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ABSTRACT

The objective of this  study is  to inspect the accuracy of the dehomogenization in the 3 x 3 PWR

assembly PWR for homogeneous homogenization and heterogeneous homogenization. Based on the

Method of Characteristics, the 2-level computational scheme and subgroup projection method is used

with SHEM 361 group energy mesh. In this case, homogeneous geometry and heterogeneous geometry

are  used.  Using  the  NAP:  module,  a  two-level  computational  scheme  including  the  core  with

heterogeneous assemblies are generated. Enrich multi-parameter data structure was obtained to keep

the pin wise flux for diffusion calculations with different homogenization options. Using Pin Power

Reconstruction, the results for both geometries are compared and discrepancies are calculated. It is

showed that heterogeneous geometry gives more accurate and promising results. With the generation of

multi-parameter  reactor  database,  it  is  observed  that  the  computational  time  is  also  reduced  with

Method of Characteristics and the two-level scheme approach. 
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CHAPTER 1: INTRODUCTION

Full transport calculations are the keys to the design and operation

of a thermal nuclear reactor. However, full transport calculations for

the entire core are too complicated to be done in reasonable time. To

keep the computational time reasonable, other methods are used to

do the neutronics calculations. This is usually done in two steps. The

first  step  is  the  transport  calculations  which  are  done  at  the

assembly level. In this step, large averaged neutronics properties are

generated.  These  homogenized  properties  are  used  for  the  core

calculations which is the second step. 

In case of Pressurized Water Reactors (PWRs) and Pressurized Heavy

Water  Reactors  (PHWRs),  most  facets  of  homogenization

methodologies are common. The major drawback of this method is

losing  the  specific  aspects  at  assembly  and  pin  levels.  In  recent

studies by Fliscounakis et al. (2011) and Brosselard et al. (2014), we

can  capture  more  precise  details  by  pin  power  reconstruction

method.  For  homogenized  fuel  assemblies,  this  technique  can  be

taken as a de-homogenization method for reactor core computations.

This  study  is  focused  on  homogenization  and  de-homogenization

techniques for PWRs.
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1.1: Neutron Transport Equation

In a nuclear reactor core, the neutron transport equation represents

the  conduct  of  neutrons  most  accurately.  The  neutron  transport

equation takes following assumptions. 

1. The relativistic effects are neglected. Maximum neutron speeds

achieved in a nuclear reactor are less than 1/10th of the speed

of light. 

2. Only neutron collisions with nuclei are considered. This is done

to  keep  the  equation  linear.  Neutron-neutron  collisions  are

ignored  because  the  neutron  density  is  several  orders  of

magnitude  smaller  than  the  atom  density  of  materials  in  a

reactor. 

3. The  neutron  paths  between collisions  are  assumed to  be  in

straight lines.

Equation (1.1) shows the continuous-energy transport equation. For

any arbitrary infinitesimal  volume,  this  equation demonstrates the

neutron balance equation.

           (1.1)

Equation (1.1) is called the integrodifferential form of the transport

equation. 

2

∂ n( r⃗ , E , Ω̂,t )
∂ t =−Ω̂⋅∇ ψ( r⃗ , E , Ω̂ , t)−Σt ( r⃗ , E , t)ψ( r⃗ , E , Ω̂ ,t )+

+∫0
∞ ∫4 π Σs( r⃗ , E

'→E , Ω̂'→Ω̂ ,t) ψ( r⃗ , E' , Ω̂' , t)d Ω̂ dE'+

+
χ (E)

4 π
∫0

∞ v (E' )Σf ( r⃗ , E
' , t)ψ( r⃗ , E' ,t)dE '+S ( r⃗ , E , Ω̂ , t)



This is also called integrodifferential equation because it has a part

of the partial differential equation and a part of an integral equation.

The  left  side  represents  the  angular  rate  of  change  of  angular

neutron density with respect to time. 

ψ( r⃗ , E , Ω̂ , t) :  angular  flux  as  a  function of  position,  energy,  solid

angle, and time

Σt( r⃗ , E , t) : macroscopic total removal cross-section

Σs( r⃗ , E
'
→E ,Ω̂'

→Ω , t) : scattering downward into the energy removal

cross-section

χ (E) : normalized fission neutron energy distribution

v (E '
) : total neutron yield as a function of energy

Σf ( r⃗ , E
' ,t ) : macroscopic fission cross-section

ψ( r⃗ , E' , t) : total neutron flux

Fission reaction is independent of the direction of neutrons in the

target volume. Thus, there is no argument of solid angle in the above

flux function.

Below, the terms of the right side of equations (1.1) are explained

below in separate terms. The first term denotes the loss of neutrons

due to leakage from an infinitesimal volume. 

Loss by leakage : Ω̂⋅∇ ψ( r⃗ , E , Ω̂ , t)                                       (1.2)
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Second term on right side in the equation (1.1) is shown separately

in equation (1.3) below. This term referred to the total removal rate.

It  denotes  neutron  losses  due  to  nuclear  interactions  (such  as

absorption and scattering).

Total removal rate = Σt( r⃗ , E , t)ψ( r⃗ , E ,Ω̂ , t)                           (1.3)

In  Equation  (1.4),  neutrons  gain  due to  scattering  interactions  of

neutrons in an infinitesimal volume is represented.

Neutrons gain due to scattering:

∫
0

∞

∫
4 π

Σs( r⃗ ,E
'
→E , Ω̂' ,Ω̂ , t) ψ( r⃗ , E' ,Ω̂ , t)d Ω̂dE'                              (1.4)

Equation (1.5) represents the neutron generation from fission 

reactions.

Neutrons generated from fission: 

χ(E)

4π
∫
0

∞

v (E '
)Σf ( r⃗ , E

' , t) ψ( r⃗ , E' , t)dE'                                       (1.5)

Finally, s ( r⃗ , E ,Ω̂ , t) in  above  equation  denotes  an  external

(independent of the flux level) neutron source.

The leakage term (1.2) includes the gradient of the angular flux. The

scattering term shown in equation (1.4) has two integrals: one over

the solid angle and another over the energy spectrum. The fission
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neutrons source term shown in equation (1.5) has one integral over

the energy range. All these constitute a complex integrodifferential

form  (equation  1.1)  of  the  neutron  transport  equation.  While

considering  the  steady-state  case,  some  fundamental  problems

associated with the reactor physics can be solved.

For  these  time-independent  problems,  simplification  of  the  time-

independent neutron balance equation leads to form equation (1.6).

Ω̂⋅∇ ψ( r⃗ , E , Ω̂)+Σt( r⃗ , E)ψ( r⃗ , E ,Ω̂)=∫
0

∞

∫
4 π

Σs( r⃗ , E→E ,Ω̂'
→Ω̂)ψ( r⃗ , E' , Ω̂'

)d Ω̂dE'

+
1
k

χ (E)

4 π
∫
0

∞

v (E '
)Σf ( r⃗ , E

'
) ψ( r⃗ , E '

)dE'

(1.6)

In above equation (1.6), the production term is divided by constant k

(Effective Multiplication Constant) in order to make the production

rate  and  the  loss  rate  equal.  Moreover,  all  nuclear  reactions  are

dependent on the neutron’s energy involved in the interactions. For

numerical  computations,  neutron  energy  ranges  is  broken  into

multiple  energy  groups  through  a  process  called  energy

discretization.  Equation  (1.7)  represents  the  multi-group  neutron

balance transport equation.

∇⋅[Ω̂ ψg( r⃗ , Ω̂)]+Σtg( r⃗ , Ω̂)ψg (ψ , Ω̂)=∑
g'
∫
Ω

Σ
(g '→ gΩ̂'→Ω̂)

( r⃗ )ψ( g ' )( r⃗ , Ω̂)d Ω̂

+
1
k

χg

4 π
∑
g'
∫
Ω
'

Σ
(fg')( r⃗ )ψ(g')( r⃗ ,Ω̂

'
)dΩ

'

(1.7) 
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In equation (1.7),

ψg( r⃗ ,Ω̂) : condensed flux in group g

Σtg( r⃗ , Ω̂) : total removal cross-section from group g

Σ
( g'→g ,Ω̂'→Ω̂)

( r⃗ ) : scattering cross-section

Furthermore, the neutron current can be defined as,

J⃗ g( r⃗ )=∫
Ω

Ω̂ ψg( r⃗ , Ω̂
'
)dΩ                                                                    (1.8)

Reaction  rates  are  not  dependent  on  the  incident  neutron  flux’s

direction. Thus, defining the integral group flux as

ϕg( r⃗ )=∫
Ω

ψg( r⃗ , Ω̂)dΩ                                                                      (1.9)

In the first leakage component after taking the divergence operator

outside, the product term of the solid angle and the group flux can be

simplified by substituting it with the current term as per equation

(1.8).  Moreover,  the  flux  appearing  in  the  source  terms  can  be

substituted by equation (1.9). Equation (1.10) represents the multi-

group neutron balance equation with the current and integral flux in

the source term.

∇⋅⃗J g( r⃗ )+Σtg( r⃗ )ϕ( r⃗ )=∑
g'

Σ
(g'→ g ,Ω̂'

→Ω̂)
( r⃗ )ϕ

(g')( r⃗ )+
χg

k
∑
g'

Σ
(fg')( r⃗ )ϕ(g ')( r⃗ )       (1.10)

From equation (1.10), we can see that finding the solution for the

steady-state transport equation (1.10) is a challenging computational

6



task  for  full  nuclear  reactor  core.  After  discretization  of  various

variables,  solving  the  neutron  balance  equation  becomes  very

complicated.  Furthermore,  the  number  of  unknowns  will  only

increase linearly with the number of groups. It will also quadratically

rise with the number of dimensions from the equation (1.10). The

number  of  unknowns  only  grows  for  the  larger  geometries.  This

further  complicates  the  neutron  balance  equation.  Therefore,  the

problem is divided into two parts to make the computation simple

and decrease the computation time. First part is to solve the complex

neutron balance equation at the lattice cell level. Then, homogenized

properties are generated. To find the power distribution of the whole

core, these properties are used in the diffusion equation which is the

simpler approximation of the neutron transport equation. 

1.2: Neutron Diffusion Equation

The simple approximation of the neutron transport equation is done

by  diffusion  theory  model.  The  neutron  diffusion  equation  has  a

simpler structure which is achieved by using Fick’s law. The neutron

current is approximated. According to Fick’s law, there is a guided

flow of neutrons from higher region to lower region. 

J⃗ g=−D g∇ϕg              

                                                                                                   (1.11)
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where,

J⃗ g  : group neutron current

ϕg  : integral neutron flux 

Dg : diffusion coefficient of condensed energy group 

In equation (1.11), negative sign denotes the reverse orientation of

gradient operator on the group flux ϕg .

From equation (1.10) and (1.11), the multi-group diffusion equation

is derived as shown in equation (1.12).

∇⋅[−D g(r )∇ ϕg(r)]+Σtg(r )ϕg(r )=∑
g'

Σ
(g'→g )

(r )ϕ
(g')+

χ

k
∑
g'

Σ
(fg ')(r )ϕ(g')(r )

(1.12)

−∇ [Dg(r )∇ ϕg(r )]+Σag(r )ϕg(r )+Σ
(sloss

g
)
(r )ϕg(r )=∑

g'
Σ

(g'→ g)(r )ϕ(g')+
χ

k
∑
g'

Σ
(fg')(r)ϕg(r)

(1.13)

Equation (1.13) represents the multi-group diffusion equation used

for the computation of entire core.

In  equation  (1.13),  the  total  cross-section  Σtg decomposes  to

absorption cross-section Σag  and scatting cross-section (loss due to

scattering of neutron over condensed energy group g) Σ(sloss
g

) . 

For reactor core calculations, two energy group are most often used:

a fast energy group (1 keV to 10 MeV)  and a slow energy group

(0.025 keV to 1 keV). In reactor operations, thermal neutrons (0.025

8



eV to 1 eV) play an important role. Thermal neutrons are the cardinal

for fission. Thermal neutrons are in equilibrium with their ambient

energy/temperature.  Neutrons  from the thermal  group are  lost  to

capture, leakage, and up-scattering (due to target-nuclei vibrations).

However, fast neutrons are lost due to leakage, resonance capture,

and  down scattering.  Equation  (1.13)  can  be  written  for  the  fast

group (equation 1.14) and the thermal group (equation 1.15).

Σa1(r )ϕ1(r )+Σ12(r )ϕ1(r )=
1
k
(v1Σf 1(r)ϕ1(r )+v2Σf 2(r )ϕ2(r ))

+Σ21(r )ϕ2(r)+∇(D1(r )∇ ϕ1(r ))

(1.14)

Σ21(r)ϕ2(r )+Σa2(r )ϕ2(r )=Σ12(r )ϕ1(r)+∇ (D2(r )∇ ϕ2(r ))

(1.15)

ϕ1 :  flux (fast group)

ϕ2  : flux (thermal group)

Σa1 : absorption cross-section (fast group)

Σa2 : absorption cross-section (thermal group)

Σ12 : scattering downward of the cross-section from fast group to

thermal group

Σ21 :  scattering upward from thermal group to fast group

v1  :  average total neutron yield (fast group)

v2 :  average total neutron yield (thermal group)

Σf 1 : fission cross-section (fast group)

9



Σf 2 : fission cross-section (thermal group)

D1 : diffusion coefficient for the fast group

D2 : diffusion coefficient for the thermal group

All  the  cross-sections  used  in  equation  (1.14)  and  (1.15)  are

homogenized.  k is  called  the  multiplication  constant.  It  is  the

proportionality of  the neutron production rate to the neutron loss

rate. For finite geometry, it is keff . For infinite geometry, it is k∞. 

The next section gives a brief outline of the thesis.

1.3: Thesis Outline

This  thesis  comprised of  seven chapters  including this  chapter.  A

brief description of the content of each chapter is presented in this

section.

Chapter 1: Introduction

This chapter contains a description of the type of calculations used

for  nuclear  power plant  design  and operations,  an explanation of

neutron transport  equation,  neutron diffusion equation and Thesis

outline.

10



Chapter 2: Problem Statement 

This chapter contains a description of typical PWR lattice cell, the

standard homogenization (SH) method, and problems with the SH

methodology.

Chapter 3: Progress to date in LWR homogenization

This chapter is comprised of a summary of the previous research in

the  relevant  field.  Techniques  related  to  homogenization  and  de-

homogenization are discussed.

Chapter 4: Method

In this chapter, the definition of homogenization, de-homogenization,

equivalence  theory,  and  generalized  equivalence  theory  are

discussed. Additionally, this chapter includes a brief introduction to

the neutron transport code DRAGON and the neutron diffusion code

DONJON.  The  code  structures  and  data  structures  are  discussed.

There is a short discussion on the modules used in the input file.

Chapter 5: Models

This chapter includes the design of the DARGON model for lattice

cell  calculations and cross-section generation. Short description of

the pin-by-pin power estimations is given. The design of the DONJON

lattice cell model is presented. 

11



Chapter 6: Results and Discussion

In this chapter, results tables comprised of calculations with general

homogenization and de-homogenization are presented.  Results  are

compared and discussed.

Chapter 7: Conclusion 

This chapter has the summary of the work done during the research,

and subsequently, conclusion of the work are stated.

12



CHAPTER 2:  PROBLEM STATEMENT

2.1: Introduction

A pressurized water reactor (PWR) is a kind of LWR. In a PWR, the

reactor core consists of slightly enriched uranium dioxide fuel rods

that are cladded with Zircaloy. Zircalloy has low neutron absorption

ability. It also consists of assorted interior constructions, reactivity

controlling parts, and core monitoring apparatus. In the reactor core,

pressurized  light  water  acts  as  both  coolant  and  moderator.  The

pressurized water is maintained under a saturation pressure. This

leads to no significant volume of boiling in the reactor. It is one of the

differences between PWRs and BWRs.

Table 2.1: Typical Reactor Core Parameters

 [Westinghouse Electric Corp, 1984]

13



In a typical PWR reactor core, the fuel rods are structurally arranged

in 17 x 17 square array in a fuel assembly. About 1/3rd of the total

fuel assemblies are for the control rods. These fuel assemblies are

tucked in  by guide tubes.  For  the  reactor  control,  other rods are

filled by core machinery and burnable poisons such as boron. This

extends the life of reactor core. 

Figure 2.1(a) : PWR fuel assembly with control rod drive [wikipedia]

14



The fuel  in  the  reactor  core  comprised  of  uranium dioxide  (UO2)

pellets (enrichment of 2.1 -  3.1 %) in U235.  These pellets are 0.32

inches in diameter. The Length is 0.6 inches. The fuel rod length is

about 12 feet and lattice pitch is about 0.496 inches.

Figure 2.1(b): Cross-section of typical PWR core 

[Westinghouse Electric Corp, 1984]

In a PWR, any accidental cladding breach is minimized by the lattice

cell  for  following  reasons.  The  first  reason  is  to  keep  the  fission

15



product.  The  second  reason  is  to  resist  deterioration.  This

deterioration  can  be  caused  by  high-temperature  water

[Westinghouse Electric Corp, 1984].  

2.2: Standard Homogenization

Multigroup  neutron  transport  equation  (1.10)  for  the  full  core

becomes complicated for the large reactor. Solving this equation with

a large number of unknown variables is a challenging task. Thus, the

problem  is  simplified  by  replacing  detailed  geometrical

representation of the core with a simplified one. In this process, the

cross-sections  are  averaged  over  each  lattice  cell.  This  averaging

procedure is referred to as standard homogenization, and it is useful

in reducing the size of the mathematical problem. 

All facets of the heterogeneous estimations cannot be kept. It is not

feasible  either.  The  homogenized  system  is  used  for  producing

accurate  overall  approximated  values  which  can  depict  the  exact

original system.

When  homogenized  properties  are  formed,  these  lattice  cell-

homogenized cross-sections  are used with  the  two-group diffusion

equations (1.14) and (1.15) are used for the full core calculations.

The  multi-dimensional  and  multigroup  transport  equation  is  first

solved.  The  cell-homogenized  and  group-condensed  cross-sections

16



are computed by using many energy groups (typically more than 50)

with  a  detailed  geometrical  model  for  a  lattice  cell.  The  average

cross-sections are then calculated. The flux-weighted averages over

the lattice cell as shown in equations (2.1) and (2.2). 

 ϕRG=

∑
r∈R

V r∑
g∈G

ϕrg

V R

                                                     (2.1)

Σ(RG)
x =

∑
r∈R

∑
g∈G

Σ(rg)
x

ϕrgV r

ϕRGV R

                                               (2.2)

ϕRG : average flux over a large region (in this case, one lattice cell)

with volume V R  and a coarse energy group G

ϕrg :  flux  in  a  smaller  region  (calculated  to  capture  neutron

behaviors in small regions) with volume V r and a fine energy group

g

x : total or scattering or fission cross-sections

Σ(RG)
x : generic homogenized macroscopic cross-section for the large

region V R  and coarse energy group G

Σ(rg)
x :  generic macroscopic cross-section in the small region  V r

over the fine energy group g 

Due  to  the  heterogeneity  present  in  the  large  region  V R ,  this

procedure leads to the loss of information at assembly and pin levels.
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Figure  2.2  shows  a  graphic  depiction  of  the  standard

homogenization.  The different  color represents a different level  of

the  irradiation  e.g.  freshly  fueled  channel,  the  channel  with  mid-

burnup and discharge burnup bundles.

Figure 2.2: Pictorial representation of the standard homogenization

method

2.3: Problems with Standard Homogenization

In  standard  homogenization,  the  transport  equation  is  solved  to

produce the desired cross-section properties. For a single lattice cell,

Reflective  boundary  conditions  is  also  used  to  generate  the

homogenized properties. This is done by not considering the state of

fuel bundles in the adjacent lattice cells.  This procedure makes it

susceptible to homogenization errors [Shen, 2006]. The homogenized

cross-sections generated through equations (2.1)  and (2.2)  do not

produce  precise  results  for  strong  neutron  absorbing  materials

[Robinson, 1995]. The errors are induced due to the heterogeneity
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present  in  the  lattice  cells.  Furthermore,  the  homogenized  cross-

sections produced through the standard homogenization technique

could  not  maintain  the  reaction  rates  across  the  transport  and

diffusion models.

When a freshly fueled channel is present adjacent to a channel with

high (discharge) burnup fuel,  the standard homogenization cannot

manage large reactivity changes in small spaces [Dall’Osso, 2006].

Additionally,  when  large  regions  of  reflector  material  are  present

near the peripheral  channels,  it  always plays a factor in inducing

errors  in  produced  cross-sections  by  standard  homogenization

method.
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CHAPTER 3:  

PROGRESS TO DATE IN PWR HOMOGENIZATION

Homogenization of a system means that heterogeneous elements of

the  system  are  superseded  with  homogeneous  elements  for  a

complicated and large system. This greatly reduces the computation

time.  Homogenized  macroscopic  cross-sections  acquired  using

standard  homogenization  utilized  with  the  diffusion  induces

inaccuracies  in  results  nearby  boundaries,  neutron  sources  and

neutron absorbers. This also reduces some variables of the original

neutron transport equation. 

Bettering the homogenization methods and reducing inaccuracies in

results  produced by  diffusion  theory  have been an active  area  of

research  for  more  than  the  last  40  years.  The  Generalized

Equivalence  Theory  (GET)  addressed  the  issue  of  preservation  of

reaction  rates  in  both  Equivalence  Theory  and  Generalized

Equivalence  Theory  [Smith,  1980].  In  GET,  the  integral  flux  is

interrupted  at  the  inter-lattice  boundary  to  make  the  inter-lattice

leakage accommodated. To achieve the discontinuity, integral flux is

multiplied by “discontinuity factors”. When GET is applied to PWR

fuel  assembly  with  reflective  boundary  conditions,  assembly

Discontinuity Factors (ADF) are produced. When GET is applied to

PWR fuel  assembly with proper boundary conditions with leakage
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representative of the target problem, exact discontinuity factors are

produced.

The accuracy of diffusion calculations is improved by Aragones and

Anhert (1986) by setting up an iterative process. In this process, they

used a  linear  discontinuous finite  difference diffusion formulation.

Interface flux discontinuity factors are implemented to counter the

erroneousness  of  standard  homogenization.  By  applying  limited

incremental corrections to the diffusion coefficients, discrete finite

difference expansion and spatial discretization are implemented to

ensure  the  generation  of  diagonal  dominance  for  the  matrices.  A

rapid and stable convergence of the eigenvalues in PWR lattice cells

surrounded  by  high  reflector  boundaries  is  achieved  by  this

technique. However, this method required the incremental correction

calculations.  These  correction  calculations  had  to  be  executed

individually in-between each local and global calculation steps.

In 1989, Rahnema produced a method to compute lattice cell cross-

sections as a function of boundary conditions. It was done with the

formulation  of  boundary  condition  perturbation  theory  for

amelioration in  capturing the  environmental  effects.  These effects

were caused by inter-lattice leakage that may emerge due to a high

discrepancy in burnup between fuel bundles in adjacent channels.
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Further  improvements  were  done  by  Kim  and  Cho  (1993).  They

applied a better iterative scheme for generation of lattice cell cross-

sections.  In  this  case,  flux  weighted  constants  and  variational

principles (Pomraning, 1967) were utilized for PWR and BWR. The

boundary conditions for fuel assembly cross-section generation and

the  boundary  conditions  from  both  surface  flux  and  leakage

calculation were devised to be used in diffusion codes for the full

core. Afterward, they achieved results with similar accuracy by using

assembly discontinuity factors (ADF).

“Rehomogenization”,  introduced  by  Smith  (1994),  was  a  different

method  that  generated  the  homogenized  cross-sections  through

recalculation  in  each  step.  He  avoided  the  adjustment  of

discontinuity factors in each iteration in his method for lattice cell

homogenization. However, this computational method was dependent

on  precise  geometry  definition  of  the  inter-lattice  regions.  This

method  had  no  advantage  of  corrections  which  could  have  been

accomplished by correcting the discontinuity factors in each step.

A  method  of  corrections  of  the  homogenized  cross-section  and

discontinuity  factors  by  applying  the  linear  interpolation  on

homogenized  parameters  pre-calculated  during  the  transport

calculations  was  presented  by  Rahnema  and  Nichita  (1997).  The

homogenized  cross-sections  and  discontinuity  factors  built  on  the
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actual  boundary  conditions  at  each  lattice  cell  boundary  was

corrected  by  this  method.  In  diffusion  theory,  this  method  was

successfully  applied  for  the  Boiling  Water  Reactors  (BWRs).  The

approximations  used  in  this  method  could  not  manage  strong

heterogeneity.

Clarno and Adams et al. (2003) computed for environment effect on

leakage  in  the  presence  of  multiple  fuel  assemblies.  These  fuel

assemblies contained MOX and UO2 fuel. The models used were 1D

and 2D models with various configurations. They obtained promising

outcomes for fuel assemblies for certain configurations. 

Herrero  et  al.  (2012)  presented  a  function  fitting  method.  This

method utilized  the  environmental  effects  on the computed cross-

sections instead of producing discontinuity factors. This method used

a  simplified  Analytic  Coarse  Mesh  Finite  Difference  (ACMFD)

function. The interacting energy group terms were counteracted and

eliminated by ACMFD in the cell buckling calculations. This method

produced  a  good  set  of  cross-sections  for  pin-by-pin  diffusion

calculation. 

Gomes  (2012)  used  finite  element  codes  to  determine  the

efficaciousness of the Assembly Discontinuity Factor (ADF) for highly

heterogeneous fuel assemblies with multiple fuel types and different
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burnups. He deduced that it is essential to utilize ADF to improve

results for highly heterogeneous configurations in PWR. 

Dall’Osso (2006) came up a modified rehomogenization technique. In

which, he introduced a delta cross-sections coefficient. To account

for  environmental  effects,  delta  cross-section  coefficients  were

generated  with  the  standard  homogenized  cross-sections.  These

methods showed amelioration in keeping reaction rates across the

models. It also showed an improved estimation of control rod worth.

Merk and Rohde et. al. (2011) presented a technique that applied

reflective  boundary  condition  inside  the  PWR  fuel  assembly  for

transport calculation which improved efficiency in calculations. The

two  group  diffusion  equation  with  an  external  source  on  a

homogenous  2D  model  was  empirically  solved.  It  eliminated  the

extra iterations compared to the methods using discontinuity factors.

The  application  of  Superhomogenization  was  one  of  the  most

substantial steps in improving homogenization methods to maintain

the reaction rates across the transport and diffusion models. Hebert

et  al.  (1993)  showed  the  use  of  superhomogenization  factors.

Superhomogenization accommodates homogenized cross-sections by

multiplying  superhomogenization  (SPH)  factors.  This  process

accomplishes  equality  between  the  reaction  rates  in  the
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homogeneous model and in the heterogeneous model. The problems

with different diffusion models could be addressed by these factors.

It  removed  the  need  of  multiple  iterations  or  modification  of  the

diffusion code.  Overall, SPH factors produced propitious results in

control  rod  worth  measurements  for  pin-by-pin  homogenization.

However,  SPH factors  are  used with  sub-cell  homogenization  and

required extra spatial discretization. This leads to extra computation

and time. Though, additional computation might not be a problem in

the future with the growth of technology. 

Robinson and Tran (1995) developed a  reaction rate conservation

technique. This technique is similar to SPH method. They obtained

some  improved  outcomes  compared  to  standard  homogenization

technique.

In 2013, Berman et. al pointed out inadequacies in the application of

SPH when surface currents are preserved. He recommended that the

surface  currents  could  be  preserved  by  using  adjusted  diffusion

coefficients. It is assumed that the boundaries are all reflective in the

process of SPH factor generation. However, during the generation of

SPH  factors,  the  overall  buckling  is  accommodated.  Thus,  the

eigenvalue is reduced to one. It is supposed to account for nonzero

surface currents. 
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Generalized  pin-power  reconstruction  (GPPR)  improved  the

inaccuracies  in  lattice  cell  homogenization  by  addition  of  small

computational  time  [Fliscounakis,  2011].  Brosselard  et  al.  (2014)

improved this methodology. Using pin power reconstruction method,

more  details  could  be  achieved  at  pin  and  assembly  levels.  This

method  is  also  called  de-homogenization  method  for  reactor  core

calculations.  Hebert  et.  al.  (2015)  discussed  some  encouraging

results for the pin power reconstruction methodology for PWRs using

DRAGON5 and DONJON5.

There had been a lot of work done that showed some improvements

in LWR computation accuracy. This improvement comes at the cost of

additional  computational  steps  and  time.  To  reduce  those  extra

computational expenses, there are some exceptional techniques. De-

homogenization  method  looks  promising  because  of  its  ability  to

circumvent those additional steps of calculations and preserve the

details at assembly and pin levels that are otherwise lost in standard

homogenization and superhomogenization methods. 
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CHAPTER 4: METHOD

To reduce the inaccuracies in lattice cell homogenization in PWR, the

lattice cell is sub-divided into sub-cells and perform a sub-cell level

homogenization. The goal of this study is the inspection of the 3 by 3

sub-cell homogenization for a typical PWR lattice cell using the de-

homogenization technique for both heterogeneous and homogeneous

geometries using SHEM 361 cross-section library.

4.1: Theoretical Background

A neutronic deterministic calculation is generally performed in two

steps: assembly calculation, and full-core calculation. For performing

the  full  reactor  calculation,  the  multi-parameter  database  of

homogenized cross-sections and other parameters is produced as the

last step of assembly level calculation. 

Superseding  the  heterogeneous  elements  with  homogeneous

elements is called homogenization. This simplifies of the large and

complicated systems. Homogenization helps in reducing computation

time  and  simplifies  the  transport  equation  by  eliminating  some

variables. 

The purpose of homogenization is to acquire precise averaged values

that  can  represent  the  exact  original  system.  A  heterogeneous
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calculation is not possible due to the high complexity of the reactor

systems  and  computation  time.  However,  homogenization  process

leads to loss of details at pin and assembly levels. 

4.1.1: Equivalence Theory

For  homogenization  process,  the  first  step  is  choosing  reactor

properties.  These  properties  are  later  homogenized.  Considering

these properties of interest,

∫
V i

~
Σg(r )

~
ϕg(r)d r=∫

V i

Σ̄g(r )ϕ̄g (r )d r                                     (4.1)

∫
S(i)
k

∇ .~J g(r )d S=∫
S( i)
k

∇ . J̄ g(r )d S                                         (4.2)

~
keff=k̄ eff                                                                        (4.3)

Here,

~
ϕg(r )  : integrated flux for correspondent homogeneous problem

ϕ̄g(r ) : integrated flux for exact heterogeneous problem

~J g(r )  : integrated current correspondent homogeneous problem

J̄ g(r )  : integrated current exact heterogeneous problem

~
Σg(r )  : total cross-section correspondent homogeneous problem

Σ̄g(r )  : total cross-section exact heterogeneous problem

~
keff  : multiplication factor correspondent homogeneous problem

k̄eff  : multiplication factor exact heterogeneous problem
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An  ideal  homogenized  cross-section  can  be  determined  if  it  is

assumed  that  homogenized  parameters  are  spatially  constant  for

region i of volume V i .

~
Σg
i
=

∫
V i

Σ̄g(r )ϕ̄g(r )d r

∫
V i

~
ϕg(r )d r

                                                               (4.4)

For the simplification of the homogenized system, integrated surface

current  is  preserved  by  depending  on  a  low  order  operator.  So,

according to Fick’s law, the correlation of the neutron current and

the gradient flux is given as:

~
Dg

i
=

−∫
Sk
i

J̄ g(r)d S

∫
Sk
i

∇
~
ϕg(r )d S

                                                                  (4.5)

First, satisfying solutions of both heterogeneous and homogeneous

systems  must  be  found  for  Equations  (4.4)  and  (4.5).  Second,

nonlinearity is observed to be introduced in above equations. Third,

the  homogenized  diffusion  coefficient  in  Equation  (4.5)  must  be

defined.  Each  node  is  characterized  by  the  k  surface.  The  issue

presents itself when the same amount of diffusion coefficients need

to be defined each node is  characterized by the k surface as the

number of nodes characterized by the k surface.  Determination of a

spatially variable that is both constant and unique is not attainable.
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Thus, keeping both average reaction rate and surface approximated

group current is also not possible.

However, several methods are available to address the above issues.

The most common method is to the homogenization of heterogeneous

system.  In  this  method,  it  is  surmised  that  an  infinite  lattice

estimation is enacted by enforcing reflective boundary conditions. By

working  out  a  two-dimensional  heterogeneous  neutron  transport

equation  on  a  finite  part  of  the  precise  system,  the  precise

homogeneous outcome is obtained.

However, the inaccuracies appear in this method for the large and

complicated systems. In case of large and complex systems, macro-

regional flux gradients are spatially produced at the different nodal

junction.  The  issue  of  preservation  of  surface  integrate  currents

cannot  be  resolved  by  the  use  of  the  spatially-constant  diffusion

constants. The continuity of flux at the nodal junction is kept a limit

for  the  diffusion  calculation.  It  is  done  for  the  preservation  of

reaction rates and surface integrate current

4.1.2: Generalized Equivalence Theory

The Generalized Equivalence  Theory  (GET)  confronts  the  issue of

preservation  of  reaction  rates  in  both  Equivalence  Theory  and

Generalized Equivalence Theory by adding degrees of freedom. In
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GET,  the integral flux is interrupted at the inter-lattice boundary to

make  the  inter-lattice  leakage  accommodated.  To  achieve  the

discontinuity, integral flux is multiplied by “discontinuity factors”. 

When GET is applied to PWR fuel assembly with reflective boundary

conditions,  assembly  Discontinuity  Factors  (ADF)  are  produced.

When GET is applied to PWR fuel assembly with proper boundary

conditions with leakage representative of the target problem, exact

discontinuity factors are produced.

Assuring  the  continuity  of  the  homogeneous  flux  at  the  nodal

junctions, the interface condition for each energy group:

^f (g , j)∫
S j

~̂ϕg(r )d S= ˇf (g , j )∫
S j

~̌ϕg (r )d S                                          (4.6)

Where,

 ^f (g , j) :  energy  depending on  discontinuity  factors  at  the  surface

S j and the surface approximated homogeneous flux ~̂
ϕg

ˇf (g , j) :  energy  depending  on  discontinuity  factors  at  the  surface

S j  and the surface approximated homogeneous flux ~̌
ϕg  

If the heterogeneous flux is continued at the interface, both reaction

rates and surface net currents are preserved.
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On an individual assembly with reflective boundary conditions, the

heterogeneous  problem  is  analyzed  with  the  large-scaled

approximated cross-sections and diffusion coefficients turning almost

equal to the flux-volume weighted parameters. It is surmised that the

homogeneous flux is flat in the homogenized node. This turns the

intermediary  heterogeneous  flux  and  the  approximated

homogeneous flux same computationally by definition. Then,    

adf (g , j)=

~
ϕ(g , j)

¯ϕ(g , j)

                                                              (4.7)         

adf (g , j)  is  the  assembly  discontinuity  factor  (ADF).  This  method

minimizes  the  computational  time  and  decreases  the  number  of

calculation  steps  of  equivalence  parameters  for  each  type  of

assembly.                                                                                                

4.1.3 Dehomogenization

Performing  reactor  core  calculations  with  homogenized  cross-

sections leads to loss in details. This level of details can be retained

by pin-power-reconstruction (PPR) method as precisely as possible.

This process is also called de-homogenization technique for nuclear

reactor  core  calculations.  Though,  additional  computing  time  is

required as compared to classical methods.
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For  arbitrarily  homogenized  geometries,  generalized  pin  power

reconstruction  method  was  first  proposed  by  Fliscounakis  et  al.

(2011). The basic idea behind the de-homogenization technique is to

see the detailed flux distribution  ϕD  as the multiplication of the

macro-flux ϕm  and the local flux ϕl . ϕm is provided by the large-

scaled  estimation  and  denotes  the  conventional  shape  of  flux  at

reactor  core  level.  At  the  assembly  level, ϕl  denotes  the  ripple-

shaped  flux  and  it  is  produced  from  the  neutron  transport

calculations.

The reaction rate for each pin is given by:

τ(i , p)
Gen = ~Σ( p , ref )x ϕ(i , p )(

~Σi) x
ϕp

∞
(Σ p)

ϕ(1, p )

∞
(Σi)

⋅V p

with1≤i≤M∧1≤p≤P

                                                  (4.8) 

τ(i , p)
Gen

=
~

Σ( p , ref )x
~

ϕ(i , p )(
~
Σi) x

ϕ( p ,ref )

λ pϕ(1, p)
∞

(Σi)
⋅V p                                               (4.9)

In equations (4.8) and (4.9),  i & p denotes the projection of the large

scaled estimated flux on the pin-by-pin geometry. Equation (4.9) was

proposed by Brosselard et al. (2014).  In equations (4.8) and (4.9),

the actual flux may not be same as the reference flux. It is only the

large-scaled estimated flux projection on each pin. The shape factor

fixes this error and denotes the proportionality between the large

scaled  estimated  fluxes  enacted  over  a  pin-by-pin  geometry.  The

same  is  also  estimated  for  the  heterogeneous  geometry.  When
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general geometry is used instead of pin-by-pin geometry, the shape

factor denotes the relative error.

Through  the  de-homogenization  method,  the  actual  heterogenous

structure inside each node could be reconstructed after the nodal

calculations are done. The nodal flux solutions are combined with

form  functions  to  assure  a  thorough  regeneration  of  the

heterogeneous  power  in  an  individual  node.  GFF  (Group  Form

Function) is estimated from the lattice computations. This Groupwise

factor  considers  the identical  averaging of  ADF in  regards to the

infinite lattice approximation.

f g(x , y )=
K

~
Σ(f ,g )g(x , y )

K ~
Σ(f , g ) ¯(f , g)

                                                           (4.10)

Where,

K
~

Σ(f ,g ) :  large scaled fission cross-section of  the  fuel  in  group g

manifolded by the energy originated from fission.

Corner discontinuity factor (CDF) is required to be defined due to the

dehomogenization  technique.  This  is  done  in  the  interest  of  keep

trails of the regional heterogeneities that are present at the junction

between assemblies. 
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In case of CDFs, the flux is retrieved at the corner of the assembly:

CDF(f , g)=

~
ϕ(g , j , corner)

¯ϕ(g , j)

                                                                   (4.11)

4.2: Computational Tools

For this  research,  the  neutron transport  code DRAGON [Marleau,

2009],  and the  neutron  diffusion  code  DONJON [Varin,  2005]  are

used  for  computing.  These  open  source  codes  are  built  at  École

Polytechnique de Montreal and widely used to perform lattice cell

and full-core calculations. These codes are intended to be “Industrial

Standard  Toolset”  (IST)  components  for  the  Canadian  nuclear

industry.

DRAGON Version 5 was introduced in 2014 and modified later up to

2017.  This  version  is  a  64-bit  clean  delivery.  In  this  version,

acceleration of step and linear discontinuous schemes are applied for

MOC. Other changes include integration with external CAD tool like

SALOME,  G2S:  module  for  windmill-type  geometry  discretization

that do not need external CAD tool.

These  computational  codes  have  datatype  as  linked  lists.  These

functions  are  modules.  Input  scripts  are  written  in  CLE-2000

language. The input deck is essential for linking the required cross-

section data file and create an “access” file. When *.access script is
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not provided, tdraglib.access file is automatically used by DRAGON.

A brief description of the codes is provided in this chapter. 

4.2.1: DRAGON5

DRAGON  is  a  lattice  code  used  to  solve  the  neutron  transport

equation  by  enforcing  multifarious  numerical  and  estimation

methods. The code performs the neutron transport calculations by

using multidimensional geometry using the collision probability (PIJ)

method and MOC including interface current (IC) [Hebert, 2015].

The lattice cell code divided into several calculation modules which

can be called by GAN generalized driver and provides a template to

build applications by linking independent modules. Each module in

the code is linked and data is exchanged between the modules via

linked lists to perform an elementary task [Marleau, 2015]. 

Method  of  characteristics  (MOC)  is  founded  on  the  repetitive

estimation  of  particle  flux  by  solving  the  multi-group  transport

equation  above  the  trails  passing  through  the  zone.  The

characteristic  model  of  the transport  equation is  solved using the

trailing of the straight neutron paths as the neutron moves across

the zone [Askew, 1972]. 
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For this  study,  MOC is  used for solving the transport  equation.  A

PWR-lattice-cell geometry was modeled.

4.2.2: DONJON5

DONJON is a code (part of DRAGON package) that is designed to

execute  full  reactor  core  diffusion  calculations.  The  DONJON

Version5  is  reprogrammed  around  the  GANLIB5  kernel  [Herbert,

2015].  It  has  its  roots  in  TRIVAC-3,  GANLIB,  UTILIB,  DRAGON

codes. 

The  deterministic  approach  for  solving  2D  and  3D  multi-group

diffusion  equation  is  followed  by  DONJON  code.  DONJON  code

divided into several calculation modules which can be called by GAN

generalized driver and provides a template to build applications by

linking  independent  modules.  For  DONJON requirements,  reactor

material properties are obtained from DRAGON. 

  

For this study, geometries represent homogenized volumes of PWR

fuel bundles which are modified for group form function (GFF) and

heterogeneous  database.  The  environmental  effects  are  not

considered. The lattice estimations are done with the infinite lattice

approximation.
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4.2.3: DRAGON and DONJON Code-Input Structure

The DONJON and DRAGON require three major elements in input

script.  These  key  elements  are  definitions  of  reactor  materials.

definition of geometry, and definition of solution control. Below,  a

typical  schematic  of  the  DRAGON/DONJON  input  structure

[Marleau,2009] is given. 

Figure:  4.1:  Schematic  of  the  input  file  structure  for

DRAGON/DONJON [Marleau,2009]
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The declarations  of  variables  and  reference  to  microscopic  cross-

sections library files are essential for key elements above. The output

file can be designed as per the user’s needs. 

4.2.4: Modules

The  DRAGON  and  DONJON  code’s  input  decks  usually  follow  a

specific order of modules. For example, geometry module must be

defined before tracking module or flux module.  This is done because

the resulting files of a module most often are used as input in the

following modules.

Various  modules  are  present  in  both  codes  to  execute  different

functions analogous to solving the transport or diffusion equations.

Below, some modules that are mentioned in the DRAGON code are

explained [Marleau, 2014].

LIB: Used for generating or modifying a DRAGON microlib. 

GEO: Used for definition or modification of geometry. 

SYBILT: Used  for  standard  tracking  on  the  basis  of  1D  collision

probability or Interface Current technique

EXCELT:  This is the standard full cell collision probability tracking

module for 2D and 3D geometries. It is also used for isolated 2D cells

containing clusters.
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MCCGT:  This  module  is  based  on  MCCG  code  (Method  of

Characteristics in Complex Geometry) and used for tracking.

BIVACT: This module is used for tracking 1D/2D diffusion and SPn. It

is a BIVAC-type tracking along with finite element discretization.

UTL: Used for manipulating a data structure.

GREP: Used for tracking information on a data structure.

EVO: This module is used for burnup calculations. 

COMPO: This  module  generates  the  multi-parameter  reactor

database.

Some  modules  that  employed  by  DONJON  are  explained  below.

[Hebert, 2014]

GEO: This module is used for MIX record. 

USPLIT: This  module  is  used  to  generate  an  extended  reactor

material index over the complete mesh-splitted reactor geometry.

TRIVAA: This module is used to compute the set of system matrices

with respect to the previously obtained ”tracking” information

RESINI: This module used to define the fuel lattice. This generates

the fuel-map geometry and specifies the global and local parameters.

TRIVAT:  This  module  is  used  to  carry  out  a  3-D  numerical

discretization.
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MACINI: This module is used for generating an extended macrolib.

The properties are saved per each material domain over the whole

mesh-splitted reactor geometry.

NCR: This  module  is  used  for  creating  a  microlib  or  a  macrolib

containing the material properties.

FLUD:  This module is used to numerically computing the diffusion

equation for the flux and eigenvalues. 

NAP: This module is used for pin power reconstruction.

4.3: Calculation Steps

The following methodology is used for the investigation of the 3 x 3

sub-cell homogenization for a typical PWR lattice cell. Firstly, for a

PWR lattice cell, a heterogeneous geometry MULTICOMPO database

file is generated using transport code DRAGON at zero burnup. 

This multicompo database file is used in the diffusion model for the

lattice  cell  generated  using  the  diffusion  code  DONJON.   The

diffusion  and  transport  equations  are  different  as  previously

discussed  in  sections  1.1  and  1.2.  Thus,  the  solution  of  the

eigenvalues and fluxes are also different for both codes.

Using DONJON 5,  diffusion flux on a  homogenize  assembly  in  an

infinite space is computed and the output file is in COMPO format.

This database is further used to perform pin power reconstruction
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for  both  homogeneous  homogenization  and  heterogeneous

homogenization. The pin by pin geometry is also used to visualize the

heterogeneous homogenization.
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CHAPTER 5: MODELS

This  chapter  represents  different  calculation  schemes  and  model

used  for  DRAGON5  and  DONJON5  calculations.  With  reflective

boundary  conditions,  a  3  x  3  PWR assembly  layout  is  taken into

account.  This  structure  can  be  modified  for  various  fuel

configurations with an intermediary fuel assembly of UOX or MOX or

UOX as shown in Figure 5.1. 

Figure 5.1:  3 X 3 PWR assembly configuration 

In the diffusion calculation, nine assembly nodes are considered with

the dimension comparable to a lattice pitch. It is important to note

that the assembly model is  chosen in such a way that  this  model

cannot be used to obtain a core critical  configuration and doesn’t
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contain quasi-critical cluster. Leakage model of the lattice calculation

has an important effect in the evaluation of the outcomes.

5.1: Lattice Schemes

For Light  Water Reactors assemblies,  new advances in DRAGON5

[Hébert,  2014]  let  the  added  degree  of  freedom  in  designing

numerical schemes for deterministic computations. 

Recent improvements in DRAGON5 package includes the integration

with external tools like SALOME [Hébert, 2014], the applicability of

the Subgroup Projection Method (SPM) with bettered 295 or  361

group libraries known as SHEM 295 and SHEM 361 [Hébert (2009)],

two-level  computational  scheme  [Canbakan,  2015]  and  De-

homogenization  method  or  Pin  Power  Reconstruction  [Chambon,

2015]. 

For the subgroup projection method in this study, SHEM 361 group

energy  mesh  library  is  used  in  the  computations.  Santamarina-

Hfaiedh  energy  mesh  (SHEM)  refined  the  energy  group  between

22.5  eV  and  11.14  keV,  and  therefore,  optimizing  281-group  to

accommodate the SPM [Hfaiedh, 2006]. Cross-sections are used in

DRAGLIB format.
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In the two-level scheme, the methodology is divided into two steps: 

1. A first-level double P1 interface current calculation is performed

over the refined energy  361-energy group mesh to get fast flux. In

this  step, Superhomogénéisation (SPH) can be calculated [Hébert,

2009]. This should be done before the second step. In this study, SPH

calculations are not done. This study is done at zero burnup.

2. In this step, a thorough another level flux measurement enforced

using the method of characteristics (MOC) on the group labyrinth. It

was quantized over a refined spatial labyrinth.

As a last step of the calculation, the homogenized cross-sections and

flux distribution are wielded to breakdown cross-sections into two

categories of groups with the threshold at 0.625 eV (fast group for

above  0.625  eV  &  thermal  group  for  below  0.625  eV)  and  the

resulted data are saved in the multi-parameter database.

Below, the schematic diagram of the 2-level computational scheme

for DRAGON5 lattice code [Canbakan, 2015] is given.
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Figure 5.2: 2-level computational scheme for DRAGON5 lattice code

[Canbakan, 2015]

In  this  work,  diffusion,  transport,  and  PPR  computations  are

optimized for DRAGON5 with SHEM361 library using the two-level

computational scheme and pin power at each assembly level for a 3 x

3  assembly  configuration  is  calculated.  Comparision  is  done  for
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between  homogeneous  homogenization  and  heterogeneous

homogenization[Chambon, 2015].

Figure 5.3: Homogenization geometries [Chambon, 2015]

Three types of homogenization are demonstrated in figure 5.3. The

heterogeneous homogenization is  composed of  three combinations

i.e. center of the assembly, side of the assembly, and corner of the

assembly. Two series of pins are used to define the side. In this study,

we are performing heterogeneous homogenization and homogeneous

homogenization.

5.2: Cross-Section Preparation

From the lattice calculation done by DRAGON5 code, macroscopic

cross-section  data  is  produced  and  stored  in  a  multi-parameter

database.  This multi-parameter database obtained from DRAGON5

code  is  further  used  to  compute  diffusion  flux  on  a  homogenize

assembly in DONJON5 code once for heterogeneous homogenization
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and once for homogeneous homogenization. To perform the PPR or

de-homogenization,  the multi-parameter database file  is  generated

for homogeneous option and heterogeneous option for calculations

using different properties (homogeneous, heterogeneous and pin by

pin properties). 
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CHAPTER 6: RESULTS AND DISCUSSION 

To  validate  the  Pin  Power  Reconstruction  or  Dehomogenization,

three homogenization types can be enacted as depicted in Figure

5.3.  The  heterogeneous  homogenization  is  composed  of  three

combinations i.e. center of the assembly, side of the assembly, and

corner of the assembly. Two series of pins are used to define the side.

In this study, we are performing heterogeneous homogenization and

homogeneous homogenization.

6.1: Results Using DRAGON5

For 3 x 3  PWR colorset assembly configuration, the calculations are

done using DRAGON 5 code for the generation of heterogeneous and

GFF MULTICOMPO data structure output.  These calculations are

done  at  zero  burnup  and self-shielding  using  subgroup  projection

method. In this study, UOX denotes UO2  fuelled and MOX denotes

multi-zone UpuO2 fuelled. For the subgroup projection method in this

study,  SHEM  361  group  energy  mesh  library  is  used  in  the

computations and therefore, optimizing 361-group to accommodate

the SPM [Hfaiedh, 2006].  At zero burnup, normalized flux and keff

are computed at zero burnup.

In  this  step,  a  MULTICOMPO  database  file  is  generated  for

heterogeneous geometry and GFF at zero burnup.
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Table 6.1: DRAGON Results for UOX

Fuel Type UOX

Isotope Volume 1.27008009E+01

Isotope Depletion 3.96024156E-03

keff 1.004327e+00

Normalized Flux 3.66138E+02

Table 6.2: DRAGON Results for MOX

Fuel Type MOX

Isotope Volume 6.35039997E+00

Isotope Depletion 1.873753e-03

keff 1.001643e+00

Normalized Flux 4.10522E+02

6.2: Results using DONJON5

Diffusion power on a homogenized assembly in an infinite space is

computed  using  DONJON5.  Calculations  are  done  first  for

homogeneous  homogenization  and  for  the  heterogeneous

homogenization. 

The  MULTICOMPO  reactor  database  is  assessed  for  two

configurations of the colorset 3x3: with UOX assembly and with MOX

assembly at the center of the layout as shown in Figure 5.1. In this

study, ADF corresponding to the diffusion calculation equal to unity

and B1 homogeneous model as leakage approximation is used for the

lattice calculation.
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The results  with homogeneous heterogenization and homogeneous

homogenization are presented in Tables 6.3, 6.4, 6.5 and 6.6.

Table 6.3: 

Results using DONJON5 for homogeneous homogenization (UOX)

Fuel Type UOX

keff 1.263637e+00

Transport Power 2684.49390

Diffusion Power (before 

normalization)

7.33851957

Diffusion Power (After 

normalization)

2684.50513

Table 6.4: 

Results using DONJON5 for heterogeneous homogenization (UOX)

Fuel Type UOX

keff 1.263712e+00

Transport Power 2684.49390

Diffusion Power (before 

normalization)

7.32114506

Diffusion Power (After 

normalization)

2684.49634
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Table 6.5: 

Results using DONJON5 for homogeneous homogenization (MOX)

Fuel Type MOX

keff 1.115161e+00 

Transport Power 1417.65662

Diffusion Power (before 

normalization)

3.45463300

Diffusion Power (After 

normalization)

1417.65588

Table 6.6: 

Results using DONJON5 for heterogeneous homogenization (MOX)

Fuel Type MOX

keff 1.115142e+00

Transport Power 1417.65662

Diffusion Power (before 

normalization)

3.46421456 

Diffusion Power (After 

normalization)

1417.65747 

6.3: Pin Power Reconstruction

During the implementation of PPR [Chambon, 2015], the first major

problem comes with the flux projection on each pin. Using the NAP:

module, pin by pin geometry is constructed. The outcomes are not

accurate when the intermediate flux of each large scaled region is

operated for the pin projection. When no large shaped regions are
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considered locally, the flux is alike on assorted pins per assembly.  To

settle this issue, the polynomial depiction of the flux within a large

scaled  region  is  taken.  Before  the  flux  is  distributed  on  the  pin,

estimation is done with the same polynomial order. Then, the large-

shape of the flux can be considered the pin level. The next issue of

the  inaccuracy  is  produced  during  the  regularity  of  the  tracing

between the core and infinite region computations. 

Two  homogenization  geometries  are  tested.  Instead  of  using  the

intermediate  flux  per  assembly  in  case  of  heterogeneous

homogenization, the intermediary flux on the neighboring series of

the pin in Figure 5.3 is  used [Liponi,  2017].  The results  obtained

from  the  computations  are  presented  in  Tables  6.6  and  6.7.  The

results are compared for power, flux, and k factor in Table 6.8. 

Table 6.7: 

Pin  By  Pin  power  and  flux  calculations  for  homogeneous

homogenization

keff: 1.078156e+00

Total Flux: 3.70291758 

Total Power: 5.59677044E-12

Assembly Power Flux

1 0.766600907 1.97548866E-02

2 1.09802783 9.05148834E-02

3 0.766600788 0.177794009

4 1.09802735 0.362059444
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5 1.54150677 0.627761722

6 1.09802842 0.814634264

7 0.766600609 0.967989504

8 1.09802699 1.44823873

9 0.766600966 1.60014439 

Table 6.8: 

Pin  By  Pin  power  and  flux  calculations  for  heterogeneous

homogenization

keff: 1.078179e+00   

Flux: 3.66504478

Total Power: 5.60789436E-12

Assembly Power Flux 

1 0.767510712 1.96884498E-02

2 1.09780347 9.00333747E-02

3 0.767511010 0.177196145

4 1.09780276 0.360133320 

5 1.53877449 0.625273407

6 1.09780359 0.810300469

7 0.767510355 0.964734375

8 1.09780288 1.44053435

9 0.767510831 1.59476233
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6.4: Comparisons

The k-eff, fluxes, power is calculated by using the de-homogenization

technique in section 6.3. The errors in the keff, power, and flux ϕ

are calculated based on the following equations.

∇ keff=keff
homogeneous

−keff
heterogeneous                                     

∇Power=Powerhomogeneous−Powerheterogeneous

∇Flux=Fluxhomogeneous−Fluxheterogeneous

Errors  are  calculated  between  homogeneous  homogenization  and

heterogeneous homogenizations:

Table 6.9:  Error calculated between homogeneous homogenization

and heterogeneous homogenization

Fuel Type UOX

Δ keff - 0.000023

Δ Flux   0.0378728

Δ Total Power   1.11239E-14

Assembly Number Δ Power Δ Flux

1  - 0.000909805  6.64368E-05

2    0.00022436  0.000481509

3  - 0.000910222  0.000597864

4    0.00022459  0.001926124

5    0.00273228  0.002488315

6    0.00022483  0.004333795

7  - 0.000909746  0.003255129

8    0.00022411  0.00770438

9  - 0.000909865  0.00538206
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In the comparison in Table 6.9,  the discrepancies between results

obtained  from  both  homogeneous  geometry  and  heterogeneous

geometry  are  negligible.  However,  the  more  accurate  results  are

obtained with the heterogeneous geometry because it minimizes the

error.
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CHAPTER 7: CONCLUSION

In  this  study,  the  reconstructed  pin  power  has  been  successfully

optimized  and  computed  with  subgroup  projection  method  for

SHEM361  energy  group  using  the  2-level  scheme  approach  with

MOC.  For  geometries,  homogeneous  geometry  and heterogeneous

geometry for a 3 x 3 PWR cluster are used. Using the NAP: module, a

two levels  computational  scheme for the core with heterogeneous

assemblies  are  generated.  Enrich  multi-parameter  data  structure

was  obtained  to  keep  the  projected  flux  per  pin  for  diffusion

calculations.  It  was done for  homogenized assembly in  an infinite

region for different homogenization options.

It is observed that a great amount of time is saved when a thorough

MOC calculation is conducted on a SHEM361 energy group mesh.

Also, the 2-level computational method is showing optimistic results

for deterministic  computation.  The generation of  multi-parameters

reactor databases also saves time in subsequent computations. Using

the  PPR,  flux  projections  and  power  are  calculated  for  both

homogeneous  geometry  and  heterogeneous  geometry  at  each

assembly  pin.  The  results  for  both  geometries  are  compared  and

discrepancies are calculated. It shows that heterogeneous geometry

shows more accurate and promising results.

57



REFERENCES

1.  Aragonés,  J.  M.,  &  Ahnert,  C.  "A  linear  discontinuous  finite

difference formulation for synthetic coarse-mesh few-group diffusion

calculations."  Nuclear  Science  and  Engineering  94.4  (1986):  309-

322.

2. Berman, Y. "An improved homogenization technique for pin-by-pin

diffusion calculations." Annals of Nuclear Energy 53 (2013): 238-243.

3. Brosselard, C., Leroyer, H., Fliscounakis, M., Girardi, E., Couyras,

D.,  2014.  Normalization  Methods  for  diffusion  calculations  with

various  assembly  homogenizations.  In:  PHYSOR  2014,  September

28–October 3, Kyoto, Japan.

4.  Clarno,  K.  T.,  & Adams,  M. L.  "Capturing the effects  of  unlike

neighbors  in  single-assembly  calculations."  Nuclear  science  and

engineering149.2 (2005): 182-196.

5. Canbakan, A.& Hebert, A., “Accuracy of a 2-level scheme based on

a  subgroup  method  for  pressurized  water  reactor  fuel  assembly

models,” Annals of Nuclear Energy, 81, 164–173 (2015).

6.  Chambon,  R.,  “Implementation  of  pin  power  reconstruction

capabilities in the DRAGON5/PARCS system,” Tech. Rep. IGE-349,

École Polytechnique de Montréal (Canada (2015).

7.  Dall’Osso,  A.  "A  spatial  rehomogenization  method  in  nodal

calculations." Annals of Nuclear Energy 33.10 (2006): 869-877.

8.  Donnelly,  J.  V.,  Min,  B.  J.,  Carruthers,  E.  V.,  and  Tsang,  K.

"Modeling  of  CANDU  reactivity  devices  with  WIMS-

58



AECL/MULTICELL  and  superhomogenization."  Proceedings  of  the

17th  Annual  Conference  of  the  Canadian  Nuclear  Society,  CNS,

Fredricton. 1996.

10. Fliscounakis, M., Girardi, E., Courau, T., 2011. A generalized pin-

power  reconstruction  method  for  arbitrary  heterogeneous

geometries. In: M&C 2011, 8–12 May, Rio de Janero, Brasil.

11.  Gomes,  G.  "Importance  of  Assembly  Discontinuity  Factors  In

Simulating  Reactor  Cores  Containing  Highly  Heterogeneous  Fuel

Assemblies." Proc. of COMSOL Conference 2011.

12. Haroon, J., Kicka, L., Mohapatra, S., Nichita, E., and Schwanke, P.

"Comparison of the Reactivity Effects Calculated by DRAGON and

Serpent for a PHWR 37-element Fuel Bundle."  Journal of  Nuclear

Engineering and Radiation Science.

13.  Hebert,  A.  "A  consistent  technique  for  the  pin-by-pin

homogenization of a pressurized water reactor assembly."  Nuclear

Science and Engineering 113.3 (1993): 227-238.

14. Hebert, A. Applied reactor physics. Presses inter Polytechnique,

2009. 53

15. Hebert, A., “Development of the subgroup projection method for

resonance  self-shielding  calculations,”  Nuclear  science  and

engineering, 162, 1, 56–75 (2009)

16.  Hébert,  A.,  Sekki,  D.,  Chambon,  R.,  2014.  A  User  Guide  for

DONJON  Version5.  Report  IGE-344.  École  Polytechnique  de

Montréal.

59



17. Hebert, A “DRAGON5 and DONJON5, the contribution of École

Polytechnique  de  Montréal  to  the  SALOME  platform,”  Annals  of

Nuclear Energy, 87, Part 1, 12–20 (2016).

18. Hebert, A., “Development of the subgroup projection method for

resonance  self-shielding  calculations,”  Nuclear  science  and

engineering, 162, 1, 56–75 (2009)

19.  Hébert,  A.,  Sekki,  D.,  Chambon,  R.,  2014.  A  User  Guide  for

DONJON  Version5.  Report  IGE-344.  École  Polytechnique  de

Montréal.

20.  Hébert,  A.,  Sekki,  D.,  Chambon,  R.,  2014.  A  User  Guide  for

DONJON  Version5.  Report  IGE-344.  École  Polytechnique  de

Montréal.

21.  Herrero,  J.  J.,  García-Herranz,  N.,  Cuervo,  D.,  and  Ahnert,  C.

"Neighborhood-corrected  interface  discontinuity  factors  for  multi-

group pin-by-pin diffusion calculations for LWR." Annals of Nuclear

Energy 46 (2012): 106-115.

22.  Hebert,  A.,  and  Santamarina,  A.,  “Refinement  of  the

Santamarina-Hfaiedh energy mesh between 22.5 eV and 11.4 keV”

International  Conference  on  Reactor  Physics,  Nuclear  Power:  A

Sustainable Resource Casino-Kursaal Conference Center, Interlaken,

Switzerland, September 14-19, 2008

23.  Kim, H. R.,  and Cho, N.  Z.  "Global/local iterative methods for

equivalent diffusion theory parameters in nodal calculation." Annals

of Nuclear Energy 20.11 (1993): 767-783.

60



24. Marleau, G., Hébert, A., and Roy, R. "A User Guide for DRAGON,

Release 3.05 E." Ecole Polytechnique de Montréal, Montréal, Canada

(2009).

25.  Marleau,  G.,  Hébert,  A.,  Roy,  R.,  2014.  A  USER  GUIDE  for

DRAGON  Version5.  Report  IGE-335.  École  Polytechnique  de

Montréal.

26.  Merk,  B.,  and  Rohde,  U.  "An  analytical  solution  for  the

consideration  of  the  effect  of  adjacent  fuel  elements."  Annals  of

Nuclear Energy 38.11 (2011): 2428-2440.

27.  Nichita,  E.,  and Rahnema,  F.  "A heterogeneous  finite  element

method in diffusion theory." Annals of Nuclear Energy 30.3 (2003):

317-347.

28.  Nichita,  E.,  "Evaluating  accuracy  of  standard  homogenization

and  need  for  generalized  equivalence  theory  for  ACR®-lattice

checkerboard configurations." Annals of Nuclear Energy 36.6 (2009):

760-766.

29. Rahnema, F. "Boundary condition perturbation theory for use in

spatial homogenization methods." Nuclear Science and Engineering

102.2 (1989): 183-190.

30.  Rahnema,  F.,  and  Nichita,  E.  M.  "Leakage  corrected  spatial

(assembly)  homogenization  technique."  Annals  of  Nuclear  Energy

24.6 (1997): 477-488.

31.  Robinson,  R.  C.,  and  Tran,  F.  "Calculation  of  homogenized

Pickering  NGS stainless  steel  adjuster  rod  neutron  cross-sections

61



using conservation of reaction rates." 16 th Annual CNS conference,

June 4 - 7, Saskaton, SK, Canada, 1995.

32. Santamarina, A., Collignon, C., and Garat,C., “French calculation

schemes for light water reactor analysis,” The Physics of Fuel Cycles

and  Advanced  Nuclear  Systems:  Global  Developments  (PHYSOR

2004) (2004)

33.  Smith,  K.  S.  “Spatial  homogenization methods  for  light  water

reactor analysis.” Diss. Massachusetts Institute of Technology, 1980.

34. Smith, K. S. "Practical and efficient iterative method for LWR fuel

assembly  homogenization."  Transactions  of  the  American  Nuclear

Society71.CONF-941102-(1994).

35.  Smith  K.,  “Nodal  diffusion  methods:  Understanding  numerous

unpublished details,” in “Proc. Int. Conf. PHYSOR,” (2016)

36. Shen, W. "Development of a multi-cell methodology to account for

heterogeneous  core  effects  in  the  core-analysis  diffusion  code."

Proceeding  of  The  International  Conference  on  the  Advances  in

Nuclear Analysis and Simulation, PHYSOR-2006, Vancouver, Canada.

2006.

37. Varin, E.,  Hébert,  A., Roy, R.,  and Koclas, J.  "A user guide for

DONJON version 3.01." Ecole Polytechnique de Montréal, Montréal,

Canada (2005).

62


