SWARM AND PHEROMONE BASED REINFORCEMENT
LEARNING METHODS FOR THE ROBOT(S) PATH
SEARCH PROBLEM

DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

CONTROL & INSTRUMENTATION
SUBMITTED BY:

NUPUR JHA

(2K13/ C&I/ 08)

UNDER THE SUPERVISION OF

DR. BHARAT BHUSHAN

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042
INDIA
2015

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, Nupur Jha, Roll No. 2K13/C&I/08, a student of M. Tech. (Control & Instrumentation),
hereby declare that the dissertation titled “Swarm and Pheromone based Reinforcement
Learning methods for the Robot(s) Path Search Problem” is a bonafide record of the work
carried out by me under the supervision of Dr. Bharat Bhushan of Electrical Engineering
Department, Delhi Technological University in partial fulfilment of the requirement for the
award of the degree of Master of Technology and has not been submitted elsewhere for the

award of any other Degree.

Place: Delhi (Nupur Jha)

Date:

DR. BHARAT BHUSHAN
SUPERVISOR

Associate Professor

Electrical Engineering Department
Delhi Technological University
Delhi - 110042

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. Bharat Bhushan for his guidance and
assistance in the thesis. Without his consistent support, encouragement and valuable inputs,

this project would not have been possible.

I would like to express my deep gratitude to Prof. Madhusudan Singh, the HoD of
Electrical Engineering Department without his moral support my project would not have

reached to this level.

I would also like to than my batch-mates and friends who have encouraged and helped me
in completing the thesis work. Finally, | express my deep sincere thanks to my Parents who

were always there in times of need.

NUPUR JHA
(2K13/C&1/08)
M. Tech. (C&l)

Delhi Technological University, Delhi

ABSTRACT

With the world moving to an automated platform, robots are finding application in almost
all domains to reduce the human effort. One such domain is to path a find in an unknown
and hostile environment to reach the goal. The complexity of many tasks arising in this
domain makes it difficult for the robots (agents) to solve this with pre-programmed agent

behaviours. The agents must, instead, discover a solution on their own, using learning.

In ordinary reinforcement learning algorithms, a single agent learns to achieve a goal
through many episodes. If a learning problem is complicated or the number of agents is
more, it may take more computation time to obtain the optimal policy and sometimes may
not be able to reach the goal. Meanwhile, for optimization problems, multi-agent search
methods such as particle swarm optimization, ant colony optimization have been
recognized to find rapidly a global optimal solution for multi-modal functions with wide

solution space.

This thesis work proposes a SARSA based reinforcement learning algorithm using multiple
agents where the agents are guided by the pheromone levels also called the Phe-SARSA. In
this algorithm, the multiple agents learn through not only their respective experiences but
also with the help of pheromone trail left by other agents to search for the shortest path.
The algorithms have been simulated in the MATLAB 2013a and the results have been

compared with the Q-learning, SARSA, Q-Swarm, SARSA-Swarm and Phe-Q algorithms.

TABLE OF CONTENTS

CERTIFICATE et iitiiiiiiiiiiiiiiiiiiiiiiiiiiiitieiiteieeisciatinectasensone [
ACKNOWLEDGEMENT . uiiiiiiiiiiiiiiiiiiiieiiiiieietietiatinecnncencens i
ABSTRACT ctiiiiiiiiiiiiiittietiiitisetsstosssesssssssssssssnssssssnsonss i
(1@ N I = N \Y
LIST OF FIGURES....itiiitiiiiiiiiiiiiiiiiiiiiiieiiniiiesiassatsscsnsons vii
LIST OF TABLES....c.tiitiiiiiiiiiiiiiiieiinieietiatsntcsstsntsnsossssnsonscnns Xiii
CHAPTER 1. INTRODUCTION.....cccttitiiiiiiiiniiiiiierinrinecnnnnnn 1
0 R 755 8 T 1
1.2 Reinforcement Learning.............coviiiiiiiiiiiii i 2
1.3 Path Searchand RL...........c.oooiiiiii e, 2
1.4 Ant Colony Optimization (ACO).........ccovviiiiiiiiiiiiie e 3
1.5 Particle Swarm Optimization (PSO) & Group Effort.................. 4
1.6 Objective of WOrK.......cooviiiii e 4
1.7 Organization of Thesis 5
CHAPTER 2. LITERATURE REVIEW.....ccccciiiiiiiiiiiiniinecinnen 6
2.1 INtrodUuCtion.......ouiii e 6
2.2 Brief Review of Papers.........ccooiiiiiiiiiiiiiiiiiicii i 6
CHAPTER 3. REINFORCEMENT LEARNING......ccccccetvineinnnn 16
3.1 Biological InSpiration............ccevieiiiiiiiiiiiiiii e, 16
3.2 INtroduction.........ooieiiini i 16
3.3 Elements & Basic RL framework..............cooooiiiiiiiiniinii, 17
33,1 POICY ..t 17
3.3.2 Reward Function..............ccoviiiiiiiiiiii e, 17
3.3.3 Value Function...........cooiiiiiiiiii i 18
3.3.4 Basic Framework of RL.............ooiiiiiiiiiii, 18

3.4 Markov Decision Process.........ccovviiiiiiiiiiiiiiiiii i,
3.5 Temporal Difference (TD) Learning.............ccccooviiviiiiiiinnnnn.e.
351 TD Prediction.......oooviiiiiiiii e
3.5.2 Optimality of TD(0).....coviiiiiiii e
3.5.3 Value Functions & the Bellman Equations.......................
3.5.4 Q- Learning: Off- Policy TD Control............................
3.5.4.1 Model-based Q-iteration algorithm...........................

3.5.4.2 Model-free value iteration and the need for exploration...

3.5.5 SARSA: On—Policy Control............ccooeiiiiiiiiiien..

3.6 Limitations of RL...... .o i,
CHAPTER 4. MULTI-AGENT GRIDWORLD PROBLEM..........
4.1 Grid World Problem............ooi
4.1.1 Single Agent Problem................ccooiiiiiiiii i
4.1.2 Multi Agent Problem...............coooiiiiiiiii

4.2 Multi-Agent Reinforcement Learning (MARL).........................
4.2.1 Friend Or Foe Algorithm..................coooiiiiiiiiiiia,
CHAPTERS. HYBRID RL.....ccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeinaeneen
5.1 Introduction.........ooeeiiniii
5.2 RL and Particle Swarm Optimization (PSO).............................
5.21 Q= SWaIm. ..ot
9.2.2 SARSA — SWarm.....c.ovuiiiiiiiii e

5.3 RL and Ant Colony Optimization (ACO)...........ccoevviiiiiiienn....
5.3.1 Pheromone —Q.....ooviiiiiiii
5.3.1.1 Belief Factor.........ooooeiiiiiiii

5.3.2 Pheromone — SARSA.... .ot
CHAPTER 6. SIMULATION RESULT & DISCUSSION..............

6.1 Single Agent Problem........ ...,
6.1.1 Case I: Obstacles: Fixed; Goal: Fixed.................oooiiiii
6.1.2 Case II: Obstacles: Fixed & Moving (Both); Goal: Fixed........
6.1.3 Case III: Obstacles: Fixed; Goal: Moving..........c.ccccoveerverenneen.
6.1.4 Case IV: Obstacles: Fixed & Moving (Both); Goal: Moving...

6.2 Two Agents Problem..... ...,
6.2.1 Case I: Obstacles: Fixed; Goal: Fixed..............ccooovvviiinaii
6.2.2 Case II: Obstacles: Fixed & Moving (Both); Goal: Fixed........
6.2.3 Case III: Obstacles: Fixed; Goal: Moving..........cccceeevvreennenn..
6.2.4 Case IV: Obstacles: Fixed & Moving (Both); Goal: Moving....

6.3 Four Agents Problem.............ooiiiiii
6.3.1 Case I: Obstacles: Fixed; Goal: Fixed..............................
6.3.2 Case II: Obstacles: Fixed & Moving (Both); Goal: Fixed........
6.3.3 Case III: Obstacles: Fixed; Goal: Moving..........cccceeevvveennnn..
6.3.4 Case IV: Obstacles: Fixed & Moving (Both); Goal: Moving....

CHAPTER 7. CONCLUSIONS & FUTURE SCOPE.....................

7.1 Main ConCluSIONS. ...c.uviuiiiitii e

7.2 Future Scope of Work.......ccooiiiiiiiii i

REFERENCES....ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicicieicinecneenaeees

Vi

LIST OF FIGURES

Figure 3.1 Agent - Environment interaction in the Reinforcement Learning..............
Figure 4.1 A sample grid world with green block as obstacles, red block as goal and
green block as starting block ...
Figure 5.1 Environment in which SARSA is effective....................oooi.
Figure 6.1.1 Plot between no. of steps required to reach the goal and no. of attempts
for 1agent; Case (@)ovvereeriri e
Figure 6.1.2a Path traced for case 1(a) by single agent for Q-learning
Figure 6.1.2b Path traced for case I(a) by single agent for SARSA
Figure 6.1.2c Path traced for case I(a) by single agent for Phe-Qcccce.e.
Figure 6.1.2d Path traced for case I(a) by single agent for Phe-SARSA....................
Figure 6.1.3 Plot between no. of steps required to reach the goal and no. of attempts
for Lagent; case 1(D) ...
Figure 6.1.4a Path traced for case I(b) by single agent for Q-learning
Figure 6.1.4b Path traced for case I(b) by single agent for SARSAc.oee.
Figure 6.1.4c Path traced for case 1(b) by single agent for Phe-Q
Figure 6.1.4d Path traced for case I(b) by single agent for Phe-SARSA....................
Figure 6.1.5 Plot between no. of steps required to reach the goal and no. of attempts
for 1agent; Case 1(C) ..uviveiniieie e
Figure 6.1.6a Path traced for case I(c) by single agent for Q-learning
Figure 6.1.6b Path traced for case 1(c) by single agent for SARSAc.ueee.
Figure 6.1.6¢ Path traced for case I(c) by single agent for Phe-Qcoeeene.
Figure 6.1.6d Path traced for case I(c) by single agent for Phe-SARSA....................
Figure 6.1.7 Plot between no. of steps required to reach the goal and no. of attempts
for Lagent; case 1(8)oovineiriiniii
Figure 6.1.8a Path traced for case 11(a) by single agent for Q-learning
Figure 6.1.8b Path traced for case Il(a) by single agent for SARSA
Figure 6.1.9 Plot between no. of steps required to reach the goal and no. of attempts
for Lagent; case H(D)coooeiiii i
Figure 6.1.10a Path traced for case I1(b) by single agent for Q-learning
Figure 6.1.10b Path traced for case 11(b) by single agent for SARSA

Vii

34
47

52
52
52
52
52

53
53
53
54
54

54
55
55
55
55

56
56
56

Figure 6.1.11 Plot between no. of steps required to reach the goal and no. of attempts

for L agent; €ase HI(a)ovvnriniinii e 58
Figure 6.1.12a Path traced for case Il1(a) by single agent for Q-learning 59
Figure 6.1.12b Path traced for case 111(a) by single agent for SARSA 59
Figure 6.1.12c Path traced for case I11(a) by single agent for Phe-Q 59
Figure 6.1.12d Path traced for case I11(a) by single agent for Phe-SARSA................ 59
Figure 6.1.13 Plot between no. of steps required to reach the goal and no. of attempts

for Lagent; case HI(D) ..o 60
Figure 6.1.14a Path traced for case Il1(b) by single agent for Q-learning 60
Figure 6.1.14b Path traced for case 111(b) by single agent for SARSA 60
Figure 6.1.14c Path traced for case Il1(b) by single agent for Phe-Q 60
Figure 6.1.14d Path traced for case I11(b) by single agent for Phe-SARSA................ 60
Figure 6.1.15 Plot between no. of steps required to reach the goal and no. of attempts

for 1 agent; case HI(C) ..o.ovvinrineii e 61
Figure 6.1.16a Path traced for case I11(c) by single agent for Q-learning 62
Figure 6.1.16b Path traced for case I1l(c) by single agent for SARSA 62
Figure 6.1.16c Path traced for case I11(c) by single agent for Phe-Q 62
Figure 6.1.16d Path traced for case I11(c) by single agent for Phe-SARSA................ 62
Figure 6.1.17 Plot between No. of Steps required to reach the Goal and No. of

Attempts for 1 agent; case IV(8).......coovviriiiiriiiiiiieceeee e, 63
Figure 6.1.18 Plot between No. of Steps required to reach the Goal and No. of

Attempts for 1 agent; case IV(D)........oooieiiiiiii 63
Figure 6.2.1 Plot between no. of steps required to reach the goal and no. of attempts

for2.agents; Case 1(Q)oovovriineiii i, 65
Figure 6.2.2a Path traced for case 1(a) by two agents for Q-learning 66
Figure 6.2.2b Path traced for case I(a) by two agents for SARSA 66
Figure 6.2.2c Path traced for case I(a) by two agents for Phe-Qc......... 66
Figure 6.2.2d Path traced for case I(a) by two agents for Phe-SARSA..................... 66
Figure 6.2.2e Path traced for case I(a) by two agents for Q-Swarm... 66
Figure 6.2.2f Path traced for case 1(a) by two agents for SARSA-Swarm.................. 66

Figure 6.2.3 Plot between no. of steps required to reach the goal and no. of attempts

viii

for 2 agents; case 1(D)oovenriii
Figure 6.2.4a Path traced for case 1(b) by two agents for Q-learning
Figure 6.2.4b Path traced for case I(b) by two agents for SARSAcooeee.
Figure 6.2.4c Path traced for case 1(b) by two agents for Phe-Qccoceeeeni.
Figure 6.2.4d Path traced for case I(b) by two agents for Phe-SARSA......................
Figure 6.2.4e Path traced for case I(b) by two agents for Q-Swarm...
Figure 6.2.4f Path traced for case I(b) by two agents for SARSA-Swarm..................
Figure 6.2.5 Plot between no. of steps required to reach the goal and no. of attempts
for 2.agents; Case 1(C) ..ovvvinrineii e
Figure 6.2.6a Path traced for case I(c) by two agents for Q-learning
Figure 6.2.6b Path traced for case I(c) by two agents for SARSAcc.ceeenee.
Figure 6.2.6¢ Path traced for case I(c) by two agents for Phe-Qcooveeen.
Figure 6.2.6d Path traced for case I(c) by two agents for Phe-SARSA.....................
Figure 6.2.6e Path traced for case I(c) by two agents for Q-Swarm...
Figure 6.2.6f Path traced for case I(c) by two agents for SARSA-Swarm...................
Figure 6.2.7 Plot between No. of Steps required to reach the Goal and No. of
Attempts for 2 agents; case (@)oooeeiiiiiiii i
Figure 6.2.8a Path traced for case 11(a) by two agents for Q-learning
Figure 6.2.8b Path traced for case 11(a) by two agents for SARSAcceiveee.
Figure 6.2.9 Plot between No. of Steps required to reach the Goal and No. of
Attempts for 2 agents; case H(D)..........oooeiiiiiiii i
Figure 6.2.10a Path traced for case I1(b) by two agents for Q-learning
Figure 6.2.10b Path traced for case I1(b) by two agents for SASAcceivnnn.
Figure 6.2.11 Plot between no. of steps required to reach the goal and no. of attempts
for 2 agents; case H1(Q)ovvvniiinii i
Figure 6.2.12a Path traced for case I11(a) by two agents for Q-learning
Figure 6.2.12b Path traced for case I11(a) by two agents for SARSA
Figure 6.2.12c Path traced for case Il1(a) by two agents for Phe-Q
Figure 6.2.12d Path traced for case I11(a) by two agents for Phe-SARSA.................
Figure 6.2.12e Path traced for case I11(a) by two agents for Q-Swarm.....................
Figure 6.2.12f Path traced for case 111(a) by two agents for SARSA-Swarm...............

69
69
69
69
69
70
70

70
71
71

72
72
72

73
73
74
74
74
74
74

Figure 6.2.13 Plot between no. of steps required to reach the goal and no. of attempts 75

for 2 agents; case HI(D)oooeeieie i, 75
Figure 6.2.14a Path traced for case I11(b) by two agents for Q-learning 75
Figure 6.2.14b Path traced for case 111(b) by two agents for SARSA 76
Figure 6.2.14c Path traced for case Il1(b) by two agents for Phe-Q 76
Figure 6.2.14d Path traced for case I11(b) by two agents for Phe-SARSA................. 76
Figure 6.2.14e Path traced for case I11(b by two agents for Q-Swarm..................... 76
Figure 6.2.14f Path traced for case I11(b) by two agents for SARSA-Swarm.............. 76
Figure 6.2.15 Plot between no. of steps required to reach the goal and no. of attempts

for 2. agents; €ase HI(C) ...ovoneeneini e, 77
Figure 6.2.16a Path traced for case I11(c) by two agents for Q-learning 77
Figure 6.2.16b Path traced for case I11(c) by two agents for SARSA 77
Figure 6.2.16c Path traced for case I11(c) by two agents for Phe-Qcccce.. 77
Figure 6.2.16d Path traced for case I1l(c) by two agents for Phe-SARSA................. 77
Figure 6.2.16e Path traced for case I11(c) by two agents for Q-Swarm..................... 78
Figure 6.2.16f Path traced for case IlI(c) by two agents for SARSA-Swarm............... 78
Figure 6.2.17 Plot between No. of Steps required to reach the Goal and No. of

Attempts for 2 agents; case IV (a)........ccooveiiiiiiiiii e, 79
Figure 6.2.18 Plot between No. of Steps required to reach the Goal and No. of

Attempts for 2 agents; case IV(D).......ooiiiriiiii e, 79
6.3.1 Plot between no. of steps required to reach the goal and no. of attempts

for 4.agents; Case 1(8)ovinriniinie e 81
Figure 6.3.2a Path traced for case 1(a) by four agents for Q-learning 81
Figure 6.3.2b Path traced for case I(a) by four agents for SARSAccceee.... 81
Figure 6.3.2c Path traced for case 1(a) by four agents for Phe-Qcceeeeeee. 82
Figure 6.3.2d Path traced for case I(a) by four agents for Phe-SARSA..................... 82
Figure 6.3.2e Path traced for case I(a) by four agents for Q-Swarm... 82
Figure 6.3.2f Path traced for case 1(a) by four agents for SARSA-Swarm.................. 82
6.3.3 Plot between no. of steps required to reach the goal and no. of attempts

fordagents; case 1(D)c.ooriiiii 83
Figure 6.3.4a Path traced for case I(b) by four agents for Q-learning 83

Figure 6.3.4b Path traced for case I(b) by four agents for SARSAcceviee.
Figure 6.3.4c Path traced for case 1(b) by four agents for Phe-Qcooeene.

Figure 6.3.4d Path traced for case I(b) by four agents for Phe-SARSA.................
Figure 6.3.4e Path traced for case I(b) by four agents for Q-Swarm...

Figure 6.3.4f Path traced for case I(b) by four agents for SARSA-Swarm..................
6.3.5 Plot between no. of steps required to reach the goal and no. of attempts

for 4 agents; Case 1(C)oovinriniiii e

Figure 6.3.6a Path traced for case I(c) by four agents for Q-learning

Figure 6.3.6b Path traced for case I(c) by four agents for SARSAceivieene.
Figure 6.3.6¢ Path traced for case I(c) by four agents for Phe-Qc.ooea.

Figure 6.3.6d Path traced for case 1(c) by four agents for Phe-SARSA.................
Figure 6.3.6e Path traced for case I(c) by four agents for Q-Swarm...

Figure 6.3.6f Path traced for case I(c) by four agents for SARSA-Swarm...................

Figure 6.3.7 Plot between No. of Steps required to reach the Goal and No.

Attempts for 4 agents; case H(8)........c.oveviiiriiiiiiiie e,

Figure 6.3.8 Plot between No. of Steps required to reach the Goal and No.

of

Attempts for 4 agents; case H(D)..........oooeiieiiiiiiii e

Figure 6.3.9 Plot between No. of Steps required to reach the Goal and No.

of

Attempts for 4 agents; case (@),ooovvvriiiiiiii e,

Figure 6.3.10a Path traced for case I11(a) by four agents for Phe-Q

Figure 6.3.10b Path traced for case I11(a) by four agents for Phe-SARSA..............
Figure 6.3.10c Path traced for case Il1(a) by four agents for Q-Swarm...
Figure 6.3.10d Path traced for case 111(a) by four agents for SARSA-Swarm..........
Figure 6.3.11 Plot between No. of Steps required to reach the Goal and No.

Attempts for 4 agents; case H(D)...........oooiiii e

Figure 6.3.12a Path traced for case I11(b) by four agents for Phe-Q

Figure 6.3.12b Path traced for case 111(b) by four agents for Phe-SARSA..............
Figure 6.3.12c Path traced for case Il1(b) by four agents for Q-Swarm...
Figure 6.3.12d Path traced for case 111(b) by four agents for SARSA-Swarm..........
Figure 6.3.13 Plot between No. of Steps required to reach the Goal and No.

Attempts for 4 agents; case HI(C).........oooeriieiiiiii e,

xi

83
84
84
84
84

85
85
85
85
85
86
86

86

87

88
89
89
89
89

90
90
90
91
91

91

Figure 6.3.14a Path traced for case I11(c) by four agents for Phe-Q
Figure 6.3.14b Path traced for case I11(c) by four agents for Phe-SARSA..............

Figure 6.3.14c Path traced for case I11(c) by four agents for Q-Swarm

Figure 6.3.14d Path traced for case I11(c) by four agents for SARSA-Swarm.............

Figure 6.3.15 Plot between No. of Steps required to reach the Goal and No. of

Attempts for 4 agents; case 1V(a)

Figure 6.3.16 Plot between No. of Steps required to reach the Goal and No. of

Attempts for 4 agents; case 1V(b)

xii

92
92
92
92

93

94

LIST OF TABLES

Table 6.1 Computational Time for the Single Agent Cases for the four algorithms simulated

Table 6.2 Computational Time for the Two Agents Cases for the six algorithms simulated....

Table 6.3 Computational Time for the Four Agents Cases for the six algorithms simulated...

Xiii

CHAPTER 1

INTRODUCTION

This chapter presents the motivation behind the work done. It aims at
implementation of the Optimization algorithms in Reinforcement Learning (RL) methods

and has also been provided with the thesis organization.
1.1 OVERVIEW

Machine learning for robots or mechanisms of all kinds has been a great
challenge for engineers and scientists, from the beginning days of the computers. The
learning characteristic of animals in the simplest search jobs, such as avoiding obstacles
while doing some task or searching for food, turns out to be extremely difficult to
reproduce in artificial mechanical devices, real or simulated. This thesis shows that how
reinforcement learning with the help of nature inspired algorithms can help to solve such
problems.

“Reinforcement Learning”, this word is new for human concept and can be
traced back to the stone age. Humans learned long ago that we learn from our mistakes and
that we should learn if we want to improve over time. Learned lessons can be passed from
one generation to the other by changing the way we think, interact or work. Over the last
five decades, it has been shown that machines can be made to learn similar to humans.
“Machine Learning” is used to define many different applications from a military drone to a
robotic carpet cleaner. It includes different types of learning like Supervised or
Unsupervised Learning. In this thesis we will look into Reinforcement Learning algorithms

and their hybrid forms.

Reinforcement learning is neither supervised nor non-supervised kind of
learning but forms a third category of learning. The evolution of Reinforcement Learning
from its beginning in the 1950s to the present day has been very impressive. In the last two
decades, faster computers with more memory led to the implementation of learning

algorithms like the single agent Q-Learning algorithm by Watkins [4]. This Q-Learning

algorithm was a major breakthrough in Reinforcement Learning and it later on became the
foundation of many algorithms.

1.2 REINFORCEMENT LEARNING

Machine learning is programming to optimize a performance criterion using
example data or previous observations. Learning a model with partially defined parameters
is the execution of a computer program to optimize the parameters of the model using the
training data or previous observations. Machine learning uses the theory of statistics in
building mathematical models, because the main task is making inference from a sample.
In applications such as navigation, grabbing, and exploration, the output of the system is a
sequence of actions. In such a case, a single action is not important; what is important is
the policy that defines the sequence of correct actions to reach the goal given the current
state of the environment. Such learning methods are called reinforcement learning (RL)
algorithms[16]. In RL, the learner is a decision-making agent that takes actions in an
environment and receives reward (or penalty) for its actions in trying to solve a problem.
After a set of trial-and error runs, it should learn the best policy, which is the sequence of
actions that maximizes the total reward[16]. One of the most famous methods of
completing tasks in robotics is the use of behavior based models [15]. Each behavior
requires a sequential set of actions to be completed and RL is the best candidate for such

systems.
1.3 PATH SEARCH AND RL

In many real world problems, the need of automation is arising. With the world
shifting form a place where only living beings existed to a place where artificial living-like
things also exist, it is becoming very crucial to use robots to ease our day to day work.
Many works has been done in machine learning where a robot is made to mimic human
actions and quite some achievement has also been made. One such human-like action for
robot could be to navigate in a space or to search a space to find some particular goal,
which could be food or other robots or other living beings or any destination. To navigate
or move in an unknown environment, whose model is not known might be difficult task for

robot.

The robot brain organizes a vocabulary of keywords that describe the robot’s
perception of the environment. The results of its experiences are processed by a model that
finds cause and effect relationships between executed actions and changes in the
environment. This allows the robot to learn from the consequences of its actions in the real
world. More specific, the robot starts with a training procedure. The basic idea of RL is to
tell a robotic agent when it is behaving good or bad and make it derive a suitable behavior
from these reinforcement signals. Recently, RL has begun being used on simulated and real
robots. In the spirit of embodied cognitive science, the investigations will include
experiments on a real robot. An understanding has emerged from the findings in science
that it is not feasible to separately investigate the mind and body of humans, animal, or
robots when the goal is to gain knowledge about intelligent behavior. These things are

interconnected and have to be treated as a whole.
1.4 ANT COLONY OPTIMIZATION (ACO)

This algorithm is a member of the ant colony algorithms family, in swarm
intelligence methods, and it constitutes some metaheuristic optimizations. Initially
proposed by Marco Dorigo in 1992 in his PhD thesis[5], the first algorithm was aiming to
search for an optimal path in a graph, based on the behavior of ants seeking a path between
their colony and a source of food. The original idea has since diversified to solve a wider
class of numerical problems, and as a result, several problems have emerged, drawing on
various aspects of the behavior of ants. In the natural world, ants wander randomly, and
upon finding food return to their colony while laying down pheromone trails. If other ants
find such a path, they are likely not to keep travelling at random, but to instead follow the

trail, returning and reinforcing it if they eventually find food.

Over time, however, the pheromone trail starts to evaporate, thus reducing its
attractive strength. The more time it takes for an ant to travel down the path and back
again, the more time the pheromones have to evaporate. A short path, by comparison, gets
marched over more frequently, and thus the pheromone density becomes higher on shorter
paths than longer ones. Pheromone evaporation also has the advantage of avoiding the

convergence to a locally optimal solution. If there were no evaporation at all, the paths

chosen by the first ants would tend to be excessively attractive to the following ones. In
that case, the exploration of the solution space would be constrained.

Thus, when one ant finds a good (i.e., short) path from the colony to a food
source, other ants are more likely to follow that path, and positive feedback eventually
leads to all the ants following a single path. The idea of the ant colony algorithm is to
mimic this behavior with "simulated ants" walking around the graph representing the
problem to solve.

1.5 PARTCILE SWARM OPTIMIZATION (PSO) AND GROUP EFFORT

Particle swarm optimization (PSO) is a computational method that optimizes a
problem by iteratively trying to improve a candidate solution with regard to a given
measure of quality. PSO optimizes a problem by having a population of candidate
(particles) solutions, and moving these particles around in the search-space according to
simple mathematical formulae over the particle's position and velocity. Each particle's
movement is influenced by its local best known position but, is also guided toward the best
known positions in the search-space, which are updated as better positions are found by

other particles. This is expected to move the swarm toward the best solutions.

PSO is originally attributed to Kennedy, Eberhart and Shi [11, 13] and was first
intended for simulating social behaviour[14], as a stylized representation of the movement
of organisms in a bird flock or fish school. The algorithm was simplified and it was
observed to be performing optimization. PSO is a metaheuristic as it makes few or no
assumptions about the problem being optimized and can search very large spaces of
candidate solutions. However, metaheuristics such as PSO do not guarantee an optimal
solution is ever found. PSO can therefore also be used on optimization problems that are
partially irregular, noisy, change over time, etc.

1.6 OBJECTIVE OF WORK

As in automation problems the application of robotics is increasing day by

day. With the advancement in the technology, a shift is being seen towards implementation

of bio-inspired algorithms from the conventional methods or algorithms. Thus, in the
areasof the robotics problem also, more bio-inspired algorithms are being used.

In any search or path planning problem, it becomes essential to optimally
reach the solution in less time. By using reinforcement learning methods we can achieve
this. To implement this for a multi agent dynamic situation, the conventional methods do
not follow and there is a need to switch form the conventional methods to the hybrid ones.
Thus, reinforcement learnings have been combined with the bio-inspired algorithms like

PSO and ACO to reach the optimal ssolution in minimum time.

1.7 ORGANIZATION OF THESIS

CHAPTER - 2 This chapter consists of the literature survey on various reinforcement
learning algorithms and the different evolutionary methods that have been implemented
with it. The major emphasis is given on the PSO and ACO which have been implemented
with RL methods of Q-learning and SARSA.

CHAPTER — 3 This chapter deals with the description of the concept of RL, Markov
Decision Process (MDPs) and Temporal Difference (TD) method which is used to solve the
problems of RL. A short description about the two most commonly used TD(0) algorithms,

i.e. Q-learning and SARSA is also given.

CHAPTER - 4 This chapter defines the Grid World problem and various Multi-Aggent
Reinforcement Learning have been stated. The Friend and Foe Q-Learning algorithm has

been discussed in detail.

CHAPTER - 5 Three evolutionary algorithms used with RL have been described in this
chapter: Q-Swarm, SARSA-Swarm, Phe-Q and a new algorithm has been proposed
SARSA-Q.

CHAPTER - 6 This chapter presents results and discussion.

CHAPTER - 7 In this chapter, the main conclusions have been drawn out and some future

work related to the research have been suggested.

5

CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

This chapter consists of literature survey on different algorithms in this project.
Various books and papers related to reinforcement learning algorithms, evolutionary

algorithms: Particle Swarm Optimization and Ant Colony Optimization have been studied.
2.2 LITERATURE REVIEW

M. C. Cammaerts-Tricot and J. C. Verhaeghe [1] analysed the trail pheromone
production and trail following behaviour of workers of Myrmica rubra of different age
groups, categorized by their cuticular pigmentation. The dimensions of the poison gland
reservoir increase as workers grow older. The capabilities of ants help the colony for

recruitment to repel an enemy or to exploit a source of food occurs in its foraging area.

D. P. Bertekas et al. [2] gave an elaborated description on the stochastic optimal
control methods. They impelemented the various control startegies in the discrete time

space.

S. Goss et al. [3] showed various methods for the self organization in the
aregntianan ant colony. These various methods were implemented for finding the shortest

path in a maze.

Watkins [4] showed that Q-learning is a simple way for agents to learn how to
act optimally in controlled Markovian domains. It amounts to an incremental method for
dynamic programming which imposes limited computational demands. It works by

successively improving its evaluations of the quality of particular actions at particular states.

Dorigo [5] researched on a new metaheuristic for optimization which was often
initially focused on proof-of-concept applications. He provided a survey on theoretical
results on ant colony optimization. Some research efforts were directed at gaining a deeper

understanding of the behavior of ant colony optimization algorithms.

Littman [6] showed minimax criterion allows the agent to converge to a fixed
policy that is guaranteed to converge. This is certainly true to some extent but any such
agent will in principle be vulnerable to a devious form of trickery in which the opponent
leads the agent to learn a poor policy and then exploits it. He also showed that RL can be
used in multi-agent scenarios and adversarial environments are well behaved as in that
optimality is guaranteed against some random opponent. In such an environment the multi-
agent RL are less behaved, but strong assumption needs to be made out about other agents to

guarantee convergence.

Putterman [7] described about the infinite-horizon discrete-time models with
discrete state spaces and described the Markov Decision Processes (MDPs). He also
described about the modified policy iteration, multi-chain simulations with sensitive

optimality and average reward criterion.

Rummery and Niranjan [8] compared the performance of different RL
algorithms on a realistic robot navigation problem, where a simulated mobile robot is
trained to guide itself to a goal position in the presence of obstacles. They showed that on-

line learning algorithms are less sensitive to the choice of training parameters than backward
replay.

L. R. Leerink [9] applied ant trail formation and foraging methods to the
problem of exploration in a discrete environment with delayed reinforcement. The
exploration strategy used was the various mechanisms that are found in ant trail formation in
the adaptive heuristic critic framework, and was applied to a robot navigation task.
Simulations indicate that in terms of efficiency the mechanisms used by a single ant perform
better than undirected exploration methods, but not as well as specialized directed
algorithms. However, when multiple robots simultaneously explore the environment the
performance increases in a superlinear manner, resulting in an emergent collective ability

larger than that possessed by the individual robots.

B. Holldobler et al. [10] explained the various categories in which the ant
system is divided and how each ant category work together to reach the goal. He showed

ant colony as inintricate super organism in which individial ants are only small,

indispensable failry mechanical, easily replaceable walking batteriesoof exorineglands that
sense their world primarily through the chemical secreted by them known as pheromone.

J. Kennedy et al. [11, 13, 14] first intended for simulating social behaviour as a
stylized representation of the movement of organisms in a bird flock or fish school. They
introduced the Particle Swarm Optimization algorithm and later it was simplified and

observed to be performing optimization.

Bertekas et al. [12] explained the concept of dynmic programming and showed

tht that how it can be solved and implemented with the help of neural networks.

R. C. Arkin [15] showed that the most famous methods of completing tasks in
robotics is the use of behavior based models. And that each behavior required a sequential

set of actions to be compeleted.

R. S. Sutton and A. G. Barto [16] gave the concept of Reinforcement Learning
and explained the various terminologies related to the reinforcement learning. They showed
that temporal difference method is used to solve the reinforcement learning problem and
explained the optimality of TD(0) method. Various examples are shown by the authors to
relate the concept of reward and the value functions.

Junling Hu and M. P. Wellman [17, 27] experimented on the general-sum
stochastic games and solved the problem using Q-learning. They also soled this problem for
the Nash Q-learning. Nash Q-learning gave better results as compared to Q-learning because
of the Nash factor taken into account which uses collective reward function rather than

individual rewards.

Singh et al. [18] examined the convergence of single-step on-policy RL
algorithms for control. They showed that On-policy algorithms cannot separate exploration
from learning and therefore must confront the exploration problem directly and hence
proved that convergence results for several related on-policy algorithms with both decaying

exploration and persistent exploration.

Vaughan et al. [19, 25] implemented ant-like self-organizing behaviour to
coordinate a multi-robot system where the robots transport objects between various

8

locations. Robots used here had shared memory to communicate path information rather
than physically laying trail of synthetic pheromone.

M. L. Littman [20, 21] described a set of reinforcement-learning algorithms
based on estimating value functions and presented convergence theorems for these
algorithms. They analysed and proved the convergence foe Q-learning, Minmax-Q learning,

Nash Q-learning and Team Q-learning.

In Parunak V. D., et al. [22, 23, 24] the pheromone trails were used to construct
potential fields. Unmanned vehicles were used to navigate, directed by the potential
gradients. The ant system had different ‘flavours’ of pheromone. Each pheromone kind was
exclusive in a way that it was associated with a peculiar feature of the environment and has

their own evaporation and diffusion rates resulting in different dynamics.

M. Monekosso and P. Remagnino [26, 28] first introduced the Phe -Q algorithm
which has the similar structure for rule updation as Q-learning with an addition term in the
update equation called the belief factor. It is a function of the pheromone level in each cell
and is associated with the state-action pair. It was implemented for grid world with fixed

obstacles.

Hitoshi Jimal and Yasuaki Kuroe [29, 30] proposed a hybrid algorithm called
Swarm-Q for multi-agent environment in which each agent learns individually using
parallel Q-learning and also learns using interaction using PSO utilizing personal best and
global best Q-values. Later, they also used the same PSO based Q updating rule with
SARSA as the basic learning method and showed that it is more effective for an
environment which has a large negative reward. The algorithm optimizes quickly than the

normal Q-learning and SARSA and also Swarm-Q.

L. Busoniu et al. [31, 34] discussed about the wvarious Multi-Agent
Reinforcement Learning (MARL) techniques for fully cooperative, fully competitive and
mixed problems. They pointed out the main benefits and challenges of the various MARL
algorithms. They also described the deterministic and stochastic MDPs and characterized
their optimal solutions. They explained the concept of reinforcement learning and the
dynamic programming. They explained about the Q-learning and SARSA and explained the

9

need of exploration over exploitation. Various applications such as speed control of a DC
motor were solved using Q- learning and SARSA.

Chia-Feng Juang et al. [32] proposed the design of a fuzzy controller by Ant
Colony Optimization (ACO) incorporated with Fuzzy-Q Learning, called ACO-FQ, with
reinforcements. For a fuzzy controller, a list of all candidate consequent control actions of
each fuzzy rule were mde. Each candidate in the consequent part of a rule is assigned with a
corresponding Q-value. Searching for the best one among all combinations is partially based
on pheromone trail and partially based on Q-values. Results were verified for a water bath

temperature control system.

Kadlecek D. and Nahodil P. [33] integrated rigorous methods of reinforcement
learning and control engineering with a behavioral approach to the agent technology. The
main outcome is a hybrid architecture for intelligent autonomous agents targeted to the
Artificial Life like environments. Learning and control was realized by multiple RL
controllers working in a hierarchy of Semi Markov Decision Processes (SMDP). Used
model free Q(A) learning works online, the agents gain experiences during interaction with

the environment.

Wei Wu et al. [35] presented a control method based on multi-agent for traffic
signals. Reinforcement learning algorithm was used to optimize traffic flow in the
intersection. The genetic algorithm intended to introduce a global optimization criterion to
each of the local learning processes that optimize the cycle of traffic signals and green-ratio.
Areawide coordination was achieved by game theory. Here, local optimization with global
optimization to optimize traffic signal in multi-intersection. Simulation results indicate that

our presented method is superior than traditional control one.

J. Pazis et al. [36] presented a novel, computationally-efficient method, called
Adaptive Action Modification, for realizing continuous-action policies, using binary
decisions corresponding to adaptive increment or decrement changes in the values of the
continuous action variables. They proposed an approach which approximates any
continuous action space to arbitrary resolution and can be combined with any discrete-action

reinforcement learning algorithm for learning continuous-action policies. They coupled Q-

10

Learning, Fitted Q-Iteration, and Least-Squares Policy Iteration and implemented it on the
continuous state-action Inverted Pendulum and Bicycle Balancing and Riding domains.

Shu Da Wang et al. [37] constructed a multi-agent simulation system based on
reinforcement learning algorithms, achieve real-time simulation of multi-agent, and multi-
agent to get effect quickly, and to quickly construct surrounded conduct by mobile groups,
the conduct of the system to achieve the global optimum effect. Seige type group problem
was taken here. Two groups of agents were simulated to compete and reach the goal using

Q-learning.

A. T. Evangolelos et al. [38] used reinforcement learning to find path in an

environment. They used integral control to find path in any general environment.

J. Glascher et al. [39] used RL sequential experience with situations (“'states")
and outcomes to assess actions. Using functional magnetic resonance imaging in humans
solving a probabilistic Markov decision task, they found the neural signature of an SPE in
the intraparietal sulcus and lateral prefrontal cortex. Their finding supports the existence of
two unique forms of learning signal in humans, which may form the basis of distinct

computational strategies for guiding behavior.

Qiangfeng P. L. et al. [40] presented a distributed reinforcement learning system
that leverages on expert coordination knowledge to improve learning in multi-agent
problems. Scenario was taken where agents can communicate with their neighbors but this
communication structure and the number of agents was changed over time. Experiment

results were carried out for a tactical realtime strategy and soccer games.

Romero F. T. et al. [41] introduced a mobile robotic system to learn through
reinforcement, which allows it to navigate within a dynamic environment avoiding any
obstacle it might encounter. The learning system was implemented with two neural
networks. Both neural networks use reinforcement learning by means of the Hebb rule.In
this paper, it was shown that there may be a case when the robot is stuck in a region with
such a configuration that directly affects it and prevents it from navigating the entire

environment.

11

Seiichi A. and Takao M. [42] proposed a new framework for combinatorial
auctions with Q-learning agent. They showed how an intelligent agent learns in
combinatorial auctions. They applied a framework of machine learning to combinatorial
auctions to extract intelligence about bidding behavior. It was shown that the agent obtains
strategies for behavior by considering combinatorial auctions as outside environment. Here,

Q-learning approach was useful to obtain knowledge for winner.

M. Stocia et al. [43] used reinforcement learning method for the industrial robot
problem. They took the problem of navigation in which the robot needed to transfer objects

from point to point and implemented Q-learning algorithm for their learning.

Ji-Hwan Son et al. [44, 59] demonstrated movement control of the insect and
enhanced control of the robot through its own learning progress via reinforcement learning.
It was shown that insect occasionally exhibited uncertain and complex behavior and that
interaction mechanism was affected by weather and other unknown properties of a real
environment, resulting in more complex behaviors. To solve this, they proposed fuzzy logic-
based cooperative RL for sharing knowledge among agents. They designed a fuzzy logic-
based expertise measurement system for cooperative RL. The structure makes artificial

robots share knowledge under measuring performance evaluation of each agent.

Devin G. et al. [45] et al. applied the Partially-Observable Markov Decision
Processes (POMDPs) to a robotic navigation task under state and sensing uncertainty. This
method provided a useful action model that gave a policy with similar overall expected
reward compared to the true action model with significant computational savings. It was
shown that this technique of building problem-dependent approximations can provide

significant computational advantages and can help expand the complexity.

S. Zhiguo et al. [46] gave an improved Q-learning algorithm based on
pheromone mechanism. They implemented it for a swarm of four robots to find path in a
maze. The algorithm used two stages learning in which individual robots learned using RL

and the peheromone level and the overall learning was done using the pheromone levels.

Chun-Tse Lin et al. [47] solved the path tracking problem of a prototype
walking-aid robot which features the human-robot interactive navigation. A practical fuzzy
12

controller was proposed for the path tracking control under reinforcement learning ability.
The inputs taken for the design of fuzzy controller were, the error distance and the error
angle between the current and the desired position and orientation, respectively. The
controller outputs taken was the voltages applied to the left- and right-wheel motors. A
heuristic fuzzy control with the Sugeno-type rules was designed based on a model-free
approach. The fuzzy control rule was designed with the aid of Q-learning approach.

Mohammed I. A. et al. [48] gave a study of various class of multi-agent
graphical games denoted by differential graphical games, where interactions between agents
are prescribed by a communication graph structure. Nash solutions were given in terms of
solutions to a set of coupled continuous-time Hamilton-Jacobi Bellman equations. An online
multi-agent method based on policy iterations was developed using a critic network to solve
all the Hamilton-Jacobi-Bellman equations simultaneously for the graphical game. Here, an
online adaptive Integral Reinforcement Learning structure using critic structures was used to

solve the differential graphical game.

O. Krigolson et al. [49] gave an analogy of the reinforcement learning and the
way humans learn from the errors. They also explained how we make decision based on our

reinforcement learning mechanism.

Figueroa R. et al. [50] demonstrated a novel solution to the inverted pendulum
problem extended to UAVSs, specifically quadrotors. The solution is provided by
reinforcement learning (RL) to generate a control policy to balance the pendulum using
Continuous Action Fitted Value Iteration (CAFVI) which is a RL algorithm for
highdimensional input-spaces. This technique combined learning of both state and state-

action value functions in an approximate value iteration setting with continuous inputs.

J. S. Campbell et al. [51] used the delayed reinforcement learning method in a
single agent problem. They implemented various types of models in the Q-learning for the

stochastic reinforcement using delays.

Bashan Z. et al. [52] developed a navigation technology based on the Q-learning

algorithm. Here, an autonomous mobile robot was required to navigate in an unknown maze

13

and move out of it as soon as possible. They showed this technique was effective and

successful to help a robot navigate in an unknown environment and avoid obstacles.

Huan T. et al. [53] proposed a novel evolutionary reinforcement learning method
and applied it to robotic imitation learning, which integrates EDA and PI2 learning
algorithm. This algorithm provides a solution to integrate exploratory learning methods with
traditional reinforcement learning algorithms. This work can also be applied in other
domains where the problems to be solved could be described as a well-known nonlinear

state system.

Yunfei Z. et al. [54] developed a hierarchical controller to avoid randomly
moving obstacles in autonomous navigation of a robot. The developed method consisted of
two parts: a highlevel Q-learning controller for choosing an optimal plan for navigation and

a low-level, appearance-based visual servo (ABVS) controller for motion execution.

Vasquez D. et al. [55] compared various IRL based learning methods and
feature sets for socially compliant robot navigation in crowds. They provided three
important insights a) the importance of the default cost feature; b) the need of motion
prediction to obtain smoother human-like motion; and c) for i.e. linear combination of
weights cost, it seems to be better to put the effort on feature design than on the learning
algorithms. Conversely, in order to simplify the task of designing features, richer, more

complex cost functions and learning algorithms are required.

Bischoff B. et al. [56] investigated model-based reinforcement learning in
particular the probabilistic inference for learning control method (PILCO), with the case of
sparse data to speed up learning. This approach was evaluated in simulation as well as on a
physical robot. They showed that by including prior knowledge, policy learning can be sped
up in presence of sparse data.

Chao Yu et al. [57] proposed a multi agent learning approach to solve
coordination problems by exploiting agent independence in loosely coupled multi agent
systems. Theisapproach enabled agents to learn an effi-cient coordinated policy through

dynamic adaptation of the estimation of agent independence. This method required neither

14

prior knowledge about the structure of the domain nor assumptions about the learning

agents.

H. Modares et al. [58] used reinforcement learning for the robot movements.
They optimized the the steps taken by the robots to peform human-like activities using

reinforcement learning. Q-learning was used as the method for learning of the robot.

15

CHAPTER 3
REINFORCEMENT LEARNING

3.1 BIOLOGICAL INSPIRATION

The basic idea that we learn from our environment by interacting is probably the
foremost one to occur to us when we think about the process of learning. When a child
plays, wave arms, or gets injured, it does not have an explicit teacher, though it has a
certain direct sensor-motor link to its environment. Using this connection, a vast repository
of information about cause and effect, about the results of actions, and about what should
be done in order to achieve target. Throughout our existence, experiences are undoubtedly
a major source of knowledge about our environment and us. Learning from interactions is
the initial idea behind almost all theories of intelligence and learning. “Reinforcement
learning is defined not by characterizing learning methods, but by characterizing a learning
problem”. [16]

3.2 INTRODUCTION

“Reinforcement Learning is learning what to do, how to map situations to
actions, so as to maximize a numerical reward signal.”[16] In RL, a controller interacts
with a process, by means of three signals: an action signal, which allows the controller to
influence the process, a state signal, describing the state of the process, an action signal,
which influences the process, and a scalar reward signal, providing the controller with

feedback on its immediate performance.

The concept of rewarding for a particular set of actions is not a new concept
in our society. The reward generated is an evaluation of the quality of transition between
previous state and new state. This can be related to our daily lives: A person will be more
inclined to do a task if there is a positive reward for executing it. Of course, this cannot

characterise all of human behaviour, but we can see how RL influences our life.

To understand Reinforcement Learning, a simple case of an agent in an
environment can be taken. In a single agent situation, the agent interacts with the
environment and determines the actions that will earn the maximum rewards. For example,

16

inputs are provided by the environment to the agent and the agent then interacts with the
environment with different outputs in form of actions. This is the main difference between
RL and other learning methods. A reward is also given by the environment to the agent for
each of the actions. The agent then learns that few actions gives better rewards than others

and it thus learn to reproduce these actions to maximize its future rewards.

The RL framework has been used to solve various optimization processes and
have been applied to many varied applications, e.g., automatic control, robot navigation,

operations research, artificial intelligence, economics, robot navigation [35, 44, 46, 57, 59].
3.3 ELEMENTS & BASIC RL FRAMEWORK

Other main sub-elements apart from state-action can be identified in the RL

system are: a policy, a reward function and a value function.
3.3.1 Policy

A policy is defined as the learning agent's behaviour. It is a mapping from
perceived states of the environment to actions to be taken when in those states. This could
be related to a set of stimulus-response rules or associations in psychology. For countable
states, policy is generally a look up table or simple function, while for uncountable or
continuous state spaces it involves an extensive computation such as a search process. It is
the vital part of an RL agent in the sense that it alone is sufficient to determine the agent

behaviour.
3.3.2 Reward Function

The goal in an RL problem is defined mainly by the reward function. It maps
each perceived state of the environment to a scalar value, a reward, which indicates the
inherent desirability of that state. The sole objective of an RL agent is to maximize the total
reward received by it in the long run.

The reward function defines good and bad episodes for the agent. In a
biological system, reward can be identified as liking and pain. They are direct and defining
features of the problem which is faced by the agent. Hence, the reward function is never

17

altered by the agent. However, it may serve as a basis for policyalteration As an example,
if an action as selected by the policy is followed by less reward, then this policy might be

changed to select some other action in that situation in the future.
3.3.3 Value Function

A reward function is a measure for immediate action and a value function is for
the long run. Value for a state could be defined as the total amount of reward that an agent
can expect to collect over the future, initiating from that state. Whereas rewards tells about
the instant, intrinsic desirability of environmental states, values indicate the continuing
desirability of states after considering the states that are likely to be followed, and the
rewards then available in those states. As an example, particular state might always yield a
low immediate reward but still have a high value because it is regularly followed by other
states that yield high rewards or vice-versa. In terms of humans, rewards are like
preferences (if high) and discomfort (if low), whereas values are more refined and
farsighted judgment of how pleased or displeased we are that our environment is in a

particular state.
3.3.4 Basic Framework of RL

Reinforcement Learning, also known as enhanced learning, is a machine
learning method which optimizes the result by goal-oriented learning which study by direct
interaction with the environment. In Supervised learning method the training information
required is instructional whereas in the reinforcement learning, training information
required is evaluative and provides an important intelligent control method for the agent.
The main purpose of reinforcement is studying the optimal mapping from state to action, so

as to maximum the reward signal. [49]

Figure 3.1 from [16] illustrates clearly the different interactions between the
agent and the environment. Both the agent and the environment interact at finite time steps
k=0;1; 2; 3;..[16] This means that each interaction will be done at a predeterminedi timei
step. The environmenti provides thei agent withi the state sk element of S, where S is the
set of possible states [16]. The agenti is ablei to choosei an actioni at elementi of A(sk),
where A(sK) isi the set ofi possible actionsi in state sk [16]. For time step k + 1, the

18

environment will provide a reward, rk+1, which is the reward function R and a new state
sk+1 to the agent [16]. Thisi rewardi is due toi its actioni in thei previous statei sk and thei

transition toi the newi state sk+1.

—=(

slate F’wa"ﬂ action
3 i il

i

s, | Environment
I

Figure 3.1 Agent - Environment interaction in the Reinforcement Learning

This is where RL comes into play. Each reward is associated with different
actions and develop strategies that are called policies. The policy, =k (s; a), can be defined
as the probability that ay = a if sy = s, where the k represents the next step [16]. The agent
thus has to associate different probabilities to each action to maximize its rewards. All of
the RL research starts with this simple concept and develops different methods of using the
reward function. Expected return of an agent is linked to the environmental reward

function. The reward function can be very different from one environment to the other.

For example, it describes which actions or series of actions will provide what
reward. As per discounted reward, the expected reward diminishes over time. We can

illustrate this by the equation of the expected discounted return:
Rk =1 + Yrgeo + erk+3 + o Y Meker (3.1)
where, Y is a parameter, 0 < Y < 1, called the discount factor [16].

As per Equation (3.1), we can see that the same reward is worth more if
received now than if it is received in the future. We can change the behaviour of the agent
by changing the discounted rate. When rate is close to 0, it is called “myopic” and it means
that the agent is only concerned about immediate reward [16]. If the rate is close to 1, it
means that the agent considers future rewards to be more important and future rewards will

have more weight.

19

An agent in RL has to choose an action from the state sx provided by the
environments. The information given by the environment is called the state signal [16]. The
agent needs this information from the present state sy+1, and the previous states sy making
the best decision possible and maximizes it rewards. A state signal has Markov properties if

it has all the necessary information to define the entire history of the past states.

The agent has all the information needed with the immediate state. The agent
does not need to know every past move to choose its next action. In other words, if we can
predict the next state and the next expected reward given the current state and the current
reward with a probability of p = Pr{Su1=5s"; 11 =r|S, a } forall s’, r, s;and a, and at

then the environment has the Markov property[16].

RL algorithms build a model from the data; called the “model learning” [33].
RL algorithms can be further subcategorised, according to the path taken to find an optimal

policy. These three subcategories are as follows:

(1) Value iteration algorithms search for the optimal value function, which consists of the
maximal returns from every state or from every state-action pair. The optimal value

function is used to compute an optimal policy.

(if) Policy iteration algorithms evaluate policies by constructing their value functions
(instead of the optimal value function), and these value functions to find new, improved

policies.

(iii) Policy Search algorithms use optimization techniques to directly search for an optimal

policy.

Within each of these three subcategories of RL algorithms, two subsequent categories can
be further distinguished, namely offline and online. Offline RL algorithm uses data
collected in advance, whereas RL algorithm learns a solution by interacting with the
process. Online RL algorithm are typically not provided with any future data, but instead
depends only on the data collected while learning and hence are useful when data is

difficult or costly to obtain in advance. Most online RL algorithm work incrementally.

20

3.4 MARKOV DECISION PROCESS (MDP)

RL problems can be formalized with the help of markov decision process (MDPs)

[6]. An RL problem that satisfies the Markov property is called a Markov decision process,

or MDP [16]. When the state and action spaces are finite, then it is a finite Markov

decision process (finite MDP). Finite MDPs are particularly valuable to the theory of RL.

A particular finite MDP is defined by its state and action sets and by the one-step dynamics

of the environment. For a particular state and action, s and a, the probability of a particular

possible next state, Sy+1, IS

pss” = Pr{Sks1=58" sk =5, ax = a} (3:2)

These variables are called transition probabilities. Similarly, for any present state and
action, s and a, alongwith any next state,sx+1 , the expected value for next reward is

Res® = E{Mket | Sk =S, 8k = @, Sier =57 (3:3)

These variables, pss® and Ry, completely specify the most vital aspects of the

dynamics of a finite MDP.
3.5 TEMPORAL DIFFERENCE (TD) LEARNING

TD learning is undoubtedly identified as one idea as central and novel to
reinforcement learning [16]. This is a combination of Monte Carlo ideas and dynamic
programming ideas. TD methods can learn directly from new experience without a model
of the environment's dynamics like Monte Carlo methods. TD approaches update estimates
based in portion on other learned estimates, without waiting for a final result. The link
between TD, DP, and Monte Carlo methods is a repetitive theme in the theory of RL. The
TD(A) algorithm seamlessly integrates TD and Monte Carlo methods.

For finding the optimal policy in the control problems, DP, TD, and Monte
Carlo methods all use some variation of generalized policy iteration (GPI1). The differences

in these methods are primarily differences in their approaches to the prediction problem.
3.5.1 TD Prediction

Monte Carlo and TD methods use experiences to solve the prediction
problems. State some experiences for following a policy =, both update their estimates V of

21

V”. If a non-terminal state is visited at time k, then both the methods update their estimate
based on what happens after the visit. Monte Carlo method is suitable for a simple early-

visit nonstationary environments is
V(Sk) «— V(sk) ta[Rx— V(Sk)] (3.4)

where, Ry is the actual return following time t and o is a constant step-size parameter.
Whereas Monte Carlo methods must wait until the end of the episode to determine the
increment to V(sk), TD methods waits only until the next time step. At time k+1 they
immediately form a target and make a useful update using the observed reward ry.; and the
estimate V(Sk+1). The simplest TD method, known as TD(0), is

V(sk) < V(sk) + o [rk+1 + YV (Sk+1)— V(SK)] (3.5)

In effect, Monte Carlo updates the reward as Ry, whereas the target for the TD update is

Me+1 + Wk(3k+1).

Because the TD method bases its update in part on an existing estimates, so like DP it is a

bootstrapping method.
V(s) = Ex{RuIsk = s} (3.6)
= Ex{rier + YV (Sk+1)|Sk = S} (3.7)

Monte Carlo methods use an estimate of (3.6) as a target, whereas DP methods
use an estimate of (3.7) as a target. The Monte Carlo target is an estimate because the
expected value in (3.6) is not known; a sample return is used in place of the real expected
return. The TD target is an estimate for both reasons: it samples the expected values in
(3.7) and it uses current estimates instead of the true V*. Thus, TD methods combine the
sampling of Monte Carlo with the bootstrapping of DP. This can take us a long way toward

obtaining the advantages of both Monte Carlo and DP methods.

Algorithm 3.1 specifies TD(0) completely in procedural form. The value
estimate for the top node state node of the backup diagram is updated on the basis of the
single sample transition from it to the next following state. These updates are referred here

as sample backups because they involve looking ahead to a sample successor state, using

22

the value of the successor and the reward along the way to compute a backed-up value, and
later changing the value of the original state accordingly. Sample backups differ from the
full backups of DP methods in that they are based on one sample successor rather than on

complete distribution of all the possible successors.
Algorithm 3.1: TD(0) method for estimating V" :-
1. Initialize V(s) arbitrarily, 7 to the policy to be evaluated
2. Repeat (for each episode):

Initialize s

Repeat (for each step of episode) :

a «— action given by = for s

Take action a; observe the reward, r, and next state, s’

V(s) « V(s) + afr+ Y V(s’) - V(s)]

S« s’

until s is terminal

3.5.2 Optimality of TD (0)

For any problem with finite amount of experiences available 10 episodes or 100
time steps, it is @ common approach with the incremental learning method to present the
experience recurrently until the method converges. Given an approximate value function,
V, the increments specified by (3.4) or (3.5) are computed for every time step at which a
non-terminal state is visited, but the value function is changed only once, by the summation
of all increments. Then all the available experiences are processed again with the next
value function to produce a new overall increment, until the value function converges. This
is called batch updating because updates are made only after processing each of the

complete batches of training data.

Under batch updating, TD(0) converges deterministically to one answerindependent

23

of the step size parameter, a, as long as a is chosen to be sufficiently small. The constant a-
MC method also converges deterministically under the same conditions, but to a different
answer. Under normal updating, the methods do not move all the way to their respective

batch answers, but in a manner they take steps in these directions.

Finally, it should be noted that although the certainty-equivalence estimate is in
some sense an optimal solution, but it is almost never feasible to compute it directly [16]. If
N is the number of states, then forming the maximume-likelihood estimates of the process
may require N®> memories, and computing the corresponding value function will require an
order of N* computational steps if done conventionally. It can thus be said that TD methods
can approximate the same solution using memory no more than and repeated computations
over the training set. For tasks with large state spaces, TD methods might be the only

feasible way of approximating the certainty- equivalence solution [16].
3.5.3 Value Functions & The Bellman Equations

Policies can be conveniently characterized by their value functions. There are two
types of value functions: state-action value functions; Q-functions and state-value
functions; V-functions. The Q-function Q™: X x U — R of a policy n gives the return
obtained when starting from a given state, applying a given action, and following =

thereafter:

Q"(s,a) = p(s,a) + YR” (f(s,a)) (3.8)

Here, R™ (f(s,a)) is the return from the next state f(s,a). This formula can be obtained by
first writing Q"(s,a) explicitly as the discounted sum of rewards obtained by taking a in s
and then following z:

Q(5,8) = o i Yp(Sk,ak) (3.9)

where(So,a0)= (S,a), Sk+1 = f(Sk,Ux) for k > 0 and ax = m(sx) for k > 0. The first term is

separated from the sum:

Q(s,8) = p(s,a) + L=y I Y*p(ska)

= p(s,a) + YR" (f(s,a)) (3.10)
24

The optimal Q-function is defined as the best Q-function that can be obtained by any
policy:

Q*(s,a) = max:Q"(s,a) (3.11)

Any policy z* that selects at each state an action with the largest optimal Q-value, i.e., that
satisfies:

(s) € arg max,Q*(s,a) (3.12)

is optimal (it maximizes the return). In general, for a given Q-function Q, a policy = that

satisfies:
n(s) € arg* max,Q(s,a) (3.13)

is said to be greedy in Q. So, finding an optimal policy can be done by first finding Q*, and
then using (3.12) to compute a greedy policy in Q*.

For the computation of greedy actions in (3.12), (3.13), and in similar equations
in the sequel, the maximum must exist to ensure the existence of a greedy policy; this can

be guaranteed under certain technical assumptions [2].

The Q-functions Q" and Q* are recursively characterized by the Bellman
equations, which are of core importance for value iteration and policy iteration algorithms.
The Bellman equation for Q" states that the value of taking an action; a in the state; s under
the policy; x is the summation of the immediate reward and the discounted value achieved

by 7 in the next state:

Q"(s,a) = p(s,a) + YQ" (f(s,a), #(f(s,a))) (3.14)

The Bellman optimality equation characterizes Q*, and states that the optimal value of
action a taken in state, s is the summation of the immediate reward and the discounted

optimal value obtained by the best action in the next state:
Q*(s,a) = p(s,a) + Ymax,Q*(f(s,a),a’) (3.15)
The V-function V*: S —R of a policy = is the return obtained by starting from a particular

25

state and following z. This VV-function can be computed from the Q-function of policy =:
V(s) = R¥(s) = Q"(s,n(s)) (3.16)

The optimal V-function is the best VV-function that can be obtained by any policy, and can

be computed from the optimal Q-function:

V*(s) = max, V'(s) = max,Q*(s,a) (3.17)
An optimal policy z* can be computed from V*, by using the fact that it satisfies:

(s) € arg maxa[p(s,a) + Y'V(f(s,a))] (3.18)

Using this formula is more difficult than using (3.12); in particular, a model of
the MDP is required in the form of the dynamics f and the reward function p. Because the
Q-function also depends on the action, it already includes information about the quality of
transitions. In contrast, the V-function only describes the quality of the states; in order to
infer the quality of transitions, they must be explicitly taken into account. This is what
happens in (3.18), and this also explains why it is more difficult to compute policies from
V-functions.

3.5.4 Q-Learning: Off-Policy TD Control
3.5.4.1. Model-based Q-iteration algorithm

Model-based Q-iteration algorithm is an illustrative example from the class of
model-based value iteration algorithms. Let the set of all the Q-functions be denoted by N.
Then, the Q-iteration mapping T : N — N, computes the right-hand side of the Bellman

optimality equation (3.15) for any Q-function. In the deterministic case, this mapping is:

[T(Q)](s,a) = p(s,a) + Ymax, Q*(f(s,a),a’) (3.15)

and in the stochastic case, it is:

[T(Q)(5:8) = Ev~fsa { p(s,2,87) + YMax,Q*(s,a”)} (3.16)

If the state space is countable (e.g., finite) then the Q-iteration mapping for the stochastic

case (3.15) can be written as the simpler summation:

26

[T(Q)](s.2) = Lo fls,a,87)[p(s,a,87) + Ymax, Q*(s’,a")] (3.17)

The same notation is used for the Q-iteration mapping both in the deterministic case and in
the stochastic case, because the analysis given below applies to both cases, and the
definition (3.15) of T is a special case of (3.16).

The Q-iteration algorithm starts from an arbitrary Q-function Qo and for each iteration k
updates the Q-function using:

Qu+1 = T(Qw) (3.18)

It can be shown that T is a contraction with factor Y < 1 in the infinity norm, i.e., for any
pair of functions Q and Q’, it is true that:

IT(Q) = T(Q")llo= YNIQ — Q’lf (3.19)

Because T is a contraction, it has a unique fixed point. Additionally, when rewritten using
the Q-iteration mapping, the Bellman optimality equation (3.15) states that Q* is a fixed

point of T, i.e.:

Q* = T(Q*) (3.20)

Hence, the unique fixed point of T is actually Q*, and Q-iteration
asymptotically converges to Q* as k —o. Moreover, Q-iteration converges to Q* at a rate
of Y, in the sense that ||Qx+1 — Q|| < Y|Qx — Q*|... An optimal policy can be computed
from Q* with (3.12).

Algorithm 3.2 presents Q-iteration for deterministic MDPs in an explicit,
procedural form, wherein T is computed using (3.15). Similarly, algorithm 3.3 presents Q-

iteration for stochastic MDPs with countable state spaces, using the expression (3.17).
Algorithm 3.2: Q-Iteration for deterministic MDPs :-

Input: dynamics f, reward function p, discount factor Y’

1. Initialize Q function as Qg «— 0

2. Repeat at every iteration k =0,1,2,........

27

3. forevery (s,a) do
Qk+1(s,a) < p(s,a) + Ymax,Q*(f(s,a),a’)
end for
until Q+1 = Qk
Output: Q* = Qk
Algorithm 3.3: Q-lteration for stochastic MDPs with countable state spaces :-
Input: dynamics f, reward function p, discount factor Y’
1. Initialize Q function as Qg « 0
2. Repeat at every iteration k =0,1,2,........
3. forevery (s,a) do
Qk+1(5,2) « Y f(s,a,8”) [p(s,a,s’) + Ymax,Q*f(s’,a’)]
end for
until Qg+1 = Qx
Output: Q* = Qk
3.5.4.2. Model-free value iteration and the need for exploration

Q-learning starts from an arbitrary initial Q-function Qo and updates it without
requiring a model, using instead observed state transitions and rewards, i.e., data tuples of
the form (s, ax, Sk+1, f'k+1) [4]. After each transition, the Q-function is updated using such a

data tuple, as follows:

Qk+1(Sk,ak) = Qu(Sk,aK) + ow[rk+1 + Y'MaX, Qx(Sk+1, a”) — Qu(Sk.ax)] (3.21)

where, ax € (0,1] is the learning rate. The term between square brackets is the temporal
difference, i.e., the difference between the updated estimate ry.; + Ymax, Qx(Sk+1,ax) of the

optimal Q-value of (s,ax), and the current estimate Qx(Sx,a). In the deterministic case, the

28

new estimate is actually the Q-iteration mapping (3.15) applied to Qx in the state-action
pair (Sg,ax), where r(sx,ax) has been replaced by the observed reward ry.1, and f (Sg,ax) by the

observed next-state Sy.1.

In the stochastic case, these replacements provide a single sample of the
random quantity whose expectation is computed by the Q-iteration mapping (3.16), and
thus Q-learning can be seen as a sample-based, stochastic approximation procedure based
on this mapping [12].

In practice, the learning rate schedule may require tuning, because it influences
the number of transitions required by Q-learning to obtain a good solution. A good choice
for the learning rate schedule depends on the problem at hand. The controller also has to
exploit its current knowledge in order to obtain good performance, e.g., by selecting greedy
actions in the current Q-function. This is a typical illustration of the exploration-
exploitation trade-off in online RL. A classical way to balance exploration with

exploitation in Q-learning is & —greedy exploration [16], which selects actions according to:
ak = a € arg max,Q«(Sk, a), with probability 1-g
a uniformly random action in A, with probability & (3.22)

where, g € (0,1) is the exploration probability at step k. Another option is to use

Boltzmann exploration[16], which at step k selects an action a with probability:
P(alsi) = (%) 3 o(e%) (3.23)

where the temperature x> 0 controls the randomness of the exploration. When tx — 0,
(3.23) is equivalent to greedy action selection, while for tx — oo, action selection is
uniformly random. For nonzero, finite values of Ty, higher-valued actions have a greater

chance of being selected than lower-valued ones.

Usually, the exploration diminishes over time, so that the policy used
asymptotically becomes greedy and therefore optimal. This can be achieved by making t«
or g approach 0 as k grows. For instance, an ¢ -greedy exploration schedule of the form g

= 1/k diminishes to 0 for k — oo, while still satisfying the convergence condition of Q-

29

learning, i.e., while allowing infinitely many visits to all the state-action pairs [18]. Like
the learning rate schedule, the exploration schedule has a significant effect on the

performance of Q-learning. Algorithm 3.4 presents Q-learning with & -greedy exploration.
Algorithm 3.4: Q-lteration with € -greedy exploration :-

Input: discount factor Y, exploration schedule &, learning rate schedule ok

1. Initialize Q function as Qg < 0

2. Measure initial state

3. forevery timestepk=0,1,2,........ do
a € arg max,Qx(Sk,2) with probability 1 - g (exploit)
dg <
a uniformly random action in A with probability gy (explore)

apply ax, measure next state ax.1 and reward ry1

Qx+1(Sk,aK) = Qk(Sk,ak) + awfrk+1 + Ymaxy Qu(Sk+1, @) — Qx(Sk,ax)]

end for
3.5.5 SARSA: On-Policy TD Control

Another class of RL, model-free policy iteration algorithms is SARSA, an online
algorithm proposed by Rummery and Niranjan [8] as an alternative to the value-iteration
based Q-learning. The name SARSA is obtained by joining together the initials of every
element in the data tuples employed by the algorithm, namely: state, action, reward, (next)
state, (next) action. Formally, such a tuple is denoted by (Sk,ax, Fk+1,Sk+1,8k+1). SARSA starts
with an arbitrary initial Q-function Qg and updates it at each step using tuples of this form,

as follows:

Qu+1(Sk,ak) = Qu(Sk,ak) + o [Mkr1 + Y'Qi(Sk+1, ax+1) — Qk(Sk,ax)] (3.24)

where oy € (0,1] is the learning rate. The term between square brackets is the temporal

difference, obtained as the difference between the updated estimate rc+1 + YQu(Sk+1, ak+1) Of
30

the Q-value for (sy,ax), and the current estimate Q(Sk,ax). This is not the same as the
temporal difference used in Q-learning (3.21). While the Q-learning temporal difference
includes the maximal Q-value in the next state, the SARSA temporal difference includes
the Q-value of the action actually taken in this next state. This means that SARSA
performs online, model-free policy evaluation of the policy that is currently being
followed. In the deterministic case, the new estimate r.; + Y'Q(Sk+1, ak+1) Of the Q-value
for (sk,ax) is actually the policy evaluation mapping (3.15) applied to Q in the state-action
pair (sk,ax). Here, r(sg,ax) has been replaced by the observed reward ry.1, and f(sy,ax) by the
observed next state Sy.;. In the stochastic case, these replacements provide a single sample
of the random quantity whose expectation is found by the policy evaluation mapping
(3.16).Next, the policy employed by SARSA is considered.

As in offline policy iteration, SARSA cannot afford to wait until the Q-function
has (almost) converged before it improves the policy. This is so because convergence may
take a long time, during which the unchanged (and possibly bad) policy would be
implemented. Instead of this, to select actions, SARSA combines a greedy policy in the
current Q-function with exploration, using, e.g., e-greedy (3.22) or Boltzman (3.23)
exploration. Because of the greedy component, SARSA implicitly performs a policy
improvement at every iterative step, and is thus a type of online policy iteration. Such a
policy iteration algorithm, which improves the policy after every sample, is sometimes
called fully optimistic [12].

Algorithm 3.5 presents SARSA with e-greedy exploration. In this algorithm,
because the update at step k involves the action ag.1, this action has to be chosen prior to

updating the Q-function.

In order to converge to the optimal Q-function Q*, SARSA requires conditions
similar to those of Q-learning, which demand exploration, and additionally that the
exploratory policy being followed asymptotically becomes greedy [18]. Such a policy can
be obtained by using, e.g., e-greedy (3.22) exploration with an exploration probability &
that asymptotically decreases to 0, or Boltzmann (3.23) exploration with an exploration

temperature Ttk that asymptotically decreases to 0. The exploratory policy used by Q-

31

learning can also be made greedy asymptotically, even though the convergence of Q-

learning does not rely on this condition.

Algorithm 3.5: SARSA with ¢ -greedy exploration :-

Input: discount factor Y, exploration schedule &, learning rate schedule ok
1. Initialize Q function as Qg < 0

2. Measure initial state sg

3. a € arg max,Qo(So,a) with probability 1 — gy (exploit)
ap«—
a uniformly random action in A with probability gy (explore)
4. for every time step k=0, 1,2, do

apply ax, measure next state ax+1 and reward ry.;

a € arg max,Qx(Sk,a) with probability 1 - g (exploit)
dg <

a uniformly random action in A with probability gk (explore)
apply ax, measure next state ax+1 and reward ry.;
Qk+1(Sk,ak) = Qu(Sk,ak) + ok[rk+1 + Y Qu(Sk+1, ak+1) — Qx(Sk,ak)]
end for

Algorithms like SARSA, which evaluate the policy are also called “on-policy”
in the RL literature [16]. In contrast, algorithms like Q-learning, which act on the process

using one policy and evaluate another policy, are called “off-policy.”

3.6 LIMITATIONS OF RL

Though its numerous advatages and applications, RL methods do have certain limitations

and disadvantages. Some of the limitation that RL methods have, are stated as follows:

32

As no model for is provided for any given problem, the model that is estimated by
the RL methods has shallow knowledge and might sometimes make the agent to

take a wrong action.

In RL methods, the reward calculated for the overall goal is taken and the final
output is compared then rather than comparing the output at each step or
caomparing the best possible output at each step. This restricts the agent form
looking ahead.

Reinforcement Learning has two parameters for learning called the learning rate and
the exploration rate. If the learning rate is not properly chosen, it might take the
agent a longer time to come to an optimal solution and thus can restrict its ability to
learn And if the exploration rate is not set properly, it might happen that it takes too

long for agent to reach the goal or it may never reach the goal also.

33

CHAPTER 4

MULTI-AGENT GRID WORLD PROBLEM

4.1 GRID WORLD PROBLEM

The most widely used benchmark problem in reinforcement learning is Grid world
[16]. In its most basic form, this domain consists of a discrete planar grid with finite
dimensions. An agent is placed at some set starting location, and then selects cardinal
actions (up, down, left, right) to move within the grid with the goal of reaching some
specific goal grid location. Modifications to this domain include addition of diagonal
moves, the addition of penalty or hole grid locations, changes to the dimension of the grid,
and addition of a stochastic wind component that acts on the agent [16]. Further extensions
include using a large grid space with multiple rooms. Yet another modification could be
dynamic obstacles, in which the obstacle emerges for random locations in the grid and also
the goal could be made moving or dynamic by specifying an area where the goal emerges

randomly or moves step wise in a particular group of grid cells.

Figure 4.1 A sample grid world with green block as obstacles, red block as goal and green

block as starting block

All these modifications are purely environmental and have an effect on the of the

34

domain, which has downstream effects on the actions of the agent, the efficacy of the
learning algorithm, and finally on the knowledge acquired by the agent and its performance

in the domain.

The grid world problem used in this thesis is an evolving one. Initially, a single
agent case of simple 10 X 10 grid is taken and very few fixed obstacles are present. The
number of fixed obstacles are added starting from 4 obstacles to 15 obstacles. Later on, few
of the obstacles are made to emerge randomly in the grid. Another complexity that has been
studied is the grid world problem is the case of moving goal. The upper two rows of the
grid are made as the area in which the goal can emerge randomly. This randomness has

been done for each iteration movement of the agent and not for the epochs.
4.1.1 Single Agent Problem

In single-agent RL, the environment of the agent is described by a MDPs. “A finite
Markov decision process is a tuple {S,A, f, p} where S is the finite set of environment
states, A is the finite set of agent actions, f : S x A x S — [0, 1] is the state transition
probability function, and p : S x A x S — R is the reward function”[49]. The state signal si
e S describes the environment at each discrete time-step k. The agent can alter the state at
each time step by taking actions ax € A. As a result of the action ax , the environment
changes its state from ax to some s+ € S according to the state transition probabilities
given by f: the probability of ending up in sx+1 given that ay is executed in si is f(Sk, ax, Sk+1)-
The agent receives a scalar reward ry.; € R, according to the reward function p: 1 = p(Sk,
a, Sk+1) [16]. This reward evaluates the immediate effect of action a, i.e., the transition

from sy to sk+1. It however, says nothing directly about the long-term effects of this action.

For deterministic models, the transition probability function f is replaced by a
simpler transition function, f : S x 4 — S. It follows that the reward is completely

determined by the current state and action: r1 = p(Sk, &), p : S X A —> R.

The behavior of the agent is described by its policy &, which specifies how the
agent chooses its actions given the state. The policy may be either stochastic, 7 : S x A —
[0, 1], or deterministic, 7 : S — A. A policy is called stationary if it does not change over
time [31]. The task of the agent is, to maximize its long-term performance, while only

35

receiving feedback about its immediate, one-step performance. One way it can achieve this

Is by computing an optimal action-value function.
4.1.2 Multi - Agent Problem

The generalization of the Markov decision process to the multi agent case is the
stochastic game. “A stochastic game (SG) isa tuple (SA1, ... An f p1 .. ., pn), Wherenis
the number of agents, S is the discrete set of environment states, U; , i =1, ..., n are the
discrete sets of actions available to the agents, yielding the joint action set A = A; x. - -xA,
, .S x A xS — [0, 1] is the state transition probability function, and p; : S A xS —> R, i
=1, ..., narethe reward functions of the agents.

In the multi agent case, the state transitions are the result of the joint action of
all the agents, ax = [a1'k , . . ., @'k]ak € 4, aix € A (T denotes vector transpose).
Consequently, the rewards rix+1 and the returns R;x also depend on the joint action. The
policies m; : S x Aj — [0, 1] form together the joint policy &. The Q-function of each agent
depends on the joint action and is conditioned on the joint policy, Qi": S x A — R [31]. If
p1 =" =py, all the agents have the same goal (to maximize the same expected return),
and the SG is fully cooperative. If n = 2and p1 = —p2 , the two agents have opposite goals,
and the SG is fully competitive. Full competition can also arise when more than two agents
are involved. In this case, the reward functions must satisfy p;(s,a,s’) +- - - +pn (S,a,s) =0
Vs, s’ € S,a € A. However, the literature on RL in fully competitive games typically deals
with the two-agent case only. Mixed games are stochastic games that are neither fully

cooperative nor fully competitive.
4.2 Multi — Agent Reinforcement Learning (MARL)

Various MARL algorithms are: Minimax-Q Learning, Nash-Q Learning,
Friend-or-Foe Q Learning and Win-or-Learn-Fast Policy Hill Climbing (WOLF-PHC)[31].
These algorithms represent an evolution from the Q-Learning algorithm and provide an
insight into multi-agent learning. Minimax-Q learning algorithm is one of the first
adaptations of the original Q-learning algorithm and is still in use. For Nash-Q Learning
algorithm Nash Equilibrium is the basis for convergence. It was designed to reach a Nash
Equilibrium strategy between two fully competitive players. The Friend-or-Foe Q Learning

36

algorithm was designed from the Nash-Q Learning and updated for an environment where
the learning has friends and/or foes.

The Minimax-Q learning algorithm is interesting because it takes the single
agent Q-learning and adapts it for a multi-agent environment. It also uses the linear
programming to maximize its rewards by minimizing its opponents rewards. In a zero sum
stochastic game, the Minimax-Q learning algorithm will converge and find the Nash
equilibrium strategy. It was not proven to converge in general-sum games and it is a
limitation. A general-sum game environment can give more flexibility because the rewards

do not need to respect R1 = -R2 where R1 and R2 are the rewards for Player 1 and Player 2.

The different assumptions that make Nash-Q learning a restrictive algorithm. It
was proven to converge within these assumptions, but it cannot be generalized for every
general-sum game. In [12], Littman discussed the limitations of the Nash-Q Learning
algorithm. In the Nash-Q, updates taken into account is either the global optimal point or
the saddle point, but there are occasions where both are present. It was shown in [3] and

[30] that the algorithm does converge even if not all the assumptions are respected.

Friend or Foe-Q (FFQ) has been designed to alleviate the flaws of Nash-Q
Learning when confronted with the coordination and adversarial equilibrium. Littman [12]
discussed this by pointing out that there is a possibility that both equilibriums exist at the
same time. This can create problems in Nash-Q because it is not designed to decide which

one to choose. In FFQ there is a selection mechanism and it can alleviate this problem.
4.2.1 Friend Or Foe Algorithm

This algorithm was developed by Littman and it tries to fix some of the
convergence problems of Nash-Q Learning. The convergence of Nash-Q is restricted by
various assumptions made during the solving of a problem. The main concern lies within
assumptions, where every stage game needs to have either a global optimal point or a
saddle point. These restrictions cannot be guaranteed during learning. To ease this
restriction, the FFQ algorithm is built and it always converges by changing the update rules
subjected to the agents. The learning agent has to identify the other agents either as “friend”
or “foe”.

37

The FFQ algorithm is built for the n-player game, but we will start with a two
player game to understand this concept. One of the main differences between the Nash-Q
and the FFQ is that the agent only keeps track of its own Q-table. The update performed by

the agent is given by the following equation:

MaXaicaiQi[S,a1,....... ,an] (4.2)
when the opponents are friends; and

MaXx reranMiNaicai Y aieaiQilS,a1, ,an] (4.2)

when the opponents are foes, where n is the number of agents and i is the learning agent
[18].

Equation (4.1) is the Q-Learning algorithm adapted for multiple agents and
Equation (4.2) is the minimax-Q algorithm from Littman [6]. These equations represent a

situation where all the agents are either friend or foe.

We can categorize as all the agents in this algorithm in two groups of people i's
friends and i's foes. The friends will work together to maximize i's payoff. The foes will
work together against i to minimize its pay-off. The algorithm3.1 showing friend or foe Q-

learning is as follows:

1. Initialization

VseS,aseArandaz e Ay

Let Q(s,a1,82) =0 VseS

LetV(s)=0VseS, aeA;

Let n(s,a;) = 1/|Aq]

fork=0,1,2,...... do

In state s: Choose a random action from A; with probability

If not a random action, choose action a; with probability n(s, a;)

38

Evaluate the next state, s’.

In state s’ : The agent observes the reward r related to action a; and opponent's action a; in

state s. Update Q-Table of player 1 with equation :

Q(s,a1,82) « Q(s,a1,82) + a [(r+ YV(s”)) - Q(S,a1,82)]

Use linear programming to _nd the values of _ (s; al) and V (s) with the equation
V(S) = maXaeaiQils,az,....... ,an] if the opponent is a friend, and,;

V(S) = max rermcaiMiNaicai Y aicaiQilS,a1, ,an] if the opponent is a foe

o= o * decay

End loop

39

CHAPTER 5

HYBRID REINFORCEMENT LEARNING

5.1 INTRODUCTION

In ordinary RL algorithms with a single agent, the agent often takes a useless
action with a small reward, which results in a long learning time. On the other hand, in
swarm optimization algorithms, multiple agents are prepared and some agents could take
useful actions with a larger reward. Similarly, in with ant colony optimization, agents can
be made to learn which actions result in overall higher rewards. In addition, since the Q
values of all the agents are updated according to Q-values of such agents who take the

useful actions, it is expected that agents can learn in a shorter learning time.
5.2 RL & PARTICLE SWARM OPTIMIZATION (PSO)

RL has been recently combined with Particle Swarm Optimization to overcome the
problems while evaluating the multi-agent reinforcement learning for a dynamic
environment [16, 17]. The navigation problem for a single agent system with static system
provides quick control for the conventional RL methods such as Q learning and SARSA.
When subjected to a multi-agent system, the algorithm works well till the system dynamics
are less. This is so because with epochs, the RL algorithm focusses less on exploring new
paths and try to converge to the predefined goal for which the path was searched previously.
When the goal is changing the robots do not communicate that efficiently with each other to
change their termination points. With the PSO algorithm, as there are two parameters on
which each agent takes any action, they are able to communicate in a better way. The
personal best (or personal minima in PSO) of an individual agent drives it to reach to their
personal best path and simultaneously the global best of all the agents (or global minima in

PSO) also drives the agent to search and take the global best path.
5.2.1 Q- Swarm

Q-Swarm is a combination of Q-learning method and Particle Swam
Optimization Algorithms. First, each agent updates its own Q-values individually by using

Q-learning for some episodes. Then, the Q-values of all the agents are evaluated by an
40

adequate method, and the Q-values evaluated superior to those of the other agents are
selected. We call them the best Q values. Then, each agent receives the best Q-values from
another agent, and updates its own Q-values according to an adequate strategy by using the

best Q-values. These procedures are repeated until a termination condition is satisfied.

Although the Q-values are not evaluated in ordinary Q-learning, this algorithm
requires to evaluate them in order to select the best Q-values which bring a large reward. In
the Q-Swarm algorithm, there are two kinds of procedures of updating the Q-values of
each agent. One is the procedure of Q-learning, which is performed in the inner loop. The
other is the procedure based on interaction among the agents, which is performed in the
outer loop by the following equation. To evaluate the best of all Q-values discounted
reward is used [16]:

E= Y rkdV* (5.1)

The personal best of each agent i; P; and the global best found by all the agents
till time; G are determined by evaluating E for the Q-values. Each agent updates it Q-

values by using the global best and its personal best using the following equations [16]:
Vi(s,a)«— W Vi(s,a) + C1R1(Pi(s,a) — Qi(s,a)) + C2R2(G(s,a) — Qi(s,a)) (5.2)
Qi(s,a)— Qi(s,a) + Vi(s,a) (5.3)

where, Vj(s,a) is a so-called velocity, W, C; and C, are weight parameters, and R; and R,
are uniform random numbers in the range 0 to 1. In this algorithm, there are two kinds of
procedural for updating the Q-values of each agent. One is the procedure of Q-learning,
which is performed in the inner loop. The other is the procedure based on the interaction
among the agents, which is performed in the outer loop. The algorithm 5.1 shows the Q-

swarm as follows.
Algorithm 5.1: Q - Swarm learning[16]
Input: discount factor Y', Number of episode Y, number of agents n

1.For the agentsi=1,2,...... n initialize Q; function as Qjp < 0

41

2. Measure initial state, Sg

3. for all the agents, For every time stepk=1,2,........ do
a € arg max,Qx(s,a) with probability 1 - g (exploit)
ak
a uniformly random action in A with probability g (explore)

apply ax, measure next state ax+1 and reward ry+;
Qu+1(Sksak) = Qk(Sk,ak) + on[rks1 + Y'MaXy (Qu(Sk+1, 8”)) — Qu(Sk,ak)]
If a terminate condition of episode is satisfied, go to step 4.
end for
4. Calculate the evaluated E for Qj(s,a) of each agent by equation 5.1

5. Update Qji(s, a) of each agent by applying an information exchange using equation 5.2
and 5.3.

6. Go to step 3 till global termination criteria is not reached.
5.2.2 SARSA - Swarm

SARSA-Swarm is a combination of SARSA method and Particle Swarm
Optimization algorithm [30]. This algorithm is similar to the Q-swarm algorithm and has
been proposed by the same authors. This algorithm is best suited for environment with
large negative rewards. An environment in which the reward for travelling around is
negative for any action not reaching the goal instead for an environment in which the same
reward is zero then in the first case, the steps needed to reach the goal is faster. And for
such an environment, the SARSA reinforcement learning algorithm gives the best result
[30].

In such an environment, if a group of agents or robots are to be navigated, then
the simple SARSA algorithm does not prove to be fruitful. Thus, SARSA algorithm

coupled with the swarm optimization gives a swarm movement and the agents

42

communicateand cooperate with each other to reach the goal.
Algorithm 5.2: SARSA - Swarm learning [30] :

Input: discount factor Y', Number of episode Y, number of agents n
1.For the agentsi=1,2,...... n initialize Q; function as Qjp < 0

2. Measure initial state, sg

3. a e arg max,Qo(So,a) with probability 1 — gy (exploit)
dg <
a uniformly random action in A with probability gy (explore)
4. for all the agents, For every time step k=0, 1,2,........ do
a € arg maxaQx+1(Sk+1,8) with probability 1 - g1 (exploit)
dy+1 <—
a uniformly random action in A with probability g1 (explore)

apply ax, measure next state ax+1 and reward ry.;
Qk+1(Sk.ak) = Qu(Sk,ak) + on[ke1 + Y Qu(Sk+1, k1) — Qu(Sk,ax)]
If a terminate condition of episode is satisfied, go to step 4.
end for
4. Calculate the evaluated E for Qj(s,a) of each agent by equation 5.1

5. Update Qi(s, a) of each agent by applying an information exchange using equation 5.2
and 5.3.

6. Go to step 3 till global termination criteria is not reached.
5.3 RL & Ant Colony Optimization (ACO)

Ants are able to find the shortest route between the nest and a food source [3]

without any vision [10]. This process is possible because ants secrete pheromone chemicals
43

on the trail as they cover the path while hunting for food or resources to construct a nest.
Initial exploration is random in the absence of a pheromone trail. Ants returning to the nest
secrete pheromone on the trail. The pheromone evaporates with time; but ants follow a
pheromone trail and at a splitting point prefer to navigate the path with higher
concentrations of pheromone. Upon finding the food source, the ants return back to the nest
depositing pheromone along the way, thus reinforcing the pheromone trail.

Ants that have followed the shortest route are quicker to return to the nest, thus
reinforcing the pheromone concentration for the shorter trail at a quicker rate than those
ants that followed an alternative route. Further, when ants arrive at the branching point, it
chooses to follow the path which has the higher concentrations of pheromone, and thus
reinforces even further the pheromone concentration, and ultimately all ants follow the
shortest path. The quantity of pheromone secreted is a function of an angle between the
path and a line joining the food and nest locations [1] on the return journey. So far two
properties of pheromone secretion have been mentioned: aggregation and evaporation. The
concentration adds when ants deposit pheromone at the same location, and over time the
concentration gradually reduces by evaporation. A third property is diffusion. The

pheromone at one location diffuses into neighbouring locations.

Some of the mechanisms adopted by foraging ants have been applied to classical
combinatorial optimization problems with success. These problems include the travelling
salesman problem, job-shop scheduling, the quadratic assignment problem, the vehicle
routing problem and the network routing problem, robot navigation problem [19, 23, 32].

5.3.1 Pheromone-Q Learning

The Pheromone-Q technique is a combination of Q-learning and synthetic
pheromone where a belief factor is introduced in the update [8]. The belief factor is a
function of the synthetic pheromone concentration on the trail and shows the extent to
which an agent takes into account the information laid down by other agents from the same
cooperating set. RL and synthetic pheromone have previously been combined for action
selection [14, 15].

44

The belief factor allows an agent to selectively make use of implicit
communication trails which have been left by other agents; this might be useful in
situations where the information is not reliable due to changes in the environment.
Incomplete and uncertain informations are critical issue in the design of real-world

systems.
5.3.1.1 Belief Factor

The belief factor directs the extent to which an agent believes in the pheromone
it detects. Any agent, during the early training episodes, will believe less in the pheromone
map because then all the agents are biased towards exploration. In practical terms, the
belief factor is the ratio between the sum of actual pheromone concentration in the current
state plus neighbouring states and the sum of maximum possible pheromone concentration
in the current plus neighbouring states [10]. As such the value for the belief factor falls in
the range [0,1]. The belief factor is given by

B(S,a) = Zs€Na G)(S) / Zo€Na cDmax(cs) (51)

where, @(s) is the pheromone concentration at a point s in the environment and N, is the
set of neighbouring states for a chosen action a. The belief factor is a function of the
synthetic pheromone ®(s), a scalar value that integrates the basic dynamic nature of the
pheromone, namely aggregation, evaporation and diffusion.

The Q-learning update equation modified with synthetic pheromone is given by
Qu+1(Sksak) = Qi(Sk,k) + an[Ticer + YMaXa Qu(Sk+1, 87) + EB(Sk+1,2)] — Qu(Ska)] (5.2)
and, an = 1/(1+ visits,(sk,ax)) (5.2a)

where, the parameter & is a sigmoid function of time epochs > 0 and visits(s,a) is the total
number of times the state-action pair is visited. The value of the parameter & increases with
the number of agents who successfully perform the task at hand. The Phe-Q update

equation converges for a non-deterministic Markov decision process [10].

The parameter Y is the discount factor and reflects the relative strength of
delayed reward to immediate reward. The value for o is given by equation (5.2a). The

45

corresponding parameters in the Phe-Q update equation use the optimum values found for
the standard Q-learning algorithm. The parameters that influence Phe-Q learning are the
number of agents, the diffusion rate, secretion rate, evaporation rate and the coefficients of
the sigmoid of the pheromone and finally the pheromone saturation level [8]. The

pheromone distribution in the environment is a function of the number of existing agents,
and also a function of the diffusion across cells and the evaporation.

The agents moves from cell to cell along the four directions and secretes
synthetic pheromone in each cell. The two pheromone values — one associated with the
return to the nest ¢, and the other with search for the food source ¢s — are parameters to
fine tune. The pheromone aggregates in a cell up to a saturation level, and evaporates at an
evaporation rate ¢e; until there is no pheromone left in the cell. Also, the pheromone
diffuses into neighbouring cells at a rate with diffusion rate ¢gq which is inversely
proportional to the distance.

Each agent has two tasks. First is to reach the food location, and other is to
return to the nest. When released into the virtual environment, the agents have no
knowledge of the environment or the location of the goal. More than one agent can occupy
a cell. A cell has associated pheromone strength ® e [0, 100]. Pheromone is decoupled
from the state at the implementation level so that the size of the state space is N X N.

Algorithm 5.3 which shows the Phe-Q is as follows:
Algorithm 5.3: Phe-Q learning

Input: discount factor Y,

1. Initialize Q functionas Qp < 0,B «— 0

2. Measure initial state, sg

3. foreverytimestepk=1.2,........ do
a € arg max,Qx(Sk,2) with probability 1 - g (exploit)
dg <
a uniformly random action in A with probability gy (explore)

46

apply ax, measure next state ax+1 and reward ry.;
Update the pheromone value ®(s,.;) and the pheromone table for the previous state:
D(si1) = (@s + @n + P) *
B(s,a) = X seNa D(5)/ 2 oeNa Omax(O)
Qk+1(Sk.ak) = Q(Sk,ak) + on[rke1 + YMaX, (QK(Sk+1, a°) + EB(Sk+1,a")) — Qk(Sk.ax)]
an =1/ (visits,(sk,a))
end for
5.3.2 Pheromone-SARSA Learning

RL methods have been used with many evolutionary algorithms according to the
need of the applications. It has been seen in the Phe-Q algorithm that by combining the
belief factor in the Q-updation rule changes the way agents work and hence with
cooperative actions, the agent reach the goals faster in search problems[26]. Also, it is
evident that for a negative reward environment, SARSA method provides a better result

than the Q-learning method.

In literature so far, these two algorithms has not been combined to solve the various
search problems. In this thesis, a new method called the Pheromone-SARSA or Phe-
SARSA is introduced. This is similar to the Phe-Q algorithm only with the basic Q-
updation rule is that followed in the SARSA.

u/- . -\-\\
| Agent gains

/ 2 J;cgam-'c large reward.;
a N
A

Figure 5.1 Environment in which SARSA is effective

Q-learning is the most frequently used reinforcement method but it is basically and

offline learning schedule. The advantage of SARSA over Q-learning can be appreciated
47

when working with large negative rewards.

The main differences between SARSA method and Q-learning method can be
explained using a simple example. Let an agent in state s; perceive the next state s, by
taking action a;, and gain a negative large reward by taking the next action a, in s, as
shown in Fig.5.1. In this figure, a circle and an arrow mean a state and an action,
respectively. For both, SARSA method and Q-learning method, as Q(s,, a,) becomes a
large negative value by the large negative large reward, the agent learns that a, is a bad
selection. Moreover, in SARSA method, because Q(si, a;) also tends to become a large
negative value in future episodes, the agent can learn that a; is not a good selection.
Therefore, it can avoid such actions and acquire a better policy rapidly. Instead in Q-
learning method, because other Q-values in s, are generally larger than Q(sz, az), Q(S1, a1)
is updated without using Q(sz, a,) in the future episodes. Hence, the agent cannot learn that

a; is a bad selection.

Here, the Phe-SARSA method is proposed in order to obtain an optimal policy
rapidly for problems with negative large rewards. In this algorithm, the basic framework is
the same as the SARSA with a modified updating rule for the Q-value in which a belief
factor is also updated. Algorithm 5.4 shows the proposed Phe-SARSA algorithm:

Algorithm 5.4: Phe-SARSA learning
Input: discount factor Y, exploration schedule &
1. Initialize Q functionas Qp < 0,B «— 0

2. Measure initial state, sg

3. a € arg max,Qo(So,2) with probability 1 — g, (exploit)
ag <
a uniformly random action in A with probability &g (explore)
3. foreverytimestepk=12,........ do

4. apply ax, measure next state s+; and reward ry.+1

48

a € arg max,Q(Sk,a) with probability 1 - g (exploit)
dk <—
a uniformly random action in A with probability g (explore)

apply ax, measure next state ax+1 and reward ry.;

Update the pheromone value ®(s,.;) and the pheromone table for the previous state:
D(si1) = (@5 + @n + g Je

B(s,a) = X seNa D(s)/ 2oeNa Ormax(0)

Qx+1(Sk,ak) = Qk(Sk,ak) + anfrks1 + Ymax, (QK(sk+1, @”) + EB(Sk+1,2")) — Qk(Sk,ax)]
o = 1/(Visits,(sk,a))

end for

49

CHAPTER 6

SIMULATION RESULT AND DISCUSSION

A 10 X 10 grid has been taken and initially one agent was trained for various conditions.
The number of agent was gradually increased from one to two and finally to four. The
different environments for which the simulation has been carried out can be broadly
divided into four cases and in each case further variations have been introduced. Different
cases for which the various algorithms have been implemented are as follows:

e Case I: Obstacles: Fixed; Goal: Fixed
e Case I(a): No. of Obstacles : 4
e Case I(b): No. of Obstacles : 8
e Case I(c): No. of Obstacles : 14
e Case Il: Obstacles: Fixed and Moving (Both); Goal: Fixed
e Case ll(a): No. of Fixed Obstacles : 4; No. of Moving Obstacles: 2
e Case ll(b): No. of Fixed Obstacles : 5; No. of Moving Obstacles: 3
e Case IlI: Obstacles: Fixed; Goal: Moving
e Case IlI(a): No. of Fixed Obstacles : 4

e (Case IlI(b): No. of Fixed Obstacles : 8

e (Case IlI(c): No. of Fixed Obstacles : 14

e Case IV: Obstacles: Fixed and Moving (Both); Goal: Moving
e Case IV(a): No. of Fixed Obstacles : 4; No. of Moving Obstacles: 2
e Case IV(b): No. of Fixed Obstacles : 5; No. of Moving Obstacles: 3

Agents can move in four durections: up, down, left and right. In all the cases, the starting
location of the agent(s) was the bottom leftmost corner grid and the goal location when
fixed was the top rightmost corner grid. The moving obstacles could move in four
directions: up, down, left and right, and for the goal, it could move in afband of first two

rows as shown by a patch. Termination criterion used for the simulations were:-

e Maximum number of steps in an attempt is 5000.

e Maximum number of attempts is 2500.
50

Reward function that has been taken is :

+100, when x;, # goal and x,.,1 = goal
R(xw xx+1) = 1—100, when x4 is an obstacle or wall
-1, otherwise

where, X is the current state and X+1 iS the next state.

For each of the various cases stated above, 100 simulations were carried out and the sum
average of these simulations is shown in the graphs between numbers of steps needed to

reach the goal vs. number of attempts.

In the images shown below for paths travelled by the agents have been shown, following

legends was followed:

e [0 --Starting location of Agents
e @ --Goal/ End Point for Agents
o @ -- Fixed Obstacles

e @ -- Moving Obstacles

Programming Software used - MATLAB 2013a

System Configuration: Pentium (R) Dual — Core @2.10 GHz, 2.00 GB RAM, 32-bit
Operating System

6.1 Single Agent Problem

For the single agent case, following results was obtained for the various

environmental cases:

6.1.1 Case I: Obstacles Fixed, Goal Fixed

(a) No. of obstacles = 4

Figure 6.1.1 shows the no. of steps required by the agent to reach the goal against the no. of
attempts for a 10X10 grid world with 4 obstacles in the path. For the single agent problem,
two conventional RL methods, Q-learning and SARSA and two hybrid-RL methods, i.e.
RL with ACO, Phe-Q and Phe-SARSA have been simulated.

51

~
=
=

C-learning

o
=
=

Phe-SARSA

w N m
= = =)
=] =) {a]

[5]
=
=]

Mao. of Steps Required to reach the Goal

100

I I I I I I I
150 200 250 300 350 400 450 500
Mo. of Atternpts

Figure 6.1.1 Plot between no. of steps required to reach the goal and no. of attempts for 1

agent; case I(a)

Figure 6.1.2a, 6.1.2b, 6.1.2c, 6.1.2d shows the grid world with the path traced by the agent
using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for four obstacles in path.

s ® s ®
o ®
Y =
3 e
O O
Figure 6.1.2a Path traced for case 1(a) Figure 6.1.2b Path traced for case I(a)
by single agent for Q-learning by single agent for SARSA
e . °
® ®
P | -]
L o
O =2
Figure 6.1.2c Path traced for case 1(a) Figure 6.1.2d Path traced for case I(a)
by single agent for Phe-Q by single agent for Phe-SARSA

52

Here, the agent is very much free to move around and the obstacles are fewer as compared
to the cells in which it can move, and hence the path taken by the agent for all the cases are
not same to reach the goal. For all the four algorithms; shortest path has 18 numbers of
steps, but Phe-SARSA reaches the optimal path fast as compared to the other three

methods.
(b) No. of obstacles = 8

Figure 6.1.3 shows the no. of steps required by the agent to reach the goal against the no. of
attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL
methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q
and Phe-SARSA have been simulated.

800 T T T T T T

T
— Q-learnin Ii]
SARSA
Fhe-GQ
FPhe-SARSA

Mo. of Steps required to reach the Goal
=
o
(=]

T | I I I I I
150 200 250 300 350 400 450 500
Mo. of Attermpts

Figure 6.1.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case I(b)

Figure 6.1.4a, 6.1.4b, 6.1.4c, 6.1.4d shows the grid world with the path traced by the agent
using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for eight obstacles in path.

1

o % . “
[I
| o,
[

_

R 2

Figure 6.1.4a Path traced for case I(b) Figure 6.1.4b Path traced for case I(b)

by single agent for Q-learning by single agent for SARSA
53

Figure 6.1.4c Path traced for case 1(b) Figure 6.1.4d Path traced for case I(b)
by single agent for Phe-Q by single agent for SARSA

Here also the agent is quite to move around and the obstacles are fewer as compared to the
cells to which it can move, and hence the path taken by the agent for all the cases are more
or less same to reach the goal. Thus, for all the four algorithms; the shortest path traced has
the minimum number of steps as 18 but with Phe-SARSA with the least no. of attempts,

this could be found.
(c) No. of obstacles = 14

Figure 6.1.5 shows the no. of steps required by the agent to reach the goal against the no. of
attempts for a 10X10 grid world with 14 obstacles in the path. Two conventional RL
methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q
and Phe-SARSA have been simulated.

800 T

C-learning
—— SARSA
Phe-Q
Phe-5ARSA

Mo. of Steps required to reach the Goal

1 1 1 I I
200 250 300 350 400 450 500
No. of Attempts

Figure 6.1.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case I(c)

54

Figure 6.1.6a, 6.1.6b, 6.1.6¢c, 6.1.6d shows the grid world with the path traced by the agent
using Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively for fourteen obstacles
placed in the path.

Figure 6.1.6a Path traced for case 1(c) Figure 6.1.6b Path traced for case I(c)
by single agent for Q-learning by single agent for SARSA

R ! e u
h:.: hl

ry 2

Figure 6.1.6¢ Path traced for case I(c) Figure 6.1.6d Path traced for case I(c)

by single agent for Phe-Q by single agent for SARSA

Here, the agent does not have much area to move around and the obstacles are more as
compared to the previous cases, the path taken by the agent for all the cases are same to
reach the goal. To reach the goal in theminimum of 18 steps there are only two possible
paths. For all the four methods used, agents track down the same shortest path route but

with the Phe-SARSA method, the agent could reach the goal with least no. of attempts.

6.1.2 Case Il: Obstacles Fixed & Moving (Both), Goal Fixed

(@) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.1.7 shows the no. of steps required by the agent to reach the goal against the no. of
attempts for a 10 X10 grid world with 4 fixed and 2 moving obstacles in the path. Here also

55

four algorithms have been simulated: Q-learning, SARSA, Phe-Q and Phe-SARSA.

1200 T T T T

Q-learning
— SARSA
Phe-Q
Phe-SARSA

1000

|
800 ft
50D

400

No. of Steps required to reach the Goal

200

No. of Atternpts

Figure 6.1.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case Il(a)

Figure 6.1.8a, 6.1.8b shows the grid world with the path traced by the agent using Q-
learning and SARSA, respectively for 4 fixed and 2 moving obstacles placed in the path.
The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in

which the moving obstacles can move are shown using the grey patch.

o o'
= | {
4 ‘ @ i
e o ® 80 |
® —— ISl s
_ | -
K K J
In g
Figure 6.1.8a Path traced for case 11(a) Figure 6.1.8b Path traced for case 11(a)
by single agent for Q-learning by single agent for SARSA

The result shows that for such a case the Q-learning and SARSA converges faster to find
their optimal path faster as compared to the hybrid ones. The Phe-Q and Phe-SARSA
methods converge slowly and also the final optimal value found by these methods are very
large as compared to conventiona RL methods. This happens because, with obstacles being

dynamic in nature, the pheromone levels create a confusion to decide over which cell to

56

travel next. This confusion makes the agent to travel in the wrong direction and the overall
steps thus taken to reach the goal are very high.

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.1.9 shows the no. of steps required by the agent to reach the goal against the no. of
attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path. Here also
four algorithms have been simulated: Q-learning, SARSA, Phe-Q and Phe-SARSA.

1600 T T T T

Q-learning
SARSA
Phe-Q
Phe-SARSA

1400

1200 5

=1
=]
=]

800

600

400

No. of Steps required to reach the Goal

200

RN ey SRR RS Lo ﬁ
1
0

t I T
1000 1500 2000
No. of Attempts

Figure 6.1.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 1

agent; case l1(b)

Figure 6.1.10a, 6.1.10b shows the grid world with the path traced by the agent using Q-
learning and SARSA, respectively for 5 fixed and 3 moving obstacles placed in the path.
The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in
which the moving obstacles can move are shown using the grey patch.

4’ ?
L 2 oo
e @ - |
| 0 L

@ o @ r! 1

- I— | L _‘|_ .

K 4 4 @ | 4
1N O
Figure 6.1.10a Path traced for case I1(b) Figure 6.1.10b Path traced for case 11(b)
by sinle agent for Q-learning by single agent for SARSA

57

The results obtained here are very similar to that for the last case; Q-learning and SARSA
converges faster to find the optimal path as compared to the hybrid ones. The Phe-Q and
Phe-SARSA methods converge slowly and the final optimal value found by theses methods
are very large as compared to conventiona RL methods. With the increase in number of

obstacles, this gap between conventional and hybrid RL algorithm further increases.

6.1.3 Case I11: Obstacles Fixed, Goal Moving

(a) No. of fixed obstacles = 4

Figure 6.1.11 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving
randomly for a given set of locations. Four algorithms have been simulated for this case: Q-
learning and SARSA Phe-Q and Phe-SARSA.

700 T T T T T T

Q-learning
——SARSA
Phe-Q
Phe-SARSA

@
=]
=]

w = m
=] =] =]
=) =] =]

N
=]
=]

No. of Actions required to reach the Goal

100

o Aeadiiy Y, s, il AR Lo Moy D\ doian e goes ooy
P | t i Pk

¥
150 200 250 300 350 400 450 500
No. of Attempts

Figure 6.1.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case 111(a)

Various simulations were done for the four algorithms stated for different goal loactions.
Figure 6.1.12a, 6.1.12b, 6.1.12c, 6.1.12d shows the grid world with the path traced by the
agent (when the goal is moving) for different goal loactions and there are 4 obstacles in the
path for Q-learning, SARSA, Phe-Q and Phe-SARSA, respectively.

Simulation has been carried out for an environment, in which the goal is moving, the grey
celles shows the region in which the goal might appear or is moving for various attempts to

reach the goal.

58

—9 ¢
7 e ®
. |4 13
- - o |
{ |
[]
== e o]
o o
O O
Figure 6.1.12a Path traced for case I11(a) Figure 6.1.12b Path traced for case 111(a)
by single agent for Q-learning by single agent for SARSA
T e e
=) -
A ®
I |
. @ - -
| I
) =]
@ @
O O
Figure 6.1.12c Path traced for case I11(a) Figure 6.1.12d Path traced for case 111(a)
by single agent for Phe-Q by single agent for SARSA

Here, for all the four methods the agent is able to find to optimal paths after various number
of attempts. But, Phe-SARSA method is able to find the shortest path for given goal
loactions in the least number of attempts. This is so because, with Phe-SARSA or Phe-Q,
the pheromone levels for the various cells travelled are increased with the number of
attempts. As the number of attempts increases, the agents have an understanding of moving
vertically to reach the bands where goal can be present and then traverse to look for the

actual position of the goal.
(b) No. of fixed obstacles = 8

Figure 6.1.13 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 8 obstacles in the path and the goal is moving in
the first two rows. Four algorithms have been simulated for this case: Q-learning and
SARSA Phe-Q and Phe-SARSA.

59

No. of Actions required to reach the Goal

T T T T T

—— Q- Learning
= SARSA
= Phe-Q
= Phe-SARSA =1

DR A AR PYERORaprTy A i TP Al
3 e 1 o~ |

‘I'
100

i
250 300 350 400 450 500

Mo. of Attempts

Figure 6.1.13 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case I11(b)

Figure 6.1.14a, 6.1.14b, 6.1.14c, 6.1.14d shows the grid world with the path traced by the
agent when the goal is moving and there are 8 obstacles in the path for Q-learning, SARSA,

Phe-Q and Phe-SARSA.

Figure 6.1.14a Path traced for case I11(b)

by single agent for Q-learning

> %

B
|
|
_|
? ¢
O

Figure 6.1.14c Path traced for case I11(b)

by single agent for Phe-Q

Figure 6.1.14b Path traced for case 111(b)
by single agent for SARSA

Figure 6.1.14d Path traced for case 111(b)
by single agent for SARSA

60

Here also, for all the four methods the agent is able to find to optimal paths after various
number of attempts. But, Phe-SARSA method is able to find the shortest path for given
goal loactions in the least number of attempts. This is so because, with Phe-SARSA or Phe-
Q, the pheromone levels for the various cells travelled are increased with the number of
attempts. As the number of attempts increases, the agents have an understanding of moving
vertically to reach the bands where goal can be present and then traverse to look for the

actual position of the goal.
(c) No. of fixed obstacles = 14

Figure 6.1.15 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 15 obstacles in the path and the goal is moving in
the first two rows. Four algorithms have been simulated for this case: Q-learning and
SARSA Phe-Q and Phe-SARSA.

00 T T T

Mo. of Steps required to reach the Goal

1 Jy Al i nli' ol Ay bt i el il 2 H0,
180 200 250 300 350 400 450 00
Mo. of Attermpts

Figure 6.1.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for

1 agent; case 111(c)

Figure 6.1.16a, 6.1.16b, 6.1.16c, 6.1.16d shows the grid world with the path traced by the
agent when the goal is moving and there are 14 obstacles in the path for Q-learning,
SARSA, Phe-Q and Phe-SARSA, respectively.

It can be seen from the results obtained that for all the four methods the agent is able to find
to optimal paths after various number of attempts. But, phe-sarsa method is able to find the
shortest path for given goal loactions in the least number of attempts. This is so because,
with Phe-SARSA or Phe-Q, the pheromone levels for the various cells travelled are

61

Figure 6.1.16a Path traced for case I11(c) Figure 6.1.16b Path traced for case I11(c)
by single agent for Q-learning by single agent for SARSA

'
Son, o fons og
.8 .2

I——
Figure 6.1.16c Path traced for case I11(c) Figure 6.1.16d Path traced for case 111(c)

by single agent for Phe-Q by single agent for SARSA

increased in the number of attempts. As the number of attempts increases, the agents have
an understanding of moving vertically to reach the bands where goal can be present and

then traverse to look for the actual position of the goal.

6.1.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving

(@) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.1.17 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 4 fixed and 4 moving obstacles in the path and the
goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-
learning and SARSA Phe-Q and Phe-SARSA.

The agent could reach the goal for all the four methods, but SARSA converges first and
obtains an optimal path. As the system dynamics increases in ters of moving obstacles, the

Phe-Q and Phe-SARSA takes a longer path to reach to the goal as compared to Q-learning
62

1500 T T T T

Q-learning
SARSA
Phe-Q
Phe-SARSA

1000

500

No. of Steps reguired to reach the Goal

| | | |
[u] a00 1000 1500 2000 2500
Mo. of Attempts

Figure 6.1.17 Plot between No. of Steps required to reach the Goal and No. of Attempts for
1 agent; case 1V(a)

and SARSA, this is so because with goals and obstacles both moving, the pheromone level
deposited are almost evenly distributed in the plane and the agent is not able to judge which
path to take. Pheromone of almost same levels in the cells creates confusion for the agent
and hence even after many attepmts, the agent is not able to reach the optimal path as
obtained by the Q- learning or SARSA.

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.1.18 shows the no. of steps required by the agent to reach the goal against the no.

of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the

2500

- Q-learning
SARSA
Phe-Q
Phe-SARSA |

2000

1500

1000

Mo, of Steps required to reach the Goal

a00

0 400 1000 1500 2000 2500
Mo, of Attempts

Figure 6.1.18 Plot between No. of Steps required to reach the Goal and No. of Attempts for
1 agent; case 1V(b)

63

goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-
learning and SARSA Phe-Q and Phe-SARSA.

Upon increasing both the number of fixed and moving obstacles, the convergence for the
Phe-Q and Phe-SARSA becomes poorer as compared to the other two conventional RL
methods. This is so because with the increase in system dynamics there is also less freedom
for the agents to move and explore around. As the agent is nnot able to explore the space
properly, it traces the same worng path again and again and thus ending up for quite high

number of steps to reach the goal.
A comparative analysis for the computational time for each of the cases for all four

algorithms is provided in following table:

Table 6.1 Computational Time for the Single Agent Problem for the four algorithms

simulated

SARSA

Q-learning

Phe-Q

Phe-SARSA

0.002650692

0.004889478

0.0122237

0.010695733

0.002578897

0.004884682

0.0127002

0.012573171

0.002627867

0.005205458

0.0145753

0.014385803

0.013484825

0.02273135

0.050009

0.005055962

0.022228309

0.036542522

0.073085

0.073086754

0.005513254

0.008956071

0.0179121

0.017911963

0.005707159

0.008127772

0.0227578

0.022025872

0.005423821

0.008984571

0.0258756

0.025708512

0.014594556

0.023480353

0.0469607

0.042365314

0.023137526

0.0361615

0.0831715

0.08309836

The computation table shows that the SARSA takes the least time of computation out of all
the four algorithms used. Q-learning is slower than SARSA because for Q-learning for the
Q updation formula, we use a maximum function which uses more memory for
computation whereas in SARSA such a function is not required. The overall time
compuatation for the Phe-Q or Phe-SARSA is around two times that of the convetional RL,
this is so becase for theses methods the ant needs to reach the goal and come back again to

the initial starting location before the next simulation is carried out.

64

6.2 Two Agents Problem

For the two agents problem, following results was obtained for the various

environmental cases:

6.2.1 Case |I: Obstacles Fixed, Goal Fixed

(a) No. of obstacles = 4

Figure 6.2.1 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 4 obstacles in the path. For the two agents
problem, two conventional RL methods; Q-learning and SARSA and four hybrid-RL
methods; RL with ACO, Phe-Q and Phe-SARSA and RL with PSO; Q-Swarm and
SARSA-Swarm have been simulated.

800 T T T T

I
Q-learning
SARSA
Phe-Q
FPhe-SARSA
Q-Swearm L
SARSA-Swarm

700

800 14

&00

400

Mo. of Steps reguired to reach the Goal

| I I I I I
200 250 300 350 400 450 500
Mo, of Atternpts

Figure 6.2.1 Plot between no. of steps required to reach the goal and no. of attempts for 2 agents;

case 1(a)

Figure 6.2.2a, 6.2.2b, 6.2.2¢c, 6.2.2d, 6.2.2e, 6.2.2f shows the grid world with the path
traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and
SARSA-Swarm, respectively for four obstacles placed the path. Blue and green lines show

the paths traced by agent 1 and agent 2, respectively.

Here, the agents are very much free to move around and the obstacles are fewer as
compared to the cells in which it can move. Thus, for all the six algorithms; the shortest
path traced has the minimum number of steps as 19, but SARSA-Swarm reaches the

optimal path for the minimum number of steps. From the above results, it can be seen that

65

\

|
®

O O

Figure 6.2.2a Path traced for case 1(a)

by two agents for Q-learning

Figure 6.2.2c Path traced for case 1(a)
by two agents for Phe-Q

Figure 6.2.2e Path traced for case 1(a)
by single agent for Q-Swarm

mE

Figure 6.2.2b Path traced for case I(a)
by two agents for SARSA

Figure 6.2.2d Path traced for case 1(a)
by two agents for Phe-SARSA

Figure 6.2.2f Path traced for case I(a)
by single agent for SARSA-Swarm

for the Q-learning and SARSA, both the agents find path independently and thus the paths

found are not near to each other as there is no coordination between the agents, and hence

also takes more time to reach the optimal path. For the Phe-Q and Phe-SARSA, there is a

kind of indirect interaction between the agents, as the pheromone trail left by an agent will

be used as a guidance for both the agents and thus near the starting locations and the goal

loacation, both the agents follow the same path. For the Q-Swarm and SARSA-Swarm as
the coordination between the agents is present, hence for these methods the optimal path
was found for least number of attempts. Also, it can be seen that agents move in a swarm

and are quite close to each other while reaching the goal.
(b) No. of obstacles = 8

Figure 6.2.3 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL
methods; Q-learning and SARSA and four hybrid-RL methods, i.e. RL with ACO; Phe-Q
and Phe-SARSA and RL with PSO; Q-Swarm and SARSA-Swarm have been simulated.

00 .

Q-learning
SARSA
Phe-Q
Phe-3ARSA |
Q-Swarm
— SARSA-Swarm ||

Mo, of Steps required to reach the Goal

f - f f f
260 300 360 400 450 500
Mo. of Attempts

Figure 6.2.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case I(b)

Figure 6.2.4a, 6.2.4b, 6.2.4c, 6.2.4d, 6.2.4e, 6.2.4f shows the grid world with the path
traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and
SARSA-Swarm, respectively for eight obstacles placed the path.

Here also the agents are very free to move around and the obstacles are few as compared to
the cells in which it can move. Thus, for all the six algorithms; the shortest path traced has
the minimum number of steps as 19, but SARSA-Swarm reaches the optimal path for the
minimum number of steps. Similar results have been obtained here as the previous one with
4 obstacles in the path. But with the increase in the number of obstacles in the path, there
are more restrictions for the agents to move around and hence it takes more attempts for the

agents to reach the optimal path as compared to the previous case.

67

O

Figure 6.2.4a Path traced for case 1(b)
by two agents for Q-Learning

Figure 6.2.4c Path traced for case I(b)
by two agents for Phe-Q

—

e %

Figure 6.2.4e Path traced for case 1(b)

by two agents for Q-Swarm

(c) No. of obstacles = 14

0

Figure 6.2.4b Path traced for case I(b)
by two agents for SARSA

O

Figure 6.2.4d Path traced for case I(b)
by two agents for Phe-SARSA

Figure 6.2.4f Path traced for case I(b)
by two agents for SARSA-Swarm

Figure 6.2.5 shows the same case with more obstacles in the path. Simulations have been
done for Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm for 14

obstacles placed in the path to reach goal.

T
Q-learning
SARSA
Phe-Q
Phe-SARSA H
Q-Swarm
SARSA-Swarm | |

Mo, of Steps required to reach the Goal

250 300 3480 400 450 a0o
Mo. of Atternpts

Figure 6.2.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case 1(c)

Figure 6.2.6a, 6.2.6b, 6.2.6¢c, 6.2.6d, 6.2.6e, 6.2.6f shows the grid world with the path
traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and
SARSA-Swarm, respectively for fifteen obstacles placed the path.

oy "t

[y [

Figure 6.2.6a Path traced for case 1(c) Figure 6.2.6b Path traced for case I(c)
by two agents for Q-Learning by two agents for SARSA

0'....:; l'....:;

& |
Oon o
Figure 6.2.6¢ Path traced for case 1(c) Figure 6.2.6d Path traced for case I(c)
by two agents for Phe-Q by two agents for Phe-SARSA

69

0'....:; ee &

I ——

o OO
Figure 6.2.6e Path traced for case 1(c) Figure 6.2.6f Path traced for case I(c)
by two agents for Q-Swarm by two agents for SARSA-Swarm

Here, the agents are not free to move around and the obstacles are quite in number as
compared to the cells in which it can move. For all the four algorithms; the shortest path
traced has the minimum number of steps as 19, but SARSA-Swarm reaches the optimal
path for the minimum number of steps. Here, it can be seen that the path taken the agents
are similar in nature, this is so because there are only two paths for which the optimal
number steps could be possible. With the increase in the number of obstacles in the path,
there are more restrictions for the agents to move around and hence it takes more attempts

for the agents to reach the optimal path as compared to the previous case.

6.2.2 Case Il: Obstacles Fixed & Moving (Both), Goal Fixed

(@) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.2.7 shows the no. of steps required by the agents to reach the goal against the no.

1400 T T T

Q-learning
—— SARSA
Phe-Q
Phe-SARSA

1200

Q-Swarm L
—— SARSA-Swarm

1000 %

800 - 1

600

400

No. of Steps required to reach the Goal

200

No. of Attempts

Figure 6.2.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case l1(a)
70

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path. For this
case six methods have been simulated: two conventional RL methods; Q-learning and
SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL
with Swarm; Q-Swarm and SARSA- Swarm.

Figure 6.2.8a, 6.2.8b shows the grid world with the path traced by the agents using Q-
learning and SARSA, respectively for 4 fixed and two moving obstacles placed in the path.
The fixed obstacles are shown by black hexagon and the moving ones by blue. The cells in

which the moving obstacles can move are shown using the grey patch.

o .

771

*s ®©

4
. o
. L
o O

Figure 6.2.8a Path traced for case 11(a) Figure 6.2.8b Path traced for case I1(a)
by two agents for Q-learning by two agents for SARSA

The result shows that for such a case the Q-learning and SARSA find the optimal path
faster as compared to the hybrid ones. Q-swarm and SARSA-swarm still simulates to reach
to an optimal path but Phe-Q and Phe-SARSA are not able to find this optimal path. The
optimal steps value obtaind in these methods is higher than the rest of the four methods.
This is so because the Phe-Q and Phe-SARSA uses the pheromone level of each grid into
account and with moving obstacles in the path, the pheromone level might misguide the
agent to take a path which has does not have obstacles for current simulation but might
have for the next one. Whereas in the swarm methods, they agents work collectively to
reach the goal and in the process of reaching the goal do not alter the environment as with

the pheromone algorithms do.
(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.2.9 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path. For this
71

case six methods have been simulated: two conventional RL methods; Q-learning and
SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL
with Swarm; Q-Swarm and SARSA- Swarm.

1400

- Q-learning
—— SARSA
Phe-Q
Phe-SARSA
Q-Swarm
——— SARSA-Swarm [|

1200

)
1000

far) o
=1 [=]
=] =]

=
=
(=]

MNo. of Steps required to reach the Goal

200

No. of Attempts

Figure 6.2.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 2

agents; case 1l(b)

Figure 6.2.10a, 6.2.10b, 6.2.10c, 6.2.10d, shows the grid world with the path traced by the

agents using Q-learning, SARSA, Q-Swarm and SARSA-Swarm, respectively for 5 fixed
and 3 moving obstacles placed in the path. The fixed obstacles are shown by black
hexagons and the moving ones by blue. The cells in which the moving obstacles can move

are shown using the grey patch.

o OO
Figure 6.2.10a Path traced for case I1(b) Figure 6.2.10b Path traced for case 11(b)
by two agents for Q-learning by two agents for SARSA

The results obatined are similar to the previous case. Though agent could reach the goal for

all the methods, Q-learning and SARSA find the optimal path faster as compared to the

72

hybrid ones. Q-swarm and SARSA-swarm still simulates to reach to an optimal path but
Phe-Q and Phe-SARSA are not able to find this optimal path. The optimal steps value
obtaind in these methods is higher than the rest of the four methods. Also, on increasing the
number of fixed and moving obstacles, the optimal value reached by Phe-Q and Phe-
SARSA are very high than the rest of the four methods.

6.2.3 Case Il1: Obstacles Fixed, Goal Moving

(a) No. of fixed obstacles = 4

Figure 6.2.11 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving in
the first two rows. Six algorithms have been simulated for this case: Q-learning, SARSA,
Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

800

T T T T T T

I
Q-learning
——— SARSA

700 i ol

Phe-SARSA
Q-Swarm
—— SARSA-Swarm

600

500

400

300

No. of Steps required to reach the Goal

200

100

0

No. of Attempts

Figure 6.2.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for

2 agents; case 1l1(a)

Figure 6.2.12a, 6.2.12b, 6.2.12c, 6.2.12d, 6.2.12¢, 6.2.12f shows the grid world with the
path traced by the agents when the goal is moving and there are 4 obstacles in the path for
Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Here, for all the six methods the agents are able to find to optimal paths after various
number of attempts. But, SARSA-swarm method is able to find the shortest path for any
given goal loactions in the least number of attempts. This is so because, SARSA-swarm or

Q-swarm, the agents coordinate with each other to tell the possible locations of the goal.

73

The global maxima is thus here not for a particular cell, but for all the cells for which goal
could possibly be present. As the number of attempts increases, the agents have an
understanding of moving vertically to reach the bands where goal can be present and then

traverse to look for the actual position of the goal.

The moving goal area is represented by the grey covered region.

Figure 6.2.12a Path traced for case I11(a) Figure 6.2.12b Path traced for case 111(a)
by two agents for Q-learning by two agents for SARSA

Figure 6.2.12c Path traced for case 111(a) Figure 6.2.12d Path traced for case 111(a)
by two agents for Phe-Q by two agents for Phe-SARSA

Figure 6.2.12c Path traced for case I11(a) Figure 6.2.12d Path traced for case 111(a)
by two agents for Q-Swarm by two agents for SARSA-Swarm

74

(b) No. of fixed obstacles = 8

Figure 6.2.13 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a10X10 grid world with 8 obstacles in the path and the goal is moving in the
first two rows. Six algorithms have been simulated for this case: Q-learning and SARSA
Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

1000 T T T = T T — T

T
Q-leaming
900 —— SARSA
Phe-Q
800 5y Phe-SARSA H
1Y)
\'/' Q-Swarm
700ty —— SARSA-Swarm H

B00 —

No. of Steps required to reach the Goal
]
o
o
T

Mo. of Attempts

Figure 6.2.13 Plot between No. of Steps required to reach the Goal and No. of Attempts for
2 agents; case I11(b)

Figure 6.2.14a, 6.2.14b, 6.2.14c, 6.2.14d, 6.2.14e, 6.2.14f shows the grid world with the
path traced by the agents when the goal is moving and there are 8 obstacles in the path for
Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

The moving goal area is represented by the grey covered region.

o % > %
* %

R 0

B = g
Figure 6.2.14a Path traced for case I11(b) Figure 6.2.14b Path traced for case 111(b)
by two agents for Q-learning by two agents for SARSA

75

Figure 6.2.14c Path traced for case I11(b) Figure 6.2.14d Path traced for case 111(b)
by two agents for Phe-Q by two agents for Phe-SARSA

Figure 6.2.14e Path traced for case I11(b) Figure 6.2.14f Path traced for case 111(b)
by two agents for Q-Swarm by two agents for SARSA-Swarm

Here also, for all the six methods the agents are able to find to optimal paths after various
number of attempts. But, SARSA-swarm method is able to find the shortest path for any
given goal loactions in the least number of attempts. On increasing the number of obstacles
present in the path, it takes more attempts for all the methods to their own optimal values.

(c) No. of fixed obstacles = 14

Figure 6.2.15 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 14 obstacles in the path and the goal is moving in
the first two rows. Six algorithms have been simulated for this case: the two conventional
reinforcement algorithms: Q-learning and SARSA, four hybrid algorithms, RL with ACO:
Phe-Q and Phe-SARSA and RL with PSO: Q-Swarm and SARSA-Swarm.

76

1200 T T T T T T T

T
Q-learnin g
SARSA
Phe-Q L
Phe-SARSA
Q-Swarm
SARSA-Swarm

1000 f¢

800

600

400

No. of Steps required to reach the Goal

T e o o Ao A " P
| | A A S L T A AR AN O AP Ay A A A i e
u} 50 100 150 200 250 300 350 400 450 500
No. of Attempts

Figure 6.2.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for
2 agents; case 1l1(c)

Figure 6.2.16a, 6.2.16b, 6.2.16c, 6.2.16d, 6.2.16e, 6.2.16f shows the grid world with the
path traced by the agents when the goal is moving and there are 8 obstacles in the path for
Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.2.16a Path traced for case I11(c) Figure 6.2.16b Path traced for case 111(c)
by two agents for Q-learning by two agents for SARSA

Figure 6.2.16c Path traced for case I11(c) Figure 6.2.16d Path traced for case 111(c)
by two agents for Phe-Q by two agents for Phe-SARSA

77

Figure 6.2.16e Path traced for case I11(c) Figure 6.2.16f Path traced for case I11(c)
by two agents for Q-Swarm by two agents for SARSA-Swarm

Here also, for all the six methods the agents are able to find to optimal paths after various
number of attempts. But, SARSA-swarm method is able to find the shortest path for any
given goal loactions in the least number of attempts. With the increase in the number of
obstacles present in the path, it takes more attempts for all the methods to their own optimal
values. It was also observed that with the normal RL methods the agent may take any
random path independent of what other agent is moving. For Phe-Q and Phe-SARSA
methods, usually near the starting location and near the end location, agents take same path.
This is because of the high pheromone levels. With the Q-Swarm and SARSA-Swarm
methods, the agents try to follow each others steps and try to move in a connected group or

swarm.
6.2.4 Case 1V: Obstacles Fixed & Moving (Both), Goal Moving

(@) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.2.17 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path and the
goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-
learning and SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Comparing the six methods, as the system dynamics increases and the obstacles also started
to move, SARSA-Swarm and Q-Swarm converges to obtain an optimal path, but the former
converges first. Q-learning, SARSA, Phe-Q and Phe-SARSA also converge to find some

solution but they do not reach to find the optimal solution in this case.

78

1800 T T T T

Q-learning
1500 ——SARSA
Phe-Q
Phe-SARSA

1400 \\« ~ Q-Swarm 1
\ N —— SARSA-Swarm
1200 [Wi,
, U, e,

1000 —

=]

=1

[=]
T

@

=]

=]
T

No. of Steps required to reach the Goal

s

o

o
T

N}
=]
=]
T
1

(=]

| | | |
500 1000 1500 2000 2500
MNo. of Attempts

o

Figure 6.2.17 Plot between No. of Steps required to reach the Goal and No. of Attempts for
2 agents; case 1V(a)

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.2.18 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the
goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-

learning and SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

2500 T - T — - T

Q-learning
SARSA
Phe-Q
Phe-SARSA
Q-Swarm
SARSA-Swarm

2000

1500

1000

No. of Steps required to reach the Goal

M e iy Ty R SR Akl s PR e e s LIt iy Ayttt b e At Aot g s g Ssiag

M Sy g R e T e S R

500 — Rl ey (T A m " i o
- ¥ " e L T

| | |
a 500 1000 1500 2000 2500
Mo. of Attempts

Figure 6.2.18 Plot between No. of Steps required to reach the Goal and No. of Attempts for
2 agents; case 1V(b)

Comparing the six methods, as the system dynamics increases and the obstacles also started
to move, SARSA-Swarm and Q-Swarm converges to obtain an optimal path, but the former
converges first. Q-learning, SARSA, Phe-Q and Phe-SARSA also converge to find some
solution but they do not reach to find the optimal solution in this case.

79

A comparative analysis for the computation time taken be all the six algorithms for the

different cases simulated is provided in the table 6.2.

Table 6.2 Compuational Time for the Two Agent Problem for the six algorithms simulated

SARSA-

CASE SARSA Q-Learning Phe-Q Phe-SARSA Q-Swarm Swarm
| 0.004010837 | 0.009909973 0.00939 | 0.008636909 | 0.0075958 | 0.007551244
I 0.003813394 | 0.181120568 0.009282 | 0.009200768 | 0.0079911 | 0.007977043
1l 0.003791831 | 0.035102582 0.009517 | 0.009345154 | 0.0079509 | 0.007866822
% 0.016171792 | 0.032133351 0.034206 | 0.030490695 | 0.0149398 | 0.012473041
v 0.024881458 | 0.043875963 | 0.058414 | 0.051943521 | 0.0205003 | 0.019030869
Wi 0.008152752 | 0.012631409 0.016528 | 0.016049484 | 0.0080581 | 0.007438657
Wil 0.008687107 | 0.016438786 0.017385 | 0.016832651 | 0.0086036 | 0.00767714
VI 0.006935863 | 0.011599468 0.013881 0.01363516 | 0.0068813 | 0.006838316
IX 0.015110023 | 0.026175395 0.03024 | 0.02719235 | 0.0135855 | 0.013153943
X 0.172205847 | 0.331158611 0.33233 | 0.329371827| 0.1710423 | 0.169728648

The computation table shows that the SARSA computed fastest out of all the six algorithms
used. Q-learning is slower than SARSA because for Q-learning for the Q updation formula,
we use a max function which uses more memory for computation whereas in SARSA such
a function is not required. The overall time compuatation for the Phe-Q or Phe-SARSA is
around two times that of the convetional RL, this is so becase for theses methods the ant
needs to reach the goal and come back again to the initial starting location before the next
simulation is carried out. For the swarm algorithms, as the number of parameters that needs
to be calculated increases, for each attempt run the velocity parameters, global and personal
best Q values are calculated and also updated. This increases the overall time of simulation

for the swarm algorithms.
6.3 Four Agents Problem

For the four agent case, following results was obtained for the various

environmental cases:

6.3.1 Case I: Obstacles Fixed, Goal Fixed

(a) No. of obstacles = 4

Figure 6.3.1 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10 X 10 grid world with 4 obstacles in the path. For the four agents
80

problem, two conventional RL methods; Q-learning and SARSA and four hybrid-RL
methods; RL with ACO, Phe-Q and Phe-SARSA and RL with PSO; Q-Swarm and

SARSA-Swarm have been simulated.

900 : :

T
Q-leamin g

——— SARSA

Phe-Q

—Phe-5ARSA
Q-Swarm

—— SARSA-Swarm

250 300 350 400 450 500
Mo, of Atternpts

Figure 6.3.1 Plot between no. of steps required to reach the goal and no. of attempts for 4
agents; case 1(a)

Figure 6.3.2a, 6.3.2b, 6.3.2c, 6.3.2d, 6.3.2e, 6.3.2f shows the grid world with the path
traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and
SARSA-Swarm, respectively for four obstacles placed the path. For the four agents, the
starting point is made different. They all start at different but nearby loactions to reach the

common goal.

Green, red, black and blue lines paths traced by agent 1, agent 2, agent 3 and agent 4,

respectively.

""" ’ Fk ‘
@ L 1
o [; ®
@ =
i A
.] L’ ,,,,,,
| i \
0 @ EHD CHO 3
Figure 6.3.2a Path traced for case 1(a) Figure 6.3.2b Path traced for case 1(a)
by four agents for Q-learning by four agents for SARSA

81

v D 7 - 4
- o
4 | 4 .
L= -
I N i
| z L
[- r 3
CHE EHE EEE .
Figure 6.3.2c Path traced for case 1(a) Figure 6.3.2d Path traced for case 1(a)
by four agents for Phe-Q by four agents for Phe-SARSA
- ¢
K 4 K 4
@ 1 \ 4 :
e o
g _|
[P
® L ®
EEEO oo O
Figure 6.3.2e Path traced for case 1(a) Figure 6.3.2f Path traced for case 1(a)
by four agents for Q-Swarm by four agents for SARSA-Swarm

Here, the agents are very much free to move around and the obstacles are fewer as
compared to the cells in which it can move. Thus, for all the four algorithms; the shortest
path traced has the minimum number of steps as 22, but SARSA-Swarm reaches the
optimal path for the minimum number of steps. From the above results, it can be seen that
for the Q-learning and SARSA, both the agents find path independently and thus the paths
found are not near to each other as there is no coordination between the agents, and hence
also takes more time to reach the optimal path. For the Phe-Q and Phe-SARSA, there is a
kind of indirect interaction between the agents, as the pheromone trail left by an agent will
be used as a guidance for both the agents and thus near the starting locations and the goal
loacation, both the agents follow the same path. For the Q-Swarm and SARSA-Swarm as
the coordination between the agents is present, hence for these methods the optimal path
was found for least number of attempts. Also, it can be seen that agents move in a swarm

and are quite close to each other while reaching the goal.

82

(b) No. of obstacles = 8

Figure 6.3.3 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 8 obstacles in the path. Two conventional RL
methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q
and Phe-SARSA have been simulated.

900 T T T T T T T

I

Crlearming
———SARSA
Phe-21
Phe-SARSA

- Swrarm
— SARSA-Swarm

a00

=
=]
=

300

MNo. of Steps required to reach the Goal

[
=]
=

=]
=

o

] 50 100 150 200 250 300 350 400 450 500
Mo, of Atternpts

Figure 6.3.3 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case I(b)

Figure 6.3.4a, 6.3.4b, 6.3.4c, 6.3.4d, 6.3.4e, 6.3.4f shows the grid world with the path
traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and
SARSA-Swarm, respectively for eight obstacles placed the path. Different coloured lines

indicate the path travelled by the different agents.

" a ! Y N

" . ~

@ L . |

..y -

| N ;
[)
L3 a0
HHIHT EHIHIHE

Figure 6.3.4a Path traced for case 1(b)
by four agents for Q-Learning

83

Figure 6.3.4b Path traced for case I(b)
by four agents for SARSA

b & e %

] e,

[1 [|
|
[o] [|

T [P DU | (ORI |
) 0
EHHE-E EHEHE-E
Figure 6.3.4c Path traced for case I(b) Figure 6.3.4d Path traced for case I(b)
by four agents for Phe-Q by four agents for Phe-SARSA
—————¢ ————¢

| |
e % > %

0 L

OHEHE- 3 OO
Figure 6.3.4e Path traced for case 1(b) Figure 6.3.4f Path traced for case I(b)
by four agents for Q-Swarm by four agents for SARSA-Swarm

Here also the agents are very free to move around and the obstacles are few as compared
tothe cells in which it can move. Thus, for all the six algorithms; the shortest path traced
has the minimum number of steps as 22, but SARSA-swarm reaches the optimal path for
the minimum number of steps. Similar results have been obtained here as the previous one
with 4 obstacles in the path. But with the increase in the number of obstacles in the path,
there are more restrictions for the agents to move around and hence it takes more attempts

for the agents to reach the optimal path as compared to the previous case.

(c) No. of obstacles = 14

Figure 6.3.5 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 14 obstacles in the path. Two conventional RL
methods, Q-learning and SARSA and two hybrid-RL methods, i.e. RL with ACO, Phe-Q
and Phe-SARSA have been simulated.

84

4500 —

4000 —

=) ha w w
m o i} =] il
=] =1 =1 = =]
=1 =1 =} =] =1

Mo. of Steps required to reach the Goal

o

=}

=}
I

@

=}

a
I

(=]

.

o

100

Figure 6.3.5 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

Figure 6.3.6a, 6.3.6b, 6.3.6¢c, 6.3.6d, 6.3.6e, 6.3.6f shows the grid world with the path
traced by the agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm and

Mo. of Attempts

i L
400 500

agents; case 1(c)

SARSA-Swarm, respectively for fifteen obstacles placed the path.

Figure 6.3.6a Path traced for case 1(c)
by four agents for Q-Learning

Figure 6.3.6¢ Path traced for case I(c)

by four agents for Phe-Q

85

—

Figure 6.3.6b Path traced for case I(c)

by four agents for SARSA

Figure 6.3.6d Path traced for case I(c)
by four agents for Phe-SARSA

Y o !

0 R

EHEHEHE EHHE-E
Figure 6.3.6e Path traced for case 1(c) Figure 6.3.6f Path traced for case I(c)
by four agents for Q-Swarm by four agents for SARSA-Swarm

Here, the agents are not free to move around and the obstacles are quite in number as
compared to the cells in which it can move. For all the six algorithms; the shortest path
traced has the minimum number of steps as 22, but SARSA-Swarm reaches the optimal
path for the minimum number of steps. Here, it can be seen that the path taken the agents
are similar in nature, this is so because there are only two paths for which the optimal
number steps could be possible. With the increase in the number of obstacles in the path,
there are more restrictions for the agents to move around and hence it takes more attempts

for the agents to reach the optimal path as compared to the previous case.

6.3.2 Case Il: Obstacles Fixed & Moving (Both), Goal Fixed

(@) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.3.7 shows the no. of steps required by the agents to reach the goal against the no.

5000

Q-learning
—SARSA
Phe-Q
Phe-SARSA ||

4500

4000
Q-Swarm

—— SARSA-Swarm | |

o 3500

ach the Goal

3000
8

2500
2000

1500

No. of Steps requi

1000

500

1)

| | | |
] 500 1000 1500 2000 2500
No. of Attempts

Figure 6.3.7 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case l1(a)
86

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path. For this
case six methods have been simulated: two conventional RL methods; Q-learning and
SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL
with Swarm; Q-Swarm and SARSA- Swarm.

The result shows that for such a case the SARSA-swarm finds the optimal path for the least
number of attempts as compared to the other four algorithms. Also, the Q-learning and the
SARSA methods do converge to this optimal number of steps but takes more attempts to
reach this optimal solution. This is so because in the Q-swarm and SARSA-swarm the
agents coordinate with each other and the Q values updated uses both the individual best
performance and also the best peroformance among the group. As compared to these
methods, the Phe methods do not converge to the optimal values of steps, this is so because
in the Phe methods the ants lay pheromone to the various cells they travelled and due to
moving obstacles in the path, this pheromone level distributed is quite even and this causes
confusion for the agents to travel to the next cell.

(b) No. of fixed obstacles = 4; No. of moving obstacles = 8

Figure 6.3.8 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 4 fixed and 8 moving obstacles in the path. For this
case six methods have been simulated: two conventional RL methods; Q-learning and
SARSA, and four hybrid-RL methods: RL with ACO; Phe-Q and Phe-SARSA and RL
with Swarm; Q-Swarm and SARSA- Swarm.

5000 - ~ T
i g at 7 7

‘\ Q-learning

\ \ ———SARSA

4500
—Phe-Q

A —Phe-SARSA ||
Q-Swarm
—— SARSA-Swarm

4000

3500

3000

2500

No. of Steps required to reach the Goal

500 ok

1 | | 1
0 500 1000 1500 2000 2500
No. of Attempts

Figure 6.3.8 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case 11(b)
87

The result obtained here is similar to the previous case, and here also SARSA-swarm finds
the optimal path for the least number of attempts as compared to the other four algorithms.
Also, the Q-learning and the SARSA methods do converge to this optimal number of steps
but takes more attempts to reach this optimal solution. As compared to these methods, the
Phe methods do not converge to the optimal values of steps. With increase in the number of
obstacles in the path both stationary and the moving ones the overall steps required to reach
the goal increases. This difference between steps for swarm methods and Phe methods also

increases.

6.2.3 Case Il1: Obstacles Fixed, Goal Moving

(@) No. of fixed obstacles = 4

Figure 6.3.9 shows the no. of steps required by the agent to reach the goal against the no. of
attempts for a 10X10 grid world with 4 obstacles in the path and the goal is moving in the
first two rows. Six algorithms have been simulated for this case: Q-learning and SARSA
Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

5000

Q-leaming
SARSA
Phe-01
Phe-SARSA ||
Q-Swarm
SARSA-Swarm

4500

4000

3500

%]
s}
=}
=]

m
=}
=]

Mo. of Steps required to reach the Goal
i
g

Mo, of Atternpts

Figure 6.3.9 Plot between No. of Steps required to reach the Goal and No. of Attempts for 4

agents; case Il1(a)

Figure 6.3.10a, 6.3.10b, 6.3.10c, 6.3.10d shows the grid world with the path trac ~ by the
agents when the goal is moving and there are 4 obstacles in the path for Phe-Q, Phe-
SARSA, Q-Swarm and SARSA-Swarm, respectively.

88

? e T
| o
. e
f | ! |
I | 4 I
o th thm
Figure 6.3.10a Path traced for case I11(a) Figure 6.3.10b Path traced for case 111(a)
by four agents for Phe-Q by four agents for Phe-SARSA
| K | €
| |
! g—
| Q K
Figure 6.3.10c Path traced for case I11(a) Figure 6.3.10d Path traced for case I11(a)
by four agents for Q-Swarm by two four for SARSA-Swarm

Here, for all the six methods, conventional RL methods are not able to find any optimal
paths and they diverge and reach the maximum steps per attempt criterion for termination.
Since, there is no coordination between the agents so they are not able to reach to a
commom goal. The other four methods are able to find the optimal path. But, SARSA-
swarm method is able to find the shortest path for any given goal loactions in the least
number of attempts. This is so because, SARSA-swarm or Q-swarm, the agents coordinate
with each other to tell the possible locations of the goal. The global maxima is thus here not
for a particular cell, but for all the cells for which goal could possibly be present. As the
number of attempts increases, the agents have an understanding of moving vertically to
reach the bands where goal can be present and then traverse to look for the actual position
of the goal. Phe methods also finds the optimal paths for the given case. It can be seen that
mostly, the agents follow the same paths for Phe methods when near to the starting location

or goal. This is so because the pheromone level is concentrated for few cells only in these

89

regions but for other cells they a little bit distributed.
(b) No. of fixed obstacles = 8

Figure 6.3.11 shows the no. of steps required by the agents to reach the goal against the no.
of attempts for a 10X10 grid world with 8 obstacles in the path and the goal is moving in
the first two rows. Six algorithms have been simulated for this case: Q-learning and
SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

5000

Crlearing
——SARSA
Phe-Q

4500

Phe-3ARZA
- Searrm
— SARSA-Swarrn |

4000

3500

3000

2500

2000

1500 -

Mo, of Steps required to reach the Goal

1000

1]

] i e i
500 1000 1500 2000 2500
o, of Attempts

Figure 6.3.11 Plot between No. of Steps required to reach the Goal and No. of Attempts for
4 agents; case I11(b)

Figure 6.3.12a, 6.3.12b, 6.3.12c, 6.3.1d shows the grid world with the path traced by the
agents when the goal is moving and there are 8 obstacles in the path for Phe-Q, Phe-
SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.12a Path traced for case I11(b) Figure 6.3.12b Path traced for case 111(b)
by four agents for Phe-Q by four agents for Phe-SARSA

90

Figure 6.3.12c Path traced for case I11(b) Figure 6.3.12d Path traced for case 111(b)
by four agents for Q-Swarm by four agents for SARSA-Swarm

Here also for all the six methods, conventional RL methods are not able to find any optimal
paths and they diverge and reach the maximum steps per attempt criterion for termination.
Since, there is no coordination between the agents so they are not able to reach to a
commom goal. The other four methods are able to find the optimal path. But, SARSA-
swarm method is able to find the shortest path for any given goal loactions in the least
number of attempts. With the increase in the number of obstacles in the path, the
convergence to fins the optimal path requires more number of attempts. This is happens
because as the number of obstacles increases, the agents are not able to explore the grid

world that efficiently.
(c) No. of fixed obstacles = 14

Figure 6.3.13 shows the no. of steps required by the agents to reach the goal against the no.

5000 T Il T T
Q-learning

4500 ——SARSA
Phe-Q

4000 Phe-SARSA |
Q-Swarm

3500 - —— SARSA-Swarm | |

3000 - MM]
2500 Jé -
2000 - -

1500 — =

1000 -
500 \M o
d RNt vt £ pant i b o i v et AR S e M s e, o A A, e e Lo £ " W

No. of Attempts

No. of Steps required to reach the Goal

Figure 6.3.13Plot between No. of Steps required to reach the Goal and No. of Attempts for

4 agents; case 111(c)
91

of attempts for a 10X10 grid world with 14 obstacles in the path and the goal is moving in
the first two rows. Six algorithms have been simulated for this case: Q-learning and
SARSA Phe-Q and Phe-SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.14a, 6.3.14b, 6.3.14c, 6.3.14d shows the grid world with the path traced by the
agents when the goal is moving and there are 15 obstacles in the path for Phe-Q, Phe-
SARSA, Q-Swarm and SARSA-Swarm.

Figure 6.3.14a Path traced for case I11(c) Figure 6.3.14d Path traced for case I11(c)
by four agents for Phe-Q by four agents for Phe-SARSA

Figure 6.3.14c Path traced for case I11(c) Figure 6.3.14f Path traced for case 111(c)
by four agents for Q-Swarm by four agents for SARSA-Swarm

Here also for all the six methods, conventional RL methods are not able to find any optimal
paths and they diverge and reach the maximum steps per attempt criterion for termination.
Since, there is no coordination between the agents so they are not able to reach to a
commom goal. The other four methods are able to find the optimal path. But, SARSA-
swarm method is able to find the shortest path for any given goal loactions in the least
number of attempts. With the increase in the number of obstacles in the path, the

convergence to fins the optimal path requires more number of attempts. This is happens
92

because as the number of obstacles increases, the agents are not able to explore the grid
world that efficiently.

6.3.4 Case IV: Obstacles Fixed & Moving (Both), Goal Moving

(@) No. of fixed obstacles = 4; No. of moving obstacles = 2

Figure 6.3.15 shows the no. of steps required by the agent to reach the goal against the no.

5000 T m T T - T
Q-learning
4500 o SARSA
e Phe-Q
4000 iww .

Phe-SARSA ||
3500 —

Q-Swarm
SARSA-Swarm | |

3000 =
2500 |- =
2000 |- =

1500 —
1000 [~ o —

500

No. of Steps required to reach the Goal

0 L L L L
0 500 1000 1500 2000 2500

No. of Attempts

Figure 6.3.15 Plot between No. of Steps required to reach the Goal and No. of Attempts for
4 agents; case 1V(a)

of attempts for a 10X10 grid world with 4 fixed and 2 moving obstacles in the path and the
goal is moving in the first two rows. Six algorithms have been simulated for this case: Q-
learning and SARSA Phe-Q, Phe-SARSA, Q-Swarm and SARSA-Swarm.

Here, for all the six methods, conventional RL methods are not able to find any optimal
paths and they diverge and reach the maximum steps per attempt criterion for termination.
Since, there is no coordination between the agents so they are not able to reach to a
commom goal. The other four methods are able to find the optimal path. But, SARSA-
swarm method is able to find the shortest path for any given goal loactions in the least
number of attempts. This is so because, SARSA-swarm or Q-swarm, the agents coordinate
with each other to tell the possible locations of the goal. The global maxima is thus here not
for a particular cell, but for all the cells for which goal could possibly be present. As the
number of attempts increases, the agents have an understanding of moving vertically to
reach the bands where goal can be present and then traverse to look for the actual position

of the goal. Phe methods also finds the optimal paths for the given case. It can be seen that

93

mostly, the agents follow the same paths for Phe methods when near to the starting location
or goal. This is so because the pheromone level is concentrated for few cells only in these

regions but for other cells they a little bit distributed.

(b) No. of fixed obstacles = 5; No. of moving obstacles = 3

Figure 6.3.16 shows the no. of steps required by the agent to reach the goal against the no.
of attempts for a 10X10 grid world with 5 fixed and 3 moving obstacles in the path and the
goal is moving in the first two rows. Four algorithms have been simulated for this case: Q-
learning and SARSA Phe-Q and Phe-SARSA.

5000 - — : — =
v G-learning
4500 M ol ——SARSA
L Phe-Q

a0 Phe-SARSA |
Q-Swarrm
—— SARSA-Swarm | |

3500 | g™
000 - -
2500 - -

2000 — —

Mo, of Steps reguired to reach the Goal

1500 frgpa

1000

500

a \ I | \
0 500 1000 1500 2000 2500

Mo. of Atternpts

Figure 6.3.16 Plot between No. of Steps required to reach the Goal and No. of Attempts for
4 agents; case 1V(b)

Here also for all the six methods, conventional RL methods are not able to find any optimal
paths and they diverge and reach the maximum steps per attempt criterion for termination.
Since, there is no coordination between the agents so they are not able to reach to a
commom goal. The other four methods are able to find the optimal path. But, SARSA-
swarm method is able to find the shortest path for any given goal loactions in the least
number of attempts. With the increase in the number of obstacles in the path, the
convergence to fins the optimal path requires more number of attempts. This is happens
because as the number of obstacles increases, the agents are not able to explore the grid
world that efficiently.

A comparative analysis for the computation time taken be all the six algorithms for the

different cases simulated is provided in the following table:
94

Table 6.3 Compuational Time for the Four Agent Problem for the six algorithms simulated

SARSA-
CASE Q-Learning SARSA Phe-Q Phe-SARSA Q-Swarm Swarm
| 0.016846954 | 0.00721951 | 0.014432 | 0.014724926 | 0.01831005 | 0.016841973
Il 0.307904966 | 0.00686411 | 0.015183 | 0.015555234 | 0.0181006 | 0.017941498
Il 0.059674389 | 0.0068253 0.015107 | 0.015340303 | 0.01855844 | 0.01822305
v 0.554626697 | 0.52910923 | 0.866702 | 0.859456855 | 1.02838567 | 1.02433218
v 0.674589137 | 0.64478662 | 0.913907 | 0.901289866 | 1.038950632 | 1.037110195
Vi Inf Inf 0.83223 0.831296494 | 0.91531039 | 0.914505381
Vil Inf Inf 0.9339 0.932823669 | 1.01634694 | 1.014970423
VI Inf Inf 1.127067 1.126588562 | 1.21307443 | 1.213335691
1% Inf Inf 1.958967 1.953025083 | 2.02581237 | 2.025650189
X Inf Inf 2.164804 | 2.164227506 | 2.32498028 | 2.330970864

The computational time table shows that the SARSA computed fastest out of all the six
algorithms used when the obstacles and goal both are fixed. Q-learning is slower than
SARSA because for Q-learning for the Q updation formula, we use a max function which
uses more memory for computation whereas in SARSA such a function is not required. The
cases with dynamic obstacles or goal, conventional RL methods fail to reach the goal and
hence infinite time to reach to goal. The overall time compuatation for the Phe-Q or Phe-
SARSA is around two times that of the convetional RL, this is so becase for theses methods
the ant needs to reach the goal and come back again to the initial starting location before
the next simulation is carried out. For the swarm algorithms, as the number of parameters
that needs to be calculated increases, for each attempt run the velocity parameters, global
and personal best Q values are calculated and also updated. This increases the overall time

of simulation for the swarm algorithms.

95

CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE OF WORK

This chapter discusses the main conclusions drawn out of this thesis work and

outlines the scope of future research work in the same context.
7.1 MAIN CONCLUSIONS

In this thesis, study has been performed for optimal path planning for a system
having one, two and four agents using Q-learning, SARSA, Phe-Q, Phe-SARSA, Q-Swarm
and SARSA-Swarm methods. Various cases were taken where the obstacles introduced in
the path were fixed and also later moving obstacles were introduced which kept on moving
during the path navigation of the agent. For some cases, the goal was also made to move for
a set of locations; the goal was fixed for an attempt and once the agent reaches the goal, for

the next attempt the goal location was changed.

For single agent problem, when the obstacles and goal locations were fixed, all
the methods stated converged to give an optimal path for 18 steps but the Phe-SARSA
method gave the best convergence characteristics. In terms of computational time, SARSA
method took least time for the simulation. When two and four agents were made to navigate
in the same situations, SARSA-Swarm gave the best convergence characteristics. For two
agents, the optimal path was found with 19 steps and for four agents, it was found to be 22

steps.

When the moving obstacles were introduced in the environment, SARSA gave
the best convergence characteristics for single agent problem and also took the least
computational time. The optimal number of steps to reach the goal for the single agent was
about 50 for the Q-learning and SARSA methods and about 190 for the Phe-Q and Phe-
SARSA methods. For the same cases, when two agents were made to navigate, SARSA-
Swarm gave the best convergence characteristics. The optimal number of steps to reach the
goal was about 60 for the Q-learning and SARSA, about 100 for the Q-Swarm and SARSA-
Swarm and about 200 for the Phe-Q and Phe-SARSA. For the four agents problem,
SARSA-Swarm gave the best convergence characteristics and the least computational time.

96

Q-learning, SARSA, Phe-Q and Phe-SARSA initially diverged as number of attempts
increases and finally converged to a value of about 1000 steps for Phe-Q and Phe-SARSA
and about 300 steps for Q-learning and SARSA. Q-Swarm and SARSA-Swarm methods

also converged to a value of about 300 steps.

For the environment which had a moving goal, when one agent was made to
navigate and search for goal, the optimal paths to reach the goal was 9-25 steps for all the
four methods: Q-learning, SARSA, Phe-Q and Phe-SARSA. The best convergence
characteristic was obtained using Phe-SARA but the computational time was obtained for
SARSA. For the two agents problem, same cases were simulated to obtain optimal paths
with 17-53 steps and best convergence characteristics were obtained by SARSA-swarm
method. For the four agents problem, again in the same situations, optimal paths were
obtained with 87-110 steps and here also best convergence characteristics were obtained by
SARAS-swarm method. The conventional RL methods did not converge and failed to reach

the goal as the number of attempt were increased.

When the simulation was carried out for an environment with both moving
obstacles and moving goal, for single agent problem optimal path was found with about
250-500 steps for Phe-Q and Phe-SARSA and about 220-300 steps for Q-Swarm and
SARSA-Swarm. For the single agent problem, best convergence characteristics and least
computational time were obtained by SARSA method. For two agents problem in the same
environment, it took about 400-450 steps for Q-Swarm and SARSA-Swarm methods and
about 600-700 steps for the Phe-Q and Phe-SARSA methods, but best convergence
characteristics were obtained using SARSA-swarm. Q-learning and SARSA methods
diverged and the agents were not able to find the goal and hence diverged. For the four
agent problem, in the same environment it took about 500 steps for Phe-Q, Phe-SARSA, Q-
Swarm and SARSA-Swarm methods whereas Q-learning and SARSA methods failed to
reach the goal. Best convergence results and least computational time were obtained using
SARSA-swarm method.

In the cases of fixed obstacles; Phe-Q, Phe-SARSA, Q-Swarm and SARSA-

Swarm methods always gave the better results over the Q-learning and SARSA methods.

When both the obstacles and goal were kept moving, SARSA gave the best convergence
97

characteristics for single agent and SARSA-swarm method for multiagent problems. In
those cases also, the Phe-Q and Phe-SARSA were able to find the goal. In multi-agent
problem, when the goal was made moving the Q-learning and SARSA sometimes where not
able to reach to goal. In these cases also, the Phe-Q, Phe-SARSA, Q-Swarm and SARSA-
Swarm were alge to reach the goal.

7.2 FUTURE SCOPE OF WORK

The problem in this thesis was made for a fully deterministic environment, but
many a times it is difficult to obtain a fully deterministic environment; for such a case the Q-
value updation rule needs to take the probability of the outcome. This problem could be
solved by using neural network methods and self organizing maps as this will require a

mapping from the input action to the available outputs that are possible.

For the path finding problem in an unknown and dynamic environment it
becomes very essential for the agnet to learn the model of the system and nature of the
dynamics that exist in the system. The convetional RL mehods use a particular set of
learning rate and the exploration rate which affects the update rule for Q-function. These
parameters need to optimized for a particular set of problem. These parameters could be
optimized using bioinspired algorithms Genertic Algorithm and Fire-Fly algorithms as these
methods have proven to be good optimization techniques.

98

REFERENCES

[1] M. C. Cammaerts-Tricot, J. C. Verhaeghe, “Ontogenesis of trail pheromone production
and trail following behaviour in the workers of Myrmica rubra L. (Hymenoptera:
Formicidae)”. Springer-Verlag, Journal of Insectes Sociaux, Vol. 21, Issue 3, pp 275-282,
1974.

[2] D. P. Bertsekas and S. E. Shreve, “Stochastic Optimal Control: The Discrete Time
Case”. Academic Press, 1978.

[3] S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels, “Self-organized Shortcuts in the
Argentine Ant”. Springer-Verlag, Vol. 76, Issue 12, pp 579-581, 19809.

[4] Christopher J.C.H. Watkins, Peter Dayan, “Technical Note: Q-Learning”, Machine
Learning Journal, Vol. 8, Issue 3-4 , pp 279-292, 1992.

[5] M. Dorigo, “Optimization, Learning and Natural Algorithms”, PhD thesis, Politecnico di
Milano, Italy, 1992.

[6] Michael L. Littman., “Markov games as a framework for multi-agent reinforcement
learning”. Proceedings of the Eleventh International Conference on Machine Learning, pp
157-163, 1994.

[7] M. L. Puterman, “Markov Decision Processes—Discrete Stochastic Dynamic

Programming”. Wiley, 1994.

[8] G. A. Rummery and M. Niranjan, “On-line Q-learning using connectionist systems”,

Cambridge University Engineering Department, UK. , 1994

[9] L. R. Leerink, S. R. Schultz, and M. A. Jabri, “A reinforcement learning exploration
strategy based on ant foraging mechanisms”, Proceedings of the Sixth Australian

Conference on Neural Networks, pp 217-220, 1995.

[10] B. Holldobler and E. O. Wilson, “Journey of the ants: a story of scientific exploration”,
Harvard University Press, 1995.

99

[11] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”. Proceedings of IEEE
International Conference on Neural Networks V. pp 1942-1948, 1995.

[12] D. P. Bertsekas and J. N. Tsitsiklis, ‘“Neuro-Dynamic Programming”, Athena
Scientific, 1996.

[13] J. Kennedy, “The particle swarm: social adaptation of knowledge”. Proceedings of

IEEE International Conference on Evolutionary Computation. pp 303-308, 1997.

[14] Y. Shi, R. C. Eberhart, “A modified particle swarm optimizer”. Proceedings of IEEE

International Conference on Evolutionary Computation. pp 69-73, 1998.
[15] R. C. Arkin, “Behavior Based Robotics”, The MIT Press, 1998.

[16] R. S. Sutton and A. G. Barto, “Reinforcement Learning : An Introduction”,
Cambridge, MA: MIT Press, 1998.

[17] Junling Hu and Michael P. Wellman, “Experimental results on g-learning for general-
sum stochastic games”. Proceedings of the Seventeenth International Conference on
Machine Learning, ICML, San Francisco, CA, USA, pp 407-414, 2000.

[18] S. Singh, T. Jaakkola, M. L. Littman and C. Szepesvari, “Convergence results for
single-step on-policy reinforcement-learning algorithms”, Journal on Machine Learning,
Vol. 38, Issue 3, pp 287-308, 2000.

[19] R. T. Vaughan, K. Stoy, G. S. Sukhatme and M. J. Mataric, “Whistling in the dark:
cooperative trail following in uncertain localization space”, Proceedings of the Fourth

International Conference on Autonomous Agents, Barcelona, Spain, pp 187-194, 2000.

[20] Michael L. Littman, “Value-function reinforcement learning in Markov games” Journal

of Cognitive Systems Research, pp 55-66, 2001.

[21] Michael L. Littman, “Friend-or-Foe g-learning in general-sum games”, Proceedings of
the Eighteenth International Conference on Machine Learning, ICML, San Francisco, pp
322-328, 2001.

100

[22] H. Van Dyke Parunak and S. Brueckner, “Ant-like missionaries and cannibals:
synthetic pheromones for distributed motion control”, Proceedings of the Fourth

International Conference on Autonomous Agents, pp 467-474, 2001.

[23] H. Van Dyke Parunak, S. Brueckner, J. Sauter and J. Posdamer, “Mechanisms and
military applications for synthetic pheromones”, Proceedings of the Workshop on
Autonomy Oriented Computation at the Fifth International Conference on Autonomous
Agents, pp 58-67, 2001.

[24] H. Van Dyke Parunak, S. Brueckner and J. Sauter, “Digital pheromone mechanisms for
coordination of unmanned vehicles”, Proceedings of the First International Joint Conference
on Autonomous Agents and Multi-agent Systems, ACM Press, pp 449-450, 2002.

[25] R. T. Vaughan, K. Stoy, G. S. Sukhatme and M. J. Mataric, “LOST: localization space
trails for robot teams”, IEEE Transactions on Robotics and Automation, Special Issue on
Advances in Multi-robot Systems, pp 796-812, 2002.

[26] N. Monekosso and P. Remagnino, “An analysis of the pheromone based Q-learning
algorithm”, Advances in Artificial Intelligence, Proceedings of the Eight Ibero-American
Conference on Artificial Intelligence, Heidelberg: Springer, pp 224-232, 2002.

[27] Junling Hu and Michael P. Wellman, “Nash g-learning for general-sum stochastic

games”, Journal of Machine Learning Research, pp 1039-1069, 2003.

[28] N. Monekosso and P. Remagnino, “The analysis and performance evaluation of the
pheromone Q-learning algorithm”, Journal of Expert Systems, Vol. 21, Issue 2, pp 80-91,
2004.

[29] H. Lima and Y. Kuroe, “Reinforcement Learning through Interaction among Multiple

Agents”, IEEE SICE-ICASE International Joint Conference, pp 2457-2462, 2006.

[30] H. Lima and Y. Kuroe, “Swarm Reinforcement Learning Algorithms based on SARSA
method”, IEEE SICE Annual Conference, pp 2045-2049, 2007.

101

[31] L. Busoniu, R. Babuska, and B. D. Schutter, “A Comprehensive Survey of Multiagent
Reinforcement Learning”, IEEE transactions on systems, man, and cybernetics- part c:

applications and reviews, Vol. 38, no. 2, pp 156-172, March 2008.

[32] Chia-Feng Juang, Chun-Ming Lu, “Reinforcement fuzzy control using Ant Colony
Optimization”, IEEE International Conference on Systems, Man and Cybernetics, pp 927-
931, 2008.

[33] D. Kadlecek and P. Nahodil, “Adopting animal concepts in hierarchical reinforcement
learning and control of intelligent agents”, Proceedings of the 2nd Biennial International

Conference on Biomedical Robotics and Biomechatronics pp 924-929, 2008.

[34] L. Busoniu, R. Babuska, B. D. Schutter and D. Ernst, “Reinforcement learning and

dynamic programming using function approximators”, CRC Press, 2009.

[35] Wei Wu, Geng Haifei and Jiang An, “A Multi-agent Traffic Signal Control System
Using Reinforcement Learning”, Fifth International Conference on Natural Computation,
2009. ICNC '09, Vol.4, pp 553-557, 2009.

[36] J. Pazis and M. G. Lagoudakis, “Learning continuous-action control policies”, IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pp 169-176,
2009.

[37] Shu Da Wang, Shuo Ning Wang and Wei Ping Zhang, “Study on Multi-agent
Simulation System Based on Reinforcement Learning Algorithm”, WRI World Congress

on Computer Science and Information Engineering, VVol.5, pp 523-527, 2009.

[38] Evangelos A. T., Jonas B. and Stefan S., “A Generalized Path Integral Control
Approach to Reinforcement Learning”, Journal of Machine Learning Research, VVol.11, pp
3137-3181, 2010.

[39] J. Glascher, N. Daw, P. Dayan and J. P. O'Doherty, “States versus Rewards:
Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free

Reinforcement Learning”, ScienceDirect, Vol. 66, Issue 4, pp 585-595, 2010.

102

[40] Q. P. Lau, Mong Li Lee and W. Hsu, “Distributed Coordination Guidance in Multi-
agent Reinforcement Learning”, 23rd IEEE International Conference on Tools with

Artificial Intelligence (ICTAI), pp 456-463, 2011.

[41] F. T. Romero, G. R. Villanueva and I. A. Bautista, “Robotic system for reactive

navigation in dynamic environments”, 2Ist International Conference on Electrical

Communications and Computers (CONIELECOMP), pp 20-205, 2011.

[42] S. Arai and T. Miura, “An intelligent agent for combinatorial auction”, 11th
International Conference on Hybrid Intelligent Systems (HIS), pp 24-29, 2011.

[43] M. Stoica, F. Sisak and A. D. Morosan, “Reinforcement learning algorithm for
industrial robot programming by demonstration”, 13th International Conference on
Optimization of Electrical and Electronic Equipment (OPTIM), pp 1517-1524, 2012.

[44] Ji-Hwan Son and Hyo-Sung Ahn, “Bio-insect and artificial robot interaction using
cooperative reinforcement learning”, IEEE International Symposium on Intelligent Control
(ISIC), pp 1190-1194, 2012.

[45] D. Grady, M. Moll, L. E. Kavraki, “Automated Model Approximation for Robotic
Navigation with POMDPs”, IEEE International Conference on Robotics and Automation,
pp 78-84, 2013.

[46] S. Zhiguo, T. Jun, Z. Qiao, Z. Xiaomeng and W. Junming, “The Improved Q-Learning
Algorithm based on Pheromone Mechanism for Swarm Robot System”, IEEE 32" Chinese
Control Conference (CCC), pp 6033-6038, 2013.

[47] Chun-Tse Lin , Hsin-Han Chiang , and Tsu-Tian Lee, “A Practical Fuzzy Controller
with Q-learning Approach for the Path Tracking of a Walking-aid Robot”, SICE Annual
Conference, pp. 888-893, 2013.

[48] M. L. Abouheaf and F. L. Lewis, “Multi-agent differential graphical games: Nash
online adaptive learning solutions”, IEEE 52nd Annual Conference on Decision and Control
(CDC), pp 5803-5809, 2013.

103

[49] O. Krigolson, C. Hassall and T. Handy, “How We Learn to Make Decisions: Rapid
Propagation of Reinforcement Learning Prediction Errors in Humans”, IEEE Journal

of Cognitive Neuroscience, Vol. 26 , Issue: 3, pp 635-644, 2014.

[50] R. Figueroa, A. Faust, P. Cruz, L. Tapia, and R. Fierro, “Reinforcement learning for
balancing a flying inverted pendulum”, 11th World Congress on Intelligent Control and
Automation (WCICA), pp 1787-1793, 2014.

[51] J. S. Campbell, S. N. Givigi, H. M. Schwartz, “Multiple-model Q-learning for
stochastic reinforcement delays”, IEEE International Conference on Systems, Man and
Cybernetics (SMC), pp 1611-1617, 2014.

[52] B. Zuo, J. Chen, L. Wang and Y. Wang, “A reinforcement learning based robotic
navigation system”, IEEE International Conference on Systems, Man and Cybernetics
(SMC), pp 3452-3457, 2014.

[53] H. Tan, K. Balajee and D. Lynn,“Integration of evolutionary computing and

reinforcement learning for robotic imitation learning”, IEEE International Conference on

Systems, Man and Cybernetics (SMC), pp 407-412, 2014.

[54] Y. Zhang, C. W. de Silva, S. Dijia and X. Youtai, “Autonomous robot navigation with
self-learning for collision avoidance with randomly moving obstacles”, 9th International

Conference on Computer Science & Education (ICCSE), pp 117-122, 2014.

[55] D. Vasquez, B. Okal and K. O. Arras, “Inverse Reinforcement Learning algorithms and
features for robot navigation in crowds: An experimental comparison”, IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp 1341-1346, 2014.

[56] B. Bischoff, D. Nguyen-Tuong, H. van Hoof, A. McHutchon, C. E. Rasmussen, A.
Knoll, J. Peters and M. P. Deisenroth, “Policy search for learning robot control using sparse
data”, IEEE International Conference on Robotics and Automation (ICRA), pp 3882-3887,
2014.

104

[57] C. Yu, M. Zhang, F. Ren, G. Tan, “Multiagent Learning of Coordination in Loosely
Coupled Multiagent Systems”, IEEE Transactions on Cybernetics, Vol.45, Issue:99, ppl,

2015.

[58] H. Modares, I. Ranatunga, F. L. Lewis, and D. O. Popa, “Optimized Assistive Human--

Robot Interaction Using Reinforcement Learning”, IEEE Transactions on Cybernetics,

Vol.45, Issue:99, ppl, 2015.

[59] Ji-Hwan Son and Hyo-Sung Ahn, “A Robot Learns How to Entice an Insect”,
IEEE Journal on Intelligent Systems, Vol. 30, Issue: 4, pp 54-63, 2015.

105

