
Two Layer Android Multistage Malware Detection

 Major Project - 2

 BY

 ANKUR GUPTA

 M.Tech (6th Sem)

 2014/SWT/505

COMPUTER SCIENCE & ENGINEERING DEPARTMENT

 DELHI TECHNOLOGICAL UNIVERSITY

 Delhi – 110042, INDIA

 Dec 2017

Student Undertaking

Delhi Technological University

(Government of Delhi NCR)

Bawana Road, New Delhi-42

This is to certify that the project entitled “Two-Layer Android Multistage
Malware Detection” done by me for the Major project 2 for the award
of degree of Master of Technology Degree in Software Technology in
the Department of Computer Engineering, Delhi Technological
University, New Delhi is an authentic work carried out by me under the
guidance of Dr. Kapil Sharma.

ANKUR GUPTA
2K14/SWT/505

Above Statement given by Student is Correct.

 Project Guide: Dr. Kapil Sharma
 Department of Information Technology

 Delhi Technological University, Delhi

Certificate

This is to certify that the Dissertation entitled Two Layer Android Multistage

Malware Detection is a bonafide record of independent research work done by Ankur

Gupta (Reg. No.: 2K14/SWT/505) under my supervision and submitted to Delhi

Technological University in partial fulfillment for the award of the Degree of

MASTER OF TECHNOLOGY.

 Signature of the supervisor

Acknowledgment

Writing this report was a time-consuming process and the result has benefited greatly

from the input of a lot of different people whom I would like to thank on this page. I

would like to thank my guide, Dr. Kapil Sharma who has been directly involved in

developing this report and set me up on this interesting topic. And then there are my

colleagues Farhan Ahmad and Prajeed Chathuar whom I want to thank especially for

their valuable suggestions and remarks, for both the presentation as well as the actual

report.

ANKUR GUPTA
Master of Technology
Software Technology

2K14/SWT/505

Abstract

“Better be despised for too anxious apprehensions, than ruined by too confident

security.” — Edmund Burke

Malware instances are increasing their popularity among public. They are every

now and again specified in the media and talked about by experts. This proofs that these

Android malware have an undeniably major effect on our everyday lives. It raises

questions like how we are ensuring our smart phones, and if this level of protection is

sufficient. Without any doubt, the impact of the malware, e.g. WannaCry, which

influenced the British health system by disabling certain clinics and crisis services, can

be seen as a huge advance in the disastrous effect of malwares. This incident prompted

either death or postponed treatment on a remarkable scale. Undoubtedly exceptional

progress has been made in securing android systems in the recent years. The detection

of an expanding number of vulnerabilities, added with logically shorter periods

between updates, is reinforcing the reliability of android smart phones.

The proposed thesis work devises malware detection system solely based on

machine learning for Android smart phones and provides an extra layer of security and

protection to Android based smart phones. This system inspects different features and

events collected through the android applications. This system analyses these collective

features and perform categorization to label the application as benign or malware with

the help of different machine learning based classifiers. In this thesis work, following

question is addressed: do malicious applications on Android ask for typically

unexpected permissions in comparison to real applications? In view of examination of

1250 malware examples of malicious and 895 benign Android applications, we propose

a two level Android malware identification strategy. In this work, Granted permissions

are seen as behavioral markers and hence a machine learning classifier is manufactured

on those markers. This classifier is used to consequently recognize for never seen

applications which may perform unsafe behavior based on permission combinations.

Table of Content

Two Layer Android Multistage Malware Detection .. 1

Student Undertaking .. 2

Certificate .. 3

Acknowledgment .. 4

Abstract ... 5

Table of Content ... 6

List of Figures ... 7

CHAPTER 1: Introduction ... 8

CHAPTER 2: Literature Reviews .. 27

CHAPTER 3: Feature Identification of Malware ... 31

CHAPTER 4: Identification of patterns in malware behavior ... 37

CHAPTER 5: Results ... 41

CHAPTER 6: Conclusion .. 46

REFERENCES ... 47

List of Figures

Figure 1 : Count of mobile devices produced on yearly basis .. 9

Figure 2 : Number of available play store applications. ... 10

Figure 3 : Uses permission structure in Android Manifest file. .. 22

Figure 4 : Example of test application Manifest file. ... 22

Figure 5 : Permission attributes in test application ... 23

Figure 6 : A Sample application asking user to affirm given permissions. .. 24

Figure 7: Apps ratio as per number of permissions .. 31

Figure 8 : Benign Sample Feature Vector extracted from its manifest ... 32

Figure 9 : Malware Sample Feature Vector extracted from its manifest .. 33

Figure 10 ; Workflow for Supervised Learning Algorithm .. 35

Figure 11: Top permissions accessed in dataset ... 38

Figure 12 : Flow Diagram for proposed solution ... 39

Figure 13: Overall Architecture of implementation ... 43

Figure 14 : Results of running Classifier on full training set.. 44

Figure 15 : Evaluation of supplied test set on train model. .. 44

Figure 16 : Clustering results for evaluation of test data set. ... 45

Figure 17 : Plot for WEKA Classifier visualizing. Error! Bookmark not defined.

CHAPTER 1: Introduction

Fishy Android applications continue bypassing Google play-store Protect

mechanism as they do not seem suspicious at the time of installation Rather; they are

using a new technique called multistage attacks. This is the most recent in a string of

malware in the Google Play store that is by all accounts proceeding with unabated

despite the presence of Google Play Protect, which provided facility to stop malware

from being scattered in the market. Google play store protect feature is used to restrict

malware and unauthorized applications being published in the store but despite this

method play store is not able to face challenges incorporated by new multistage attack

enabled malicious applications. [1]

The most recent series of similar incidents signal that they all avoided Google Play

Protect in a similar way, by utilizing a multistage attack. Multistage malware can

pretend to be benign applications, although doesn't contain suspicious nature at the time

of installation, but can work accordingly to its vicious developer choice. What they do

contain are a few layers of encoded payloads that in the long run download malware

from a site hard-coded into the payloads.

As per recent study, the possible objective is to introduce virus on the

compromised device. At the point when the application is at first downloaded from

Google Play store, it doesn't ask for any suspicious looking permission. All its intended

work is done silently as it decodes and runs its first payload, which decodes and runs

the second one. The second-stage payload connects with the malware publishing site

and downloads the third-stage payload. It's now that the malware prompts the client to

authorize an establishment of what is by all accounts a trusted application. If the user

does not allow installation at this point, all the purpose of malware can be halted, and

the device can be saved from harmful damage.

Today malware have become a prime cyber threat due to exponential development

of Internet. Malware can be defined as any program performing vicious actions which

maybe unauthorized access of data, spying, etc. Kaspersky Labs (2017) define malware

as “a kind of PC software programmed to influence a valid customer's PC and infect or

spread damages on it in various methods.” [2]

Mobiles are a part of a huge and developing extent of computing devices. Android

specifically is the quickest developing mobile platform and has 88% share in markets.

[3] The true strength of the Android platform manages applications giving different

services, including confidential services like managing a bank account.

Panda Security states that “Computer hackers are progressively working for

innovative methods to trap users into downloading and installing malicious software.

One among the known worked solutions is to disguise malware such that it seems to

user as a benign application; in most of the cases the application will work similar to

actual applications, taking confidential users’ information in the back ground.” [4] .

Most devices are now equipped with in-device protections mechanism to prevent

Figure 1 : Count of mobile devices produced on yearly basis

unauthorized access and such malicious events. It is usually performed by restricting

computers so that software download and installation can be done through checked

sources like official play store. It will restrict user to install only authorized applications

from android market place. Irrespective of huge efforts, malware is able to bypass

security – usually through a phished email attachment or suspected web pages. To stop

these kinds of attacks, our solution will identify, stop malicious applications and secure

users’ personal information.

Wireless Smartphone Strategies/WSS is a strategy analytics service which

forecasts that global android phone shipment will grow +5% in 2018. [5] Even in 2017,

Android will occupy first position among the dominant mobile platforms. This report

predicts global mobile phones installed base, by more than ten operating systems, for

more than eighty countries worldwide, for a span of 10 years (2007-2017). [6]

Figure 2 : Number of available play store applications.

Content sharing web sites and syncing service like torrents are another easy source

of malware attack. Malware and ransom ware are usually inserted inside pirated movies

and applications, and user is not aware becomes prone to data theft.

This power can likewise be utilized by malware. Gigantic development in Android

showcase from 2,300 applications in March 2009 to 400,000 applications by January

2012 has additionally pulled in a noteworthy development in malware for Android.

Trend Micro, a worldwide pioneer in antivirus, has anticipated the development of

Android Malware by December 2012 to be 129,000 malware.

Anybody and everybody can create Android applications and host it on the

Android marketplace. Online markets don't have a procedure to check android

applications for malware. Google included another security highlight Feb 2 this year to

its Android market for battling malware which will filter each new accommodation and

current applications for vicious conduct. This new framework does not make a

difference to other 3rd party markets.

According to the IDC Quarterly Mobile Phone Tracker, “Smart phone MNCs

produced a major portion of 344.3 million devices all over the world in 2017 first

quarter (1Q17). Due to the fact that it might visualize like a slowly pacing market, users

continue to display interest for smart phones and OEM flagship publicity looks

strongest as like never before. All over the world smart phone production raised 3.4%

in 1Q17 year over year, which was a little lower than IDC's previous prediction of 3.6%

raise.” [7] Malware regularly pretends them as typical applications, but Malware can

cause money related incidents, steal private data. Clients require powerful malware

discovery programming interface.

To productively identify malware from benign applications, present on standard

and 3rd party marketplaces, numerous attempts have been made. Google tests

applications for malicious nature using a utility named Bouncer. Bouncer analyzes

Android market applications consequently by executing them in a custom Android

stimulated environment based on Google’s cloud architecture. Although malware

downloaded count reduced since the establishment of Bouncer, this framework does

not give security against present-day malicious attack approaches.

In the past decade, mobile malware was considered an advanced and rare hazard.

Majority of smart phone users used to think that they were safe from such hazards. As

per McAfee labs “More than 1.5 million new stories of device malware have been

identified by McAfee Labs in this year first quarter alone – for a total of over 16 million

device malware incidents.” [8]

Study in same field clearly states that “Now, smart phones are facing continuously

growing threats – and anyone can’t be escaped from such attacks. Around 20 percent of

smart phone MNC studied by Dimensional Research for Check Point Software stated

their phones have been compromised. One fourth of participants were not aware

whether they have been under threat. Almost all (94 percent) presumed the occurrence

count of device threats to grow, and 79 percent committed that it’s being very

problematic to protect smart phones.” [9]

“Companies are preparing now to spread awareness of the future influence,” says

Daniel Padon, mobile threat researcher at Check Point. “Actual, state level malware

and the power of those malware, all together with huge promotions influencing lots and

lots of phones, such as Gooligan and Hummingbad, are only the tip of the iceberg.” [10]

The Android OS utilizes the permission framework to limit applications benefits to

secure the confidential assets of the clients. An application needs to get clients’

affirmation to provide protection to significant secure information. In this manner, the

authorization framework was intended to save clients from applications with obtrusive

means, yet its viability exceptionally relies upon the clients’ perception of affirmation.

The developer oversees deciding which authorizations an application requires, but

a lot of clients don't have any clue that what any permission implies and

indiscriminately agree with them, enabling the application to get to secure data of the

client. [11] [12] Another defect is that the client can't choose to allow single

permissions while denying others. Numerous clients, even though an application may

ask for a suspicious permission among much apparently real permission, will, in any

case, affirm the installation.

Google mostly classified permissions as coarse-grained. Particularly, the

INTERNET authorization, the READ PHONE STATE consent, and the WRITE

SETTINGS permission are coarse-grained as they provide for an application

discretionary access to specific resources. The INTERNET consent enables the said

application to forward HTTP(S) requests to all domains, and interface with random

targets and sockets. Accordingly, the INTERNET consent gives inadequate

expressiveness to uphold control over the Internet gets of the application. Considering

the past issues, analysts have been included to decide systems that utilize singular

permissions and the mix of permissions to identify and classified malware.

Study published in Statista claims that “The figures predict the count of present

applications in the Google Play Store, earlier referred as Android Market

(Dec,2009-Sep,2017). In Sep,2017 Google Play store was offering more than 3 million

applications as compared to 1 million applications in July,2013. Google Play was

actually inaugurated in October 2008 with the name Android Market. As Google’s

official application store, it presents its users from applications and digital multimedia

(books, music, film, magazines, and TV). With the large portion of applications present

from the Google Play Store with absolutely free of cost, the company requires to use

working business models to save wealthy return. As of Feb,2017, the top earning

Android applications all over the world including demanding gaming applications like,

Candy Crush, Temple Run, and Clash of Clans etc. Even the strong gaming

applications returns, most gaming applications are free to install; the source of income

for these applications is in-game advertisements and game boosters.” [13]

More than one billion users use internet browsers at smart phones, this mechanism

importance and ever growing user base are a base factor. As many smart phones are

available in market, malware are targeting these phones to harm in full force. [14]

Increasing use of Smartphones, the incidents for data theft, identity duplications,

and monetary transactions are also spreading widely. Smart phones are easy to target

and its user are generally do not know the impact of malicious application and dangers

produced through them.

As smart phones differ in working environments (same as the typical

Windows-based computer and Apple devices), cyber attackers usually modify their

attacks. Although, they have become best at by passing the OS security for example

Android, iOS and Windows-based devices security. [15] While downloading apps

different platforms follow different techniques, Android stimulates a simple way for

the same.

1. The first way is to set up apps from other party market set.

2. The specific application market has dedicated security service.

3. Botnet client are easily installable to android platform.

4. Android application programmers are uploading their applications without

inspection.

5. As study suggests, very often general threats in smart phones that harm device

owners generates from malware executed on smart phones supposed to provide:

A. Freedom appreciation to root.

B. Releasing personal data.

C. Face finest figures.

D. Botnet malicious behavior.

E. SMS based backdoor activity.

F. Private critical information data collection resided on a device.

G. Device Owner usage activity surveillance.

H. Forwarding SMS / MMS to other devices without user consent and they are

charged for the same.

I. store malware documents onto smart phones

J. Support hackers to control devices through unauthorized means.

K. Locate users’ current movement.

L. Change user’s settings

M. Access personal pictures, videos etc.

N. Check bank transaction details – These kind of viruses are supposed to log

each and every bank account activities and forward all confidential data

including secret data, pass codes etc to intended malicious guys at other

end.

Any cell phone that gets to the Internet by means of programs or applications is

liable to assault. Some OS, anyhow, have turned out to be particularly in demand by

cybercriminals due of their fame and the simplicity with which malware can be

downloaded onto the mobile. Cell phones that utilize the Android OS are very in

demand among the users, which mean they're also most loved among the terrible

attackers. Malware attacks are among the worst dangers Android clients confront

nowadays. The danger of risk has turned out to be so high; indeed, the U.S.

Government investigation agency lately cautioned smart phone users to the possible

catches related with Google marketplace and open to all source design.

Android OS, just similar to other OS that browses internet, are usually infected by

many different kinds of malware that usually differentiate users and their sensitive data.

When this information is received, the hackers use this data to pretend to be someone

else, debited their bank accounts and so on. [15] In order to clearly understand the ways

and mindset after malware, classification becomes mandatory.

 Malware can be classified among several categories. The classes are as follows:

 Virus: There are various ways in which a virus can be installed on the device and

it can harm the user which ranges from normally annoying to extremely damaging.

Malicious attackers might potentially use different viruses to root the device, fetch

documents and personal data filled memory. A Virus can be defined as a malware that

duplicates itself and spreads to different android devices. Viruses multiply and spread

by attaching themselves to various executables and executing code when a device user

sends any maligned executables. Viruses can be used to steal data, damage host smart

phones, make chat bots, take financial advancements, issue instructions, and that is just

the beginning.

 Worm: Smart phone worms are identified as most popular malware. They amplify

themselves across different computers due to security loopholes in operating systems.

Worms normally make damage their host networks by expending data transfer capacity

and over-burdening web servers. Similarly, System worms includes payloads that

damages hosting network. Payloads are bits of code written to perform exercises on

impacted Smart Phones, which is past the farthest point from simply spreading the

worm. Payloads are ordinarily planned to take data, eradicate records, or make chat

bots. Smart Phone worms can be deputized a sort of Smart Phone infection, yet there

are a few features that differentiate Smart Phone worms from normal viruses. A

remarkable contrast is that Smart Phone worms can repeat it and infect autonomously

whereas dissemination of viruses is highly dependent on human interaction. Worms

generally contaminate through bung messaging with malicious attachments to user’s

network.

 Trojan: In view of this the normal influencing vector used in this class is social

computation based that is influencing individuals to believe that they are downloading

the valid software. [16] Mobile Trojan infects user devices by attaching itself to

seemingly non dangerous or authentic applications, are presented along with the

program and afterward perform harmful events. These programs are used to seize the

application, force the device naturally forward unauthorized highly confidential

messages, or store user login credentials from various programs, e.g., mobile banking.

A Trojan horse/Trojan is a malware that pretends to be a normal document or

application to involve users into installing and consequently getting infected from

malware. This Malware provides an unethical hacker host to get to an influenced Smart

Phone. Once a hacker approaches a influenced Smart Phone, it makes easy for the

hacker to steal data, produce multiple malwares, adjust saved information, user

interaction (screen watching, key logging, and so on), utilize the Smart Phone to

chatbots, and hampers internet surfing.

 Adware: The main motivation behind this malware composes is showing

promotions on the Smart Phone. Frequently adware is a subclass of spyware and it will

be impossible to prompt sensational outcomes. Adware aka promotions enabled

malware that generally displays ads. Basic cases of this malware incorporate pop-up

advertisements at sites and ads which are shown through the application. Regularly

programs and executables provide "costless" questionnaire containing adware. Mostly

these malwares are reinforced or written by promoters and fills in as an money raising

method. Though some adware is only expected to pass on advancements, it isn't

remarkable for adware to be bundled with spyware that is best suited for given

customer action and making information. Due to the extra limits of spyware, adware

bunches are basically more destructive than adware in solitude.

 Spyware: The malware which accomplishes surveillance are termed as spyware.

Regular activities of spyware incorporate following web surfing history to send

customized promotions, following exercises to sell them to the outsiders in this manner.

[17] Spyware subtly assembles confidential information of the mobile user and

forwards this data to an unauthorized person afterwards. It is regularly introduced

without user agreement by disguising as a true verified program (e.g., a straightforward

game) or by compromising its load to a benign program. Spyware uses the user's

mobile connection with hand-off personal data, e.g., contacts, area, messaging nature,

installation history, and user choices or downloads. Spyware that collects customer data,

e.g., operating system choice, item ID, IMEI number and IMSI number can be utilized

for future assaults. Spyware is a sort of malware that operates by keeping an eye on

client action without their consent. These spying capacities can consolidate activity

watching, collecting key pressed by user, data gathering (account information, logins,

money related data), and that is just a glimpse of a larger problem. Spyware routinely

has additional power as well, going from adjusting security settings of programming or

software to ending with network associations. Spyware amplifies by abusing

programming vulnerabilities, bundling itself with substantial projects, or in Trojans.

 Rootkit: Its usefulness empowers the hackers to get to the information with higher

authorizations than is permitted. For instance, it can be utilized to give an unapproved

client unauthorized access. "Rootkits dependably conceal its reality and regularly are

unnoticeable on the framework, making the identification and accordingly evacuation

unbelievably hard." [18] A rootkit is a kind of unsafe projects proposed to remotely

access or control a Smart Phone without being recognized by customers or security

programs. Once a rootkit has been presented it is workable for the programmers behind

the rootkit to remotely execute reports, get the opportunity to/take information, modify

system outlines, change programs (especially any security programming that could

distinguish the rootkit), present masked malware, or control the Smart Phone as a

segment of a botnet. Rootkit foresight, recognizable proof, and removal can be

troublesome due to their stealthy errand. Since a rootkit determinedly hides its quality,

normal security things are not effective in perceiving and clearing rootkits. In this

manner, rootkit acknowledgment relies upon manual procedures, for instance, checking

Smart Phone lead for bizarre exercises, signature inspecting, and capacity dump

examination. Affiliations and customers can shield themselves from rootkits by reliably

settling vulnerabilities in projects, applications, and working systems, reviving

infection definitions, avoiding suspicious downloads, and performing static

examination filters.

 Backdoor: Without anyone else's input, it doesn't cause any damage however

furnishes hackers with more extensive assault platform. Along these lines, secondary

passages are never utilized freely. For the most part, they are going before malware

assaults of different kinds

 Keylogger: Without anyone else's input, it doesn't cause any damage however

furnishes hackers with more extensive assault platform. Along these lines, secondary

passages are never utilized freely. For the most part, they are going before malware

assaults of different kinds. [19]

 Ransomware: This kind of malware intends to encode every one of the

information on the machine and request that a casualty exchange some cash to get the

unscrambling keys. For the most part, a machine contaminated by recover product is

"solidified" as the client can't open any document, and the work area picture is utilized

to give data on hackers’ requests. [20] Ransomware is a sort of malware that

fundamentally holds a Smart Phone system victim while asking for an installment. As

far as possible customer access to the Smart Phone either by making archives encoded

on the hard drive or securing the structure and indicating messages that are wanted to

compel the customer to pay the malware producer to empty the constraints and recover

access to their Smart Phone. Ransomware generally spreads like an average Smart

Phone worm ending up on a Smart Phone by methods for a downloaded record or

through some other weakness in network associations.

 Phishing Apps: Mobile surfing of the web is developing with Smartphone and

tablet devices. Similarly as with desktop usage, hackers are making mobile phishing

websites that may resemble a verified service however may take client secret

information or more awful. The smaller screen of cell phones is making harmful

phishing systems simpler to hide from users, less complex on cell phones than Smart

Phones. Some phishing plans utilize harmful mobile applications, programs which can

be considered "trojanized", masking their actual goal as a OS update, advertising offer

or game. Others contaminate verified applications with malicious code that is just

found by the client subsequent to installation of applications.

 Botnet: Mobile malware is getting more complex with executables can work

silently in background on the client device, covering themselves and lying in wait for

specific actions like a web based banking session to occur. Hidden procedures can

execute totally undetectable to the client, run executables or contact Bot masters for

new guidelines. The following wave is relied upon to be significantly further developed,

with botnet behavior to capture and control contaminated devices. Bots are software

made to normally perform specific exercises. While a couple of bots are made for

reasonably safe purposes (video gaming, web tenders, online tests, etcetera.), it is

winding up logically fundamental to see bots being used maliciously. Bots can be used

as a piece of botnets (collections of Smart Phones to be controlled by outcasts) for

DDoS assaults, as spam bots that render promotions on destinations, as web crawlers

that rub server data, and for flowing malware fake files, also known pursuit things on

download sites. Locales can make arrangements for bots with CAPTCHA tests that

check customers as valid user.

 Spam: Spam can be considered as the virtual forwarding of huge personal

messages. The most generally perceived medium for spam is email, yet it isn't

wonderful for spammers to use writings, informing, web diaries, web dialogs, web look

devices, and online person to person communication. While spam isn't generally a sort

of malware, it is to a great degree consistent for malware to spread through spamming.

This happens when Smart Phones that are affected with contaminations, worms, or

other malware are used to scatter spam messages containing more malware. Customers

can balance getting spammed by avoiding new messages and keeping their email

addresses as private as could be normal considering the present situation.

The transient development of the Android Smartphones has made it a fundamental

focus of digital world criminals. Mobile malware particularly focusing on Android has

surged and developed couple with the rising prevalence of the platform. Accordingly,

the burden is on safeguards to raise the difficulty of malware development to check its

widespread growth and to devise successful detection methods particularly focusing on

Android malware to better secure the end-clients.

The main aim to develop this project is to construct an Android permission based

application using advanced machine learning basics. Based on the permission asked by

individual application, that application is categorized as benign or malicious. This

design decompresses sample applications to take out permission set which acts as input

for machine learning based tool. The objective is to decide how the permissions ought

to be removed and the logic that can recognize the malwares with the most reduced

error rate. The present approach utilizes a machine learning classifier to consequently

distinguish harmful nature of downloaded software from the commercial center in light

of the arrangement of authorizations they need their clients to concur with. Along these

lines, applications those are not known previously and zero-day malware can be

identified. Some motives behind malware detection on the Android platform based

mobile devices include:

i. The identification technique must utilize memory and computational assets

effectively and not deplete the phone battery.

ii. The identification strategy must have low false alert rate i.e. considering a

non-malware record as malware.

iii. The recognition technique must be simple/taken a toll effective to refresh

over the remote system.

iv. To show a straightforward way to deal with ordering benign/malicios

applications on Android based devices.

v. To consolidate correspondence interfacing access conduct as the second

level of assurance.

Remembering the pin points for malware identification on a cell phone, the

permission based recognition strategy is appropriate. It ought to likewise be noticed

that permission recognition will remain a piece of versatile antivirus frameworks

regardless of whether different methods like heuristic filtering are created since it

encourages speedy location of known infection and viruses. Here, the point is to build

up an permission based technique to such an extent that it has high filtering speed and

low memory use which makes it appropriate for cell phones.

In particular, an application utilizes a few consents (and appropriately to plays out

some framework activities) without expressly pronouncing them in its Android

manifest. An Application must ask permission as per its conduct. The proposed work

executes differencing logic on Server side and henceforth web accessibility is must and

at times reaction may take tad additional time in light of activity. In addition, Stats for

network use of the application is additionally logged which needs some additional

storage.

Android is easy to access and popular OS for various devices like smart phones,

televisions, auto mobiles, Gear equipments. Android is Linux based, provided by

Google and launched on 23 September, 2008. Many organizations and producers use

Android as base for their devices. Android also allows manufacturers to root devices as

per requirement. Android comes with UI tools which user can easily use in their

product development. For example, Android Software development kit, Android

Native library development kit, ADT tools for eclipse. Whenever Android new version

is launched, SDK is also updated. SDK provides developer a bundle of Java native

classes, run time jars and debugging tools. It also presents an Emulator to help

programmers. This emulator is mainly used to verify new applications on different

Android operating system version released. The other tools NDK supports C, CPP and

other additional languages libraries which can be embedded in Java code through API

System.loadLibrary(). ADB tool is redistributed along with Android framework which

is composed of server, client and daemon. Android devices run Clients and daemon

executes in background. Server is used as bridge between client and daemon. ADB also

presents user to verify their applications for possible error without executing on actual

devices.

Android applications mainly run on Java platform. It also supports C, CPP for native

libraries development. Google Marketplace is standard place for Google or other

developers' android applications. User can surf, execute on device and can use new

versions provided by developer. As per statistics presented in 2017, more than half a

trillion applications were downloaded through Android marketplace. It makes very

obvious that Android open source architecture makes contributors and hackers to post

their applications on market place. Google play store has a standard mechanism to

identify non benign applications and uninstalled them at the same time. It has a tool

called 'Bouncer' that scrutinize every applications posted on play store prior making

them available to public. Bouncer uses a dynamic approach to identify applications by

executing them in simulated behavior to inspect the application's nature.

After this tight security provided by Google, hackers knows the method to bypass

their application from scrutinize system. They use encryption to seal their applications.

As per report submitted by Columbia University, R & D centers have found security

concerns in aforementioned Bouncer system. Because of these loopholes hackers are

able to submit their malicious apps as benign apps in Google play store. The well

verified applications can be redistributed and reformed as malicious ones. That's why

Android is a burning researched topic among developers. At the same time it is crucial

for User's personal data. Android operating system is basically explained in sections

which comprise methodology, secure components, apps features, permission android

architecture.

For example, if an app wants to communicate over the network, it would need to

have an entry like what it is shown in Figure 5.

Figure 3 : Uses permission structure in Android Manifest file.

Figure 4 : Example of test application Manifest file.

Table 1: Example of permissions

Android provides 130+ built-in permissions; and at the same time developers can

also declare new permissions called dynamic permissions. The android by default

permission can be labeled as four security categories: normal, dangerous, signature,

and signatureOrsystem.

Figure 5 : Permission attributes in test application

Malware identifiers that depend on signatures can perform well on beforehand

known malware that was at that point found by some antivirus companies. In any case,

it can't recognize polymorphic malware that has the power to change its signatures, and

in addition, the new malware also, for which signatures have not been made yet. Thusly,

the exactness of heuristics-based indicators isn't generally adequate for satisfactory

detection, bringing about a considerable measure of false-positives & false-negatives.

[21]

Figure 6 : A Sample application asking user to affirm given permissions.

New clasiification mechanism is to devised as current malware system is infecting

android devices at exponential rate. Out of several techniques, higly effective way is to

accommodate current heuristic-based technique with wisely selected machine learning

approaches.

 The problem with heuristic-based technique, a malware detection threshold value

should be selected which acts as heuristic measure to label an application as malware

application. To consider these connections and give a more efficient solution, machine

learning techniques can be utilized.

How does malware sneak past the obstruction made by conventional, Smart

Phone-based anti-virus frameworks? Indeed, it has numerous ways — the greater part

of which are client made:

 • Anti-Virus isn't operational: The effect of constant anti-virus security on a

phone's battery, memory and processor can be more than the normal buyer is ready to

acknowledge. Therefore, numerous contaminations are shrunk by clients who kill

anti-virus software since they see it to contrarily influence the execution of the games

and applications they need to utilize.

• Anti-Virus software isn't updated: Many web clients overestimate the

adequacy of their anti-virus software, ignorant that it is just in the same class as the

most recent updates gave by the security seller. Contingent upon the source, just 50– 80

percent of individuals have updated anti-virus software introduced on their Smart

Phones. Past this present, it's not simply security programming that should be stayed up

with the latest — older forms of apps, modules, and working frameworks would all be

able to be confiscated by malware.

• The product isn't arranged effectively: As malware turns out to be more

complex, so does the security programming intended to ensure against it — making it

progressively troublesome for the normal client to know whether the product is doing

its activity. Much of the time, the contrasts between on-request checks, planned sweeps,

email filters, download examines and on-utilize filters are not clarified. Thus, clients

are not fit for designing these alternatives effectively or are uncertain of the effect

certain features will have on the security of their framework.

• The product isn't totally viable: Malware creators utilize robotized

mechanism to always repackage and jumble their malware to confiscate location by

anti-virus software. Also, with security sellers contending with a huge number of new

malware tests every day, scholars have demonstrated that customer based anti-virus

software can identify just 50– 75 percent of malware, leaving a possibly extensive

extent totally unidentified. Some anti-virus software additionally can't distinguish

spyware or adware infections; as a rule, completely extraordinary projects are required

for this reason.

• More devices, more associations: Both settled and versatile specialists in

providing services are presently looked with a multi-directional flow of malware. For

instance, Internet specialist providers are liable to cell phone/tablet malware when these

devices are associated with home WIFI switches; likewise, mobile vendors are liable to

malware originating from Smart Phones fastened to Smartphones or associated with

portable Internet sticks or 3G/Wi-Fi hotspots. Phones running Google's Android

working OS have turned out to be especially defenseless as of late, with Kind sight

Security Labs revealing a 400 percent expansion in malware from early September to

late November 2011. Indeed, even with the most updated software introduced and

security appropriately empowered on their Smart Phones, clients are as yet not totally

safe from contamination. In mid 2012, the Zeus Tracker site revealed that the normal

anti-virus location rate was 36% for firmware of the Zeus Trojan — malware

particularly intended for saving money based data fraud. In like manner, in 2011,

inquire about from Surf Right found that 32 percent of clients with state-of-the-art

software were contaminated with malware.

WEKA is an information mining framework created by the University of Waikato

in New Zealand that explores data mining techniques. WEKA is a cutting edge tool for

creating machine learning (ML) strategies and their application to true information

mining issues. It is a gathering of machine learning strategies for information mining

work. The logic are connected straightforwardly to a dataset. WEKA executes design

implementations for information preprocessing, arrangement, relapse, bunching,

association rules; it likewise incorporates representation tools. The new machine

learning plans can likewise be created with this bundle. It is open source programming

issued based on the GNU Public License. [22] [23]

CHAPTER 2: Literature Reviews

All malware identification procedures can be partitioned into signature-based and

behavior-based techniques. Before going into these techniques, it is basic to

comprehend the fundamentals of two malware investigation approaches: static and

dynamic malware examination. As it suggests from the name, static analysis is

performed "statically" which means without execution of the record. Conversely,

dynamic analysis is led on the record while it is being executed for instance in the

virtual machine.

Static examination frequently depends on specific tools. Past the basic

investigation, they can give data on security procedures utilized by malware. The

primary favorable position of static investigation is the capacity to find all conceivable

behavioral situations. Looking into the code itself enables the specialist to see all

methods for malware execution, that isn't constrained to the present circumstance. In

addition, this sort of examination is more secure than dynamic, since the document isn't

executed, and it can't bring about awful outcomes for the framework. Then again, static

investigation is significantly more tedious. As a result of these reasons it isn't typically

utilized as a part of genuine dynamic conditions, for example, against anti-virus

frameworks, however is regularly utilized for look into purposes, e.g. when creating

signatures for zero-day malware. [24] Another investigation compose is dynamic one.

Not at all like static investigation, here is the behavior of the document checked while it

is executing, and the properties and aims of the record are gathered from that data.

Typically, the document is keep running in the virtual condition, for instance in the

sandbox. Amid this sort of investigation, it is conceivable to locate every behavioral

property, for example, opened documents, made mutexes, and so on. Besides, it is

substantially speedier than static examination. Then again, the static investigation just

demonstrates the behavioral situation important to the present framework properties.

For instance, if our virtual machine has Android OS 7.0 introduced, the outcomes may

be unique in relation to the malware running under Android 8.1. [25]

In any case, ill intended people began to create malware in a way that it can change

its signature. This malware highlight is named to as polymorphism. Clearly, such

malware can't be distinguished utilizing simply signature-based identification methods.

In addition, new malware can't be recognized utilizing signatures, until the point when

the signatures are made. In this manner, AV merchants needed to find another method

for recognition – behavior based likewise named to as heuristics-based investigation. In

this strategy, the real behavior of malware is seen amid its execution, searching for the

indications of malicious behavior: altering host documents, registry keys, setting up

suspicious associations. Without anyone else's input, every one of these activities can't

be a sensible indication of malware, yet their mix can raise the level of suspiciousness

of the document. There is some limit level of suspiciousness characterized, and any

malware surpassing this level raises a caution. [26]

The precision level of heuristics-based discovery very depends with respect to the

execution. The best ones use the virtual condition, e.g. the sandbox to run the record

and screen its behavior. In spite of the fact that this strategy is additional tedious, it is

considerably more secure, since the record is checked before really executing. The

principle favorable position of behavior based discovery technique is that in principle,

it can distinguish referred to malware families as well as zero-day attacks and

polymorphic infections. Be that as it may, by and by, thinking about the high spreading

rate of malware, such investigation can't be viewed as powerful against new or

polymorphic malware.

A. Barrera et al. have proposed examination on the basis of permission-based safe

structure and proposed some that are self-sorting logic gives two-dimensional

thought of high dimensional information and furthermore proposed crowoid

which utilizes Linux framework calls for find malware framework calls are

open () to open it, read () for perusing record, access () to getting to it, chmod

() for evolving mode, chown () for evolving owner. Next one is exhibited

SAAF offer program. It considers 136 000 delicate applications and 6100

vindictive applications. SOM logic which preserves instantaneousness and

outfits a rearranged and social perspective of a significantly complex

informational collection. [27]

B. Portokalidis et al. have proposed an approach paranoid android that is finished

malware examination. It used to perform security investigation android that

depends on portable reproductions and cloud storage. It was dynamic behavior

examination of framework so it hard to distinguish at runtime. [28]

C. Zhou et al. likewise proposed droidMoss which takes fuzzy hashing method. It

used to perform security investigation with method NFS storage and ZFS

document framework. Fuzzy hashing procedure is harder to perform

investigation of recognizing malware. [29]

D. Enck et al. have suggested that gives recommendations on to clients concerning

application and that interest boycotted sets of authorization. Their result shows

the open utilize wrongly of protection insightful information, the check of

phone abuses, extensive including of advertisement libraries the Android

application, and the debilitating to safely utilize Android APIs of numerous

designers. [30]

E. Felt et al. have proposed stowaways to test over benefit in android application

and used to figure 940 applications from the market of Android, they

recognized and evaluated engineers' example prompting over benefit. They

decide androids get to control approach through automotive testing method.

Their result close-by a fifteen-fold improvement more than the android

documentation and uncover that most condemn are endeavoring to pursue the

govern of minimum advantage yet not prevail because of the absence of reliable

authorization data. [31]

F. Elish et al. utilized an investigation implies make information reliance diagrams

statically with between procedural call network data that catches the

information use dealings in the program through distinguishing the coordinated

ways between client sources of info and section focuses to process given that

genuine framework services. Some malware may attempt to dodge their

information reliance assessment by abusing the client's sources of info while

playing out the malignant conduct, so their work should be better in these

circumstances.

G. Kantiya Junhom have proposed Cloudbroid is the application rely upon android

applications and cloud stack, it is an intersection point amongst portable and

cloud clients. In the cloudbroid the application that oversees cloud stack

administration and which relies upon the android application utilizing REST

Principles. The fundamental thought behind this is getting to the cloud stack

framework wherever and whenever with numerous applications to build a

possess business event.

CHAPTER 3: Feature Identification of Malware

The key objective of our analysis is to comprehend whether the collection of

permissions required by an application connects with its malicious or benign nature.

And how it can be used automatically detect it. In this segment decisions and usage of a

detection system that implements a classifier based on those permissions are depicted.

An Android malware recognition system can be constructed in many ways. A

proactive approach is to deploy solution for all users on android commercial play store,

for example, Google Play Store or 3rd party stores and verifies against every upload.

But these changes are not worthy and should just be issued after the techniques have

been completely approved. Here, a proof-of-concept design concentrated on ensuring

every customer is portrayed.

Mobile devices generally have lower memory resources than Smart Phones. This

implies that applications running on mobile devices must be designed to utilize

memory efficiently. To perform permission matching, an array of bytes corresponding

to all the permissions in applications is sent to the server. One way is to implement

detection logic on the mobile device itself, but this way logic controller needs to be

updated frequently which in turn is a battery consuming process. Meanwhile, it can let

malicious applications be installed in our method during the update.

Figure 7: Apps ratio as per number of permissions

This solution is implemented as cloud architecture. Such architecture has a few

extra benefits. An imperative one is that it can be generalized to non-android

applications. And the second advantage is that it uses fewer device resources, which

thus will enhance the battery lifetime contrasted with an on-device solution.

This solution scans every application installed through any means (Either play

store or added directly) which generates a limitation that solution can be executed only

after new application has been added which in turn creates a race condition between the

newly added application executes, performs its intended malicious work and results

received from server where actual scan is performed declaring the application

malicious.

The server-side application is the essence of our solution as it is the segment in

charge of declaring an application's behavior as either normal or maliciousness.

Permission used by applications are collected by using python script and a bit value

for each permission are logged in a file that is used as training data to train the classifier.

Classifier thus created is used for predicting the result for each application downloaded

through the market play store.

If a permission is absent in manifest of Android application 0 is written while 1 is

for opposite situation. And thus, set of bit values for each application is stored along

with its state (either benign: 0 or malicious: 1). the static array length is thus created is

always fixed and its index represents a standard android manifest permission.

0|0|0|0|1|1|0|0|0|1|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|

0|0|0|0|0|1|0|

0|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|0|0|

0|0|0|0|0|0|0|0|0|0|0|0

Figure 8 : Benign Sample Feature Vector extracted from its manifest

0|0|0|0|0|0|0|1|0|0|0|0|0|0|0|0|0|0|1|0|0|0|1|0|0|0|0|0|0|0|1|0|0|0|0|0|1|0|0|0|1|0|0|0|1|1|0|0|0|

1|0|0|0|0|0|1|0|0|1|1|0|0|0|0|0|0|1|0|1|0|0|0|0|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0|0|1|0|0|0|0|0|

1|0|1|0|0|0|0|1|0|0|1|0|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|1|1

Figure 9 : Malware Sample Feature Vector extracted from its manifest

The general actions we have taken after for every application are:

1. We downloaded and gathered malware and benign applications from application

marketplace.

2. We decompress applications to separate the content.

3. We separate the permission request features from every application.

4. We construct a dataset in an ARFF [4] record format with the extracted

information.

In the first place, we decompress the android application bundle file to separate the

content. Amid the initial three stages, we recover the data from this source. We process

the AndroidManifest.xml record to retrieve this information.

Machine learning is a popular sub branch of AI which achieved a great popularity

in recent years. The base for this approach is to continuously learn from data set so that

it can successfully categorize unseen values. Machine learning is defined as the AI field

used to find purposeful pattern among given data set. The main objective is to build a

model that can work standalone or at least classify new data from trained history. There

are two methods for the same:

1. Clustering: To group similar data.

2. Two class classification: Identification whether data belongs to which of given

classes.

In Machine Learning applications, numerous separated features, some of which

repetitive or not of much relevance, show a few issues, for example, deluding the

learning logic, over-fitting, diminishing generalness, and expanding model

comprehensiveness and run-time. These worst impacts are considerably more critical

while applying Machine Learning techniques on cell phones since they are frequently

limited by preparing and storage abilities, and also battery control. Applying fine

feature selection in a preliminary stage empowered to utilize our malware finder all the

more productively, with a speedier recognition cycle. By and by, diminishing the

quantity of features ought to be performed while protecting an abnormal state of

precision. In this area k best features are chosen from the extricated features of android

APK zip by utilizing determination strategy.

Signature DB is created from these chosen features and at the same time these

features are separated in two sets called Testing and training data sets. These data sets

are passed to any standard classification techniques of machine learning category. The

current thesis work uses decision tree classifiers for its work.

Decision tree mechanism is a general, east to implement and fast result yielding

method [15]. Its development procedure is top-down, divide-and-rule. Basically it is a

greedy algorithm. Beginning from the root node, for each non-leaf node, firstly choose

an attribute to examine the example set; Secondly, partition training test set into a few

sub-test sets as indicated by testing outcomes, each sub-test set constitutes another leaf

node; Thirdly repeat the above division process, until having achieved particular end

conditions. During the time spent developing a decision tree, choosing the testing

attribute and how to partition test set are exceptionally critical. Diverse decision tree

logic utilizes distinctive techniques. By and by, on the grounds that the span of

preparing test set is normally substantial, the branches and layers of the produced tree

are likewise more. What's more, abnormity and irrelevant data existed in preparing test

set will likewise cause some abnormal branches, so we have to prune decision tree. One

of the best favorable circumstances of decision tree grouping logic is that: It doesn't

expect clients to know a great deal of foundation information in the learning procedure.

The machine learning based J4.8 decision tree algorithm is used for classifying

malicious behavior of the Android application based on previous history. The

algorithm is best described as follows:

J4.8 is regularly classified to as a statistical classifier. Creators of the Weka

machine learning programming portrayed the J4.8 calculation as "a historic point

decision tree program that is likely the machine learning workhorse most broadly

utilized as a part of training to date".

J4.8 fabricates decision trees from a training of preparing information utilizing the

idea of data entropy. The training data is a set S= {s {1}, s {2} ...} of already classified

samples. Each sample s{i} consists of a p (=331 + 1)-dimensional vector (x {1, i}, x {2,

i} ..., x {p, i}), where the x {j, i} represent jth permission value for that sample and the

last value represents class (0/1) in which s{i} falls.

Figure 10 ; Workflow for Supervised Learning Algorithm

There are three unique kinds of malware identification systems: attack or intrusion

identification, misuse recognition (signature-based) and anomaly identification

(behavior based) [6]. Attack or intrusion identification tries to identify unapproved

access by unauthorized people. But, misuse recognition (signature-based) tries to

distinguish misuse by insiders and depicts great discovery outcome about for indicated,

surely understood attacks. Clearly the main profits in identifying misuse are:

There is no such output where is no benign application is identified as malware and

can recognize unauthorized entry quickly. The inconvenience isn't fit for differentiating

new unauthorized entry, while these new outcomes are just slightest modification of

already seen malware. Anomaly identification (behavior based) points to indentifying

patterns in each dataset that do not go with regular behavior. It also makes hard to do

evaluation the not so generalized behavior of framework for which security is to be

provided and raise anomaly alert at the point when the variation between a provided

perception at a use case and general behavior crosses a predefined threshold. The only

advantageous situation is possibility to differentiate already unknown, not clearly

visible intrusion incidents and loss is very cases where benign applications are marked

as malware and expects an extensive setup of preparing data to build general behavior

profile. In order to avoid these shortcomings of misuse recognition and inconsistency

identification profiles must to be refreshed at consistent interim of time interval with

the large datasets a [16]. However, a lot of the datasets additionally expands the issue of

irregularity, excess, and uncertainty. A few information mining procedures have been

connected for intrusion identification.

K-Mean Clustering is an unsupervised information retrieving method for intrusion

detection and it is anything but difficult to execute. Three noteworthy downsides of

K-mean clustering are

1. Class strength issue,

2. Force task issue, and

3. No class Problem.

It has been viewed that single model can't give better outcome as far as review and

exactness.

CHAPTER 4: Identification of patterns in malware behavior

Client-Side application on android device lists out all the permissions declared in

the manifest of each other application. Like Server side, 1 bit is assembled for

permission which denotes presence (1) or absence (0) of permissions. These

permissions are declared in an array in the same order as was used while creating arff

file for WEKA tool classifier running on the server. Thus, for application under scan, a

vector of bit values is formed containing 0 and 1. This vector is of the same length that

of vector used for training classifier, but the last value is passed as a placeholder (?).

This represents classification result to be returned based on input permission vector for

that application.

The action of adding a new application or replaced/updated is captured by

interfering the installation process of the application downloaded through play store or

3rd party marketplace. As soon as it is identified that a new application installation is

about to complete, all permission declared by that applications are logged in input

vector file discussed above. This fixed length vector is passed to the server for

classification and server returned a single bit declaring the application as benign or

malicious.

Figure 11: Top permissions accessed in dataset

Figure 12 : Flow Diagram for proposed solution

Import Libraries

Create a data set for binary

classification

Define Normalization function,

apply to data

Load Data

Randomly divide data in

training set

Fit J 4.8 Decision Tree

Make predictions

Outline as a cross table

CHAPTER 5: Results

In this work, application files are considered which is already collected and saved

in the input database. This application file is considered for the experiment.

A data-set of 2000 applications are used which consists an equal amount of

benevolent and harmful applications. Applications are downloaded from third party

marketplace and some dangerous applications are written by declaring sensitive

permissions in the manifest of sample applications and remaining from different open

malware collections sites (For academic purpose).

To validate the stability of J4.8 decision tree based algorithm used for training

classifier Cross fold validation technique is used. In k (=10) fold cross validation

method, iterations are carried out k times. It can be illustrated as follows:

1. Firstly, data is distributed in k sets.

2. Validation is carried out k times and every time a set thus formed is treated as

validation set and rest sets are used as training data,

3. Total accuracy is estimated as an average value of k times error estimates.

4. This way biasing and variance is controlled effectively in Cross fold validation

technique. Empirically k is selected as 5 or 10. This thesis selects a value of 10 for

the same.

 A decision tree generation form training records of data partition D
Algorithm : Generate_decision_tree

Input:
Data partition, D, which is a set of training records and their associated class labels.
attribute_list, the set of candidate attributes.
Attribute selection method, a procedure to determine the splitting criterion that best
partitions that the data records into individual classes. This criterion includes a
splitting_attribute and either a splitting point or splitting subset.

Output:
 A Decision Tree

Method
Generate a node N;

if records in D are all of the same class, C then
 return N as leaf node labeled with class C;

if attribute_list is empty then
 return N as leaf node with labeled

 with majority class in D;|| majority voting

apply attribute_selection_method(D, attribute_list)
to find the best splitting_criterion;
label node N with splitting_criterion;

if splitting_attribute is discrete-valued and
 multiway splits allowed then // no restricted to binary trees

attribute_list = splitting attribute; // remove splitting attribute
for each outcome j of splitting criterion

 // partition the tuples and grow subtrees for each partition
 let Dj be the set of data tuples in D satisfying outcome j; // a partition

 if Dj is empty then
 attach a leaf labeled with the majority
 class in D to node N;
 else
 attach the node returned by Generate
 decision tree(Dj, attribute list) to node N;
 end for
return N;

The results are evaluated based on following standards parameters:

True positives- Benign applications that are rightly identified by the classifiers are

called true positives. Let TP be the number of true positives.

True negatives- Malicious applications that are rightly identified by the classifiers

are called true negatives. Let TN be the number of true negatives.

. False positives- Malicious applications that are falsely identified by the classifiers

are called false positives (for example, application of benign class for which the

classifier predicted malicious). Let FP be the number of false positives.

False negatives- Benign applications that are falsely identified by the classifiers are

called false negatives. (for example, application of malicious class that are identified as

benign by the classifier). Let FN be the number of false negatives.

Sensitivity/ true positive rate: TPR= TP/P= TP/ (TP+ FN)

Specificity or true negative rate: TNR= TN/N= TN/ (TN+ FP)

Accuracy: ACC = (TP +TN) / (TP +TN + FP +FN)

Error Rate: ER = (TP +TN) / (FP +FN+FP +FN)

Figure 13: Overall Architecture of implementation

Our trial results demonstrate the application of utilizing classifiers to give malware

detection on obscure and zero-day malware which are not identified by standard

detection frameworks. This solution could recognize over 92-94% of new malware

with an FPR of 1.52-3.93%. Our approach also demonstrates that a basic

permission-based system might be utilized in combination with an existing solution for

malware detection and in this manner, brings the security one level up for mobile

devices.

Figure 14 : Results of running Classifier on full training set

Figure 15 : Evaluation of supplied test set on train model.

Figure 16 : Clustering results for evaluation of test data set.

CHAPTER 6: Conclusion

The effect of cell phones and mobile malware on our everyday lives can't be

ignored. It is required to think regarding the computational constraints of cell phones

with a specific end goal to implement a working solution. In this work, in the wake of

the exponential development of the Android mobile smart phones, there is a fast

increment of Android multistage malware. This work concentrates solely on how well

permissions in Android are characteristic of the maliciously influenced pattern. This

solution incorporates the essence of a server-side machine learning classifier that

consequently distinguishes (possibly) unsafe practices of new malware with the help of

permissions they require. This approach can be explored as the number of mobile

malware increase and it becomes possible to obtain more permission features using

many malware samples. Different classifiers will yield a more fruitful result and

boosted machine learning classifiers will improve current results.

References

[1] "TechRepublic," 17 November 2017. [Online]. Available:

https://www.techrepublic.com/article/new-google-play-store-malware-highlights-di

sturbing-trend-of-multi-stage-android-attacks/.

[2] K. L. 2017, "What is malware and how to defend against it?," [Online]. Available:

https://www.kaspersky.co.in/resource-center/preemptive-safety/what-is-malware-a

nd-how-to-protect-against-it.

[3] "Quartz Media LLC," Android just hit a record 88% market share of all smartphones,

[Online]. Available:

https://qz.com/826672/android-goog-just-hit-a-record-88-market-share-of-all-smartp

hones/.

[4] “Panda Security,” 8 November 2017. [Online]. Available:

https://www.pandasecurity.com/mediacenter/mobile-security/download-apps-safel

y/.

[5] "Strategy Analytics," 8 December 2017. [Online]. Available:

https://www.strategyanalytics.com/strategy-analytics/blogs/devices/smartphones/

smart-phones/2017/12/08/global-smartphone-shipment-will-grow-5-in-2018.

[6] "Strategy Analytics," Global Smartphone Installed Base by Operating System for 88

Countries, 2017. [Online]. Available:

http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7834.

[7] "IDC," 2017. [Online]. Available:

https://www.idc.com/promo/smartphone-market-share/os.

[8] "McAfee Labs Threat Report," 2017. [Online]. Available:

https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-jun-2017.pdf.

[9] "The Growing Threat Of Mobile Device Security Breaches," April 2017. [Online].

Available:

https://blog.checkpoint.com/wp-content/uploads/2017/04/Dimensional_Enterprise-

Mobile-Security-Survey.pdf.

[10] S. Collett, "CSO From IDG," August 2017. [Online]. Available:

https://www.csoonline.com/article/2157785/data-protection/five-new-threats-to-yo

ur-mobile-security.html.

[11] A. Felt, E. Ha, S. Egelman, A. Haney, E. Chin and D. Wagner, "Android permissions:

User attention, comprehension, and behavior," in Eighth Symposium on Usable Privacy,

2012.

[12] P. G. Kelly, N. Sadeh, S. Consolvo, J. Jung, D. Wetherall and L. F. Cranor, "A

conundrum of permissions: installing applications on an android smartphone,"

Financial Cryptography and Data Springer, pp. 68-79, 2012.

[13] "Statista," December 2017. [Online]. Available:

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-

google-play-store/.

[14] “Gartner Forecast,” 2011-2018. [Online]. Available:

https://www.gartner.com/doc/3645348/forecast-pcs-ultramobiles-mobile-phones.

[15] "Norton," 2017. [Online]. Available:

https://www.nortonsecurityonline.com/security-center/mobile-threats-protection.ht

ml.

[16] Moffie, Micha, W. Cheng, D. Kaeli and Q. Zhao, "Hunting Trojan Horses. Proceedings

of the 1st Workshop on Architectural and System Support for Improving Software

Dependability," 2006.

[17] E. Chien, "Techniques of Adware and Spyware," 2005. [Online]. Available:

https://www.symantec.com/avcenter/reference/techniques.of.adware.and.spyware.

pdf.

[18] A. Chuvakin, "An Overview of Unix Rootkits," iDEFENCE Labs, 2003.

[19] Lopez, William, H. Guerra, E. Pena, E. Barrera and J. Sayol, "Keyloggers," Florida

International University, 2013.

[20] Savage, Kevin, P. Coogan and H. Lau, "The Evolution of Ransomware. Symantec

Corporation," 2015. [Online]. Available:

http://www.symantec.com/content/en/us/enterprise/media/security_response/.

[Accessed 08 December 2017].

[21] B. Baskaran and D. Ralescu, "Detection of Malicious Applications in android using

Machine Learning," university of Cincinnati, 2016.

[22] "The University of Waikato," Attribute-Relation File Format (ARFF), [Online].

Available: http://www.cs.waikato.ac.nz/ml/weka/arff.html.

[23] "The University of Waikato," ARFF, [Online]. Available:

http://weka.wikispaces.com/ARFF.

[24] Prasad, B. Jaya, H. Annagi and K. S. Pendyala, "Basic static malware analysis using open

source tools," 2016.

[25] Egele, Manuel, T. Sholte, E. Kirda and C. Kruegel, "A Survey on Automated Dynamic

Malware Analysis Techniques and Tools," ACM Computing, 2012.

[26] Harley, David and A. Lee, "Heuristic Analysis — Detecting Unknown Viruses," 2009.

[27] D. Barrera, H. G. Kayacik, P. C. v. Oorschot and A. Somayaji, "A methodology for

empirical analysis of permission-based security models and its application to android,"

in 17th ACM conference on Computer and communications security, 2010.

[28] Portokalidis, "Paranoid Android: Versatile Protection for Smartphones," in ACM, 2010.

[29] W. Zhou, Y. Zhou, X. Jiang and P. Ning, "Detecting repackaged smartphone

applications in third-party Android marketplaces," in Second ACM Conference on Data

and Application Security and Privacy, NY, USA, 2012.

[30] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of android application

Security," in 20th USENIX conference on Security, Berkeley, USA, 2011.

[31] A. P. Felt, S. Hanna, E. Chin, H. J. Wang and E. Moshchuk, "Permission re-delegation:

Attacks and defenses," in 20th Usenix Security Symposium, 2011.

[32] "The Android Open Source Project," Application Fundamentals, [Online]. Available:

http://developer.android.com/guide/components/fundamentals.html.

[33] "The Android Open Source Project," System Permissions, [Online]. Available:

http://developer.android.com/guide/topics/security/permissions.html.

[34] "The Android Open Source Project," App Manifest, [Online]. Available:

http://developer.android.com/guide/topics/manifest/manifest-intro.html.

[35] "The Android Open Source Project," Android Permissions, [Online]. Available:

http://developer.android.com/guide/topics/security/permissions.html.

[36] "The Android Open Source Project," PackageManager, [Online]. Available:

http://developer.android.com/reference/android/content/pm/PackageManager.ht

ml.

[37] "Google Play Store," Google, [Online]. Available: https://play.google.com/store.

[38] Horton, Jeffrey and J. Seberry, "Computer Viruses. An Introduction," University of

Wollongong, 1997.

[39] Smith, Craig, A. Matrawy, S. Chow and B. Abdelaziz, "Computer Worms:

Architectures, Evasion Strategies, and Detection," Journal of Information Assurance and

Security, no. 4, 2009.

[40] Quinlan, J. Ross and Morgan Kaufmann, "C4.5: programs for machine learning," vol. 1,

1993.

[41] Leavitt, Neal, "Malicious code moves to mobile devices," IEEE Computer, vol. 33, pp.

16-19, 2000.

[42] "TrendLabs Security Intelligence blogs," TrendMicro, [Online]. Available:

http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer

/. [Accessed 8 December 2017].

[43] "Dynamic analysis tools for android fail to detect malware with heuristic evasion

techniques," [Online]. Available:

https://thehackernews.com/2014/05/dynamic-analysis-tools-for-android-fail.html.

