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ABSTRACT 

 
     Analog signal processing (ASP)  is any type of signal processing conducted on 

continuous analog signals by some analog means as set of continuous values (as opposed to the 

discrete digital Signal Processing (DSP) where the signal processing is carried out by a digital 

process). DSP suffers of fundamental drawbacks, such as high cost analog-digital conversion, 

high power consumption and poor performance at high frequencies. To overcome these 

drawbacks, ASP is preferred. 

 

     Current mode (CM) blocks offers advantages over voltage mode (VM) blocks, such as 

performance improvement, low power consumption, controlled gain without feedback 

components, better linearity and improved bandwidth. This gives the motivation to use CM 

block to implement various ASP applications and to review already existing literatures available 

using CM blocks. Current conveyor is used as it is a high-performance active element and it 

ensures high accuracy, wide bandwidth and exceptionally high slew rates combined with low 

voltage and low power implementations under small or large signal conditions. As compared to 

op-amp based circuits, the conveyor based circuits offers a higher gain-bandwidth product which 

makes it an ideal choice for modern applications in analog signal processing. Extra X- second 

generation current conveyor (EXCCII) is one of the new emerging CM block. In the process, an 

EXCCII with buffered output is used which is a modified second generation current conveyor 

that provides an extra input terminal. The block EXCCII has been verified and its applications on 

electronic functions like amplitude shift keying (ASK), binary phase shift keying (BPSK), 

current mode half wave and full wave rectifiers have also been verified. All pass filter, current 

mode universal and biquad filter have been explored.  



 

From literature survey done it is found that, instrumentation amplifier, oscillators, multivibrators 

have not been explored using EXCCII. This inspires me to do work on applications mentioned 

above. The new topology of instrumentation amplifier (IA) using EXCCII is proposed and 

analyzed which is working in current mode (CM) and has high input impedance, low output 

impedance, high differential mode gain and high CMRR. Another application using EXCCII is 

mixed mode three phase oscillator may also be proposed and is under analysis. A feedback 

scheme consisting of two lossy integrators followed by a lossless inverting integrator is 

employed to obtain three voltage-mode and three current-mode sinusoidal signals 

simultaneously. The functionality of the two proposed circuits are analyzed through PSPICE 

simulation using 250 nm (0.25µm) TSMC technology parameters. 
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CHAPTER 1 

 

1.1 Introduction 

 

Signal processing finds many applications in communication systems, biomedical 

engineering, instrumentation, control systems, etc. can be implemented in two different ways: 

 1. Analog (continuous) method. 

 2. Digital (discrete) method. 

The analog approach to signal processing was dominant for many years. This uses analog circuit 

elements such as resistors, capacitors, diodes, transistors, etc. Analog signal processing (ASP) is 

based on the natural ability of analog systems to solve the differential equations that describe a 

physical system. The solutions are obtained in real time. In contrast digital signal processing 

(DSP) relies on numerical calculations, this method may or may not give results in real time. 

DSP suffers from significant drawbacks, such as high-cost analog-digital conversion, high power 

consumption and poor performance at high frequencies. To overcome these drawbacks, ASP is 

preferred. 

Nowadays current mode (CM) blocks are widely using in the analog platform because of 

its broad dynamic range, more bandwidth, linearity, simple analog circuit design and parasitic 

components effect less in current mode circuit while in voltage mode (VM) blocks limited 

dynamic range because of the frequency dependency of its gain. 

The current conveyor is used as it is a high-performance active element and it ensures 

high accuracy, exceptionally high slew rates combined with low voltage and low power 

implementations under small or large signal conditions and wide bandwidth. As compared to op-

amp based circuits, the conveyor based circuits offer a higher gain-bandwidth product which 

makes it an ideal choice for modern applications in analog signal processing (ASP). 
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1.1.1 Voltage Mode and Current Mode 

 

When signals, depicts the information being processed, are in form of electric voltages. In 

contrast to current mode which employs electric currents. The analog circuits where the circuit 

performance is determined in terms of  a voltage levels at various nodes including input and 

output nodes are named as voltage-mode (VM) circuits. The VM circuits are required to provide 

large output swing while diminishing the total power consumption. This leads to high impedance 

node architecture of the VM circuits. Yet, the parasitic capacitances present in the circuits need 

to be charged and discharged with high voltage swing, thereby limiting the slew rate and speed 

of the VM circuits. Although, BJTs and FETs are current devices, but generally configured into 

voltage oriented networks [1]. The current signal is moved into voltage domain causing system 

bandwidth to reduce, and create dominant pole at low frequency as parasitic capacitances with 

high valued node resistances. Thus simultaneous low power, low voltage and wide bandwidth 

operations are difficult to accomplish in VM circuits. 

Over the last few decades CM processing circuits have been established as an 

unconventional design technique using current signals for signal processing [2]. The CM circuits 

are low impedance node networks, and therefore low time constant circuits, too. This improves 

system performance in terms of speed and slew rate. In current amplifiers the transistors are 

useful almost up to their unity gain bandwidth fT, so resulting in wider bandwidth. Yet another 

advantage of CM circuits results from the nonlinear characteristic of transistors. In FETs the 

volatge is proportional to square root of current in saturation region of operation, similarly in 

BJTs the voltage depends logrithmically on current. If current instead of voltage is used as 

signal, the output swing reduces and hence the CM circuits can operate under low supply voltage 

[3]. Hence for a fixed supply voltage the dynamic range of a current mode circuit is much larger 

than that of a voltage mode circuit. Furthermore, in CM circuits the addition and subtraction 

operation can be performed by connecting the terminals at a single point resulting in simple 

architecture as compared to VM circuits. This may result in chip area and power saving. 

CM blocks also offers advantages such as controlled gain without feedback components, 

performance improvement, better linearity over VM blocks. This gives the motivation to use CM 

block to implement various ASP applications [4-41]. Literature survey suggests that there are 
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neumerous CM blocks are alreadily available. The details of some of CM blocks are listed 

below.  

Current- mode signal processing has resulted in emergence of numerous analog building 

blocks [42-57] which are used for realization of various signal processing and generation 

circuits. The current conveyor (CC) [45], a voltage/current hybrid circuit, is the most extensively 

explored block. The three generations of CC namely CCI, CCII [42], and CCIII [46], were 

introduced way back in 1968, 1970 and 1995 respectively and are differ in terms of port 

characteristics. Variety of alterations in the basic conveyor structure, for more effective 

operation, led to introduction of various CC based newer elements [47] – [57]. Very recently, the 

second generation current conveyor was further extended to Extra-X second-generation current 

conveyor (EXCCII)[7]. Chapter 2 describes the device characteristics of EXCCII. 
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CHAPTER 2 

 

2.1 Extra-X second generation current conveyor (EXCCII) 

 

The idea of the extra-X terminal in second generation current conveyor (EXCCII) was 

recently given in [7]. The EX-CCII macro model contains the extra X-terminal with the 

additional feature of the voltage generated at output Z terminal is buffered to the W terminal. 

Which is a modified version of the second-generation current conveyor that provides an extra 

input terminal concerning former Dual X second-generation current conveyor (DXCCII). The 

potential of the Y terminal is copied to the X1, and X2 terminals and similarly the current at X1 

and X2 is copied to the Z1 and Z2 terminals respectively. Its circuit symbol is shown in Fig. 1.  

 

Fig 1. Symbol of EX-CCII with buffered output[8]. 

 

The relationship between port voltages and currents can be characterized by the following 

matrix. 

 

Iy

𝑉𝑥1

𝑉𝑥2

𝐼𝑧1

𝐼𝑧2

     =    

0
1
1
0
0

0
𝑅𝑥1

0
𝑃1

0

0
0

𝑅𝑥2

0
𝑃2

0
0
0
0
0

0
0
0
0
0

      

𝑉𝑦

𝐼𝑥1

𝐼𝑥2

𝑉𝑧1

𝑉𝑧2

 

 

The above matrix gives the following equations 

Iy = 0 , Vx1 = Vy + Rx1Ix1,Vx2 = Vy + Rx2Ix2 , Iz1 = P1Ix1, Iz2 = P2Ix2 
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Here, Rx1 and Rx2 are intrinsic resistances at terminal X1 and X2.  

Rx1 = Rx2

ox o

1

8μC W/LI  
 , where Io is biasing current. And p1 and p2 are current copy factor 

from Xi to Zi.we have used p1 = -1,1 and p2 = -1,1 . 

 

IO

VDD

VSS

M16
M17 M18 M19 M20 M21 M22 M23

M1 M2
M3

M4 M5 M6

M7 M8 M9 M10 M11 M12 M13 M14 M15

Y X1 X2

Z1+

Z1-

 

Fig 2. CMOS implementation of EXCCII [8] 

 

The port relation of EXCCII has been verified using PSPICE simulation with 250nm process 

parameters. In Fig 2. the supply voltage VDD = 1.25 V and VSS = -1.25 V and bias current Io = 10 

μA is used.  

The aspect ratio of the transistors is given in Table 1. 
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Table1. Aspect ratios of transistors 

 

MOS 

 

W(µm) 

 

L(µm) 

 

M1,M2,M3,M16,M17,M18 

M19,M20,M21,M22,M23 

10 

 

0.5 

 

M4, M5, M6 

 

16 

 

0.5 

 

M7,M8,M9,M10,M11,M12 

M13,M14,M15 

6 

 

0.5 

 

 

2.2 Device Characteristics  

 

The EXCCII block is tested as shown in Fig 3, to check the port relationship. A voltage 

source is applied at terminal Y and copied voltage at X1 and X2 is traced as in Fig 4. A voltage 

source (V) is varied from -5V to +5V. From Fig 4 it is clear that EXCCII follows the voltage at 

Y in the range -2.33V to 2.33V. 

 

 

Fig 3 Circuit for testing voltage transfer characteristic of EXCCII 
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Fig 4. Voltage transfer characteristic of EXCCII. 

 

The current relationship is also tested by applying a current source (I28) in Fig 5. Current 

source I28 is varied from -10mA to +10mA. From Fig 6 it is clear that EXCCII follows the 

current at X1 hence it also follows at Z- ranging -1.26mA to 1.26mA 

 

 

 

Fig 5. Circuit for testing current transfer characteristic of EXCCII 
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Figure 6. Current transfer characteristic of EXCCII. 

 

The two analog applications using EXCCII  have been proposed. One is the Instrumentation 

amplifier (IA). Another is Mixed-mode three phase oscillator.  
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CHAPTER 3 

 

3.1 Instrumentation amplifier (IA) 

 

An instrumentation amplifier is a type of differential amplifier which consists of input 

buffer amplifiers, which eliminates the need for input impedance matching and thus make the 

amplifier predominantly suitable for use in measurement and test equipment. Additional 

characteristics include very high input impedance, low drift, very low DC offset, low noise, very 

high open-loop gain, and very high common-mode rejection ratio. Instrumentation amplifiers are 

used where high accuracy and stability of the circuit both short and long-term are required. 

 

 

 

Fig 7: Instrumentation amplifier 

 

In instrumentation amplifier (IA), two inputs are applied to separate current amplifiers 

and then amplified the output of both the amplifiers are then differenced and then applied to 

another current amplifier which gives the final output of the IA. The advange is, it doesn’t 

require input impedance matching, This makes the amplifier ideal for testing and measuring 

various equipment. Instrumentation amplifier has a low DC offset. It doesn’t generate any 

noticeable noise, and the drift is considerably low. IA is very stable and hence best for long-term 
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as well as short-term use. IA has a controlled circuit, but it can be simply varied or adjusted by 

functioning on the gain value. There is no need to change the circuit or its structure.  

IA works with the input and therefore doesn’t really depend much on the various factors that 

effect the output at the final stages. We can understand more about an instrument’s output ability 

only if we know the input very well. The outputs will anyway depend on many associated and 

disassociated factors. Using IA we can amplify small input to a greater extent. With 

amplification of outputs, there is still a need for considerable input, only then can you amplify to 

a desired extent.  The only concern with instrumentation amplifier is the super imposing of the 

original wave when the noise or sound gets transmitted over a long range. The system will 

depend on special cables that can cancel this noise or super imposition. 

 

3.2 LITERATURE SURVEY 

 

IAs are of supreme importance in the overall performance of a signal acquisition system. 

They play a dynamic role in extracting low-value differential signals from unwanted common 

mode ones which tend to corrupt them. The traditional method of implementing IA based on 3 

op-amps and 7 resistors is not striking anymore because of its high power consumption, gain-

dependent bandwidth and strict matching requirement between resistors. To overcome the 

requirement of matched resistors, recently many unconventional ways to implement IAs are 

explored using both VM and CM, based on OTA, Current Conveyors and other building 

blocks. IA have also been implemented using many different type of components and techniques 

like second generation controlled current conveyor (CCCII) [9] , CMOS nested chopping 

technique [10] , instrumentation amplifier with improved gain and CMRR for low power sensor 

applications [11] , low power CMOS subthreshold current mode instrumentation amplifier based 

on CCII [12] , operational floating current conveyor based instrumentation amplifier [13], 

micropower CMOS instrumentation amplifier [14], low-noise CMOS instrumentation amplifier 

for thermoelectric infrared detectors [15] and many more.  

Hence as per literature survey and best to my knowledge it is found that there is no 

implementation of instrumentation amplifier using EXCCII in recent past. 
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3.3 Proposed Instrumentation amplifier 

 

The EXCCII discussed in Fig 2 is used in the realization of an instrumentation amplifier. 

The proposed circuit uses six resistors. The circuit uses 3 EXCCII blocks with both negative and 

positive output at Z1 which is shown in Fig 8. 

    From the port matrix of EXCCII, we get  

                                             1 1 1 2 2 2

 

  ;   ;x y x x x y x xV V I R V V I R   
                                                         (1)

 

   

From circuit analysis, we get 

 

                                               

x1
1 1

2

V  
 ,

R  
y in xV I R I


                                                                  (2) 

 

                                   
  1

1 1 1

2 

R  
   

R

x
x in xV I R V  

                                                          (3)

 

 

                                         

1
1 1

2

 1 x
in x

x

R
I R V

R

 
  

                                                                      (4)
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Y                            Z1-

X1       EXCCII      Z1+

X2
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AC

R3

R

R4

R1

R2

R

R

R

    R5

R6

R

R
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1

2

3Y                            

X1       EXCCII      Z1-

X2

  Z1+

2

Y                            Z1-
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X2
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Fig 8. Proposed circuit amplifier using EXCCII 

 

                              

in2 3in1 1
1 1

x1 x1
2 4

2 4

I RI R
     ,      

R R
1 R 1 R

R R

z zI I 


 

   
    

                                                 (5) 

 

                                                       Io = Iz1- + Iz1+                                                                                             (6) 
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x1
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I R
 

R
1 R

R

outI



 
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                                                               (7)
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in2 3 in1 1
5

x1 x1
4 2

4 2

x1
5

6

I R I R
R

R R
1 R 1 R

R R
 

R
1

R

outI

R

 
 
  
    

      
    

 
 

 

                                           (8) 

So, we get the final output current equation as : 

  

 

3 31 1
5

1 1 1 1
4 2 4 2
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x1
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6

R Δ
   

2
1 1 1 1

R
1
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out
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R R R R
I

R
R
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    
       
           

              
               

 
 

         (9)

 

Differential Mode Gain = 

3 1
5

1 1
4 2

4 2

1
6

6

1 1
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x x
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R R
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R R
R R

R R

R
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R

 
 
  
    

      
    

 
 

                                      (10)

 

  

Common Mode Rejection Ratio(CMRR) =         

3 1

1 1
4 2

4 2

3 1
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1 1

x x

x x
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                     (11) 

 

This CMRR is calculated while taking in account the intrinsic resistance at port X1 and X2. 
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3.4 Nonideal and Parasitic effects 

 

3.4.1 Tracking errors 

 

The response of the proposed circuit deviates from the ideal one due to nonidealities of 

the active elements. The nonideal EXCCII is described by the following relationship: 

                                 

1 1 1 1 2 2 2 2;   

 

x y x x x y x xV V I R V V I R    

                                     (12)

 

Where β1, β2 is the voltage transfer gains from the Y terminal to the X1 and X2 terminals 

respectively. 

                             1 1 1 1 2 1

 0;

  ,   

y

z x z x

I

I I I I 



   
                                           (13)

 

Where α1, α2 is the current transfer gains from the X1 terminal to the Z1- and Z1+ respectively. 

More specifically β = (1-ε) and α = (1-δ) where | ε | << 1 is the voltage tracking error and | δ | 

<<1 is the current tracking error of the EXCCII. 

From circuit analysis, we get : 
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3.4.2 Parasitic effect 

 

The performance of the proposed circuit is affected by the presence of various parasitics 

at the terminal of the active device. The various parasitics are the high resistance Ry parallel with 

low parasitic capacitor Cy at the Y terminal, series parasitic resistances Rx1 and Rx2 at the 

terminal X1 and X2 respectively which can be varied by the bias current Io as shown in Fig 2. 

The terminal Z exhibit a high resistance Rz1 in parallel with low parasitic capacitor Cz1  shown in 

Fig 9. 

From the port relationship of EXCCII 
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Fig 9. EXCCII with parasitic effect 

 

From the routine analysis of Fig 5, we get : 
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3.5 Simulation results  

 

3.5.1 Differential gain plot for proposed circuit 

 

The plot for the differential gain of the instrumentation amplifier is shown in Fig 10. The 

plot is taken by applying the input value of 1μA at Y terminal of one EXCCII block, and 0μA at 

the Y terminal of other EXCCII block for different gains and corresponding resistance values are 

shown in the plot.  

 

 

 

.  

Figure 10. Differential gain plot for proposed circuit 
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The differential gain is plotted for output stage gains of 1, 2, 5 and 10 by varying the value of 

resistance R6 in Fig 9. The differential gain increases with an increase in the output stage gain, 

and the input stage gain is fixed at R1/R2 = 10. 

 

 

 

3.5.2 CMRR plot for proposed circuit  

 

 

 

Figure 11. CMRR plot for proposed circuit 

 

The CMRR is plotted for output stage gains of 1, 2, 5 and 10 by varying the value of 

resistance R6  and the input stage gain is fixed at R1/R2 = 10 in Fig 11. The input stage gain is 

kept the same for both the input blocks.  

The common mode gain is taFken by applying 1μA current source at the Y terminals of 

both the EXCCII blocks. The CMRR plot is constant, i.e., independent of the output stage gain. 
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CHAPTER 4 

 

4.1 Proposed Circuit with improved CMRR 

 

 The CMRR is enhanced by using a common resistor between the two X1 terminals of 

both the input stage EXCCII blocks. 

Y      Z1-

X1    EXCCII     Z1+

X2

AC

AC

R3

R

R1

R2

R

R

R

    R5

R6

R

R

R

1

2

3
Y      

X1    EXCCII      Z1-

X2

  Z1+

2

Y      Z1-

X1    EXCCII     Z1+

X2

3

 

 

Fig 12. Proposed instrumentation amplifier with improved CMRR 

 

This proposed circuit has a common resistance to make sure that the same current flows 

through the X1 terminals of both the EXCCII blocks. `  
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The same current at both the X1 terminals at least eliminates the current difference at X1 

terminals due to tracking errors in the block. Further tracking errors follow the same course and 

hence CMRR of the proposed circuit with improved CMRR. 

 

 

4.2 Simulation results 

 

4.2.1 Differential gain plot for a proposed circuit with improved CMRR  

 

The plot for the differential gain of the proposed instrumentation amplifier with improved 

CMRR is shown in Fig 13. The plot is taken by applying the input value of 1μA at Y terminal of 

one EXCCII block, and 0μA at the Y terminal of other EXCCII block for different gains and 

corresponding resistance values are shown in the plot. The differential gain is plotted for output 

stage gains of 1, 2, 5 and 10 by varying the value of resistance R6 in Fig 13. 

 

 

Fig 13. The differential gain plot for a proposed circuit with improved CMRR 

 

The differential gain increases with an increase in the output stage gain, and the input 

stage gain is fixed at R1/R2 = 10. 
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4.2.2 CMRR plot for a proposed circuit with improved CMRR 

 

 

Fig 14. CMRR plot for a proposed circuit with improved CMRR 

 

The CMRR is plotted for output stage gains of 1, 2, 5 and 10 by varying the value of 

resistance R6 and the input stage gain is fixed at R1/R2 = 10 in Fig 14. The input stage gain is 

kept the same for both the input blocks. The common mode gain is taken by applying 1μA 

current source at the Y terminals of both the EXCCII blocks. The CMRR plot for a proposed 

circuit with improved CMRR is constant, i.e., independent of the output stage gain. 

 

4.3 Conclusion 

 

All the values of Differential gain and CMRR are shown in the Table 3 along with bandwidth 

and components used. The value of CMRR is approximately 181 dB which is pretty high as 

compared to other instrumentation amplifiers. 
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The comparison Table 2 shows the different blocks used to implement the 

instrumentation amplifier and the CMRR associated with them also it shows the number of 

resistors used. Amongst them, the proposed circuit with improved CMRR has highest CMRR.  

Although the bandwidth is less for the both the proposed circuits 4.55 kHz and 7.001 kHz with 

improvement, but it exhibits higher CMRR. 

 

 

 

Table 2: Comparative study of instrumentation amplifier circuits 

 

 

Ref. no.  

 

 

Type of input  

 

 

Type of 

output  

 

Active 

elements  

Used  

 

Resistors  

used  

 

CMRR  

(in dB)  

[13] Current  

 

Current  

 

3 OFCCs 6 55 

[13] Current  

 

Current  

 

4 OFCCs 7 85 

[16] Current 

 

Current 

 

Current 

mirror 

Nil 91 

        [17] Current  

 

Current  

 

1 CFOA 4 48 

[37] Current Current 2 CCIIs 1 95 

[38] Current Current 2 OFCCs 3 76 

[39] Current Current 2 CCIIs and 2 

Op-amps 

1 55 

[40] Current Current 5 OTAs 1 95 

[41] Current Current 3 OTRAs 5 64.5 
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Proposed Current  

 

Current  

 

3 EXCCII 6 95.54 

Proposed 

with 

improved 

CMRR 

Current  

 

Current  

 

3 EXCCII 5 181.64 
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Table 3. Parameters of the proposed circuit and proposed circuit with improved CMRR 

 

Input  

Valu

e  

(μA)  

Resistor  

Value  

(in kΩ) 

Differential mode  

gain (in dB)  

 

Differential  

gain  

bandwidth  

(in MHz)  

 

CMRR (in dB)  

 

CMRR  

bandwidth  

(in kHz)  

Fixed 

Resistors 

Variable 

Resistor 

 

 

Proposed  

 

Proposed  

with  

improved  

CMRR  

 

Proposed  

 

Proposed  

with  

improved  

CMRR  

 

Proposed  

 

Proposed  

with  

improved  

CMRR  

 

 

 

 

 

1 

 

 

 

 

 

 

 

R1=R3=R5=10;

R2=R4=1 

R6 = 1  

39.119  

 

 

44.73  

 

 

1.447  

 

 

95.540  

 

 

181.646  

 

 

7.001  

 

 

4.55  

 

R6 = 2  

33.307  

 

 

38.924  

 

 

1.459  

 

 

95.540  

 

 

181.646  

 

 

7.001  

 

 

4.55  

 

R6 = 5  

24.475  

 

 

31.091  

 

 

1.449  

 

 

95.540  

 

 

181.646  

 

 

7.001  

 

 

4.55  

 

R6 = 10  

19.493  

 

 

25.109  

 

 

1.498  

 

 

95.540  

 

 

181.646  

 

 

7.001  

 

 

4.55  
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 This work presents the study of a new building block, i.e., Extra – X Second 

Generation Current Conveyor (EXCCII). Moreover, proposes two current-mode instrumentation 

amplifier topologies. The secondly proposed topology has improved CMRR. The circuit exhibits 

high CMRR as compared to existing CM instrumentation amplifiers in the literature. Since 

CMRR is a valid and reasonable parameter for the comparison of any circuit, we have worked on 

improving the CMRR, although we get a low bandwidth. The proposed circuit can also be tested 

experimentally and by simulation by another implementation of EXCCII using AD844 as given 

in [7].  

 

4.4 Future Scope  

 

Since the bandwidth of the proposed circuit is low, the bandwidth can be improved in the 

future by using bandwidth enhancement techniques. Also, the voltage to current Instrumentation 

Amplifier can be developed using this block. 
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CHAPTER 5 

 

5.1 Oscillators 

  

Oscillators are an important class of circuits and finds many applications in 

communication, instrumentation, measurement, and control systems. Oscillation is an effect that 

frequently repeated and regularly fluctuates about the mean value and the Oscillator is a circuit 

that produces oscillation The electrical oscillations whose amplitude remains constant with time 

are called undamped oscillations. Oscillators are used to generate signals, for example used as a 

local oscillator to transform the RF signals to IF signals in a receiver, used to generate RF carrier 

in a transmitter, as sweep circuits in TV sets and CRO, used to generate clocks in digital systems. 

Op amp oscillators are restricted to the lower end of the frequency spectrum because op amps do 

not have the required bandwidth to achieve low phase shift at high frequencies. Voltage-

feedback op amps are limited to low kHz range since their dominant, open loop pole may be as 

low as 10 Hz. The new current-feedback op-amps have a much wider bandwidth, but they are 

inflexible to use in oscillator circuits because they are sensitive to feedback capacitance. 

Oscillators are useful for creating uniform signals that are used as a reference in applications 

such as audio, function generators, digital systems, and communication systems. For these 

applications low value of total harmonic distortion (THD) is an crucial requirement as higher 

harmonics have detrimental effects on electrical equipment. These higher order harmonics can 

also interfere with communication transmission lines since they oscillate at the same frequencies 

as the transmit frequency. If left unchecked, increased temperature and interference can greatly 

reduce the life of electronic equipment and cause damage to power systems. 

  

5.2 Multi phase sinusoidal oscillator  

 

Sinusoidal oscillators can be classified based on generated output such as single, 

quadrature and multiphase. Particularly multi phase sinusoidal oscillators finds many 

applications in the field of control, communication systems. Multiphase oscillators are capable of 

producing multiple signals that are equally separated in phase, used as an essential functional 
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block in many communication networks, power electronics, measurement and instrumentation 

systems. The examples of commonly used multiphase oscillator circuits included control 

schemes for 5-φ induction motor drives [18] and decoupled dynamic control of a six-phase two-

motor drive system. This literature has numerous realizations of such oscillators. Whereas some 

earlier systems are complex circuitry, contemporary multiphase oscillating systems have 

relatively simpler structures presented in [18,19]. The latter systems have generally utilized first-

order low-pass sections to produce the necessary phase shifts. Such networks have a  gain that 

rolls off beyond the corner frequency with produce phase shifts of up to 90º. Three phase 

sinewave oscillators are used as references for modern ac power converters [20,21]. The 

oscillator is employed for frequency control in cyclometer converters, for phase control, and for 

determining the whole switching sequence of the converter [18], [19]. Among the different 

versions of current conveyors, why the second-generation current conveyor (CCII) used is 

discussed above in the introduction part. Oscillators using CCII and exhibiting resistor-less 

realizations are reported in the literature.  

 

5.2.1 Literature survey 

  

  The oscillator circuits presented in [22]–[25] exhibit good performance, they suffer from 

the use of large number of active and passive components and complex structure. The simple 

structure operational transconductance amplifier based realization [26] enjoys electronic 

tunability but suffers from limited output voltage swing and temperature sensitivity. Although 

the active-R realization [27], [28] are a simple structure, it lacks the electronic tunability. The 

basic second-generation current-conveyor based structures [29], [30] use a single current 

conveyor per phase. However, to achieve electronic tunability a junction field-effect transistor 

(JFET) and three current-conveyors are required for each phase. The current feedback 

operational amplifier-based realization [31] is simple. It exploits the internal pole of the amplifier 

to advantage and can operate at relatively high frequencies. However, this requires a current 

feedback operational amplifier with accessible compensation terminal. Thus its application is 

limited to current feedback operational amplifiers (AD844) which is no more than a second-

generation current conveyor and a buffer on the same chip. Moreover, while electronic tunability 

is feasible, each phase requires the simulation of a dc supply-dependent capacitor using the 
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internal pole of a voltage feedback operational amplifier. The current follower based structure 

[32] requires two current followers, one floating resistor, one floating capacitor for each phase, 

and does not enjoy electronic tunability. Finally, most of these circuits can realize either odd or 

even-phase signals [22]–[32]. The circuit present in [33] exploited the parasitic resistance of the 

current conveyors which make electronic tunability possible through the bias current. So, in [34] 

only grounded passive components used. In the field of multiphase oscillator design, these 

circuits offer varied desirable functionalities like current-mode outputs, quadrature outputs, 

multiphase outputs, etc. Other features for such circuits are the condition of oscillation and 

frequency of oscillation, low component count and the use of grounded passive components from 

the viewpoint of monolithic integration. In 2011 Parveen Beg, Mohd. Samar Ansari and M.A. 

Siddiqi presented the paper on mixed mode 3-phase oscillator using DXCCII [35] have the 

advantage of CMOS compatible It has the complexity of CMOS structure and the circuit would 

require two voltage followers (one of them with two outputs) and one current follower. Now, a 

lot of circuit complexity of  DXCCII with buffered output becomes redundant for realizing the 

goal.   

 A simpler approach would only demand an extra-𝑋 stage, resulting in a new active 

element, named EX-CCII (with buffered output), introduced in [7]. and therefore opens up 

avenues for simpler circuits [35,36]. Now, recently reported building block the Extra-X Current 

Conveyor (EXCCII), its device characteristics and its CMOS implementation was discussed in 

chapter 2. Mixed-mode, three phase sinusoidal oscillator using three EXCCIIs, two grounded 

resistors and three grounded capacitors. The proposed circuit enjoys independent control of the 

frequency of oscillation. And verified with PSPICE using 0.25µm CMOS technology simulation 

results are.a lso presented. 
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 5.3 PROPOSED CIRCUIT 

 

Fig 15: Proposed Mixed mode 3-phase oscillator using EXCCII 

 The design of mixed mode three-phase sinusoidal oscillator (MTSO) is presented. The 

basic building blocks for the MTSO are an inverting lossless integrator and two lossy integrators. 

Each of these sections is realized using a single EXCCII, grounded resistor, grounded capacitors 

and a MOSFET biased in the triode region acting as a resistor. The transconductance (gm) value 

for MOSFET operated in triode region is  

 2 1,2,3m n ox Gi Ti

i

w
g µ c V V i

L

 
   

 
      (34) 

The characteristic equation for the third order oscillator show in fig.15 is given by 

3 2 1 2 3

2 2 1 1 1 1 2 2 1 2 3

81 1 1
0m m mg g g

s s s
R C R C R C R C C C C

   
       

   
     (35) 

 

 

From the above equation, by putting S= jω  and solve for ω which is the frequency of oscillations 

(FO) and condition of oscillations (CO) is given by 

The frequency of oscillations (𝜔) = 
1 1 2 2

1

R C R C
             (36) 
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   Condition for oscillations (CO) 1 1 3 2 2 3
1 2 3 1 2

1 2 1 2

 8  m m m

R C C R C C
g g g R R

R R C C


                (37) 

If assume all resistor values are equal i.e 𝑅1 = 𝑅2 = 𝑅3 and capacitors 𝐶1 = 𝐶2 = 𝐶3. Then 

above two expressions simplifies to 

    The frequencycillations (𝜔) 
1

RC
                    (38) 

 

    Condition for oscillations 3

1 2 3

1
    

m m m

R
g g g

                   (39) 

 

The inverted lossy integrator provides 3/2 phase shift and two lossy integrators provide /2 

Phaseshift each. The feedback loop gives 2, which is in compliance with the standard 

barkhausen criterion for sustained oscillations. 

 

5.4 Simulation results 

  

The proposed mixed-mode sinusoidal oscillator was verified using the PSPICE simulation. 

Simulations were conceded out using 0.25μm TSMC device model parameters. The circuit was 

simulated using VDD = -VSS = 1.25 V and the aspect ratios of the triode MOSFETs (M1 to M3) 

are W1/L1= W2/L2 = W3/L3 = 1.25μm/0.25μm and the gate voltages were kept at 1.1 V. The 

values of the passive elements were kept as C1 = C2 = 50 pF and R1 = R2 = 500. The 

frequency of oscillation obtained in PSPICE simulations is found to be 6.2 MHz shown in fig 18, 

which is very close to the designed value of 6.32 MHz and the obtained three-phase voltage and 

current waveforms are shown in Fig 16 and 17 respectively.  
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Fig 16: Three phase voltage outputs 

 

 

Fig 17: Three phase current outputs 
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Fig 18: FFT spectrum 

 

 

5.5 Conclusion 

  

A new mixed-mode three-phase sinusoidal oscillator employing three EXCCIIs, two 

resistors and three capacitors and three MOSFET’s are presented. The circuit is CMOS 

compatible and suitable for monolithic implementation by use of all grounded passive elements. 

Other attractive features are low sensitivities of the frequency of oscillation with respect to the 

passive elements and independent control of the FO and CO. The generated three-phase voltage 

and current waveforms exhibited low harmonic distortion. 
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