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ABSTRACT 
 

 

Software defect prediction is a process of classification which determines whether a 

software module is defective or not. A defect prediction model is a method where a set 

of independent variables (the predictors) are used to predict the value of a dependent 

variable (the defect-proneness of a class) using a machine learning classifier. 

Innumerable studies are present in literature that studies the effect of dimensionality 

reduction on performance of models developed for Software Defect Prediction. It is said 

to improve certain models. Also, Software defect prediction is a costly activity and the 

problem relies in the fact that many feature-extraction methods based on traditional as 

well as novel like deep learning are there for dimensionality reduction. So, it becomes 

very difficult to choose any method based on its working, its pros and cons and its 

performance for dimensionality reduction. Thus, there arises a need of comparison 

study for feature extraction technique which exists earlier in literature.  

This study aims to provide literature review on the previously existing feature reduction 

techniques in software defect prediction. The study helps software developers in 

identifying the commonly prevalent as well as novel feature extraction techniques, their 

characteristics and their performance in area of software defect prediction and guides 

the researchers in conducting future research. The comparison is performed on nine 

open-source software-systems written in Java using four mostly used feature extraction 

technique and a machine learning classifier. The model validation is performed by 10 

fold cross validation method and the performance measure used is accuracy and ROC-

AUC. Results of the study indicate that autoencoders is an effective method to reduce 

the dimensions of a dataset successfully.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview  

Quality assurance is an archetypal resource-impelled activity when requirements based 

on the time-to-market metrics of software delivery need to be met. In some software 

industry, it is analyzed that if there is some week based delay in software delivery it 

may cause some grave approximately (22-23%) loss for software having lifetime 

around 52 weeks [38]. Because of the expanded requirement for the quick arrival of 

programming to the market is a concerned issue for organizations in many divisions of 

programming markets. Despite the fact that it is basic to meet such a squeezing need, 

indiscreet quality confirmation can request specialized record. The negative impact of 

a faulty programming stature is regularly deadly in the association. Hence, quality 

confirmation ends up plainly hypercritical quickly before the product uncovers; in any 

case, at that stage, time and HR are normally inadequate for disposing of each torpid 

deformity by the due date. Designers or quality confirmation supervisors in this 

manner critically request procedure that successfully predicts absconds and empowers 

the use of best undertaking in settling them. Therefore, defect prediction in 

programming's and their discharges has been an energetic research territory in 

programming designing zone. 

Software defect prediction is a process of classification which determines whether a 

software module is defective or not. It helps Quality Assurance (QA) teams to 

concentrate on their finite resources on the most defect susceptible software modules. 

In this, every software component is categorized by a class tag and numbers of 

metrics. The class tag indicates if this module is faulty [38]. 

We know that data mining and machine learning are prevailing days by day, a number 

of classification models have been introduced during the past decade. In spite of that, a 
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problem that scares the modeling process is high-dimensionality of defect data, i.e., 

datasets with extreme features having irrelevant and redundant ones. Previous studies 

have exposed that the high-dimensionality issue can lead to high computational charge 

and deprivation of the accuracy of definite models [9], [10], [13]. Due to these causes, 

a range of feature reduction techniques was projected to improve this problem of high-

dimensionality by removing extraneous and repeated features. 

According to [39], with an increase in the dimensionality of data, there is an 

exponential increase in the amount of data needed to offer a reliable performance, this 

fact is termed as the ‘curse of dimensionality’ by Bellman when taking into account 

issues related to dynamic optimization. A well-liked undertaking to this issue of high-

dimension datasets is to look for a pr0jection of the data against a lesser amount of 

features, which conserve the in0frmation so far as possible. 

To conquer this issue, it is essential to discover a manner to reduce the number of 

variables in consideration [1], [8], [39]. Two widely used methods are: 

(a) Feature selection 

This method [8] chooses a subset of actual features from available features, without 

whichever failure of valuable inf0rmation. It directs the distinct job of exploring a 

subset of specified features that are helpful to resolve the domain issue.  

Feature selection methods are classified into three classes [8] i.e. filter, wrapper, 

embedded / hybrid.  

(b) Feature extraction 

Feature extraction [24] is a technique to find novel features from specified features by 

employing some conversions to decrease complication and to provide an easy 

demonstration of each variable in feature space as a linear arrangement of input 

variables. It is more general technique than feature selection technique.  PCA, ICA, 

LDA, and K-PCA are some of the approaches of feature extraction. 

Feature extraction is also called second-order features [32]. If the second-order 

features are united linearly throughout feature extraction, it’s linear feature extraction. 

Otherwise, it is called non-linear feature extraction. In this study, we are comparing 

both linear as well as non-linear technique. 
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1.2 Research Objective  

In software defect prediction, when we think about dimension reduction methods 

specifically, PCA, K-PCA, and LDA are two widely used approaches of conventional 

methods while Auto-encoders is a novel technique of deep learning which be capable 

of effortlessly handling non-linear & big data [31]. Dimensionality reduction is a 

major issue in numerous real-world studies as data used for software defect prediction 

sometimes has high dimensions and transforming these data from high dimensions to 

low dimensions is crucial to boosting the effectiveness of prediction process [38]. A 

large number of machine learning methods in the past used linear transformation 

which is based on factorization projections or orthogonal projections for 

dimensionality reduction. These types of methods generally are not valuable for non-

linear feature reduction other than that it can effectively solve many simple problems 

related to limited constraints data. Deep learning in contrast to that has effective 

visualization capacity and address data complex in nature. 

1.3 Proposed Work 

The main aim of this study is to carry out a comprehensive comparison of various 

types of feature extraction techniques like LDA PCA, Stacked Auto Encoders and K-

PCA;  detailed study of existing methodologies for dimension reduction; Model 

development to evaluate the techniques with the open source datasets.  

1.4 Thesis Organization 

This thesis work is bifurcated into six different chapters. Starting with the  Chapter 1 

gives the brief introduction about the issues discussed in this study. The chapter 

explains the need for and use of defect prediction models. It defines the defect-related 

terminologies explaining how they affect the software systems and human life. It also 

addresses the problem of ‘curse of dimensionality’. It also describes the motivation 

behind this study along with the research objectives. 

Chapter 2 sums up the related studies with respect to software defect prediction and 

dimensionality reduction. A lot of research has been carried out in defect prediction 

area in the context of feature reduction. This chapter summarizes the major 

contributions and findings of the previous studies. The literature survey conducted by 

the author in defect prediction finds out that high dimensional data is becoming a 

serious problem. Many studies [5], [9], [15], [13], [11] have been investigating in this 

about:blank
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field by using feature reduction techniques. Most of the studies use PCA and LDA for 

feature reduction while another method such as autoencoders is still unexplored in the 

area of defect prediction Furthermore, the related work describes the previous studies 

which have used procedural metrics and have applied various ML techniques for 

building models. Chapter 3 describes the research methodology used in the 

experiment. It briefly discusses the data collection method, different datasets and the 

data preprocessing technique. Various feature extraction methods together with the 

detailed explanation of the method are described. The chapter further defines the 

performance metrics used to evaluate the prediction models and also briefly discusses 

the Friedman test which is used for finding the statistical significance of the 

techniques. The 10-fold cross validation method used for model evaluation is 

explained in this section. Chapter 4 provides the details regarding the experimental 

design of the study. It describes the dependent, independent variables used to carry out 

the research. The chapter further defines the hypothesis formation on which the study 

is based and describes various tools used for implementation of the experiments. In 

Chapter 5 the obtained results are stated and analyzed using statistical tests. We have 

performed an extensive comparison between various feature extraction methods using 

non-parametric test i.e. Friedman test.  Chapter 6 concludes the final outcome of the 

study. It states which method performed the best and guides the researchers to make 

use of novel feature extraction techniques to further improve the performance of defect 

prediction models. The chapter also provides the future scope of the research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Some of the previous studies about SDP are concisely summarized to depict the drift 

and trends in literature focusing on feature selection and extraction in software defect 

prediction. Liu et al. [1] examined the effect of some 32 feature selection methods 

such as filter-based, wrapper-based, clustering-based and extraction-based on the 

NASA dataset. Gayatri et al. [3] proposed a novel technique for feature selection build 

on Decision_Tree_Induction and compared it with RELIEF method and found that 

proposed method performed better than the others.  

Ceylan et al. [4] conducted experiments Principal Component Analysis is used for 

dimensionality-reduction, and for classification Decision Tree, Multi-Layer Perceptron 

and Radial Basis Functions are used. Khoshgoftaar et al. [6] carried his research on the 

influence of data sampling followed by wrapper-based feature selection method and 

found out that the proposed method appreciably better than the classification method 

based on unsampled fit data. 

In [9] authors evaluated a technique based on the Bat-based search Algorithm (BA) for 

the purpose of feature selection process, and the Random Forest algorithm (RF) for 

purpose of classification to perform software defect prediction.In this authors has also 

compared various classification technique with the proposed method and reported that 

proposed technique is providing better results. Lu et al. [10] experimentally 

investigated their proposed approach based on active learning on successive versions 

of eclipse dataset and results indicated that proposed technique along with 

uncertainity_sampling performs better than other classification methods. They 

improved their result by using feature selection before active learning.  

A technique based on semi-supervised learning SDP was proposed by Cukic et al. 

[11], they analyzed that pre-processing technique along with multidimensional scaling 
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is implanted decreasing the dimensional complexity of software metrics. Gao et al.[12] 

investigated an approach focused on feature compression using geometric mean (GM)  

along with conditional random field technique (CRF) for SDP which outperforms than 

other techniques. By utilizing the technique of Mutual information (MI) for feature 

selection Jin et al. [16] addressed that it is showing very good results along with many 

classifiers for NASA datasets. 

In [13] Mahama et al. reported their study in scenarios by including various techniques 

such as ranker for dimensionality reduction, data-sampling for imbalanced data and 

iterative_partition_filter for reducing noise in data to enhance the results of Software 

Defect Prediction. Bisi et al. [14] showed that PCA for feature reduction along with 

ANN shows the better result in terms of accuracy as compared to SA i.e. Sensitivity 

Analysis for scale features with ANN.  

Yang et al. [15] observed that their proposed work based on the ReliefF algorithm for 

dimension reduction and liner-correlation analysis can enhance the SDP on NASA 

dataset using Naive-Bayes, multilayer-perceptron and SVM classifiers. Qin et al. [17] 

explored that by using multilevel data preprocessing consisting of double feature 

selection and tripartite instances_filtering can enhance the process of SDP. In addition 

to that, they also reported that unrelated features by feature selection and data 

imbalance can be handled by resampling method. 

 Ji et al. [18] showed that their proposed work NASM performs better than other 

traditional technique, as it is based on maximal information-coefficient-matrix to 

select the features by clustering. The traditional techniques are based on PCA and 

other sampling techniques.   

Kakkar and Jain [19] performed a comparative study on feature selection. Algorithms 

such as Best-Fit search and Greedy-Stepwise method and some ranker method were 

used with 3 different lazy-predictors .i.e. IBK, K-star & LWL and validated their 

results using 10-fold cross-Validation. It was observed that LWL outperforms among 

all other classifiers. FECAR a novel feature-clustering and feature-Ranking structure 

were developed by Liu et al. [20]. It was based on chi-square, Information-gain and 

relief measure. The experiments were performed on open source datasets of NASA 

and Eclipse.  
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Frieyadie and Putri [21] analyzed that by combining sampling technique with feature 

compression the prediction of software defects can be enhanced. Smote and random-

sampling were used along with Chi Square, information Gain, and relief methods and 

it was shown that SMOTE+relief+Naive-Bayes outperformed among all other 

combinations. 

Han et al. [22] observed that results of 61 features are comparable to that of only 2 

features by using features selection techniques such as principal components analysis 

as well as variable importance and classifiers used were Random-Forest, Neural-

Networks and Support Vector Machine.  

Khoshgoftaar et al. [23] empirically showed that ensembles of feature selection 

techniques can perform better than the single feature selection techniques by 

employing 17 ranker-based and 11 threshold-based FS techniques and results showed 

that ensemble of a number of rankers is better than the ensemble of many rankers.  

Rana et al. [24] investigated that to decrease the dimensions of input-space by 

dropping unrelated metrics InformationGain can be used as compared to PCA which 

selects the features other than keeps the illustration of all feature-variable undamaged. 

Miao et al. [25] explored some different feature selection method that is the cost-

sensitive feature and embedded a cost-matrix into FS methods and showed that their 

proposed work outperforms than other traditional techniques in terms of cost. 

Verma and Gupta focused on exploring a way to reduce the features after feature 

selection and estimated the result of this on software defect prediction. They analyzed 

that FalsePositiveRate is diminished by means of the proposed scheme of feature 

selection [26]. 

In a study conducted by Malhotra et al. [27], it was analyzed that correlation-based 

feature selection is used to preprocess the data because this technique is fast simple 

and can handle both redundant and unrelated data. 

Postma et al. [28] performed a systematic comparative analysis of various types of 

feature selection and extraction techniques and provide their expert review on these 

techniques. It also explained the weakness of non-linear techniques and provides the 

measure to improve their performance.  
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Usharani et al. [30] explored different and traditional as well as novel techniques of 

feature selection and feature extraction for dimensionality reduction. 

 

Pooja Chenna in [31] performed a comparative study on various traditional as well as 

deep learning techniques of feature extraction such as PCA, RBM, and autoencoder 

and implemented RBM on ECL and result showed that RBM outperform among all for 

Visualization in 3-Dimensional Space 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

 

This section provides insight about the procedures and methods used in empirical 

study .here we have briefly discussed each method required to perform the empirical 

study such as process involved in data collection, preprocessing, classification, model 

validation, measuring performance and selection of statistical test. 

 

 

Fig. 3.1 Research methodology for SDP 
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3.1 Dataset Collection    

In this study, 9 open source projects from Apache software Foundation Systems which 

are publicly available in the open source dataset repository called PROMISE 

Repository are used as datasets. This is the mostly used repository in S0ftware fault 

Prediction. For this study, different projects of varied size as well as with different 

defect rate is considered and these projects are having 20 Object Oriented metrics and 

also there is defect label for each class which shows whether a module is defective or 

not. Table 3.1 represents the release, total number of classes, size in terms of KLOC of 

each project, number of defective_classes and defective_percentage of each project.  

 

Table 3.1 Dataset Details 

 

 

3.2 Data Normalisation 

 It is unlikely to have real-time statistics within a definite range. Hence pre-processing 

of the data performs to be a crucial move when there is not any compulsion to give 

weight to some definite feature while using classification or clustering techniques. 

Preprocessing can be done in two ways i.e. normalization or standardization. In 

comparative study it is essential to preprocess the data as maintaining it in a definite 

range is very imperative. 

Selection of normalization technique for a specific data totally depends upon the user. 

For this comparative study, 20 input variables are not in same range of magnitude. 

about:blank
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Hence, we perform data normalization on these attributes using min-max 

normalization to transform data within the range of [0, 1]. The equation for min-max 

normalization is given below 

 

                   
        

             
                           (1)              

 

‘x’ denotes the data_point. 

min(x) denotes the minimum_value of x of a feature.    

max(x) denotes the maximum_value of x of a feature.  

z denotes the normalized value.  

During preprocessing step it must be ensured that no noise is injected in the original 

data. 

Since software defect prediction is a classification process, the dependent variable 

(defect proneness) should represent only two classes i.e. defective or non_defective. 

The bug proneness is labeled with defect severity which ranges from 0 to 10 for all the 

dataset. In order to preprocess this variable, classes with bug severity less than 1 are 

labeled as non_defective other than that are labeled as defective.   

3.3 Dimensionality Reduction Techniques 

Many diverse techniques have been used for dimensi0nality reducti0n. These 

approaches can be supervised or unsupervised methods [33] When any discriminate 

analysis utilize class label called as supervised technique while some do not use class 

label mentioned to as unsupervised approaches. Some supervised approach methods 

are like LDA (Linear Discriminent Analysis), NN (Neural Network) used for 

dimensionality reduction.  

 

Unsupervised methods like PCA (Principal_Component_Analysis), ICA (Independent 

Component Analysis), KPCA (Kernel Principal Component Analysis), Restricted 

Boltzmann machines (RBM) and autoencoders etc. are used for decreasing dimensions 

of the dataset. For this comparative study, some of the above-mentioned techniques 

which are frequently used [14], [18], [22], [24], [28], [31] are  considered for 

comparison for software defect prediction 
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Table 3.2 Comparison of various Feature extraction techniques 

 

 
 

3.3.1 Principal Component Analysis (PCA) 

It is the majority employed data transformation technique for preprocessing and 

feature extraction that lessens the feature space by seizing linear reliance amid diverse 

features. PCA looks for principal components (PC) that are the linear amalgamation of 

actual features such as so as to they are orthogonal to one another and seize the 

greatest sum of the variance in the data. Usually, it is probably to seize high variance 

by means of merely a very small number of PC’s [37].  

 

Fig 3.2 Implementation of PCA technique in SPYDER. 



13 
 

 

In turn, to find PC’s, from original data covariance matrix, is calculated and then every 

eigenvalue are calculated. PCs are those eigenvectors that correspond to the largest 

eigenvalues.  

3.3.2 Linear Discriminant Analysis (LDA) 

This is another widely used feature extraction technique used in software defect 

prediction. The major objective of the LDA resides in calculating a base of vectors 

providing the greatest difference amid the classes, attempting to get the most out of the 

between-class-differences, diminishing the within-class-differences one time by means 

of scatter matrices [34].  

It also goes through small-sample-size problem which is present in high dimension 

data where a number of present samples is less than dimensions of the samples. D-

LDA, R-LDA, and K-DDA are some types of LDA [34]. 

 

Fig. 3.3 Implementation of LDA technique in SPYDER 
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3.3.3 Kernel-PCA (K-PCA) 

It is the extension of conventional linear-PCA in a high dimensional scope which is 

builds using a kernel function [28]. During previous years, the redevelopment of linear 

methods based on the ‘kernel’ has directed towards the scheme of booming methods 

for instance Support Vector Machines. In this technique instead of the covariance 

matrix, principal eigenvectors of the kernel matrix are calculated. 

The redevelopment of PCA in kernel space is clear-cut since a kernel matrix is like the 

in_product of the data points in the high dimensional space that is build using the 

kernel function.   

 

Fig. 3.4 Implementation of K-PCA technique in SPYDER. 

3.3.4. Autoencoders (AE) 

Autoencoder was at first presented soon after the 1980s [36] as a linear feature 

extraction technique. A noteworthy preferred benefit of Autoencoder is that it is 

simple to stack for producing diverse levels of new features to show actual ones by 

adding hidden layers.  
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In order to allow the autoencoder to learn a nonlinear mapping between the high-

dimensional and low-dimensional data representation, sigmoid activation functions are 

generally used [28]. If linear activation function is used instead of sigmoid activation 

function, an autoencoder is identical to PCA. 

Stacked auto-encoders are best utilized for unsupervised learning as it is great in 

catching hierarchical groups,  that is essential layers of the system learns more 

elevated amount features and as we go deeper in the network, it attempts to learn to 

bring down level features in deep learning that supplanted the learning procedures   

utilized in traditional neural networks. 

Stacked Auto-encoders according to its name is a stack of auto-encoders. They are too 

known as Stacked Auto-Associators as these attempt to relate the output with the input 

and seek to locate intermediate representations [31]. Conventionally, in this output 

from one AE is taken as input for the next AE and this procedure are iterated until 

every lone AE in the network is pretrained. The resultant present at the output layer of 

the network is with reduced dimensions. There are diverse types of AE like Sparse 

AE, Contractive AE, and Denoising AE. 

 

 Fig. 3.5 Implementation of Autoencoder technique in SPYDER. 
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3.4 Classification Techniques  

In this study, a comparative performance analysis of different feature extraction 

technique along with machine learning techniques is explored for software defect 

prediction on publicly available datasets. Machine learning techniques are proven to 

be useful in terms of software defect prediction. The data from software repository 

contains lots of information in assessing software quality, and machine learning 

techniques can be applied to them in order to extract software defects information. 

The machine learning techniques are classified into two broad categories in order to 

compare their performance; such as supervised learning versus unsupervised learning. 

In supervised learning algorithms such as classifier like Multilayer perceptron, Naive 

Bayes classifier, Support vect0r machine, Random Forest and Decision Trees are 

compared. In case of unsupervised learning methods like Radial base network 

function, clustering techniques such as K-means algorithm, K nearest neighbor are 

compared against each other. But in this study, we are investing only Supp0rt Vector 

Machine (SVM) because in most of the literature based on feature extraction SVM is 

used [3], [6], [15], [18], [22], [25], [29].  

 

3.4.1 Support Vector Machine (SVM) 

It assumes (SVM) [5], [12] utilizes non-linear mapping for original training data to 

transform it into the higher dimension. Then it searches for an optimal linear 

hyperplane for separation. The hyperplane can be found using margins and support 

vectors. SVM is used for classification purpose and is based on supervised learning. 

Support Vector Machine (SVM) is a powerful and flexible type of supervised learning 

model, used for classification and regression analysis. It has been applied to learning 

algorithms that analyze data and recognize patterns. It has the advantage of reducing 

problems of overfitting or local minima. In addition, it is based on structural risk 

minimization as opposed to the empirical risk minimization of neural networks.  

Given a set of samples for training purpose [7], an SVM training algorithm builds a 

model that assigns new examples into one category or the other, making it a non-

probabilistic binary linear classifier. 
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Fig. 3.6 Optimal hyperplane in Support vector machine 

  

3.5 Model validation Technique 

There are many types of model validation techniques such as hold-out method, Leave-

one-out, k-fold Cross-validation and bootstrapping etc for validating the model against 

the training data. From the literature study, it can be inferred that widely used model 

validation technique is 10 fold Cross-validation [1], [3], [6], [7], [8]. Cross-validation 

is a method to estimate predictive m0dels by dividing the original dataset into a 

training_set for training the model developed, and a test set to assess the performance 

of the model developed. 

In k-fold cross-validation, as shown in fig. 3.7, the original_sample is arbitrarily 

subdivided into k-equal_size subsampIes[9][11][13][14]. Out of the k-subsamples, a 

lone subsample is reserved as the test data for validating the model, and the leftover 

‘k-1’ subsamples are taken for the training of the model. Then the CV process is 

iterated k times, with a piece of the k subsamples used accurately once as the test data. 

A mean/average value of the ‘k’ numbers of results obtained from the foIds, can be 

taken to generate the final inference. 

The benefit of this technique over all other methods such as hold-out method, Leave-

one-out, and bootstrapping is that all instances are used for both training and testing, 

and every instance is used for testing just once. There are some subtype of K-fold 

cross-validation technique such as Stratified K-fold cross-validation and repeated K-

fold cross-validation. 
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Fig. 3.7 10-fold cross-validation 

 

3.6 Performance Measures  

There is an extensive number of performance measures for classification [1], [21], [3], 

[7], [10], [12]. These measures have been used for different applications and to 

evaluate different things. Commonly used performance measures for Software defect 

prediction are Accuracy, Precision, Recall, F1-measure, PR-AUC & ROC-AUC etc. 

Out of these techniques Accuracy and ROC- AUC are considered for this comparative 

study. 

3.6.1 Accuracy 

Traditionally, accuracy is the widely used technique for performance estimation. 

Accuracy shows the ratio of all correctly classified instances [11], [16], [17]. 

However, accuracy is not proper to measure particularly in defect prediction because 

of class imbalance of defect prediction [7]. 

The value of accuracy can be represented by a single value that lies between 0 to 1. 

Accuarcy=(T_P+T_N )/ N  

where, 

T_P= #observations which are ‘defective’ and predicted to be ‘defective’ 

T_N= #observations which are ‘non_defective’ and predicted to be ‘non_defective’ 

N= total number of samples in a dataset. 
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3.6.2 ROC - AUC  

Nowadays ROC-AUC is the most widely used performance measure [1], [21], [3], [6], 

[9], [10], [11], [15], [17]. ROC-AUC Curve is most commonly utilized to visualize the 

performance of a binary value-based classifier, and AUC is the optimal method, 

to sum up, its results in a lone number which ranges from 0 to 1. The ROC-AUC curve 

is utilized to differentiate the trade-off between true_positive_rate and false_positive 

_rate as shown in fig.3.8. A predictor that results in a large area under the curve of 

ROC is superior over a classifier with a minor area under the curve. An ideal classifier 

produces an AUC that equals 1. 

 

The benefits of using ROC-AUC are its vigor towards imbalanced class distributi0ns 

[24]. Therefore, it is particularly well suited for software defect prediction tasks 

.  

 
 

Fig. 3.8 ROC-AUC curve representation 
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3.7 Statistical Test 

With a specific end goal to statistically assess the execution of feature extraction 

technique we utilize a statistical test called Friedman test. Not at all like parametric 

tests, assumptions made in the non-parametric tests are not rigorous and one may 

overlook the nearness of anomalies in the datasets, variance_homogeneity, and 

normality distributi0ns so on [40]. 

Lessmann et al. learn that lone couple of past examinations have utilized statistical 

tests for perf0rmance validation inferring conclusions only by manual investigation of 

exact outcomes may deceive and can make irregularity crosswise over more than one 

explore performed on a similar subject. To evade this situation, we utilize a statistical 

test to create verified conclusions. 

3.7.1 Friedman Test 

Friedman test is a non-parametric statistical test based on the rankings of performance 

values rather than the actual values [1], [2]. In this work, we use this test to detect 

whether the performance differences among the 4 feature selection methods and a 

classifier SVM are random. It is practically equivalent to the repeated-measures 

ANOVA in non-parametrical statistical methodology; in this manner, it is a 

multicomparison test that intends to recognize noteworthy contrasts between the 

characteristics of at least two algorithms or techniques. 

 

Fig. 3.9 Friedman test statistics 
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It processes the positioning of the experimental outcomes for the algorithm, for each 

function, providing rank 1 to the top of them, and rank ‘k’ to the worst. Assuming that 

according to the null hypothesis laid, the performance of the techniques used are 

equivalent and doesn’t show any significant difference. Consequently, their rankings 

should be akin. The Friedman’s statistic χ2. 

    

is distributed according to χ2  with k − 1 degrees of freedom, where ‘k’ given in above 

equation number (2) is a number of techniques being compared, for this study it is set 

to be 5 at the alpha value of α=0.05. And n represents the number of instances for 

which the techniques are compared whereas R2 represent the sum of squares of these 

instances. 

 

 

 

 

 

 

 

 

 

 

(2) 
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CHAPTER 4 

 

EXPERIMENTAL DESIGN 

 

In this section, we have discussed the experimental setup required for empirical 

comparison of feature extraction techniques. This segment provides information about 

variables selection (independent variable and dependent variable), hypothesis 

formulation and tools used for the experiments are also discussed. 

4.1 Variable Selection 

The two main variables in an experiment are the independent and dependent variable. 

There is cause-effect relationship between independent and dependent variable. 

 

 

Fig. 4.1 Relationship between independent and dependent variable 

 

In this study of Software defect prediction the variable used is: 

An independent variable is the variable that is changed or controlled in a scientific 

experiment to test the effects on the dependent variable e.g. 20 metrics (LOC and CK 

metrics) used in this study are  Resp0nse for the Class (RFC), Weighted Meth0ds per 

Class (WMC), Depth of Inheritance (DIT), Number of Children (NOC), Coupling 

between Objects (CBO)  Lack of Cohesion in methods (LCOM) ,Afferent 

Coupling(CA), Efferent Coupling(CE), number of public methods (NPM)  another 
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Lack of Cohesion in methods (LCOM3), lines of code (LOC) and   Data access 

method (DAM)  etc. 

A dependent variable is a variable being tested and measured in a scientific 

experiment eg. Value showing whether a class is defect free or not.  The dependent 

variable is 'dependent' on the independent variable. As the experimenter changes the 

independent variable, the effect on the dependent variable is observed and recorded. 

The dependent variable for this study is ‘defective’ is a binary variable which indicates 

the defectiveness of the class. A class is said to be defective, if there is a chance of 

observing a defect in the class in future versions of a project otherwise, a class is 

termed as non-defective. 

4.2 Hypothesis Formulation 

The following set of Hypothesis has been developed to evaluate the defect prediction 

model using machine learning techniques based on feature extraction.   

Null Hypothesis (H0): The ROC-AUC results of the defect prediction models 

developed using SVM doesn’t show any significant difference when no feature 

extraction method or four different feature extraction methods (PCA, LDA, K-PCA, 

Autoencoders) are used for the given datasets. 

Alternate Hypothesis (H1): The ROC-AUC results of the defect prediction models 

developed using SVM shows significant difference when no feature extraction method 

or four different feature extraction methods (PCA, LDA, K-PCA, Autoencoders) are 

used for the given datasets. 

Friedman test is a statistical test performed for hypothesis testing as well as for the 

comparison of the results. The alpha level is set to be 0.05. 

4.3 Tools Used  

To perform the empirical research various types of open-source and proprietary tools 

are required throughout the process. In this study, two tools are employed; Spyder is 

used to perform the feature selection, classification and model validation etc. whereas 

SPSS a proprietary software developed by IBM is used for hypothesis testing using 

Friedman test.  
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4.3.1 SPYDER 

All the experiments are implemented in python language. There are various tools 

available for machine learning techniques such as Weka, KEEL SPSS, Orange, 

RStudio, and Matlab etc. Spyder is a cross-platform and open-source IDE for 

performing machine learning tasks in Python Language. It consists of a huge number 

of machine learning libraries such as numpy, scipy, pandas,  matplotlib, and scikit-

learn, as well as other open source software and other libraries such as tensorflow, 

theano, keras and pytorch can also be imported to perform deep learning related 

experiments.  

Advantages of using SPYDER are that it supports multi Python consoles and the 

ability to explore and amend variables from GUI. 

In this study SPYDER is used to perform all the tasks such as preprocessing, feature 

extraction, classification, validating the model and for calculating performance 

measures.  

 

 

Fig. 4.2 Model development in SPYDER 
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4.3.2 SPSS  

It stands for Statistical Package for the Social Sciences. This software is developed 

by IBM and provide sophisticated statistical analysis, an enormous collection for 

machine learning algorithms, text-analysis, incorporation with big-data and flawless 

use into applications. Its user-friendlinessexibility and scalability make it handy to 

users with all proficiency levels. 

In this study, SPSS is used for performing the Friedman test for hypothesis testing as 

well as for statistical validation of all the techniques used for software defect 

prediction. 

 

 

Fig. 4.3 Friedman test performed in SPSS 
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CHAPTER-5 

 

RESULTS AND DISCUSSIONS  

 

In this section, computed results of various features extraction techniques and 

classification techniques for software defect prediction using earlier conventional as 

well as deep learning techniques are presented and discussed in the form of Tables 5.1 

and 5.2 as well as in the form of line graph (in fig.5.1 and 5.2) for better visualization 

and understanding. The model is validated using 10 cross-validation technique and 

performance measures used are accuracy and ROC-AUC.  

From the results, it can be inferred that the model built by using feature extraction and 

classification techniques mainly have accuracy greater than or equal to 70% 

corresponding to the data set.  

Table 5.1 Accuracy calculated for each technique 

S.No. Projects PCA –SVM LDA-SVM KPCA-

SVM 

AE- SVM SVM 

1 Ant 0.808 0.828 0.776 0.776 0.827 

2 Arc 0.880 0.897 0.880 0.881 0.898 

3 Camel 0.800 0.801 0.801 0.811 0.796 

4 Jedit 0.975 0.957 0.877 0.977 0.970 

5 Log4j 0.925 0.902 0.892 0.922 0.922 

6 Prop 0.853 0.902 0.893 0.903 0.902 

7 Poi 0.765 0.774 0.632 0.706 0.765 

8 Tomcat 0.907 0.908 0.906 0.909 0.906 

9 Xalan 0.985 0.986 0.878 0.987 0.978 

 

The potential of distinct methods varies on distinct datasets during improvement of 

software defect prediction models. Table III displays that different approaches work 

distinctly for every dataset as a top presentation by means of a definite performance 

measure is specified with a distinct method for every dataset. For example–for jedit, 
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all the techniques performed well in terms of accuracy. Similarly, for Arc dataset, all 

the techniques performed very well whereas for Poi every method performed on 

average. These methods can be affected by some attribute of a specific dataset. On the 

other hand, there is the requirement to execute additional work to really assess which 

sort of method experience by the features of a data set. 

 

 

Fig. 5.1 Line graph representing the accuracy of each technique 

But we have used another performance measure i.e. ROC-AUC whose values are 

compiled in the form of tables IV and line diagram fig. The advantage of using ROC-

AUC is that it acts as the primary indicator of the comparative performance of the 

prediction model as it can cope with imbalanced and noisy data and is insensate to the 

alterations in the class division [27]. 

Table 5.2 ROC-AUC value calculated for each technique 

S.No. Projects PCA –SVM LDA-SVM KPCA-SVM AE- SVM SVM 

1 Ant   0.817 0.840 0.773 0.818 0.792 

2 Arc   0.499 0.838 0.467 0.738 0.735 

3 Camel   0.625 0.435 0.515 0.696 0.689 

4 Jedit   0.289 0.595 0.447 0.762 0.560 

5 Log4j   0.704 0.253 0.424 0.745 0.716 

6 Prop 0.345 
 

0.360 0.579 0.508 0.401 

7 Poi 0.810 
 

0.841 0.807 0.847 0.816 

8 Tomcat 0.592 
 

0.595 0.625 0.757 0.707 

9 Xalan    0.788 0.478 0.719 0.476 0.822 
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To analyze the comparative performance of different methods using the ROC-AUC, 

initially, we have developed hypothesis which is briefly discussed in previous sections. 

To perform the hypothesis testing a non-parametric Friedman test is used, which 

resulted in the rejection of null hypothesis for ROC-AUC and it also shows that results 

of a model constructed for software defect prediction using distinct methods show a 

significant difference from each other when assessed using ROC-AUC. According to 

this test Autoencoders performance the best on the basis ROC-AUC and got rank one 

among all other techniques. Hence, it can be concluded that Autoencoders is an 

effective method for performing feature selection in software.  

 

Fig. 5.2 Line graph representing ROC-AUC value of each technique 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE 

WORK 

 

In this thesis, we have examined and studied the performance of 4 feature extraction 

techniques along with a classification technique based on support vector machine. The 

dataset is taken from Promise data repository which contains different metrics as 

independent variables whereas defect_proneness is taken as the dependent variable 

having binary class label as defective or non_defective. In this study for data 

preprocessing data normalization using ‘min-max normalization’ is used which keeps 

the value in the range [0, 1]. The performance of the techniques is evaluated using 

various performance measures such as accuracy and ROC-AUC. 

The objective of this work is to gain insights and compare the abilities of distinct 

feature extraction techniques and to rank them according to ROC-AUC measure. The 

statistical comparison is also performed by using non-parametric Friedman test to 

evaluate the difference between the methods and to rank them 

The results demonstrate that different techniques perform differently on different 

datasets. From the table III. and IV. it can be concluded that autoencoders performed 

best among all other methods and got rank one. However, LDA also performed well 

for many datasets. 

In future, more studies should be done to assess different feature extraction methods of 

deep learning based on RBM and SOM techniques as these are the novel methods for 

feature extraction as well as classification. Different data sets can also be used for 

future studies along with inter cross-validation method. Different performance 

measure such as G-measure and H-measure can also be used for evaluating the 

performance of different techniques 
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