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ABSTRACT 

With the world moving to an automated platform, robots are finding application in almost 

all domains to reduce the human effort. One such domain is to path a find in an unknown 

and hostile environment to reach the goal. The complexity of many tasks arising in this 

domain makes it difficult for the robots (agents) to solve this with pre-programmed agent 

behaviours. The agents must, instead, discover a solution on their own, using learning. 

In ordinary reinforcement learning algorithms, a single agent learns to achieve a goal 

through many episodes. If a learning problem is complicated or the number of agents is 

more, it may take more computation time to obtain the optimal policy and sometimes may 

not be able to reach the goal. Meanwhile, for optimization problems, multi-agent search 

methods such as particle swarm optimization, ant colony optimization have been 

recognized to find rapidly a global optimal solution for multi-modal functions with wide 

solution space.  

This thesis work proposes a SARSA based reinforcement learning algorithm using multiple 

agents where the agents are guided by the pheromone levels also called the Phe-SARSA. In 

this algorithm, the multiple agents learn through not only their respective experiences but 

also with the help of pheromone trail left by other agents to search for the shortest path. 

The algorithms have been simulated in the MATLAB 2013a and the results have been 

compared with the Q-learning, SARSA, Q-Swarm, SARSA-Swarm and Phe-Q algorithms. 
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CHAPTER 1 

INTRODUCTION 

 This chapter presents the motivation behind the work done. It aims at 

implementation of the Optimization algorithms in Reinforcement Learning (RL) methods 

and has also been provided with the thesis organization. 

1.1 OVERVIEW 

 Machine learning for robots or mechanisms of all kinds has been a great 

challenge for engineers and scientists, from the beginning days of the computers. The 

learning characteristic of animals in the simplest search jobs, such as avoiding obstacles 

while doing some task or searching for food, turns out to be extremely difficult to 

reproduce in artificial mechanical devices, real or simulated. This thesis shows that how 

reinforcement learning with the help of nature inspired algorithms can help to solve such 

problems. 

 “Reinforcement Learning”, this word is new for human concept and can be 

traced back to the stone age. Humans learned long ago that we learn from our mistakes and 

that we should learn if we want to improve over time. Learned lessons can be passed from 

one generation to the other by changing the way we think, interact or work. Over the last 

five decades, it has been shown that machines can be made to learn similar to humans. 

“Machine Learning” is used to define many different applications from a military drone to a 

robotic carpet cleaner. It includes different types of learning like Supervised or 

Unsupervised Learning. In this thesis we will look into Reinforcement Learning algorithms 

and their hybrid forms.  

 Reinforcement learning is neither supervised nor non-supervised kind of 

learning but forms a third category of learning. The evolution of Reinforcement Learning 

from its beginning in the 1950s to the present day has been very impressive. In the last two 

decades, faster computers with more memory led to the implementation of learning 

algorithms like the single agent Q-Learning algorithm by Watkins [4]. This Q-Learning 
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algorithm was a major breakthrough in Reinforcement Learning and it later on became the 

foundation of many algorithms. 

1.2 REINFORCEMENT LEARNING 

 Machine learningi is programmingi to optimizei a performancei criterioni using 

examplei data or previous i observationsi. Learningi a modeli with partiallyi defined parametersi 

is thei executioni of a computeri programi to optimizei the parametersi of the modeli using the 

trainingi data i or previousi observationsi. Machine i learningi uses the theoryi of statisticsi in 

buildingi mathematical models, because the main i task is makingi inferencei from a samplei. 

In applicationsi such as navigation i, grabbingi, and explorationi, the output i of the systemi is a 

sequencei of actionsi. In suchi a casei, a single i action is noti importanti; what is importanti is 

the policyi that definesi the sequencei of correcti actions to reachi the goali given the currenti 

statei of the environment i. Such learningi methodsi are called reinforcement learning (RL) 

algorithms[16]. In RL, the learneri is a decisioni-makingi agent i that takesi actionsi in an 

environmenti and receives i rewardi (or penaltyi) for its actions i in tryingi to solvei a problemi. 

Afteri a seti of triali-and errori runs, iti should learn i the besti policyi, whichi is the sequence i of 

actionsi that maximizes i the total rewardi[16]. One of thei most i famous methodsi of 

completing tasksi in roboticsi is the usei of behaviori based modelsi [15]. Eachi behavior 

requiresi a sequentiali set of actionsi to be completedi and RL is the best i candidatei for such 

systemsi.  

1.3 PATH SEARCH AND RL  

 In many real world problems, the need of automation is arising. With the world 

shifting form a place where only living beings existed to a place where artificial living-like 

things also exist, it is becoming very crucial to use robots to ease our day to day work. 

Many works has been done in machine learning where a robot is made to mimic human 

actions and quite some achievement has also been made. One such human-like action for 

robot could be to navigate in a space or to search a space to find some particular goal, 

which could be food or other robots or other living beings or any destination. To navigate 

or move in an unknown environment, whose model is not known might be difficult task for 

robot.  
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 The roboti brain organizesi a vocabularyi of keywords i that describei the robot’si 

perceptioni of the environmenti. The resultsi of itsi experiencesi are processedi by a modeli that 

findsi cause and effect i relationshipsi between executedi actionsi and changesi in the 

environmenti. Thisi allowsi the roboti to learni fromi the consequencesi of itsi actionsi in the reali 

worldi. More specific i, the roboti startsi with a trainingi procedurei. The basic i idea ofi RL is toi 

telli a robotici agenti wheni it is behavingi goodi or badi and makei it derivei a suitablei behavior 

fromi these reinforcementi signals. Recentlyi, RL has beguni being used i on simulatedi and real 

robotsi. In the spirit i of embodiedi cognitivei sciencei, the investigations i will includei 

experiments oni a reali roboti. Ani understandingi has emerged i from the findings in sciencei 

that it is noti feasiblei to separatelyi investigatei the mindi and bodyi of humansi, animal, or 

robotsi when the goal i is to gaini knowledgei about intelligenti behaviori. These thingsi are 

interconnectedi and havei to be treated i as a wholei.  

1.4 ANT COLONY OPTIMIZATION (ACO)  

 This algorithmi is a memberi of the anti colony algorithms i familyi, in swarm 

intelligence i methodsi, and it constitutes i some metaheuristici optimizationsi. Initially 

proposedi by Marco Dorigo in 1992 ini his PhD thesis[5], the firsti algorithm wasi aimingi to 

search i for an optimali path in a graphi, basedi on the behavior i of antsi seekingi a pathi betweeni 

theiri colonyi and a sourcei of foodi. The original i idea has i sincei diversifiedi to solvei a wider i 

classi of numericali problems, andi as a result i, severali problemsi have emerged i, drawingi on 

variousi aspectsi of the behaviori of antsi. In the naturali worldi, antsi wanderi randomly, andi 

upon findingi food returni to their colonyi while layingi downi pheromone trailsi. If otheri ants 

findi such a pathi, they arei likely noti to keep travellingi at randomi, but to insteadi follow the 

traili, returningi and reinforcingi it if theyi eventually findi foodi. 

 Over timei, howeveri, the pheromonei trail startsi to evaporatei, thus reducingi its 

attractivei strength. Thei more timei it takesi for ani anti to traveli down i the pathi and back 

againi, the morei time thei pheromonesi have to evaporatei. A short path i, by comparisoni, gets 

marched i over more frequentlyi, and thusi the pheromonei density becomesi higher on shorteri 

pathsi than longer onesi. Pheromone evaporation i also has thei advantage i of avoidingi the 

convergence i to a locallyi optimal solutioni. If therei werei no evaporationi at all, the paths i 
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choseni by the first i ants wouldi tend to bei excessivelyi attractive to the followingi ones. Ini 

that casei, the explorationi of the solutioni space wouldi be constrained. 

 Thus, wheni one anti finds a goodi (i.e., short) pathi from the colonyi to a foodi 

sourcei, other ants i are morei likely toi followi that pathi, and positivei feedback eventuallyi 

leads toi all the ants i followingi a single pathi. Thei idea of the ant i colonyi algorithmi is to 

mimici this behaviori with "simulated ants" walkingi around the graph i representingi the 

problemi to solve. 

1.5 PARTCILE SWARM OPTIMIZATION (PSO) AND GROUP EFFORT 

 Particle swarm optimization (PSO) is a computational i methodi that optimizesi a 

problemi by iterativelyi tryingi to improvei a candidate solutioni with regardi to a giveni 

measurei of qualityi. PSO optimizes i a problemi by havingi a populationi of candidate 

(particles) i solutionsi, and movingi these particlesi aroundi in the searchi-spacei accordingi to 

simplei mathematical formulaei over the particle'si positioni and velocityi. Each particle'si 

movementi is influencedi by its local i best knowni positioni but, is also i guidedi toward the best i 

knowni positionsi in the search i-spacei, which are updatedi as better i positionsi are foundi by 

otheri particlesi. This is expectedi to move the swarmi toward the best solutionsi. 

 PSO is originally attributed to Kennedy, Eberhart and Shi [11, 13] and wasi first 

intendedi for simulatingi social behaviour i, [14], as a stylizedi representationi of the movementi 

of organismsi in a bird i flock ori fishi school. The algorithm i was simplifiedi and it was i 

observedi to be performingi optimizationi. PSO is a metaheuristic asi it makesi few i or no 

assumptionsi about the problemi being optimizedi and cani search veryi large spacesi of 

candidatei solutionsi. However, metaheuristics i such as PSOi do not guaranteei an optimal 

solutioni is ever foundi. PSO cani therefore also i be usedi on optimization i problemsi that are 

partiallyi irregular, noisyi, change overi time, etci. 

1.6 OBJECTIVE OF WORK  

 As in automation problems the application of robotics is increasing day by 

day. With the advancement in the technology, a shift is being seen towards implementation 
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of bio-inspired algorithms from the conventional methods or algorithms. Thus, in the 

areasof  the robotics problem also, more bio-inspired algorithms are being used. 

 In any search or path planning problem, it becomes essential to optimally 

reach the solution in less time. By using reinforcement learning methods we can achieve 

this. To implement this for a multi agent dynamic situation, the conventional methods do 

not follow and there is a need to switch form the conventional methods to the hybrid ones. 

Thus, reinforcement learnings have been combined with the bio-inspired algorithms like 

PSO and ACO to reach the optimal ssolution in minimum time. 

1.7 ORGANIZATION OF THESIS 

CHAPTER – 2 This chapter consists of the literature survey on various reinforcement 

learning algorithms and the different evolutionary methods that have been implemented 

with it. The major emphasis is given on the PSO and ACO which have been implemented 

with RL methods of Q-learning and SARSA.                  

CHAPTER – 3 This chapter deals with the description of the concept of RL, Markov 

Decision Process (MDPs) and Temporal Difference (TD) method which is used to solve the 

problems of RL. A short description about the two most commonly used TD(0) algorithms, 

i.e. Q-learning and SARSA is also given. 

CHAPTER – 4 This chapter defines the Grid World problem and various Multi-Aggent 

Reinforcement Learning have been stated. The Friend and Foe Q-Learning algorithm has 

been discussed in detail. 

CHAPTER – 5 Three evolutionary algorithms used with RL have been described in this 

chapter: Q-Swarm, SARSA-Swarm, Phe-Q and a new algorithm has been proposed 

SARSA-Q. 

CHAPTER – 6 This chapter presents results and discussion. 

CHAPTER – 7 In this chapter, the main conclusions have been drawn out and some future 

work related to the research have been suggested. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 GENERAL 

 This chapter consists of literature survey on different algorithms in this project. 

Various books and papers related to reinforcement learning algorithms, evolutionary 

algorithms: Particle Swarm Optimization and Ant Colony Optimization have been studied. 

 2.2 LITERATURE REVIEW 

 M. C. Cammaerts-Tricot and J. C. Verhaeghe [1] analysed the trail pheromone 

production and trail following behaviour of workers of Myrmica rubra of different age 

groups, categorized by their cuticular pigmentation. The dimensions of the poison gland 

reservoir increase as workers grow older. The capabilities of ants help the colony for 

recruitment to repel an enemy or to exploit a source of food occurs in its foraging area. 

 D. P. Bertekas et al. [2] gave an elaborated description on the stochastic optimal 

control methods. They impelemented the various control startegies in the discrete time 

space. 

 S. Goss et al. [3] showed various methods for the self organization in the 

aregntianan ant colony. These various methods were implemented for finding the shortest 

path in a maze. 

 Watkins [4] showed that Q-learning is a simple way for agents to learn how to 

act optimally in controlled Markovian domains. It amounts to an incremental method for 

dynamic programming which imposes limited computational demands. It works by 

successively improving its evaluations of the quality of particular actions at particular states. 

 Dorigo [5] researched on a new metaheuristic for optimization which was often 

initially focused on proof-of-concept applications. He provided a survey on theoretical 

results on ant colony optimization. Some research efforts were directed at gaining a deeper 

understanding of the behavior of ant colony optimization algorithms.  
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 Littman [6] showed minimax criterion allows the agent to converge to a fixed 

policy that is guaranteed to converge. This is certainly true to some extent but any such 

agent will in principle be vulnerable to a devious form of trickery in which the opponent 

leads the agent to learn a poor policy and then exploits it. He also showed that RL can be 

used in multi-agent scenarios and adversarial environments are well behaved as in that 

optimality is guaranteed against some random opponent. In such an environment the multi-

agent RL are less behaved, but strong assumption needs to be made out about other agents to 

guarantee convergence. 

 Putterman [7] described about the infinite-horizon discrete-time models with 

discrete state spaces and described the Markov Decision Processes (MDPs). He also 

described about the modified policy iteration, multi-chain simulations with sensitive 

optimality and average reward criterion. 

 Rummery and Niranjan [8] compared the performance of different RL 

algorithms on a realistic robot navigation problem, where a simulated mobile robot is 

trained to guide itself to a goal position in the presence of obstacles. They showed that on-

line learning algorithms are less sensitive to the choice of training parameters than backward 

replay. 

 L. R. Leerink [9] applied ant trail formation and foraging methods to the 

problem of exploration in a discrete environment with delayed reinforcement. The 

exploration strategy used was the various mechanisms that are found in ant trail formation in 

the adaptive heuristic critic framework, and was applied to a robot navigation task. 

Simulations indicate that in terms of efficiency the mechanisms used by a single ant perform 

better than undirected exploration methods, but not as well as specialized directed 

algorithms. However, when multiple robots simultaneously explore the environment the 

performance increases in a superlinear manner, resulting in an emergent collective ability 

larger than that possessed by the individual robots. 

 B. Holldobler et al. [10] explained the various categories in which the ant 

system is  divided and how each ant category work together to reach the goal. He showed 

ant colony as inintricate super organism in which individial ants are only small, 
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indispensable failry mechanical, easily replaceable walking batteriesoof exorineglands that 

sense their world primarily through the chemical secreted by them known as pheromone. 

 J. Kennedy et al. [11, 13, 14] first intended for simulating social behaviour as a 

stylized representation of the movement of organisms in a bird flock or fish school. They 

introduced the Particle Swarm Optimization algorithm and later it was simplified and 

observed to be performing optimization.  

 Bertekas et al. [12] explained the concept of dynmic programming and showed 

tht that how it can be solved and implemented with the help of neural networks. 

 R. C. Arkin [15] showed that the most famous methods of completing tasks in 

robotics is the use of behavior based models. And that each behavior required a sequential 

set of actions to be compeleted. 

 R. S. Sutton and A. G. Barto [16] gave the concept of Reinforcement Learning 

and explained the various terminologies related to the reinforcement learning. They showed 

that temporal difference method is used to solve the reinforcement learning problem and 

explained the optimality of TD(0) method. Various examples are shown by the authors to 

relate the concept of reward and the value functions. 

 Junling Hu and M. P. Wellman [17, 27] experimented on the general-sum 

stochastic games and solved the problem using Q-learning. They also soled this problem for 

the Nash Q-learning. Nash Q-learning gave better results as compared to Q-learning because 

of the Nash factor taken into account which uses collective reward function rather than 

individual rewards. 

 Singh et al. [18] examined the convergence of single-step on-policy RL 

algorithms for control. They showed that On-policy algorithms cannot separate exploration 

from learning and therefore must confront the exploration problem directly and hence 

proved that convergence results for several related on-policy algorithms with both decaying 

exploration and persistent exploration. 

 Vaughan et al. [19, 25] implemented ant-like self-organizing behaviour to 

coordinate a multi-robot system where the robots transport objects between various 
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locations. Robots used here had shared memory to communicate path information rather 

than physically laying trail of synthetic pheromone. 

 M. L. Littman [20, 21] described a set of reinforcement-learning algorithms 

based on estimating value functions and presented convergence theorems for these 

algorithms. They analysed and proved the convergence foe Q-learning, Minmax-Q learning, 

Nash Q-learning and Team Q-learning. 

 In Parunak V. D., et al. [22, 23, 24] the pheromone trails were used to construct 

potential fields. Unmanned vehicles were used to navigate, directed by the potential 

gradients. The ant system had different ‘flavours’ of pheromone. Each pheromone kind was 

exclusive in a way that it was associated with a peculiar feature of the environment and has 

their own evaporation and diffusion rates resulting in different dynamics. 

 M. Monekosso and P. Remagnino [26, 28] first introduced the Phe -Q algorithm 

which has the similar structure for rule updation as Q-learning with an addition term in the 

update equation called the belief factor. It is a function of the pheromone level in each cell 

and is associated with the state-action pair. It was implemented for grid world with fixed 

obstacles. 

 Hitoshi Jimal and Yasuaki Kuroe [29, 30] proposed a hybrid algorithm called 

Swarm-Q for multi-agent environment in which each agent learns individually  using 

parallel Q-learning and also learns using interaction using PSO utilizing personal best and 

global best Q-values. Later, they also used the same PSO based Q updating rule with 

SARSA as the basic learning method and showed that it is more effective for an 

environment which has a large negative reward. The algorithm optimizes quickly than the 

normal Q-learning and SARSA and also Swarm-Q. 

 L. Busoniu et al. [31, 34] discussed about the various Multi-Agent 

Reinforcement Learning (MARL) techniques for fully cooperative, fully competitive and 

mixed problems. They pointed out the main benefits and challenges of the various MARL 

algorithms. They also described the deterministic and stochastic MDPs and characterized 

their optimal solutions. They explained the concept of reinforcement learning and the 

dynamic programming. They explained about the Q-learning and SARSA and explained the 
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need of exploration over exploitation. Various applications such as speed control of a DC 

motor were solved using Q- learning and SARSA. 

 Chia-Feng Juang et al. [32] proposed the design of a fuzzy controller by Ant 

Colony Optimization (ACO) incorporated with Fuzzy-Q Learning, called ACO-FQ, with 

reinforcements. For a fuzzy controller, a list of all candidate consequent control actions of 

each fuzzy rule were mde. Each candidate in the consequent part of a rule is assigned with a 

corresponding Q-value. Searching for the best one among all combinations is partially based 

on pheromone trail and partially based on Q-values. Results were verified for a water bath 

temperature control system. 

 Kadlecek D. and Nahodil P. [33] integrated rigorous methods of reinforcement 

learning and control engineering with a behavioral approach to the agent technology. The 

main outcome is a hybrid architecture for intelligent autonomous agents targeted to the 

Artificial Life like environments. Learning and control was realized by multiple RL 

controllers working in a hierarchy of Semi Markov Decision Processes (SMDP). Used 

model free Q(λ ) learning works online, the agents gain experiences during interaction with 

the environment. 

 Wei Wu et al. [35] presented a control method based on multi-agent for traffic 

signals. Reinforcement learning algorithm was used to optimize traffic flow in the 

intersection. The genetic algorithm intended to introduce a global optimization criterion to 

each of the local learning processes that optimize the cycle of traffic signals and green-ratio. 

Areawide coordination was achieved by game theory. Here, local optimization with global 

optimization to optimize traffic signal in multi-intersection. Simulation results indicate that 

our presented method is superior than traditional control one. 

 J. Pazis et al. [36] presented a novel, computationally-efficient method, called 

Adaptive Action Modification, for realizing continuous-action policies, using binary 

decisions corresponding to adaptive increment or decrement changes in the values of the 

continuous action variables. They proposed an approach which approximates any 

continuous action space to arbitrary resolution and can be combined with any discrete-action 

reinforcement learning algorithm for learning continuous-action policies. They coupled Q-
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Learning, Fitted Q-Iteration, and Least-Squares Policy Iteration and implemented it on the 

continuous state-action Inverted Pendulum and Bicycle Balancing and Riding domains. 

 Shu Da Wang et al. [37] constructed a multi-agent simulation system based on 

reinforcement learning algorithms, achieve real-time simulation of multi-agent, and multi-

agent to get effect quickly, and to quickly construct surrounded conduct by mobile groups, 

the conduct of the system to achieve the global optimum effect. Seige type group problem 

was taken here. Two groups of agents were simulated to compete and reach the goal using 

Q-learning. 

 A. T. Evangolelos et al. [38] used reinforcement learning to find path in an 

environment. They used integral control to find path in any general environment. 

 J. Glascher et al. [39] used RL sequential experience with situations ("states") 

and outcomes to assess actions. Using functional magnetic resonance imaging in humans 

solving a probabilistic Markov decision task, they found the neural signature of an SPE in 

the intraparietal sulcus and lateral prefrontal cortex. Their finding supports the existence of 

two unique forms of learning signal in humans, which may form the basis of distinct 

computational strategies for guiding behavior. 

 Qiangfeng P. L. et al. [40] presented a distributed reinforcement learning system 

that leverages on expert coordination knowledge to improve learning in multi-agent 

problems. Scenario was taken where agents can communicate with their neighbors but this 

communication structure and the number of agents was changed over time. Experiment 

results were carried out for a tactical realtime strategy and soccer games. 

 Romero F. T. et al. [41] introduced a mobile robotic system to learn through 

reinforcement, which allows it to navigate within a dynamic environment avoiding any 

obstacle it might encounter. The learning system was implemented with two neural 

networks. Both neural networks use reinforcement learning by means of the Hebb rule.In 

this paper, it was shown that there may be a case when the robot is stuck in a region with 

such a configuration that directly affects it and prevents it from navigating the entire 

environment. 
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 Seiichi A. and Takao M. [42] proposed a new framework for combinatorial 

auctions with Q-learning agent. They showed how an intelligent agent learns in 

combinatorial auctions. They applied a framework of machine learning to combinatorial 

auctions to extract intelligence about bidding behavior. It was shown that the agent obtains 

strategies for behavior by considering combinatorial auctions as outside environment. Here, 

Q-learning approach was useful to obtain knowledge for winner. 

 M. Stocia et al. [43] used reinforcement learning method for the industrial robot 

problem. They took the problem of navigation in which the robot needed to transfer objects 

from point to point and implemented Q-learning algorithm for their learning. 

 Ji-Hwan Son et al. [44, 59] demonstrated movement control of the insect and 

enhanced control of the robot through its own learning progress via reinforcement learning. 

It was shown that insect occasionally exhibited uncertain and complex behavior and that 

interaction mechanism was affected by weather and other unknown properties of a real 

environment, resulting in more complex behaviors. To solve this, they proposed fuzzy logic-

based cooperative RL for sharing knowledge among agents. They designed a fuzzy logic-

based expertise measurement system for cooperative RL. The structure makes artificial 

robots share knowledge under measuring performance evaluation of each agent. 

 Devin G. et al. [45] et al. applied the Partially-Observable Markov Decision 

Processes (POMDPs) to a robotic navigation task under state and sensing uncertainty. This 

method provided a useful action model that gave a policy with similar overall expected 

reward compared to the true action model with significant computational savings. It was 

shown that this technique of building problem-dependent approximations can provide 

significant computational advantages and can help expand the complexity. 

 S. Zhiguo et al. [46] gave an improved Q-learning algorithm based on 

pheromone mechanism. They implemented it for a swarm of four robots to find path in a 

maze. The algorithm used two stages learning in which individual robots learned using RL 

and the peheromone level and the overall learning was done using the pheromone levels. 

 Chun-Tse Lin et al. [47] solved the path tracking problem of a prototype 

walking-aid robot which features the human-robot interactive navigation. A practical fuzzy 
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controller was proposed for the path tracking control under reinforcement learning ability. 

The inputs taken for the design of fuzzy controller were, the error distance and the error 

angle between the current and the desired position and orientation, respectively. The 

controller outputs taken was the voltages applied to the left- and right-wheel motors. A 

heuristic fuzzy control with the Sugeno-type rules was designed based on a model-free 

approach. The fuzzy control rule was designed with the aid of Q-learning approach. 

 Mohammed I. A. et al. [48] gave a study of various class of multi-agent 

graphical games denoted by differential graphical games, where interactions between agents 

are prescribed by a communication graph structure. Nash solutions were given in terms of 

solutions to a set of coupled continuous-time Hamilton-Jacobi Bellman equations. An online 

multi-agent method based on policy iterations was developed using a critic network to solve 

all the Hamilton-Jacobi-Bellman equations simultaneously for the graphical game. Here, an 

online adaptive Integral Reinforcement Learning structure using critic structures was used to 

solve the differential graphical game. 

 O. Krigolson et al. [49] gave an analogy of the reinforcement learning and the 

way humans learn from the errors. They also explained how we make decision based on our 

reinforcement learning mechanism. 

 Figueroa R. et al. [50] demonstrated a novel solution to the inverted pendulum 

problem extended to UAVs, specifically quadrotors. The solution is provided by 

reinforcement learning (RL) to generate a control policy to balance the pendulum using 

Continuous Action Fitted Value Iteration (CAFVI) which is a RL algorithm for 

highdimensional input-spaces. This technique combined learning of both state and state-

action value functions in an approximate value iteration setting with continuous inputs. 

 J. S. Campbell et al. [51] used the delayed reinforcement learning method in a 

single agent problem. They implemented various types of models in the Q-learning for the 

stochastic reinforcement using delays. 

 Bashan Z. et al. [52] developed a navigation technology based on the Q-learning 

algorithm. Here, an autonomous mobile robot was required to navigate in an unknown maze 
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and move out of it as soon as possible. They showed this technique was effective and 

successful to help a robot navigate in an unknown environment and avoid obstacles. 

 Huan T. et al. [53] proposed a novel evolutionary reinforcement learning method 

and applied it to robotic imitation learning, which integrates EDA and PI2 learning 

algorithm. This algorithm provides a solution to integrate exploratory learning methods with 

traditional reinforcement learning algorithms. This work can also be applied in other 

domains where the problems to be solved could be described as a well-known nonlinear 

state system. 

 Yunfei Z. et al. [54] developed a hierarchical controller to avoid randomly 

moving obstacles in autonomous navigation of a robot. The developed method consisted of 

two parts: a highlevel Q-Iearning controller for choosing an optimal plan for navigation and 

a low-level, appearance-based visual servo (ABVS) controller for motion execution. 

 Vasquez D. et al. [55] compared various IRL based learning methods and 

feature sets for socially compliant robot navigation in crowds. They provided three 

important insights a) the importance of the default cost feature; b) the need of motion 

prediction to obtain smoother human-like motion; and c) for i.e. linear combination of 

weights cost, it seems to be better to put the effort on feature design than on the learning 

algorithms. Conversely, in order to simplify the task of designing features, richer, more 

complex cost functions and learning algorithms are required. 

 Bischoff B. et al. [56] investigated model-based reinforcement learning in 

particular the probabilistic inference for learning control method (PILCO), with the case of 

sparse data to speed up learning. This approach was evaluated in simulation as well as on a 

physical robot. They showed that by including prior knowledge, policy learning can be sped 

up in presence of sparse data. 

 Chao Yu et al. [57] proposed a multi agent learning approach to solve 

coordination problems by exploiting agent independence in loosely coupled multi agent 

systems. Theisapproach enabled agents to learn an effi-cient coordinated policy through 

dynamic adaptation of the estimation of agent independence. This method required neither 
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prior knowledge about the structure of the domain nor assumptions about the learning 

agents.  

 H. Modares et al. [58] used reinforcement learning for the robot movements. 

They optimized the the steps taken by the robots to peform human-like activities using 

reinforcement learning. Q-learning was used as the method for learning of the robot. 
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CHAPTER 3 

REINFORCEMENT LEARNING 

3.1 BIOLOGICAL INSPIRATION  

 The basic idea that we learn from our environment by interacting is i probablyi the 

foremosti one to occuri to us wheni we think about i the processi of learningi. Wheni a childi 

plays, wavei armsi, or gets i injuredi, it does not have an explicit teacher, though it has a 

certain direct sensor-motor link to its environment i. Usingi this connectioni, a vasti repository 

of informationi about cause and effect i, about the results i of actionsi, and about whati shouldi 

be donei in order to achievei targeti. Throughout i our existencei, experiencesi are undoubtedlyi 

a majori sourcei of knowledgei about our environmenti and usi. Learningi from interactionsi is 

the initiali ideai behind almosti all theoriesi of intelligencei and learningi. “Reinforcement 

learning is defined not by characterizing learning methods, but by characterizing a learning 

problem”. [16] 

3.2 INTRODUCTION 

 “Reinforcement Learning is learning what to do, how to map situations to 

actions, so as to maximize a numerical reward signal.”[16] In RL, a controller interacts i 

with a processi, by means i of threei signals i: an actioni signali, whichi allowsi the controlleri to 

influencei the process i, a statei signali, describingi the statei of the process i, an actioni signali, 

whichi influences the processi, and a scalari reward signali, providingi the controlleri with 

feedbacki on its immediatei performancei.  

 The concept of rewarding for a particular set of actions is not a new concept 

in our society. The reward generated is an evaluation of the quality of transition between 

previous state and new state. This can be related to our daily lives: A person will be more 

inclined to do a task if there is a positive reward for executing it. Of course, this cannot 

characterise all of human behaviour, but we can see how RL influences our life.  

 To understand Reinforcement Learning, a simple case of an agent in an 

environment can be taken. In a single agent situation, the agent interacts with the 

environment and determines the actions that will earn the maximum rewards. For example, 
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inputs are provided by the environment to the agent and the agent then interacts with the 

environment with different outputs in form of actions. This is the main difference between 

RL and other learning methods. A reward is also given by the environment to the agent for 

each of the actions. The agent then learns that few actions gives better rewards than others 

and it thus learn to reproduce these actions to maximize its future rewards.  

 The RL framework has been used to solve various optimization processes and 

have been applied to many varied applications, e.g., automatic control, robot navigation, 

operations research, artificial intelligence, economics, robot navigation [35, 44, 46, 57, 59]. 

3.3 ELEMENTS & BASIC RL FRAMEWORK  

 Other main sub-elements apart from state-action can be identified i in the RL 

systemi are: a policyi, a reward functioni and a value functioni. 

 3.3.1 Policy 

 A policy is defined as the learning agent's behaviour. It is a mappingi from 

perceivedi statesi of the environmenti to actionsi to be taken i when in thosei statesi. This couldi 

be relatedi to a seti of stimulusii-response i rules or associationsi in psychology. For countable 

states, policy is generally a look up table or simple function, while for uncountable or 

continuous state spaces it involves an extensive i computationi such as a searchi processi. It is 

the vital part of an RL agenti in the sensei that it alonei is sufficienti to determinei the agenti 

behaviouri. 

3.3.2 Reward Function 

 The goali in an RL problemi is definedi mainly by the reward i functioni. It mapsi 

each perceivedi statei of the environmenti to a scalari valuei, a rewardi, which indicatesi the 

inherenti desirabilityi of that statei. The sole i objectivei of an RL agenti is to maximize the total 

rewardi receivedi by it in the longi runi.  

 The reward function i defines goodi and badi episodesi for the agenti. In a 

biologicali system, reward i can be identified as liking and pain i. They are directi and definingi 

features of the problemi which is facedi by the agent i. Hencei, the rewardi functioni is never 
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altered by the agent i. However i, it mayi serve asi a basisi for policyi alteration As an examplei, 

if an actioni as selectedi by the policyi is followedi by less rewardi, theni this policyi might be 

changedi to selecti some otheri actioni in that situationi in the futurei. 

3.3.3 Value Function 

 A reward function is a measure for immediate action and a value function is for 

the long run.  Value for a state could be defined as the totali amount ofi reward thati an agent i 

can expecti to collecti over the futurei, initiating from i that statei. Whereas rewards tells about 

the instant, intrinsic desirability of environmental i states, values indicatei the continuingi 

desirability of states after considering the states that are likely to be followed, and the 

rewards then available in those states i. As an examplei, particular statei might alwaysi yield ai 

low immediatei reward but i still havei a highi value becausei it is regularlyi followed byi other 

statesi that yieldi high rewards or vice-versa. In terms of humans, rewards i are like 

preferencesi (if high i) and discomforti (if lowi), whereas valuesi are more refinedi and 

farsightedi judgment of howi pleased or displeased i we are that i our environmenti is in a 

particulari statei. 

3.3.4 Basic Framework of RL 

 Reinforcement Learning, also known as enhanced learning, is a machine 

learning method which optimizes the result by goal-oriented learning which study by direct 

interaction with the environment. In Supervised learning method the training information 

required is instructional whereas in the reinforcement learning, training information 

required is evaluative and provides an important intelligent control method for the agent. 

The main purpose of reinforcement is studying the optimal mapping from state to action, so 

as to maximum the reward signal. [49] 

 Figure 3.1 from [16] illustrates clearly the different interactions between the 

agent and the environment. Both the agent and the environment interact at finite time steps 

k = 0; 1; 2; 3;. . [16] This means that each interaction will be done at a predeterminedi timei 

step. The environmenti provides thei agent withi the state sk element of S, where S is the 

set of possible states [16]. The agenti is ablei to choosei an actioni at elementi of A(sk), 

where A(sk) isi the set ofi possible actionsi in state sk [16]. For time step k + 1, the 
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environment will provide a reward, rk+1, which is the reward function R and a new state 

sk+1 to the agent [16]. Thisi rewardi is due toi its actioni in thei previous statei sk and thei 

transition toi the newi state sk+1. 

 
Figure 3.1 Agent - Environment interaction in the Reinforcement Learning 

 This is where RL comes into play. Each reward is associated with different 

actions and develop strategies that are called policies. The policy, πk (s; a), can be defined 

as the probability that ak = a if sk = s, where the k represents the next step [16]. The agent 

thus has to associate different probabilities to each action to maximize its rewards. All of 

the RL research starts with this simple concept and develops different methods of using the 

reward function. Expected return of an agent is linked to the environmental reward 

function. The reward function can be very different from one environment to the other.  

 For example, it describes which actions or series of actions will provide what 

reward. As per discounted reward, the expected reward diminishes over time. We can 

illustrate this by the equation of the expected discounted return: 

   Rk = rk+1 + ϒrk+2 + ϒ
2
rk+3 + . . . + ϒ

n
 rn+k+1                             ( 3.1 ) 

where, ϒ is a parameter, 0 ≤ ϒ ≤ 1, called the discount factor [16]. 

 As per Equation (3.1), we can see that the same reward is worth more if 

received now than if it is received in the future. We can change the behaviour of the agent 

by changing the discounted rate. When rate is close to 0, it is called “myopic” and it means 

that the agent is only concerned about immediate reward [16]. Ifi the rate is close to 1, it 

means that the agent considers future rewards to be more important and future rewards will 

have more weight. 
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 An agent in RL has to choose an action from the state sk provided by the 

environments. The information given by the environment is called the state signal [16]. The 

agent needs this information from the present state sk+1, and the previous states sk making 

the best decision possible and maximizes it rewards. A state signal has Markov properties if 

it has all the necessary information to define the entire history of the past states. 

 The agent has all the information needed with the immediate state. The agent 

does not need to know every past move to choose its next action. In other words, if we can 

predicti the next statei and the next expectedi reward giveni the current statei and the currenti 

reward with a probability of  ρ i = Pr{st+1 = s’; rt+1 = r | st,  at } for all s’, r, st and a, and at 

then the environment has the Markov property[16]. 

 RL algorithms build a model from the data; called the “model learning” [33]. 

RL algorithms can be further subcategorised, accordingi to the pathi taken toi find ani optimal 

policyi. These threei subcategoriesi are as follows: 

(i) Value i iteration algorithmsi search for i the optimali value functioni, which consists i of the 

maximali returns fromi every state i or from everyi state-actioni pair. The optimal value 

functioni is used to computei an optimal policyi. 

(ii) Policy iteration algorithmsi evaluate policiesi by constructing i their value functionsi  

(insteadi of the optimali value functioni), and thesei value functionsi to find newi, improved 

policiesi. 

(iii) Policy Search algorithmsi use optimizationi techniques to directlyi search for ani optimal 

policyi. 

Withini each of thesei three subcategoriesi of RL algorithms i, two subsequenti categoriesi can 

be furtheri distinguishedi, namely offlinei and onlinei. Offline RL algorithm i uses datai 

collected in advancei, whereas RL algorithm i learns a solution i by interactingi with the 

processi. Onlinei RL algorithm arei typically not i provided withi any future i datai, but instead i 

depends onlyi on the datai collected whilei learning andi hence arei useful wheni data isi 

difficulti or costlyi to obtaini in advancei. Most onlinei RL algorithm i work incrementallyi.  
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3.4 MARKOV DECISION PROCESS (MDP)  

 RL problems can be formalized with the help of markov decision process (MDPs) 

[6]. An RL problem that satisfies the Markov property is called a Markov decision process, 

or MDP [16]. Wheni the statei and actioni spaces arei finitei, then it is a finitei Markov 

decision process i (finite MDPi). Finite MDPsi are particularly valuablei to the theoryi of RL. 

A particulari finite MDPi is definedi by its statei and actioni sets andi by the onei-step dynamicsi 

of the environmenti. For a particulari state and actioni, s and a, the probabilityi of a particulari 

possible nextt state, sk+1, is 

     ρss’
a
 = Pr{sk+1 = s’ | sk = s, ak = a}                              (3.2) 

These variables are called i transition probabilities. Similarlyi, for any present i state and i 

actioni, s and a, alongwithi any nex it state,sk+1 , the expected value for next reward is 

            Rss’
a
 = E{rk+1 | sk = s, ak = a, sk+1 = s’}          (3.3) 

 These variables, ρss’
a
 and  Rss’

a
 , completely specify the most vital aspects of the 

dynamics of a finite MDP. 

3.5 TEMPORAL DIFFERENCE (TD) LEARNING 

 TD learningi is undoubtedly identified as one idea as central and novel to 

reinforcement learning [16]. This is ai combinationi of Montei Carlo ideasi and dynamici 

programming ideasi. TD methodsi can learn i directly fromi new experience i withouti a modeli 

of the environment'si dynamics likei Monte Carloi methodsi. TD approaches updatei estimates 

basedi in portion oni other learned estimatesi, without waitingi for a finali result. Thei link 

betweeni TD, DP, and i Monte Carloi methods is a repetitivei theme in the theory of RL. The 

TD(λ) algorithm seamlessly integrates TD and Monte Carlo methods. 

 Fori finding thei optimal policy in the control problems, DP, TD, and Monte 

Carloi methods all usei some variationi of generalized policyi iteration (GPIi). The differences i 

in thesei methods are primarilyi differences in theiri approaches i to thei prediction problemi. 

3.5.1 TD Prediction 

 Monte Carloi and TD methodsi use experiencesi to solve the predictioni 

problems. Statei some experiences i for following a policyi π, both updatei their estimatesi V of 
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V
π
. If i a non-terminali state is visitedi at time ki, then bothi the methodsi update theiri estimate 

basedi on what happens i after the visiti. Monte Carlo method is suitable for a simple early-

visit nonstationary environments is 

   V(sk) ← V(sk) + α [Rk – V(sk)]           (3.4) 

where, Rk isi the actuali return followingi time t andi α is a constant i step-size parameteri. 

Whereasi Monte Carloi methods musti wait until thei end of the episodei to determinei the 

incrementi to V(sk), TD methods waits only untili the next time stepi. Ati time k+1 theyi 

immediatelyi form a target i and make a useful i update usingi the observed i reward rk+1 and the i 

estimatei V(sk+1). The simplesti TD method, known as TD(0), is 

   V(sk) ← V(sk) + α [rk+1 + ϒV(sk+1)– V(sk)]          (3.5) 

In effect, Monte Carlo updates the reward as Rk, whereas i the target fori the TD updatei is 

rk+1 + ϒVk(sk+1). 

Becausei the TD methodi bases itsi update ini part oni an existingi estimates, so like DP it is a 

bootstrapping method. 

   V
π
(s) = Eπ{Rk|sk = s}                         (3.6) 

                      = Eπ{rk+1 + ϒV
π
(sk+1)|sk = s}           (3.7) 

 Monte Carloi methods use ani estimate ofi (3.6) as a target i, whereas DPi methods 

usei an estimate ofi (3.7) as a targeti. Thei Monte Carloi target is ani estimate because i the 

expectedi value in (3.6) is i not knowni; a sample returni is used ini place of thei real expected i 

returni. The TD target is i an estimate for both i reasons: it samples i the expected valuesi in 

(3.7) andi it uses currenti estimates insteadi of the truei V
π
. Thus, TDi methods combinei the 

samplingi of Monte Carloi with the bootstrappingi of DPi. This can take us a long wayi toward 

obtainingi the advantagesi of both Montei Carlo andi DP methods. 

 Algorithm 3.1 specifies i TD(0) completelyi in procedurali form. The valuei 

estimatei for the top i node state nodei of the backupi diagrami is updated oni the basis ofi the 

single samplei transition fromi it toi the nexti following statei. These updatesi are referred i here 

asi sample backups i because theyi involve lookingi ahead to a samplei successor statei, using 



 
 

23 
 

the valuei of the successori and the rewardi alongi the wayi to computei a backed-upi value, andi 

later changingi the value of thei original statei accordinglyi. Sample backupsi differ fromi the 

full backupsi of DP methodsi in that they are based i on one samplei successor ratheri than on 

completei distribution ofi all the possiblei successorsi. 

Algorithm 3.1: TD(0) method for estimating V
π
 :- 

1. Initialize V(s) arbitrarily, π to the policy to be evaluated 

2. Repeat (for each episode): 

                  Initialize s 

                  Repeat (for each step of episode) : 

                  a ← action given by π for s 

                  Take action a; observe the reward, r, and next state, s’ 

                  V(s) ← V(s) + α[r + ϒ V(s’) – V(s)] 

                  s ← s’ 

          until s is terminal 

3.5.2 Optimality of TD (0) 

 For any problem with finitei amount of experiences i available 10i episodesi or 100 

timei steps, it is a common approachi with thei incremental learningi method to presenti the 

experiencei recurrently until i the methodi converges. Given an approximatei value functioni, 

V, the incrementsi specified byi (3.4) or (3.5) arei computed fori every timei step ati which ai 

non-terminali state is visitedi, but the valuei function isi changed onlyi once, by the i summation 

of alli increments. Theni all the availablei experiences arei processed again i with the nexti 

value functioni to produce a newi overall increment i, until thei value functioni converges. Thisi 

is calledi batch updatingi because updatesi are made onlyi after processingi each ofi the 

completei batches ofi training data i. 

 Under batch updatingi, TD(0) converges i deterministically to i one answer i  independenti  
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of the step sizei parameter, α, asi long asi α is choseni to be sufficientlyi small. Thei constant α- 

MCi method alsoi converges deterministicallyi under the same i conditionsi, but to a different i 

answer. Underi normal updatingi, the methods doi not move alli the way to theiri respective 

batchi answers, buti in a manneri they takei steps ini these directionsi. 

 Finally, it should be noted that although the certainty-equivalence estimate is in 

some sense an optimal solution, but it is almost never feasible to compute it directly [16]. If 

Ni is the number i of statesi, then formingi the maximumi-likelihood estimates i of the processi 

may requirei N
2
 memoriesi, and computingi the correspondingi value functioni will requirei an 

orderi of N
3 

computationali steps if donei conventionally. It i can thusi be said thati TD methodsi 

can approximatei the samei solution usingi memory noi more thani and repeatedi computations 

overi the training set i. For tasks with large state spaces, TD methods might be the only 

feasible way of approximating the certainty- equivalence solution [16]. 

3.5.3 Value Functions & The Bellman Equations 

 Policiesi can be convenientlyi characterized by their i value functionsi. There are twoi 

types of i value functionsi: state-action value i functions; Q-functionsi and state-value 

functionsi; V-functionsi. The Q-function Q
π
: X × U →   of a policy π gives the return i 

obtained when i starting fromi a given statei, applying a i given actioni, and followingi π 

thereafteri: 

Q
π
(s,a) = ρ(s,a) + ϒR

π
 (f(s,a))                       (3.8) 

Here, R
π
 (f(s,a)) is the return from the i next statei f(s,a). Thisi formula cani be obtained i by 

firsti writing Q
π
(s,a) explicitlyi as the discountedi sum of rewardsi obtained byi taking a in s 

and then following π: 

Q
π
(s,a)  ∑   

   ϒ
k
ρ(sk,ak)                       (3.9) 

where(s0,a0)= (s,a), sk+1 = f(sk,uk) for k ≥ 0 and ak = π(sk) for k ≥ 0. The first i term is 

separatedi from the sum: 

Q
π
(s,a)   (   )  ∑   

   ϒ
k
ρ(sk,ak)                  

    = ρ(s,a) + ϒR
π
 (f(s,a))                     (3.10) 
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The optimali Q-function isi defined asi the besti Q-functioni that cani be obtained by any 

policy: 

Q*(s,a) = maxπQ
π
(s,a)                      (3.11) 

Any policy π* that selectsi at each state ani action withi the largesti optimal Q-valuei, i.e., that 

satisfiesi: 

π*(s) Є arg* maxaQ*(s,a)                     (3.12) 

 is optimali (it maximizes the return i). Ini general, for a given i Q-function Q, a policyi π that 

satisfiesi: 

π(s) Є arg* maxaQ(s,a)           (3.13) 

is saidi to be greedyi in Qi. So, findingi an optimali policy cani be done byi first findingi Q*, and i 

theni using (3.12) toi compute ai greedy policyi in Q*. 

 For the i computation of greedy actions in (3.12), (3.13), and in similar equations 

in the sequel, the maximum must exist to ensure the existence of a greedy policy; this can 

be guaranteed under certain technical assumptions [2]. 

 Thei Q-functionsi Q
π
 and Q* are recursivelyi characterizedi by the Bellman i 

equationsi, which arei of corei importance fori value iterationi and policyi iteration algorithms i. 

The Bellman i equationi for Q
π
 statesi that thei value of takingi an actioni; a in the statei; s under 

the policyi; π is the summation i of the immediatei reward and the discounted i value achieved 

by π in thei next statei: 

Q
π
(s,a) = ρ(s,a) + ϒQ

π
 (f(s,a),

 
π(f(s,a)))        (3.14) 

The Bellman optimalityi equation characterizes i Q*, and statesi that the optimali value of i 

actioni a takeni in state, s isi the summationi of the immediatei reward and thei discounted 

optimali value obtainedi by thei best actioni in the nexti state: 

Q*(s,a) = ρ(s,a) + ϒmaxa’Q*(f(s,a),a’)         (3.15) 

The V-function V
π 

: S →  of ai policy π is the returni obtained byi starting fromi a particular  
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statei and followingi π. Thisi V-function cani be computedi from thei Q-function of policy π: 

V
π
(s) = R

π
(s) = Q

π
(s,π(s))          (3.16) 

The optimali V-function is i the besti V-functioni that can bei obtained byi any policyi, and can 

be computedi from the optimali Q-function: 

V*(s) = maxπ V
π
(s) = maxaQ*(s,a)                     (3.17) 

An optimali policy π* can be computedi from V*, by using the fact i that it satisfiesi: 

π*(s) Є arg maxa[ρ(s,a) + ϒV*(f(s,a))]        (3.18) 

 Usingi this formulai is more difficulti than usingi (3.12); in particular i, a model ofi 

the MDPi is required i in the formi of the dynamics i f and the reward i function ρ. Because i the 

Q-functioni also dependsi on the actioni, it alreadyi includes informationi about the qualityi of 

transitionsi. In contrast i, the V-functioni only describesi the qualityi of the statesi; in orderi to 

infer the i quality ofi transitions, theyi must bei explicitly taken i into account i. This isi what 

happensi in (3.18), andi this alsoi explains whyi it is morei difficult toi compute policiesi from 

V-functionsi. 

3.5.4 Q-Learning: Off-Policy TD Control 

3.5.4.1. Model-based Q-iteration algorithm  

 Model-basedi Q-iteration algorithm i is an illustrativei example from thei class ofi 

model-basedi value iterationi algorithmsi. Let the set i of all thei Q-functionsi be denoted by Ɲ. 

Then, thei Q-iteration mappingi T : Ɲ → Ɲ, computes i the right-handi side of the Bellmani 

optimality equationi (3.15) for anyi Q-functioni. In thei deterministic casei, this mappingi is: 

[T(Q)](s,a) = ρ(s,a) + ϒmaxa’Q*(f(s,a),a’)         (3.15) 

andi in the stochastici case, it isi: 

[T(Q)](s,a) = Es’~f(s,a,.) { ρ(s,a,s’) + ϒmaxa’Q*(s’,a’)}       (3.16) 

If the i state spacei is countablei (e.g., finite) then the Q-iterationi mapping fori the stochastici 

case (3.15) can i be written asi the simpler summationi: 
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[T(Q)](s,a) = ∑s’f(s,a,s’)[ ρ(s,a,s’) + ϒmaxa’Q*(s’,a’)]      (3.17) 

The samei notation is usedi for the Q-iterationi mapping bothi in the deterministici case and ini 

thei stochastic casei, because the analysis i given below applies i to both casesi, and the 

definitioni (3.15) of T i is a special casei of (3.16). 

Thei Q-iterationi algorithm starts i from an arbitraryi Q-functioni Q0 and fori each iterationi k 

updatesi the Q-function usingi: 

Qk+1 = T(Qk)                        (3.18) 

Iti can bei shown thati T is ai contraction withi factor ϒ < 1 in thei infinity normi, i.e., fori any 

pairi of functionsi Q and i Q’, it isi true thati: 

||T(Q) – T(Q’)||∞ ≤ ϒ||Q – Q’||∞                     (3.19) 

Becausei T is a contractioni, it has a uniquei fixed pointi. Additionally, when i rewritten usingi 

the Qi-iteration mappingi, the Bellmani optimality equationi (3.15) statesi that Q* isi a fixedi 

pointi of T, i.e.: 

Q* = T(Q*)                       (3.20) 

 Hence i, the uniquei fixed point i of T isi actuallyi Q*, andi Q-iterationi 

asymptotically convergesi to Q* asi  k →∞.  Moreoveri, Q-iterationi converges toi Q* at a rate i 

of ϒ, ini the sense i that ||Qk+1 – Q*||∞ ≤ ϒ||Qk – Q*||∞. Ani optimal policyi can be computedi 

from Q* with (3.12). 

 Algorithmi 3.2 presentsi Q-iterationi for deterministici MDPs ini an explicit i, 

procedural formi, wherein Ti is computedi using (3.15). Similarlyi, algorithm 3.3 presents i Q-

iterationi for stochastici MDPs withi countable statei spaces, usingi the expressioni (3.17). 

Algorithm 3.2: Q-Iteration for deterministic MDPs :- 

Input: dynamics f, reward function ρ, discount factor ϒ 

1. Initialize Q function as Q0 ← 0 

2. Repeat at every iteration k = 0,1,2,…….. 
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3.      for every (s,a) do 

                Qk+1(s,a) ← ρ(s,a) + ϒmaxa’Q*(f(s,a),a’) 

          end for 

          until Qk+1 = Qk 

Output: Q* = Qk 

Algorithm 3.3: Q-Iteration for stochastic MDPs with countable state spaces :- 

Input: dynamics f, reward function ρ, discount factor ϒ 

1. Initialize Q function as Q0 ← 0 

2. Repeat at every iteration k = 0,1,2,…….. 

3.      for every (s,a) do 

                Qk+1(s,a) ← ∑s’f(s,a,s’) [ρ(s,a,s’) + ϒmaxa’Q*f(s’,a’)] 

          end for 

          until Qk+1 = Qk 

Output: Q* = Qk 

3.5.4.2. Model-free value iteration and the need for exploration 

 Q-learningi starts fromi an arbitraryi initial Q-functioni Q0 and updatesi it withouti 

requiring ai model, usingi instead observedi state transitionsi and rewards i, i.e., data tuplesi of 

the formi (sk, ak, sk+1, rk+1) [4]. After each i transition, thei Q-function is i updated usingi such a 

datai tuple, as follows i: 

Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒmaxa’Qk(sk+1, a’) – Qk(sk,ak)]           (3.21) 

wherei, αk Є (0,1] is thei learningi rate i. The termi betweeni squarei brackets isi the temporali 

differencei, i.e., the differencei between the updatedi estimate rk+1 + ϒmaxu’Qk(sk+1,ak) ofi the 

optimali Q-value i of (sk,ak), and thei current estimatei Qk(sk,ak). In thei deterministic casei, the 
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newi estimate isi actually thei Q-iteration mappingi (3.15) applied to i Qk in the statei-action 

pairi (sk,ak), wherei r(sk,ak) has beeni replaced by thei observed rewardi rk+1, andi f (sk,ak) by thei 

observed nexti-state sk+1. 

 In the stochastic i case, thesei replacements providei a single i sample ofi the 

randomi quantity whose i expectation isi computed byi the Q-iterationi mapping (3.16), andi 

thus Qi-learning cani be seeni as a samplei-based, stochastici approximation procedurei based 

on thisi mapping [12].  

 In practice i, the learning ratei schedule mayi require tuningi, because it influences i 

the numberi of transitions i required byi Q-learning toi obtain a goodi solution. A good i choice 

fori the learningi rate schedulei depends on thei problem at handi. The controlleri also has toi 

exploit itsi current knowledgei in order toi obtain goodi performance, e.g., byi selecting greedyi 

actions in thei current Q-functioni. This is ai typical illustration i of thei exploration-

exploitationi trade-off ini online RLi. A classical way to balance exploration with 

exploitation in Q-learning is ε –greedy exploration [16], which selectsi actions accordingi to: 

 ak = a Є arg maxaQk(sk, a),  with probability 1-εk 

     a uniformly random action in A,    with probability εk          (3.22) 

wherei, εk Є (0,1) is thei exploration probabilityi at step ki. Another option is to use 

Boltzmann exploration[16], which at stepi k selects an actioni a with probabilityi: 

P(a|sk) = (e
Q(sk,u)/𝛕k)/ ∑ a(e

Q(sk,u)/𝛕k)                    (3.23) 

wherei the temperaturei 𝛕k ≥ 0 controlsi the randomnessi of the exploration i. When 𝛕k → 0, 

(3.23) isi equivalent toi greedy actioni selection, whilei for 𝛕k → ∞, actioni selection isi 

uniformly random i. For nonzeroi, finite valuesi of 𝛕k, higher i-valued actionsi have a greateri 

chance ofi being selected i than loweri-valued ones i. 

 Usuallyi, the explorationi diminishes overi time, so thati the policyi used 

asymptoticallyi becomes greedyi and therefore optimal i. This can bei achieved byi making 𝛕k 

or εk approachi 0 as k growsi. For instance i, an ε -greedyi exploration schedulei of the form εk 

= 1/k diminishesi to 0 for k → ∞, whilei still satisfyingi the convergencei condition of Qi-
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learning, i.e., whilei allowing infinitelyi many visitsi to all the statei-actioni pairs [18]. Like 

thei learning rate i schedule, thei exploration schedulei has a significant i effect on thei 

performance ofi Q-learningi. Algorithm 3.4  presentsi Q-learningi with ε -greedy explorationi. 

Algorithm 3.4: Q-Iteration with ε -greedy exploration :- 

Input:  discount factor ϒ, exploration schedule εk, learning rate schedule αk 

1. Initialize Q function as Q0 ← 0 

2. Measure initial state 

3. for every time step k = 0,1,2,…….. do 

                     a Є arg maxaQk(sk,a)                            with probability 1 - εk (exploit) 

         ak ←   

                     a uniformly random action in A           with probability εk (explore)           

         apply ak, measure next state ak+1 and reward rk+1 

        Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒmaxa’Qk(sk+1, a’) – Qk(sk,ak)] 

   end for 

3.5.5 SARSA: On-Policy TD Control  

 Another class of RL, model-free policyi iteration algorithms is i SARSA, an onlinei 

algorithmi proposed by Rummery and Niranjan [8] asi an alternativei to the value-iterationi 

based Q-learningi. The namei SARSA isi obtained by joiningi together thei initials of everyi 

element ini the data i tuples employed i by the algorithm i, namely: state i, action, reward, (next) 

statei, (next) actioni. Formally, suchi a tuple is denotedi by (sk,ak, rk+1,sk+1,ak+1). SARSAi starts 

with ani arbitrary initial i Q-function Q0 andi updates it at i each step usingi tuples of thisi form, 

as followsi: 

Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒQk(sk+1, ak+1) – Qk(sk,ak)]           (3.24) 

wherei αk Є (0,1] is thei learning rate i. Thei term betweeni square brackets i is the temporal 

differencei, obtained asi the difference between i the updated estimatei rk+1 + ϒQk(sk+1, ak+1) ofi 
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the Q-valuei for (sk,ak), andi the current estimatei Qk(sk,ak). This is i not the samei as the 

temporal differencei used in Q-learningi (3.21). Whilei the Q-learningi temporal difference 

includesi the maximal Q-valuei in the next statei, the SARSAi temporal differencei includes 

the Qi-value of i the actioni actually takeni in this next statei. This meansi that SARSAi 

performs onlinei, modeli-free policyi evaluation ofi the policyi that isi currently beingi 

followed. Ini the deterministic casei, the newi estimate rk+1 + ϒQk(sk+1, ak+1) ofi the Q-value i 

for (sk,ak) is actuallyi the policyi evaluation mapping (3.15) applied i to Qk in the statei-action 

pair (sk,ak). Here, r(sk,ak) has been replaced by the observed reward rk+1, and f(sk,ak) by the 

observedi next state sk+1. In i the stochastici case, thesei replacements provide i a single samplei 

of thei random quantityi whose expectationi is found byi the policyi evaluation mappingi 

(3.16).Nexti, the policyi employed byi SARSA is consideredi.  

 Asi in offline i policy iterationi, SARSA cannoti afford to wait i until thei Q-functioni 

has (almost) converged i before iti improves thei policy. Thisi is soi because convergencei may 

takei a long timei, during whichi the unchangedi (and possibly bad i) policy wouldi be 

implementedi. Instead of this i, to select actions i, SARSA combines ai greedy policy in the i 

current Q-functioni with explorationi, using, e.g., ε-greedy (3.22) or Boltzman (3.23) 

explorationi. Because of thei greedy componenti, SARSA implicitlyi performs a policyi 

improvement ati every iterative stepi, and isi thus a typei of online policyi iteration. Such a 

policy iteration algorithm, which improves the policy after every sample, is sometimes 

called fully optimistic [12]. 

 Algorithmi 3.5 presentsi SARSA withi ε-greedy explorationi. In this algorithm i, 

because thei update ati step k involvesi the actioni ak+1, this actioni has to be chosen i prior toi 

updating thei Q-function. 

 In i order to convergei to the optimali Q-function Q*, SARSAi requires conditions i 

similar toi those of Q-learningi, which demandi exploration, andi additionally thati the 

exploratoryi policy beingi followed asymptoticallyi becomes greedy i[18]. Suchi a policy can i 

be obtainedi by using i, e.g., ε-greedyi (3.22) explorationi with an explorationi probability εk 

thati asymptotically decreases i to 0, or Boltzmann i (3.23) explorationi with an explorationi 

temperaturei 𝛕k that asymptoticallyi decreases to 0i. The exploratory policyi used by Qi-
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learning can i also be madei greedy asymptoticallyi, even though i the convergencei of Q i-

learning doesi not rely oni this conditioni. 

Algorithm 3.5: SARSA with ε -greedy exploration :- 

Input:  discount factor ϒ, exploration schedule εk, learning rate schedule αk 

1. Initialize Q function as Q0 ← 0 

2. Measure initial state s0 

3.                    a Є arg maxaQ0(s0,a)                             with probability 1 – ε0 (exploit) 

         a0 ←   

                       a uniformly random action in A           with probability ε0 (explore) 

4. for every time step k = 0, 1, 2, …….. do 

         apply ak, measure next state ak+1 and reward rk+1 

                       a Є arg maxaQk(sk,a)                              with probability 1 - εk (exploit) 

         ak ←   

                       a uniformly random action in A           with probability εk (explore) 

         apply ak, measure next state ak+1 and reward rk+1 

        Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒQk(sk+1, ak+1) – Qk(sk,ak)] 

   end for 

 Algorithmsi like SARSA, whichi evaluate thei policy are also called “on-policy” 

in the RL literature [16].  In contrast i, algorithms like Qi-learning, whichi act on the process i 

usingi one policy andi evaluate anotheri policy, are called “off-policy.”  

3.6 LIMITATIONS OF RL 

Though its numerous advatages and applications, RL methods do have certain limitations 

and disadvantages. Some of the limitation that RL methods have, are stated as follows: 
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 As no model for is provided for any given problem, the model that is estimated by 

the RL methods has shallow knowledge and might sometimes make the agent to 

take a wrong action. 

 In RL methods, the reward calculated for the overall goal is taken and the final 

output is compared then rather than comparing the output at each step or 

caomparing the best possible output at each step. This restricts the agent form 

looking ahead. 

 Reinforcement Learning has two parameters for learning called the learning rate and 

the exploration rate. If the learning rate is not properly chosen, it might take the 

agent a longer time to come to an optimal solution and thus can restrict its ability to 

learn And if the exploration rate is not set properly, it might happen that it takes too 

long for agent to reach the goal or it may never reach the goal also. 
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CHAPTER 4 

MULTI-AGENT GRID WORLD PROBLEM 

4.1 GRID WORLD PROBLEM 

 The most widely used benchmark problem in reinforcement learning is Grid world 

[16]. In its most basic form, this domain consists of a discrete planar grid with finite 

dimensions. An agent is placed at some set starting location, and then selects cardinal 

actions (up, down, left, right) to move within the grid with the goal of reaching some 

specific goal grid location. Modifications to this domain include addition of diagonal 

moves, the addition of penalty or hole grid locations, changes to the dimension of the grid, 

and addition of a stochastic wind component that acts on the agent [16]. Further extensions 

include using a large grid space with multiple rooms. Yet another modification could be 

dynamic obstacles, in which the obstacle emerges for random locations in the grid and also 

the goal could be made moving or dynamic by specifying an area where the goal emerges 

randomly or moves step wise in a particular group of grid cells. 

          

          

          

          

          

          

          

          

          

          

 

Figure 4.1 A sample grid world with green block as obstacles, red block as goal and green 

block as starting block 

 All these  modifications  are purely  environmental and have an  effect on the of  the 



 
 

35 
 

domain, which has downstream effects on the actions of the agent, the efficacy of the 

learning algorithm, and finally on the knowledge acquired by the agent and its performance 

in the domain. 

 The grid world problem used in this thesis is an evolving one. Initially, a single 

agent case of simple 10 X 10 grid is taken and very few fixed obstacles are present. The 

number of fixed obstacles are added starting from 4 obstacles to 15 obstacles. Later on, few 

of the obstacles are made to emerge randomly in the grid. Another complexity that has been 

studied is the grid world problem is the case of moving goal. The upper two rows of the 

grid are made as the area in which the goal can emerge randomly. This randomness has 

been done for each iteration movement of the agent and not for the epochs. 

4.1.1 Single Agent Problem 

 In single-agenti RL, the environment i of the agent i is describedi by a MDPs. “A finite 

Markov decision process is a tuple {S,A, f, ρ} where S is the finite set of environment 

states, A is the finite set of agent actions, f : S × A × S → [0, 1] is the state transition 

probability function, and ρ : S × A × S →   is the reward function”[49]. The statei signal i sk 

є S describesi the environment ati each discrete i time-step ki. The agent can i alter thei state ati 

each time step byi taking actionsi ak є A. As ai result ofi the action aki , the environmenti 

changes itsi state fromi ak to somei sk+1 є S accordingi to thei statei transition probabilitiesi 

given byi f: the probabilityi of endingi up ini sk+1 giveni that ak isi executed i in sk isi f(sk, ak, sk+1). 

Thei agent receives i a scalari reward rk+1 є Ri, according toi the reward functioni ρ: rk+1 = ρ(sk, 

ak, sk+1) [16]. Thisi reward evaluatesi the immediatei effect of actioni ak, i.e., thei transitioni 

from sk to sk+1. It i howeveri, says nothing directlyi about thei long-termi effects ofi this actioni. 

 For deterministici models, thei transition probabilityi function f isi replaced by ai 

simpler transition i function, f : S × A → S. It i follows thati the reward is completelyi 

determined byi the current i state and iaction: rk+1 = ρ(sk, ak ), ρ : S × A →  . 

 The behaviori of the agent i is describedi by its policy π, which i specifies how thei 

agent choosesi its actions given the statei. The policy mayi be either stochastici, π : S × A → 

[0, 1], ori deterministic, π : S → A. Ai policy is called stationary if it does not change over 

time [31]. The taski of the agenti is, to maximizei its long-term performancei, while onlyi 
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receiving feedback i about its immediatei, one-step performance i. One way it i can achievei this 

isi by computingi ani optimal actioni-value functioni. 

4.1.2 Multi - Agent Problem 

 Thei generalization of thei Markov decision process to i the multii agent case is thei 

stochastic gamei. “A stochastic game (SG) is a tuple (S,A1, . . . ,An, f, ρ1, . . . , ρn),  where n is 

the number of agents, S is the discrete set of environment states, Ui , i = 1, . . . , n are the 

discrete sets of actions available to the agents, yielding the joint action set A = A1 ×· · ·×An 

, f: S × A × S → [0, 1] is the state transition probability function, and ρi : S × A × S → R, i 

= 1, . . . , n are the reward functions of the agents. 

 In i the multi agenti case, the statei transitions are thei result of the jointi action of 

all the agentsi, ak = [a1
T

k , . . . , an
T

k ]
T
,ak є A, ai,k Є Ai (T denotesi vector transpose). 

Consequentlyi, the rewardsi ri,k+1 and the returnsi Ri,k also dependi on the jointi action. The 

policiesi πi : S × Ai → [0, 1] form togetheri the joint policyi π. Thei Q-function of eachi agent 

dependsi on the joint i action and isi conditioned oni the joint policyi, Qi
π
: S × A →   [31]. If i 

ρ1 = · · · = ρn , all thei agents havei the samei goal (toi maximize thei same expectedi return), 

and thei SG is fullyi cooperative. If i n = 2and ρ1 = −ρ2 , thei two agentsi have oppositei goals, 

and thei SG is fullyi competitivei. Full competitioni can also arisei when morei than two agents i 

are involvedi. In this casei, the reward functions i must satisfyi ρ1(s,a, s’) + · · · +ρn (s,a,s’) = 0 

∀s, s’ є S,a Є A. Howeveri, the literaturei on RL ini fully competitive gamesi typically deals i 

with thei two-agenti case onlyi. Mixed gamesi are stochastic gamesi that are neither fullyi 

cooperative nori fully competitive. 

4.2 Multi – Agent Reinforcement Learning  (MARL)   

 Various MARL algorithms are: Minimax-Q Learning, Nash-Q Learning, 

Friend-or-Foe Q Learning and Win-or-Learn-Fast Policy Hill Climbing (WOLF-PHC)[31]. 

These algorithms represent an evolution from i the Q-Learningi algorithm andi provide an 

insight into multi-agent learning. Minimax-Q learningi algorithm is i one of the first 

adaptationsi of thei original Q-learning algorithm and is still in use. For Nash-Q Learning 

algorithmi Nash Equilibrium i is the basis for convergence. It was designed to reach a Nash 

Equilibrium strategy between two fully competitive players. The Friend-or-Foe Q Learning 
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algorithmi was designedi from the Nash-Q Learningi and updated for an environment where 

the learning has friends and/or foes. 

 The Minimax-Q learning algorithm is interesting because it takes the single 

agent Q-learning and adapts it for a multi-agent environment. It also uses the linear 

programming to maximize its rewards by minimizing its opponents rewards. In a zero i sum 

stochastici game, thei Minimax-Q learningi algorithm will converge and find the Nash 

equilibrium strategy. It i was noti proven toi converge ini general-sumi games and it is a 

limitation. A general-sum game environment can give more flexibility because the rewards 

do not need to respect R1 = -R2 where R1 and R2 are the rewards for Player 1 and Player 2. 

 The different assumptions that make Nash-Q learning a restrictive algorithm. It 

was proven to converge within these assumptions, but it cannot be generalized for every 

general-sum game. In [12], Littman discussed the limitations of the Nash-Q Learningi 

algorithm. Ini the Nash-Q, updates taken into account is either the globali optimal pointi or 

the saddlei point, but there are occasions where both are present. It was shown in [3] and 

[30] that the algorithm does converge even if not all the assumptions are respected.  

 Friend or Foe-Q (FFQ) has been designed to alleviate the flaws of Nash-Q 

Learning when confronted with the coordination and adversarial equilibrium. Littman [12] 

discussed this by pointing out that there is a possibility that both equilibriums exist at the 

same time. This can create problems in Nash-Q because it is not designed to decide which 

one to choose. In FFQ there is a selection mechanism and it can alleviate this problem. 

4.2.1 Friend Or Foe Algorithm 

 This algorithm was developed by Littman and it tries to fix some of the 

convergence problems of Nash-Q Learning. The convergence of Nash-Q is restricted by 

various assumptions made during the solving of a problem. The main concern lies within 

assumptions, where every stage game needs to have either a global i optimal point i or a 

saddle pointi. These restrictions cannot be guaranteed during learning. To ease this 

restriction, the FFQ algorithm is built and it always converges by changing the update rules 

subjected to the agents. The learning agent has to identify the other agents either as “friend” 

or “foe”.  
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 The FFQ algorithm is built for the n-player game, but we will start with a two 

player game to understand this concept. One of the main differences between the Nash-Q 

and the FFQ is that the agent only keeps track of its own Q-table. The update performed by 

the agent is given by the following equation: 

   maxaiєAiQi[s,a1,…….,an]             (4.1) 

when the opponents are friends; and 

   max πєП(Ai)minaiЄAi ∑aiєAiQi[s,a1,…….,an]           (4.2) 

when the opponents are foes, where n i is the number of agents and i is the learning agent 

[18]. 

 Equation (4.1) is the Q-Learning algorithm adapted for multiple agents and 

Equation (4.2) is the minimax-Q algorithm from Littman [6]. These equations represent a 

situation where all the agents are either friend or foe.  

 We can categorize as all the agents in this algorithm in two groups of people i's i 

friends andi i's foes i. The friends i will worki together to maximize i's payoff. The foes will 

work together against i to minimize its pay-off. The algorithm3.1 showing friend or foe Q-

learning is as follows: 

1. Initialization 

∀ s є S, a1 є A1 and a2 є A2 

Let Q(s,a1,a2) = 0 ∀      

Let V(s) = 0 ∀       a1 є A1 

Let π(s,a1) = 1/|A1| 

for k = 0,1,2,…… do 

In state s: Choose a random action from A1 with probability π 

If not a random action, choose action a1 with probability π(s, a1) 
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Evaluate the next state, s’. 

In state s’ : The agent observes the reward r related to action a1 and opponent's action a2 in 

state s.  Update Q-Table of player 1 with equation :  

Q(s,a1,a2) ← Q(s,a1,a2) + α [(r + ϒV(s’)) - Q(s,a1,a2)] 

Use linear programming to _nd the values of _ (s; a1) and V (s) with the equation 

V(s) = maxaiЄAiQi[s,a1,…….,an]   if the opponent is a friend,  and;  

V(s) = max πЄП(Ai)minaiЄAi ∑aiЄAiQi[s,a1,…….,an]  if the opponent is a foe 

α = α * decay 

End loop 
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CHAPTER 5 

HYBRID REINFORCEMENT LEARNING 

5.1 INTRODUCTION 

 In i ordinary RL algorithms with ai single agenti, the agenti often takes ai useless 

actioni with a i small rewardi, which resultsi in a longi learning timei. On thei other hand, ini 

swarm optimization i algorithms, multiplei agents arei prepared and i some agentsi could take 

useful actionsi with ai larger reward i. Similarly, in with ant colony optimization, agents can 

be made to learn which actions result in overall higher rewards. Ini addition, sincei the Q 

values ofi all the agents i are updated i according toi Q-values ofi such agents i who take thei 

useful actionsi, it isi expected thati agents cani learn in ai shorter i learning timei.                    

5.2 RL & PARTICLE SWARM OPTIMIZATION (PSO)  

 RL has been recently combined with Particle Swarm Optimization to overcome the 

problems while evaluating the multi-agent reinforcement learning for a dynamic 

environment [16, 17]. The navigation problem for a single agent system with static system 

provides quick control for the conventional RL methods such as Q learning and SARSA. 

When subjected to a multi-agent system, the algorithm works well till the system dynamics 

are less. This is so because with epochs, the RL algorithm focusses less on exploring new 

paths and try to converge to the predefined goal for which the path was searched previously. 

When the goal is changing the robots do not communicate that efficiently with each other to 

change their termination points. With the PSO algorithm, as there are two parameters on 

which each agent takes any action, they are able to communicate in a better way. The 

personal best (or personal minima in PSO) of an individual agent drives it to reach to their 

personali best pathi and simultaneouslyi the global best i of all the agents (or global minima in 

PSO) also drives the agent to search and take the global best path. 

 5.2.1 Q - Swarm  

 Q-Swarm is a combination of Q-learning method and Particle Swam 

Optimization Algorithms. First, eachi agent updatesi its own Qi-values individuallyi by usingi 

Qi-learning fori some episodesi. Theni, the Qi-values ofi all thei agents arei evaluated byi an 
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adequate i method, and thei Qi-values evaluatedi superior toi thosei of the otheri agents arei 

selected. Wei call themi the besti Q values. Theni, each agent i receives the i best Qi-values fromi 

anotheri agent, andi updates itsi own Q-valuesi accordingi to an adequate i strategy by usingi the 

besti Q-values. These i procedures arei repeated untili a terminationi condition is satisfiedi. 

 Althoughi the Q-valuesi are noti evaluated ini ordinary Q i-learning, this algorithmi 

requires toi evaluate themi in order toi select thei best Qi-values whichi bring a largei rewardi. Ini 

the Qi-Swarm algorithm i, there are twoi kinds of proceduresi of updating thei Q-values of 

eachi agent. One i is the procedure i of Q-learningi, which is performed i in the inner loop i. The 

otheri is the procedurei based on interaction i among the i agents, which is performed i in the 

outeri loop by the followingi equationi. To evaluate the best of all Q-values discounted 

reward is used [16]: 

    E = ∑       
 

   
            (5.1) 

 The personali best of eachi agent i; Pi andi the globali best foundi by all thei agents 

till time; G are determined i by evaluatingi E fori the Q-valuesi. Eachi agent updatesi it Q-

values byi using ithe globali best and its ipersonal best iusing the following equations [16]:  

 Vi(s,a)← W Vi(s,a) + C1R1(Pi(s,a) – Qi(s,a)) + C2R2(G(s,a) – Qi(s,a))          (5.2) 

 Qi(s,a)← Qi(s,a) + Vi(s,a)             (5.3) 

wherei, Vi(s,a) isi a so-called velocityi, W, C1 and C2 are weighti parameters, and R1 and R2 

arei uniform randomi numbers ini the rangei 0 to 1. In thisi algorithm, therei are two kinds i of 

procedurali for updatingi the Q-valuesi of each agent i. Onei is the procedurei of Q-learningi, 

whichi is performed in thei inner loopi. The otheri is the procedure i based on the interactioni 

amongi the agents i, which is performed i in the outer loop i. The algorithm 5.1 showsi the Qi-

swarm as followsi. 

Algorithm 5.1: Q - Swarm learning[16] 

Input:  discount factor ϒ, Number of episode Y, number of agents n 

1.For the agents i = 1,2,……n initialize Qi function as Qi0 ← 0 
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2. Measure initial state, s0 

3. for all the agents, For every time step k = 1,2,…….. do 

                     a є arg maxaQk(sk,a)                                with probability 1 - εk (exploit) 

         ak ←   

                     a uniformly random action in A             with probability εk (explore) 

         apply ak, measure next state ak+1 and reward rk+1 

       Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒmaxa’(Qk(sk+1, a’) ) – Qk(sk,ak)] 

        If a terminate condition of episode is satisfied, go to step 4. 

   end for 

4. Calculate the evaluated E for Qi(s,a) of each agent by equation 5.1 

5. Update Qi(s, a) of each agent by applying an information exchange using equation 5.2 

and 5.3. 

6. Go to step 3 till global termination criteria is not reached. 

5.2.2 SARSA - Swarm  

 SARSA-Swarm is a combination of SARSA method and Particle Swarm 

Optimization algorithm [30].  This algorithm is similar to the Q-swarm algorithm and has 

been proposed by the same authors. This algorithm is best suited for environment with 

large negative rewards. An environment in which the reward for travelling around is 

negative for any action not reaching the goal instead for an environment in which the same 

reward is zero then in the first case, the steps needed to reach the goal is faster. And for 

such an environment, the SARSA reinforcement learning algorithm gives the best result 

[30]. 

 In such an environment, if a group of agents or robots are to be navigated, then 

the simple SARSA algorithm does not prove to be fruitful. Thus, SARSA algorithm 

coupled   with   the   swarm   optimization   gives   a   swarm   movement   and   the   agents  
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communicateand cooperate with each other to reach the goal. 

Algorithm 5.2: SARSA - Swarm learning [30] : 

Input:  discount factor ϒ, Number of episode Y, number of agents n 

1.For the agents i = 1,2,……n initialize Qi function as Qi0 ← 0 

2. Measure initial state, s0 

3.                    a є arg maxaQ0(s0,a)                               with probability 1 – ε0 (exploit) 

         a0 ←   

                       a uniformly random action in A             with probability ε0 (explore) 

4. for all the agents, For every time step k = 0, 1,2,…….. do 

                         a є arg maxaQk+1(sk+1,a)                        with probability 1 - εk+1 (exploit) 

         ak+1 ←   

                         a uniformly random action in A           with probability εk+1 (explore) 

         apply ak, measure next state ak+1 and reward rk+1 

       Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒQk(sk+1, ak+1 ) – Qk(sk,ak)] 

        If a terminate condition of episode is satisfied, go to step 4. 

   end for 

4. Calculate the evaluated E for Qi(s,a) of each agent by equation 5.1 

5. Update Qi(s, a) of each agent by applying an information exchange using equation 5.2 

and 5.3. 

6. Go to step 3 till global termination criteria is not reached. 

5.3 RL & Ant Colony Optimization (ACO) 

 Ants are able to find the shortest route between the nest and a food source [3] 

without any vision [10]. Thisi processi is possiblei because antsi secrete pheromonei chemicals 
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on the traili as theyi cover the pathi while huntingi for foodi or resourcesi to construct a nest i. 

Initiali explorationi is randomi in the absencei of a pheromonei trail. Ants returningi to the nest 

secretei pheromone on the trail i. The pheromonei evaporatesi with timei; but antsi follow a 

pheromonei trail andi at a splittingi point preferi to navigatei the pathi with higheri 

concentrationsi of pheromonei. Upon findingi the food source i, the ants returni back to the nesti 

depositingi pheromone alongi the wayi, thus reinforcingi the pheromone trail i.  

 Antsi that have i followed the shortesti routei are quickeri to return i to the nest i, thus 

reinforcingi the pheromonei concentrationi for the shorteri trail at a quickeri rate thani those 

antsi that followedi an alternativei route. Further, wheni ants arrivei at the branchingi point, it 

choosesi to follow the path i which has the higheri concentrations of pheromonei, and thusi 

reinforces eveni further the pheromonei concentration, andi ultimately all ants i follow the 

shortesti path. The quantityi of pheromonei secreted is a function i of an anglei between the 

pathi and a linei joining thei food and nesti locationsi [1] on the returni journey. Soi far twoi 

propertiesi of pheromone i secretion havei been mentionedi: aggregation and evaporation. The i 

concentrationi adds when ants i deposit pheromone i at the samei location, andi over time thei 

concentrationi gradually reducesi by evaporationi. A thirdi propertyi is diffusioni. The 

pheromonei at one locationi diffuses intoi neighbouring locationsi. 

 Somei of the mechanisms i adopted by foragingi ants havei been appliedi to classicali 

combinatorial optimizationi problems with successi. Thesei problems includei the travellingi 

salesman problemi, job-shopi schedulingi, the quadratici assignment problem i, the vehiclei 

routing problemi and the networki routing problem i, robot navigationi problem [19, 23, 32]. 

5.3.1 Pheromone-Q Learning 

 The Pheromone-Qi technique isi a combinationi of Qi-learning andi synthetic 

pheromonei where a i beliefi factor isi introducedi in the update i [8]. Thei belief factori is a 

functioni of the synthetici pheromone concentrationi on the traili and showsi the extent to i 

whichi an agenti takes intoi account the i informationi laid down i  by other i agents fromi the same 

cooperatingi set. RL and synthetici pheromone havei previously beeni combined fori action 

selectioni [14, 15].  
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 The beliefi factor allowsi an agent i to selectivelyi make usei of implicit i 

communicationi trails whichi have beeni left byi other agentsi; this might i be usefuli in 

situationsi where the information i is noti reliablei due to changes i in the environment i. 

Incompletei and uncertain i informations arei critical issuei in the designi of reali-world 

systemsi.  

5.3.1.1 Belief Factor 

 Thei belief factori directs thei extent toi which ani agent believesi in the pheromonei 

it detectsi. Any agenti, during the i early trainingi episodesi, will believei less in thei pheromone i 

map becausei then alli the agentsi are biasedi towards explorationi. In practicali terms, the 

beliefi factor isi the ratioi between thei sum of i actual pheromone i concentrationi in the currenti 

state plusi neighbouring statesi and thei sumi of maximumi possiblei pheromone concentrationi 

in the currenti plus neighbouringi statesi [10]. As suchi the value i for the beliefi factor fallsi in 

the rangei [0,1]. The beliefi factor is given byi 

B(s,a) = ∑sЄNa Φ(s) / ∑σЄNa Φmax(σ)                            (5.1) 

wherei, Φ(s) is the pheromone i concentration at i a pointi s in the environment i and Na isi the 

seti of neighbouring states i for a choseni action ai. The beliefi factor is i a functioni of the i 

synthetic pheromonei Φ(s), a scalari value that integratesi the basic i dynamic naturei of the 

pheromonei, namely aggregation i, evaporation and diffusion i. 

Thei Q-learning updatei equation modifiedi with synthetici pheromone is given byi 

      Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒ[maxa’Qk(sk+1, a’) + ξB(sk+1,a’)] – Qk(sk,ak)]       (5.2) 

and,    αn = 1/(1+ visitsn(sk,ak))           (5.2a) 

wherei, the parameteri ξ is a sigmoid function i of time epochsi ≥ 0 and visitsi(si,ai) is the total i 

number ofi times thei statei-actioni pair i is visitedi. Thei value of i the parameter i ξ increasesi withi 

the numberi of agents i who successfullyi perform thei task at hand i. The Phei-Q updatei 

equationi converges fori a non-deterministici Markov decision process [10]. 

 Thei parameter ϒ isi the discounti factor andi reflects thei relative strength of 

idelayed rewardi to immediate rewardi. The valuei for α isi given byi equation (5.2a). Thei 
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correspondingi parametersi in the Phe i-Q i update i equationi use the optimum i values found i for 

the standardi Qi-learning algorithm i. The parametersi that influencei Phei-Q learningi are the 

numberi of agents i, the diffusioni ratei, secretioni rate, evaporationi rate andi the coefficientsi of 

the sigmoidi of the pheromonei and finally thei pheromonei saturation leveli [8]. The 

pheromonei distributioni  in  the environmenti is a functioni of  the number i of existing agentsi, 

and alsoi a functioni of the diffusioni across cellsi and the evaporationi. 

 The agents i moves fromi cell to cell i along the fouri directionsi and secretesi 

synthetici pheromonei in each celli. The two i pheromone valuesi – one associatedi with the 

returni to the nest i ϕn and the otheri with searchi for the foodi source i ϕs – are parametersi to 

finei tune i. The pheromonei aggregatesi in a cell i up to a saturationi level, and evaporatesi at an 

evaporationi rate ϕe; untili therei is no pheromonei lefti in the cell i. Also, the pheromone i 

diffuses intoi neighbouring cellsi at a ratei with diffusioni rate ϕd whichi is inverselyi 

proportionali to the distancei. 

 Eachi agent hasi two tasksi. Firsti is to reach i the foodi locationi, and otheri is to 

returni to the nest i. When releasedi into the virtuali environmenti, the agentsi have no i 

knowledgei of the environmenti or the locationi of the goali. More than i one agenti can occupyi 

a celli. A celli has associatedi pheromonei strengthi Φ є [0, 100]. Pheromonei is decoupledi 

fromi the statei at the implementation i level so thati the sizei of the statei spacei is N X N. 

Algorithm 5.3 which shows the Phe-Q is as follows:             

Algorithm 5.3: Phe-Q learning 

Input:  discount factor ϒ,  

1. Initialize Q function as Q0 ← 0, B ← 0 

2. Measure initial state, s0 

3. for every time step k = 1,2,…….. do 

                   a Є arg maxaQk(sk,a)                              with probability 1 - εk (exploit) 

        ak ←   

 a uniformly random action in A             with probability εk (explore) 
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         apply ak, measure next state ak+1 and reward rk+1 

       Update the pheromone value Φ(sk-1) and the pheromone table for the previous state:  

       Φ(sk-1) = (ϕs + ϕn + ϕd )e ϕs 

       B(s,a) = ∑sЄNa Φ(s)/ ∑σЄNa Φmax(σ) 

       Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒmaxa’(Qk(sk+1, a’)  + ξB(sk+1,a’)) – Qk(sk,ak)] 

       αn = 1 / (visitsn(sk,a)) 

   end for 

5.3.2 Pheromone-SARSA Learning 

 RL methods have been used with many evolutionary algorithms according to the 

need of the applications. It has been seen in the Phe-Q algorithm that by combining the 

belief factor in the Q-updation rule changes the way agents work and hence with 

cooperative actions, the agent reach the goals faster in search problems[26]. Also, it is 

evident that for a negative reward environment, SARSA method provides a better result 

than the Q-learning method. 

 In literature so far, these two algorithms has not been combined to solve the various 

search problems. In this thesis, a new method called the Pheromone-SARSA or Phe-

SARSA is introduced. This is similar to the Phe-Q algorithm only with the basic Q-

updation rule is that followed in the SARSA.  

 

Figure 5.1 Environment in which SARSA is effective 

 Q-learning is the most frequently used reinforcement method but it is basically and 

offline  learning  schedule.  The  advantage  of  SARSA over Q-learning can be appreciated  

a 
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when working with large negative rewards.  

 The main differencesi between SARSAi method and Qi-learning methodi can be 

explainedi using a simplei example. Let ani agenti in statei s1 perceivei the nexti state s2 byi 

taking actioni a1, andi gaini a negativei large rewardi by takingi the next i actioni a2 in s2, as 

showni in Fig.5.1. In thisi figure, a circle i and an arrowi mean a statei and an actioni, 

respectivelyi. For bothi, SARSA methodi and Q-learningi method, asi Q(s2, a2) becomesi a 

large negativei value i by the largei negative large i reward, the i agent learnsi that a2 is a bad 

selectioni. Moreoveri, in SARSA methodi, becausei Q(s1, a1) also tendsi to becomei a large 

negativei value in futurei episodesi, the agenti can learni that a1 isi not a goodi selectioni. 

Thereforei, it can avoid i suchi actions and acquirei a better policyi rapidlyi. Insteadi in Q-

learning methodi, because otheri Q-valuesi in s2 arei generallyi larger than i Q(s2, a2), Q(s1, a1) 

isi updated without i usingi Q(s2, a2) in thei future episodesi. Hence, thei agent cannoti learn thati 

a1 is a badi selection. 

 Herei, the Phe-SARSA methodi is proposed ini order to obtain ani optimal policyi 

rapidly for problems i with negativei large rewardsi. In this algorithm i, the basic frameworki is 

the samei as the SARSAi with a modified updatingi rule for the Qi-valuei in whichi a beliefi 

factor is also updatedi. Algorithm 5.4 shows the proposed Phe-SARSA algorithm: 

Algorithm 5.4: Phe-SARSA learning  

Input:  discount factor ϒ, exploration schedule εk 

1. Initialize Q function as Q0 ← 0, B ← 0 

2. Measure initial state, s0 

3.                 a Є arg maxaQ0(s0,a)                              with probability 1 – ε0 (exploit) 

         a0 ←   

                    a uniformly random action in A            with probability ε0 (explore) 

3. for every time step k = 1,2,…….. do 

4. apply ak, measure next state sk+1 and reward rk+1 
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5.                 a Є arg maxaQk(sk,a)                              with probability 1 - εk (exploit) 

         ak ←   

                    a uniformly random action in A            with probability εk (explore) 

       apply ak, measure next state ak+1 and reward rk+1 

       Update the pheromone value Φ(sk-1) and the pheromone table for the previous state:  

       Φ(sk-1) = (ϕs + ϕn + ϕd )e ϕs 

       B(s,a) = ∑sЄNa Φ(s)/ ∑σЄNa Φmax(σ) 

       Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒmaxa’(Qk(sk+1, a’)  + ξB(sk+1,a’)) – Qk(sk,ak)] 

       αn = 1/(visitsn(sk,a)) 

   end for 
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CHAPTER 6 

SIMULATION RESULT AND DISCUSSION 

A 10 X 10 grid has been taken and initially one agent was trained for various conditions. 

The number of agent was gradually increased from one to two and finally to four. The 

different environments for which the simulation has been carried out can be broadly 

divided into four cases and in each case further variations have been introduced. Different 

cases for which the various algorithms have been implemented are as follows: 

 Case I: Obstacles: Fixed; Goal: Fixed 

 Case I(a): No. of Obstacles : 4 

 Case I(b): No. of Obstacles : 8 

 Case I(c): No. of Obstacles : 14 

 Case II: Obstacles: Fixed and Moving (Both); Goal: Fixed 

 Case II(a): No. of Fixed Obstacles : 4; No. of Moving Obstacles: 2 

 Case II(b): No. of Fixed Obstacles : 5; No. of Moving Obstacles: 3 

 Case III: Obstacles: Fixed; Goal: Moving 

 Case III(a): No. of Fixed Obstacles : 4 

 Case III(b): No. of Fixed Obstacles : 8 

 Case III(c): No. of Fixed Obstacles : 14 

 Case IV: Obstacles: Fixed and Moving (Both); Goal: Moving 

 Case IV(a): No. of Fixed Obstacles : 4; No. of Moving Obstacles: 2 

 Case IV(b): No. of Fixed Obstacles : 5; No. of Moving Obstacles: 3 

Agents can move in four durections: up, down, left and right. In all the cases, the starting 

location of the agent(s) was the bottom leftmost corner grid and the goal location when 

fixed was the top rightmost corner grid. The moving obstacles could move in four 

directions: up, down, left and right, and for the goal, it could move in afband of first two 

rows as shown by a patch. Termination criterion used for the simulations were:- 

 Maximum number of steps in an attempt is 5000. 

 Maximum number of attempts is 2500. 
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Reward function that has been taken is :  

R(xk, xk+1) = {
                                           
                                                 
                                                               

 

where, xk is the current state and xk+1 is the next state. 

For each of the various cases stated above, 100 simulations were carried out and the sum 

average of these simulations is shown in the graphs between numbers of steps needed to 

reach the goal vs. number of attempts. 

In the images shown below for paths travelled by the agents have been shown, following 

legends was followed: 

      --Starting location of Agents 

      -- Goal/ End Point for Agents 

      -- Fixed Obstacles 

      -- Moving Obstacles 

Programming Software used – MATLAB 2013a  

System Configuration: Pentium (R) Dual – Core @2.10 GHz, 2.00 GB RAM, 32-bit 

Operating System 

6.1 Single Agent Problem 

                    For the single agent case, following results was obtained for the various 

environmental cases: 

6.1.1 Case I: Obstacles Fixed, Goal Fixed 

(a) No. of obstacles = 4 

Figure 6.1.1 shows the no. of steps required by the agent to reach the goal against the no. of 

attempts for a 10X10 grid world with 4 obstacles in the path. For the single agent problem, 

two conventional RL methods, Q-learning and SARSA and two hybrid-RL methods, i.e. 

RL with ACO, Phe-Q and Phe-SARSA have been simulated. 
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Figure 6.1.1 Plot between no. of steps required to reach the goal and no. of attempts for 1 

agent; case I(a) 

Figure 6.1.2a, 6.1.2b, 6.1.2c, 6.1.2d shows the grid world with the path traced by the agent 

using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for four obstacles in path.  

                

Figure 6.1.2a Path traced for case I(a)   Figure 6.1.2b Path traced for case I(a) 

by single agent for Q-learning    by single agent for SARSA   

      

 

Figure 6.1.2c Path traced for case I(a)   Figure 6.1.2d Path traced for case I(a) 

by single agent for Phe-Q     by single agent for Phe-SARSA   
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Here, the agent is very much free to move around and the obstacles are fewer as compared 

to the cells in which it can move, and hence the path taken by the agent for all the cases are 

not same to reach the goal. For all the four algorithms; shortest path has 18 numbers of 

steps, but Phe-SARSA reaches the optimal path fast as compared to the other three 

methods. 

(b) No. of obstacles = 8 

Figure 6.1.3 shows the no. of steps required by the agent to reach the goal against the no. of 

attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL 

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q 

and Phe-SARSA have been simulated. 

 

Figure 6.1.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1 

agent; case I(b) 

Figure 6.1.4a, 6.1.4b, 6.1.4c, 6.1.4d shows the grid world with the path traced by the agent 

using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for eight obstacles in path. 

       

Figure 6.1.4a Path traced for case I(b)  Figure 6.1.4b Path traced for case I(b) 

by single agent for Q-learning   by single agent for SARSA   
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Figure 6.1.4c Path traced for case I(b)  Figure 6.1.4d Path traced for case I(b) 

by single agent for Phe-Q    by single agent for SARSA   

Here also the agent is quite to move around and the obstacles are fewer as compared  to the 

cells to which it can move, and hence the path taken by the agent for all the cases are more 

or less same to reach the goal. Thus, for all the four algorithms; the shortest path traced has 

the minimum number of steps as 18 but with Phe-SARSA with the least no. of attempts, 

this could be found. 

(c) No. of obstacles = 14 

Figure 6.1.5 shows the no. of steps required by the agent to reach the goal against the no. of 

attempts for a 10X10 grid world with 14 obstacles in the path. Two conventional RL 

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q 

and Phe-SARSA have been simulated. 

 

Figure 6.1.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1 

agent; case I(c) 
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Figure 6.1.6a, 6.1.6b, 6.1.6c, 6.1.6d shows the grid world with the path traced by the agent 

using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for fourteen obstacles 

placed in the path.  

      

Figure 6.1.6a Path traced for case I(c)  Figure 6.1.6b Path traced for case I(c) 

by single agent for Q-learning   by single agent for SARSA   

      

Figure 6.1.6c Path traced for case I(c)   Figure 6.1.6d Path traced for case I(c) 

by single agent for Phe-Q    by single agent for SARSA   

Here, the agent does not have much area to move around and the obstacles are more as 

compared to the previous cases, the path taken by the agent for all the cases are same to 

reach the goal. To reach the goal in theminimum of 18 steps there are only two possible 

paths. For all the four methods used, agents track down the same shortest path route but 

with the Phe-SARSA method, the agent could reach the goal with least no. of attempts. 

6.1.2 Case II: Obstacles Fixed & Moving (Both), Goal Fixed 

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2 

Figure 6.1.7 shows the no. of steps required by the agent to reach the goal against the no. of 

attempts for a 10 X10 grid world with 4 fixed and 2 moving obstacles in the path. Here also 
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four algorithms have been simulated: Q-learning, SARSA, Phe-Q and Phe-SARSA.  

 

Figure 6.1.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1 

agent; case II(a) 

Figure 6.1.8a, 6.1.8b shows the grid world with the path traced by the agent using Q-

learning and SARSA, respectively for 4 fixed and 2 moving obstacles placed in the path. 

The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in 

which the moving obstacles can move are shown using the grey patch. 

               

Figure 6.1.8a Path traced for case II(a)   Figure 6.1.8b Path traced for case II(a) 

by single agent for Q-learning    by single agent for SARSA   

The result shows that for such a case the Q-learning and SARSA converges faster to find 

their optimal path faster as compared to the hybrid ones. The Phe-Q and Phe-SARSA 

methods converge slowly and also the final optimal value found by these methods are very 

large as compared to conventiona RL methods. This happens because, with obstacles being 

dynamic in nature, the pheromone levels create a confusion to decide over which cell to 
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travel next. This confusion makes the agent to travel in the wrong direction and the overall 

steps thus taken to reach the goal are very high. 

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3 

Figure 6.1.9 shows the no. of steps required by the agent to reach the goal against the no. of 

attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path. Here also 

four algorithms have been simulated: Q-learning, SARSA, Phe-Q and Phe-SARSA.  

 

Figure 6.1.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1 

agent; case II(b) 

Figure 6.1.10a, 6.1.10b shows the grid world with the path traced by the agent using Q-

learning and SARSA, respectively for 5 fixed and 3 moving obstacles placed in the path. 

The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in 

which the moving obstacles can move are shown using the grey patch. 

               

Figure 6.1.10a Path traced for case II(b)             Figure 6.1.10b Path traced for case II(b) 

by sinle agent for Q-learning    by single agent for SARSA 
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The results obtained here are very similar to that for the last case; Q-learning and SARSA 

converges faster to find the optimal path as compared to the hybrid ones. The Phe-Q and 

Phe-SARSA methods converge slowly and the final optimal value found by theses methods 

are very large as compared to conventiona RL methods. With the increase in number of 

obstacles, this gap between conventional and hybrid RL algorithm further increases. 

6.1.3 Case III: Obstacles Fixed, Goal Moving 

(a) No. of fixed obstacles = 4 

Figure 6.1.11 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving 

randomly for a given set of locations. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA. 

 

Figure 6.1.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

1 agent; case III(a) 

Various simulations were done for the four algorithms stated for different goal loactions. 

Figure 6.1.12a, 6.1.12b, 6.1.12c, 6.1.12d shows the grid world with the path traced by the 

agent (when the goal is moving) for different goal loactions and there are 4 obstacles in the 

path for Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively.  

Simulation has been carried out for an environment, in which the goal is moving, the grey 

celles shows the region in which the goal might appear or is moving for various attempts to 

reach the goal. 



 
 

59 
 

       

Figure 6.1.12a Path traced for case III(a)          Figure 6.1.12b Path traced for case III(a) 

by single agent for Q-learning           by single agent for SARSA   

     

Figure 6.1.12c Path traced for case III(a)          Figure 6.1.12d Path traced for case III(a) 

by single agent for Phe-Q            by single agent for SARSA   

Here, for all the four methods the agent is able to find to optimal paths after various number 

of attempts. But, Phe-SARSA method is able to find the shortest path for given goal 

loactions in the least number of attempts. This is so because, with Phe-SARSA or Phe-Q, 

the pheromone levels for the various cells travelled are increased with the number of 

attempts. As the number of attempts increases, the agents have an understanding of moving 

vertically to reach the bands where goal can be present and then traverse to look for the 

actual position of the goal. 

(b) No. of fixed obstacles = 8 

Figure 6.1.13 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 8 obstacles in the path and the goal is moving in 

the first two rows. Four algorithms have been simulated for this case: Q-learning and 

SARSA Phe-Q and Phe-SARSA. 
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 Q- Learning               - 
 SARSA                     __ 
 Phe-Q                     __ 
 Phe-SARSA               _ 

 

 

 

Figure 6.1.13 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

1 agent; case III(b) 

Figure 6.1.14a, 6.1.14b, 6.1.14c, 6.1.14d shows the grid world with the path traced by the 

agent when the goal is moving and there are 8 obstacles in the path for Q-learning, SARSA, 

Phe-Q and Phe-SARSA.  

       

Figure 6.1.14a Path traced for case III(b)          Figure 6.1.14b Path traced for case III(b) 

by single agent for Q-learning           by single agent for SARSA   

     

Figure 6.1.14c Path traced for case III(b)          Figure 6.1.14d Path traced for case III(b) 

by single agent for Phe-Q            by single agent for SARSA   
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Here also, for all the four methods the agent is able to find to optimal paths after various 

number of attempts. But, Phe-SARSA method is able to find the shortest path for given 

goal loactions in the least number of attempts. This is so because, with Phe-SARSA or Phe-

Q, the pheromone levels for the various cells travelled are increased with the number of 

attempts. As the number of attempts increases, the agents have an understanding of moving 

vertically to reach the bands where goal can be present and then traverse to look for the 

actual position of the goal.  

(c) No. of fixed obstacles = 14 

Figure 6.1.15 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 15 obstacles in the path and the goal is moving in 

the first two rows. Four algorithms have been simulated for this case: Q-learning and 

SARSA Phe-Q and Phe-SARSA. 

 

Figure 6.1.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

1 agent; case III(c) 

Figure 6.1.16a, 6.1.16b, 6.1.16c, 6.1.16d shows the grid world with the path traced by the 

agent when the goal is moving and there are 14 obstacles in the path for Q-learning, 

SARSA, Phe-Q and Phe-SARSA, respectively.  

It can be seen from the results obtained that for all the four methods the agent is able to find 

to optimal paths after various number of attempts. But, phe-sarsa method is able to find the 

shortest path for given goal loactions in the least number of attempts. This is so because, 

with  Phe-SARSA  or  Phe-Q,  the  pheromone  levels  for  the  various  cells  travelled  are 
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Figure 6.1.16a Path traced for case III(c)                Figure 6.1.16b Path traced for case III(c) 

by single agent for Q-learning           by single agent for SARSA   

      

Figure 6.1.16c Path traced for case III(c)          Figure 6.1.16d Path traced for case III(c) 

by single agent for Phe-Q            by single agent for SARSA   

increased in the number of attempts. As the number of attempts increases, the agents have 

an understanding of moving vertically to reach the bands where goal can be present and 

then traverse to look for the actual position of the goal.  

6.1.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving 

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2 

Figure 6.1.17 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 4 fixed and 4 moving obstacles in the path and the 

goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.  

The agent could reach the goal for all the four methods, but SARSA converges first and 

obtains an optimal path. As the system dynamics increases in ters of moving obstacles, the 

Phe-Q and  Phe-SARSA  takes a longer path to reach to the goal as compared to Q-learning  
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Figure 6.1.17 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

1 agent; case IV(a) 

and SARSA, this is so because with goals and obstacles both moving, the pheromone level 

deposited are almost evenly distributed in the plane and the agent is not able to judge which 

path to take. Pheromone of almost same levels in the cells creates confusion for the agent 

and hence even after many attepmts, the agent is not able to reach the optimal path as 

obtained by the Q- learning or SARSA.  

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3 

Figure 6.1.18 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the 

 

Figure 6.1.18 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

1 agent; case IV(b) 
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goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.  

Upon increasing both the number of fixed and moving obstacles, the convergence for the 

Phe-Q and Phe-SARSA becomes poorer as compared to the other two conventional RL 

methods. This is so because with the increase in system dynamics there is also less freedom 

for the agents to move and explore around. As the agent is nnot able to explore the space 

properly, it traces the same worng path again and again and thus ending up for quite high 

number of steps to reach the goal.  

A comparative analysis for the computational time for each of the cases for all four 

algorithms is provided in following table: 

Table 6.1  Computational Time for the Single Agent Problem for the four algorithms 

simulated 

 

The computation table shows that the SARSA takes the least time of computation out of all 

the four algorithms used. Q-learning is slower than SARSA because for Q-learning for the 

Q updation formula, we use a maximum function which uses more memory for 

computation whereas in SARSA such a function is not required. The overall time 

compuatation for the Phe-Q or Phe-SARSA is around two times that of the convetional RL, 

this is so becase for theses methods the ant needs to reach the goal and come back again to 

the initial starting location before the next simulation is carried out. 
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6.2 Two Agents Problem 

                    For the two agents problem, following results was obtained for the various 

environmental cases: 

6.2.1 Case I: Obstacles Fixed, Goal Fixed 

(a) No. of obstacles = 4 

Figure 6.2.1 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10X10 grid world with 4 obstacles in the path. For the two agents 

problem, two conventional RL methods; Q-learning and SARSA and four hybrid-RL 

methods; RL with ACO, Phe-Q and Phe-SARSA and RL with PSO; Q-Swarm and 

SARSA-Swarm have been simulated. 

 

Figure 6.2.1 Plot between no. of steps required to reach the goal and no. of attempts for 2 agents; 

case I(a) 

Figure 6.2.2a, 6.2.2b, 6.2.2c, 6.2.2d, 6.2.2e, 6.2.2f shows the grid world with the path 

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and 

SARSA-Swarm, respectively for four obstacles placed the path. Blue and green lines show 

the paths traced by agent 1 and agent 2, respectively. 

Here, the agents are very much free to move around and the obstacles are fewer as 

compared to the cells in which it can move. Thus, for all the six algorithms; the shortest 

path traced has the minimum number of steps as 19, but SARSA-Swarm reaches the 

optimal path for the minimum number  of  steps. From the above results, it can be  seen that  
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Figure 6.2.2a Path traced for case I(a)    Figure 6.2.2b Path traced for case I(a) 

by two agents for Q-learning       by two agents for SARSA   

     

Figure 6.2.2c Path traced for case I(a)            Figure 6.2.2d Path traced for case I(a) 

by two agents for Phe-Q             by two agents for Phe-SARSA   

 

       
Figure 6.2.2e Path traced for case I(a)      Figure 6.2.2f Path traced for case I(a) 

by single agent for Q-Swarm        by single agent for SARSA-Swarm  

for the Q-learning and SARSA, both the agents find path independently and thus the paths 

found are not near to each other as there is no coordination between the agents, and hence 

also takes more time to reach the optimal path. For the Phe-Q and Phe-SARSA, there is a 

kind of indirect interaction between the agents, as the pheromone trail left by an agent will 

be used as a guidance for both the agents and thus near the starting locations and the goal 
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loacation, both the agents follow the same path. For the Q-Swarm and SARSA-Swarm as 

the coordination between the agents is present, hence for these methods the optimal path 

was found for least number of attempts. Also, it can be seen that agents move in a swarm 

and are quite close to each other while reaching the goal. 

(b) No. of obstacles = 8 

Figure 6.2.3 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL 

methods; Q-learning and SARSA and four hybrid-RL methods, i.e. RL with ACO; Phe-Q 

and Phe-SARSA and RL with PSO; Q-Swarm and SARSA-Swarm have been simulated. 

 

Figure 6.2.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2 

agents; case I(b) 

Figure 6.2.4a, 6.2.4b, 6.2.4c, 6.2.4d, 6.2.4e, 6.2.4f shows the grid world with the path 

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and 

SARSA-Swarm, respectively for eight obstacles placed the path.  

Here also the agents are very free to move around and the obstacles are few as compared to 

the cells in which it can move. Thus, for all the six algorithms; the shortest path traced has 

the minimum number of steps as 19, but SARSA-Swarm reaches the optimal path for the 

minimum number of steps. Similar results have been obtained here as the previous one with 

4 obstacles in the path. But with the increase in the number of obstacles in the path, there 

are more restrictions for the agents to move around and hence it takes more attempts for the 

agents to reach the optimal path as compared to the previous case. 
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Figure 6.2.4a Path traced for case I(b)    Figure 6.2.4b Path traced for case I(b) 

by two agents for Q-Learning        by two agents for SARSA 

     

Figure 6.2.4c Path traced for case I(b)     Figure 6.2.4d Path traced for case I(b) 

by two agents for Phe-Q        by two agents for Phe-SARSA    

 

     

Figure 6.2.4e Path traced for case I(b)      Figure 6.2.4f Path traced for case I(b) 

by two agents for Q-Swarm        by two agents for SARSA-Swarm   

(c) No. of obstacles = 14 

Figure 6.2.5 shows the same case with more obstacles in the path. Simulations have been 

done for Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm for 14 

obstacles placed in the path to reach goal. 
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Figure 6.2.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2 

agents; case I(c) 

Figure 6.2.6a, 6.2.6b, 6.2.6c, 6.2.6d, 6.2.6e, 6.2.6f shows the grid world with the path 

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and 

SARSA-Swarm, respectively for fifteen obstacles placed the path.  

     

Figure 6.2.6a Path traced for case I(c)     Figure 6.2.6b Path traced for case I(c) 

by two agents for Q-Learning        by two agents for SARSA  

     

Figure 6.2.6c Path traced for case I(c)     Figure 6.2.6d Path traced for case I(c) 

by two agents for Phe-Q        by two agents for Phe-SARSA   
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Figure 6.2.6e Path traced for case I(c)      Figure 6.2.6f Path traced for case I(c) 

by two agents for Q-Swarm        by two agents for SARSA-Swarm   

Here, the agents are not free to move around and the obstacles are quite in number as 

compared to the cells in which it can move. For all the four algorithms; the shortest path 

traced has the minimum number of steps as 19, but SARSA-Swarm reaches the optimal 

path for the minimum number of steps. Here, it can be seen that the path taken the agents 

are similar in nature, this is so because there are only two paths for which the optimal 

number steps could be possible. With the increase in the number of obstacles in the path, 

there are more restrictions for the agents to move around and hence it takes more attempts 

for the agents to reach the optimal path as compared to the previous case. 

6.2.2 Case II: Obstacles Fixed & Moving (Both), Goal Fixed 

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2 

Figure 6.2.7 shows the no. of steps required by the agents to reach  the goal  against  the no.  

 

Figure 6.2.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2 

agents; case II(a) 
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of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path. For this 

case six methods have been simulated: two conventional RL methods; Q-learning and 

SARSA, and four hybrid-RL methods:  RL with ACO; Phe-Q and Phe-SARSA and RL 

with Swarm; Q-Swarm and SARSA- Swarm. 

Figure 6.2.8a, 6.2.8b shows the grid world with the path traced by the agents using Q-

learning and SARSA, respectively for 4 fixed and two moving obstacles placed in the path. 

The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in 

which the moving obstacles can move are shown using the grey patch. 

              

Figure 6.2.8a Path traced for case II(a)    Figure 6.2.8b Path traced for case II(a) 

by two agents for Q-learning      by two agents for SARSA   

The result shows that for such a case the Q-learning and SARSA find the optimal path 

faster as compared to the hybrid ones. Q-swarm and SARSA-swarm still simulates to reach 

to an optimal path but Phe-Q and Phe-SARSA are not able to find this optimal path. The 

optimal steps value obtaind in these methods is higher than the rest of the four methods. 

This is so because the Phe-Q and Phe-SARSA uses the pheromone level of each grid into 

account and with moving obstacles in the path, the pheromone level might misguide the 

agent to take a path which has does not have obstacles for current simulation but might 

have for the next one. Whereas in the swarm methods, they agents work collectively to 

reach the goal and in the process of reaching the goal do not alter the environment as with 

the pheromone algorithms do. 

 (b) No. of fixed obstacles = 5; No. of moving obstacles = 3 

Figure 6.2.9 shows the no. of steps required by the agents to reach the goal against the  no. 

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path. For this 
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case six methods have been simulated: two conventional RL methods; Q-learning and 

SARSA, and four hybrid-RL methods:  RL with ACO; Phe-Q and Phe-SARSA and RL 

with Swarm; Q-Swarm and SARSA- Swarm. 

 

Figure 6.2.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2 

agents; case II(b) 

Figure 6.2.10a, 6.2.10b, 6.2.10c, 6.2.10d, shows the grid world with the path traced by the 

agents using Q-learning, SARSA, Q-Swarm and SARSA-Swarm, respectively for 5 fixed 

and 3 moving obstacles placed in the path. The fixed obstacles are shown by black 

hexagons and the moving ones by blue. The cells in which the moving obstacles can move 

are shown using the grey patch. 

               

Figure 6.2.10a Path traced for case II(b)            Figure 6.2.10b Path traced for case II(b) 

by two agents for Q-learning     by two agents for SARSA 

The results obatined are similar to the previous case. Though agent could reach the goal for 

all the methods, Q-learning and SARSA find the optimal path faster as compared to the 
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hybrid ones. Q-swarm and SARSA-swarm still simulates to reach to an optimal path but 

Phe-Q and Phe-SARSA are not able to find this optimal path. The optimal steps value 

obtaind in these methods is higher than the rest of the four methods. Also, on increasing the 

number of fixed and moving obstacles, the optimal value reached by Phe-Q and Phe-

SARSA are very high than the rest of the four methods. 

6.2.3 Case III: Obstacles Fixed, Goal Moving 

(a) No. of fixed obstacles = 4 

Figure 6.2.11 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving in 

the first two rows. Six algorithms have been simulated  for  this  case:  Q-learning, SARSA, 

Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm. 

 

Figure 6.2.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

2 agents; case III(a) 

Figure 6.2.12a, 6.2.12b, 6.2.12c, 6.2.12d, 6.2.12e, 6.2.12f shows the grid world with the 

path traced by the agents when the goal is moving and there are 4 obstacles in the path for 

Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.  

Here, for all the six methods the agents are able to find to optimal paths after various 

number of attempts. But, SARSA-swarm method is able to find the shortest path for any 

given goal loactions in the least number of attempts. This is so because, SARSA-swarm or 

Q-swarm, the agents coordinate with each other to tell the possible locations of the goal. 



 
 

74 
 

The global maxima is thus here not for a particular cell, but for all the cells for which goal 

could possibly be present. As the number of attempts increases, the agents have an 

understanding of moving vertically to reach the bands where goal can be present and then 

traverse to look for the actual position of the goal. 

The moving goal area is represented by the grey covered region. 

       

Figure 6.2.12a Path traced for case III(a)          Figure 6.2.12b Path traced for case III(a) 

by two agents for Q-learning            by two agents for SARSA   

     

Figure 6.2.12c Path traced for case III(a)          Figure 6.2.12d Path traced for case III(a) 

by two agents for Phe-Q            by two agents for Phe-SARSA   

     

Figure 6.2.12c Path traced for case III(a)          Figure 6.2.12d Path traced for case III(a) 

by two agents for Q-Swarm            by two agents for SARSA-Swarm   
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(b) No. of fixed obstacles = 8 

Figure 6.2.13 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a10X10 grid world with 8 obstacles in the path and the goal is moving in the 

first two rows. Six algorithms have been simulated for this case: Q-learning and SARSA 

Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm. 

 

Figure 6.2.13 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

2 agents; case III(b) 

Figure 6.2.14a, 6.2.14b, 6.2.14c, 6.2.14d, 6.2.14e, 6.2.14f shows the grid world with the 

path traced by the agents when the goal is moving and there are 8 obstacles in the path for 

Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.  

The moving goal area is represented by the grey covered region. 

       

Figure 6.2.14a Path traced for case III(b)          Figure 6.2.14b Path traced for case III(b) 

by two agents for Q-learning            by two agents for SARSA   
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Figure 6.2.14c Path traced for case III(b)          Figure 6.2.14d Path traced for case III(b) 

by two agents for Phe-Q            by two agents for Phe-SARSA   

     

Figure 6.2.14e Path traced for case III(b)           Figure 6.2.14f Path traced for case III(b) 

by two agents for Q-Swarm             by two agents for SARSA-Swarm   

Here also, for all the six methods the agents are able to find to optimal paths after various 

number of attempts. But, SARSA-swarm method is able to find the shortest path for any 

given goal loactions in the least number of attempts. On increasing the number of obstacles 

present in the path, it takes more attempts for all the methods to their own optimal values. 

(c) No. of fixed obstacles = 14 

Figure 6.2.15 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10X10 grid world with 14 obstacles in the path and the goal is moving in 

the first two rows. Six algorithms have been simulated for this case: the two conventional 

reinforcement algorithms: Q-learning and SARSA, four hybrid algorithms, RL with ACO: 

Phe-Q and Phe-SARSA and RL with PSO: Q-Swarm and SARSA-Swarm. 
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Figure 6.2.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

2 agents; case III(c) 

Figure 6.2.16a, 6.2.16b, 6.2.16c, 6.2.16d, 6.2.16e, 6.2.16f shows the grid world with the 

path traced by the agents when the goal is moving and there are 8 obstacles in the path for 

Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.  

      

Figure 6.2.16a Path traced for case III(c)          Figure 6.2.16b Path traced for case III(c) 

by two agents for Q-learning            by two agents for SARSA   

      

Figure 6.2.16c Path traced for case III(c)          Figure 6.2.16d Path traced for case III(c) 

by two agents for Phe-Q            by two agents for Phe-SARSA 
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Figure 6.2.16e Path traced for case III(c)           Figure 6.2.16f Path traced for case III(c) 

by two agents for Q-Swarm             by two agents for SARSA-Swarm 

Here also, for all the six methods the agents are able to find to optimal paths after various 

number of attempts. But, SARSA-swarm method is able to find the shortest path for any 

given goal loactions in the least number of attempts. With the increase in the number of 

obstacles present in the path, it takes more attempts for all the methods to their own optimal 

values. It was also observed that with the normal RL methods the agent may take any 

random path independent of what other agent is moving. For Phe-Q and Phe-SARSA 

methods, usually near the starting location and near the end location, agents take same path. 

This is because of the high pheromone levels. With the Q-Swarm and SARSA-Swarm 

methods, the agents try to follow each others steps and try to move in a connected group or 

swarm. 

6.2.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving 

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2 

Figure 6.2.17 shows the no. of steps required by the agent to reach the goal against the  no. 

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path and the 

goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.  

Comparing the six methods, as the system dynamics increases and the obstacles also started 

to move, SARSA-Swarm and Q-Swarm converges to obtain an optimal path, but the former 

converges first. Q-learning, SARSA, Phe-Q and Phe-SARSA also converge to find some 

solution but they do not reach to find the optimal solution in this case. 
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Figure 6.2.17 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

2 agents; case IV(a) 

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3 

Figure 6.2.18 shows  the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the 

goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.  

 

Figure 6.2.18 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

2 agents; case IV(b) 

Comparing the six methods, as the system dynamics increases and the obstacles also started 

to move, SARSA-Swarm and Q-Swarm converges to obtain an optimal path, but the former 

converges first. Q-learning, SARSA, Phe-Q and Phe-SARSA also converge to find some 

solution but they do not reach to find the optimal solution in this case. 
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A comparative analysis for the computation time taken be all the six algorithms for the 

different cases simulated is provided in the table 6.2. 

Table 6.2 Compuational Time for the Two Agent Problem for the six algorithms simulated 

 

The computation table shows that the SARSA computed fastest out of all the six algorithms 

used. Q-learning is slower than SARSA because for Q-learning for the Q updation formula, 

we use a max function which uses more memory for computation whereas in SARSA such 

a function is not required. The overall time compuatation for the Phe-Q or Phe-SARSA is 

around two times that of the convetional RL, this is so becase for theses methods the ant 

needs to reach the goal and come back again to the initial starting location before the next 

simulation is carried out. For the swarm algorithms, as the number of parameters that needs 

to be calculated increases, for each attempt run the velocity parameters, global and personal 

best Q values are calculated and also updated. This increases the overall time of simulation 

for the swarm algorithms. 

6.3 Four Agents Problem 

                    For the four agent case, following results was obtained for the various 

environmental cases: 

6.3.1 Case I: Obstacles Fixed, Goal Fixed 

(a) No. of obstacles = 4 

Figure 6.3.1 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10 X 10 grid world with 4 obstacles in the path. For the four agents 
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problem, two conventional RL methods; Q-learning and SARSA and four hybrid-RL 

methods; RL with ACO, Phe-Q and Phe-SARSA and RL with PSO; Q-Swarm and 

SARSA-Swarm have been simulated. 

 

Figure 6.3.1 Plot between no. of steps required to reach the goal and no. of attempts for 4 

agents; case I(a) 

Figure 6.3.2a, 6.3.2b, 6.3.2c, 6.3.2d, 6.3.2e, 6.3.2f shows the grid world with the path 

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and 

SARSA-Swarm, respectively for four obstacles placed the path. For the four agents, the 

starting point is made different. They all start at different but nearby loactions to reach the 

common goal. 

Green, red, black and blue lines paths traced by agent 1, agent 2, agent 3 and agent 4, 

respectively. 

     

Figure 6.3.2a Path traced for case I(a)     Figure 6.3.2b Path traced for case I(a) 

by four agents for Q-learning       by four agents for SARSA   
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Figure 6.3.2c Path traced for case I(a)     Figure 6.3.2d Path traced for case I(a) 

by four agents for Phe-Q       by four agents for Phe-SARSA   

        

Figure 6.3.2e Path traced for case I(a)      Figure 6.3.2f Path traced for case I(a) 

by four agents for Q-Swarm        by four agents for SARSA-Swarm   

Here, the agents are very much free to move around and the obstacles are fewer as 

compared to the cells in which it can move. Thus, for all the four algorithms; the shortest 

path traced has the minimum number of steps as 22, but SARSA-Swarm reaches the 

optimal path for the minimum number of steps. From the above results, it can be seen that 

for  the  Q-learning and SARSA, both the agents find path independently and thus the paths 

found are not near to each other as there is no coordination between the agents, and hence 

also takes more time to reach the optimal path. For the Phe-Q and Phe-SARSA, there is a 

kind of indirect interaction between the agents, as the pheromone trail left by an agent will 

be used as a guidance for both the agents and thus near the starting locations and the goal 

loacation, both the agents follow the same path. For the Q-Swarm and SARSA-Swarm as 

the coordination between the agents is present, hence for these methods the optimal path 

was found for least number of attempts. Also, it can be seen that agents move in a swarm 

and are quite close to each other while reaching the goal. 

 



 
 

83 
 

 (b) No. of obstacles = 8 

Figure 6.3.3 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL 

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q 

and Phe-SARSA have been simulated. 

 

Figure 6.3.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4 

agents; case I(b) 

Figure 6.3.4a, 6.3.4b, 6.3.4c, 6.3.4d, 6.3.4e, 6.3.4f shows the grid world with the path 

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and 

SARSA-Swarm, respectively for eight obstacles placed the path. Different coloured lines 

indicate the path travelled by the different agents. 

     

Figure 6.3.4a Path traced for case I(b)     Figure 6.3.4b Path traced for case I(b) 

by four agents for Q-Learning      by four agents for SARSA 
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Figure 6.3.4c Path traced for case I(b)     Figure 6.3.4d Path traced for case I(b) 

by four agents for Phe-Q       by four agents for Phe-SARSA    

     

Figure 6.3.4e Path traced for case I(b)      Figure 6.3.4f Path traced for case I(b) 

by four agents for Q-Swarm        by four agents for SARSA-Swarm   

Here also the agents are very free to move around and the obstacles are few as compared 

tothe cells in which it can move. Thus, for all the six algorithms; the shortest path traced 

has the minimum number of steps as 22, but SARSA-swarm reaches the optimal path for 

the minimum number of steps. Similar results have been obtained here as the previous one 

with 4 obstacles in the path. But with the increase in the number of obstacles in the path, 

there are more restrictions for the agents to move around and hence it takes more attempts 

for the agents to reach the optimal path as compared to the previous case. 

(c) No. of obstacles = 14 

Figure 6.3.5 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10X10 grid world with 14 obstacles in the path. Two conventional RL 

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q 

and Phe-SARSA have been simulated. 
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Figure 6.3.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4 

agents; case I(c) 

Figure 6.3.6a, 6.3.6b, 6.3.6c, 6.3.6d, 6.3.6e, 6.3.6f shows the grid world with the path 

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and 

SARSA-Swarm, respectively for fifteen obstacles placed the path.  

      

Figure 6.3.6a Path traced for case I(c)     Figure 6.3.6b Path traced for case I(c) 

by four agents for Q-Learning     by four agents for SARSA  

     

Figure 6.3.6c Path traced for case I(c)     Figure 6.3.6d Path traced for case I(c) 

by four agents for Phe-Q       by four agents for Phe-SARSA   
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Figure 6.3.6e Path traced for case I(c)      Figure 6.3.6f Path traced for case I(c) 

by four agents for Q-Swarm        by four agents for SARSA-Swarm   

Here, the agents are not free to move around and the obstacles are quite in number as 

compared to the cells in which it can move. For all the six algorithms; the shortest path 

traced has the minimum number of steps as 22, but SARSA-Swarm reaches the optimal 

path for the minimum number of steps. Here, it can be seen that the path taken the agents 

are similar in nature, this is so because there are only two paths for which the optimal 

number steps could be possible. With the increase in the number of obstacles in the path, 

there are more restrictions for the agents to move around and hence it takes more attempts 

for the agents to reach the optimal path as compared to the previous case. 

6.3.2 Case II: Obstacles Fixed & Moving (Both), Goal Fixed 

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2 

Figure 6.3.7 shows  the  no. of steps  required by the agents to reach the goal against the no.  

 

Figure 6.3.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4 

agents; case II(a) 
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of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path. For this 

case six methods have been simulated: two conventional RL methods; Q-learning and 

SARSA, and four hybrid-RL methods:  RL with ACO; Phe-Q and Phe-SARSA and RL 

with Swarm; Q-Swarm and SARSA- Swarm. 

The result shows that for such a case the SARSA-swarm finds the optimal path for the least 

number of attempts as compared to the other four algorithms. Also, the Q-learning and the 

SARSA methods do converge to this optimal number of steps but takes more attempts to 

reach this optimal solution. This is so because in the Q-swarm and SARSA-swarm the 

agents coordinate with each other and the Q values updated uses both the individual best 

performance and also the best peroformance among the group. As compared to these 

methods, the Phe methods do not converge to the optimal values of steps, this is so because 

in the Phe methods the ants lay pheromone to the various cells they travelled and due to 

moving obstacles in the path, this pheromone level distributed is quite even and this causes 

confusion for the agents to travel to the next cell. 

(b) No. of fixed obstacles = 4; No. of moving obstacles = 8 

Figure 6.3.8 shows the no. of steps required by the agents to reach the goal against  the  no. 

of attempts for a 10X10 grid world with 4 fixed and 8 moving obstacles in the path. For this 

case six methods have been simulated: two conventional RL methods; Q-learning and 

SARSA, and four hybrid-RL methods:  RL with ACO; Phe-Q and Phe-SARSA and RL 

with Swarm; Q-Swarm and SARSA- Swarm. 

 

Figure 6.3.8 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4 

agents; case II(b) 
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The result obtained here is similar to the previous case, and here also SARSA-swarm finds 

the optimal path for the least number of attempts as compared to the other four algorithms. 

Also, the Q-learning and the SARSA methods do converge to this optimal number of steps 

but takes more attempts to reach this optimal solution. As compared to these methods, the 

Phe methods do not converge to the optimal values of steps. With increase in the number of 

obstacles in the path both stationary and the moving ones the overall steps required to reach 

the goal increases. This difference between steps for swarm methods and Phe methods also 

increases. 

6.2.3 Case III: Obstacles Fixed, Goal Moving 

(a) No. of fixed obstacles = 4 

Figure 6.3.9 shows the no. of steps required by the agent to reach the goal against the no. of 

attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving in the 

first two rows. Six algorithms have been simulated for this case: Q-learning and SARSA 

Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm. 

 

Figure 6.3.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4 

agents; case III(a) 

Figure 6.3.10a, 6.3.10b, 6.3.10c, 6.3.10d shows the grid world with the path traced by the 

agents when the goal is moving and there are 4 obstacles in the path for Phe-Q, Phe-  

SARSA, Q-Swarm and SARSA-Swarm, respectively.  
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Figure 6.3.10a Path traced for case III(a)  Figure 6.3.10b Path traced for case III(a) 

by four agents for Phe-Q  by four agents for Phe-SARSA 

     

Figure 6.3.10c Path traced for case III(a)          Figure 6.3.10d Path traced for case III(a)  

by four agents for Q-Swarm            by two four for SARSA-Swarm  

Here, for all the six methods, conventional RL methods are not able to find any optimal 

paths and they diverge and reach the maximum steps per attempt criterion for termination. 

Since, there is no coordination between the agents so they are not able to reach to a 

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least 

number of attempts. This is so because, SARSA-swarm or Q-swarm, the agents coordinate 

with each other to tell the possible locations of the goal. The global maxima is thus here not 

for a particular cell, but for all the cells for which goal could possibly be present. As the 

number of attempts increases, the agents have an understanding of moving vertically to 

reach the bands where goal can be present and then traverse to look for the actual position 

of the goal.  Phe methods also finds the optimal paths for the given case. It can be seen that 

mostly, the agents follow the same paths for Phe methods when near to the starting location 

or  goal. This  is  so because the pheromone level is concentrated for few cells only in these  
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regions but for other cells they a little bit distributed. 

(b) No. of fixed obstacles = 8 

Figure 6.3.11 shows the no. of steps required by the agents to reach the goal against the no. 

of attempts for a 10X10 grid world with 8 obstacles in the path and the goal is moving in 

the first two rows. Six algorithms have been simulated for this case: Q-learning and 

SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm. 

 

Figure 6.3.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

4 agents; case III(b) 

Figure 6.3.12a, 6.3.12b, 6.3.12c, 6.3.1d shows the grid world with the path traced by the 

agents when the goal is moving and there are 8 obstacles in the path for Phe-Q, Phe-

SARSA, Q-Swarm and SARSA-Swarm.  

     

Figure 6.3.12a Path traced for case III(b)          Figure 6.3.12b Path traced for case III(b) 

by four agents for Phe-Q            by four agents for Phe-SARSA   
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Figure 6.3.12c Path traced for case III(b)           Figure 6.3.12d Path traced for case III(b) 

by four agents for Q-Swarm            by four agents for SARSA-Swarm   

Here also for all the six methods, conventional RL methods are not able to find any optimal 

paths and they diverge and reach the maximum steps per attempt criterion for termination. 

Since, there is no coordination between the agents so they are not able to reach to a 

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least 

number of attempts. With the increase in the number of obstacles in the path, the 

convergence to fins the optimal path requires more number of attempts. This is happens 

because as the number of obstacles increases, the agents are not able to explore the grid 

world that efficiently. 

(c) No. of fixed obstacles = 14 

Figure 6.3.13 shows the no. of steps required by the agents to reach the goal against the no. 

 

Figure 6.3.13Plot between No. of Steps required to reach the Goal and No. of Attempts for 

4 agents; case III(c) 
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of attempts for a 10X10 grid world with 14 obstacles in the path and the goal is moving in 

the first two rows. Six algorithms have been simulated for this case: Q-learning and 

SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.  

Figure 6.3.14a, 6.3.14b, 6.3.14c, 6.3.14d shows the grid world with the path traced by the 

agents when the goal is moving and there are 15 obstacles in the path for Phe-Q, Phe-

SARSA, Q-Swarm and SARSA-Swarm.  

      

Figure 6.3.14a Path traced for case III(c)          Figure 6.3.14d Path traced for case III(c) 

by four agents for Phe-Q            by four agents for Phe-SARSA 

      

Figure 6.3.14c Path traced for case III(c)           Figure 6.3.14f Path traced for case III(c) 

by four agents for Q-Swarm             by four agents for SARSA-Swarm 

Here also for all the six methods, conventional RL methods are not able to find any optimal 

paths and they diverge and reach the maximum steps per attempt criterion for termination. 

Since, there is no coordination between the agents so they are not able to reach to a 

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least 

number of attempts. With the increase in the number of obstacles in the path, the 

convergence to fins the optimal path requires more number of attempts. This is happens 
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because as the number of obstacles increases, the agents are not able to explore the grid 

world that efficiently. 

6.3.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving 

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2 

Figure 6.3.15 shows the no. of steps required by the agent to reach the goal against the no.  

 

Figure 6.3.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

4 agents; case IV(a) 

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path and the 

goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.  

Here, for all the six methods, conventional RL methods are not able to find any optimal 

paths and they diverge and reach the maximum steps per attempt criterion for termination. 

Since, there is no coordination between the agents so they are not able to reach to a 

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least 

number of attempts. This is so because, SARSA-swarm or Q-swarm, the agents coordinate 

with each other to tell the possible locations of the goal. The global maxima is thus here not 

for a particular cell, but for all the cells for which goal could possibly be present. As the 

number of attempts increases, the agents have an understanding of moving vertically to 

reach the bands where goal can be present and then traverse to look for the actual position 

of the goal.  Phe methods also finds the optimal paths for the given case. It can be seen that 
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mostly, the agents follow the same paths for Phe methods when near to the starting location 

or goal. This is so because the pheromone level is concentrated for few cells only in these 

regions but for other cells they a little bit distributed. 

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3 

Figure 6.3.16 shows the no. of steps required by the agent to reach the goal against the no. 

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the 

goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.  

 

Figure 6.3.16 Plot between No. of Steps required to reach the Goal and No. of Attempts for 

4 agents; case IV(b) 

Here also for all the six methods, conventional RL methods are not able to find any optimal 

paths and they diverge and reach the maximum steps per attempt criterion for termination. 

Since, there is no coordination between the agents so they are not able to reach to a 

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least 

number of attempts. With the increase in the number of obstacles in the path, the 

convergence to fins the optimal path requires more number of attempts. This is happens 

because as the number of obstacles increases, the agents are not able to explore the grid 

world that efficiently. 

A comparative analysis for the computation time taken be all the six algorithms for the 

different cases simulated is provided in the following table: 
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Table 6.3 Compuational Time for the Four Agent Problem for the six algorithms simulated 

 

The computational time table shows that the SARSA computed fastest out of all the six 

algorithms used when the obstacles and goal both are fixed. Q-learning is slower than 

SARSA because for Q-learning for the Q updation formula, we use a max function which 

uses more memory for computation whereas in SARSA such a function is not required. The 

cases with dynamic obstacles or goal, conventional RL methods fail to reach the goal and 

hence infinite time to reach to goal. The overall time compuatation for the Phe-Q or Phe-

SARSA is around two times that of the convetional RL, this is so becase for theses methods 

the ant needs to reach the goal and come back again to the initial starting location before 

the next simulation is carried out. For the swarm algorithms, as the number of parameters 

that needs to be calculated increases, for each attempt run the velocity parameters, global 

and personal best Q values are calculated and also updated. This increases the overall time 

of simulation for the swarm algorithms. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE SCOPE OF WORK 

 This chapter discusses the main conclusions drawn out of this thesis work and 

outlines the scope of future research work in the same context. 

 7.1 MAIN CONCLUSIONS 

 In this thesis, study has been performed for optimal path planning for a system 

having one, two and four agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm 

and SARSA-Swarm methods. Various cases were taken where the obstacles introduced in 

the path were fixed and also later moving obstacles were introduced which kept on moving 

during the path navigation of the agent. For some cases, the goal was also made to move for 

a set of locations; the goal was fixed for an attempt and once the agent reaches the goal, for 

the next attempt the goal location was changed.  

 For single agent problem, when the obstacles and goal locations were fixed, all 

the methods stated converged to give an optimal path for 18 steps but the Phe-SARSA 

method gave the best convergence characteristics. In terms of computational time, SARSA 

method took least time for the simulation. When two and four agents were made to navigate 

in the same situations, SARSA-Swarm gave the best convergence characteristics. For two 

agents, the optimal path was found with 19 steps and for four agents, it was found to be 22 

steps.   

 When the moving obstacles were introduced in the environment, SARSA gave 

the best convergence characteristics for single agent problem and also took the least 

computational time. The optimal number of steps to reach the goal for the single agent was 

about 50 for the Q-learning and SARSA methods and about 190 for the Phe-Q and Phe-

SARSA methods. For the same cases, when two agents were made to navigate, SARSA-

Swarm gave the best convergence characteristics. The optimal number of steps to reach the 

goal was about 60 for the Q-learning and SARSA, about 100 for the Q-Swarm and SARSA-

Swarm and about 200 for the Phe-Q and Phe-SARSA. For the four agents problem, 

SARSA-Swarm gave the best convergence characteristics and the least computational time. 
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Q-learning, SARSA, Phe-Q and Phe-SARSA initially diverged as number of attempts 

increases and finally converged to a value of about 1000 steps for Phe-Q and Phe-SARSA 

and about 300 steps for Q-learning and SARSA. Q-Swarm and SARSA-Swarm methods 

also converged to a value of about 300 steps. 

 For the environment which had a moving goal, when one agent was made to 

navigate and search for goal, the optimal paths to reach the goal was 9-25 steps for all the 

four methods: Q-learning, SARSA, Phe-Q and Phe-SARSA. The best convergence 

characteristic was obtained using Phe-SARA but the computational time was obtained for 

SARSA. For the two agents problem, same cases were simulated to obtain optimal paths 

with 17-53 steps and best convergence characteristics were obtained by SARSA-swarm 

method. For the four agents problem, again in the same situations, optimal paths were 

obtained with 87-110 steps and here also best convergence characteristics were obtained by 

SARAS-swarm method. The conventional RL methods did not converge and failed to reach 

the goal as the number of attempt were increased. 

 When the simulation was carried out for an environment with both moving 

obstacles and moving goal, for single agent problem optimal path was found with about 

250-500 steps for Phe-Q and Phe-SARSA and about 220-300 steps for Q-Swarm and 

SARSA-Swarm. For the single agent problem, best convergence characteristics and least 

computational time were obtained by SARSA method. For two agents problem in the same 

environment, it took about 400-450 steps for Q-Swarm and SARSA-Swarm methods and 

about 600-700 steps for the Phe-Q and Phe-SARSA methods, but best convergence 

characteristics were obtained using SARSA-swarm. Q-learning and SARSA methods 

diverged and the agents were not able to find the goal and hence diverged. For the four 

agent problem, in the same environment it took about 500 steps for Phe-Q, Phe-SARSA, Q-

Swarm and SARSA-Swarm methods whereas Q-learning and SARSA methods failed to 

reach the goal. Best convergence results and least computational time were obtained using 

SARSA-swarm method. 

 In the cases of fixed obstacles; Phe-Q, Phe-SARSA, Q-Swarm and SARSA-

Swarm methods always gave the better results over the Q-learning and SARSA methods. 

When both the obstacles and goal were kept moving, SARSA gave the best convergence 
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characteristics for single agent and SARSA-swarm method for multiagent problems. In 

those cases also, the Phe-Q and Phe-SARSA were able to find the goal. In multi-agent 

problem, when the goal was made moving the Q-learning and SARSA sometimes where not 

able to reach to goal. In these cases also, the Phe-Q, Phe-SARSA, Q-Swarm and SARSA-

Swarm were alge to reach the goal.  

7.2 FUTURE SCOPE OF WORK 

 The problem in this thesis was made for a fully deterministic environment, but 

many a times it is difficult to obtain a fully deterministic environment; for such a case the Q-

value updation rule needs to take the probability of the outcome. This problem could be 

solved by using neural network methods and self organizing maps as this will require a 

mapping from the input action to the available outputs that are possible. 

 For the path finding problem in an unknown and dynamic environment it 

becomes very essential for the agnet to learn the model of the system and nature of the 

dynamics that exist in the system. The convetional RL mehods use a particular set of 

learning rate and the exploration rate which affects the update rule for Q-function. These 

parameters need to optimized for a particular set of problem. These parameters could be 

optimized using bioinspired algorithms Genertic Algorithm and Fire-Fly algorithms as these 

methods have proven to be good optimization techniques. 
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