

SWARM AND PHEROMONE BASED REINFORCEMENT

LEARNING METHODS FOR THE ROBOT(S) PATH

SEARCH PROBLEM

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

CONTROL & INSTRUMENTATION

SUBMITTED BY:

NUPUR JHA

(2K13/ C&I/ 08)

UNDER THE SUPERVISION OF

DR. BHARAT BHUSHAN

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

INDIA

2015

i

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, Nupur Jha, Roll No. 2K13/C&I/08, a student of M. Tech. (Control & Instrumentation),

hereby declare that the dissertation titled “Swarm and Pheromone based Reinforcement

Learning methods for the Robot(s) Path Search Problem” is a bonafide record of the work

carried out by me under the supervision of Dr. Bharat Bhushan of Electrical Engineering

Department, Delhi Technological University in partial fulfilment of the requirement for the

award of the degree of Master of Technology and has not been submitted elsewhere for the

award of any other Degree.

Place: Delhi__ (Nupur Jha)

Date:

DR. BHARAT BHUSHAN

 SUPERVISOR

Associate Professor

Electrical Engineering Department

Delhi Technological University

Delhi - 110042

ii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. Bharat Bhushan for his guidance and

assistance in the thesis. Without his consistent support, encouragement and valuable inputs,

this project would not have been possible.

I would like to express my deep gratitude to Prof. Madhusudan Singh, the HoD of

Electrical Engineering Department without his moral support my project would not have

reached to this level.

I would also like to than my batch-mates and friends who have encouraged and helped me

in completing the thesis work. Finally, I express my deep sincere thanks to my Parents who

were always there in times of need.

NUPUR JHA

 (2K13/C&I/08)

M. Tech. (C&I)

Delhi Technological University, Delhi

iii

ABSTRACT

With the world moving to an automated platform, robots are finding application in almost

all domains to reduce the human effort. One such domain is to path a find in an unknown

and hostile environment to reach the goal. The complexity of many tasks arising in this

domain makes it difficult for the robots (agents) to solve this with pre-programmed agent

behaviours. The agents must, instead, discover a solution on their own, using learning.

In ordinary reinforcement learning algorithms, a single agent learns to achieve a goal

through many episodes. If a learning problem is complicated or the number of agents is

more, it may take more computation time to obtain the optimal policy and sometimes may

not be able to reach the goal. Meanwhile, for optimization problems, multi-agent search

methods such as particle swarm optimization, ant colony optimization have been

recognized to find rapidly a global optimal solution for multi-modal functions with wide

solution space.

This thesis work proposes a SARSA based reinforcement learning algorithm using multiple

agents where the agents are guided by the pheromone levels also called the Phe-SARSA. In

this algorithm, the multiple agents learn through not only their respective experiences but

also with the help of pheromone trail left by other agents to search for the shortest path.

The algorithms have been simulated in the MATLAB 2013a and the results have been

compared with the Q-learning, SARSA, Q-Swarm, SARSA-Swarm and Phe-Q algorithms.

iv

TABLE OF CONTENTS

CERTIFICATE………………………………………………………….. i

ACKNOWLEDGEMENT……………………………………………… ii

ABSTRACT……………………………………………………………… iii

CONTENTS……………………………………………………………... iv

LIST OF FIGURES……………………………………………………... vii

LIST OF TABLES………………………………………………………. xiii

CHAPTER 1. INTRODUCTION…………………………………….. 1

1.1 Overview…………………………………………………………..... 1

1.2 Reinforcement Learning……………………………………….…… 2

1.3 Path Search and RL……………………………………................... 2

1.4 Ant Colony Optimization (ACO)...………………………….…...... 3

1.5 Particle Swarm Optimization (PSO) & Group Effort……………… 4

1.6 Objective of Work…………………………………………………. 4

1.7 Organization of Thesis 5

CHAPTER 2. LITERATURE REVIEW…………………………….. 6

2.1 Introduction…………………………………………………………. 6

2.2 Brief Review of Papers……………………………………………... 6

CHAPTER 3. REINFORCEMENT LEARNING….……………….. 16

3.1 Biological Inspiration………………………………………………. 16

3.2 Introduction…………………………………………………………. 16

3.3 Elements & Basic RL framework………………………………....... 17

 3.3.1 Policy………………………………………………………… 17

 3.3.2 Reward Function……………………………………………... 17

 3.3.3 Value Function……………………………………………….. 18

 3.3.4 Basic Framework of RL……………………………………... 18

v

3.4 Markov Decision Process…………………………………………... 19

3.5 Temporal Difference (TD) Learning……………………………….. 21

 3.5.1 TD Prediction………………………………………………… 21

 3.5.2 Optimality of TD(0)………………………………………….. 23

 3.5.3 Value Functions & the Bellman Equations………………….. 24

 3.5.4 Q – Learning: Off- Policy TD Control………………………. 26

 3.5.4.1 Model-based Q-iteration algorithm……………………… 26

 3.5.4.2 Model-free value iteration and the need for exploration... 28

 3.5.5 SARSA: On – Policy Control…………………………..……. 30

3.6 Limitations of RL…………………………………………………... 32

CHAPTER 4. MULTI-AGENT GRIDWORLD PROBLEM..…….. 34

4.1 Grid World Problem………………………………………………... 34

 4.1.1 Single Agent Problem………………………………………... 35

 4.1.2 Multi Agent Problem………………………………………… 36

4.2 Multi-Agent Reinforcement Learning (MARL)……………………. 36

 4.2.1 Friend Or Foe Algorithm…………………………………… 37

CHAPTER 5. HYBRID RL…………………………………….…….. 40

5.1 Introduction…………………………………………………………. 40

5.2 RL and Particle Swarm Optimization (PSO)……………………….. 40

 5.2.1 Q – Swarm…………………………………………………… 40

 5.2.2 SARSA – Swarm…………………………………………….. 42

5.3 RL and Ant Colony Optimization (ACO)………………………….. 43

 5.3.1 Pheromone – Q………………………………………………. 44

 5.3.1.1 Belief Factor……………………………………………. 45

 5.3.2 Pheromone – SARSA………………………………………... 47

CHAPTER 6. SIMULATION RESULT & DISCUSSION..….…….. 50

vi

6.1 Single Agent Problem...……………………………………………... 51

 6.1.1 Case I: Obstacles: Fixed; Goal: Fixed………………………... 51

 6.1.2 Case II: Obstacles: Fixed & Moving (Both); Goal: Fixed…..... 55

 6.1.3 Case III: Obstacles: Fixed; Goal: Moving…............................. 58

 6.1.4 Case IV: Obstacles: Fixed & Moving (Both); Goal: Moving... 62

6.2 Two Agents Problem………………………………………………... 65

 6.2.1 Case I: Obstacles: Fixed; Goal: Fixed………………………... 65

 6.2.2 Case II: Obstacles: Fixed & Moving (Both); Goal: Fixed…..... 70

 6.2.3 Case III: Obstacles: Fixed; Goal: Moving…............................. 73

 6.2.4 Case IV: Obstacles: Fixed & Moving (Both); Goal: Moving.... 78

6.3 Four Agents Problem………………………………………………... 80

 6.3.1 Case I: Obstacles: Fixed; Goal: Fixed………………………... 80

 6.3.2 Case II: Obstacles: Fixed & Moving (Both); Goal: Fixed…..... 86

 6.3.3 Case III: Obstacles: Fixed; Goal: Moving…............................. 88

 6.3.4 Case IV: Obstacles: Fixed & Moving (Both); Goal: Moving.... 93

CHAPTER 7. CONCLUSIONS & FUTURE SCOPE….....….……... 96

7.1 Main Conclusions……………………………………………............ 96

7.2 Future Scope of Work……………………………………………….. 98

REFERENCES…………………………………………………………… 99

vii

LIST OF FIGURES

Figure 3.1 Agent - Environment interaction in the Reinforcement Learning…………..

Figure 4.1 A sample grid world with green block as obstacles, red block as goal and

…………..green block as starting block ………………..……………………………...

Figure 5.1 Environment in which SARSA is effective…………………………………

Figure 6.1.1 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case I(a) ………………………………………………………...

Figure 6.1.2a Path traced for case I(a) by single agent for Q-learning ………………...

Figure 6.1.2b Path traced for case I(a) by single agent for SARSA ……………….......

Figure 6.1.2c Path traced for case I(a) by single agent for Phe-Q ………………..........

Figure 6.1.2d Path traced for case I(a) by single agent for Phe-SARSA..……………...

Figure 6.1.3 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case I(b) ………………………………………………………..

Figure 6.1.4a Path traced for case I(b) by single agent for Q-learning ………………...

Figure 6.1.4b Path traced for case I(b) by single agent for SARSA ……………….......

Figure 6.1.4c Path traced for case I(b) by single agent for Phe-Q ………………..........

Figure 6.1.4d Path traced for case I(b) by single agent for Phe-SARSA..……………...

Figure 6.1.5 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case I(c) ………………………………………………………...

Figure 6.1.6a Path traced for case I(c) by single agent for Q-learning ………………...

Figure 6.1.6b Path traced for case I(c) by single agent for SARSA ……………….......

Figure 6.1.6c Path traced for case I(c) by single agent for Phe-Q ………………..........

Figure 6.1.6d Path traced for case I(c) by single agent for Phe-SARSA..……………...

Figure 6.1.7 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case II(a) ……………………………………………………….

Figure 6.1.8a Path traced for case II(a) by single agent for Q-learning ………………..

Figure 6.1.8b Path traced for case II(a) by single agent for SARSA ………………......

Figure 6.1.9 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case II(b) ……………………………………………………….

Figure 6.1.10a Path traced for case II(b) by single agent for Q-learning …………….

Figure 6.1.10b Path traced for case II(b) by single agent for SARSA ……………......

19

34

47

52

52

52

52

52

53

53

53

54

54

54

55

55

55

55

56

56

56

57

57

57

viii

Figure 6.1.11 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case III(a) ………………………………………………………

Figure 6.1.12a Path traced for case III(a) by single agent for Q-learning ……………..

Figure 6.1.12b Path traced for case III(a) by single agent for SARSA ………………...

Figure 6.1.12c Path traced for case III(a) by single agent for Phe-Q ……………….....

Figure 6.1.12d Path traced for case III(a) by single agent for Phe-SARSA..…………..

Figure 6.1.13 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case III(b) ………………………………………………………

Figure 6.1.14a Path traced for case III(b) by single agent for Q-learning ……………..

Figure 6.1.14b Path traced for case III(b) by single agent for SARSA ………………..

Figure 6.1.14c Path traced for case III(b) by single agent for Phe-Q ……………….....

Figure 6.1.14d Path traced for case III(b) by single agent for Phe-SARSA..…………..

Figure 6.1.15 Plot between no. of steps required to reach the goal and no. of attempts

………….for 1 agent; case III(c) ………………………………………………………

Figure 6.1.16a Path traced for case III(c) by single agent for Q-learning ……………..

Figure 6.1.16b Path traced for case III(c) by single agent for SARSA ………………..

Figure 6.1.16c Path traced for case III(c) by single agent for Phe-Q ……………….....

Figure 6.1.16d Path traced for case III(c) by single agent for Phe-SARSA..…………..

Figure 6.1.17 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 1 agent; case IV(a)…………………………………………….

Figure 6.1.18 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 1 agent; case IV(b)…………………………………………….

Figure 6.2.1 Plot between no. of steps required to reach the goal and no. of attempts

………….for 2 agents; case I(a) …………………………………………………….....

Figure 6.2.2a Path traced for case I(a) by two agents for Q-learning ……………….....

Figure 6.2.2b Path traced for case I(a) by two agents for SARSA ……………….........

Figure 6.2.2c Path traced for case I(a) by two agents for Phe-Q ………………............

Figure 6.2.2d Path traced for case I(a) by two agents for Phe-SARSA..…………….....

Figure 6.2.2e Path traced for case I(a) by two agents for Q-Swarm… ………………...

Figure 6.2.2f Path traced for case I(a) by two agents for SARSA-Swarm...……….......

Figure 6.2.3 Plot between no. of steps required to reach the goal and no. of attempts

58

59

59

59

59

60

60

60

60

60

61

62

62

62

62

63

63

65

66

66

66

66

66

66

ix

………….for 2 agents; case I(b) …………………………………………………….....

Figure 6.2.4a Path traced for case I(b) by two agents for Q-learning ……………….....

Figure 6.2.4b Path traced for case I(b) by two agents for SARSA ……………….........

Figure 6.2.4c Path traced for case I(b) by two agents for Phe-Q ………………............

Figure 6.2.4d Path traced for case I(b) by two agents for Phe-SARSA..…………….....

Figure 6.2.4e Path traced for case I(b) by two agents for Q-Swarm… ………………...

Figure 6.2.4f Path traced for case I(b) by two agents for SARSA-Swarm...……….......

Figure 6.2.5 Plot between no. of steps required to reach the goal and no. of attempts

………….for 2 agents; case I(c) …………………………………………………….....

Figure 6.2.6a Path traced for case I(c) by two agents for Q-learning ……………….....

Figure 6.2.6b Path traced for case I(c) by two agents for SARSA ……………….........

Figure 6.2.6c Path traced for case I(c) by two agents for Phe-Q ………………............

Figure 6.2.6d Path traced for case I(c) by two agents for Phe-SARSA..…………….....

Figure 6.2.6e Path traced for case I(c) by two agents for Q-Swarm… ………………...

Figure 6.2.6f Path traced for case I(c) by two agents for SARSA-Swarm...……….......

Figure 6.2.7 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 2 agents; case II(a)…………………………………………….

Figure 6.2.8a Path traced for case II(a) by two agents for Q-learning ………………....

Figure 6.2.8b Path traced for case II(a) by two agents for SARSA ………………........

Figure 6.2.9 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 2 agents; case II(b)…………………………………………….

Figure 6.2.10a Path traced for case II(b) by two agents for Q-learning ……………....

Figure 6.2.10b Path traced for case II(b) by two agents for SASA ………………........

Figure 6.2.11 Plot between no. of steps required to reach the goal and no. of attempts

………….for 2 agents; case III(a) ……………………………………………………..

Figure 6.2.12a Path traced for case III(a) by two agents for Q-learning ……………....

Figure 6.2.12b Path traced for case III(a) by two agents for SARSA ……………….....

Figure 6.2.12c Path traced for case III(a) by two agents for Phe-Q ……………….......

Figure 6.2.12d Path traced for case III(a) by two agents for Phe-SARSA..……………

Figure 6.2.12e Path traced for case III(a) by two agents for Q-Swarm………………...

Figure 6.2.12f Path traced for case III(a) by two agents for SARSA-Swarm...………...

67

68

68

68

68

68

68

69

69

69

69

69

70

70

70

71

71

72

72

72

73

73

74

74

74

74

74

x

Figure 6.2.13 Plot between no. of steps required to reach the goal and no. of attempts

………….for 2 agents; case III(b) ……………………………………………………..

Figure 6.2.14a Path traced for case III(b) by two agents for Q-learning ……………....

Figure 6.2.14b Path traced for case III(b) by two agents for SARSA ………………....

Figure 6.2.14c Path traced for case III(b) by two agents for Phe-Q ……………….......

Figure 6.2.14d Path traced for case III(b) by two agents for Phe-SARSA..……………

Figure 6.2.14e Path traced for case III(b by two agents for Q-Swarm………………...

Figure 6.2.14f Path traced for case III(b) by two agents for SARSA-Swarm...………..

Figure 6.2.15 Plot between no. of steps required to reach the goal and no. of attempts

………….for 2 agents; case III(c) ……………………………………………………..

Figure 6.2.16a Path traced for case III(c) by two agents for Q-learning ……………....

Figure 6.2.16b Path traced for case III(c) by two agents for SARSA ……………….....

Figure 6.2.16c Path traced for case III(c) by two agents for Phe-Q ……………….......

Figure 6.2.16d Path traced for case III(c) by two agents for Phe-SARSA..……………

Figure 6.2.16e Path traced for case III(c) by two agents for Q-Swarm………………...

Figure 6.2.16f Path traced for case III(c) by two agents for SARSA-Swarm...………...

Figure 6.2.17 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 2 agents; case IV(a)…………………………………………...

Figure 6.2.18 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 2 agents; case IV(b)…………………………………………...

6.3.1 Plot between no. of steps required to reach the goal and no. of attempts

………….for 4 agents; case I(a) …………………………………………………….....

Figure 6.3.2a Path traced for case I(a) by four agents for Q-learning ………………....

Figure 6.3.2b Path traced for case I(a) by four agents for SARSA ……………….........

Figure 6.3.2c Path traced for case I(a) by four agents for Phe-Q ………………...........

Figure 6.3.2d Path traced for case I(a) by four agents for Phe-SARSA..……………....

Figure 6.3.2e Path traced for case I(a) by four agents for Q-Swarm… ………………..

Figure 6.3.2f Path traced for case I(a) by four agents for SARSA-Swarm...……….......

6.3.3 Plot between no. of steps required to reach the goal and no. of attempts

………….for 4 agents; case I(b) …………………………………………………….....

Figure 6.3.4a Path traced for case I(b) by four agents for Q-learning ………………....

75

75

75

76

76

76

76

76

77

77

77

77

77

78

78

79

79

81

81

81

82

82

82

82

83

83

xi

Figure 6.3.4b Path traced for case I(b) by four agents for SARSA ………………........

Figure 6.3.4c Path traced for case I(b) by four agents for Phe-Q ………………...........

Figure 6.3.4d Path traced for case I(b) by four agents for Phe-SARSA..……………....

Figure 6.3.4e Path traced for case I(b) by four agents for Q-Swarm… ………………..

Figure 6.3.4f Path traced for case I(b) by four agents for SARSA-Swarm...………......

6.3.5 Plot between no. of steps required to reach the goal and no. of attempts

………….for 4 agents; case I(c) …………………………………………………….....

Figure 6.3.6a Path traced for case I(c) by four agents for Q-learning ………………....

Figure 6.3.6b Path traced for case I(c) by four agents for SARSA ……………….........

Figure 6.3.6c Path traced for case I(c) by four agents for Phe-Q ………………...........

Figure 6.3.6d Path traced for case I(c) by four agents for Phe-SARSA..……………....

Figure 6.3.6e Path traced for case I(c) by four agents for Q-Swarm… ………………..

Figure 6.3.6f Path traced for case I(c) by four agents for SARSA-Swarm...……….......

Figure 6.3.7 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case II(a)……………………………….....................

Figure 6.3.8 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case II(b)……………………………….....................

Figure 6.3.9 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case III(a)…...………………………….....................

Figure 6.3.10a Path traced for case III(a) by four agents for Phe-Q …………….........

Figure 6.3.10b Path traced for case III(a) by four agents for Phe-SARSA..……………

Figure 6.3.10c Path traced for case III(a) by four agents for Q-Swarm… …………….

Figure 6.3.10d Path traced for case III(a) by four agents for SARSA-Swarm...……….

Figure 6.3.11 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case III(b)...…………………………........................

Figure 6.3.12a Path traced for case III(b) by four agents for Phe-Q ……………...........

Figure 6.3.12b Path traced for case III(b) by four agents for Phe-SARSA..………...…

Figure 6.3.12c Path traced for case III(b) by four agents for Q-Swarm… …………….

Figure 6.3.12d Path traced for case III(b) by four agents for SARSA-Swarm...……….

Figure 6.3.13 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case III(c)…...………………………….....................

83

84

84

84

84

85

85

85

85

85

86

86

86

87

88

89

89

89

89

90

90

90

91

91

91

xii

Figure 6.3.14a Path traced for case III(c) by four agents for Phe-Q …………….........

Figure 6.3.14b Path traced for case III(c) by four agents for Phe-SARSA..…………

Figure 6.3.14c Path traced for case III(c) by four agents for Q-Swarm… …………….

Figure 6.3.14d Path traced for case III(c) by four agents for SARSA-Swarm...……….

Figure 6.3.15 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case IV(a)

Figure 6.3.16 Plot between No. of Steps required to reach the Goal and No. of

………….Attempts for 4 agents; case IV(b)

92

92

92

92

93

94

xiii

LIST OF TABLES

Table 6.1 Computational Time for the Single Agent Cases for the four algorithms simulated…….64

Table 6.2 Computational Time for the Two Agents Cases for the six algorithms simulated............80

Table 6.3 Computational Time for the Four Agents Cases for the six algorithms simulated...........95

1

CHAPTER 1

INTRODUCTION

 This chapter presents the motivation behind the work done. It aims at

implementation of the Optimization algorithms in Reinforcement Learning (RL) methods

and has also been provided with the thesis organization.

1.1 OVERVIEW

 Machine learning for robots or mechanisms of all kinds has been a great

challenge for engineers and scientists, from the beginning days of the computers. The

learning characteristic of animals in the simplest search jobs, such as avoiding obstacles

while doing some task or searching for food, turns out to be extremely difficult to

reproduce in artificial mechanical devices, real or simulated. This thesis shows that how

reinforcement learning with the help of nature inspired algorithms can help to solve such

problems.

 “Reinforcement Learning”, this word is new for human concept and can be

traced back to the stone age. Humans learned long ago that we learn from our mistakes and

that we should learn if we want to improve over time. Learned lessons can be passed from

one generation to the other by changing the way we think, interact or work. Over the last

five decades, it has been shown that machines can be made to learn similar to humans.

“Machine Learning” is used to define many different applications from a military drone to a

robotic carpet cleaner. It includes different types of learning like Supervised or

Unsupervised Learning. In this thesis we will look into Reinforcement Learning algorithms

and their hybrid forms.

 Reinforcement learning is neither supervised nor non-supervised kind of

learning but forms a third category of learning. The evolution of Reinforcement Learning

from its beginning in the 1950s to the present day has been very impressive. In the last two

decades, faster computers with more memory led to the implementation of learning

algorithms like the single agent Q-Learning algorithm by Watkins [4]. This Q-Learning

2

algorithm was a major breakthrough in Reinforcement Learning and it later on became the

foundation of many algorithms.

1.2 REINFORCEMENT LEARNING

 Machine learningi is programmingi to optimizei a performancei criterioni using

examplei data or previous i observationsi. Learningi a modeli with partiallyi defined parametersi

is thei executioni of a computeri programi to optimizei the parametersi of the modeli using the

trainingi data i or previousi observationsi. Machine i learningi uses the theoryi of statisticsi in

buildingi mathematical models, because the main i task is makingi inferencei from a samplei.

In applicationsi such as navigation i, grabbingi, and explorationi, the output i of the systemi is a

sequencei of actionsi. In suchi a casei, a single i action is noti importanti; what is importanti is

the policyi that definesi the sequencei of correcti actions to reachi the goali given the currenti

statei of the environment i. Such learningi methodsi are called reinforcement learning (RL)

algorithms[16]. In RL, the learneri is a decisioni-makingi agent i that takesi actionsi in an

environmenti and receives i rewardi (or penaltyi) for its actions i in tryingi to solvei a problemi.

Afteri a seti of triali-and errori runs, iti should learn i the besti policyi, whichi is the sequence i of

actionsi that maximizes i the total rewardi[16]. One of thei most i famous methodsi of

completing tasksi in roboticsi is the usei of behaviori based modelsi [15]. Eachi behavior

requiresi a sequentiali set of actionsi to be completedi and RL is the best i candidatei for such

systemsi.

1.3 PATH SEARCH AND RL

 In many real world problems, the need of automation is arising. With the world

shifting form a place where only living beings existed to a place where artificial living-like

things also exist, it is becoming very crucial to use robots to ease our day to day work.

Many works has been done in machine learning where a robot is made to mimic human

actions and quite some achievement has also been made. One such human-like action for

robot could be to navigate in a space or to search a space to find some particular goal,

which could be food or other robots or other living beings or any destination. To navigate

or move in an unknown environment, whose model is not known might be difficult task for

robot.

3

 The roboti brain organizesi a vocabularyi of keywords i that describei the robot’si

perceptioni of the environmenti. The resultsi of itsi experiencesi are processedi by a modeli that

findsi cause and effect i relationshipsi between executedi actionsi and changesi in the

environmenti. Thisi allowsi the roboti to learni fromi the consequencesi of itsi actionsi in the reali

worldi. More specific i, the roboti startsi with a trainingi procedurei. The basic i idea ofi RL is toi

telli a robotici agenti wheni it is behavingi goodi or badi and makei it derivei a suitablei behavior

fromi these reinforcementi signals. Recentlyi, RL has beguni being used i on simulatedi and real

robotsi. In the spirit i of embodiedi cognitivei sciencei, the investigations i will includei

experiments oni a reali roboti. Ani understandingi has emerged i from the findings in sciencei

that it is noti feasiblei to separatelyi investigatei the mindi and bodyi of humansi, animal, or

robotsi when the goal i is to gaini knowledgei about intelligenti behaviori. These thingsi are

interconnectedi and havei to be treated i as a wholei.

1.4 ANT COLONY OPTIMIZATION (ACO)

 This algorithmi is a memberi of the anti colony algorithms i familyi, in swarm

intelligence i methodsi, and it constitutes i some metaheuristici optimizationsi. Initially

proposedi by Marco Dorigo in 1992 ini his PhD thesis[5], the firsti algorithm wasi aimingi to

search i for an optimali path in a graphi, basedi on the behavior i of antsi seekingi a pathi betweeni

theiri colonyi and a sourcei of foodi. The original i idea has i sincei diversifiedi to solvei a wider i

classi of numericali problems, andi as a result i, severali problemsi have emerged i, drawingi on

variousi aspectsi of the behaviori of antsi. In the naturali worldi, antsi wanderi randomly, andi

upon findingi food returni to their colonyi while layingi downi pheromone trailsi. If otheri ants

findi such a pathi, they arei likely noti to keep travellingi at randomi, but to insteadi follow the

traili, returningi and reinforcingi it if theyi eventually findi foodi.

 Over timei, howeveri, the pheromonei trail startsi to evaporatei, thus reducingi its

attractivei strength. Thei more timei it takesi for ani anti to traveli down i the pathi and back

againi, the morei time thei pheromonesi have to evaporatei. A short path i, by comparisoni, gets

marched i over more frequentlyi, and thusi the pheromonei density becomesi higher on shorteri

pathsi than longer onesi. Pheromone evaporation i also has thei advantage i of avoidingi the

convergence i to a locallyi optimal solutioni. If therei werei no evaporationi at all, the paths i

4

choseni by the first i ants wouldi tend to bei excessivelyi attractive to the followingi ones. Ini

that casei, the explorationi of the solutioni space wouldi be constrained.

 Thus, wheni one anti finds a goodi (i.e., short) pathi from the colonyi to a foodi

sourcei, other ants i are morei likely toi followi that pathi, and positivei feedback eventuallyi

leads toi all the ants i followingi a single pathi. Thei idea of the ant i colonyi algorithmi is to

mimici this behaviori with "simulated ants" walkingi around the graph i representingi the

problemi to solve.

1.5 PARTCILE SWARM OPTIMIZATION (PSO) AND GROUP EFFORT

 Particle swarm optimization (PSO) is a computational i methodi that optimizesi a

problemi by iterativelyi tryingi to improvei a candidate solutioni with regardi to a giveni

measurei of qualityi. PSO optimizes i a problemi by havingi a populationi of candidate

(particles) i solutionsi, and movingi these particlesi aroundi in the searchi-spacei accordingi to

simplei mathematical formulaei over the particle'si positioni and velocityi. Each particle'si

movementi is influencedi by its local i best knowni positioni but, is also i guidedi toward the best i

knowni positionsi in the search i-spacei, which are updatedi as better i positionsi are foundi by

otheri particlesi. This is expectedi to move the swarmi toward the best solutionsi.

 PSO is originally attributed to Kennedy, Eberhart and Shi [11, 13] and wasi first

intendedi for simulatingi social behaviour i, [14], as a stylizedi representationi of the movementi

of organismsi in a bird i flock ori fishi school. The algorithm i was simplifiedi and it was i

observedi to be performingi optimizationi. PSO is a metaheuristic asi it makesi few i or no

assumptionsi about the problemi being optimizedi and cani search veryi large spacesi of

candidatei solutionsi. However, metaheuristics i such as PSOi do not guaranteei an optimal

solutioni is ever foundi. PSO cani therefore also i be usedi on optimization i problemsi that are

partiallyi irregular, noisyi, change overi time, etci.

1.6 OBJECTIVE OF WORK

 As in automation problems the application of robotics is increasing day by

day. With the advancement in the technology, a shift is being seen towards implementation

5

of bio-inspired algorithms from the conventional methods or algorithms. Thus, in the

areasof the robotics problem also, more bio-inspired algorithms are being used.

 In any search or path planning problem, it becomes essential to optimally

reach the solution in less time. By using reinforcement learning methods we can achieve

this. To implement this for a multi agent dynamic situation, the conventional methods do

not follow and there is a need to switch form the conventional methods to the hybrid ones.

Thus, reinforcement learnings have been combined with the bio-inspired algorithms like

PSO and ACO to reach the optimal ssolution in minimum time.

1.7 ORGANIZATION OF THESIS

CHAPTER – 2 This chapter consists of the literature survey on various reinforcement

learning algorithms and the different evolutionary methods that have been implemented

with it. The major emphasis is given on the PSO and ACO which have been implemented

with RL methods of Q-learning and SARSA.

CHAPTER – 3 This chapter deals with the description of the concept of RL, Markov

Decision Process (MDPs) and Temporal Difference (TD) method which is used to solve the

problems of RL. A short description about the two most commonly used TD(0) algorithms,

i.e. Q-learning and SARSA is also given.

CHAPTER – 4 This chapter defines the Grid World problem and various Multi-Aggent

Reinforcement Learning have been stated. The Friend and Foe Q-Learning algorithm has

been discussed in detail.

CHAPTER – 5 Three evolutionary algorithms used with RL have been described in this

chapter: Q-Swarm, SARSA-Swarm, Phe-Q and a new algorithm has been proposed

SARSA-Q.

CHAPTER – 6 This chapter presents results and discussion.

CHAPTER – 7 In this chapter, the main conclusions have been drawn out and some future

work related to the research have been suggested.

6

CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

 This chapter consists of literature survey on different algorithms in this project.

Various books and papers related to reinforcement learning algorithms, evolutionary

algorithms: Particle Swarm Optimization and Ant Colony Optimization have been studied.

 2.2 LITERATURE REVIEW

 M. C. Cammaerts-Tricot and J. C. Verhaeghe [1] analysed the trail pheromone

production and trail following behaviour of workers of Myrmica rubra of different age

groups, categorized by their cuticular pigmentation. The dimensions of the poison gland

reservoir increase as workers grow older. The capabilities of ants help the colony for

recruitment to repel an enemy or to exploit a source of food occurs in its foraging area.

 D. P. Bertekas et al. [2] gave an elaborated description on the stochastic optimal

control methods. They impelemented the various control startegies in the discrete time

space.

 S. Goss et al. [3] showed various methods for the self organization in the

aregntianan ant colony. These various methods were implemented for finding the shortest

path in a maze.

 Watkins [4] showed that Q-learning is a simple way for agents to learn how to

act optimally in controlled Markovian domains. It amounts to an incremental method for

dynamic programming which imposes limited computational demands. It works by

successively improving its evaluations of the quality of particular actions at particular states.

 Dorigo [5] researched on a new metaheuristic for optimization which was often

initially focused on proof-of-concept applications. He provided a survey on theoretical

results on ant colony optimization. Some research efforts were directed at gaining a deeper

understanding of the behavior of ant colony optimization algorithms.

7

 Littman [6] showed minimax criterion allows the agent to converge to a fixed

policy that is guaranteed to converge. This is certainly true to some extent but any such

agent will in principle be vulnerable to a devious form of trickery in which the opponent

leads the agent to learn a poor policy and then exploits it. He also showed that RL can be

used in multi-agent scenarios and adversarial environments are well behaved as in that

optimality is guaranteed against some random opponent. In such an environment the multi-

agent RL are less behaved, but strong assumption needs to be made out about other agents to

guarantee convergence.

 Putterman [7] described about the infinite-horizon discrete-time models with

discrete state spaces and described the Markov Decision Processes (MDPs). He also

described about the modified policy iteration, multi-chain simulations with sensitive

optimality and average reward criterion.

 Rummery and Niranjan [8] compared the performance of different RL

algorithms on a realistic robot navigation problem, where a simulated mobile robot is

trained to guide itself to a goal position in the presence of obstacles. They showed that on-

line learning algorithms are less sensitive to the choice of training parameters than backward

replay.

 L. R. Leerink [9] applied ant trail formation and foraging methods to the

problem of exploration in a discrete environment with delayed reinforcement. The

exploration strategy used was the various mechanisms that are found in ant trail formation in

the adaptive heuristic critic framework, and was applied to a robot navigation task.

Simulations indicate that in terms of efficiency the mechanisms used by a single ant perform

better than undirected exploration methods, but not as well as specialized directed

algorithms. However, when multiple robots simultaneously explore the environment the

performance increases in a superlinear manner, resulting in an emergent collective ability

larger than that possessed by the individual robots.

 B. Holldobler et al. [10] explained the various categories in which the ant

system is divided and how each ant category work together to reach the goal. He showed

ant colony as inintricate super organism in which individial ants are only small,

8

indispensable failry mechanical, easily replaceable walking batteriesoof exorineglands that

sense their world primarily through the chemical secreted by them known as pheromone.

 J. Kennedy et al. [11, 13, 14] first intended for simulating social behaviour as a

stylized representation of the movement of organisms in a bird flock or fish school. They

introduced the Particle Swarm Optimization algorithm and later it was simplified and

observed to be performing optimization.

 Bertekas et al. [12] explained the concept of dynmic programming and showed

tht that how it can be solved and implemented with the help of neural networks.

 R. C. Arkin [15] showed that the most famous methods of completing tasks in

robotics is the use of behavior based models. And that each behavior required a sequential

set of actions to be compeleted.

 R. S. Sutton and A. G. Barto [16] gave the concept of Reinforcement Learning

and explained the various terminologies related to the reinforcement learning. They showed

that temporal difference method is used to solve the reinforcement learning problem and

explained the optimality of TD(0) method. Various examples are shown by the authors to

relate the concept of reward and the value functions.

 Junling Hu and M. P. Wellman [17, 27] experimented on the general-sum

stochastic games and solved the problem using Q-learning. They also soled this problem for

the Nash Q-learning. Nash Q-learning gave better results as compared to Q-learning because

of the Nash factor taken into account which uses collective reward function rather than

individual rewards.

 Singh et al. [18] examined the convergence of single-step on-policy RL

algorithms for control. They showed that On-policy algorithms cannot separate exploration

from learning and therefore must confront the exploration problem directly and hence

proved that convergence results for several related on-policy algorithms with both decaying

exploration and persistent exploration.

 Vaughan et al. [19, 25] implemented ant-like self-organizing behaviour to

coordinate a multi-robot system where the robots transport objects between various

9

locations. Robots used here had shared memory to communicate path information rather

than physically laying trail of synthetic pheromone.

 M. L. Littman [20, 21] described a set of reinforcement-learning algorithms

based on estimating value functions and presented convergence theorems for these

algorithms. They analysed and proved the convergence foe Q-learning, Minmax-Q learning,

Nash Q-learning and Team Q-learning.

 In Parunak V. D., et al. [22, 23, 24] the pheromone trails were used to construct

potential fields. Unmanned vehicles were used to navigate, directed by the potential

gradients. The ant system had different ‘flavours’ of pheromone. Each pheromone kind was

exclusive in a way that it was associated with a peculiar feature of the environment and has

their own evaporation and diffusion rates resulting in different dynamics.

 M. Monekosso and P. Remagnino [26, 28] first introduced the Phe -Q algorithm

which has the similar structure for rule updation as Q-learning with an addition term in the

update equation called the belief factor. It is a function of the pheromone level in each cell

and is associated with the state-action pair. It was implemented for grid world with fixed

obstacles.

 Hitoshi Jimal and Yasuaki Kuroe [29, 30] proposed a hybrid algorithm called

Swarm-Q for multi-agent environment in which each agent learns individually using

parallel Q-learning and also learns using interaction using PSO utilizing personal best and

global best Q-values. Later, they also used the same PSO based Q updating rule with

SARSA as the basic learning method and showed that it is more effective for an

environment which has a large negative reward. The algorithm optimizes quickly than the

normal Q-learning and SARSA and also Swarm-Q.

 L. Busoniu et al. [31, 34] discussed about the various Multi-Agent

Reinforcement Learning (MARL) techniques for fully cooperative, fully competitive and

mixed problems. They pointed out the main benefits and challenges of the various MARL

algorithms. They also described the deterministic and stochastic MDPs and characterized

their optimal solutions. They explained the concept of reinforcement learning and the

dynamic programming. They explained about the Q-learning and SARSA and explained the

10

need of exploration over exploitation. Various applications such as speed control of a DC

motor were solved using Q- learning and SARSA.

 Chia-Feng Juang et al. [32] proposed the design of a fuzzy controller by Ant

Colony Optimization (ACO) incorporated with Fuzzy-Q Learning, called ACO-FQ, with

reinforcements. For a fuzzy controller, a list of all candidate consequent control actions of

each fuzzy rule were mde. Each candidate in the consequent part of a rule is assigned with a

corresponding Q-value. Searching for the best one among all combinations is partially based

on pheromone trail and partially based on Q-values. Results were verified for a water bath

temperature control system.

 Kadlecek D. and Nahodil P. [33] integrated rigorous methods of reinforcement

learning and control engineering with a behavioral approach to the agent technology. The

main outcome is a hybrid architecture for intelligent autonomous agents targeted to the

Artificial Life like environments. Learning and control was realized by multiple RL

controllers working in a hierarchy of Semi Markov Decision Processes (SMDP). Used

model free Q(λ) learning works online, the agents gain experiences during interaction with

the environment.

 Wei Wu et al. [35] presented a control method based on multi-agent for traffic

signals. Reinforcement learning algorithm was used to optimize traffic flow in the

intersection. The genetic algorithm intended to introduce a global optimization criterion to

each of the local learning processes that optimize the cycle of traffic signals and green-ratio.

Areawide coordination was achieved by game theory. Here, local optimization with global

optimization to optimize traffic signal in multi-intersection. Simulation results indicate that

our presented method is superior than traditional control one.

 J. Pazis et al. [36] presented a novel, computationally-efficient method, called

Adaptive Action Modification, for realizing continuous-action policies, using binary

decisions corresponding to adaptive increment or decrement changes in the values of the

continuous action variables. They proposed an approach which approximates any

continuous action space to arbitrary resolution and can be combined with any discrete-action

reinforcement learning algorithm for learning continuous-action policies. They coupled Q-

11

Learning, Fitted Q-Iteration, and Least-Squares Policy Iteration and implemented it on the

continuous state-action Inverted Pendulum and Bicycle Balancing and Riding domains.

 Shu Da Wang et al. [37] constructed a multi-agent simulation system based on

reinforcement learning algorithms, achieve real-time simulation of multi-agent, and multi-

agent to get effect quickly, and to quickly construct surrounded conduct by mobile groups,

the conduct of the system to achieve the global optimum effect. Seige type group problem

was taken here. Two groups of agents were simulated to compete and reach the goal using

Q-learning.

 A. T. Evangolelos et al. [38] used reinforcement learning to find path in an

environment. They used integral control to find path in any general environment.

 J. Glascher et al. [39] used RL sequential experience with situations ("states")

and outcomes to assess actions. Using functional magnetic resonance imaging in humans

solving a probabilistic Markov decision task, they found the neural signature of an SPE in

the intraparietal sulcus and lateral prefrontal cortex. Their finding supports the existence of

two unique forms of learning signal in humans, which may form the basis of distinct

computational strategies for guiding behavior.

 Qiangfeng P. L. et al. [40] presented a distributed reinforcement learning system

that leverages on expert coordination knowledge to improve learning in multi-agent

problems. Scenario was taken where agents can communicate with their neighbors but this

communication structure and the number of agents was changed over time. Experiment

results were carried out for a tactical realtime strategy and soccer games.

 Romero F. T. et al. [41] introduced a mobile robotic system to learn through

reinforcement, which allows it to navigate within a dynamic environment avoiding any

obstacle it might encounter. The learning system was implemented with two neural

networks. Both neural networks use reinforcement learning by means of the Hebb rule.In

this paper, it was shown that there may be a case when the robot is stuck in a region with

such a configuration that directly affects it and prevents it from navigating the entire

environment.

12

 Seiichi A. and Takao M. [42] proposed a new framework for combinatorial

auctions with Q-learning agent. They showed how an intelligent agent learns in

combinatorial auctions. They applied a framework of machine learning to combinatorial

auctions to extract intelligence about bidding behavior. It was shown that the agent obtains

strategies for behavior by considering combinatorial auctions as outside environment. Here,

Q-learning approach was useful to obtain knowledge for winner.

 M. Stocia et al. [43] used reinforcement learning method for the industrial robot

problem. They took the problem of navigation in which the robot needed to transfer objects

from point to point and implemented Q-learning algorithm for their learning.

 Ji-Hwan Son et al. [44, 59] demonstrated movement control of the insect and

enhanced control of the robot through its own learning progress via reinforcement learning.

It was shown that insect occasionally exhibited uncertain and complex behavior and that

interaction mechanism was affected by weather and other unknown properties of a real

environment, resulting in more complex behaviors. To solve this, they proposed fuzzy logic-

based cooperative RL for sharing knowledge among agents. They designed a fuzzy logic-

based expertise measurement system for cooperative RL. The structure makes artificial

robots share knowledge under measuring performance evaluation of each agent.

 Devin G. et al. [45] et al. applied the Partially-Observable Markov Decision

Processes (POMDPs) to a robotic navigation task under state and sensing uncertainty. This

method provided a useful action model that gave a policy with similar overall expected

reward compared to the true action model with significant computational savings. It was

shown that this technique of building problem-dependent approximations can provide

significant computational advantages and can help expand the complexity.

 S. Zhiguo et al. [46] gave an improved Q-learning algorithm based on

pheromone mechanism. They implemented it for a swarm of four robots to find path in a

maze. The algorithm used two stages learning in which individual robots learned using RL

and the peheromone level and the overall learning was done using the pheromone levels.

 Chun-Tse Lin et al. [47] solved the path tracking problem of a prototype

walking-aid robot which features the human-robot interactive navigation. A practical fuzzy

13

controller was proposed for the path tracking control under reinforcement learning ability.

The inputs taken for the design of fuzzy controller were, the error distance and the error

angle between the current and the desired position and orientation, respectively. The

controller outputs taken was the voltages applied to the left- and right-wheel motors. A

heuristic fuzzy control with the Sugeno-type rules was designed based on a model-free

approach. The fuzzy control rule was designed with the aid of Q-learning approach.

 Mohammed I. A. et al. [48] gave a study of various class of multi-agent

graphical games denoted by differential graphical games, where interactions between agents

are prescribed by a communication graph structure. Nash solutions were given in terms of

solutions to a set of coupled continuous-time Hamilton-Jacobi Bellman equations. An online

multi-agent method based on policy iterations was developed using a critic network to solve

all the Hamilton-Jacobi-Bellman equations simultaneously for the graphical game. Here, an

online adaptive Integral Reinforcement Learning structure using critic structures was used to

solve the differential graphical game.

 O. Krigolson et al. [49] gave an analogy of the reinforcement learning and the

way humans learn from the errors. They also explained how we make decision based on our

reinforcement learning mechanism.

 Figueroa R. et al. [50] demonstrated a novel solution to the inverted pendulum

problem extended to UAVs, specifically quadrotors. The solution is provided by

reinforcement learning (RL) to generate a control policy to balance the pendulum using

Continuous Action Fitted Value Iteration (CAFVI) which is a RL algorithm for

highdimensional input-spaces. This technique combined learning of both state and state-

action value functions in an approximate value iteration setting with continuous inputs.

 J. S. Campbell et al. [51] used the delayed reinforcement learning method in a

single agent problem. They implemented various types of models in the Q-learning for the

stochastic reinforcement using delays.

 Bashan Z. et al. [52] developed a navigation technology based on the Q-learning

algorithm. Here, an autonomous mobile robot was required to navigate in an unknown maze

14

and move out of it as soon as possible. They showed this technique was effective and

successful to help a robot navigate in an unknown environment and avoid obstacles.

 Huan T. et al. [53] proposed a novel evolutionary reinforcement learning method

and applied it to robotic imitation learning, which integrates EDA and PI2 learning

algorithm. This algorithm provides a solution to integrate exploratory learning methods with

traditional reinforcement learning algorithms. This work can also be applied in other

domains where the problems to be solved could be described as a well-known nonlinear

state system.

 Yunfei Z. et al. [54] developed a hierarchical controller to avoid randomly

moving obstacles in autonomous navigation of a robot. The developed method consisted of

two parts: a highlevel Q-Iearning controller for choosing an optimal plan for navigation and

a low-level, appearance-based visual servo (ABVS) controller for motion execution.

 Vasquez D. et al. [55] compared various IRL based learning methods and

feature sets for socially compliant robot navigation in crowds. They provided three

important insights a) the importance of the default cost feature; b) the need of motion

prediction to obtain smoother human-like motion; and c) for i.e. linear combination of

weights cost, it seems to be better to put the effort on feature design than on the learning

algorithms. Conversely, in order to simplify the task of designing features, richer, more

complex cost functions and learning algorithms are required.

 Bischoff B. et al. [56] investigated model-based reinforcement learning in

particular the probabilistic inference for learning control method (PILCO), with the case of

sparse data to speed up learning. This approach was evaluated in simulation as well as on a

physical robot. They showed that by including prior knowledge, policy learning can be sped

up in presence of sparse data.

 Chao Yu et al. [57] proposed a multi agent learning approach to solve

coordination problems by exploiting agent independence in loosely coupled multi agent

systems. Theisapproach enabled agents to learn an effi-cient coordinated policy through

dynamic adaptation of the estimation of agent independence. This method required neither

15

prior knowledge about the structure of the domain nor assumptions about the learning

agents.

 H. Modares et al. [58] used reinforcement learning for the robot movements.

They optimized the the steps taken by the robots to peform human-like activities using

reinforcement learning. Q-learning was used as the method for learning of the robot.

16

CHAPTER 3

REINFORCEMENT LEARNING

3.1 BIOLOGICAL INSPIRATION

 The basic idea that we learn from our environment by interacting is i probablyi the

foremosti one to occuri to us wheni we think about i the processi of learningi. Wheni a childi

plays, wavei armsi, or gets i injuredi, it does not have an explicit teacher, though it has a

certain direct sensor-motor link to its environment i. Usingi this connectioni, a vasti repository

of informationi about cause and effect i, about the results i of actionsi, and about whati shouldi

be donei in order to achievei targeti. Throughout i our existencei, experiencesi are undoubtedlyi

a majori sourcei of knowledgei about our environmenti and usi. Learningi from interactionsi is

the initiali ideai behind almosti all theoriesi of intelligencei and learningi. “Reinforcement

learning is defined not by characterizing learning methods, but by characterizing a learning

problem”. [16]

3.2 INTRODUCTION

 “Reinforcement Learning is learning what to do, how to map situations to

actions, so as to maximize a numerical reward signal.”[16] In RL, a controller interacts i

with a processi, by means i of threei signals i: an actioni signali, whichi allowsi the controlleri to

influencei the process i, a statei signali, describingi the statei of the process i, an actioni signali,

whichi influences the processi, and a scalari reward signali, providingi the controlleri with

feedbacki on its immediatei performancei.

 The concept of rewarding for a particular set of actions is not a new concept

in our society. The reward generated is an evaluation of the quality of transition between

previous state and new state. This can be related to our daily lives: A person will be more

inclined to do a task if there is a positive reward for executing it. Of course, this cannot

characterise all of human behaviour, but we can see how RL influences our life.

 To understand Reinforcement Learning, a simple case of an agent in an

environment can be taken. In a single agent situation, the agent interacts with the

environment and determines the actions that will earn the maximum rewards. For example,

17

inputs are provided by the environment to the agent and the agent then interacts with the

environment with different outputs in form of actions. This is the main difference between

RL and other learning methods. A reward is also given by the environment to the agent for

each of the actions. The agent then learns that few actions gives better rewards than others

and it thus learn to reproduce these actions to maximize its future rewards.

 The RL framework has been used to solve various optimization processes and

have been applied to many varied applications, e.g., automatic control, robot navigation,

operations research, artificial intelligence, economics, robot navigation [35, 44, 46, 57, 59].

3.3 ELEMENTS & BASIC RL FRAMEWORK

 Other main sub-elements apart from state-action can be identified i in the RL

systemi are: a policyi, a reward functioni and a value functioni.

 3.3.1 Policy

 A policy is defined as the learning agent's behaviour. It is a mappingi from

perceivedi statesi of the environmenti to actionsi to be taken i when in thosei statesi. This couldi

be relatedi to a seti of stimulusii-response i rules or associationsi in psychology. For countable

states, policy is generally a look up table or simple function, while for uncountable or

continuous state spaces it involves an extensive i computationi such as a searchi processi. It is

the vital part of an RL agenti in the sensei that it alonei is sufficienti to determinei the agenti

behaviouri.

3.3.2 Reward Function

 The goali in an RL problemi is definedi mainly by the reward i functioni. It mapsi

each perceivedi statei of the environmenti to a scalari valuei, a rewardi, which indicatesi the

inherenti desirabilityi of that statei. The sole i objectivei of an RL agenti is to maximize the total

rewardi receivedi by it in the longi runi.

 The reward function i defines goodi and badi episodesi for the agenti. In a

biologicali system, reward i can be identified as liking and pain i. They are directi and definingi

features of the problemi which is facedi by the agent i. Hencei, the rewardi functioni is never

18

altered by the agent i. However i, it mayi serve asi a basisi for policyi alteration As an examplei,

if an actioni as selectedi by the policyi is followedi by less rewardi, theni this policyi might be

changedi to selecti some otheri actioni in that situationi in the futurei.

3.3.3 Value Function

 A reward function is a measure for immediate action and a value function is for

the long run. Value for a state could be defined as the totali amount ofi reward thati an agent i

can expecti to collecti over the futurei, initiating from i that statei. Whereas rewards tells about

the instant, intrinsic desirability of environmental i states, values indicatei the continuingi

desirability of states after considering the states that are likely to be followed, and the

rewards then available in those states i. As an examplei, particular statei might alwaysi yield ai

low immediatei reward but i still havei a highi value becausei it is regularlyi followed byi other

statesi that yieldi high rewards or vice-versa. In terms of humans, rewards i are like

preferencesi (if high i) and discomforti (if lowi), whereas valuesi are more refinedi and

farsightedi judgment of howi pleased or displeased i we are that i our environmenti is in a

particulari statei.

3.3.4 Basic Framework of RL

 Reinforcement Learning, also known as enhanced learning, is a machine

learning method which optimizes the result by goal-oriented learning which study by direct

interaction with the environment. In Supervised learning method the training information

required is instructional whereas in the reinforcement learning, training information

required is evaluative and provides an important intelligent control method for the agent.

The main purpose of reinforcement is studying the optimal mapping from state to action, so

as to maximum the reward signal. [49]

 Figure 3.1 from [16] illustrates clearly the different interactions between the

agent and the environment. Both the agent and the environment interact at finite time steps

k = 0; 1; 2; 3;. . [16] This means that each interaction will be done at a predeterminedi timei

step. The environmenti provides thei agent withi the state sk element of S, where S is the

set of possible states [16]. The agenti is ablei to choosei an actioni at elementi of A(sk),

where A(sk) isi the set ofi possible actionsi in state sk [16]. For time step k + 1, the

19

environment will provide a reward, rk+1, which is the reward function R and a new state

sk+1 to the agent [16]. Thisi rewardi is due toi its actioni in thei previous statei sk and thei

transition toi the newi state sk+1.

Figure 3.1 Agent - Environment interaction in the Reinforcement Learning

 This is where RL comes into play. Each reward is associated with different

actions and develop strategies that are called policies. The policy, πk (s; a), can be defined

as the probability that ak = a if sk = s, where the k represents the next step [16]. The agent

thus has to associate different probabilities to each action to maximize its rewards. All of

the RL research starts with this simple concept and develops different methods of using the

reward function. Expected return of an agent is linked to the environmental reward

function. The reward function can be very different from one environment to the other.

 For example, it describes which actions or series of actions will provide what

reward. As per discounted reward, the expected reward diminishes over time. We can

illustrate this by the equation of the expected discounted return:

 Rk = rk+1 + ϒrk+2 + ϒ
2
rk+3 + . . . + ϒ

n
 rn+k+1 (3.1)

where, ϒ is a parameter, 0 ≤ ϒ ≤ 1, called the discount factor [16].

 As per Equation (3.1), we can see that the same reward is worth more if

received now than if it is received in the future. We can change the behaviour of the agent

by changing the discounted rate. When rate is close to 0, it is called “myopic” and it means

that the agent is only concerned about immediate reward [16]. Ifi the rate is close to 1, it

means that the agent considers future rewards to be more important and future rewards will

have more weight.

20

 An agent in RL has to choose an action from the state sk provided by the

environments. The information given by the environment is called the state signal [16]. The

agent needs this information from the present state sk+1, and the previous states sk making

the best decision possible and maximizes it rewards. A state signal has Markov properties if

it has all the necessary information to define the entire history of the past states.

 The agent has all the information needed with the immediate state. The agent

does not need to know every past move to choose its next action. In other words, if we can

predicti the next statei and the next expectedi reward giveni the current statei and the currenti

reward with a probability of ρ i = Pr{st+1 = s’; rt+1 = r | st, at } for all s’, r, st and a, and at

then the environment has the Markov property[16].

 RL algorithms build a model from the data; called the “model learning” [33].

RL algorithms can be further subcategorised, accordingi to the pathi taken toi find ani optimal

policyi. These threei subcategoriesi are as follows:

(i) Value i iteration algorithmsi search for i the optimali value functioni, which consists i of the

maximali returns fromi every state i or from everyi state-actioni pair. The optimal value

functioni is used to computei an optimal policyi.

(ii) Policy iteration algorithmsi evaluate policiesi by constructing i their value functionsi

(insteadi of the optimali value functioni), and thesei value functionsi to find newi, improved

policiesi.

(iii) Policy Search algorithmsi use optimizationi techniques to directlyi search for ani optimal

policyi.

Withini each of thesei three subcategoriesi of RL algorithms i, two subsequenti categoriesi can

be furtheri distinguishedi, namely offlinei and onlinei. Offline RL algorithm i uses datai

collected in advancei, whereas RL algorithm i learns a solution i by interactingi with the

processi. Onlinei RL algorithm arei typically not i provided withi any future i datai, but instead i

depends onlyi on the datai collected whilei learning andi hence arei useful wheni data isi

difficulti or costlyi to obtaini in advancei. Most onlinei RL algorithm i work incrementallyi.

21

3.4 MARKOV DECISION PROCESS (MDP)

 RL problems can be formalized with the help of markov decision process (MDPs)

[6]. An RL problem that satisfies the Markov property is called a Markov decision process,

or MDP [16]. Wheni the statei and actioni spaces arei finitei, then it is a finitei Markov

decision process i (finite MDPi). Finite MDPsi are particularly valuablei to the theoryi of RL.

A particulari finite MDPi is definedi by its statei and actioni sets andi by the onei-step dynamicsi

of the environmenti. For a particulari state and actioni, s and a, the probabilityi of a particulari

possible nextt state, sk+1, is

 ρss’
a
 = Pr{sk+1 = s’ | sk = s, ak = a} (3.2)

These variables are called i transition probabilities. Similarlyi, for any present i state and i

actioni, s and a, alongwithi any nex it state,sk+1 , the expected value for next reward is

 Rss’
a
 = E{rk+1 | sk = s, ak = a, sk+1 = s’} (3.3)

 These variables, ρss’
a
 and Rss’

a
 , completely specify the most vital aspects of the

dynamics of a finite MDP.

3.5 TEMPORAL DIFFERENCE (TD) LEARNING

 TD learningi is undoubtedly identified as one idea as central and novel to

reinforcement learning [16]. This is ai combinationi of Montei Carlo ideasi and dynamici

programming ideasi. TD methodsi can learn i directly fromi new experience i withouti a modeli

of the environment'si dynamics likei Monte Carloi methodsi. TD approaches updatei estimates

basedi in portion oni other learned estimatesi, without waitingi for a finali result. Thei link

betweeni TD, DP, and i Monte Carloi methods is a repetitivei theme in the theory of RL. The

TD(λ) algorithm seamlessly integrates TD and Monte Carlo methods.

 Fori finding thei optimal policy in the control problems, DP, TD, and Monte

Carloi methods all usei some variationi of generalized policyi iteration (GPIi). The differences i

in thesei methods are primarilyi differences in theiri approaches i to thei prediction problemi.

3.5.1 TD Prediction

 Monte Carloi and TD methodsi use experiencesi to solve the predictioni

problems. Statei some experiences i for following a policyi π, both updatei their estimatesi V of

22

V
π
. If i a non-terminali state is visitedi at time ki, then bothi the methodsi update theiri estimate

basedi on what happens i after the visiti. Monte Carlo method is suitable for a simple early-

visit nonstationary environments is

 V(sk) ← V(sk) + α [Rk – V(sk)] (3.4)

where, Rk isi the actuali return followingi time t andi α is a constant i step-size parameteri.

Whereasi Monte Carloi methods musti wait until thei end of the episodei to determinei the

incrementi to V(sk), TD methods waits only untili the next time stepi. Ati time k+1 theyi

immediatelyi form a target i and make a useful i update usingi the observed i reward rk+1 and the i

estimatei V(sk+1). The simplesti TD method, known as TD(0), is

 V(sk) ← V(sk) + α [rk+1 + ϒV(sk+1)– V(sk)] (3.5)

In effect, Monte Carlo updates the reward as Rk, whereas i the target fori the TD updatei is

rk+1 + ϒVk(sk+1).

Becausei the TD methodi bases itsi update ini part oni an existingi estimates, so like DP it is a

bootstrapping method.

 V
π
(s) = Eπ{Rk|sk = s} (3.6)

 = Eπ{rk+1 + ϒV
π
(sk+1)|sk = s} (3.7)

 Monte Carloi methods use ani estimate ofi (3.6) as a target i, whereas DPi methods

usei an estimate ofi (3.7) as a targeti. Thei Monte Carloi target is ani estimate because i the

expectedi value in (3.6) is i not knowni; a sample returni is used ini place of thei real expected i

returni. The TD target is i an estimate for both i reasons: it samples i the expected valuesi in

(3.7) andi it uses currenti estimates insteadi of the truei V
π
. Thus, TDi methods combinei the

samplingi of Monte Carloi with the bootstrappingi of DPi. This can take us a long wayi toward

obtainingi the advantagesi of both Montei Carlo andi DP methods.

 Algorithm 3.1 specifies i TD(0) completelyi in procedurali form. The valuei

estimatei for the top i node state nodei of the backupi diagrami is updated oni the basis ofi the

single samplei transition fromi it toi the nexti following statei. These updatesi are referred i here

asi sample backups i because theyi involve lookingi ahead to a samplei successor statei, using

23

the valuei of the successori and the rewardi alongi the wayi to computei a backed-upi value, andi

later changingi the value of thei original statei accordinglyi. Sample backupsi differ fromi the

full backupsi of DP methodsi in that they are based i on one samplei successor ratheri than on

completei distribution ofi all the possiblei successorsi.

Algorithm 3.1: TD(0) method for estimating V
π
 :-

1. Initialize V(s) arbitrarily, π to the policy to be evaluated

2. Repeat (for each episode):

 Initialize s

 Repeat (for each step of episode) :

 a ← action given by π for s

 Take action a; observe the reward, r, and next state, s’

 V(s) ← V(s) + α[r + ϒ V(s’) – V(s)]

 s ← s’

 until s is terminal

3.5.2 Optimality of TD (0)

 For any problem with finitei amount of experiences i available 10i episodesi or 100

timei steps, it is a common approachi with thei incremental learningi method to presenti the

experiencei recurrently until i the methodi converges. Given an approximatei value functioni,

V, the incrementsi specified byi (3.4) or (3.5) arei computed fori every timei step ati which ai

non-terminali state is visitedi, but the valuei function isi changed onlyi once, by the i summation

of alli increments. Theni all the availablei experiences arei processed again i with the nexti

value functioni to produce a newi overall increment i, until thei value functioni converges. Thisi

is calledi batch updatingi because updatesi are made onlyi after processingi each ofi the

completei batches ofi training data i.

 Under batch updatingi, TD(0) converges i deterministically to i one answer i independenti

24

of the step sizei parameter, α, asi long asi α is choseni to be sufficientlyi small. Thei constant α-

MCi method alsoi converges deterministicallyi under the same i conditionsi, but to a different i

answer. Underi normal updatingi, the methods doi not move alli the way to theiri respective

batchi answers, buti in a manneri they takei steps ini these directionsi.

 Finally, it should be noted that although the certainty-equivalence estimate is in

some sense an optimal solution, but it is almost never feasible to compute it directly [16]. If

Ni is the number i of statesi, then formingi the maximumi-likelihood estimates i of the processi

may requirei N
2
 memoriesi, and computingi the correspondingi value functioni will requirei an

orderi of N
3

computationali steps if donei conventionally. It i can thusi be said thati TD methodsi

can approximatei the samei solution usingi memory noi more thani and repeatedi computations

overi the training set i. For tasks with large state spaces, TD methods might be the only

feasible way of approximating the certainty- equivalence solution [16].

3.5.3 Value Functions & The Bellman Equations

 Policiesi can be convenientlyi characterized by their i value functionsi. There are twoi

types of i value functionsi: state-action value i functions; Q-functionsi and state-value

functionsi; V-functionsi. The Q-function Q
π
: X × U → of a policy π gives the return i

obtained when i starting fromi a given statei, applying a i given actioni, and followingi π

thereafteri:

Q
π
(s,a) = ρ(s,a) + ϒR

π
 (f(s,a)) (3.8)

Here, R
π
 (f(s,a)) is the return from the i next statei f(s,a). Thisi formula cani be obtained i by

firsti writing Q
π
(s,a) explicitlyi as the discountedi sum of rewardsi obtained byi taking a in s

and then following π:

Q
π
(s,a) ∑

 ϒ
k
ρ(sk,ak) (3.9)

where(s0,a0)= (s,a), sk+1 = f(sk,uk) for k ≥ 0 and ak = π(sk) for k ≥ 0. The first i term is

separatedi from the sum:

Q
π
(s,a) () ∑

 ϒ
k
ρ(sk,ak)

 = ρ(s,a) + ϒR
π
 (f(s,a)) (3.10)

25

The optimali Q-function isi defined asi the besti Q-functioni that cani be obtained by any

policy:

Q*(s,a) = maxπQ
π
(s,a) (3.11)

Any policy π* that selectsi at each state ani action withi the largesti optimal Q-valuei, i.e., that

satisfiesi:

π*(s) Є arg* maxaQ*(s,a) (3.12)

 is optimali (it maximizes the return i). Ini general, for a given i Q-function Q, a policyi π that

satisfiesi:

π(s) Є arg* maxaQ(s,a) (3.13)

is saidi to be greedyi in Qi. So, findingi an optimali policy cani be done byi first findingi Q*, and i

theni using (3.12) toi compute ai greedy policyi in Q*.

 For the i computation of greedy actions in (3.12), (3.13), and in similar equations

in the sequel, the maximum must exist to ensure the existence of a greedy policy; this can

be guaranteed under certain technical assumptions [2].

 Thei Q-functionsi Q
π
 and Q* are recursivelyi characterizedi by the Bellman i

equationsi, which arei of corei importance fori value iterationi and policyi iteration algorithms i.

The Bellman i equationi for Q
π
 statesi that thei value of takingi an actioni; a in the statei; s under

the policyi; π is the summation i of the immediatei reward and the discounted i value achieved

by π in thei next statei:

Q
π
(s,a) = ρ(s,a) + ϒQ

π
 (f(s,a),

π(f(s,a))) (3.14)

The Bellman optimalityi equation characterizes i Q*, and statesi that the optimali value of i

actioni a takeni in state, s isi the summationi of the immediatei reward and thei discounted

optimali value obtainedi by thei best actioni in the nexti state:

Q*(s,a) = ρ(s,a) + ϒmaxa’Q*(f(s,a),a’) (3.15)

The V-function V
π

: S → of ai policy π is the returni obtained byi starting fromi a particular

26

statei and followingi π. Thisi V-function cani be computedi from thei Q-function of policy π:

V
π
(s) = R

π
(s) = Q

π
(s,π(s)) (3.16)

The optimali V-function is i the besti V-functioni that can bei obtained byi any policyi, and can

be computedi from the optimali Q-function:

V*(s) = maxπ V
π
(s) = maxaQ*(s,a) (3.17)

An optimali policy π* can be computedi from V*, by using the fact i that it satisfiesi:

π*(s) Є arg maxa[ρ(s,a) + ϒV*(f(s,a))] (3.18)

 Usingi this formulai is more difficulti than usingi (3.12); in particular i, a model ofi

the MDPi is required i in the formi of the dynamics i f and the reward i function ρ. Because i the

Q-functioni also dependsi on the actioni, it alreadyi includes informationi about the qualityi of

transitionsi. In contrast i, the V-functioni only describesi the qualityi of the statesi; in orderi to

infer the i quality ofi transitions, theyi must bei explicitly taken i into account i. This isi what

happensi in (3.18), andi this alsoi explains whyi it is morei difficult toi compute policiesi from

V-functionsi.

3.5.4 Q-Learning: Off-Policy TD Control

3.5.4.1. Model-based Q-iteration algorithm

 Model-basedi Q-iteration algorithm i is an illustrativei example from thei class ofi

model-basedi value iterationi algorithmsi. Let the set i of all thei Q-functionsi be denoted by Ɲ.

Then, thei Q-iteration mappingi T : Ɲ → Ɲ, computes i the right-handi side of the Bellmani

optimality equationi (3.15) for anyi Q-functioni. In thei deterministic casei, this mappingi is:

[T(Q)](s,a) = ρ(s,a) + ϒmaxa’Q*(f(s,a),a’) (3.15)

andi in the stochastici case, it isi:

[T(Q)](s,a) = Es’~f(s,a,.) { ρ(s,a,s’) + ϒmaxa’Q*(s’,a’)} (3.16)

If the i state spacei is countablei (e.g., finite) then the Q-iterationi mapping fori the stochastici

case (3.15) can i be written asi the simpler summationi:

27

[T(Q)](s,a) = ∑s’f(s,a,s’)[ρ(s,a,s’) + ϒmaxa’Q*(s’,a’)] (3.17)

The samei notation is usedi for the Q-iterationi mapping bothi in the deterministici case and ini

thei stochastic casei, because the analysis i given below applies i to both casesi, and the

definitioni (3.15) of T i is a special casei of (3.16).

Thei Q-iterationi algorithm starts i from an arbitraryi Q-functioni Q0 and fori each iterationi k

updatesi the Q-function usingi:

Qk+1 = T(Qk) (3.18)

Iti can bei shown thati T is ai contraction withi factor ϒ < 1 in thei infinity normi, i.e., fori any

pairi of functionsi Q and i Q’, it isi true thati:

||T(Q) – T(Q’)||∞ ≤ ϒ||Q – Q’||∞ (3.19)

Becausei T is a contractioni, it has a uniquei fixed pointi. Additionally, when i rewritten usingi

the Qi-iteration mappingi, the Bellmani optimality equationi (3.15) statesi that Q* isi a fixedi

pointi of T, i.e.:

Q* = T(Q*) (3.20)

 Hence i, the uniquei fixed point i of T isi actuallyi Q*, andi Q-iterationi

asymptotically convergesi to Q* asi k →∞. Moreoveri, Q-iterationi converges toi Q* at a rate i

of ϒ, ini the sense i that ||Qk+1 – Q*||∞ ≤ ϒ||Qk – Q*||∞. Ani optimal policyi can be computedi

from Q* with (3.12).

 Algorithmi 3.2 presentsi Q-iterationi for deterministici MDPs ini an explicit i,

procedural formi, wherein Ti is computedi using (3.15). Similarlyi, algorithm 3.3 presents i Q-

iterationi for stochastici MDPs withi countable statei spaces, usingi the expressioni (3.17).

Algorithm 3.2: Q-Iteration for deterministic MDPs :-

Input: dynamics f, reward function ρ, discount factor ϒ

1. Initialize Q function as Q0 ← 0

2. Repeat at every iteration k = 0,1,2,……..

28

3. for every (s,a) do

 Qk+1(s,a) ← ρ(s,a) + ϒmaxa’Q*(f(s,a),a’)

 end for

 until Qk+1 = Qk

Output: Q* = Qk

Algorithm 3.3: Q-Iteration for stochastic MDPs with countable state spaces :-

Input: dynamics f, reward function ρ, discount factor ϒ

1. Initialize Q function as Q0 ← 0

2. Repeat at every iteration k = 0,1,2,……..

3. for every (s,a) do

 Qk+1(s,a) ← ∑s’f(s,a,s’) [ρ(s,a,s’) + ϒmaxa’Q*f(s’,a’)]

 end for

 until Qk+1 = Qk

Output: Q* = Qk

3.5.4.2. Model-free value iteration and the need for exploration

 Q-learningi starts fromi an arbitraryi initial Q-functioni Q0 and updatesi it withouti

requiring ai model, usingi instead observedi state transitionsi and rewards i, i.e., data tuplesi of

the formi (sk, ak, sk+1, rk+1) [4]. After each i transition, thei Q-function is i updated usingi such a

datai tuple, as follows i:

Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒmaxa’Qk(sk+1, a’) – Qk(sk,ak)] (3.21)

wherei, αk Є (0,1] is thei learningi rate i. The termi betweeni squarei brackets isi the temporali

differencei, i.e., the differencei between the updatedi estimate rk+1 + ϒmaxu’Qk(sk+1,ak) ofi the

optimali Q-value i of (sk,ak), and thei current estimatei Qk(sk,ak). In thei deterministic casei, the

29

newi estimate isi actually thei Q-iteration mappingi (3.15) applied to i Qk in the statei-action

pairi (sk,ak), wherei r(sk,ak) has beeni replaced by thei observed rewardi rk+1, andi f (sk,ak) by thei

observed nexti-state sk+1.

 In the stochastic i case, thesei replacements providei a single i sample ofi the

randomi quantity whose i expectation isi computed byi the Q-iterationi mapping (3.16), andi

thus Qi-learning cani be seeni as a samplei-based, stochastici approximation procedurei based

on thisi mapping [12].

 In practice i, the learning ratei schedule mayi require tuningi, because it influences i

the numberi of transitions i required byi Q-learning toi obtain a goodi solution. A good i choice

fori the learningi rate schedulei depends on thei problem at handi. The controlleri also has toi

exploit itsi current knowledgei in order toi obtain goodi performance, e.g., byi selecting greedyi

actions in thei current Q-functioni. This is ai typical illustration i of thei exploration-

exploitationi trade-off ini online RLi. A classical way to balance exploration with

exploitation in Q-learning is ε –greedy exploration [16], which selectsi actions accordingi to:

 ak = a Є arg maxaQk(sk, a), with probability 1-εk

 a uniformly random action in A, with probability εk (3.22)

wherei, εk Є (0,1) is thei exploration probabilityi at step ki. Another option is to use

Boltzmann exploration[16], which at stepi k selects an actioni a with probabilityi:

P(a|sk) = (e
Q(sk,u)/𝛕k)/ ∑ a(e

Q(sk,u)/𝛕k) (3.23)

wherei the temperaturei 𝛕k ≥ 0 controlsi the randomnessi of the exploration i. When 𝛕k → 0,

(3.23) isi equivalent toi greedy actioni selection, whilei for 𝛕k → ∞, actioni selection isi

uniformly random i. For nonzeroi, finite valuesi of 𝛕k, higher i-valued actionsi have a greateri

chance ofi being selected i than loweri-valued ones i.

 Usuallyi, the explorationi diminishes overi time, so thati the policyi used

asymptoticallyi becomes greedyi and therefore optimal i. This can bei achieved byi making 𝛕k

or εk approachi 0 as k growsi. For instance i, an ε -greedyi exploration schedulei of the form εk

= 1/k diminishesi to 0 for k → ∞, whilei still satisfyingi the convergencei condition of Qi-

30

learning, i.e., whilei allowing infinitelyi many visitsi to all the statei-actioni pairs [18]. Like

thei learning rate i schedule, thei exploration schedulei has a significant i effect on thei

performance ofi Q-learningi. Algorithm 3.4 presentsi Q-learningi with ε -greedy explorationi.

Algorithm 3.4: Q-Iteration with ε -greedy exploration :-

Input: discount factor ϒ, exploration schedule εk, learning rate schedule αk

1. Initialize Q function as Q0 ← 0

2. Measure initial state

3. for every time step k = 0,1,2,…….. do

 a Є arg maxaQk(sk,a) with probability 1 - εk (exploit)

 ak ←

 a uniformly random action in A with probability εk (explore)

 apply ak, measure next state ak+1 and reward rk+1

 Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒmaxa’Qk(sk+1, a’) – Qk(sk,ak)]

 end for

3.5.5 SARSA: On-Policy TD Control

 Another class of RL, model-free policyi iteration algorithms is i SARSA, an onlinei

algorithmi proposed by Rummery and Niranjan [8] asi an alternativei to the value-iterationi

based Q-learningi. The namei SARSA isi obtained by joiningi together thei initials of everyi

element ini the data i tuples employed i by the algorithm i, namely: state i, action, reward, (next)

statei, (next) actioni. Formally, suchi a tuple is denotedi by (sk,ak, rk+1,sk+1,ak+1). SARSAi starts

with ani arbitrary initial i Q-function Q0 andi updates it at i each step usingi tuples of thisi form,

as followsi:

Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒQk(sk+1, ak+1) – Qk(sk,ak)] (3.24)

wherei αk Є (0,1] is thei learning rate i. Thei term betweeni square brackets i is the temporal

differencei, obtained asi the difference between i the updated estimatei rk+1 + ϒQk(sk+1, ak+1) ofi

31

the Q-valuei for (sk,ak), andi the current estimatei Qk(sk,ak). This is i not the samei as the

temporal differencei used in Q-learningi (3.21). Whilei the Q-learningi temporal difference

includesi the maximal Q-valuei in the next statei, the SARSAi temporal differencei includes

the Qi-value of i the actioni actually takeni in this next statei. This meansi that SARSAi

performs onlinei, modeli-free policyi evaluation ofi the policyi that isi currently beingi

followed. Ini the deterministic casei, the newi estimate rk+1 + ϒQk(sk+1, ak+1) ofi the Q-value i

for (sk,ak) is actuallyi the policyi evaluation mapping (3.15) applied i to Qk in the statei-action

pair (sk,ak). Here, r(sk,ak) has been replaced by the observed reward rk+1, and f(sk,ak) by the

observedi next state sk+1. In i the stochastici case, thesei replacements provide i a single samplei

of thei random quantityi whose expectationi is found byi the policyi evaluation mappingi

(3.16).Nexti, the policyi employed byi SARSA is consideredi.

 Asi in offline i policy iterationi, SARSA cannoti afford to wait i until thei Q-functioni

has (almost) converged i before iti improves thei policy. Thisi is soi because convergencei may

takei a long timei, during whichi the unchangedi (and possibly bad i) policy wouldi be

implementedi. Instead of this i, to select actions i, SARSA combines ai greedy policy in the i

current Q-functioni with explorationi, using, e.g., ε-greedy (3.22) or Boltzman (3.23)

explorationi. Because of thei greedy componenti, SARSA implicitlyi performs a policyi

improvement ati every iterative stepi, and isi thus a typei of online policyi iteration. Such a

policy iteration algorithm, which improves the policy after every sample, is sometimes

called fully optimistic [12].

 Algorithmi 3.5 presentsi SARSA withi ε-greedy explorationi. In this algorithm i,

because thei update ati step k involvesi the actioni ak+1, this actioni has to be chosen i prior toi

updating thei Q-function.

 In i order to convergei to the optimali Q-function Q*, SARSAi requires conditions i

similar toi those of Q-learningi, which demandi exploration, andi additionally thati the

exploratoryi policy beingi followed asymptoticallyi becomes greedy i[18]. Suchi a policy can i

be obtainedi by using i, e.g., ε-greedyi (3.22) explorationi with an explorationi probability εk

thati asymptotically decreases i to 0, or Boltzmann i (3.23) explorationi with an explorationi

temperaturei 𝛕k that asymptoticallyi decreases to 0i. The exploratory policyi used by Qi-

32

learning can i also be madei greedy asymptoticallyi, even though i the convergencei of Q i-

learning doesi not rely oni this conditioni.

Algorithm 3.5: SARSA with ε -greedy exploration :-

Input: discount factor ϒ, exploration schedule εk, learning rate schedule αk

1. Initialize Q function as Q0 ← 0

2. Measure initial state s0

3. a Є arg maxaQ0(s0,a) with probability 1 – ε0 (exploit)

 a0 ←

 a uniformly random action in A with probability ε0 (explore)

4. for every time step k = 0, 1, 2, …….. do

 apply ak, measure next state ak+1 and reward rk+1

 a Є arg maxaQk(sk,a) with probability 1 - εk (exploit)

 ak ←

 a uniformly random action in A with probability εk (explore)

 apply ak, measure next state ak+1 and reward rk+1

 Qk+1(sk,ak) = Qk(sk,ak) + αk[rk+1 + ϒQk(sk+1, ak+1) – Qk(sk,ak)]

 end for

 Algorithmsi like SARSA, whichi evaluate thei policy are also called “on-policy”

in the RL literature [16]. In contrast i, algorithms like Qi-learning, whichi act on the process i

usingi one policy andi evaluate anotheri policy, are called “off-policy.”

3.6 LIMITATIONS OF RL

Though its numerous advatages and applications, RL methods do have certain limitations

and disadvantages. Some of the limitation that RL methods have, are stated as follows:

33

 As no model for is provided for any given problem, the model that is estimated by

the RL methods has shallow knowledge and might sometimes make the agent to

take a wrong action.

 In RL methods, the reward calculated for the overall goal is taken and the final

output is compared then rather than comparing the output at each step or

caomparing the best possible output at each step. This restricts the agent form

looking ahead.

 Reinforcement Learning has two parameters for learning called the learning rate and

the exploration rate. If the learning rate is not properly chosen, it might take the

agent a longer time to come to an optimal solution and thus can restrict its ability to

learn And if the exploration rate is not set properly, it might happen that it takes too

long for agent to reach the goal or it may never reach the goal also.

34

CHAPTER 4

MULTI-AGENT GRID WORLD PROBLEM

4.1 GRID WORLD PROBLEM

 The most widely used benchmark problem in reinforcement learning is Grid world

[16]. In its most basic form, this domain consists of a discrete planar grid with finite

dimensions. An agent is placed at some set starting location, and then selects cardinal

actions (up, down, left, right) to move within the grid with the goal of reaching some

specific goal grid location. Modifications to this domain include addition of diagonal

moves, the addition of penalty or hole grid locations, changes to the dimension of the grid,

and addition of a stochastic wind component that acts on the agent [16]. Further extensions

include using a large grid space with multiple rooms. Yet another modification could be

dynamic obstacles, in which the obstacle emerges for random locations in the grid and also

the goal could be made moving or dynamic by specifying an area where the goal emerges

randomly or moves step wise in a particular group of grid cells.

Figure 4.1 A sample grid world with green block as obstacles, red block as goal and green

block as starting block

 All these modifications are purely environmental and have an effect on the of the

35

domain, which has downstream effects on the actions of the agent, the efficacy of the

learning algorithm, and finally on the knowledge acquired by the agent and its performance

in the domain.

 The grid world problem used in this thesis is an evolving one. Initially, a single

agent case of simple 10 X 10 grid is taken and very few fixed obstacles are present. The

number of fixed obstacles are added starting from 4 obstacles to 15 obstacles. Later on, few

of the obstacles are made to emerge randomly in the grid. Another complexity that has been

studied is the grid world problem is the case of moving goal. The upper two rows of the

grid are made as the area in which the goal can emerge randomly. This randomness has

been done for each iteration movement of the agent and not for the epochs.

4.1.1 Single Agent Problem

 In single-agenti RL, the environment i of the agent i is describedi by a MDPs. “A finite

Markov decision process is a tuple {S,A, f, ρ} where S is the finite set of environment

states, A is the finite set of agent actions, f : S × A × S → [0, 1] is the state transition

probability function, and ρ : S × A × S → is the reward function”[49]. The statei signal i sk

є S describesi the environment ati each discrete i time-step ki. The agent can i alter thei state ati

each time step byi taking actionsi ak є A. As ai result ofi the action aki , the environmenti

changes itsi state fromi ak to somei sk+1 є S accordingi to thei statei transition probabilitiesi

given byi f: the probabilityi of endingi up ini sk+1 giveni that ak isi executed i in sk isi f(sk, ak, sk+1).

Thei agent receives i a scalari reward rk+1 є Ri, according toi the reward functioni ρ: rk+1 = ρ(sk,

ak, sk+1) [16]. Thisi reward evaluatesi the immediatei effect of actioni ak, i.e., thei transitioni

from sk to sk+1. It i howeveri, says nothing directlyi about thei long-termi effects ofi this actioni.

 For deterministici models, thei transition probabilityi function f isi replaced by ai

simpler transition i function, f : S × A → S. It i follows thati the reward is completelyi

determined byi the current i state and iaction: rk+1 = ρ(sk, ak), ρ : S × A → .

 The behaviori of the agent i is describedi by its policy π, which i specifies how thei

agent choosesi its actions given the statei. The policy mayi be either stochastici, π : S × A →

[0, 1], ori deterministic, π : S → A. Ai policy is called stationary if it does not change over

time [31]. The taski of the agenti is, to maximizei its long-term performancei, while onlyi

36

receiving feedback i about its immediatei, one-step performance i. One way it i can achievei this

isi by computingi ani optimal actioni-value functioni.

4.1.2 Multi - Agent Problem

 Thei generalization of thei Markov decision process to i the multii agent case is thei

stochastic gamei. “A stochastic game (SG) is a tuple (S,A1, . . . ,An, f, ρ1, . . . , ρn), where n is

the number of agents, S is the discrete set of environment states, Ui , i = 1, . . . , n are the

discrete sets of actions available to the agents, yielding the joint action set A = A1 ×· · ·×An

, f: S × A × S → [0, 1] is the state transition probability function, and ρi : S × A × S → R, i

= 1, . . . , n are the reward functions of the agents.

 In i the multi agenti case, the statei transitions are thei result of the jointi action of

all the agentsi, ak = [a1
T

k , . . . , an
T

k]
T
,ak є A, ai,k Є Ai (T denotesi vector transpose).

Consequentlyi, the rewardsi ri,k+1 and the returnsi Ri,k also dependi on the jointi action. The

policiesi πi : S × Ai → [0, 1] form togetheri the joint policyi π. Thei Q-function of eachi agent

dependsi on the joint i action and isi conditioned oni the joint policyi, Qi
π
: S × A → [31]. If i

ρ1 = · · · = ρn , all thei agents havei the samei goal (toi maximize thei same expectedi return),

and thei SG is fullyi cooperative. If i n = 2and ρ1 = −ρ2 , thei two agentsi have oppositei goals,

and thei SG is fullyi competitivei. Full competitioni can also arisei when morei than two agents i

are involvedi. In this casei, the reward functions i must satisfyi ρ1(s,a, s’) + · · · +ρn (s,a,s’) = 0

∀s, s’ є S,a Є A. Howeveri, the literaturei on RL ini fully competitive gamesi typically deals i

with thei two-agenti case onlyi. Mixed gamesi are stochastic gamesi that are neither fullyi

cooperative nori fully competitive.

4.2 Multi – Agent Reinforcement Learning (MARL)

 Various MARL algorithms are: Minimax-Q Learning, Nash-Q Learning,

Friend-or-Foe Q Learning and Win-or-Learn-Fast Policy Hill Climbing (WOLF-PHC)[31].

These algorithms represent an evolution from i the Q-Learningi algorithm andi provide an

insight into multi-agent learning. Minimax-Q learningi algorithm is i one of the first

adaptationsi of thei original Q-learning algorithm and is still in use. For Nash-Q Learning

algorithmi Nash Equilibrium i is the basis for convergence. It was designed to reach a Nash

Equilibrium strategy between two fully competitive players. The Friend-or-Foe Q Learning

37

algorithmi was designedi from the Nash-Q Learningi and updated for an environment where

the learning has friends and/or foes.

 The Minimax-Q learning algorithm is interesting because it takes the single

agent Q-learning and adapts it for a multi-agent environment. It also uses the linear

programming to maximize its rewards by minimizing its opponents rewards. In a zero i sum

stochastici game, thei Minimax-Q learningi algorithm will converge and find the Nash

equilibrium strategy. It i was noti proven toi converge ini general-sumi games and it is a

limitation. A general-sum game environment can give more flexibility because the rewards

do not need to respect R1 = -R2 where R1 and R2 are the rewards for Player 1 and Player 2.

 The different assumptions that make Nash-Q learning a restrictive algorithm. It

was proven to converge within these assumptions, but it cannot be generalized for every

general-sum game. In [12], Littman discussed the limitations of the Nash-Q Learningi

algorithm. Ini the Nash-Q, updates taken into account is either the globali optimal pointi or

the saddlei point, but there are occasions where both are present. It was shown in [3] and

[30] that the algorithm does converge even if not all the assumptions are respected.

 Friend or Foe-Q (FFQ) has been designed to alleviate the flaws of Nash-Q

Learning when confronted with the coordination and adversarial equilibrium. Littman [12]

discussed this by pointing out that there is a possibility that both equilibriums exist at the

same time. This can create problems in Nash-Q because it is not designed to decide which

one to choose. In FFQ there is a selection mechanism and it can alleviate this problem.

4.2.1 Friend Or Foe Algorithm

 This algorithm was developed by Littman and it tries to fix some of the

convergence problems of Nash-Q Learning. The convergence of Nash-Q is restricted by

various assumptions made during the solving of a problem. The main concern lies within

assumptions, where every stage game needs to have either a global i optimal point i or a

saddle pointi. These restrictions cannot be guaranteed during learning. To ease this

restriction, the FFQ algorithm is built and it always converges by changing the update rules

subjected to the agents. The learning agent has to identify the other agents either as “friend”

or “foe”.

38

 The FFQ algorithm is built for the n-player game, but we will start with a two

player game to understand this concept. One of the main differences between the Nash-Q

and the FFQ is that the agent only keeps track of its own Q-table. The update performed by

the agent is given by the following equation:

 maxaiєAiQi[s,a1,…….,an] (4.1)

when the opponents are friends; and

 max πєП(Ai)minaiЄAi ∑aiєAiQi[s,a1,…….,an] (4.2)

when the opponents are foes, where n i is the number of agents and i is the learning agent

[18].

 Equation (4.1) is the Q-Learning algorithm adapted for multiple agents and

Equation (4.2) is the minimax-Q algorithm from Littman [6]. These equations represent a

situation where all the agents are either friend or foe.

 We can categorize as all the agents in this algorithm in two groups of people i's i

friends andi i's foes i. The friends i will worki together to maximize i's payoff. The foes will

work together against i to minimize its pay-off. The algorithm3.1 showing friend or foe Q-

learning is as follows:

1. Initialization

∀ s є S, a1 є A1 and a2 є A2

Let Q(s,a1,a2) = 0 ∀

Let V(s) = 0 ∀ a1 є A1

Let π(s,a1) = 1/|A1|

for k = 0,1,2,…… do

In state s: Choose a random action from A1 with probability π

If not a random action, choose action a1 with probability π(s, a1)

39

Evaluate the next state, s’.

In state s’ : The agent observes the reward r related to action a1 and opponent's action a2 in

state s. Update Q-Table of player 1 with equation :

Q(s,a1,a2) ← Q(s,a1,a2) + α [(r + ϒV(s’)) - Q(s,a1,a2)]

Use linear programming to _nd the values of _ (s; a1) and V (s) with the equation

V(s) = maxaiЄAiQi[s,a1,…….,an] if the opponent is a friend, and;

V(s) = max πЄП(Ai)minaiЄAi ∑aiЄAiQi[s,a1,…….,an] if the opponent is a foe

α = α * decay

End loop

40

CHAPTER 5

HYBRID REINFORCEMENT LEARNING

5.1 INTRODUCTION

 In i ordinary RL algorithms with ai single agenti, the agenti often takes ai useless

actioni with a i small rewardi, which resultsi in a longi learning timei. On thei other hand, ini

swarm optimization i algorithms, multiplei agents arei prepared and i some agentsi could take

useful actionsi with ai larger reward i. Similarly, in with ant colony optimization, agents can

be made to learn which actions result in overall higher rewards. Ini addition, sincei the Q

values ofi all the agents i are updated i according toi Q-values ofi such agents i who take thei

useful actionsi, it isi expected thati agents cani learn in ai shorter i learning timei.

5.2 RL & PARTICLE SWARM OPTIMIZATION (PSO)

 RL has been recently combined with Particle Swarm Optimization to overcome the

problems while evaluating the multi-agent reinforcement learning for a dynamic

environment [16, 17]. The navigation problem for a single agent system with static system

provides quick control for the conventional RL methods such as Q learning and SARSA.

When subjected to a multi-agent system, the algorithm works well till the system dynamics

are less. This is so because with epochs, the RL algorithm focusses less on exploring new

paths and try to converge to the predefined goal for which the path was searched previously.

When the goal is changing the robots do not communicate that efficiently with each other to

change their termination points. With the PSO algorithm, as there are two parameters on

which each agent takes any action, they are able to communicate in a better way. The

personal best (or personal minima in PSO) of an individual agent drives it to reach to their

personali best pathi and simultaneouslyi the global best i of all the agents (or global minima in

PSO) also drives the agent to search and take the global best path.

 5.2.1 Q - Swarm

 Q-Swarm is a combination of Q-learning method and Particle Swam

Optimization Algorithms. First, eachi agent updatesi its own Qi-values individuallyi by usingi

Qi-learning fori some episodesi. Theni, the Qi-values ofi all thei agents arei evaluated byi an

41

adequate i method, and thei Qi-values evaluatedi superior toi thosei of the otheri agents arei

selected. Wei call themi the besti Q values. Theni, each agent i receives the i best Qi-values fromi

anotheri agent, andi updates itsi own Q-valuesi accordingi to an adequate i strategy by usingi the

besti Q-values. These i procedures arei repeated untili a terminationi condition is satisfiedi.

 Althoughi the Q-valuesi are noti evaluated ini ordinary Q i-learning, this algorithmi

requires toi evaluate themi in order toi select thei best Qi-values whichi bring a largei rewardi. Ini

the Qi-Swarm algorithm i, there are twoi kinds of proceduresi of updating thei Q-values of

eachi agent. One i is the procedure i of Q-learningi, which is performed i in the inner loop i. The

otheri is the procedurei based on interaction i among the i agents, which is performed i in the

outeri loop by the followingi equationi. To evaluate the best of all Q-values discounted

reward is used [16]:

 E = ∑

 (5.1)

 The personali best of eachi agent i; Pi andi the globali best foundi by all thei agents

till time; G are determined i by evaluatingi E fori the Q-valuesi. Eachi agent updatesi it Q-

values byi using ithe globali best and its ipersonal best iusing the following equations [16]:

 Vi(s,a)← W Vi(s,a) + C1R1(Pi(s,a) – Qi(s,a)) + C2R2(G(s,a) – Qi(s,a)) (5.2)

 Qi(s,a)← Qi(s,a) + Vi(s,a) (5.3)

wherei, Vi(s,a) isi a so-called velocityi, W, C1 and C2 are weighti parameters, and R1 and R2

arei uniform randomi numbers ini the rangei 0 to 1. In thisi algorithm, therei are two kinds i of

procedurali for updatingi the Q-valuesi of each agent i. Onei is the procedurei of Q-learningi,

whichi is performed in thei inner loopi. The otheri is the procedure i based on the interactioni

amongi the agents i, which is performed i in the outer loop i. The algorithm 5.1 showsi the Qi-

swarm as followsi.

Algorithm 5.1: Q - Swarm learning[16]

Input: discount factor ϒ, Number of episode Y, number of agents n

1.For the agents i = 1,2,……n initialize Qi function as Qi0 ← 0

42

2. Measure initial state, s0

3. for all the agents, For every time step k = 1,2,…….. do

 a є arg maxaQk(sk,a) with probability 1 - εk (exploit)

 ak ←

 a uniformly random action in A with probability εk (explore)

 apply ak, measure next state ak+1 and reward rk+1

 Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒmaxa’(Qk(sk+1, a’)) – Qk(sk,ak)]

 If a terminate condition of episode is satisfied, go to step 4.

 end for

4. Calculate the evaluated E for Qi(s,a) of each agent by equation 5.1

5. Update Qi(s, a) of each agent by applying an information exchange using equation 5.2

and 5.3.

6. Go to step 3 till global termination criteria is not reached.

5.2.2 SARSA - Swarm

 SARSA-Swarm is a combination of SARSA method and Particle Swarm

Optimization algorithm [30]. This algorithm is similar to the Q-swarm algorithm and has

been proposed by the same authors. This algorithm is best suited for environment with

large negative rewards. An environment in which the reward for travelling around is

negative for any action not reaching the goal instead for an environment in which the same

reward is zero then in the first case, the steps needed to reach the goal is faster. And for

such an environment, the SARSA reinforcement learning algorithm gives the best result

[30].

 In such an environment, if a group of agents or robots are to be navigated, then

the simple SARSA algorithm does not prove to be fruitful. Thus, SARSA algorithm

coupled with the swarm optimization gives a swarm movement and the agents

43

communicateand cooperate with each other to reach the goal.

Algorithm 5.2: SARSA - Swarm learning [30] :

Input: discount factor ϒ, Number of episode Y, number of agents n

1.For the agents i = 1,2,……n initialize Qi function as Qi0 ← 0

2. Measure initial state, s0

3. a є arg maxaQ0(s0,a) with probability 1 – ε0 (exploit)

 a0 ←

 a uniformly random action in A with probability ε0 (explore)

4. for all the agents, For every time step k = 0, 1,2,…….. do

 a є arg maxaQk+1(sk+1,a) with probability 1 - εk+1 (exploit)

 ak+1 ←

 a uniformly random action in A with probability εk+1 (explore)

 apply ak, measure next state ak+1 and reward rk+1

 Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒQk(sk+1, ak+1) – Qk(sk,ak)]

 If a terminate condition of episode is satisfied, go to step 4.

 end for

4. Calculate the evaluated E for Qi(s,a) of each agent by equation 5.1

5. Update Qi(s, a) of each agent by applying an information exchange using equation 5.2

and 5.3.

6. Go to step 3 till global termination criteria is not reached.

5.3 RL & Ant Colony Optimization (ACO)

 Ants are able to find the shortest route between the nest and a food source [3]

without any vision [10]. Thisi processi is possiblei because antsi secrete pheromonei chemicals

44

on the traili as theyi cover the pathi while huntingi for foodi or resourcesi to construct a nest i.

Initiali explorationi is randomi in the absencei of a pheromonei trail. Ants returningi to the nest

secretei pheromone on the trail i. The pheromonei evaporatesi with timei; but antsi follow a

pheromonei trail andi at a splittingi point preferi to navigatei the pathi with higheri

concentrationsi of pheromonei. Upon findingi the food source i, the ants returni back to the nesti

depositingi pheromone alongi the wayi, thus reinforcingi the pheromone trail i.

 Antsi that have i followed the shortesti routei are quickeri to return i to the nest i, thus

reinforcingi the pheromonei concentrationi for the shorteri trail at a quickeri rate thani those

antsi that followedi an alternativei route. Further, wheni ants arrivei at the branchingi point, it

choosesi to follow the path i which has the higheri concentrations of pheromonei, and thusi

reinforces eveni further the pheromonei concentration, andi ultimately all ants i follow the

shortesti path. The quantityi of pheromonei secreted is a function i of an anglei between the

pathi and a linei joining thei food and nesti locationsi [1] on the returni journey. Soi far twoi

propertiesi of pheromone i secretion havei been mentionedi: aggregation and evaporation. The i

concentrationi adds when ants i deposit pheromone i at the samei location, andi over time thei

concentrationi gradually reducesi by evaporationi. A thirdi propertyi is diffusioni. The

pheromonei at one locationi diffuses intoi neighbouring locationsi.

 Somei of the mechanisms i adopted by foragingi ants havei been appliedi to classicali

combinatorial optimizationi problems with successi. Thesei problems includei the travellingi

salesman problemi, job-shopi schedulingi, the quadratici assignment problem i, the vehiclei

routing problemi and the networki routing problem i, robot navigationi problem [19, 23, 32].

5.3.1 Pheromone-Q Learning

 The Pheromone-Qi technique isi a combinationi of Qi-learning andi synthetic

pheromonei where a i beliefi factor isi introducedi in the update i [8]. Thei belief factori is a

functioni of the synthetici pheromone concentrationi on the traili and showsi the extent to i

whichi an agenti takes intoi account the i informationi laid down i by other i agents fromi the same

cooperatingi set. RL and synthetici pheromone havei previously beeni combined fori action

selectioni [14, 15].

45

 The beliefi factor allowsi an agent i to selectivelyi make usei of implicit i

communicationi trails whichi have beeni left byi other agentsi; this might i be usefuli in

situationsi where the information i is noti reliablei due to changes i in the environment i.

Incompletei and uncertain i informations arei critical issuei in the designi of reali-world

systemsi.

5.3.1.1 Belief Factor

 Thei belief factori directs thei extent toi which ani agent believesi in the pheromonei

it detectsi. Any agenti, during the i early trainingi episodesi, will believei less in thei pheromone i

map becausei then alli the agentsi are biasedi towards explorationi. In practicali terms, the

beliefi factor isi the ratioi between thei sum of i actual pheromone i concentrationi in the currenti

state plusi neighbouring statesi and thei sumi of maximumi possiblei pheromone concentrationi

in the currenti plus neighbouringi statesi [10]. As suchi the value i for the beliefi factor fallsi in

the rangei [0,1]. The beliefi factor is given byi

B(s,a) = ∑sЄNa Φ(s) / ∑σЄNa Φmax(σ) (5.1)

wherei, Φ(s) is the pheromone i concentration at i a pointi s in the environment i and Na isi the

seti of neighbouring states i for a choseni action ai. The beliefi factor is i a functioni of the i

synthetic pheromonei Φ(s), a scalari value that integratesi the basic i dynamic naturei of the

pheromonei, namely aggregation i, evaporation and diffusion i.

Thei Q-learning updatei equation modifiedi with synthetici pheromone is given byi

 Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒ[maxa’Qk(sk+1, a’) + ξB(sk+1,a’)] – Qk(sk,ak)] (5.2)

and, αn = 1/(1+ visitsn(sk,ak)) (5.2a)

wherei, the parameteri ξ is a sigmoid function i of time epochsi ≥ 0 and visitsi(si,ai) is the total i

number ofi times thei statei-actioni pair i is visitedi. Thei value of i the parameter i ξ increasesi withi

the numberi of agents i who successfullyi perform thei task at hand i. The Phei-Q updatei

equationi converges fori a non-deterministici Markov decision process [10].

 Thei parameter ϒ isi the discounti factor andi reflects thei relative strength of

idelayed rewardi to immediate rewardi. The valuei for α isi given byi equation (5.2a). Thei

46

correspondingi parametersi in the Phe i-Q i update i equationi use the optimum i values found i for

the standardi Qi-learning algorithm i. The parametersi that influencei Phei-Q learningi are the

numberi of agents i, the diffusioni ratei, secretioni rate, evaporationi rate andi the coefficientsi of

the sigmoidi of the pheromonei and finally thei pheromonei saturation leveli [8]. The

pheromonei distributioni in the environmenti is a functioni of the number i of existing agentsi,

and alsoi a functioni of the diffusioni across cellsi and the evaporationi.

 The agents i moves fromi cell to cell i along the fouri directionsi and secretesi

synthetici pheromonei in each celli. The two i pheromone valuesi – one associatedi with the

returni to the nest i ϕn and the otheri with searchi for the foodi source i ϕs – are parametersi to

finei tune i. The pheromonei aggregatesi in a cell i up to a saturationi level, and evaporatesi at an

evaporationi rate ϕe; untili therei is no pheromonei lefti in the cell i. Also, the pheromone i

diffuses intoi neighbouring cellsi at a ratei with diffusioni rate ϕd whichi is inverselyi

proportionali to the distancei.

 Eachi agent hasi two tasksi. Firsti is to reach i the foodi locationi, and otheri is to

returni to the nest i. When releasedi into the virtuali environmenti, the agentsi have no i

knowledgei of the environmenti or the locationi of the goali. More than i one agenti can occupyi

a celli. A celli has associatedi pheromonei strengthi Φ є [0, 100]. Pheromonei is decoupledi

fromi the statei at the implementation i level so thati the sizei of the statei spacei is N X N.

Algorithm 5.3 which shows the Phe-Q is as follows:

Algorithm 5.3: Phe-Q learning

Input: discount factor ϒ,

1. Initialize Q function as Q0 ← 0, B ← 0

2. Measure initial state, s0

3. for every time step k = 1,2,…….. do

 a Є arg maxaQk(sk,a) with probability 1 - εk (exploit)

 ak ←

 a uniformly random action in A with probability εk (explore)

47

 apply ak, measure next state ak+1 and reward rk+1

 Update the pheromone value Φ(sk-1) and the pheromone table for the previous state:

 Φ(sk-1) = (ϕs + ϕn + ϕd)e ϕs

 B(s,a) = ∑sЄNa Φ(s)/ ∑σЄNa Φmax(σ)

 Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒmaxa’(Qk(sk+1, a’) + ξB(sk+1,a’)) – Qk(sk,ak)]

 αn = 1 / (visitsn(sk,a))

 end for

5.3.2 Pheromone-SARSA Learning

 RL methods have been used with many evolutionary algorithms according to the

need of the applications. It has been seen in the Phe-Q algorithm that by combining the

belief factor in the Q-updation rule changes the way agents work and hence with

cooperative actions, the agent reach the goals faster in search problems[26]. Also, it is

evident that for a negative reward environment, SARSA method provides a better result

than the Q-learning method.

 In literature so far, these two algorithms has not been combined to solve the various

search problems. In this thesis, a new method called the Pheromone-SARSA or Phe-

SARSA is introduced. This is similar to the Phe-Q algorithm only with the basic Q-

updation rule is that followed in the SARSA.

Figure 5.1 Environment in which SARSA is effective

 Q-learning is the most frequently used reinforcement method but it is basically and

offline learning schedule. The advantage of SARSA over Q-learning can be appreciated

a

48

when working with large negative rewards.

 The main differencesi between SARSAi method and Qi-learning methodi can be

explainedi using a simplei example. Let ani agenti in statei s1 perceivei the nexti state s2 byi

taking actioni a1, andi gaini a negativei large rewardi by takingi the next i actioni a2 in s2, as

showni in Fig.5.1. In thisi figure, a circle i and an arrowi mean a statei and an actioni,

respectivelyi. For bothi, SARSA methodi and Q-learningi method, asi Q(s2, a2) becomesi a

large negativei value i by the largei negative large i reward, the i agent learnsi that a2 is a bad

selectioni. Moreoveri, in SARSA methodi, becausei Q(s1, a1) also tendsi to becomei a large

negativei value in futurei episodesi, the agenti can learni that a1 isi not a goodi selectioni.

Thereforei, it can avoid i suchi actions and acquirei a better policyi rapidlyi. Insteadi in Q-

learning methodi, because otheri Q-valuesi in s2 arei generallyi larger than i Q(s2, a2), Q(s1, a1)

isi updated without i usingi Q(s2, a2) in thei future episodesi. Hence, thei agent cannoti learn thati

a1 is a badi selection.

 Herei, the Phe-SARSA methodi is proposed ini order to obtain ani optimal policyi

rapidly for problems i with negativei large rewardsi. In this algorithm i, the basic frameworki is

the samei as the SARSAi with a modified updatingi rule for the Qi-valuei in whichi a beliefi

factor is also updatedi. Algorithm 5.4 shows the proposed Phe-SARSA algorithm:

Algorithm 5.4: Phe-SARSA learning

Input: discount factor ϒ, exploration schedule εk

1. Initialize Q function as Q0 ← 0, B ← 0

2. Measure initial state, s0

3. a Є arg maxaQ0(s0,a) with probability 1 – ε0 (exploit)

 a0 ←

 a uniformly random action in A with probability ε0 (explore)

3. for every time step k = 1,2,…….. do

4. apply ak, measure next state sk+1 and reward rk+1

49

5. a Є arg maxaQk(sk,a) with probability 1 - εk (exploit)

 ak ←

 a uniformly random action in A with probability εk (explore)

 apply ak, measure next state ak+1 and reward rk+1

 Update the pheromone value Φ(sk-1) and the pheromone table for the previous state:

 Φ(sk-1) = (ϕs + ϕn + ϕd)e ϕs

 B(s,a) = ∑sЄNa Φ(s)/ ∑σЄNa Φmax(σ)

 Qk+1(sk,ak) = Qk(sk,ak) + αn[rk+1 + ϒmaxa’(Qk(sk+1, a’) + ξB(sk+1,a’)) – Qk(sk,ak)]

 αn = 1/(visitsn(sk,a))

 end for

50

CHAPTER 6

SIMULATION RESULT AND DISCUSSION

A 10 X 10 grid has been taken and initially one agent was trained for various conditions.

The number of agent was gradually increased from one to two and finally to four. The

different environments for which the simulation has been carried out can be broadly

divided into four cases and in each case further variations have been introduced. Different

cases for which the various algorithms have been implemented are as follows:

 Case I: Obstacles: Fixed; Goal: Fixed

 Case I(a): No. of Obstacles : 4

 Case I(b): No. of Obstacles : 8

 Case I(c): No. of Obstacles : 14

 Case II: Obstacles: Fixed and Moving (Both); Goal: Fixed

 Case II(a): No. of Fixed Obstacles : 4; No. of Moving Obstacles: 2

 Case II(b): No. of Fixed Obstacles : 5; No. of Moving Obstacles: 3

 Case III: Obstacles: Fixed; Goal: Moving

 Case III(a): No. of Fixed Obstacles : 4

 Case III(b): No. of Fixed Obstacles : 8

 Case III(c): No. of Fixed Obstacles : 14

 Case IV: Obstacles: Fixed and Moving (Both); Goal: Moving

 Case IV(a): No. of Fixed Obstacles : 4; No. of Moving Obstacles: 2

 Case IV(b): No. of Fixed Obstacles : 5; No. of Moving Obstacles: 3

Agents can move in four durections: up, down, left and right. In all the cases, the starting

location of the agent(s) was the bottom leftmost corner grid and the goal location when

fixed was the top rightmost corner grid. The moving obstacles could move in four

directions: up, down, left and right, and for the goal, it could move in afband of first two

rows as shown by a patch. Termination criterion used for the simulations were:-

 Maximum number of steps in an attempt is 5000.

 Maximum number of attempts is 2500.

51

Reward function that has been taken is :

R(xk, xk+1) = {

where, xk is the current state and xk+1 is the next state.

For each of the various cases stated above, 100 simulations were carried out and the sum

average of these simulations is shown in the graphs between numbers of steps needed to

reach the goal vs. number of attempts.

In the images shown below for paths travelled by the agents have been shown, following

legends was followed:

 --Starting location of Agents

 -- Goal/ End Point for Agents

 -- Fixed Obstacles

 -- Moving Obstacles

Programming Software used – MATLAB 2013a

System Configuration: Pentium (R) Dual – Core @2.10 GHz, 2.00 GB RAM, 32-bit

Operating System

6.1 Single Agent Problem

 For the single agent case, following results was obtained for the various

environmental cases:

6.1.1 Case I: Obstacles Fixed, Goal Fixed

(a) No. of obstacles = 4

Figure 6.1.1 shows the no. of steps required by the agent to reach the goal against the no. of

attempts for a 10X10 grid world with 4 obstacles in the path. For the single agent problem,

two conventional RL methods, Q-learning and SARSA and two hybrid-RL methods, i.e.

RL with ACO, Phe-Q and Phe-SARSA have been simulated.

52

Figure 6.1.1 Plot between no. of steps required to reach the goal and no. of attempts for 1

agent; case I(a)

Figure 6.1.2a, 6.1.2b, 6.1.2c, 6.1.2d shows the grid world with the path traced by the agent

using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for four obstacles in path.

Figure 6.1.2a Path traced for case I(a) Figure 6.1.2b Path traced for case I(a)

by single agent for Q-learning by single agent for SARSA

Figure 6.1.2c Path traced for case I(a) Figure 6.1.2d Path traced for case I(a)

by single agent for Phe-Q by single agent for Phe-SARSA

53

Here, the agent is very much free to move around and the obstacles are fewer as compared

to the cells in which it can move, and hence the path taken by the agent for all the cases are

not same to reach the goal. For all the four algorithms; shortest path has 18 numbers of

steps, but Phe-SARSA reaches the optimal path fast as compared to the other three

methods.

(b) No. of obstacles = 8

Figure 6.1.3 shows the no. of steps required by the agent to reach the goal against the no. of

attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q

and Phe-SARSA have been simulated.

Figure 6.1.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case I(b)

Figure 6.1.4a, 6.1.4b, 6.1.4c, 6.1.4d shows the grid world with the path traced by the agent

using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for eight obstacles in path.

Figure 6.1.4a Path traced for case I(b) Figure 6.1.4b Path traced for case I(b)

by single agent for Q-learning by single agent for SARSA

54

Figure 6.1.4c Path traced for case I(b) Figure 6.1.4d Path traced for case I(b)

by single agent for Phe-Q by single agent for SARSA

Here also the agent is quite to move around and the obstacles are fewer as compared to the

cells to which it can move, and hence the path taken by the agent for all the cases are more

or less same to reach the goal. Thus, for all the four algorithms; the shortest path traced has

the minimum number of steps as 18 but with Phe-SARSA with the least no. of attempts,

this could be found.

(c) No. of obstacles = 14

Figure 6.1.5 shows the no. of steps required by the agent to reach the goal against the no. of

attempts for a 10X10 grid world with 14 obstacles in the path. Two conventional RL

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q

and Phe-SARSA have been simulated.

Figure 6.1.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case I(c)

55

Figure 6.1.6a, 6.1.6b, 6.1.6c, 6.1.6d shows the grid world with the path traced by the agent

using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for fourteen obstacles

placed in the path.

Figure 6.1.6a Path traced for case I(c) Figure 6.1.6b Path traced for case I(c)

by single agent for Q-learning by single agent for SARSA

Figure 6.1.6c Path traced for case I(c) Figure 6.1.6d Path traced for case I(c)

by single agent for Phe-Q by single agent for SARSA

Here, the agent does not have much area to move around and the obstacles are more as

compared to the previous cases, the path taken by the agent for all the cases are same to

reach the goal. To reach the goal in theminimum of 18 steps there are only two possible

paths. For all the four methods used, agents track down the same shortest path route but

with the Phe-SARSA method, the agent could reach the goal with least no. of attempts.

6.1.2 Case II: Obstacles Fixed & Moving (Both), Goal Fixed

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.1.7 shows the no. of steps required by the agent to reach the goal against the no. of

attempts for a 10 X10 grid world with 4 fixed and 2 moving obstacles in the path. Here also

56

four algorithms have been simulated: Q-learning, SARSA, Phe-Q and Phe-SARSA.

Figure 6.1.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case II(a)

Figure 6.1.8a, 6.1.8b shows the grid world with the path traced by the agent using Q-

learning and SARSA, respectively for 4 fixed and 2 moving obstacles placed in the path.

The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in

which the moving obstacles can move are shown using the grey patch.

Figure 6.1.8a Path traced for case II(a) Figure 6.1.8b Path traced for case II(a)

by single agent for Q-learning by single agent for SARSA

The result shows that for such a case the Q-learning and SARSA converges faster to find

their optimal path faster as compared to the hybrid ones. The Phe-Q and Phe-SARSA

methods converge slowly and also the final optimal value found by these methods are very

large as compared to conventiona RL methods. This happens because, with obstacles being

dynamic in nature, the pheromone levels create a confusion to decide over which cell to

57

travel next. This confusion makes the agent to travel in the wrong direction and the overall

steps thus taken to reach the goal are very high.

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.1.9 shows the no. of steps required by the agent to reach the goal against the no. of

attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path. Here also

four algorithms have been simulated: Q-learning, SARSA, Phe-Q and Phe-SARSA.

Figure 6.1.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case II(b)

Figure 6.1.10a, 6.1.10b shows the grid world with the path traced by the agent using Q-

learning and SARSA, respectively for 5 fixed and 3 moving obstacles placed in the path.

The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in

which the moving obstacles can move are shown using the grey patch.

Figure 6.1.10a Path traced for case II(b) Figure 6.1.10b Path traced for case II(b)

by sinle agent for Q-learning by single agent for SARSA

58

The results obtained here are very similar to that for the last case; Q-learning and SARSA

converges faster to find the optimal path as compared to the hybrid ones. The Phe-Q and

Phe-SARSA methods converge slowly and the final optimal value found by theses methods

are very large as compared to conventiona RL methods. With the increase in number of

obstacles, this gap between conventional and hybrid RL algorithm further increases.

6.1.3 Case III: Obstacles Fixed, Goal Moving

(a) No. of fixed obstacles = 4

Figure 6.1.11 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving

randomly for a given set of locations. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.

Figure 6.1.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case III(a)

Various simulations were done for the four algorithms stated for different goal loactions.

Figure 6.1.12a, 6.1.12b, 6.1.12c, 6.1.12d shows the grid world with the path traced by the

agent (when the goal is moving) for different goal loactions and there are 4 obstacles in the

path for Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively.

Simulation has been carried out for an environment, in which the goal is moving, the grey

celles shows the region in which the goal might appear or is moving for various attempts to

reach the goal.

59

Figure 6.1.12a Path traced for case III(a) Figure 6.1.12b Path traced for case III(a)

by single agent for Q-learning by single agent for SARSA

Figure 6.1.12c Path traced for case III(a) Figure 6.1.12d Path traced for case III(a)

by single agent for Phe-Q by single agent for SARSA

Here, for all the four methods the agent is able to find to optimal paths after various number

of attempts. But, Phe-SARSA method is able to find the shortest path for given goal

loactions in the least number of attempts. This is so because, with Phe-SARSA or Phe-Q,

the pheromone levels for the various cells travelled are increased with the number of

attempts. As the number of attempts increases, the agents have an understanding of moving

vertically to reach the bands where goal can be present and then traverse to look for the

actual position of the goal.

(b) No. of fixed obstacles = 8

Figure 6.1.13 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 8 obstacles in the path and the goal is moving in

the first two rows. Four algorithms have been simulated for this case: Q-learning and

SARSA Phe-Q and Phe-SARSA.

60

 Q- Learning -
 SARSA __
 Phe-Q __
 Phe-SARSA _

Figure 6.1.13 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case III(b)

Figure 6.1.14a, 6.1.14b, 6.1.14c, 6.1.14d shows the grid world with the path traced by the

agent when the goal is moving and there are 8 obstacles in the path for Q-learning, SARSA,

Phe-Q and Phe-SARSA.

Figure 6.1.14a Path traced for case III(b) Figure 6.1.14b Path traced for case III(b)

by single agent for Q-learning by single agent for SARSA

Figure 6.1.14c Path traced for case III(b) Figure 6.1.14d Path traced for case III(b)

by single agent for Phe-Q by single agent for SARSA

61

Here also, for all the four methods the agent is able to find to optimal paths after various

number of attempts. But, Phe-SARSA method is able to find the shortest path for given

goal loactions in the least number of attempts. This is so because, with Phe-SARSA or Phe-

Q, the pheromone levels for the various cells travelled are increased with the number of

attempts. As the number of attempts increases, the agents have an understanding of moving

vertically to reach the bands where goal can be present and then traverse to look for the

actual position of the goal.

(c) No. of fixed obstacles = 14

Figure 6.1.15 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 15 obstacles in the path and the goal is moving in

the first two rows. Four algorithms have been simulated for this case: Q-learning and

SARSA Phe-Q and Phe-SARSA.

Figure 6.1.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case III(c)

Figure 6.1.16a, 6.1.16b, 6.1.16c, 6.1.16d shows the grid world with the path traced by the

agent when the goal is moving and there are 14 obstacles in the path for Q-learning,

SARSA, Phe-Q and Phe-SARSA, respectively.

It can be seen from the results obtained that for all the four methods the agent is able to find

to optimal paths after various number of attempts. But, phe-sarsa method is able to find the

shortest path for given goal loactions in the least number of attempts. This is so because,

with Phe-SARSA or Phe-Q, the pheromone levels for the various cells travelled are

62

Figure 6.1.16a Path traced for case III(c) Figure 6.1.16b Path traced for case III(c)

by single agent for Q-learning by single agent for SARSA

Figure 6.1.16c Path traced for case III(c) Figure 6.1.16d Path traced for case III(c)

by single agent for Phe-Q by single agent for SARSA

increased in the number of attempts. As the number of attempts increases, the agents have

an understanding of moving vertically to reach the bands where goal can be present and

then traverse to look for the actual position of the goal.

6.1.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.1.17 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 4 fixed and 4 moving obstacles in the path and the

goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.

The agent could reach the goal for all the four methods, but SARSA converges first and

obtains an optimal path. As the system dynamics increases in ters of moving obstacles, the

Phe-Q and Phe-SARSA takes a longer path to reach to the goal as compared to Q-learning

63

Figure 6.1.17 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case IV(a)

and SARSA, this is so because with goals and obstacles both moving, the pheromone level

deposited are almost evenly distributed in the plane and the agent is not able to judge which

path to take. Pheromone of almost same levels in the cells creates confusion for the agent

and hence even after many attepmts, the agent is not able to reach the optimal path as

obtained by the Q- learning or SARSA.

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.1.18 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the

Figure 6.1.18 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case IV(b)

64

goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.

Upon increasing both the number of fixed and moving obstacles, the convergence for the

Phe-Q and Phe-SARSA becomes poorer as compared to the other two conventional RL

methods. This is so because with the increase in system dynamics there is also less freedom

for the agents to move and explore around. As the agent is nnot able to explore the space

properly, it traces the same worng path again and again and thus ending up for quite high

number of steps to reach the goal.

A comparative analysis for the computational time for each of the cases for all four

algorithms is provided in following table:

Table 6.1 Computational Time for the Single Agent Problem for the four algorithms

simulated

The computation table shows that the SARSA takes the least time of computation out of all

the four algorithms used. Q-learning is slower than SARSA because for Q-learning for the

Q updation formula, we use a maximum function which uses more memory for

computation whereas in SARSA such a function is not required. The overall time

compuatation for the Phe-Q or Phe-SARSA is around two times that of the convetional RL,

this is so becase for theses methods the ant needs to reach the goal and come back again to

the initial starting location before the next simulation is carried out.

65

6.2 Two Agents Problem

 For the two agents problem, following results was obtained for the various

environmental cases:

6.2.1 Case I: Obstacles Fixed, Goal Fixed

(a) No. of obstacles = 4

Figure 6.2.1 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 4 obstacles in the path. For the two agents

problem, two conventional RL methods; Q-learning and SARSA and four hybrid-RL

methods; RL with ACO, Phe-Q and Phe-SARSA and RL with PSO; Q-Swarm and

SARSA-Swarm have been simulated.

Figure 6.2.1 Plot between no. of steps required to reach the goal and no. of attempts for 2 agents;

case I(a)

Figure 6.2.2a, 6.2.2b, 6.2.2c, 6.2.2d, 6.2.2e, 6.2.2f shows the grid world with the path

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

SARSA-Swarm, respectively for four obstacles placed the path. Blue and green lines show

the paths traced by agent 1 and agent 2, respectively.

Here, the agents are very much free to move around and the obstacles are fewer as

compared to the cells in which it can move. Thus, for all the six algorithms; the shortest

path traced has the minimum number of steps as 19, but SARSA-Swarm reaches the

optimal path for the minimum number of steps. From the above results, it can be seen that

66

Figure 6.2.2a Path traced for case I(a) Figure 6.2.2b Path traced for case I(a)

by two agents for Q-learning by two agents for SARSA

Figure 6.2.2c Path traced for case I(a) Figure 6.2.2d Path traced for case I(a)

by two agents for Phe-Q by two agents for Phe-SARSA

Figure 6.2.2e Path traced for case I(a) Figure 6.2.2f Path traced for case I(a)

by single agent for Q-Swarm by single agent for SARSA-Swarm

for the Q-learning and SARSA, both the agents find path independently and thus the paths

found are not near to each other as there is no coordination between the agents, and hence

also takes more time to reach the optimal path. For the Phe-Q and Phe-SARSA, there is a

kind of indirect interaction between the agents, as the pheromone trail left by an agent will

be used as a guidance for both the agents and thus near the starting locations and the goal

67

loacation, both the agents follow the same path. For the Q-Swarm and SARSA-Swarm as

the coordination between the agents is present, hence for these methods the optimal path

was found for least number of attempts. Also, it can be seen that agents move in a swarm

and are quite close to each other while reaching the goal.

(b) No. of obstacles = 8

Figure 6.2.3 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL

methods; Q-learning and SARSA and four hybrid-RL methods, i.e. RL with ACO; Phe-Q

and Phe-SARSA and RL with PSO; Q-Swarm and SARSA-Swarm have been simulated.

Figure 6.2.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case I(b)

Figure 6.2.4a, 6.2.4b, 6.2.4c, 6.2.4d, 6.2.4e, 6.2.4f shows the grid world with the path

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

SARSA-Swarm, respectively for eight obstacles placed the path.

Here also the agents are very free to move around and the obstacles are few as compared to

the cells in which it can move. Thus, for all the six algorithms; the shortest path traced has

the minimum number of steps as 19, but SARSA-Swarm reaches the optimal path for the

minimum number of steps. Similar results have been obtained here as the previous one with

4 obstacles in the path. But with the increase in the number of obstacles in the path, there

are more restrictions for the agents to move around and hence it takes more attempts for the

agents to reach the optimal path as compared to the previous case.

68

Figure 6.2.4a Path traced for case I(b) Figure 6.2.4b Path traced for case I(b)

by two agents for Q-Learning by two agents for SARSA

Figure 6.2.4c Path traced for case I(b) Figure 6.2.4d Path traced for case I(b)

by two agents for Phe-Q by two agents for Phe-SARSA

Figure 6.2.4e Path traced for case I(b) Figure 6.2.4f Path traced for case I(b)

by two agents for Q-Swarm by two agents for SARSA-Swarm

(c) No. of obstacles = 14

Figure 6.2.5 shows the same case with more obstacles in the path. Simulations have been

done for Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm for 14

obstacles placed in the path to reach goal.

69

Figure 6.2.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case I(c)

Figure 6.2.6a, 6.2.6b, 6.2.6c, 6.2.6d, 6.2.6e, 6.2.6f shows the grid world with the path

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

SARSA-Swarm, respectively for fifteen obstacles placed the path.

Figure 6.2.6a Path traced for case I(c) Figure 6.2.6b Path traced for case I(c)

by two agents for Q-Learning by two agents for SARSA

Figure 6.2.6c Path traced for case I(c) Figure 6.2.6d Path traced for case I(c)

by two agents for Phe-Q by two agents for Phe-SARSA

70

Figure 6.2.6e Path traced for case I(c) Figure 6.2.6f Path traced for case I(c)

by two agents for Q-Swarm by two agents for SARSA-Swarm

Here, the agents are not free to move around and the obstacles are quite in number as

compared to the cells in which it can move. For all the four algorithms; the shortest path

traced has the minimum number of steps as 19, but SARSA-Swarm reaches the optimal

path for the minimum number of steps. Here, it can be seen that the path taken the agents

are similar in nature, this is so because there are only two paths for which the optimal

number steps could be possible. With the increase in the number of obstacles in the path,

there are more restrictions for the agents to move around and hence it takes more attempts

for the agents to reach the optimal path as compared to the previous case.

6.2.2 Case II: Obstacles Fixed & Moving (Both), Goal Fixed

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.2.7 shows the no. of steps required by the agents to reach the goal against the no.

Figure 6.2.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case II(a)

71

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path. For this

case six methods have been simulated: two conventional RL methods; Q-learning and

SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL

with Swarm; Q-Swarm and SARSA- Swarm.

Figure 6.2.8a, 6.2.8b shows the grid world with the path traced by the agents using Q-

learning and SARSA, respectively for 4 fixed and two moving obstacles placed in the path.

The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in

which the moving obstacles can move are shown using the grey patch.

Figure 6.2.8a Path traced for case II(a) Figure 6.2.8b Path traced for case II(a)

by two agents for Q-learning by two agents for SARSA

The result shows that for such a case the Q-learning and SARSA find the optimal path

faster as compared to the hybrid ones. Q-swarm and SARSA-swarm still simulates to reach

to an optimal path but Phe-Q and Phe-SARSA are not able to find this optimal path. The

optimal steps value obtaind in these methods is higher than the rest of the four methods.

This is so because the Phe-Q and Phe-SARSA uses the pheromone level of each grid into

account and with moving obstacles in the path, the pheromone level might misguide the

agent to take a path which has does not have obstacles for current simulation but might

have for the next one. Whereas in the swarm methods, they agents work collectively to

reach the goal and in the process of reaching the goal do not alter the environment as with

the pheromone algorithms do.

 (b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.2.9 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path. For this

72

case six methods have been simulated: two conventional RL methods; Q-learning and

SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL

with Swarm; Q-Swarm and SARSA- Swarm.

Figure 6.2.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case II(b)

Figure 6.2.10a, 6.2.10b, 6.2.10c, 6.2.10d, shows the grid world with the path traced by the

agents using Q-learning, SARSA, Q-Swarm and SARSA-Swarm, respectively for 5 fixed

and 3 moving obstacles placed in the path. The fixed obstacles are shown by black

hexagons and the moving ones by blue. The cells in which the moving obstacles can move

are shown using the grey patch.

Figure 6.2.10a Path traced for case II(b) Figure 6.2.10b Path traced for case II(b)

by two agents for Q-learning by two agents for SARSA

The results obatined are similar to the previous case. Though agent could reach the goal for

all the methods, Q-learning and SARSA find the optimal path faster as compared to the

73

hybrid ones. Q-swarm and SARSA-swarm still simulates to reach to an optimal path but

Phe-Q and Phe-SARSA are not able to find this optimal path. The optimal steps value

obtaind in these methods is higher than the rest of the four methods. Also, on increasing the

number of fixed and moving obstacles, the optimal value reached by Phe-Q and Phe-

SARSA are very high than the rest of the four methods.

6.2.3 Case III: Obstacles Fixed, Goal Moving

(a) No. of fixed obstacles = 4

Figure 6.2.11 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving in

the first two rows. Six algorithms have been simulated for this case: Q-learning, SARSA,

Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.2.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for

2 agents; case III(a)

Figure 6.2.12a, 6.2.12b, 6.2.12c, 6.2.12d, 6.2.12e, 6.2.12f shows the grid world with the

path traced by the agents when the goal is moving and there are 4 obstacles in the path for

Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Here, for all the six methods the agents are able to find to optimal paths after various

number of attempts. But, SARSA-swarm method is able to find the shortest path for any

given goal loactions in the least number of attempts. This is so because, SARSA-swarm or

Q-swarm, the agents coordinate with each other to tell the possible locations of the goal.

74

The global maxima is thus here not for a particular cell, but for all the cells for which goal

could possibly be present. As the number of attempts increases, the agents have an

understanding of moving vertically to reach the bands where goal can be present and then

traverse to look for the actual position of the goal.

The moving goal area is represented by the grey covered region.

Figure 6.2.12a Path traced for case III(a) Figure 6.2.12b Path traced for case III(a)

by two agents for Q-learning by two agents for SARSA

Figure 6.2.12c Path traced for case III(a) Figure 6.2.12d Path traced for case III(a)

by two agents for Phe-Q by two agents for Phe-SARSA

Figure 6.2.12c Path traced for case III(a) Figure 6.2.12d Path traced for case III(a)

by two agents for Q-Swarm by two agents for SARSA-Swarm

75

(b) No. of fixed obstacles = 8

Figure 6.2.13 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a10X10 grid world with 8 obstacles in the path and the goal is moving in the

first two rows. Six algorithms have been simulated for this case: Q-learning and SARSA

Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.2.13 Plot between No. of Steps required to reach the Goal and No. of Attempts for

2 agents; case III(b)

Figure 6.2.14a, 6.2.14b, 6.2.14c, 6.2.14d, 6.2.14e, 6.2.14f shows the grid world with the

path traced by the agents when the goal is moving and there are 8 obstacles in the path for

Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

The moving goal area is represented by the grey covered region.

Figure 6.2.14a Path traced for case III(b) Figure 6.2.14b Path traced for case III(b)

by two agents for Q-learning by two agents for SARSA

76

Figure 6.2.14c Path traced for case III(b) Figure 6.2.14d Path traced for case III(b)

by two agents for Phe-Q by two agents for Phe-SARSA

Figure 6.2.14e Path traced for case III(b) Figure 6.2.14f Path traced for case III(b)

by two agents for Q-Swarm by two agents for SARSA-Swarm

Here also, for all the six methods the agents are able to find to optimal paths after various

number of attempts. But, SARSA-swarm method is able to find the shortest path for any

given goal loactions in the least number of attempts. On increasing the number of obstacles

present in the path, it takes more attempts for all the methods to their own optimal values.

(c) No. of fixed obstacles = 14

Figure 6.2.15 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 14 obstacles in the path and the goal is moving in

the first two rows. Six algorithms have been simulated for this case: the two conventional

reinforcement algorithms: Q-learning and SARSA, four hybrid algorithms, RL with ACO:

Phe-Q and Phe-SARSA and RL with PSO: Q-Swarm and SARSA-Swarm.

77

Figure 6.2.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for

2 agents; case III(c)

Figure 6.2.16a, 6.2.16b, 6.2.16c, 6.2.16d, 6.2.16e, 6.2.16f shows the grid world with the

path traced by the agents when the goal is moving and there are 8 obstacles in the path for

Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.2.16a Path traced for case III(c) Figure 6.2.16b Path traced for case III(c)

by two agents for Q-learning by two agents for SARSA

Figure 6.2.16c Path traced for case III(c) Figure 6.2.16d Path traced for case III(c)

by two agents for Phe-Q by two agents for Phe-SARSA

78

Figure 6.2.16e Path traced for case III(c) Figure 6.2.16f Path traced for case III(c)

by two agents for Q-Swarm by two agents for SARSA-Swarm

Here also, for all the six methods the agents are able to find to optimal paths after various

number of attempts. But, SARSA-swarm method is able to find the shortest path for any

given goal loactions in the least number of attempts. With the increase in the number of

obstacles present in the path, it takes more attempts for all the methods to their own optimal

values. It was also observed that with the normal RL methods the agent may take any

random path independent of what other agent is moving. For Phe-Q and Phe-SARSA

methods, usually near the starting location and near the end location, agents take same path.

This is because of the high pheromone levels. With the Q-Swarm and SARSA-Swarm

methods, the agents try to follow each others steps and try to move in a connected group or

swarm.

6.2.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.2.17 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path and the

goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Comparing the six methods, as the system dynamics increases and the obstacles also started

to move, SARSA-Swarm and Q-Swarm converges to obtain an optimal path, but the former

converges first. Q-learning, SARSA, Phe-Q and Phe-SARSA also converge to find some

solution but they do not reach to find the optimal solution in this case.

79

Figure 6.2.17 Plot between No. of Steps required to reach the Goal and No. of Attempts for

2 agents; case IV(a)

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.2.18 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the

goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.2.18 Plot between No. of Steps required to reach the Goal and No. of Attempts for

2 agents; case IV(b)

Comparing the six methods, as the system dynamics increases and the obstacles also started

to move, SARSA-Swarm and Q-Swarm converges to obtain an optimal path, but the former

converges first. Q-learning, SARSA, Phe-Q and Phe-SARSA also converge to find some

solution but they do not reach to find the optimal solution in this case.

80

A comparative analysis for the computation time taken be all the six algorithms for the

different cases simulated is provided in the table 6.2.

Table 6.2 Compuational Time for the Two Agent Problem for the six algorithms simulated

The computation table shows that the SARSA computed fastest out of all the six algorithms

used. Q-learning is slower than SARSA because for Q-learning for the Q updation formula,

we use a max function which uses more memory for computation whereas in SARSA such

a function is not required. The overall time compuatation for the Phe-Q or Phe-SARSA is

around two times that of the convetional RL, this is so becase for theses methods the ant

needs to reach the goal and come back again to the initial starting location before the next

simulation is carried out. For the swarm algorithms, as the number of parameters that needs

to be calculated increases, for each attempt run the velocity parameters, global and personal

best Q values are calculated and also updated. This increases the overall time of simulation

for the swarm algorithms.

6.3 Four Agents Problem

 For the four agent case, following results was obtained for the various

environmental cases:

6.3.1 Case I: Obstacles Fixed, Goal Fixed

(a) No. of obstacles = 4

Figure 6.3.1 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10 X 10 grid world with 4 obstacles in the path. For the four agents

81

problem, two conventional RL methods; Q-learning and SARSA and four hybrid-RL

methods; RL with ACO, Phe-Q and Phe-SARSA and RL with PSO; Q-Swarm and

SARSA-Swarm have been simulated.

Figure 6.3.1 Plot between no. of steps required to reach the goal and no. of attempts for 4

agents; case I(a)

Figure 6.3.2a, 6.3.2b, 6.3.2c, 6.3.2d, 6.3.2e, 6.3.2f shows the grid world with the path

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

SARSA-Swarm, respectively for four obstacles placed the path. For the four agents, the

starting point is made different. They all start at different but nearby loactions to reach the

common goal.

Green, red, black and blue lines paths traced by agent 1, agent 2, agent 3 and agent 4,

respectively.

Figure 6.3.2a Path traced for case I(a) Figure 6.3.2b Path traced for case I(a)

by four agents for Q-learning by four agents for SARSA

82

Figure 6.3.2c Path traced for case I(a) Figure 6.3.2d Path traced for case I(a)

by four agents for Phe-Q by four agents for Phe-SARSA

Figure 6.3.2e Path traced for case I(a) Figure 6.3.2f Path traced for case I(a)

by four agents for Q-Swarm by four agents for SARSA-Swarm

Here, the agents are very much free to move around and the obstacles are fewer as

compared to the cells in which it can move. Thus, for all the four algorithms; the shortest

path traced has the minimum number of steps as 22, but SARSA-Swarm reaches the

optimal path for the minimum number of steps. From the above results, it can be seen that

for the Q-learning and SARSA, both the agents find path independently and thus the paths

found are not near to each other as there is no coordination between the agents, and hence

also takes more time to reach the optimal path. For the Phe-Q and Phe-SARSA, there is a

kind of indirect interaction between the agents, as the pheromone trail left by an agent will

be used as a guidance for both the agents and thus near the starting locations and the goal

loacation, both the agents follow the same path. For the Q-Swarm and SARSA-Swarm as

the coordination between the agents is present, hence for these methods the optimal path

was found for least number of attempts. Also, it can be seen that agents move in a swarm

and are quite close to each other while reaching the goal.

83

 (b) No. of obstacles = 8

Figure 6.3.3 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q

and Phe-SARSA have been simulated.

Figure 6.3.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case I(b)

Figure 6.3.4a, 6.3.4b, 6.3.4c, 6.3.4d, 6.3.4e, 6.3.4f shows the grid world with the path

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

SARSA-Swarm, respectively for eight obstacles placed the path. Different coloured lines

indicate the path travelled by the different agents.

Figure 6.3.4a Path traced for case I(b) Figure 6.3.4b Path traced for case I(b)

by four agents for Q-Learning by four agents for SARSA

84

Figure 6.3.4c Path traced for case I(b) Figure 6.3.4d Path traced for case I(b)

by four agents for Phe-Q by four agents for Phe-SARSA

Figure 6.3.4e Path traced for case I(b) Figure 6.3.4f Path traced for case I(b)

by four agents for Q-Swarm by four agents for SARSA-Swarm

Here also the agents are very free to move around and the obstacles are few as compared

tothe cells in which it can move. Thus, for all the six algorithms; the shortest path traced

has the minimum number of steps as 22, but SARSA-swarm reaches the optimal path for

the minimum number of steps. Similar results have been obtained here as the previous one

with 4 obstacles in the path. But with the increase in the number of obstacles in the path,

there are more restrictions for the agents to move around and hence it takes more attempts

for the agents to reach the optimal path as compared to the previous case.

(c) No. of obstacles = 14

Figure 6.3.5 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 14 obstacles in the path. Two conventional RL

methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q

and Phe-SARSA have been simulated.

85

Figure 6.3.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case I(c)

Figure 6.3.6a, 6.3.6b, 6.3.6c, 6.3.6d, 6.3.6e, 6.3.6f shows the grid world with the path

traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

SARSA-Swarm, respectively for fifteen obstacles placed the path.

Figure 6.3.6a Path traced for case I(c) Figure 6.3.6b Path traced for case I(c)

by four agents for Q-Learning by four agents for SARSA

Figure 6.3.6c Path traced for case I(c) Figure 6.3.6d Path traced for case I(c)

by four agents for Phe-Q by four agents for Phe-SARSA

86

Figure 6.3.6e Path traced for case I(c) Figure 6.3.6f Path traced for case I(c)

by four agents for Q-Swarm by four agents for SARSA-Swarm

Here, the agents are not free to move around and the obstacles are quite in number as

compared to the cells in which it can move. For all the six algorithms; the shortest path

traced has the minimum number of steps as 22, but SARSA-Swarm reaches the optimal

path for the minimum number of steps. Here, it can be seen that the path taken the agents

are similar in nature, this is so because there are only two paths for which the optimal

number steps could be possible. With the increase in the number of obstacles in the path,

there are more restrictions for the agents to move around and hence it takes more attempts

for the agents to reach the optimal path as compared to the previous case.

6.3.2 Case II: Obstacles Fixed & Moving (Both), Goal Fixed

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.3.7 shows the no. of steps required by the agents to reach the goal against the no.

Figure 6.3.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case II(a)

87

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path. For this

case six methods have been simulated: two conventional RL methods; Q-learning and

SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL

with Swarm; Q-Swarm and SARSA- Swarm.

The result shows that for such a case the SARSA-swarm finds the optimal path for the least

number of attempts as compared to the other four algorithms. Also, the Q-learning and the

SARSA methods do converge to this optimal number of steps but takes more attempts to

reach this optimal solution. This is so because in the Q-swarm and SARSA-swarm the

agents coordinate with each other and the Q values updated uses both the individual best

performance and also the best peroformance among the group. As compared to these

methods, the Phe methods do not converge to the optimal values of steps, this is so because

in the Phe methods the ants lay pheromone to the various cells they travelled and due to

moving obstacles in the path, this pheromone level distributed is quite even and this causes

confusion for the agents to travel to the next cell.

(b) No. of fixed obstacles = 4; No. of moving obstacles = 8

Figure 6.3.8 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 4 fixed and 8 moving obstacles in the path. For this

case six methods have been simulated: two conventional RL methods; Q-learning and

SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL

with Swarm; Q-Swarm and SARSA- Swarm.

Figure 6.3.8 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case II(b)

88

The result obtained here is similar to the previous case, and here also SARSA-swarm finds

the optimal path for the least number of attempts as compared to the other four algorithms.

Also, the Q-learning and the SARSA methods do converge to this optimal number of steps

but takes more attempts to reach this optimal solution. As compared to these methods, the

Phe methods do not converge to the optimal values of steps. With increase in the number of

obstacles in the path both stationary and the moving ones the overall steps required to reach

the goal increases. This difference between steps for swarm methods and Phe methods also

increases.

6.2.3 Case III: Obstacles Fixed, Goal Moving

(a) No. of fixed obstacles = 4

Figure 6.3.9 shows the no. of steps required by the agent to reach the goal against the no. of

attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving in the

first two rows. Six algorithms have been simulated for this case: Q-learning and SARSA

Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case III(a)

Figure 6.3.10a, 6.3.10b, 6.3.10c, 6.3.10d shows the grid world with the path traced by the

agents when the goal is moving and there are 4 obstacles in the path for Phe-Q, Phe-

SARSA, Q-Swarm and SARSA-Swarm, respectively.

89

Figure 6.3.10a Path traced for case III(a) Figure 6.3.10b Path traced for case III(a)

by four agents for Phe-Q by four agents for Phe-SARSA

Figure 6.3.10c Path traced for case III(a) Figure 6.3.10d Path traced for case III(a)

by four agents for Q-Swarm by two four for SARSA-Swarm

Here, for all the six methods, conventional RL methods are not able to find any optimal

paths and they diverge and reach the maximum steps per attempt criterion for termination.

Since, there is no coordination between the agents so they are not able to reach to a

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least

number of attempts. This is so because, SARSA-swarm or Q-swarm, the agents coordinate

with each other to tell the possible locations of the goal. The global maxima is thus here not

for a particular cell, but for all the cells for which goal could possibly be present. As the

number of attempts increases, the agents have an understanding of moving vertically to

reach the bands where goal can be present and then traverse to look for the actual position

of the goal. Phe methods also finds the optimal paths for the given case. It can be seen that

mostly, the agents follow the same paths for Phe methods when near to the starting location

or goal. This is so because the pheromone level is concentrated for few cells only in these

90

regions but for other cells they a little bit distributed.

(b) No. of fixed obstacles = 8

Figure 6.3.11 shows the no. of steps required by the agents to reach the goal against the no.

of attempts for a 10X10 grid world with 8 obstacles in the path and the goal is moving in

the first two rows. Six algorithms have been simulated for this case: Q-learning and

SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for

4 agents; case III(b)

Figure 6.3.12a, 6.3.12b, 6.3.12c, 6.3.1d shows the grid world with the path traced by the

agents when the goal is moving and there are 8 obstacles in the path for Phe-Q, Phe-

SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.12a Path traced for case III(b) Figure 6.3.12b Path traced for case III(b)

by four agents for Phe-Q by four agents for Phe-SARSA

91

Figure 6.3.12c Path traced for case III(b) Figure 6.3.12d Path traced for case III(b)

by four agents for Q-Swarm by four agents for SARSA-Swarm

Here also for all the six methods, conventional RL methods are not able to find any optimal

paths and they diverge and reach the maximum steps per attempt criterion for termination.

Since, there is no coordination between the agents so they are not able to reach to a

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least

number of attempts. With the increase in the number of obstacles in the path, the

convergence to fins the optimal path requires more number of attempts. This is happens

because as the number of obstacles increases, the agents are not able to explore the grid

world that efficiently.

(c) No. of fixed obstacles = 14

Figure 6.3.13 shows the no. of steps required by the agents to reach the goal against the no.

Figure 6.3.13Plot between No. of Steps required to reach the Goal and No. of Attempts for

4 agents; case III(c)

92

of attempts for a 10X10 grid world with 14 obstacles in the path and the goal is moving in

the first two rows. Six algorithms have been simulated for this case: Q-learning and

SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.14a, 6.3.14b, 6.3.14c, 6.3.14d shows the grid world with the path traced by the

agents when the goal is moving and there are 15 obstacles in the path for Phe-Q, Phe-

SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.14a Path traced for case III(c) Figure 6.3.14d Path traced for case III(c)

by four agents for Phe-Q by four agents for Phe-SARSA

Figure 6.3.14c Path traced for case III(c) Figure 6.3.14f Path traced for case III(c)

by four agents for Q-Swarm by four agents for SARSA-Swarm

Here also for all the six methods, conventional RL methods are not able to find any optimal

paths and they diverge and reach the maximum steps per attempt criterion for termination.

Since, there is no coordination between the agents so they are not able to reach to a

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least

number of attempts. With the increase in the number of obstacles in the path, the

convergence to fins the optimal path requires more number of attempts. This is happens

93

because as the number of obstacles increases, the agents are not able to explore the grid

world that efficiently.

6.3.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving

(a) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.3.15 shows the no. of steps required by the agent to reach the goal against the no.

Figure 6.3.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for

4 agents; case IV(a)

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path and the

goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Here, for all the six methods, conventional RL methods are not able to find any optimal

paths and they diverge and reach the maximum steps per attempt criterion for termination.

Since, there is no coordination between the agents so they are not able to reach to a

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least

number of attempts. This is so because, SARSA-swarm or Q-swarm, the agents coordinate

with each other to tell the possible locations of the goal. The global maxima is thus here not

for a particular cell, but for all the cells for which goal could possibly be present. As the

number of attempts increases, the agents have an understanding of moving vertically to

reach the bands where goal can be present and then traverse to look for the actual position

of the goal. Phe methods also finds the optimal paths for the given case. It can be seen that

94

mostly, the agents follow the same paths for Phe methods when near to the starting location

or goal. This is so because the pheromone level is concentrated for few cells only in these

regions but for other cells they a little bit distributed.

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.3.16 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the

goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA.

Figure 6.3.16 Plot between No. of Steps required to reach the Goal and No. of Attempts for

4 agents; case IV(b)

Here also for all the six methods, conventional RL methods are not able to find any optimal

paths and they diverge and reach the maximum steps per attempt criterion for termination.

Since, there is no coordination between the agents so they are not able to reach to a

commom goal. The other four methods are able to find the optimal path. But, SARSA-

swarm method is able to find the shortest path for any given goal loactions in the least

number of attempts. With the increase in the number of obstacles in the path, the

convergence to fins the optimal path requires more number of attempts. This is happens

because as the number of obstacles increases, the agents are not able to explore the grid

world that efficiently.

A comparative analysis for the computation time taken be all the six algorithms for the

different cases simulated is provided in the following table:

95

Table 6.3 Compuational Time for the Four Agent Problem for the six algorithms simulated

The computational time table shows that the SARSA computed fastest out of all the six

algorithms used when the obstacles and goal both are fixed. Q-learning is slower than

SARSA because for Q-learning for the Q updation formula, we use a max function which

uses more memory for computation whereas in SARSA such a function is not required. The

cases with dynamic obstacles or goal, conventional RL methods fail to reach the goal and

hence infinite time to reach to goal. The overall time compuatation for the Phe-Q or Phe-

SARSA is around two times that of the convetional RL, this is so becase for theses methods

the ant needs to reach the goal and come back again to the initial starting location before

the next simulation is carried out. For the swarm algorithms, as the number of parameters

that needs to be calculated increases, for each attempt run the velocity parameters, global

and personal best Q values are calculated and also updated. This increases the overall time

of simulation for the swarm algorithms.

96

CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE OF WORK

 This chapter discusses the main conclusions drawn out of this thesis work and

outlines the scope of future research work in the same context.

 7.1 MAIN CONCLUSIONS

 In this thesis, study has been performed for optimal path planning for a system

having one, two and four agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm

and SARSA-Swarm methods. Various cases were taken where the obstacles introduced in

the path were fixed and also later moving obstacles were introduced which kept on moving

during the path navigation of the agent. For some cases, the goal was also made to move for

a set of locations; the goal was fixed for an attempt and once the agent reaches the goal, for

the next attempt the goal location was changed.

 For single agent problem, when the obstacles and goal locations were fixed, all

the methods stated converged to give an optimal path for 18 steps but the Phe-SARSA

method gave the best convergence characteristics. In terms of computational time, SARSA

method took least time for the simulation. When two and four agents were made to navigate

in the same situations, SARSA-Swarm gave the best convergence characteristics. For two

agents, the optimal path was found with 19 steps and for four agents, it was found to be 22

steps.

 When the moving obstacles were introduced in the environment, SARSA gave

the best convergence characteristics for single agent problem and also took the least

computational time. The optimal number of steps to reach the goal for the single agent was

about 50 for the Q-learning and SARSA methods and about 190 for the Phe-Q and Phe-

SARSA methods. For the same cases, when two agents were made to navigate, SARSA-

Swarm gave the best convergence characteristics. The optimal number of steps to reach the

goal was about 60 for the Q-learning and SARSA, about 100 for the Q-Swarm and SARSA-

Swarm and about 200 for the Phe-Q and Phe-SARSA. For the four agents problem,

SARSA-Swarm gave the best convergence characteristics and the least computational time.

97

Q-learning, SARSA, Phe-Q and Phe-SARSA initially diverged as number of attempts

increases and finally converged to a value of about 1000 steps for Phe-Q and Phe-SARSA

and about 300 steps for Q-learning and SARSA. Q-Swarm and SARSA-Swarm methods

also converged to a value of about 300 steps.

 For the environment which had a moving goal, when one agent was made to

navigate and search for goal, the optimal paths to reach the goal was 9-25 steps for all the

four methods: Q-learning, SARSA, Phe-Q and Phe-SARSA. The best convergence

characteristic was obtained using Phe-SARA but the computational time was obtained for

SARSA. For the two agents problem, same cases were simulated to obtain optimal paths

with 17-53 steps and best convergence characteristics were obtained by SARSA-swarm

method. For the four agents problem, again in the same situations, optimal paths were

obtained with 87-110 steps and here also best convergence characteristics were obtained by

SARAS-swarm method. The conventional RL methods did not converge and failed to reach

the goal as the number of attempt were increased.

 When the simulation was carried out for an environment with both moving

obstacles and moving goal, for single agent problem optimal path was found with about

250-500 steps for Phe-Q and Phe-SARSA and about 220-300 steps for Q-Swarm and

SARSA-Swarm. For the single agent problem, best convergence characteristics and least

computational time were obtained by SARSA method. For two agents problem in the same

environment, it took about 400-450 steps for Q-Swarm and SARSA-Swarm methods and

about 600-700 steps for the Phe-Q and Phe-SARSA methods, but best convergence

characteristics were obtained using SARSA-swarm. Q-learning and SARSA methods

diverged and the agents were not able to find the goal and hence diverged. For the four

agent problem, in the same environment it took about 500 steps for Phe-Q, Phe-SARSA, Q-

Swarm and SARSA-Swarm methods whereas Q-learning and SARSA methods failed to

reach the goal. Best convergence results and least computational time were obtained using

SARSA-swarm method.

 In the cases of fixed obstacles; Phe-Q, Phe-SARSA, Q-Swarm and SARSA-

Swarm methods always gave the better results over the Q-learning and SARSA methods.

When both the obstacles and goal were kept moving, SARSA gave the best convergence

98

characteristics for single agent and SARSA-swarm method for multiagent problems. In

those cases also, the Phe-Q and Phe-SARSA were able to find the goal. In multi-agent

problem, when the goal was made moving the Q-learning and SARSA sometimes where not

able to reach to goal. In these cases also, the Phe-Q, Phe-SARSA, Q-Swarm and SARSA-

Swarm were alge to reach the goal.

7.2 FUTURE SCOPE OF WORK

 The problem in this thesis was made for a fully deterministic environment, but

many a times it is difficult to obtain a fully deterministic environment; for such a case the Q-

value updation rule needs to take the probability of the outcome. This problem could be

solved by using neural network methods and self organizing maps as this will require a

mapping from the input action to the available outputs that are possible.

 For the path finding problem in an unknown and dynamic environment it

becomes very essential for the agnet to learn the model of the system and nature of the

dynamics that exist in the system. The convetional RL mehods use a particular set of

learning rate and the exploration rate which affects the update rule for Q-function. These

parameters need to optimized for a particular set of problem. These parameters could be

optimized using bioinspired algorithms Genertic Algorithm and Fire-Fly algorithms as these

methods have proven to be good optimization techniques.

99

REFERENCES

[1] M. C. Cammaerts-Tricot, J. C. Verhaeghe, “Ontogenesis of trail pheromone production

and trail following behaviour in the workers of Myrmica rubra L. (Hymenoptera:

Formicidae)”. Springer-Verlag, Journal of Insectes Sociaux, Vol. 21, Issue 3, pp 275-282,

1974.

[2] D. P. Bertsekas and S. E. Shreve, “Stochastic Optimal Control: The Discrete Time

Case”. Academic Press, 1978.

[3] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels, “Self-organized Shortcuts in the

Argentine Ant”. Springer-Verlag, Vol. 76, Issue 12, pp 579-581, 1989.

[4] Christopher J.C.H. Watkins, Peter Dayan, “Technical Note: Q-Learning”, Machine

Learning Journal, Vol. 8, Issue 3-4 , pp 279-292, 1992.

[5] M. Dorigo, “Optimization, Learning and Natural Algorithms”, PhD thesis, Politecnico di

Milano, Italy, 1992.

[6] Michael L. Littman., “Markov games as a framework for multi-agent reinforcement

learning”. Proceedings of the Eleventh International Conference on Machine Learning, pp

157-163, 1994.

[7] M. L. Puterman, “Markov Decision Processes—Discrete Stochastic Dynamic

Programming”. Wiley, 1994.

[8] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist systems”,

Cambridge University Engineering Department, UK. , 1994

[9] L. R. Leerink, S. R. Schultz, and M. A. Jabri, “A reinforcement learning exploration

strategy based on ant foraging mechanisms”, Proceedings of the Sixth Australian

Conference on Neural Networks, pp 217-220, 1995.

[10] B. Holldobler and E. O. Wilson, “Journey of the ants: a story of scientific exploration”,

Harvard University Press, 1995.

100

[11] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”. Proceedings of IEEE

International Conference on Neural Networks IV. pp 1942–1948, 1995.

[12] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-Dynamic Programming”, Athena

Scientific, 1996.

[13] J. Kennedy, “The particle swarm: social adaptation of knowledge”. Proceedings of

IEEE International Conference on Evolutionary Computation. pp 303–308, 1997.

[14] Y. Shi, R. C. Eberhart, “A modified particle swarm optimizer”. Proceedings of IEEE

International Conference on Evolutionary Computation. pp 69–73, 1998.

[15] R. C. Arkin, “Behavior Based Robotics”, The MIT Press, 1998.

[16] R. S. Sutton and A. G. Barto, “Reinforcement Learning : An Introduction”,

Cambridge, MA: MIT Press, 1998.

[17] Junling Hu and Michael P. Wellman, “Experimental results on q-learning for general-

sum stochastic games”. Proceedings of the Seventeenth International Conference on

Machine Learning, ICML, San Francisco, CA, USA, pp 407-414, 2000.

[18] S. Singh, T. Jaakkola, M. L. Littman and C. Szepesvari, “Convergence results for

single-step on-policy reinforcement-learning algorithms”, Journal on Machine Learning,

Vol. 38, Issue 3, pp 287–308, 2000.

[19] R. T. Vaughan, K. Stoy, G. S. Sukhatme and M. J. Mataric, “Whistling in the dark:

cooperative trail following in uncertain localization space”, Proceedings of the Fourth

International Conference on Autonomous Agents, Barcelona, Spain, pp 187-194, 2000.

[20] Michael L. Littman, “Value-function reinforcement learning in Markov games” Journal

of Cognitive Systems Research, pp 55-66, 2001.

[21] Michael L. Littman, “Friend-or-Foe q-learning in general-sum games”, Proceedings of

the Eighteenth International Conference on Machine Learning, ICML, San Francisco, pp

322-328, 2001.

101

[22] H. Van Dyke Parunak and S. Brueckner, “Ant-like missionaries and cannibals:

synthetic pheromones for distributed motion control”, Proceedings of the Fourth

International Conference on Autonomous Agents, pp 467–474, 2001.

[23] H. Van Dyke Parunak, S. Brueckner, J. Sauter and J. Posdamer, “Mechanisms and

military applications for synthetic pheromones”, Proceedings of the Workshop on

Autonomy Oriented Computation at the Fifth International Conference on Autonomous

Agents, pp 58–67, 2001.

[24] H. Van Dyke Parunak, S. Brueckner and J. Sauter, “Digital pheromone mechanisms for

coordination of unmanned vehicles”, Proceedings of the First International Joint Conference

on Autonomous Agents and Multi-agent Systems, ACM Press, pp 449–450, 2002.

[25] R. T. Vaughan, K. Stoy, G. S. Sukhatme and M. J. Mataric, “LOST: localization space

trails for robot teams”, IEEE Transactions on Robotics and Automation, Special Issue on

Advances in Multi-robot Systems, pp 796–812, 2002.

[26] N. Monekosso and P. Remagnino, “An analysis of the pheromone based Q-learning

algorithm”, Advances in Artificial Intelligence, Proceedings of the Eight Ibero-American

Conference on Artificial Intelligence, Heidelberg: Springer, pp 224-232, 2002.

[27] Junling Hu and Michael P. Wellman, “Nash q-learning for general-sum stochastic

games”, Journal of Machine Learning Research, pp 1039-1069, 2003.

[28] N. Monekosso and P. Remagnino, “The analysis and performance evaluation of the

pheromone Q-learning algorithm”, Journal of Expert Systems, Vol. 21, Issue 2, pp 80-91,

2004.

[29] H. Lima and Y. Kuroe, “Reinforcement Learning through Interaction among Multiple

Agents”, IEEE SICE-ICASE International Joint Conference, pp 2457-2462, 2006.

[30] H. Lima and Y. Kuroe, “Swarm Reinforcement Learning Algorithms based on SARSA

method”, IEEE SICE Annual Conference, pp 2045-2049, 2007.

102

[31] L. Busoniu, R. Babuska, and B. D. Schutter, “A Comprehensive Survey of Multiagent

Reinforcement Learning”, IEEE transactions on systems, man, and cybernetics- part c:

applications and reviews, Vol. 38, no. 2, pp 156-172, March 2008.

[32] Chia-Feng Juang, Chun-Ming Lu, “Reinforcement fuzzy control using Ant Colony

Optimization”, IEEE International Conference on Systems, Man and Cybernetics, pp 927-

931, 2008.

[33] D. Kadlecek and P. Nahodil, “Adopting animal concepts in hierarchical reinforcement

learning and control of intelligent agents”, Proceedings of the 2nd Biennial International

Conference on Biomedical Robotics and Biomechatronics pp 924-929, 2008.

[34] L. Busoniu, R. Babuska, B. D. Schutter and D. Ernst, “Reinforcement learning and

dynamic programming using function approximators”, CRC Press, 2009.

[35] Wei Wu, Geng Haifei and Jiang An, “A Multi-agent Traffic Signal Control System

Using Reinforcement Learning”, Fifth International Conference on Natural Computation,

2009. ICNC '09, Vol.4, pp 553-557, 2009.

[36] J. Pazis and M. G. Lagoudakis, “Learning continuous-action control policies”, IEEE

Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pp 169-176,

2009.

[37] Shu Da Wang, Shuo Ning Wang and Wei Ping Zhang, “Study on Multi-agent

Simulation System Based on Reinforcement Learning Algorithm”, WRI World Congress

on Computer Science and Information Engineering, Vol.5, pp 523-527, 2009.

[38] Evangelos A. T., Jonas B. and Stefan S., “A Generalized Path Integral Control

Approach to Reinforcement Learning”, Journal of Machine Learning Research, Vol.11, pp

3137-3181, 2010.

[39] J. Glascher, N. Daw, P. Dayan and J. P. O'Doherty, “States versus Rewards:

Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free

Reinforcement Learning”, ScienceDirect, Vol. 66, Issue 4, pp 585–595, 2010.

103

[40] Q. P. Lau, Mong Li Lee and W. Hsu, “Distributed Coordination Guidance in Multi-

agent Reinforcement Learning”, 23rd IEEE International Conference on Tools with

Artificial Intelligence (ICTAI), pp 456-463, 2011.

[41] F. T. Romero, G. R. Villanueva and I. A. Bautista, “Robotic system for reactive

navigation in dynamic environments”, 21st International Conference on Electrical

Communications and Computers (CONIELECOMP), pp 20-205, 2011.

[42] S. Arai and T. Miura, “An intelligent agent for combinatorial auction”, 11th

International Conference on Hybrid Intelligent Systems (HIS), pp 24-29, 2011.

[43] M. Stoica, F. Sisak and A. D. Morosan, “Reinforcement learning algorithm for

industrial robot programming by demonstration”, 13th International Conference on

Optimization of Electrical and Electronic Equipment (OPTIM), pp 1517-1524, 2012.

[44] Ji-Hwan Son and Hyo-Sung Ahn, “Bio-insect and artificial robot interaction using

cooperative reinforcement learning”, IEEE International Symposium on Intelligent Control

(ISIC), pp 1190-1194, 2012.

[45] D. Grady, M. Moll, L. E. Kavraki, “Automated Model Approximation for Robotic

Navigation with POMDPs”, IEEE International Conference on Robotics and Automation,

pp 78-84, 2013.

[46] S. Zhiguo, T. Jun, Z. Qiao, Z. Xiaomeng and W. Junming, “The Improved Q-Learning

Algorithm based on Pheromone Mechanism for Swarm Robot System”, IEEE 32
nd

 Chinese

Control Conference (CCC), pp 6033-6038, 2013.

[47] Chun-Tse Lin , Hsin-Han Chiang , and Tsu-Tian Lee, “A Practical Fuzzy Controller

with Q-learning Approach for the Path Tracking of a Walking-aid Robot”, SICE Annual

Conference, pp. 888-893, 2013.

[48] M. I. Abouheaf and F. L. Lewis, “Multi-agent differential graphical games: Nash

online adaptive learning solutions”, IEEE 52nd Annual Conference on Decision and Control

(CDC), pp 5803-5809, 2013.

104

[49] O. Krigolson, C. Hassall and T. Handy, “How We Learn to Make Decisions: Rapid

Propagation of Reinforcement Learning Prediction Errors in Humans”, IEEE Journal

of Cognitive Neuroscience, Vol. 26 , Issue: 3 , pp 635-644, 2014.

[50] R. Figueroa, A. Faust, P. Cruz, L. Tapia, and R. Fierro, “Reinforcement learning for

balancing a flying inverted pendulum”, 11th World Congress on Intelligent Control and

Automation (WCICA), pp 1787-1793, 2014.

[51] J. S. Campbell, S. N. Givigi, H. M. Schwartz, “Multiple-model Q-learning for

stochastic reinforcement delays”, IEEE International Conference on Systems, Man and

Cybernetics (SMC), pp 1611-1617, 2014.

[52] B. Zuo, J. Chen, L. Wang and Y. Wang, “A reinforcement learning based robotic

navigation system”, IEEE International Conference on Systems, Man and Cybernetics

(SMC), pp 3452-3457, 2014.

[53] H. Tan, K. Balajee and D. Lynn,“Integration of evolutionary computing and

reinforcement learning for robotic imitation learning”, IEEE International Conference on

Systems, Man and Cybernetics (SMC), pp 407-412, 2014.

[54] Y. Zhang, C. W. de Silva, S. Dijia and X. Youtai, “Autonomous robot navigation with

self-learning for collision avoidance with randomly moving obstacles”, 9th International

Conference on Computer Science & Education (ICCSE), pp 117-122, 2014.

[55] D. Vasquez, B. Okal and K. O. Arras, “Inverse Reinforcement Learning algorithms and

features for robot navigation in crowds: An experimental comparison”, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp 1341-1346, 2014.

[56] B. Bischoff, D. Nguyen-Tuong, H. van Hoof, A. McHutchon, C. E. Rasmussen, A.

Knoll, J. Peters and M. P. Deisenroth, “Policy search for learning robot control using sparse

data”, IEEE International Conference on Robotics and Automation (ICRA), pp 3882-3887,

2014.

105

[57] C. Yu, M. Zhang, F. Ren, G. Tan, “Multiagent Learning of Coordination in Loosely

Coupled Multiagent Systems”, IEEE Transactions on Cybernetics, Vol.45, Issue:99, pp1,

2015.

[58] H. Modares, I. Ranatunga, F. L. Lewis, and D. O. Popa, “Optimized Assistive Human--

Robot Interaction Using Reinforcement Learning”, IEEE Transactions on Cybernetics,

Vol.45, Issue:99, pp1, 2015.

[59] Ji-Hwan Son and Hyo-Sung Ahn, “A Robot Learns How to Entice an Insect”,

IEEE Journal on Intelligent Systems, Vol. 30 , Issue: 4 , pp 54-63, 2015.

