
SOFTWARE DEFECT PREDICTION USING MACHINE

LEARNING TECHNIQUES

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

 OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted by:

KISHWAR KHAN

(2K16/SWE/08)

Under the supervision of:

DR. RUCHIKA MALHOTRA

(ASSOCIATE PROFESSOR, CSE)

Department of CSE, DTU

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

JULY 2018

i

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, KISHWAR KHAN, 2K16/SWE/08 a student of M.TECH (Software Engineering)

declare that the project Dissertation titled “Software Defect Prediction Using Machine

Learning Techniques” which is submitted by me to Department of Computer Science

and Engineering, Delhi Technological University, Delhi in partial fulfilment of the

requirement for the award of the degree of Master of Technology, is original and not

copied from any source without proper citation. This work has not previously formed

the basis for the award of any Degree, Diploma, Fellowship or other similar title or

recognition.

Place: DTU, Delhi KISHWAR KHAN

Date: (2K16/SWE/08)

ii

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

CERTIFICATE

I, hereby certify that the Project titled “Software Defect Prediction Using Machine

Learning Techniques” submitted By KISHWAR KHAN, Roll number: 2K16/SWE/08,

Department of Computer Science and Engineering, Delhi Technological University,

Delhi in partial fulfilment of the requirement for the award of the degree of Master of

Technology, is a record of project work carried out by the student under my supervision.

To the best of my knowledge, this work has not been submitted in part or full for any

Degree or Diploma to this University or elsewhere.

Place: DTU, Delhi Dr. RUCHIKA MALHOTRA

Date: (Associate Professor, CSE, DTU)

 Supervisor

iii

ACKNOWLEDGEMENT

First of all I would like to thank the Almighty, who has always guided me to work on

the right path of the life. My greatest thanks are to my parents who bestowed ability and

strength in me to complete this work.

I owe a profound gratitude to my project guide Dr. Ruchika Malhotra Ma’am who has

been a constant source of inspiration to me throughout the period of this project. It was

her competent guidance, constant encouragement and critical evaluation that helped me

to develop a new insight into my project. Her calm, collected and professionally

exemplary style of handling situations not only steered me through every problem, but

also helped me to grow as a matured person.

I am also thankful to her for trusting my capabilities to develop this project under her

guidance.

 KISHWAR KHAN

 M.TECH (SWE)

 2K16/SWE/08

iv

ABSTRACT

Software defect prediction is a process of classification which determines whether a

software module is defective or not. A defect prediction model is a method where a set

of independent variables (the predictors) are used to predict the value of a dependent

variable (the defect-proneness of a class) using a machine learning classifier.

Innumerable studies are present in literature that studies the effect of dimensionality

reduction on performance of models developed for Software Defect Prediction. It is said

to improve certain models. Also, Software defect prediction is a costly activity and the

problem relies in the fact that many feature-extraction methods based on traditional as

well as novel like deep learning are there for dimensionality reduction. So, it becomes

very difficult to choose any method based on its working, its pros and cons and its

performance for dimensionality reduction. Thus, there arises a need of comparison

study for feature extraction technique which exists earlier in literature.

This study aims to provide literature review on the previously existing feature reduction

techniques in software defect prediction. The study helps software developers in

identifying the commonly prevalent as well as novel feature extraction techniques, their

characteristics and their performance in area of software defect prediction and guides

the researchers in conducting future research. The comparison is performed on nine

open-source software-systems written in Java using four mostly used feature extraction

technique and a machine learning classifier. The model validation is performed by 10

fold cross validation method and the performance measure used is accuracy and ROC-

AUC. Results of the study indicate that autoencoders is an effective method to reduce

the dimensions of a dataset successfully.

v

CONTENTS

Titles Page No.

CANDIDATE’S DECLARATION i

CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVATIONS ix

CHAPTER 1 INTODUCTION 1

1.1 Overview 1

1.2 Research Objective 3

1.3 Proposed Work 3

1.4 Organization of Thesis 3

CHAPTER 2 LITERATURE REVIEW 5

CHAPTER 3 RESEARCH METHODOLOGY 9

3.1 Dataset Collection 10

3.2 Data Normalisation 10

3.3 Dimensionality Reduction Techniques 11

3.3.1 Principal Component Analysis (PCA) 12

3.3.2 Linear Discriminant Analysis (LDA) 13

3.3.3 Kernel-PCA (K-PCA) 14

3.3.4. Autoencoders (AE) 14

3.4 Classification Techniques 16

3.4.1 Support Vector Machine (SVM) 16

3.5 Model validation Technique 17

3.6 Performance Measures 18

3.6.1 Accuracy 18

3.6.2 ROC – AUC 19

3.7 Statistical Test 20

about:blank

vi

3.7.1 Friedman Test 20

CHAPTER 4 EXPERIMENTAL DESIGN 22

4.1 Variable Selection 22

4.2 Hypothesis Formulation 23

4.3 Tools Used 23

4.3.1 SPYDER 24

4.3.2 SPSS 25

CHAPTER 5 RESULTS AND DISCUSSIONS 26

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 29

vii

LIST OF TABLES

Table No. Title Page No.

Table 3.1 Dataset Details 10

Table 3.2 Comparison of various Feature extraction techniques 12

Table 5.1 Accuracy calculated for each technique 26

Table 5.1 ROC-AUC value calculated for each technique 27

viii

LIST OF FIGURES

Figure No. Title Page No.

Fig. 3.1 Research methodology for SDP 9

Fig. 3.2 Implementation of PCA technique in SPYDER 12

Fig. 3.3 Implementation of LDA technique in SPYDER 13

Fig. 3.4 Implementation of K- PCA technique in SPYDER 14

Fig. 3.5 Implementation of Autoencoders technique in SPYDER 15

Fig. 3.6 Optimal hyperplane in Support vector machine 17

Fig. 3.7 10-fold cross-validation 18

Fig. 3.8 ROC-AUC curve representation 19

Fig. 3.9 Friedman test statistics 20

Fig. 4.1 Relationship between independent and dependent variable 22

Fig. 4.2 Model development in SPYDER 24

Fig. 4.3 Friedman test performed in SPSS 25

Fig. 5.1 Line graph representing the accuracy of each technique 27

Fig. 5.2 Line graph representing ROC-AUC value of each techniques 28

ix

LIST OF ABBREVIATIONS

QA

Quality Assurance

SDP Software Defect Prediction

PCA

Principal Component Analysis

LDA

Linear Discriminant Analysis

AE

Autoencoders

ROC-AUC

Receiver Operating Characteristics-Area Under Curve

SVM

Support Vector Machine

KPCA

Kernel-Principal Component Analysis

CV

Cross validation

PC

Principal Component

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Quality assurance is an archetypal resource-impelled activity when requirements based

on the time-to-market metrics of software delivery need to be met. In some software

industry, it is analyzed that if there is some week based delay in software delivery it

may cause some grave approximately (22-23%) loss for software having lifetime

around 52 weeks [38]. Because of the expanded requirement for the quick arrival of

programming to the market is a concerned issue for organizations in many divisions of

programming markets. Despite the fact that it is basic to meet such a squeezing need,

indiscreet quality confirmation can request specialized record. The negative impact of

a faulty programming stature is regularly deadly in the association. Hence, quality

confirmation ends up plainly hypercritical quickly before the product uncovers; in any

case, at that stage, time and HR are normally inadequate for disposing of each torpid

deformity by the due date. Designers or quality confirmation supervisors in this

manner critically request procedure that successfully predicts absconds and empowers

the use of best undertaking in settling them. Therefore, defect prediction in

programming's and their discharges has been an energetic research territory in

programming designing zone.

Software defect prediction is a process of classification which determines whether a

software module is defective or not. It helps Quality Assurance (QA) teams to

concentrate on their finite resources on the most defect susceptible software modules.

In this, every software component is categorized by a class tag and numbers of

metrics. The class tag indicates if this module is faulty [38].

We know that data mining and machine learning are prevailing days by day, a number

of classification models have been introduced during the past decade. In spite of that, a

2

problem that scares the modeling process is high-dimensionality of defect data, i.e.,

datasets with extreme features having irrelevant and redundant ones. Previous studies

have exposed that the high-dimensionality issue can lead to high computational charge

and deprivation of the accuracy of definite models [9], [10], [13]. Due to these causes,

a range of feature reduction techniques was projected to improve this problem of high-

dimensionality by removing extraneous and repeated features.

According to [39], with an increase in the dimensionality of data, there is an

exponential increase in the amount of data needed to offer a reliable performance, this

fact is termed as the ‘curse of dimensionality’ by Bellman when taking into account

issues related to dynamic optimization. A well-liked undertaking to this issue of high-

dimension datasets is to look for a pr0jection of the data against a lesser amount of

features, which conserve the in0frmation so far as possible.

To conquer this issue, it is essential to discover a manner to reduce the number of

variables in consideration [1], [8], [39]. Two widely used methods are:

(a) Feature selection

This method [8] chooses a subset of actual features from available features, without

whichever failure of valuable inf0rmation. It directs the distinct job of exploring a

subset of specified features that are helpful to resolve the domain issue.

Feature selection methods are classified into three classes [8] i.e. filter, wrapper,

embedded / hybrid.

(b) Feature extraction

Feature extraction [24] is a technique to find novel features from specified features by

employing some conversions to decrease complication and to provide an easy

demonstration of each variable in feature space as a linear arrangement of input

variables. It is more general technique than feature selection technique. PCA, ICA,

LDA, and K-PCA are some of the approaches of feature extraction.

Feature extraction is also called second-order features [32]. If the second-order

features are united linearly throughout feature extraction, it’s linear feature extraction.

Otherwise, it is called non-linear feature extraction. In this study, we are comparing

both linear as well as non-linear technique.

3

1.2 Research Objective

In software defect prediction, when we think about dimension reduction methods

specifically, PCA, K-PCA, and LDA are two widely used approaches of conventional

methods while Auto-encoders is a novel technique of deep learning which be capable

of effortlessly handling non-linear & big data [31]. Dimensionality reduction is a

major issue in numerous real-world studies as data used for software defect prediction

sometimes has high dimensions and transforming these data from high dimensions to

low dimensions is crucial to boosting the effectiveness of prediction process [38]. A

large number of machine learning methods in the past used linear transformation

which is based on factorization projections or orthogonal projections for

dimensionality reduction. These types of methods generally are not valuable for non-

linear feature reduction other than that it can effectively solve many simple problems

related to limited constraints data. Deep learning in contrast to that has effective

visualization capacity and address data complex in nature.

1.3 Proposed Work

The main aim of this study is to carry out a comprehensive comparison of various

types of feature extraction techniques like LDA PCA, Stacked Auto Encoders and K-

PCA; detailed study of existing methodologies for dimension reduction; Model

development to evaluate the techniques with the open source datasets.

1.4 Thesis Organization

This thesis work is bifurcated into six different chapters. Starting with the Chapter 1

gives the brief introduction about the issues discussed in this study. The chapter

explains the need for and use of defect prediction models. It defines the defect-related

terminologies explaining how they affect the software systems and human life. It also

addresses the problem of ‘curse of dimensionality’. It also describes the motivation

behind this study along with the research objectives.

Chapter 2 sums up the related studies with respect to software defect prediction and

dimensionality reduction. A lot of research has been carried out in defect prediction

area in the context of feature reduction. This chapter summarizes the major

contributions and findings of the previous studies. The literature survey conducted by

the author in defect prediction finds out that high dimensional data is becoming a

serious problem. Many studies [5], [9], [15], [13], [11] have been investigating in this

about:blank

4

field by using feature reduction techniques. Most of the studies use PCA and LDA for

feature reduction while another method such as autoencoders is still unexplored in the

area of defect prediction Furthermore, the related work describes the previous studies

which have used procedural metrics and have applied various ML techniques for

building models. Chapter 3 describes the research methodology used in the

experiment. It briefly discusses the data collection method, different datasets and the

data preprocessing technique. Various feature extraction methods together with the

detailed explanation of the method are described. The chapter further defines the

performance metrics used to evaluate the prediction models and also briefly discusses

the Friedman test which is used for finding the statistical significance of the

techniques. The 10-fold cross validation method used for model evaluation is

explained in this section. Chapter 4 provides the details regarding the experimental

design of the study. It describes the dependent, independent variables used to carry out

the research. The chapter further defines the hypothesis formation on which the study

is based and describes various tools used for implementation of the experiments. In

Chapter 5 the obtained results are stated and analyzed using statistical tests. We have

performed an extensive comparison between various feature extraction methods using

non-parametric test i.e. Friedman test. Chapter 6 concludes the final outcome of the

study. It states which method performed the best and guides the researchers to make

use of novel feature extraction techniques to further improve the performance of defect

prediction models. The chapter also provides the future scope of the research.

5

CHAPTER 2

LITERATURE REVIEW

Some of the previous studies about SDP are concisely summarized to depict the drift

and trends in literature focusing on feature selection and extraction in software defect

prediction. Liu et al. [1] examined the effect of some 32 feature selection methods

such as filter-based, wrapper-based, clustering-based and extraction-based on the

NASA dataset. Gayatri et al. [3] proposed a novel technique for feature selection build

on Decision_Tree_Induction and compared it with RELIEF method and found that

proposed method performed better than the others.

Ceylan et al. [4] conducted experiments Principal Component Analysis is used for

dimensionality-reduction, and for classification Decision Tree, Multi-Layer Perceptron

and Radial Basis Functions are used. Khoshgoftaar et al. [6] carried his research on the

influence of data sampling followed by wrapper-based feature selection method and

found out that the proposed method appreciably better than the classification method

based on unsampled fit data.

In [9] authors evaluated a technique based on the Bat-based search Algorithm (BA) for

the purpose of feature selection process, and the Random Forest algorithm (RF) for

purpose of classification to perform software defect prediction.In this authors has also

compared various classification technique with the proposed method and reported that

proposed technique is providing better results. Lu et al. [10] experimentally

investigated their proposed approach based on active learning on successive versions

of eclipse dataset and results indicated that proposed technique along with

uncertainity_sampling performs better than other classification methods. They

improved their result by using feature selection before active learning.

A technique based on semi-supervised learning SDP was proposed by Cukic et al.

[11], they analyzed that pre-processing technique along with multidimensional scaling

6

is implanted decreasing the dimensional complexity of software metrics. Gao et al.[12]

investigated an approach focused on feature compression using geometric mean (GM)

along with conditional random field technique (CRF) for SDP which outperforms than

other techniques. By utilizing the technique of Mutual information (MI) for feature

selection Jin et al. [16] addressed that it is showing very good results along with many

classifiers for NASA datasets.

In [13] Mahama et al. reported their study in scenarios by including various techniques

such as ranker for dimensionality reduction, data-sampling for imbalanced data and

iterative_partition_filter for reducing noise in data to enhance the results of Software

Defect Prediction. Bisi et al. [14] showed that PCA for feature reduction along with

ANN shows the better result in terms of accuracy as compared to SA i.e. Sensitivity

Analysis for scale features with ANN.

Yang et al. [15] observed that their proposed work based on the ReliefF algorithm for

dimension reduction and liner-correlation analysis can enhance the SDP on NASA

dataset using Naive-Bayes, multilayer-perceptron and SVM classifiers. Qin et al. [17]

explored that by using multilevel data preprocessing consisting of double feature

selection and tripartite instances_filtering can enhance the process of SDP. In addition

to that, they also reported that unrelated features by feature selection and data

imbalance can be handled by resampling method.

 Ji et al. [18] showed that their proposed work NASM performs better than other

traditional technique, as it is based on maximal information-coefficient-matrix to

select the features by clustering. The traditional techniques are based on PCA and

other sampling techniques.

Kakkar and Jain [19] performed a comparative study on feature selection. Algorithms

such as Best-Fit search and Greedy-Stepwise method and some ranker method were

used with 3 different lazy-predictors .i.e. IBK, K-star & LWL and validated their

results using 10-fold cross-Validation. It was observed that LWL outperforms among

all other classifiers. FECAR a novel feature-clustering and feature-Ranking structure

were developed by Liu et al. [20]. It was based on chi-square, Information-gain and

relief measure. The experiments were performed on open source datasets of NASA

and Eclipse.

7

Frieyadie and Putri [21] analyzed that by combining sampling technique with feature

compression the prediction of software defects can be enhanced. Smote and random-

sampling were used along with Chi Square, information Gain, and relief methods and

it was shown that SMOTE+relief+Naive-Bayes outperformed among all other

combinations.

Han et al. [22] observed that results of 61 features are comparable to that of only 2

features by using features selection techniques such as principal components analysis

as well as variable importance and classifiers used were Random-Forest, Neural-

Networks and Support Vector Machine.

Khoshgoftaar et al. [23] empirically showed that ensembles of feature selection

techniques can perform better than the single feature selection techniques by

employing 17 ranker-based and 11 threshold-based FS techniques and results showed

that ensemble of a number of rankers is better than the ensemble of many rankers.

Rana et al. [24] investigated that to decrease the dimensions of input-space by

dropping unrelated metrics InformationGain can be used as compared to PCA which

selects the features other than keeps the illustration of all feature-variable undamaged.

Miao et al. [25] explored some different feature selection method that is the cost-

sensitive feature and embedded a cost-matrix into FS methods and showed that their

proposed work outperforms than other traditional techniques in terms of cost.

Verma and Gupta focused on exploring a way to reduce the features after feature

selection and estimated the result of this on software defect prediction. They analyzed

that FalsePositiveRate is diminished by means of the proposed scheme of feature

selection [26].

In a study conducted by Malhotra et al. [27], it was analyzed that correlation-based

feature selection is used to preprocess the data because this technique is fast simple

and can handle both redundant and unrelated data.

Postma et al. [28] performed a systematic comparative analysis of various types of

feature selection and extraction techniques and provide their expert review on these

techniques. It also explained the weakness of non-linear techniques and provides the

measure to improve their performance.

8

Usharani et al. [30] explored different and traditional as well as novel techniques of

feature selection and feature extraction for dimensionality reduction.

Pooja Chenna in [31] performed a comparative study on various traditional as well as

deep learning techniques of feature extraction such as PCA, RBM, and autoencoder

and implemented RBM on ECL and result showed that RBM outperform among all for

Visualization in 3-Dimensional Space

9

CHAPTER 3

RESEARCH METHODOLOGY

This section provides insight about the procedures and methods used in empirical

study .here we have briefly discussed each method required to perform the empirical

study such as process involved in data collection, preprocessing, classification, model

validation, measuring performance and selection of statistical test.

Fig. 3.1 Research methodology for SDP

10

3.1 Dataset Collection

In this study, 9 open source projects from Apache software Foundation Systems which

are publicly available in the open source dataset repository called PROMISE

Repository are used as datasets. This is the mostly used repository in S0ftware fault

Prediction. For this study, different projects of varied size as well as with different

defect rate is considered and these projects are having 20 Object Oriented metrics and

also there is defect label for each class which shows whether a module is defective or

not. Table 3.1 represents the release, total number of classes, size in terms of KLOC of

each project, number of defective_classes and defective_percentage of each project.

Table 3.1 Dataset Details

3.2 Data Normalisation

 It is unlikely to have real-time statistics within a definite range. Hence pre-processing

of the data performs to be a crucial move when there is not any compulsion to give

weight to some definite feature while using classification or clustering techniques.

Preprocessing can be done in two ways i.e. normalization or standardization. In

comparative study it is essential to preprocess the data as maintaining it in a definite

range is very imperative.

Selection of normalization technique for a specific data totally depends upon the user.

For this comparative study, 20 input variables are not in same range of magnitude.

about:blank

11

Hence, we perform data normalization on these attributes using min-max

normalization to transform data within the range of [0, 1]. The equation for min-max

normalization is given below

 (1)

‘x’ denotes the data_point.

min(x) denotes the minimum_value of x of a feature.

max(x) denotes the maximum_value of x of a feature.

z denotes the normalized value.

During preprocessing step it must be ensured that no noise is injected in the original

data.

Since software defect prediction is a classification process, the dependent variable

(defect proneness) should represent only two classes i.e. defective or non_defective.

The bug proneness is labeled with defect severity which ranges from 0 to 10 for all the

dataset. In order to preprocess this variable, classes with bug severity less than 1 are

labeled as non_defective other than that are labeled as defective.

3.3 Dimensionality Reduction Techniques

Many diverse techniques have been used for dimensi0nality reducti0n. These

approaches can be supervised or unsupervised methods [33] When any discriminate

analysis utilize class label called as supervised technique while some do not use class

label mentioned to as unsupervised approaches. Some supervised approach methods

are like LDA (Linear Discriminent Analysis), NN (Neural Network) used for

dimensionality reduction.

Unsupervised methods like PCA (Principal_Component_Analysis), ICA (Independent

Component Analysis), KPCA (Kernel Principal Component Analysis), Restricted

Boltzmann machines (RBM) and autoencoders etc. are used for decreasing dimensions

of the dataset. For this comparative study, some of the above-mentioned techniques

which are frequently used [14], [18], [22], [24], [28], [31] are considered for

comparison for software defect prediction

12

Table 3.2 Comparison of various Feature extraction techniques

3.3.1 Principal Component Analysis (PCA)

It is the majority employed data transformation technique for preprocessing and

feature extraction that lessens the feature space by seizing linear reliance amid diverse

features. PCA looks for principal components (PC) that are the linear amalgamation of

actual features such as so as to they are orthogonal to one another and seize the

greatest sum of the variance in the data. Usually, it is probably to seize high variance

by means of merely a very small number of PC’s [37].

Fig 3.2 Implementation of PCA technique in SPYDER.

13

In turn, to find PC’s, from original data covariance matrix, is calculated and then every

eigenvalue are calculated. PCs are those eigenvectors that correspond to the largest

eigenvalues.

3.3.2 Linear Discriminant Analysis (LDA)

This is another widely used feature extraction technique used in software defect

prediction. The major objective of the LDA resides in calculating a base of vectors

providing the greatest difference amid the classes, attempting to get the most out of the

between-class-differences, diminishing the within-class-differences one time by means

of scatter matrices [34].

It also goes through small-sample-size problem which is present in high dimension

data where a number of present samples is less than dimensions of the samples. D-

LDA, R-LDA, and K-DDA are some types of LDA [34].

Fig. 3.3 Implementation of LDA technique in SPYDER

14

3.3.3 Kernel-PCA (K-PCA)

It is the extension of conventional linear-PCA in a high dimensional scope which is

builds using a kernel function [28]. During previous years, the redevelopment of linear

methods based on the ‘kernel’ has directed towards the scheme of booming methods

for instance Support Vector Machines. In this technique instead of the covariance

matrix, principal eigenvectors of the kernel matrix are calculated.

The redevelopment of PCA in kernel space is clear-cut since a kernel matrix is like the

in_product of the data points in the high dimensional space that is build using the

kernel function.

Fig. 3.4 Implementation of K-PCA technique in SPYDER.

3.3.4. Autoencoders (AE)

Autoencoder was at first presented soon after the 1980s [36] as a linear feature

extraction technique. A noteworthy preferred benefit of Autoencoder is that it is

simple to stack for producing diverse levels of new features to show actual ones by

adding hidden layers.

15

In order to allow the autoencoder to learn a nonlinear mapping between the high-

dimensional and low-dimensional data representation, sigmoid activation functions are

generally used [28]. If linear activation function is used instead of sigmoid activation

function, an autoencoder is identical to PCA.

Stacked auto-encoders are best utilized for unsupervised learning as it is great in

catching hierarchical groups, that is essential layers of the system learns more

elevated amount features and as we go deeper in the network, it attempts to learn to

bring down level features in deep learning that supplanted the learning procedures

utilized in traditional neural networks.

Stacked Auto-encoders according to its name is a stack of auto-encoders. They are too

known as Stacked Auto-Associators as these attempt to relate the output with the input

and seek to locate intermediate representations [31]. Conventionally, in this output

from one AE is taken as input for the next AE and this procedure are iterated until

every lone AE in the network is pretrained. The resultant present at the output layer of

the network is with reduced dimensions. There are diverse types of AE like Sparse

AE, Contractive AE, and Denoising AE.

 Fig. 3.5 Implementation of Autoencoder technique in SPYDER.

16

3.4 Classification Techniques

In this study, a comparative performance analysis of different feature extraction

technique along with machine learning techniques is explored for software defect

prediction on publicly available datasets. Machine learning techniques are proven to

be useful in terms of software defect prediction. The data from software repository

contains lots of information in assessing software quality, and machine learning

techniques can be applied to them in order to extract software defects information.

The machine learning techniques are classified into two broad categories in order to

compare their performance; such as supervised learning versus unsupervised learning.

In supervised learning algorithms such as classifier like Multilayer perceptron, Naive

Bayes classifier, Support vect0r machine, Random Forest and Decision Trees are

compared. In case of unsupervised learning methods like Radial base network

function, clustering techniques such as K-means algorithm, K nearest neighbor are

compared against each other. But in this study, we are investing only Supp0rt Vector

Machine (SVM) because in most of the literature based on feature extraction SVM is

used [3], [6], [15], [18], [22], [25], [29].

3.4.1 Support Vector Machine (SVM)

It assumes (SVM) [5], [12] utilizes non-linear mapping for original training data to

transform it into the higher dimension. Then it searches for an optimal linear

hyperplane for separation. The hyperplane can be found using margins and support

vectors. SVM is used for classification purpose and is based on supervised learning.

Support Vector Machine (SVM) is a powerful and flexible type of supervised learning

model, used for classification and regression analysis. It has been applied to learning

algorithms that analyze data and recognize patterns. It has the advantage of reducing

problems of overfitting or local minima. In addition, it is based on structural risk

minimization as opposed to the empirical risk minimization of neural networks.

Given a set of samples for training purpose [7], an SVM training algorithm builds a

model that assigns new examples into one category or the other, making it a non-

probabilistic binary linear classifier.

17

Fig. 3.6 Optimal hyperplane in Support vector machine

3.5 Model validation Technique

There are many types of model validation techniques such as hold-out method, Leave-

one-out, k-fold Cross-validation and bootstrapping etc for validating the model against

the training data. From the literature study, it can be inferred that widely used model

validation technique is 10 fold Cross-validation [1], [3], [6], [7], [8]. Cross-validation

is a method to estimate predictive m0dels by dividing the original dataset into a

training_set for training the model developed, and a test set to assess the performance

of the model developed.

In k-fold cross-validation, as shown in fig. 3.7, the original_sample is arbitrarily

subdivided into k-equal_size subsampIes[9][11][13][14]. Out of the k-subsamples, a

lone subsample is reserved as the test data for validating the model, and the leftover

‘k-1’ subsamples are taken for the training of the model. Then the CV process is

iterated k times, with a piece of the k subsamples used accurately once as the test data.

A mean/average value of the ‘k’ numbers of results obtained from the foIds, can be

taken to generate the final inference.

The benefit of this technique over all other methods such as hold-out method, Leave-

one-out, and bootstrapping is that all instances are used for both training and testing,

and every instance is used for testing just once. There are some subtype of K-fold

cross-validation technique such as Stratified K-fold cross-validation and repeated K-

fold cross-validation.

18

Fig. 3.7 10-fold cross-validation

3.6 Performance Measures

There is an extensive number of performance measures for classification [1], [21], [3],

[7], [10], [12]. These measures have been used for different applications and to

evaluate different things. Commonly used performance measures for Software defect

prediction are Accuracy, Precision, Recall, F1-measure, PR-AUC & ROC-AUC etc.

Out of these techniques Accuracy and ROC- AUC are considered for this comparative

study.

3.6.1 Accuracy

Traditionally, accuracy is the widely used technique for performance estimation.

Accuracy shows the ratio of all correctly classified instances [11], [16], [17].

However, accuracy is not proper to measure particularly in defect prediction because

of class imbalance of defect prediction [7].

The value of accuracy can be represented by a single value that lies between 0 to 1.

Accuarcy=(T_P+T_N)/ N

where,

T_P= #observations which are ‘defective’ and predicted to be ‘defective’

T_N= #observations which are ‘non_defective’ and predicted to be ‘non_defective’

N= total number of samples in a dataset.

19

3.6.2 ROC - AUC

Nowadays ROC-AUC is the most widely used performance measure [1], [21], [3], [6],

[9], [10], [11], [15], [17]. ROC-AUC Curve is most commonly utilized to visualize the

performance of a binary value-based classifier, and AUC is the optimal method,

to sum up, its results in a lone number which ranges from 0 to 1. The ROC-AUC curve

is utilized to differentiate the trade-off between true_positive_rate and false_positive

_rate as shown in fig.3.8. A predictor that results in a large area under the curve of

ROC is superior over a classifier with a minor area under the curve. An ideal classifier

produces an AUC that equals 1.

The benefits of using ROC-AUC are its vigor towards imbalanced class distributi0ns

[24]. Therefore, it is particularly well suited for software defect prediction tasks

.

Fig. 3.8 ROC-AUC curve representation

20

3.7 Statistical Test

With a specific end goal to statistically assess the execution of feature extraction

technique we utilize a statistical test called Friedman test. Not at all like parametric

tests, assumptions made in the non-parametric tests are not rigorous and one may

overlook the nearness of anomalies in the datasets, variance_homogeneity, and

normality distributi0ns so on [40].

Lessmann et al. learn that lone couple of past examinations have utilized statistical

tests for perf0rmance validation inferring conclusions only by manual investigation of

exact outcomes may deceive and can make irregularity crosswise over more than one

explore performed on a similar subject. To evade this situation, we utilize a statistical

test to create verified conclusions.

3.7.1 Friedman Test

Friedman test is a non-parametric statistical test based on the rankings of performance

values rather than the actual values [1], [2]. In this work, we use this test to detect

whether the performance differences among the 4 feature selection methods and a

classifier SVM are random. It is practically equivalent to the repeated-measures

ANOVA in non-parametrical statistical methodology; in this manner, it is a

multicomparison test that intends to recognize noteworthy contrasts between the

characteristics of at least two algorithms or techniques.

Fig. 3.9 Friedman test statistics

21

It processes the positioning of the experimental outcomes for the algorithm, for each

function, providing rank 1 to the top of them, and rank ‘k’ to the worst. Assuming that

according to the null hypothesis laid, the performance of the techniques used are

equivalent and doesn’t show any significant difference. Consequently, their rankings

should be akin. The Friedman’s statistic χ2.

is distributed according to χ2 with k − 1 degrees of freedom, where ‘k’ given in above

equation number (2) is a number of techniques being compared, for this study it is set

to be 5 at the alpha value of α=0.05. And n represents the number of instances for

which the techniques are compared whereas R2 represent the sum of squares of these

instances.

(2)

22

CHAPTER 4

EXPERIMENTAL DESIGN

In this section, we have discussed the experimental setup required for empirical

comparison of feature extraction techniques. This segment provides information about

variables selection (independent variable and dependent variable), hypothesis

formulation and tools used for the experiments are also discussed.

4.1 Variable Selection

The two main variables in an experiment are the independent and dependent variable.

There is cause-effect relationship between independent and dependent variable.

Fig. 4.1 Relationship between independent and dependent variable

In this study of Software defect prediction the variable used is:

An independent variable is the variable that is changed or controlled in a scientific

experiment to test the effects on the dependent variable e.g. 20 metrics (LOC and CK

metrics) used in this study are Resp0nse for the Class (RFC), Weighted Meth0ds per

Class (WMC), Depth of Inheritance (DIT), Number of Children (NOC), Coupling

between Objects (CBO) Lack of Cohesion in methods (LCOM) ,Afferent

Coupling(CA), Efferent Coupling(CE), number of public methods (NPM) another

23

Lack of Cohesion in methods (LCOM3), lines of code (LOC) and Data access

method (DAM) etc.

A dependent variable is a variable being tested and measured in a scientific

experiment eg. Value showing whether a class is defect free or not. The dependent

variable is 'dependent' on the independent variable. As the experimenter changes the

independent variable, the effect on the dependent variable is observed and recorded.

The dependent variable for this study is ‘defective’ is a binary variable which indicates

the defectiveness of the class. A class is said to be defective, if there is a chance of

observing a defect in the class in future versions of a project otherwise, a class is

termed as non-defective.

4.2 Hypothesis Formulation

The following set of Hypothesis has been developed to evaluate the defect prediction

model using machine learning techniques based on feature extraction.

Null Hypothesis (H0): The ROC-AUC results of the defect prediction models

developed using SVM doesn’t show any significant difference when no feature

extraction method or four different feature extraction methods (PCA, LDA, K-PCA,

Autoencoders) are used for the given datasets.

Alternate Hypothesis (H1): The ROC-AUC results of the defect prediction models

developed using SVM shows significant difference when no feature extraction method

or four different feature extraction methods (PCA, LDA, K-PCA, Autoencoders) are

used for the given datasets.

Friedman test is a statistical test performed for hypothesis testing as well as for the

comparison of the results. The alpha level is set to be 0.05.

4.3 Tools Used

To perform the empirical research various types of open-source and proprietary tools

are required throughout the process. In this study, two tools are employed; Spyder is

used to perform the feature selection, classification and model validation etc. whereas

SPSS a proprietary software developed by IBM is used for hypothesis testing using

Friedman test.

24

4.3.1 SPYDER

All the experiments are implemented in python language. There are various tools

available for machine learning techniques such as Weka, KEEL SPSS, Orange,

RStudio, and Matlab etc. Spyder is a cross-platform and open-source IDE for

performing machine learning tasks in Python Language. It consists of a huge number

of machine learning libraries such as numpy, scipy, pandas, matplotlib, and scikit-

learn, as well as other open source software and other libraries such as tensorflow,

theano, keras and pytorch can also be imported to perform deep learning related

experiments.

Advantages of using SPYDER are that it supports multi Python consoles and the

ability to explore and amend variables from GUI.

In this study SPYDER is used to perform all the tasks such as preprocessing, feature

extraction, classification, validating the model and for calculating performance

measures.

Fig. 4.2 Model development in SPYDER

25

4.3.2 SPSS

It stands for Statistical Package for the Social Sciences. This software is developed

by IBM and provide sophisticated statistical analysis, an enormous collection for

machine learning algorithms, text-analysis, incorporation with big-data and flawless

use into applications. Its user-friendlinessexibility and scalability make it handy to

users with all proficiency levels.

In this study, SPSS is used for performing the Friedman test for hypothesis testing as

well as for statistical validation of all the techniques used for software defect

prediction.

Fig. 4.3 Friedman test performed in SPSS

26

CHAPTER-5

RESULTS AND DISCUSSIONS

In this section, computed results of various features extraction techniques and

classification techniques for software defect prediction using earlier conventional as

well as deep learning techniques are presented and discussed in the form of Tables 5.1

and 5.2 as well as in the form of line graph (in fig.5.1 and 5.2) for better visualization

and understanding. The model is validated using 10 cross-validation technique and

performance measures used are accuracy and ROC-AUC.

From the results, it can be inferred that the model built by using feature extraction and

classification techniques mainly have accuracy greater than or equal to 70%

corresponding to the data set.

Table 5.1 Accuracy calculated for each technique

S.No. Projects PCA –SVM LDA-SVM KPCA-

SVM

AE- SVM SVM

1 Ant 0.808 0.828 0.776 0.776 0.827

2 Arc 0.880 0.897 0.880 0.881 0.898

3 Camel 0.800 0.801 0.801 0.811 0.796

4 Jedit 0.975 0.957 0.877 0.977 0.970

5 Log4j 0.925 0.902 0.892 0.922 0.922

6 Prop 0.853 0.902 0.893 0.903 0.902

7 Poi 0.765 0.774 0.632 0.706 0.765

8 Tomcat 0.907 0.908 0.906 0.909 0.906

9 Xalan 0.985 0.986 0.878 0.987 0.978

The potential of distinct methods varies on distinct datasets during improvement of

software defect prediction models. Table III displays that different approaches work

distinctly for every dataset as a top presentation by means of a definite performance

measure is specified with a distinct method for every dataset. For example–for jedit,

27

all the techniques performed well in terms of accuracy. Similarly, for Arc dataset, all

the techniques performed very well whereas for Poi every method performed on

average. These methods can be affected by some attribute of a specific dataset. On the

other hand, there is the requirement to execute additional work to really assess which

sort of method experience by the features of a data set.

Fig. 5.1 Line graph representing the accuracy of each technique

But we have used another performance measure i.e. ROC-AUC whose values are

compiled in the form of tables IV and line diagram fig. The advantage of using ROC-

AUC is that it acts as the primary indicator of the comparative performance of the

prediction model as it can cope with imbalanced and noisy data and is insensate to the

alterations in the class division [27].

Table 5.2 ROC-AUC value calculated for each technique

S.No. Projects PCA –SVM LDA-SVM KPCA-SVM AE- SVM SVM

1 Ant 0.817 0.840 0.773 0.818 0.792

2 Arc 0.499 0.838 0.467 0.738 0.735

3 Camel 0.625 0.435 0.515 0.696 0.689

4 Jedit 0.289 0.595 0.447 0.762 0.560

5 Log4j 0.704 0.253 0.424 0.745 0.716

6 Prop 0.345

0.360 0.579 0.508 0.401

7 Poi 0.810

0.841 0.807 0.847 0.816

8 Tomcat 0.592

0.595 0.625 0.757 0.707

9 Xalan 0.788 0.478 0.719 0.476 0.822

28

To analyze the comparative performance of different methods using the ROC-AUC,

initially, we have developed hypothesis which is briefly discussed in previous sections.

To perform the hypothesis testing a non-parametric Friedman test is used, which

resulted in the rejection of null hypothesis for ROC-AUC and it also shows that results

of a model constructed for software defect prediction using distinct methods show a

significant difference from each other when assessed using ROC-AUC. According to

this test Autoencoders performance the best on the basis ROC-AUC and got rank one

among all other techniques. Hence, it can be concluded that Autoencoders is an

effective method for performing feature selection in software.

Fig. 5.2 Line graph representing ROC-AUC value of each technique

29

CHAPTER 6

CONCLUSIONS AND FUTURE

WORK

In this thesis, we have examined and studied the performance of 4 feature extraction

techniques along with a classification technique based on support vector machine. The

dataset is taken from Promise data repository which contains different metrics as

independent variables whereas defect_proneness is taken as the dependent variable

having binary class label as defective or non_defective. In this study for data

preprocessing data normalization using ‘min-max normalization’ is used which keeps

the value in the range [0, 1]. The performance of the techniques is evaluated using

various performance measures such as accuracy and ROC-AUC.

The objective of this work is to gain insights and compare the abilities of distinct

feature extraction techniques and to rank them according to ROC-AUC measure. The

statistical comparison is also performed by using non-parametric Friedman test to

evaluate the difference between the methods and to rank them

The results demonstrate that different techniques perform differently on different

datasets. From the table III. and IV. it can be concluded that autoencoders performed

best among all other methods and got rank one. However, LDA also performed well

for many datasets.

In future, more studies should be done to assess different feature extraction methods of

deep learning based on RBM and SOM techniques as these are the novel methods for

feature extraction as well as classification. Different data sets can also be used for

future studies along with inter cross-validation method. Different performance

measure such as G-measure and H-measure can also be used for evaluating the

performance of different techniques

30

CHAPTER 7

REFERENCES

[1] Z. Xu, J. Liu, Z. Yang, G. An and X Jia, “The Impact of Feature Selection on

Defect Prediction Performance: An Empirical Comparison”, IEEE 27th International

Symposium on Software Reliability Engineering (ISSRE), pp. 309 – 320, 2016.

[2] S. García, D. Molina, M. Lozano and F. Herrera “A study on the use of non-

parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on

the CEC’2005 Special Session on Real Parameter Optimization”, J Heuristics, pp.

617–644, 2009.

[3] N.Gayatri, S.Nickolas and A.V.Reddy, “Feature Selection Using Decision Tree

Induction in Class level Metrics Dataset for Software Defect Predictions”, Proceedings

of the World Congress on Engineering and Computer Science, vol. 1, 2010.

[4] E. Ceylan, F. Kutlubay and A. B. Bener, “Software Defect Identification Using

Machine Learning Techniques”, Proceedings of the 32nd EUROMICRO Conference

on Software Engineering and Advanced Applications, pp. 240 – 247, 2006.

[5] S. Joseph and G. P. Margaret, “Software Defect Prediction Using Enhanced

Machine Learning Technique”, International Journal of Innovative Research in

Computer and Communication Engineering, vol. 4, 2016.

[6] T. M. Khoshgoftaar and K. Gao, “Feature Selection with Imbalanced Data for

Software Defect Prediction”, International Conference on Machine Learning and

Applications, pp. 235 - 240, 2009.

31

[7] R. Chang, X. Mu and L. Zhang, “Software Defect Prediction Using Non-Negative

Matrix Factorization”, Journal Of Software, vol. 6, 2011.

[8] P. Jindal and D. Kumar, “A Review on Dimensionality Reduction Techniques”,

International Journal of Computer Applications, vol. 173, 2017.

[9] D. R. Ibrahim, R. Ghnemat and A. Hudaib “Software Defect Prediction using

Feature Selection and Random Forest Algorithm”, International Conference on New

Trends in Computing Sciences, pp. 252 – 257, 2017.

[10] H. Lu, E. Kocaguneli and B. Cukic, “Defect Prediction between Software

Versions with Active Learning and Dimensionality Reduction”, IEEE 25th

International Symposium on Software Reliability Engineering, pp. 312 – 322, 2014

[11] H. Lu, B. Cukic and M. Culp, “Software Defect Prediction Using Semi-

supervised Learning with Dimension Reduction” Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, pp. 314 – 317, 2012.

[12] Y. Gao, C. Yang and L. Liang, “Software Defect Prediction based on Geometric

Mean for Subspace Learning”, IEEE 2nd Advanced Information Technology,

Electronic and Automation Control Conference, pp. 225 – 229, 2017.

[13] K. Bashir, T. Li, C. Wondaferaw and Y. Mahama, “Enhancing Software Defect

Prediction Using Supervised-Learning Based Framework” 12th International

Conference on Intelligent Systems and Knowledge Engineering, pp. 1 – 6, 2017.

[14] M. Bisi and N. K. Goyal, “ Early Prediction of Software Fault-Prone Module

using Artificial Neural Network”, International Journal of Performability

Engineering, pp. 43-52, vol. 11, 2015.

[15] Y. Xia, G. Yan and X. Jiang and J. Yang, “A New Metrics Selection Method for

Software Defect Prediction”, IEEE International Conference on Progress in

Informatics and Computing, pp. 433 – 436, 2014.

32

[16] P. Wang, C. Jin and S. Jin, “Software Defect Prediction Scheme Based on Feature

Selection”, Fourth International Symposium on Information Science and Engineering,

pp. 477 – 480, 2012.

[17] G. K. Armah, G. Luo and K. Qin, “Multi_Level Data Pre_Processing for

Software Defect Prediction ”, 6th International Conference on Information

Management, Innovation Management and Industrial Engineering, pp. 170 – 174,

2013.

[18] H. Ji, S. Huang, Y. Wu, Z. Hui and X. Lv, “A New Attribute Selection Method

Based on Maximal Information Coefficient and Automatic Clustering” Fourth

International Conference on Dependable Systems and Their Applications, pp. 22 – 28,

2017.

[19] M. Kakkar and S. Jain,”Feature Selection in Software Defect Prediction: A

Comparative Study’, 6th International Conference - Cloud System and Big Data

Engineering (Confluence), pp. 658 – 663, 2016.

[20] S. Liu, X. Chen, W. Liu, J.Chen, Q.Gu and D. Chen, “FECAR: A Feature

Selection Framework for Software Defect Prediction”, IEEE 38th Annual

Computer Software and Applications Conference, pp. 426 – 435, 2014.

[21] S. A. Putri and Frieyadie, “Combining Integreted Sampling Technique with

Feature Selection for Software Defect Prediction”, 5th International Conference on

Cyber and IT Service Management, pp. 1 – 6, 2016

[22] W. Han, C. Lung and S. Ajila, “Using Source Code and Process Metrics for

Defect Prediction - A Case Study of Three Algorithms and Dimensionality

Reduction”, Journal of Software, pp. 883-902, vol. 11, 2016.

[23] H. Wang, T. M. Khoshgoftaar and Amri Napolitano,“A Comparative Study of

Ensemble Feature Selection Techniques for Software Defect Prediction”, Ninth

International Conference on Machine Learning and Applications, pp. 135 – 140, 2010.

33

[24] Z. A. Rana, M. M. Awais and S. Shamail, “Impact of Using Information Gain in

Software Defect Prediction Models”, Intelligent Computing Theory 2014, pp. 637–

648, 2014.

[25] L. Miao, M. Liu and D. Zhang, “Cost-Sensitive Feature Selection with

Application in Software Defect Prediction”, 21st International Conference on Pattern

Recognition, pp. 967 – 970, 2012.

[26] R. Verma and A. Gupta , “An approach of Attribute Selection For Reducing False

Alarms”, International Conference on Software Engineering, pp. 1 – 7, 2012.

[27] R. Malhotra, L. Bahl ,S. Sehgal, P. Priya, “Empirical comparison of machine

learning algorithms for bug prediction in open source software”, 2017 International

Conference on Big Data Analytics and Computational Intelligence, pp. 40-45, 2017.

[28] V. Maaten, Laurens & Postma and Eric & Herik, “Dimensionality Reduction: A

Comparative Review”, Journal of Machine Learning Research, 2007.

[29] O.Moein, S.Yasser, R. Mohammad and T. Akbarzadeh, “Pre-Training of an

Artificial Neural Network for Software Fault Prediction”, 7th International

Conference on Computer and Knowledge Engineering, pp. 223 – 228, 2017.

[30] G.N.Ramadevi and K.Usharani, “Study on Dimensionality Reduction Techniques

and Applications”, International Journal Publications of Problems and Applications

in Engineering Research, pp. 134-140, vol. 04, 2013.

[31] P. Chenna, “Comparative Study of Dimension Reduction Approaches With

Respect to Visualization in 3-Dimensional Space", Master of Science in Computer

Science Theses, Kennesaw State University 2016, Accessed on: Feb 16, 2018.

Available: https://pdfs.semanticscholar.org/c457/9b0368027c216e397aea1b29e0eaa4b08fd0.p

df.

34

[32] H. Yan and H. Tianyu, “Unsupervised Dimensionality Reduction for High-

Dimensional Data Classification”, Machine Learning Research, pp. 125-132, vol. 2,

2017.

[33] O. Saini and S. Sharma, “A Review on Dimension Reduction Techniques in Data

Mining”, Computer Engineering and Intelligent Systems, vol.9, pp. 7-14, ,2018.

[34] S.Chitra, 2dr.G.Balakrishnan, “A Survey Of Face Recognition On Feature

Extraction Process Of Dimensionality Reduction Techniques”, Journal of Theoretical

and Applied Information Technology, vol. 36, 2012.

[35] N.Varghese, V.Verghese, P. Gayathri and N. Jaisankar, “A Survey of

Dimensionality Reduction and Classification Methods”, International Journal of

Computer Science & Engineering Survey, vol.3, 2012.

[36] Q. Meng, D. Catchpooley, D. Skillicornz and P. J. Kennedy, “Relational

Autoencoder for Feature Extraction”, International Joint Conference on Neural

Networks, pp. 364 – 371, 2017.

[37] N. Sharma and K. Saroha, “Study of Dimension Reduction Methodologies in

Data Mining”, International Conference on Computing, Communication &

Automation, pp. 133 – 137, 2015.

[38] F. Vahid and T. D. Givargis, Embedded System Design: A Unified Hardware/

Software Introduction. Wiley 2001, Available at-

http://as.wiley.com/WileyCDA/WileyTitle/productCd0471.html.

[39] Z. M. Hira and D. F. Gillies, “A Review of Feature Selection and Feature

Extraction Methods Applied on Microarray Data”, Advances in Bioinformatics, vol.4,

2015.

[40] J. Demšar, “Statistical comparisons of classifiers over multiple data sets”, J

Machine Learning, vol. 7, pp. 1–30, 2006.

35

[41] A. K. Noulas and B. J. A. Krose, “Deep Belief Networks for dimension

reduction”, Belgian-Dutch Conference on Artificial Intelligence,

pp. 185-191, 2008.

