Model development in SPYDER 24
Fig. 4.3 Friedman test performed in SPSS 25
Fig. 5.1 Line graph representing the accuracy of each technique 27

Fig. 5.2 Line graph representing ROC-AUC value of each techniques 28

QA

SDP

PCA

LDA

AE
ROC-AUC
SVM
KPCA

cV

PC

LIST OF ABBREVIATIONS

Quality Assurance

Software Defect Prediction

Principal Component Analysis

Linear Discriminant Analysis

Autoencoders

Receiver Operating Characteristics-Area Under Curve
Support Vector Machine

Kernel-Principal Component Analysis

Cross validation

Principal Component

CHAPTER 1

INTRODUCTION

1.1 Overview

Quality assurance is an archetypal resource-impelled activity when requirements based
on the time-to-market metrics of software delivery need to be met. In some software
industry, it is analyzed that if there is some week based delay in software delivery it
may cause some grave approximately (22-23%) loss for software having lifetime
around 52 weeks [38]. Because of the expanded requirement for the quick arrival of
programming to the market is a concerned issue for organizations in many divisions of
programming markets. Despite the fact that it is basic to meet such a squeezing need,
indiscreet quality confirmation can request specialized record. The negative impact of
a faulty programming stature is regularly deadly in the association. Hence, quality
confirmation ends up plainly hypercritical quickly before the product uncovers; in any
case, at that stage, time and HR are normally inadequate for disposing of each torpid
deformity by the due date. Designers or quality confirmation supervisors in this
manner critically request procedure that successfully predicts absconds and empowers
the use of best undertaking in settling them. Therefore, defect prediction in
programming's and their discharges has been an energetic research territory in

programming designing zone.

Software defect prediction is a process of classification which determines whether a
software module is defective or not. It helps Quality Assurance (QA) teams to
concentrate on their finite resources on the most defect susceptible software modules.
In this, every software component is categorized by a class tag and numbers of

metrics. The class tag indicates if this module is faulty [38].

We know that data mining and machine learning are prevailing days by day, a number

of classification models have been introduced during the past decade. In spite of that, a

problem that scares the modeling process is high-dimensionality of defect data, i.e.,
datasets with extreme features having irrelevant and redundant ones. Previous studies
have exposed that the high-dimensionality issue can lead to high computational charge
and deprivation of the accuracy of definite models [9], [10], [13]. Due to these causes,
a range of feature reduction techniques was projected to improve this problem of high-

dimensionality by removing extraneous and repeated features.

According to [39], with an increase in the dimensionality of data, there is an
exponential increase in the amount of data needed to offer a reliable performance, this
fact is termed as the ‘curse of dimensionality’ by Bellman when taking into account
issues related to dynamic optimization. A well-liked undertaking to this issue of high-
dimension datasets is to look for a projection of the data against a lesser amount of

features, which conserve the inofrmation so far as possible.

To conquer this issue, it is essential to discover a manner to reduce the number of

variables in consideration [1], [8], [39]. Two widely used methods are:
(a) Feature selection

This method [8] chooses a subset of actual features from available features, without
whichever failure of valuable information. It directs the distinct job of exploring a

subset of specified features that are helpful to resolve the domain issue.

Feature selection methods are classified into three classes [8] i.e. filter, wrapper,
embedded / hybrid.

(b) Feature extraction

Feature extraction [24] is a technique to find novel features from specified features by
employing some conversions to decrease complication and to provide an easy
demonstration of each variable in feature space as a linear arrangement of input
variables. It is more general technique than feature selection technique. PCA, ICA,

LDA, and K-PCA are some of the approaches of feature extraction.

Feature extraction is also called second-order features [32]. If the second-order
features are united linearly throughout feature extraction, it’s linear feature extraction.
Otherwise, it is called non-linear feature extraction. In this study, we are comparing

both linear as well as non-linear technique.

1.2 Research Objective

In software defect prediction, when we think about dimension reduction methods
specifically, PCA, K-PCA, and LDA are two widely used approaches of conventional
methods while Auto-encoders is a novel technique of deep learning which be capable
of effortlessly handling non-linear & big data [31]. Dimensionality reduction is a
major issue in numerous real-world studies as data used for software defect prediction
sometimes has high dimensions and transforming these data from high dimensions to
low dimensions is crucial to boosting the effectiveness of prediction process [38]. A
large number of machine learning methods in the past used linear transformation
which is based on factorization projections or orthogonal projections for
dimensionality reduction. These types of methods generally are not valuable for non-
linear feature reduction other than that it can effectively solve many simple problems
related to limited constraints data. Deep learning in contrast to that has effective

visualization capacity and address data complex in nature.

1.3 Proposed Work

The main aim of this study is to carry out a comprehensive comparison of various
types of feature extraction techniques like LDA PCA, Stacked Auto Encoders and K-
PCA; detailed study of existing methodologies for dimension reduction; Model

development to evaluate the techniques with the open source datasets.

1.4 Thesis Organization

This thesis work is bifurcated into six different chapters. Starting with the Chapter 1
gives the brief introduction about the issues discussed in this study. The chapter
explains the need for and use of defect prediction models. It defines the defect-related
terminologies explaining how they affect the software systems and human life. It also
addresses the problem of ‘curse of dimensionality’. It also describes the motivation
behind this study along with the research objectives.

Chapter 2 sums up the related studies with respect to software defect prediction and
dimensionality reduction. A lot of research has been carried out in defect prediction
area in the context of feature reduction. This chapter summarizes the major
contributions and findings of the previous studies. The literature survey conducted by
the author in defect prediction finds out that high dimensional data is becoming a

serious problem. Many studies [5], [9], [15], [13], [11] have been investigating in this

about:blank

field by using feature reduction techniques. Most of the studies use PCA and LDA for
feature reduction while another method such as autoencoders is still unexplored in the
area of defect prediction Furthermore, the related work describes the previous studies
which have used procedural metrics and have applied various ML techniques for
building models. Chapter 3 describes the research methodology used in the
experiment. It briefly discusses the data collection method, different datasets and the
data preprocessing technique. Various feature extraction methods together with the
detailed explanation of the method are described. The chapter further defines the
performance metrics used to evaluate the prediction models and also briefly discusses
the Friedman test which is used for finding the statistical significance of the
techniques. The 10-fold cross validation method used for model evaluation is
explained in this section. Chapter 4 provides the details regarding the experimental
design of the study. It describes the dependent, independent variables used to carry out
the research. The chapter further defines the hypothesis formation on which the study
is based and describes various tools used for implementation of the experiments. In
Chapter 5 the obtained results are stated and analyzed using statistical tests. We have
performed an extensive comparison between various feature extraction methods using
non-parametric test i.e. Friedman test. Chapter 6 concludes the final outcome of the
study. It states which method performed the best and guides the researchers to make
use of novel feature extraction techniques to further improve the performance of defect

prediction models. The chapter also provides the future scope of the research.

CHAPTER 2

LITERATURE REVIEW

Some of the previous studies about SDP are concisely summarized to depict the drift
and trends in literature focusing on feature selection and extraction in software defect
prediction. Liu et al. [1] examined the effect of some 32 feature selection methods
such as filter-based, wrapper-based, clustering-based and extraction-based on the
NASA dataset. Gayatri et al. [3] proposed a novel technique for feature selection build
on Decision_Tree_Induction and compared it with RELIEF method and found that
proposed method performed better than the others.

Ceylan et al. [4] conducted experiments Principal Component Analysis is used for
dimensionality-reduction, and for classification Decision Tree, Multi-Layer Perceptron
and Radial Basis Functions are used. Khoshgoftaar et al. [6] carried his research on the
influence of data sampling followed by wrapper-based feature selection method and
found out that the proposed method appreciably better than the classification method
based on unsampled fit data.

In [9] authors evaluated a technique based on the Bat-based search Algorithm (BA) for
the purpose of feature selection process, and the Random Forest algorithm (RF) for
purpose of classification to perform software defect prediction.In this authors has also
compared various classification technique with the proposed method and reported that
proposed technique is providing better results. Lu et al. [10] experimentally
investigated their proposed approach based on active learning on successive versions
of eclipse dataset and results indicated that proposed technique along with
uncertainity_sampling performs better than other classification methods. They

improved their result by using feature selection before active learning.

A technique based on semi-supervised learning SDP was proposed by Cukic et al.

[11], they analyzed that pre-processing technique along with multidimensional scaling

is implanted decreasing the dimensional complexity of software metrics. Gao et al.[12]
investigated an approach focused on feature compression using geometric mean (GM)
along with conditional random field technique (CRF) for SDP which outperforms than
other techniques. By utilizing the technique of Mutual information (MI) for feature
selection Jin et al. [16] addressed that it is showing very good results along with many
classifiers for NASA datasets.

In [13] Mahama et al. reported their study in scenarios by including various techniques
such as ranker for dimensionality reduction, data-sampling for imbalanced data and
iterative_partition_filter for reducing noise in data to enhance the results of Software
Defect Prediction. Bisi et al. [14] showed that PCA for feature reduction along with
ANN shows the better result in terms of accuracy as compared to SA i.e. Sensitivity

Analysis for scale features with ANN.

Yang et al. [15] observed that their proposed work based on the ReliefF algorithm for
dimension reduction and liner-correlation analysis can enhance the SDP on NASA
dataset using Naive-Bayes, multilayer-perceptron and SVM classifiers. Qin et al. [17]
explored that by using multilevel data preprocessing consisting of double feature
selection and tripartite instances_filtering can enhance the process of SDP. In addition
to that, they also reported that unrelated features by feature selection and data

imbalance can be handled by resampling method.

Ji et al. [18] showed that their proposed work NASM performs better than other
traditional technique, as it is based on maximal information-coefficient-matrix to
select the features by clustering. The traditional techniques are based on PCA and

other sampling techniques.

Kakkar and Jain [19] performed a comparative study on feature selection. Algorithms
such as Best-Fit search and Greedy-Stepwise method and some ranker method were
used with 3 different lazy-predictors .i.e. IBK, K-star & LWL and validated their
results using 10-fold cross-Validation. It was observed that LWL outperforms among
all other classifiers. FECAR a novel feature-clustering and feature-Ranking structure
were developed by Liu et al. [20]. It was based on chi-square, Information-gain and
relief measure. The experiments were performed on open source datasets of NASA

and Eclipse.

Frieyadie and Putri [21] analyzed that by combining sampling technique with feature
compression the prediction of software defects can be enhanced. Smote and random-
sampling were used along with Chi Square, information Gain, and relief methods and
it was shown that SMOTE+relief+Naive-Bayes outperformed among all other

combinations.

Han et al. [22] observed that results of 61 features are comparable to that of only 2
features by using features selection techniques such as principal components analysis
as well as variable importance and classifiers used were Random-Forest, Neural-

Networks and Support Vector Machine.

Khoshgoftaar et al. [23] empirically showed that ensembles of feature selection
techniques can perform better than the single feature selection techniques by
employing 17 ranker-based and 11 threshold-based FS techniques and results showed
that ensemble of a number of rankers is better than the ensemble of many rankers.

Rana et al. [24] investigated that to decrease the dimensions of input-space by
dropping unrelated metrics InformationGain can be used as compared to PCA which
selects the features other than keeps the illustration of all feature-variable undamaged.

Miao et al. [25] explored some different feature selection method that is the cost-
sensitive feature and embedded a cost-matrix into FS methods and showed that their

proposed work outperforms than other traditional techniques in terms of cost.

Verma and Gupta focused on exploring a way to reduce the features after feature
selection and estimated the result of this on software defect prediction. They analyzed
that FalsePositiveRate is diminished by means of the proposed scheme of feature
selection [26].

In a study conducted by Malhotra et al. [27], it was analyzed that correlation-based
feature selection is used to preprocess the data because this technique is fast simple

and can handle both redundant and unrelated data.

Postma et al. [28] performed a systematic comparative analysis of various types of
feature selection and extraction techniques and provide their expert review on these
techniques. It also explained the weakness of non-linear techniques and provides the

measure to improve their performance.

Usharani et al. [30] explored different and traditional as well as novel techniques of

feature selection and feature extraction for dimensionality reduction.

Pooja Chenna in [31] performed a comparative study on various traditional as well as
deep learning techniques of feature extraction such as PCA, RBM, and autoencoder
and implemented RBM on ECL and result showed that RBM outperform among all for

Visualization in 3-Dimensional Space

CHAPTER 3

RESEARCH METHODOLOGY

This section provides insight about the procedures and methods used in empirical
study .here we have briefly discussed each method required to perform the empirical
study such as process involved in data collection, preprocessing, classification, model
validation, measuring performance and selection of statistical test.

Data collecton

Data normalisation

Selection of Dimensionality reduction technique

Selection of model validation technigue

Selection of performance measure

Fig. 3.1 Research methodology for SDP

10

3.1 Dataset Collection

In this study, 9 open source projects from Apache software Foundation Systems which
are publicly available in the open source dataset repository called PROMISE
Repository are used as datasets. This is the mostly used repository in Software fault
Prediction. For this study, different projects of varied size as well as with different
defect rate is considered and these projects are having 20 Object Oriented metrics and
also there is defect label for each class which shows whether a module is defective or
not. Table 3.1 represents the release, total number of classes, size in terms of KLOC of

each project, number of defective_classes and defective_percentage of each project.

Table 3.1 Dataset Details

S.No | Projects Release | Classes | KLOC | Defective | Defective
Classes percentage

1 Ant 1.7 745 208 166 22

2 ArcPlatform 1 234 31 27 12

3 Camel 1.6 965 113 188 19

4 jEdit 4.3 492 202 11 2

5 Log4j 1.2 205 38 180 92

6 Poi 3.0 442 129 281 64

7 Prop 6.0 660 97 66 10

8 Tomcat 6 858 300 77 9

9 Xalan 2.7 909 428 898 99

3.2 Data Normalisation

It is unlikely to have real-time statistics within a definite range. Hence pre-processing
of the data performs to be a crucial move when there is not any compulsion to give
weight to some definite feature while using classification or clustering techniques.
Preprocessing can be done in two ways i.e. normalization or standardization. In
comparative study it is essential to preprocess the data as maintaining it in a definite
range is very imperative.

Selection of normalization technique for a specific data totally depends upon the user.

For this comparative study, 20 input variables are not in same range of magnitude.

about:blank

11

Hence, we perform data normalization on these attributes using min-max
normalization to transform data within the range of [0, 1]. The equation for min-max

normalization is given below

_ x—min(x)
Z= max(x)—min(x) @

‘x” denotes the data point.

min(x) denotes the minimum_value of x of a feature.

max(X) denotes the maximum_value of x of a feature.

z denotes the normalized value.

During preprocessing step it must be ensured that no noise is injected in the original
data.

Since software defect prediction is a classification process, the dependent variable
(defect proneness) should represent only two classes i.e. defective or non_defective.
The bug proneness is labeled with defect severity which ranges from 0 to 10 for all the
dataset. In order to preprocess this variable, classes with bug severity less than 1 are

labeled as non_defective other than that are labeled as defective.

3.3 Dimensionality Reduction Techniques

Many diverse techniques have been used for dimensiOnality reductiOn. These
approaches can be supervised or unsupervised methods [33] When any discriminate
analysis utilize class label called as supervised technique while some do not use class
label mentioned to as unsupervised approaches. Some supervised approach methods
are like LDA (Linear Discriminent Analysis), NN (Neural Network) used for

dimensionality reduction.

Unsupervised methods like PCA (Principal_Component_Analysis), ICA (Independent
Component Analysis), KPCA (Kernel Principal Component Analysis), Restricted
Boltzmann machines (RBM) and autoencoders etc. are used for decreasing dimensions
of the dataset. For this comparative study, some of the above-mentioned techniques
which are frequently used [14], [18], [22], [24], [28], [31] are considered for
comparison for software defect prediction

12

Table 3.2 Comparison of various Feature extraction techniques

Techniques PCA KPCA LDA AUTOENCODERS(AE)

Linear /Nonlinear Linear Nonlinear Linear Nonlinear

Supervised/ Unsupervised Unsupervised | Supervised Unsupervised

Unsupervised

Traditional/Novel Traditional Traditional Traditional Novel
Association Calculates the | Linear mapping | When finding distributed
between modules | Kernelmatrixto | Dimensionality | & compact
of the data vector | decrease the | of the subspace | representations, the
be undoubtedly | Features. is restricted by | encoder often ends up

Advantages seen and it number of | capturing the salient
capture the classes of data. | features of the input,
second order vielding a much richer
Correlation value. representation.
Recognize the | Dimension of | Suffers from | Autoencoders usually
linear integration | kernel matrix is | Small Sample | have a high number of
of variables and | proportional to | Size problem connections. Therefore,
disregardthe high | thesquareofthe backpropagation

Disadvantages order correlation | number of approaches converge
value. instances in the slowly and are likely to

dataset. get stuck in local minima.

3.3.1 Principal Component Analysis (PCA)

It is the majority employed data transformation technique for preprocessing and
feature extraction that lessens the feature space by seizing linear reliance amid diverse
features. PCA looks for principal components (PC) that are the linear amalgamation of
actual features such as so as to they are orthogonal to one another and seize the
greatest sum of the variance in the data. Usually, it is probably to seize high variance

by means of merely a very small number of PC’s [37].

Spyder (Python 3.6)

Edit Search Source Run Debug
e EmtwsiEe - BB G
or - C:\Wsers'welcome\Desktop\Dimensionality reduction\data‘\pca.py
stacked_auto with 10 CV.py™

Wiew

=

Tools

c2

Consoles Praojects Help

= HB | B X -

logistic_regression.py plot_roc_crossval.py= pca.py= [EJ kernel PCA.py

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

WO mnh W

dataset =
e x =
L1 w =

pd.read_csv('sklebagd.cswv")
dataset.iloc[:, :-1].walues
dataset.iloc[:,28].values

sX =
ncol =

minmax_scale(X, axis =
sX_.shapel[1]

=)

from sklearn.decomposition import PCA

pca = PCA(n_components = 5)

X_train = pca.fit_transform(X_train)

X_test = pca.transform(X_test)

explained_wariance = pca.explained_wariance_ratio__

pT=]

T

from sklearn.swvm iImport SWC
classifier = SVC(kernel = "linear', random_state =
classifier.fit(X_train, y_train)

@)

WO N Y Y

wow
NEOOONOWE WK =

w_pred = classifier.predict(X_test)

£ L1 4+ i + Faiac i 4+

Fig 3.2 Implementation of PCA technique in SPYDER.

13

In turn, to find PC’s, from original data covariance matrix, is calculated and then every
eigenvalue are calculated. PCs are those eigenvectors that correspond to the largest

eigenvalues.

3.3.2 Linear Discriminant Analysis (LDA)

This is another widely used feature extraction technique used in software defect
prediction. The major objective of the LDA resides in calculating a base of vectors
providing the greatest difference amid the classes, attempting to get the most out of the
between-class-differences, diminishing the within-class-differences one time by means
of scatter matrices [34].

It also goes through small-sample-size problem which is present in high dimension
data where a number of present samples is less than dimensions of the samples. D-
LDA, R-LDA, and K-DDA are some types of LDA [34].

& Spyder (Python 3.6)
File Edit Search Source Run Debug Consecles Projects Teols View Help
D b LI:\E EE @ > g’l a’l .Ib e Nl :-: EE :E » . x ;’ - |C:\Llsers‘\'i\'e\cnme

Editor - C:\Userswelcome\DesktopDimensionality reductiondata\plot_roc_crossval.py

[logistic_regression.py plot_roc_crossval.py= [stacked_auto with 10 CV.py= pea.py™ kernel PCA.py

1print(__doc_)

2 import numpy as np

3 from scipy import interp

4 import matplotlib.pyplot as plt
c

6 import pandas as pd

8 from sklearn import swvm

9 from sklearn.metrics import roc_curve, auc

10 from sklearn.model_selection import StratifiedkKFold
12

14 dataset = pd.read_csv('arc.csv')
15X = dataset.iloc[:,:-1].values
16y = dataset.iloc[:, 28].values
18

19 sX = minmax_scale(X, axis = @)
2@ ncol = sX.shape[1]

21

22

23 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
24 1da = LDA(n_components = 1)

25 X= 1da.fit_transform(X, vy)

£0

27X, y = X[y 1= 2], yly I= 2]

28 n_samples, n_features = X.shape

29

Permissions: RW End-of-lines: LF

Fig. 3.3 Implementation of LDA technique in SPYDER

14

3.3.3 Kernel-PCA (K-PCA)

It is the extension of conventional linear-PCA in a high dimensional scope which is
builds using a kernel function [28]. During previous years, the redevelopment of linear
methods based on the ‘kernel’ has directed towards the scheme of booming methods
for instance Support Vector Machines. In this technique instead of the covariance

matrix, principal eigenvectors of the kernel matrix are calculated.

The redevelopment of PCA in kernel space is clear-cut since a kernel matrix is like the

in_product of the data points in the high dimensional space that is build using the

kernel function.

@ Spyder (Python 3.6)
File Edit Search Source FRun Debug Conscles Projects Tools View Help

O miE@ BN @ MoaEEpE BX o [ciws

Editor - C:\Users\welcome\DesktopDimensionality reductiom\data\kernel PCA.py 5 X

[logistic_regression.py plot_roc_crossval.py stacked_auto with 10 CV.py™= pca.py™= kernel PCA.py [EJ % C

2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd

s

oH

7 dataset = pd.read_csv('Wine.csv")
8 X = dataset.iloc[:,:-1].values
9y = dataset.iloc[:, 28].values
12 sX = minmax_scale(X, axis = @)
13 ncol = sX.shape[1]

& from sklearn.preprocessing import Standardscaler
17 sc = StandardScaler()
18 X_train = sc.fit_transform(X_train)

19 X_test = sc.transform(X_test)

28

21

22 from sklearn.decomposition import KernelPCA

23 kpca = KernelPCA(n_components = 2, kernel = "rbf")
X_train = kpca.fit_transform(X_train)

__test = kpca.transform(X_test)

27
28 from sklearn.svm import SVC

29 classifier = SWC(kernel = 'linear', random_state = @)
38 classifier.fit (X _train, y_train)

pred = classifier.predict(X_test)

37 from sklearn.metrics import confusion_matrix
38 em = confusion_matrix(y_test, y_pred) w

Fig. 3.4 Implementation of K-PCA technique in SPYDER.

3.3.4. Autoencoders (AE)
Autoencoder was at first presented soon after the 1980s [36] as a linear feature
extraction technique. A noteworthy preferred benefit of Autoencoder is that it is

simple to stack for producing diverse levels of new features to show actual ones by

adding hidden layers.

15

In order to allow the autoencoder to learn a nonlinear mapping between the high-
dimensional and low-dimensional data representation, sigmoid activation functions are
generally used [28]. If linear activation function is used instead of sigmoid activation

function, an autoencoder is identical to PCA.

Stacked auto-encoders are best utilized for unsupervised learning as it is great in
catching hierarchical groups, that is essential layers of the system learns more
elevated amount features and as we go deeper in the network, it attempts to learn to
bring down level features in deep learning that supplanted the learning procedures
utilized in traditional neural networks.

Stacked Auto-encoders according to its name is a stack of auto-encoders. They are too
known as Stacked Auto-Associators as these attempt to relate the output with the input
and seek to locate intermediate representations [31]. Conventionally, in this output
from one AE is taken as input for the next AE and this procedure are iterated until
every lone AE in the network is pretrained. The resultant present at the output layer of
the network is with reduced dimensions. There are diverse types of AE like Sparse
AE, Contractive AE, and Denoising AE.

& Spyder (Python 3.6)

File Edit Search Source Run Debug Consoles Projects Tools View Help

o BRiE @ BB @ M c=EE=En B X F- Cr\sers\nelcome
Editor - C:\Users'welcome\Desktop'Dimensionality reduction\data\stacked_auto with 10 CV.py
[l logistic_regression.py plot_roc_crossval.py stacked_auto with 10 Cv.py* [EJ pca.py™ kernel PCA.py

4 from keras.layers import Input, Dense
5 from keras.models import Model

[

7df = read_csv("zuzel.csv"™)

8 X=df.iloc[:, :-1].wvalues
9y=df.iloc[:,20].values

18

12 sX = minmax_scale(X, axis = 8)
13 ncol = sX.shape[1]

14

15

16 input_dim = Input(shape = (ncol,)})

18 encoding_dim = 3

‘relu’)(input_dim)l
"relu’)(encodedl)

2@ encodedl
21 encoded2

Dense(2@, actiwvation
Dense(1®, activation

22 encoded3 Dense(5, activation = 'relu’')(encoded2)

23 encoded4 Dense(encoding_dim, activation = 'relu’)(encoded3)
24

25 decodedl = Dense(5, activation = 'relu')(encoded4)

26 decoded2 = Dense(l®, activation = 'relu’')(decodedl)

27 decoded3 = Dense(20, activation = 'relu')(decoded2)

28 decoded4 = Dense(ncol, activation = "sigmoid’)(decoded3)

29
20 autoencoder = Model(input = input_dim, output = decoded4)

32 encoder = Model(input = input_dim, output = encoded4)

Fig. 3.5 Implementation of Autoencoder technique in SPYDER.

16

3.4 Classification Techniques

In this study, a comparative performance analysis of different feature extraction
technique along with machine learning techniques is explored for software defect
prediction on publicly available datasets. Machine learning techniques are proven to
be useful in terms of software defect prediction. The data from software repository
contains lots of information in assessing software quality, and machine learning

techniques can be applied to them in order to extract software defects information.

The machine learning techniques are classified into two broad categories in order to
compare their performance; such as supervised learning versus unsupervised learning.
In supervised learning algorithms such as classifier like Multilayer perceptron, Naive
Bayes classifier, Support vectOr machine, Random Forest and Decision Trees are
compared. In case of unsupervised learning methods like Radial base network
function, clustering techniques such as K-means algorithm, K nearest neighbor are
compared against each other. But in this study, we are investing only Support VVector
Machine (SVM) because in most of the literature based on feature extraction SVM is
used [3], [6], [15], [18], [22], [25], [29].

3.4.1 Support Vector Machine (SVM)

It assumes (SVM) [5], [12] utilizes non-linear mapping for original training data to
transform it into the higher dimension. Then it searches for an optimal linear
hyperplane for separation. The hyperplane can be found using margins and support
vectors. SVM is used for classification purpose and is based on supervised learning.
Support Vector Machine (SVM) is a powerful and flexible type of supervised learning
model, used for classification and regression analysis. It has been applied to learning
algorithms that analyze data and recognize patterns. It has the advantage of reducing
problems of overfitting or local minima. In addition, it is based on structural risk
minimization as opposed to the empirical risk minimization of neural networks.

Given a set of samples for training purpose [7], an SVM training algorithm builds a
model that assigns new examples into one category or the other, making it a non-

probabilistic binary linear classifier.

17

-
class 1 o -
(= | < o
[m | optimal hyvperplane
-
-
e
-
-
-~
P =
/ﬁ’ >
class 2

>

Fig. 3.6 Optimal hyperplane in Support vector machine

3.5 Model validation Technique

There are many types of model validation techniques such as hold-out method, Leave-
one-out, k-fold Cross-validation and bootstrapping etc for validating the model against
the training data. From the literature study, it can be inferred that widely used model
validation technique is 10 fold Cross-validation [1], [3], [6], [7], [8]. Cross-validation
is a method to estimate predictive models by dividing the original dataset into a
training_set for training the model developed, and a test set to assess the performance
of the model developed.

In k-fold cross-validation, as shown in fig. 3.7, the original_sample is arbitrarily
subdivided into k-equal_size subsamples[9][11][13][14]. Out of the k-subsamples, a
lone subsample is reserved as the test data for validating the model, and the leftover
‘k-1” subsamples are taken for the training of the model. Then the CV process is
iterated k times, with a piece of the k subsamples used accurately once as the test data.
A mean/average value of the ‘k> numbers of results obtained from the folds, can be
taken to generate the final inference.

The benefit of this technique over all other methods such as hold-out method, Leave-
one-out, and bootstrapping is that all instances are used for both training and testing,
and every instance is used for testing just once. There are some subtype of K-fold
cross-validation technique such as Stratified K-fold cross-validation and repeated K-

fold cross-validation.

18

TOTAL DATA

st iteration

2nd iteration

3rd iteration

4th iteration

Sth iteration

Gth iteration

Tth iteration

8th iteration

9th iteration

10th iteration

— .

TRAINING TESTING
DATA DATA

Fig. 3.7 10-fold cross-validation

3.6 Performance Measures

There is an extensive number of performance measures for classification [1], [21], [3],
[7], [10], [12]. These measures have been used for different applications and to
evaluate different things. Commonly used performance measures for Software defect
prediction are Accuracy, Precision, Recall, F1-measure, PR-AUC & ROC-AUC etc.
Out of these techniques Accuracy and ROC- AUC are considered for this comparative
study.

3.6.1 Accuracy

Traditionally, accuracy is the widely used technique for performance estimation.
Accuracy shows the ratio of all correctly classified instances [11], [16], [17].
However, accuracy is not proper to measure particularly in defect prediction because
of class imbalance of defect prediction [7].

The value of accuracy can be represented by a single value that lies between 0 to 1.
Accuarcy=(T_P+T_N)/N

where,

T_P=#observations which are ‘defective’ and predicted to be ‘defective’
T_N=#observations which are ‘non_defective’ and predicted to be ‘non_defective’

N= total number of samples in a dataset.

19

3.6.2ROC - AUC

Nowadays ROC-AUC is the most widely used performance measure [1], [21], [3], [6],
[9], [10], [11], [15], [17]. ROC-AUC Curve is most commonly utilized to visualize the
performance of a binary value-based classifier, and AUC is the optimal method,
to sum up, its results in a lone number which ranges from 0 to 1. The ROC-AUC curve
is utilized to differentiate the trade-off between true_positive_rate and false_positive
_rate as shown in fig.3.8. A predictor that results in a large area under the curve of
ROC is superior over a classifier with a minor area under the curve. An ideal classifier

produces an AUC that equals 1.

The benefits of using ROC-AUC are its vigor towards imbalanced class distributions
[24]. Therefore, it is particularly well suited for software defect prediction tasks

ilve rate

True pos

0 010203040506 070809 1
False positive rate

Fig. 3.8 ROC-AUC curve representation

20

3.7 Statistical Test

With a specific end goal to statistically assess the execution of feature extraction
technique we utilize a statistical test called Friedman test. Not at all like parametric
tests, assumptions made in the non-parametric tests are not rigorous and one may
overlook the nearness of anomalies in the datasets, variance_homogeneity, and

normality distributions so on [40].

Lessmann et al. learn that lone couple of past examinations have utilized statistical
tests for performance validation inferring conclusions only by manual investigation of
exact outcomes may deceive and can make irregularity crosswise over more than one
explore performed on a similar subject. To evade this situation, we utilize a statistical

test to create verified conclusions.

3.7.1 Friedman Test

Friedman test is a non-parametric statistical test based on the rankings of performance
values rather than the actual values [1], [2]. In this work, we use this test to detect
whether the performance differences among the 4 feature selection methods and a
classifier SVM are random. It is practically equivalent to the repeated-measures
ANOVA in non-parametrical statistical methodology; in this manner, it is a
multicomparison test that intends to recognize noteworthy contrasts between the
characteristics of at least two algorithms or techniques.

CTE *Output? [Document?] - IBM SPSS Statistics Viewer
File Edit View Data Transform Insett Format Analyze Graphs Utiliies Extensions Window Help

SHEQ N e w FBLF =25 4

=+ {& output Percentiles

""" Log M Mean Std. Deviation Minimum Maximum 25th 50th (Median) TEth
& [E] NPar Tests

L[Tl PCA 9 6081901 19662164 28919 B1759 4228479 6256424 7993351
Notes LDA 9 5822620 220470893 25397 BA171 3981041 5057612 8391705
L Descriptive Statist KPCA a 5957142 14446722 42448 80793 4577212 5797018 .T461866
E--{E] Friedman Test
() Title SVM 9 6035347 A3STIT06 40100 82291 6248478 7162148 8044249
AE 9 7056309 12898816 47606 BATE2 5024029 7450056 7907773

. [Test Statistics

Friedman Test

Test Statistics”

¥ g
i Chi-Square 10.488
df 4
Asymp. Sig. 033

a. Friedman Test

Fig. 3.9 Friedman test statistics

21

It processes the positioning of the experimental outcomes for the algorithm, for each
function, providing rank 1 to the top of them, and rank ‘k’ to the worst. Assuming that
according to the null hypothesis laid, the performance of the techniques used are
equivalent and doesn’t show any significant difference. Consequently, their rankings

should be akin. The Friedman’s statistic 2.

,) 2
X nk{kﬂjzlre —3n(k +1) 0y

IS distributed according to 2 with k — 1 degrees of freedom, where ‘k’ given in above
equation number (2) is a number of techniques being compared, for this study it is set
to be 5 at the alpha value of a=0.05. And n represents the number of instances for
which the techniques are compared whereas R2 represent the sum of squares of these

instances.

22

CHAPTER 4

EXPERIMENTAL DESIGN

In this section, we have discussed the experimental setup required for empirical
comparison of feature extraction techniques. This segment provides information about
variables selection (independent variable and dependent variable), hypothesis

formulation and tools used for the experiments are also discussed.

4.1 Variable Selection
The two main variables in an experiment are the independent and dependent variable.

There is cause-effect relationship between independent and dependent variable.

Independent Dependent

Variable Variable

CAUSE EFFECT

Fig. 4.1 Relationship between independent and dependent variable

In this study of Software defect prediction the variable used is:

An independent variable is the variable that is changed or controlled in a scientific
experiment to test the effects on the dependent variable e.g. 20 metrics (LOC and CK
metrics) used in this study are Response for the Class (RFC), Weighted Methods per
Class (WMC), Depth of Inheritance (DIT), Number of Children (NOC), Coupling
between Objects (CBO) Lack of Cohesion in methods (LCOM) ,Afferent
Coupling(CA), Efferent Coupling(CE), number of public methods (NPM) another

23

Lack of Cohesion in methods (LCOMB3), lines of code (LOC) and Data access
method (DAM) etc.

A dependent variable is a variable being tested and measured in a scientific
experiment eg. Value showing whether a class is defect free or not. The dependent
variable is 'dependent’ on the independent variable. As the experimenter changes the
independent variable, the effect on the dependent variable is observed and recorded.
The dependent variable for this study is ‘defective’ is a binary variable which indicates
the defectiveness of the class. A class is said to be defective, if there is a chance of
observing a defect in the class in future versions of a project otherwise, a class is

termed as non-defective.

4.2 Hypothesis Formulation

The following set of Hypothesis has been developed to evaluate the defect prediction

model using machine learning techniques based on feature extraction.

Null Hypothesis (HO0): The ROC-AUC results of the defect prediction models
developed using SVM doesn’t show any significant difference when no feature
extraction method or four different feature extraction methods (PCA, LDA, K-PCA,

Autoencoders) are used for the given datasets.

Alternate Hypothesis (H1): The ROC-AUC results of the defect prediction models
developed using SVM shows significant difference when no feature extraction method
or four different feature extraction methods (PCA, LDA, K-PCA, Autoencoders) are
used for the given datasets.

Friedman test is a statistical test performed for hypothesis testing as well as for the

comparison of the results. The alpha level is set to be 0.05.

4.3 Tools Used

To perform the empirical research various types of open-source and proprietary tools
are required throughout the process. In this study, two tools are employed; Spyder is
used to perform the feature selection, classification and model validation etc. whereas
SPSS a proprietary software developed by IBM is used for hypothesis testing using

Friedman test.

24

4.3.1 SPYDER

All the experiments are implemented in python language. There are various tools
available for machine learning techniques such as Weka, KEEL SPSS, Orange,
RStudio, and Matlab etc. Spyderis a cross-platform and open-source IDE for
performing machine learning tasks in Python Language. It consists of a huge number
of machine learning libraries such as numpy, scipy, pandas, matplotlib, and scikit-
learn, as well as other open source software and other libraries such as tensorflow,
theano, keras and pytorch can also be imported to perform deep learning related
experiments.

Advantages of using SPYDER are that it supports multi Python consoles and the
ability to explore and amend variables from GUI.

In this study SPYDER is used to perform all the tasks such as preprocessing, feature

extraction, classification, validating the model and for calculating performance

& Spyder (Python 3.6) - 0 X
File Edit Search Source Run Debug Consoles Projects Tooks View Help
Os@%Ec rOERG Hu==nE BY f¢ [5 4
Editor - C:\Userswelcome'Desktop D lity reduction \datalplot_roc_crossval.py & X Python consdle 8 X File explorer (D]
(3 logistic_regression.py plot_roc_crossval.py*) % 0O consoetp@ & (4] S
54 Al pythen 3.6.3 |Anaconda custom (64-bit)| A| Name Size
& dmport pandas as pd (default, Nov 8 2617, 15:18:56) [MSC v. B ansconds
7) 1988 64 bit (ADE4)] ’
& from sklearn import svm Type "copyright”, “credits” or "license” B conda
9 from sklearn.metrics import roc_curve, auc for more information. B ecipse
10 from sklearn.model_selection import StratifiedFold I ipython
IPython 6.1.8 -- An enhanced Interactive B e
3 Python. & matplotlib
14 dataset = pd.read_csv('arc.csv’) In [1]: B spss
15X = dataset.iloc[:,:-1].values B spyderpp3
16y = dataset.iloc[:, 2].values In [1]: & tooling
1Z & Anacondz3
19 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA & Contacts
22 1da = LDA(n_components = 1) B Desltop
21 X= lda.fit_transform(X, y) & Documents
: , & Downloads
EX, y =Xy 1= 2, yy |- 2] B cipse
24 n_samples, n_features = X.shape
2 & edlipse-workspace
26 cv = StratifiedkFold(n_splits=18) B Favorites
27 classifier = svm.SVC(kernel="linear’, probability=True, random_state =2) B Links
= i B Music
29 aucs = .
- : & OneDrive
30 mean_fpr = np.linspace(e, 1, 100
3 1P P pace(®, 1, ! B Pictures
2i=0 & Saved Games
33 for train, test in cv.split(X, y): 5 Searches
probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) B Videos
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) & WebCam Viedia
tprs.append(interp(mean_fpr, fpr, tpr)) 5 website
tprs[-1][8] = 0.8 5 weksfiles
roc_auc = auc(fpr, tpr) [, .condarc 43 bytes
aucs.append(roc_auc) |
plt.plot(fpr, tpr, lw=1, alpha=9.3,
label="ROC fold ¥d (AUC = %8.2f)' % (i, roc_auc))
- v v| Varigble explorer File explorer Help

Fig. 4.2 Model development in SPYDER

25

4.3.2 SPSS

It stands for Statistical Package for the Social Sciences. This software is developed
by IBM and provide sophisticated statistical analysis, an enormous collection for
machine learning algorithms, text-analysis, incorporation with big-data and flawless
use into applications. Its user-friendlinessexibility and scalability make it handy to

users with all proficiency levels.

In this study, SPSS is used for performing the Friedman test for hypothesis testing as

well as for statistical validation of all the techniques used for software defect

8 Untitled 1 (DataSeto] - [BM SPSS Statistics Data Editor & =
Fle Edi View Dala Transform Analze Graphs Utliles Exlensians Window Help
[=—1 et - Reports 4 [(Al (3
} & [0 = - I 3
=—8__=. . Dgscriptive Statistics > EEFE KT
Bayesian Stalisties C Visible: 0 of 0 Variables
| s - -
1 s =
2 3
3 1s 5
4 3
& 3
6
o
Lf »
8 .
o
10
>
1
s
1z
i3 * | A one sample.
14 Y| A naependem samples.
15 A Related Samples
5 Mulliple Response » -
i Legacy Dialogs * | @ cni-sauare
7 [EZ Missing
Binomial
18 Multiple Imputation v e
I Runs
19 »
20 [1-5ample K-S...
21 Quality Control » [2 ndependent Samples.
2 B Roc Curve [K Independent Samples.
]
14 Spatial and Temporal Modeling 3 [&] 2 Refated Samples. : -
Di I3 i K Related Samples. S ——
Data View|| Variable View
K Related Samples 1B SPSS Stalistics Processor s ready Unicode:ON

Fig. 4.3 Friedman test performed in SPSS

26

CHAPTER-5

RESULTS AND DISCUSSIONS

In this section, computed results of various features extraction techniques and
classification techniques for software defect prediction using earlier conventional as
well as deep learning techniques are presented and discussed in the form of Tables 5.1
and 5.2 as well as in the form of line graph (in fig.5.1 and 5.2) for better visualization
and understanding. The model is validated using 10 cross-validation technique and

performance measures used are accuracy and ROC-AUC.

From the results, it can be inferred that the model built by using feature extraction and
classification techniques mainly have accuracy greater than or equal to 70%

corresponding to the data set.

Table 5.1 Accuracy calculated for each technique

S.No. | Projects PCA -SVM LDA-SVM KPCA- AE-SVM | SVM
SVM

1 Ant 0.808 0.828 0.776 0.776 0.827
2 Arc 0.880 0.897 0.880 0.881 0.898
3 Camel 0.800 0.801 0.801 0.811 0.796
4 Jedit 0.975 0.957 0.877 0.977 0.970
5 Log4j 0.925 0.902 0.892 0.922 0.922
6 Prop 0.853 0.902 0.893 0.903 0.902
7 Poi 0.765 0.774 0.632 0.706 0.765
8 Tomcat 0.907 0.908 0.906 0.909 0.906
9 Xalan 0.985 0.986 0.878 0.987 0.978

The potential of distinct methods varies on distinct datasets during improvement of
software defect prediction models. Table 111 displays that different approaches work
distinctly for every dataset as a top presentation by means of a definite performance
measure is specified with a distinct method for every dataset. For example—for jedit,

27

all the techniques performed well in terms of accuracy. Similarly, for Arc dataset, all
the techniques performed very well whereas for Poi every method performed on
average. These methods can be affected by some attribute of a specific dataset. On the
other hand, there is the requirement to execute additional work to really assess which

sort of method experience by the features of a data set.

1.2

08

= PCA -5V
== | DA-5VM

Accuracy
[=]
(4]

KPCA-SVM

i A E-SVIM

0.4
e SV

ant-1.7 arc camel-1.6 jedit-4.3 logdj-1.2 prop-6 poi-3.0 tomcat xalan-2.7
Projects

Fig. 5.1 Line graph representing the accuracy of each technique

But we have used another performance measure i.e. ROC-AUC whose values are
compiled in the form of tables IV and line diagram fig. The advantage of using ROC-
AUC is that it acts as the primary indicator of the comparative performance of the
prediction model as it can cope with imbalanced and noisy data and is insensate to the
alterations in the class division [27].

Table 5.2 ROC-AUC value calculated for each technique

S.No. PFOjECtS PCA -SVM LDA-SVM KPCA-SVM | AE- SVM SVM

1 Ant 0.817 0.840 0.773 0.818 0.792
2 Arc 0.499 0.838 0.467 0.738 0.735
3 Camel 0.625 0.435 0.515 0.696 0.689
4 Jedit 0.289 0.595 0.447 0.762 0.560
5 Log4j 0.704 0.253 0.424 0.745 0.716
6 Prop 0.345 0.360 0.579 0.508 0.401
7 Poi 0.810 0.841 0.807 0.847 0.816
8 Tomcat 0.592 0.595 0.625 0.757 0.707
9 Xalan 0.788 0.478 0.719 0.476 0.822

28

To analyze the comparative performance of different methods using the ROC-AUC,
initially, we have developed hypothesis which is briefly discussed in previous sections.
To perform the hypothesis testing a non-parametric Friedman test is used, which
resulted in the rejection of null hypothesis for ROC-AUC and it also shows that results
of a model constructed for software defect prediction using distinct methods show a
significant difference from each other when assessed using ROC-AUC. According to
this test Autoencoders performance the best on the basis ROC-AUC and got rank one
among all other techniques. Hence, it can be concluded that Autoencoders is an

effective method for performing feature selection in software.

DR sa— ‘ 4
\\Z\(A S
YSHCN) o

ROC-AUC

04
\/ \ i A F- SV
0.3 V, Plot Area rSVM

ant-1.7 arc camel-1.6 jedit-4.3 logdj-1.2 prop-6 poi-3.0 tomcat xalan-2.7
PROJECTS

Fig. 5.2 Line graph representing ROC-AUC value of each technique

29

CHAPTER 6

CONCLUSIONS AND FUTURE
WORK

In this thesis, we have examined and studied the performance of 4 feature extraction
techniques along with a classification technique based on support vector machine. The
dataset is taken from Promise data repository which contains different metrics as
independent variables whereas defect_proneness is taken as the dependent variable
having binary class label as defective or non_defective. In this study for data
preprocessing data normalization using ‘min-max normalization’ is used which keeps
the value in the range [0, 1]. The performance of the techniques is evaluated using

various performance measures such as accuracy and ROC-AUC.

The objective of this work is to gain insights and compare the abilities of distinct
feature extraction techniques and to rank them according to ROC-AUC measure. The
statistical comparison is also performed by using non-parametric Friedman test to
evaluate the difference between the methods and to rank them

The results demonstrate that different techniques perform differently on different
datasets. From the table Ill. and IV. it can be concluded that autoencoders performed
best among all other methods and got rank one. However, LDA also performed well

for many datasets.

In future, more studies should be done to assess different feature extraction methods of
deep learning based on RBM and SOM techniques as these are the novel methods for
feature extraction as well as classification. Different data sets can also be used for
future studies along with inter cross-validation method. Different performance
measure such as G-measure and H-measure can also be used for evaluating the

performance of different techniques

30

CHAPTER 7

REFERENCES

[1] Z. Xu, J. Liu, Z. Yang, G. An and X Jia, “The Impact of Feature Selection on
Defect Prediction Performance: An Empirical Comparison”, IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), pp. 309 — 320, 2016.

[2] S. Garcia, D. Molina, M. Lozano and F. Herrera “A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on
the CEC’2005 Special Session on Real Parameter Optimization”, J Heuristics, pp.
617-644, 20009.

[3] N.Gayatri, S.Nickolas and A.V.Reddy, “Feature Selection Using Decision Tree
Induction in Class level Metrics Dataset for Software Defect Predictions”, Proceedings

of the World Congress on Engineering and Computer Science, vol. 1, 2010.

[4] E. Ceylan, F. Kutlubay and A. B. Bener, “Software Defect Identification Using
Machine Learning Techniques”, Proceedings of the 32nd EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 240 — 247, 2006.

[5] S. Joseph and G. P. Margaret, “Software Defect Prediction Using Enhanced
Machine Learning Technique”, International Journal of Innovative Research in

Computer and Communication Engineering, vol. 4, 2016.

[6] T. M. Khoshgoftaar and K. Gao, “Feature Selection with Imbalanced Data for
Software Defect Prediction”, International Conference on Machine Learning and
Applications, pp. 235 - 240, 20009.

31

[7] R. Chang, X. Mu and L. Zhang, “Software Defect Prediction Using Non-Negative

Matrix Factorization”, Journal Of Software, vol. 6, 2011.

[8] P. Jindal and D. Kumar, “A Review on Dimensionality Reduction Techniques”,
International Journal of Computer Applications, vol. 173, 2017.

[9] D. R. Ibrahim, R. Ghnemat and A. Hudaib “Software Defect Prediction using
Feature Selection and Random Forest Algorithm”, International Conference on New

Trends in Computing Sciences, pp. 252 — 257, 2017.

[10] H. Lu, E. Kocaguneli and B. Cukic, “Defect Prediction between Software
Versions with Active Learning and Dimensionality Reduction”, IEEE 25th

International Symposium on Software Reliability Engineering, pp. 312 — 322, 2014

[11] H. Lu, B. Cukic and M. Culp, “Software Defect Prediction Using Semi-
supervised Learning with Dimension Reduction” Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, pp. 314 — 317, 2012.

[12] Y. Gao, C. Yang and L. Liang, “Software Defect Prediction based on Geometric
Mean for Subspace Learning”, IEEE 2nd Advanced Information Technology,
Electronic and Automation Control Conference, pp. 225 — 229, 2017.

[13] K. Bashir, T. Li, C. Wondaferaw and Y. Mahama, “Enhancing Software Defect
Prediction Using Supervised-Learning Based Framework” 12th International

Conference on Intelligent Systems and Knowledge Engineering, pp. 1 — 6, 2017.

[14] M. Bisi and N. K. Goyal, “ Early Prediction of Software Fault-Prone Module
using Artificial Neural Network”, International Journal of Performability
Engineering, pp. 43-52, vol. 11, 2015.

[15] Y. Xia, G. Yan and X. Jiang and J. Yang, “A New Metrics Selection Method for
Software Defect Prediction”, IEEE International Conference on Progress in

Informatics and Computing, pp. 433 — 436, 2014.

32

[16] P. Wang, C. Jin and S. Jin, “Software Defect Prediction Scheme Based on Feature
Selection”, Fourth International Symposium on Information Science and Engineering,
pp. 477 — 480, 2012.

[17] G. K. Armah, G. Luo and K. Qin, “Multi_Level Data Pre_Processing for
Software Defect Prediction ”, 6th International Conference on Information
Management, Innovation Management and Industrial Engineering, pp. 170 — 174,
2013.

[18] H. Ji, S. Huang, Y. Wu, Z. Hui and X. Lv, “A New Attribute Selection Method
Based on Maximal Information Coefficient and Automatic Clustering” Fourth
International Conference on Dependable Systems and Their Applications, pp. 22 — 28,
2017.

[19] M. Kakkar and S. Jain,”Feature Selection in Software Defect Prediction: A
Comparative Study’, 6th International Conference - Cloud System and Big Data
Engineering (Confluence), pp. 658 — 663, 2016.

[20] S. Liu, X. Chen, W. Liu, J.Chen, Q.Gu and D. Chen, “FECAR: A Feature
Selection Framework for Software Defect Prediction”, IEEE 38th Annual

Computer Software and Applications Conference, pp. 426 — 435, 2014.

[21] S. A. Putri and Frieyadie, “Combining Integreted Sampling Technique with
Feature Selection for Software Defect Prediction”, 5th International Conference on
Cyber and IT Service Management, pp. 1 — 6, 2016

[22] W. Han, C. Lung and S. Ajila, “Using Source Code and Process Metrics for
Defect Prediction - A Case Study of Three Algorithms and Dimensionality
Reduction”, Journal of Software, pp. 883-902, vol. 11, 2016.

[23] H. Wang, T. M. Khoshgoftaar and Amri Napolitano,“A Comparative Study of
Ensemble Feature Selection Techniques for Software Defect Prediction”, Ninth

International Conference on Machine Learning and Applications, pp. 135 — 140, 2010.

33

[24] Z. A. Rana, M. M. Awais and S. Shamail, “Impact of Using Information Gain in
Software Defect Prediction Models”, Intelligent Computing Theory 2014, pp. 637—
648, 2014.

[25] L. Miao, M. Liu and D. Zhang, “Cost-Sensitive Feature Selection with
Application in Software Defect Prediction”, 21st International Conference on Pattern
Recognition, pp. 967 — 970, 2012.

[26] R. Verma and A. Gupta , “An approach of Attribute Selection For Reducing False
Alarms”, International Conference on Software Engineering, pp. 1 — 7, 2012.

[27] R. Malhotra, L. Bahl ,S. Sehgal, P. Priya, “Empirical comparison of machine
learning algorithms for bug prediction in open source software”, 2017 International

Conference on Big Data Analytics and Computational Intelligence, pp. 40-45, 2017.

[28] V. Maaten, Laurens & Postma and Eric & Herik, “Dimensionality Reduction: A

Comparative Review”, Journal of Machine Learning Research, 2007.

[29] O.Moein, S.Yasser, R. Mohammad and T. Akbarzadeh, “Pre-Training of an
Artificial Neural Network for Software Fault Prediction”, 7th International
Conference on Computer and Knowledge Engineering, pp. 223 — 228, 2017.

[30] G.N.Ramadevi and K.Usharani, “Study on Dimensionality Reduction Techniques
and Applications”, International Journal Publications of Problems and Applications

in Engineering Research, pp. 134-140, vol. 04, 2013.

[31] P. Chenna, “Comparative Study of Dimension Reduction Approaches With
Respect to Visualization in 3-Dimensional Space”, Master of Science in Computer
Science Theses, Kennesaw State University 2016, Accessed on: Feb 16, 2018.
Available: https://pdfs.semanticscholar.org/c457/9b0368027c216e397aealb29e0eaa4b08fd0.p
df.

34

[32] H. Yan and H. Tianyu, “Unsupervised Dimensionality Reduction for High-
Dimensional Data Classification”, Machine Learning Research, pp. 125-132, vol. 2,
2017.

[33] O. Saini and S. Sharma, “A Review on Dimension Reduction Techniques in Data

Mining”, Computer Engineering and Intelligent Systems, vol.9, pp. 7-14, ,2018.

[34] S.Chitra, 2dr.G.Balakrishnan, “A Survey Of Face Recognition On Feature
Extraction Process Of Dimensionality Reduction Techniques”, Journal of Theoretical
and Applied Information Technology, vol. 36, 2012.

[35] N.Varghese, V.Verghese, P. Gayathri and N. Jaisankar, “A Survey of
Dimensionality Reduction and Classification Methods”, International Journal of

Computer Science & Engineering Survey, vol.3, 2012.

[36] Q. Meng, D. Catchpooley, D. Skillicornz and P. J. Kennedy, “Relational
Autoencoder for Feature Extraction”, International Joint Conference on Neural
Networks, pp. 364 — 371, 2017.

[37] N. Sharma and K. Saroha, “Study of Dimension Reduction Methodologies in
Data Mining”, International Conference on Computing, Communication &
Automation, pp. 133 — 137, 2015.

[38] F. Vahid and T. D. Givargis, Embedded System Design: A Unified Hardware/
Software Introduction. Wiley 2001, Available at-
http://as.wiley.com/WileyCDA/WileyTitle/productCd0471.html.

[39] Z. M. Hira and D. F. Gillies, “A Review of Feature Selection and Feature
Extraction Methods Applied on Microarray Data”, Advances in Bioinformatics, vol.4,
2015.

[40] J. Demsar, “Statistical comparisons of classifiers over multiple data sets”, J

Machine Learning, vol. 7, pp. 1-30, 2006.

35

[41] A. K. Noulas and B. J. A. Krose, “Deep Belief Networks for dimension
reduction”, Belgian-Dutch Conference on Artificial Intelligence,
pp. 185-191, 2008.

