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ABSTRACT 

Histone deacetylases (HDAC) are Zn2+ dependent cofactors or class of proteins that play a 

positive part in cellular transcription and functioning. Overexpression of these proteins are 

common in the progression of various discrepancies in brain tissues brings about the 

deregulation of different target proteins engaged with cell development and growth connected 

with Alzheimer's ailment that causes the shortage in memory and learning capacity. Although 

various approaches have been applied to control the higher expression of HDACs by 

repressing them with different compound inhibitors yet constrained effectiveness has been 

accomplished. In this study, we used ligand-based quantitative structure-activity relationship 

approach followed by machine learning model generation, molecular docking, and mutation 

studies in order to predict novel HDAC isoform-selective inhibitor by taking into 

consideration the previous studied binding calculations and morphological and chemical 

molecular descriptors. Total 11 novel compounds were selected having quite high binding 

affinities with different types of HDACs. Out of these compounds, one compound named as 

ChEMBL1834473 were able to interact at the central Zn2+ with both class I and class II 

HDAC members. Overall chemical bioactivity and binding efficiency of anticipated 

compound recommended that the proposed compound tend to be a compelling inhibitor for 

Alzheimer’s disease.  

Keywords: Alzheimer’s disease, Histone deacetylase, Histone deacetylase inhibitor, 

Molecular docking, Binding affinity, ChEMBL, SwissDock. 
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1. INTRODUCTION 

Alzheimer’s disease (AD) is a common nervous system disorder that relates to memory 

deficit and destroys the thinking and learning ability [1]. More than 5 million people in 

America suffering from the most common form of dementia called as Alzheimer’s disease. 

Among all the cases related to memory impairment and learning deficit, 70%-80% relates to 

Alzheimer’s. The conceivable cause of AD is the loss of synaptic neurons due to deposition 

of amyloid-β (Aβ) plaques and tau neurofibrillary tangles (NFT) [2]. According to most 

acceptable theory “amyloid cascade hypothesis” accumulated Aβ peptide leads to cascade of 

events which results in apoptosis of neuronal cells and initiate the pathogenesis of AD [3]. 

According to various evidences genetic changes may occur in the case of familial AD such as 

overproduction of Aβ peptide in association with presenile 1 and 2 (PS1and PS2), amyloid β 

precursor protein, and apolipoprotein E [4].  Epigenetics is the branch of advanced genetics 

and proteomics that will help in determining the role of histone proteins in the pathogenesis 

of familial and sporadic AD especially in the case of Sporadic AD. Recent advancement in 

the field of functional genomics explains the role of histone acetylation and deacetylation in 

the etiology of AD and other neurodegenerative disorders [5]. Post-translational modification 

of histone and non-histone proteins have become the most significant area of research in the 

pathogenesis of AD [6]. Various studies in the past designated the role of histone acetylation 

and deacetylation in memory impairment and recover learning and thinking ability [7]. 

Histone acetyltransferase (HAT) and histone deacetylase (HDAC’s) were two key enzymes 

that catalyze the acetylation and deacetylation activity of histone proteins respectively 

associated with double helical DNA structure [8][9]. Acetylation by HAT promotes 

chromatin relaxation by opening the packed histones and DNA [10], thus allowed the binding 

of specific transcription factors to the respective gene promoter in order to activate 

transcription and gene expression [11]. In case of deacetylation, nucleosome becomes 

compact and controlled the binding of the transcription factor to its specific gene promoter 

leads to controlled gene expression. Any instabilities in the HAT and HDAC’s activity leads 

to abnormal gene expression that may cause vital human disorders such as cancer, 

neuropathy, diabetes, neoplasm, AD, and Parkinson’s disease [12][13]. 

Till date total 18 human HDAC’s have been identified which were divided into two super 

families and four classes on the basis of structural, functional and phylogenetic analysis [14]. 
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Class I, Class II, Class IV were Zn2+ dependent while Class III, which only includes Sirtuins 

were NAD+ dependent [15]. Class I HDAC includes HDAC1, HDAC2, HDAC3, and 

HDAC8 have sequence similarity to yeast Rpd3 protein while Class II HDAC includes 

HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10 have sequence similarity to 

yeast Hda1 protein. 

Class 

Type 

Dependent 

Cofactor 

Type 
Subcellular 

Location 

Length of 

Ammino 

Acids 

Possible Brain 

Defective Area  

Non Histone 

Substrates  

Further 

Reading 

I Zn2+ HDAC1 Nucleus 482 Cortex p53, MyoD 17, 18 

  Zn2+ HDAC2 Nucleus 488 Cortex p53, MyoD 17, 18 

  Zn2+ HDAC3 
Nucleus/ 

Cytosol 
428 

Hippocampus, 

Cortex, Amigdala 

Myocyte 

Enhancer Factor-

2, p65, STAT1, 
and STAT2 

19, 20, 21, 

22 

  Zn2+ HDAC8 
Nucleus/ 
Cytosol 

377 Muscle SMC3 23 

IIa Zn2+ HDAC4 
Nucleus/ 

Cytosol 
1084 

Cortex, Amigdala, 
Hippocampus, 

Locus coeruleus 

p53,DNAJB8 24 

  Zn2+ HDAC5 
Nucleus/ 
Cytosol 

1122 In Many Parts GATA1 25 

  Zn2+ HDAC7 
Nucleus/ 

Cytosol 
952 

Substantia Nigra, 

Hippocampus 
H1F1α 26 

  Zn2+ HDAC9 
Nucleus/ 

Cytosol 
1011 Substantia Nigra TRIM29 27 

IIb Zn2+ HDAC6 Cytosol 1215 Hippocampus 
α-Tubulin, 

HSP90, Cortactin 
28, 29, 30 

  Zn2+ HDAC10 
Nucleus/ 

Cytosol 
669 

Amigdala, Cortex, 

Hippocampus 
Pax3, HSP70 31 

III NAD+ Sirt1 Nucleus 747 
Cortex, 

Hypothalamus, 

Hippocampus 

p53, p300 32, 33 

  NAD+ Sirt2 Cytosol 389 
Oligodendrites, 

Olfactory Neurons 
α-Tubulin, 

HSP90 
34 

  NAD+ Sirt3 Mitochondria 399 Unknown Ku70 35, 36 

  NAD+ Sirt4 Mitochondria 314 Unknown MCD 37 

  NAD+ Sirt5 Mitochondria 310 Cortex CPS1 38 

  NAD+ Sirt6 Nucleus 355 Unknown Unknown 39 

  NAD+ Sirt7 Nucleolus 400 Unknown P53 40 

IV Zn2+ HDAC11 Nucleus 347 In Many Parts Unknown 41, 42 

Table 1: Classification of different types of HDACs found in mammals. 

Various studies on mouse model provide the strongest evidence in the support of the possible 

role of HDAC inhibitors in the treatment of neurodegenerative disorders in enhancing 

learning and thinking ability. Histone deacetylase inhibitors were the effective treatment 

against neurological disorders via two major neuroprotective mechanisms, including site-

specific transcriptional activation of a diseased gene leading to control gene expression and 

other being modulated histone acetylation homeostasis [43]. Studies such as treatment with 
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HDAC6 selective inhibitor resulted in alleviated levels of Aβ degrading enzyme neprilysin 

(NEP) and administration of MS-275 in APP mouse model decreased the Aβ deposition 

proved the possible role of HDAC inhibitors in the treatment of AD [44][45]. 

 

Figure 1: Three major pathways followed by HDAC inhibitors that prevents cell 

apoptosis in neurological improvement. Transcriptional effect in which genes associated 

with neurons gets activated increases the expression of BDNF, GDNF, P21 while 

decreases the activity of GAPDH due to which cell apoptosis inhibits. Non 

transcriptional effect increases the acetylation of α tubulin due to which microtubule 

transportation and expression of BDNF increases significantly. In the third pathway 

accumulation of amyloid peptide protein declines and inhibition of GSK3β pathway 

occurs due to which hyper phosphorylation of tau protein decreases which leads to 

neurological improvement. 

The HDAC2 inhibitor was found to promote the growth dendritic spine density and further 

degrade the Aβ deposition [46] [47] whereas inhibiting HDAC3 prevents the synaptic 

plasticity induced by amyloid oligomers [48]. In one study it was found that inhibiting the 

activity of HDAC6 promotes the clearance of Aβ and tau [49]. It was also known to increase 

the axonal transport system and restores α-tubulin acetylation [50]. Studies suggested that 

Valporic acid (VPA) and lithium inhibits the production of Aβ peptide in HEK293 cell line 

when transfected with Swedish APP751 [51]. Another study found the role of VPA in 



4 | P a g e  
 

decreasing the Aβ production by inhibiting the GSK-3β- mediated pathway that alleviates the 

memory linked disorder in AD mouse model [52].  

HDAC inhibitors were classified into four groups based on their structure, catalytic activity, 

and a side chain. These include hydroxamic acids (Vorinostat, Belinostat) [53], benzamide 

(Entinostat, mocetinostat, SK-7041) [54], carboxylates (Valproic acids) [55], and cyclic tetra 

peptides (Trapoxin A, Romidepsin) [56]. Among these short-chain carbolic acids were weak 

inhibitors while cyclic tetra peptides were structurally complex inhibitors and under clinical 

trials [57]. Though these inhibitors were different, but they share three characteristic features 

termed as a Zinc-binding group (ZBG) [58] lipophilic linker and hydrophobic cap [59]. ZBG 

interacts with central Zn2+ through coordination bond and formed hydrogen bonds with the 

residues near Zn2+ while hydrophobic cap binds with the residues surrounding the active 

sites. 

 

Figure 2: Classification of different types of HDAC inhibitors according to their 

structure variations (A) hydroxamic acid inhibitors, (B) benzamide inhibitors, (C) cyclic 

tetra peptides inhibitors, and (D) carboxylates inhibitors. 

Various studies in the past concluded that histone deacetylase regulates the activity of 

acetylation process and histone deacetylase inhibitors alleviates the level of histone proteins 

acetylation and help in memory and learning ability thus prevent neuronal cell death [60]. 

Three proteins namely Aβ, GSK3β, and tau help play a protective role in diseased condition 

which regulates their activity on the application of HDAC inhibitors. In mice model 

increasing expression of HDAC2 but not HDAC1 results in decreased synaptic plasticity, 
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synaptic numbers, and memory formation ability and thus Vorinostat a pan HDAC2 inhibitor 

prevents the reduced synaptic plasticity and helps in memory formation [61]. Akhtar et al. 

suggested that overexpression of HDAC2 decreases the neurotransmission, indicating the 

possible role of HDAC2 in synaptic plasticity. HDAC3 express strong neurotoxic property 

which is cellular selective in nature. HDAC3 is phosphorylated during the activation of 

GSK3β pathway, thus inhibiting the GSK3β pathway prevents from HDAC3 mediated 

neuronal cell death and neurotoxicity [62]. In another experiment it was found out that 4-

phenylbutyrate (PBA) down regulates the phosphorylation of tau protein indirectly via 

increase in the inactive GSK3β pathway in AD mouse model [63]. PBA promotes the 

clearance of accumulated intraneuronal Aβ protein and helps in moderation of endoplasmic 

reticulum (ER) stress in diseased mouse model. Nicotinamide which is known for NAD+ 

dependent HDAC competitive inhibitor restores the memory impairment and learning deficit 

in mouse model by selectively decreases phosphorylation of tau protein at Thr231 position 

due to which concentration of acetylated α-tubulin increases. As compared to normal healthy 

brain, concentration of HDAC6 found to be significantly increased in cortex and 

hippocampus region of diseased mouse model [64]. Tubacin a selective HDAC inhibitor 

inhibits the hyper phosphorylation of tau protein which initiates the misrelated movement of 

mitochondrial neuron by activating GSK3β pathway. Several studies found the possible 

function of oxidative stress in the pathology of AD and it was suggested that selective 

inhibition of HDAC6 protects against neurodegenerative disorders and neuronal cell death 

induced by oxidative stress [65]. In one study it was stated the abnormal activity of HDAC4 

causes neuronal apoptosis while inhibiting the overexpression of HDAC4 activity promotes 

cell differentiation and cell growth [66].  
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2. REVIEW OF LITERATURE 

2.1 Alzheimer’s disease: An Overview 

A neurodegenerative disorder which is characterized by memory impairment and learning 

inability is called as Alzheimer’s disease (AD) which occur in the cerebrum part of the brain 

and commonly develop with the age. According to well-studied hypothesis the most common 

basis of AD in humans is the accumulation of β-amyloid protein in the brain due to cleavage 

of amyloid peptide protein leads to neuronal apoptosis and neuronal cell death. The 

percentage of diseased population upsurges substantially after the age of 70-75 and it may be 

shown that this data may rise up to 50% over the population having age above 85. People 

suffering from heart disease, high blood pressure, and diabetes were at high risk of 

developing symptoms associated with AD. Other common risk factors that lead to AD 

includes elevated levels of blood cholesterol, person who is unable to complete eight full 

years’ education, and person who undergone through distressing head injury particularly 

associated with apoE4 gene [67]. Individuals having in close proximity with AD will exhibit 

several characteristics features from the early stage of disease and these features will become 

more dominant as the disease progress over the years. The symptoms associated with AD 

include memory impairment, having trouble in performing well known errands, problems 

regarding distance and time judgement, usually lost their belongings or misplace them, and 

frequent changes in behavior, attitude, and personality. All these features were associated 

with memory impairment and learning inability in one way or other way. Thus it may be 

concluded that memory and learning inability due to neuronal cell death were key features 

found in person having AD [68]. The onset of AD associated with slowly progressive as the 

age increases and the condition may be further deteriorate when the thinking ability affects 

along with memory impairment which is considered as second stage of diseased condition. 

Short term memory problems such as attitude and behavior changes, failing to switch off 

buttons and doors, withdrawal from the social life occur in the early stages of AD. With the 

time, symptoms such as difficulty in mental thinking ability and different cerebral functions 

develops which is considered as second stage of diseased condition.  

Till now the major cause of AD associated with genetic phenomenon which is well explained 

by “Amyloid cascade hypothesis”. Years of studies demonstrated that genetic changes in 

genes such as tau protein, β-peptide, and ApoE leads to neuronal cell death and apoptosis. In 
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half of the total diseased population mutation linked with key protein found to be major cause 

of AD which leads to excessive production of amyloid-β (Aβ). 

      

 

Figure 3: Classical amyloid cascade hypothesis major cause of AD in which missense 

mutation in APP and Tau causes increased Aβ production and accumulation in senile 

plaques which activates microglial and astrocytes in brain tissues leads to neuritic 

injury, cell death and apoptosis causes AD. 

2.2 Histone Proteins in AD Pathogenesis 

Chromatin remodelling and alteration of double stranded DNA structure represents the 

central phenomenon of gene regulation and expression during the brain development process 

and memory enhancement. Modification of histone proteins at cellular level become the main 

topic in the treatment of AD. Mainly epigenetic process deals with the modification of 

histone proteins. In one study, addition of acetyl group to histone known as acetylation is a 
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key event in cell growth and survival during the pathogenesis of AD found in the postmortem 

brain tissues [69]. Till now transcriptional mechanism in pathogenesis of AD is not much 

clear as in other neurodegenerative disorder but several studies have found the crucial link 

between AD and HDAC. In one study, it was found out that the α-secretase and β-secretase 

initially cleave the crucial protein APP found in the brain tissues which generate β-amyloid 

fragments and intracellular tail fragments. Accumulation of β-amyloid fragments in the brain 

tissues imbalance the gene expression and function leads to cell death and apoptosis. Another 

study concluded the role of histone deacetylase by activating the GSK-3β pathway leads to 

hyper phosphorylation of tau protein [70]. Low potassium and glutamate levels in brain 

trigger the neuronal translocation of HDAC4 and represses MEF2 and CREB associated 

transcription leads to neuronal cell apoptosis. Recent development found out that HDAC6 

facilitate both UPS dependent and autophagy mediated degradation of excessive accumulated 

proteins.  

HDAC1, a class I HDAC, was shown to play a protective role in a p25/cyclin-dependent 

kinase 5-inducible transgenic mouse model. Activation of p25 gene expression in mouse 

model leads to postnatal neurodegeneration which is mediated by a direct interaction between 

p25 and a catalytic region of HDAC1. Reduction in HDAC1 activity trigger aberrant 

expression of various cell cycle proteins and DNA injury, leading to neuronal death. The in 

vivo findings of class I HDAC activity on neuronal cell were reviewed in cortical region of 

brain. In these neurons, the overexpression of HDAC1, but not a catalytically inactive 

mutant, protected cultured neurons against p25-induced neurotoxicity. Pharmacological 

inhibition of HAT activity was also found to be protective against p25 induced neurotoxicity 

and the degree of protection was not increased by HDAC1 coexpression [71]. These studies 

suggest that the neuroprotective effect of HDAC1 is mediated by histone deacetylation.  

Moreover the role of HDAC4 in regulating neurodegeneration is still unknown and require 

large amount of studies. Initially it was reported that the over expression of HDAC4 in 

cultured cerebellar granule neurons leads to cell death and cell apoptosis. In one study, it was 

found out that HDAC4 activity leads to neurological improvement by protecting the neurons 

against low-potassium-induced cell death. HDAC4 was also was shown to protect cultured 

cortical neurons against homocysteic acid and 6-hydroxy dopamine induced toxicity. Arguing 

strongly for a survival-promoting role for HDAC4 in neurons is the finding that the 

cerebellums of HDAC4 knock-out mice, which die within 2 weeks of birth, display postnatal 

degeneration of Purkinje neurons. Using HDAC inhibitors and mutant HDAC4 constructs 
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lacking the deacetylase domain, it was found that HDAC4-mediated neuroprotection does not 

require deacetylase activity [72]. Rather, neuroprotection by HDAC4 involves an inhibition 

of cell cycle proteins such as cyclin-dependent kinase-1. A recently published report by 

confirms a neuroprotective role for HDAC4. It demonstrated that HDAC4 reduced naturally 

occurring neuronal death in the retina, and that HDAC4 overexpression in a mouse model of 

retinal degeneration prolonged photoreceptor survival. 

 

Figure 4: HDAC plays an important role in cell regulation both in cytoplasm and 

nucleus. In Nucleus HDAC 1 and HDAC2 regulates the activity of NRSF gene, HDAC3, 

HDAC4, HDAC5, and HDAC7 regulates gene SIN3A while HDAC1, HDAC2, and 

HDAC8 inhibits MECP2 activity which causes transcription and leads to cell death and 

apoptosis. In cytoplasm HDAC6 acetylates alpha tubulin and HSP90 to inhibit 

transcription associated genes.  

2.3 Types of Histone Deacetylase 

Mammals express 18 HDAC proteins, which have been grouped into four classes based on 

their homology to yeast deacetylase proteins. Class I HDACs (HDAC1, HDAC2, HDAC3 

and HDAC8) are homologues of the yeast HDAC RPD3 protein. These HDACs are 

expressed ubiquitously, localized predominantly in the nucleus (with the exception of 

HDAC3, which can also be found in the cytoplasm) and possess high enzymatic activity. 

HDAC1 and HDAC2 are structurally very similar and within cells, are found complexed with 

corepressors such as the mammalian paired amphipathic helix protein Sin3 and the protein 
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CoREST, as well as with the polycomb-repressive complex 2 (PRC2) and the nucleosome 

remodeling and histone deacetylation (NuRD) complex [73].  

Class II HDACs are homologous to the yeast HDAC HDA1 and are further divided into class 

IIa (HDAC4, -5, -7 and -9) and class IIb (HDAC6 and -10) HDACs. Class IIa HDACs are 

characterized by large N-terminal extensions with conserved binding sites for the 

transcription factor myocyte-specific enhancer factor 2A (MEF2) and 14-3-3 protein eta, and 

can shuttle between the nucleus and cytoplasm in a phosphorylation-dependent manner. 

Phosphorylation is mediated by kinases such as calcium/calmodulin-dependent protein kinase 

(CaMK) and protein kinase D at conserved serine residues in the N-terminal region of these 

proteins. Class IIa HDACs also display a restricted expression pattern. For example, HDAC4, 

-5 and -9 are highly expressed in the brain, heart and skeletal muscle, while HDAC7 is 

abundant in endothelial cells and thymocytes [74]. Class IIb HDACs lack the Nterminal 

extension but possess two non-identical catalytic domains in tandem. HDAC6 is localized 

exclusively in the cytoplasm where it is physically associated with tubulin. Deacetylation of 

tubulin as well as other cytoskeletal and transmembrane proteins by HDAC6 has been 

reported [75]. Relatively little is known about the intracellular localization, expression pattern 

or functions of HDAC10. HDAC11 shares sequence conservation with both RPD3 and 

HDA1 and is therefore placed in class IV. Its expression is highest in the brain, heart, testis 

and kidney. Little is known about the protein’s enzymatic activity, its substrates or the 

proteins with which it associates. Classes I, II, and IV HDACs are all zinc-dependent 

enzymes, sometimes referred to as “classical HDACs”. In contrast, class III HDACs require a 

nicotinamide adenine dinucleotide ion (NAD+) for their catalytic activity and are homologous 

to the NAD dependent HDAC SIR2 yeast protein [76]. These proteins, called sirtuin, share 

no sequence or structural similarity with the classical HDACs and deacetylate proteins by a 

mechanism that is distinct from the acetyl-lysine hydrolysis mechanism utilized by classical 

HDACs [77]. 

2.4 Role of Histone Deacetylase Inhibitors in AD 

With a single exception, as discussed later, small-molecule HDAC inhibitors investigated for 

the potential treatment of neurodegenerative disorders do not affect sirtuin (class III HDAC) 

activities. These compounds, which considerably differ in potency and HDAC isoenzyme 

selectivity, belong to four different classes, namely the short chain fatty acids, hydroxamic 

acids, benzamide and cyclic tetra peptides [78]. The fatty acid group of HDAC inhibitors 
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comprises the compounds SB, phenyl butyrate (PB) and Valproic acid (VPA). In one study it 

was linked that the previously reported anti proliferative action of SB to histone hyper 

acetylation suggesting an HDAC inhibitory function [79]. 

Today, the SB derivative PB is an orphan drug which achieved FDA approval for the 

treatment of urea cycle disorders. VPA, a commonly used anticonvulsant and mood 

stabilizer, achieved FDA approval in 1987 and its HDAC inhibitory function was discovered 

in 2001 [80]. Using HDACs isolated from rat liver, SB and VPA inhibit total HDAC activity 

incompletely and at comparatively high millimolar concentrations, which is in line with a 

pronounced class I selectivity shown for VPA. This is somewhat in contrast to the 

observation that VPA and SB alter histone acetylation levels already at submillimolar doses 

in single cell cultures, which suggests that mechanism(s) other than direct interference with 

the catalytic activity of HDAC isoenzymes are involved [81]. Indeed, Kramer and co-workers 

have shown that VPA and SB (but not TSA and SNDX-275, reduce HDAC2 (class I) protein 

levels. For VPA, this effect has been shown to be based on proteasomal degradation of 

HDAC2 but not of other class I HDAC isoenzymes [82]. 

Transcriptome-wide studies mainly performed using neoplastic cells have shown that HDAC 

inhibitors can affect the transcription levels of 7 – 10% of all genes. However, there is 

increasing evidence that these changes are not solely based on histone hyper acetylation due 

to the observation that HATs and HDACs are not just for histones. Numerous non-histone 

protein targets of HDACs including transcription factors and regulators, signal transduction 

mediators, DNA repair enzymes, nuclear import regulators, chaperone proteins, structural 

proteins, inflammation mediators and viral proteins have been identified which are likely to 

contribute to the hitherto reported effects induced by HDAC inhibitors [83]. An additional 

mechanism of action is given by the finding that HDAC inhibitors counteract gene silencing 

by DNA methylation mediated by methyl-CpGbinding protein 2 (MeCP2). MeCP2 binds 

tightly to chromatin in a methylation-dependent manner and associates with a corepressor 

complex containing HDAC1 and HDAC2, suggesting that the fundamental mechanisms of 

epigenetic gene regulation, DNA methylation and histone acetylation, are linked by MeCP2 

[84]. Jones and co-workers demonstrated that gene silencing conferred by MeCP2 and 

methylated DNA can be relieved by HDAC inhibition using the pan-HDAC inhibitor TSA. A 

striking observation is that the consequences of HDAC inhibition are not limited to changes 

in protein acetylation but may also bring about changes in the state of DNA methylation [85]. 
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The neurotoxic p25 derives from proteolysis of p35, and over activates the tau kinase cyclin-

dependent kinase 5. Transgenic mice expressing high levels of p25 exhibit hyper 

phosphorylation of tau as seen in AD, and neurodegeneration [86]. By employing a 

tetracycline inducible mouse model (CK-p25) expressing p25 under control of a neuron-

specific promoter, in one study it was demonstrate that recovery of learning and memory is 

associated with chromatin remodeling. In CK-p25 mice, p25 causes severe cognitive defects 

(fear conditioning, spatial learning) associated with neuronal loss and tangle formation 

(cortex, hippocampus) similar to AD pathology [87]. Very similar to the RSTS mouse model, 

application of an HDAC inhibitor (SB, 1200 mg/kg/day, i.p.) mitigated learning and memory 

defects in CK-p25 mice. These effects were not restricted to diseased CK-p25 animals. 

Application of either SB (100 ng) or TSA (50 ng) into the brain ventricles of wild-type mice 

following fear conditioning significantly improved their long-term memory abilities when 

tested 24 h later [88]. An intriguing observation is that environmental enrichment induces 

histone H3/H4 hyper acetylation in wild-type mice and normalizes memory performance in 

diseased CK-p25 mice [89]. 

Gene profiling studies conducted using RNA isolated from the brains of patients with 

Huntington’s disease and from different Huntington’s disease mouse models have revealed 

alterations in the expression of a large number of genes. In the mouse models, many of these 

alterations occur before symptoms become obvious, suggesting that they play a causal role in 

disease pathogenesis [90]. In contrast to Huntington’s disease and other neurodegenerative 

disorders in which transcriptional dysregulation and alterations in acetylation patterns are 

well described, evidence for a causal role of transcriptional dysfunction in the pathogenesis of 

the more prevalent neurodegenerative disorders (e.g., AD, PD, amyotrophic lateral sclerosis 

and stroke-induced brain injury) is somewhat limited. Despite the lack of mechanistic 

rationale, however, HDAC inhibitors have been used in experimental models of a large 

number of neurodegenerative disorders, and with great success. Indeed, their effectiveness 

might well be the best evidence for transcriptional dysfunction in most neurodegenerative 

diseases. 

The utility of HDAC inhibitors as potential therapeutic agents for neurodegenerative 

disorders was first described in a Drosophila model of Polyglutamine expansion disease. The 

best studied Polyglutamine disorder is Huntington’s disease, which is caused by glutamine 

expansion within the coding region of the huntingtin gene (HTT). Mutant Htt has been shown 

to disrupt transcription through different mechanisms. For example, it inhibits the activity of 



13 | P a g e  
 

CREB-binding protein, a histone acetyl transferase with global effects on transcription, 

through direct interaction and sequestration [91]. Mutant Htt also interacts with transcription 

factors such as Sp1, which regulates the transcription of a large number of genes. Indeed, 

known targets of Sp1 display decreased expression in human Huntington’s disease and in 

mouse models thereof. In addition to these mechanisms involving protein–protein interaction, 

polyQ-expanded Htt can alter post-transcriptional modifications of histones resulting in the 

condensation of chromatin to a more repressed conformation [92]. Vorinostat and butyrate 

were shown to arrest ongoing progressive neuronal degeneration and reduce lethality induced 

by the polyglutamine domain of Htt (polyQ-Htt) or just a polyglutamine peptide (Q48). Even 

when administered to flies already exhibiting neurodegeneration, HDAC inhibitors reduced 

further neurodegeneration. A similar reduction in the extent and rate of neurodegeneration 

was observed when a partial loss of function mutant form of Drosophila Sin3A, a corepressor 

protein that is part of active HDAC complexes, was overexpressed in the flies [93]. Because 

this genetic manipulation could be expected to reduce HDAC activity, it suggested that the 

HDAC inhibitors act by inhibiting the activity of HDACs as opposed to affecting cellular 

processes other than the deacetylase pathways. Drosophila expresses five different classical 

HDACs (Rpd3, Hdac3, and HDAC4, HDAC6 and histone deacetylase X, an orthologue of 

HDAC11) and it was not known which HDACs were responsible for the neuroprotective 

effects of vorinostat and butyrate. In a more recent study, the same group reported that 

polyQ-Htt-overexpressing flies with a reduced level of Rpd3 suffered less neurodegeneration 

and lived longer than those with normal Rpd3 expression [94]. Reduced expression of each of 

the other four HDACs using multiple heterozygous mutations and/or short hairpin-type RNA 

constructs had no beneficial effect on neurodegeneration or life span. These observations 

suggest that pharmacological inhibitors that selectively target human orthologues of Rpd3 

would be excellent therapeutic agents for neurodegenerative disorders [95]. 
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3. METHODOLOGY 

3.1 Protein-Protein Interaction Network of HDAC and Key Proteins in 

AD 

The numerous cellular associations and interactions that happen between proteins are at the 

center of cell behavior and their systematic depiction gives setting in molecular biological 

science. The STRING database (http://string-db.org) expects to give a basic evaluation and 

assimilation of protein–protein interactions, including direct (physical) and in addition 

aberrant (useful) affiliations [96]. The newfangled form 10.0 of STRING covers in excess of 

2000 creatures, which has required novel, adaptable calculations for exchanging cooperation 

data between living beings. The protein for protein-protein interaction were selected on the 

basis of their biological function in the pathogenesis of AD. It will gives insight of possible 

effect of HDAC on key regulatory proteins of neuronal survival and cell apoptosis.  

3.2 Dataset Preparation  

For dataset collection high-resolution co-crystallized class I and class II protein structures 

were extracted from RCSB PDB database [98]. These structures additionally went through 

the dock prep section of UCSF Chimera 1.10 [99] on account of including charges and 

missing residues. Active sites and conserved domain information of these structures were 

acquired from PDBSum [100]. 

Protein Name PDB ID Resolution Year 

HDAC1 5ICN 3.3 2016 

HDAC2 5IWG 1.66 2016 

HDAC3 4A69 2.06 2012 

HDAC8 5FCW 1.91 2016 

HDAC4 2VQV 3.3 2008 

HDAC5 5UWI 2.14 2017 

HDAC6 5EEN 1.8 2016 

HDAC7 3ZNS 2.4 2013 

HDAC10 5TD7 2.85 2017 

Table 2: Protein Structure Data with PDB ID, Resolution, and Year of Publication of 

Individual HDAC. 
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3.3 Multiple Sequence Alignment (MSA) 

Binding and catalytic mode information of class I and class II HDAC has been studied from 

different scientific sources. To distinguish between the structural similarity and identity 

between different class protein sequences were obtained from NCBI protein database [101] 

and for MSA ClustalW [102] tool was used with a gap open penalty of 10 and gap extension 

penalty of 0.05. BLOSUM [103] was used as a weight matrix in multiple sequence 

alignment. 

3.4 Pharmacophore Mapping and QSAR Studies 

For Pharmacophore mapping and Quantitative Structural Activity Relationship (QSAR) 

studies seven known HDAC inhibitors were identified through various literature sources. 

Pharmacophore mapping of known inhibitors was performed using PharmMapper [104] with 

default parameters. Fit score and z’ score was carefully calculated and role playing binding 

sites such as hydrophobic sites, hydrogen donor sites, and hydrogen acceptor sites were 

characterized. For performing QSAR studies of seven known inhibitors, compounds were 

subjected to EMBL-EBI ChEMBL database [105], ChemAxon’s Chemicalize [106]. While 

2D/3D properties, molecular descriptors, and bioactivities of compounds were extricated 

from Marvin Sketch [106], Marvin View [106], and Molinspiration [107] [108]. 

3.5 Machine Learning (ML) Approach in Classification of Compounds 

For ML model creation, the training set was obtained from Binding Database [109] which 

were classified into inhibitors and non-inhibitors based upon IC50 value. Compounds having 

the highest inhibitory effect that is IC50 < 2500 nM were classified as inhibitor/actives while 

the compounds having weak inhibitory potential that is IC50 > 2500 nM were classified as 

non-inhibitor/decoys. For the preparation of test set known selective and non-selective 

synthetic molecules were obtained from ChEMBL database. Molecular descriptors of both 

training set as well as test set were computed through ACD ChemSketch [110] and 

DataWarrior [111]. Total 19 attributes were calculated on the basis of which test set data 

were classified as inhibitor or non-inhibitor. Machine learning models were applied to test set 

data in order to compute their binding effect with the help of Weka 3.8 [112]. Total four 

models were created which are as follow random forest model, deep learning model, logistic 

model, and k-star model. After classification, the data sorted out to reduce the number of 
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compounds in order to obtain novel inhibitor having high binding energy with both class I 

and class II HDAC. 

3.6 Molecular Docking (MD) Technique 

Molecular docking studies were performed to check the binding relation between the ligand 

and receptor. Molecular docking studies of the top-ranked compounds with both class I and 

class II HDAC were performed with SwissDock [113] default parameters. Total binding 

energy and binding pose of ligand to specific HDAC were examined carefully. Finally, 

ADMET analysis of compounds was predicted using AdmetSAR [114]. Toxic effects of 

compounds were computed using DataWarrior and Molinspiration. 

3.7 Ammino Acid Substitution Analysis 

Permanent alteration in the nucleotide sequence of genome termed as a mutation in protein 

structure causes the dysfunction or dysregulation of protein activity and structure. The 

catalytic sites or binding sites of different Histone Deacetylase possess missense mutation as 

well as silent coding mutation. The data of ammino acid mutation in HDAC were retrieved 

from the COSMIC database [115]. UCSF Chimera was used to carry out the ammino acid 

substitution using the command swapaa (aa name): (position) (chain) or it can be done with 

the help of option under tools named as morph conformations. The modified structures was 

saved into Pdb file separately to carry out the molecular docking studies with SwissDock. 
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4 RESULTS 

4.1  Network Analysis of HDAC and Proteins Involved In AD 

Protein-protein interaction (PPI) networks enable to establish mutual effect of two or more 

highly similar class of protein. In AD pathogenesis many protein including α-synuclein 

(SNCA), Apolipoprotein E (ApoE), Amyloid β precursor protein (APP), Beta-secretase 1 

(BACE), Presenilin-1 (PS-1), Tumor necrosis factor (TNFα), p35, Mitogen-activated protein 

kinase 1 (MAPK1), microtubule-associated protein tau (MAPT), and Glycogen synthase 

kinase 3 beta (GSK3β). Several studies in the past suggested the association of these proteins 

with different isoenzymes of HDAC during the pathogenesis of AD or neuronal cell demise. 

Impairment between the bindings of these proteins with HDAC’s leads to deregulate their 

function which ultimately cause AD.  

 

Figure 5: Interaction Between Class I HDAC And Proteins That Regulate Brain 

Functions. HDAC1 Is Directly Associated With TNF and Causes Its Acetylation Which 

Results in Accumulation of APP, Overexpression of ApoE, and Inhibits GSK3β 

Pathway. 
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Figure 6: Interaction between Class IIa HDAC and Protein Alter Learning Ability. 

HDAC4 Inhibits GSK3β Pathway Directly and HDAC9 Causes Hyper Phosphorylation 

of TNF. HDAC7 And HDAC5 Does Not Directly Linked With Neurodegeneration 

Rather They Interact With Either HDAC9 Or HDAC4 Causes Neuronal Cell Apoptosis. 

 

Figure 7: Protein-Protein Interaction between Class IIb and Proteins Causes Memory 

Impairment and Decreases Learning Ability. HDAC6 Inhibits GSK3β Pathway And 

Causes Deacetylation Of MAPT Which Hyperphosphorylated Tau Protein Leading 

Neuronal Cell Death. 
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Number of 

Nodes 

Number of 

Edges 

Average 

Node 

Degree 

Local 

Clustering 

Coefficient 

Expected 

Number of 

Edges 

PPI p-Value 

Class I 12 23 3.83 0.755 9 0.00013 

Class IIa 13 26 4 0.684 7 2.63-08 

Class IIb 11 21 3.82 0.681 5 1.91E-08 

Table 3: Data associated with protein-protein interaction network of Class I,   Class IIa, 

and Class IIb. 

4.2  Identity and Similarity between Different HDAC Using MSA 

Type Active Site Ammino Acids Residues Conserved Domain 

Hdac1 
141, 142, 149, 150, 176, 178, 264, 261, 

301, 303 
H, H, G, F, D, H, D, L, G, Y 140-303 

Hdac2 
14, 142, 150, 151, 177, 179, 265, 272, 302, 

304 
H, H, G, F, D, H, D, L, G, Y 141-304 

Hdac3 
134, 135, 143, 144, 170, 172, 259, 266, 

296, 298 
H, H, G, F, D, H, D, L, G, Y 134-298 

Hdac4 802, 803, 811, 812, 840, 842, 934, 974 H, H, G, F, D, H, D, G 802-974 

Hdac5 832, 833, 841, 842, 870, 872, 954, 1004 H, H, G, F, D, H, D, G 832-1004 

Hdac6 215, 216, 224, 225, 253, 255, 346, 384  H, H, G, Y, D, H, D, G 610-780 

Hdac7 
542, 626, 669, 670, 678, 679, 707, 709,738, 

801, 809, 810, 841 
P, D, H, H, G, F, D, H, F, D, P, L, G 542-841 

Hdac8 
100, 101, 141, 142, 143, 151, 152, 178, 

180, 208, 267, 274, 304, 306 

Y, D, W, H, H, G, F, D, H, F, D, M, 

G, Y 
100-306 

Hdac9 782, 783, 791, 792, 820, 822, 914, 954 H, H, G, F, D, H, D, G 782-954 

Hdac10 134, 135, 143, 144, 172, 174, 265, 303 H, H, G, F, D, H, D, G 134-303 

Hdac11 
41, 140, 141, 142, 143, 151, 152, 153, 181, 

183, 257, 261, 301, 302, 304 

K, G, F, H, H, G, F, C, D, H, N, D, 

S, G, Y 
41-304 

Table 4: The Following Table Describes The Active Site Position, Ammino Acid 

Residues, And Conserved Domain In Different Isoforms Of HDAC. According To Table 

Histidine, Glycine, Tyrosine, Aspartic Acid, and Leucine Were Most Important 

Ammino Acid That Take Part In Binding With Small Biomolecules or Inhibitors. 

Binding site analysis of class I and class II showed that residues ranging from position 140 to 

position 250 considered as the active site for class I with ammino acids such as Histidine, 

Glycine, and Leucine as active ammino acids. While residues ranging from position 800 to 

position 900 were considered as the active site for class IIa and residues ranging from 



20 | P a g e  
 

position 150 to position 300 were considered as the active site for class IIb. Studies of 

catalytic sites explained that Histidine, Glycine, Aspartic acid, and Phenylalanine were 

important catalytic ammino acids for HDAC class II. Zn2+ has centrally formed a 

coordination bond with one Histidine and two Aspartic acid, respectively for both classes I as 

well as class II HDAC.  

 

Figure 8: Multiple Sequence Alignment of Class I HDAC Isoforms Using ClustalW 

where * Marks the Identity between The Isoforms and ˚ Donates the Percent Similarity 

Between Different HDAC.  

Final results of multiple sequence alignment showed that HDAC1 and HDAC2 share 85.06% 

sequence similarity using the BLOSUM similarity matrix which is highest as compared to 
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other HDAC’s in class I. The percentage of sequence similarity for HDAC1 reduces to 

40.54% and 59.1% respectively with HDAC8 and HDAC3. Similarly, in class II the sequence 

similarity between HDAC5 and HDAC9 stands more at 61.11%. Among class IIb the 

sequence similarity between HDAC6 and HDAC10 remains at 41.58%. The results explained 

the similarity and identity between different isoforms of HDAC. Studies showed that class IIa 

has another putative zinc binding site with Histidine and Cysteine take part in binding with 

central Zn2+ atoms. The catalytic residues in HDAC form a tunnel-shaped pocket which 

allows the lipophilic part of the inhibitor to form a hydrogen bond with the selective receptor. 

 

Figure 9: Multiple Sequence Alignment of Class II HDAC Isoforms Using ClustalW. 
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  Q9BY41.2 O15379.2 NP_004955.2 Q92769.2 

Q9BY41.2 100 40.98 40.54 40.7 

O15379.2 40.98 100 59.1 59.1 

NP_004955.2 40.54 59.1 100 85.06 

Q92769.2 40.7 59.1 85.06 100 

Table 5: Percent Identity Matrix of Class I HDAC. 

  Q8WUI4.2 Q9UKV0.2 P56524.3 Q9UQL6.2 Q9UBN7.2 Q969S8.1 

Q8WUI4.2 100 48.24 53.37 48.29 33.77 36.75 

Q9UKV0.2 48.24 100 59.69 61.11 36.66 38.42 

P56524.3 53.37 59.69 100 61.6 36.12 36.59 

Q9UQL6.2 48.29 61.11 61.6 100 35.45 34.41 

Q9UBN7.2 33.77 36.66 36.12 35.45 100 41.58 

Q969S8.1 36.75 38.42 36.59 34.41 41.58 100 

Table 6: Percent Identity Matrix of Class II HDAC. 

 

4.3  Identification of Novel Compound Using QSAR Technique Followed By 

Machine Learning Modelling 

Pharm mapping studies of six known inhibitors with HDAC8 describe the pharmacophore 

features which were the important characteristics of a compound to be HDAC inhibitor. 

Studies explained that there should be 4 hydrophobic sites, 2 hydrogen donor sites, and 1 

hydrogen acceptor site present in the compound. Moreover, the fit score should be around 3 

and the normalized fit score should be around 0.5 for HDAC inhibitor. Z- score is a score 

produced from the particle's fit score and a library score grid ascertained in advance . It joins 

the fit score and its comparing vector in the score grid together and standardizes it to a vector 

with a mean of zero and a standard deviation of one. Contrasted with the fit score z'- score 

apply the pharmacophore coordinating strategy as well as think of some as measurement 

factor lying behind, say, typical dissemination a haphazardly given particle's fit score may 

take after. By and large, expansive positive z'- score ought to shows high essentialness of the 

objective to a question compound, also, substantial negative z'- score demonstrates the 

objective may not be sufficiently huge. By doing this, we trust the z'- score will signifies the 

unadulterated fit score with more factual significance and certainty contrasting. 
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Figure 10: Pharmacophore Analysis of Known Inhibitors Using PharmMapper. (A) 

Chembl98 (B) Chembl99 (C) Chembl116620 (D) Chembl159249 (E) Chembl356066 (F) 

Chembl483254.  Blue Color Represents The Hydrophobic Residues, Green Color 

Represents The Hydrogen Donor Sites, And Pink Color Represents The Hydrogen 

Acceptor Site Of Receptor. 

In order to create machine learning models, the training set and test set should be carefully 

examined and for this purpose, molecular descriptor studies of the compounds were carried 

out. Training compounds were collected from the binding database based upon IC50 values. 

Total 3234 compounds were used as training data in Weka 3.8 while 5064 compounds were 

collected as a test set data from various literature sources. The compounds were treated into 

DataWarrior to calculate total 19 descriptors in order to identify the class of compounds. 

Total 4 model names as a random forest model, deep learning model, KStar model, and 

logistic model were created to classify the test set data. Our generated model predicted that 

2347 compounds were classified as inhibitors while the remaining compounds were classified 

as non-inhibitors. To check the reliability and predictability of generating models several 

statistical parameters such as root mean square error, relative squared error, root relative 

squared error, and precision was calculated carefully. The compounds classified as inhibitors 

were further sorted out on the basis of Lipinski’s rule of 5 and other characteristics features 

on the basis of which a small chemical compound classified as drug molecule.  

Random forest model is widely accepted and used model because of its simplicity level and 

reliability. It is based on supervised learning method. The mechanism behind the working of 

model is to create a forest that is n ot organized and based on bagging phenomenon.it is used 
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in both classification and regression problems. Deep learning metods are different in nature 

as they based on learning data and can be supervised method or unsupervised methods. The 

basic feature of deep learning methods are their similarity to biological nervous system 

representation.  Kstar is a type of ML method based on the input training data and gives 

output of test data based on previously feed data structure. It is based on distance between the 

different input attributes and thus more predictale than other similar type of algorithms. 

Logistic model is also a type of regression based algorithm and depends on the calculation of 

attributes value. Logistic model is widely used to calculate the score among traumiatic and 

injury patients. It is widely accepted mocdel in many cases such as in polling. 

Characteristics 
Random 

Forest 

Logistic 

Model 

K-Star 

Model 

Deep Learning 

Method 
Average 

Accuracy 95.82 97.98 86.95 97.4 94.5375 

ROC Area 0.993 0.989 0.934 0.992 0.977 

PRC Area 0.993 0.985 0.938 0.992 0.977 

Kappa Statistic 0.9045 0.9543 0.7483 0.941 0.887025 

TP Rate 0.958 0.98 0.89 0.974 0.9505 

FP Rate 0.066 0.032 0.149 0.039 0.0715 

Precision 0.958 0.98 0.889 0.974 0.95025 

Mean Absolute Error 0.0951 0.0596 0.1169 0.0662 0.08445 

Root Mean Squared Error 0.1841 0.1476 0.3136 0.1574 0.200675 

Relative Absolute Error 21.44% 13.44% 26.35% 14.93% 19.04% 

Root Relative Squared Error 39.09% 31.34% 66.60% 33.42% 42.61% 

Table 7: Characteristic Features of ML Models Determining The Accuracy of The 

Models Created. 

From the table above it is clearly identified that accuracy of logistic model method is highest 

that is 95.6% followed by deep learning method, random forest, and kstar method which is 

97.4%, 95.8%, and 86.9% respectively. From the results it may be concluded that overall 

accuracy of our generated system is more than 94%. thus our prediction is reliable and 

proceeds for further tests. 

Accuracy in Weka is defined as the overall correctly identified instance during the algorithm. 

In other words it is the ratio of correct predictions out of total predictions made by a 

particular model. Root mean squared error is defined as the average error made on the test set 

during the output variable. Area under ROC curve denotes the plot against TPR and FPR or 

we can say that it is the graph between sensitivity v/s specificity. 



25 | P a g e  
 

 

Figure 11: Graphical Comparison of The Characteristics Features of The Four Models 

Created Using ML Technique. 

 
1834473 2312466 256322 271308 3353068 3648287 3648298 3655942 3655956 474746 490722 

Deriding 

Energy 
61.07 102.46 72.6 65.33 97.56 112.96 67.81 54.83 69.07 76.23 69.56 

Van Der 

Waals 

Volume 

262.13 374.5 315.3 285 313.76 419.31 317.53 282.7 300.48 351.7 336.6 

MMFF94 

Energy 
119.11 151.44 138.8 93.76 258.54 205.62 177.1 137.04 153.58 167.1 136.5 

Platt 

Index 
68 102 72 68 84 96 74 68 74 80 80 

Randic 

Index 
11.15 16.17 12.17 11.72 13.15 15.18 12.71 11.78 12.13 13.62 13.56 

Balban 

Index 
1.32 0.99 1.23 1.23 1.25 1.57 1.49 1.43 1.45 1.45 1.43 

Harary 

Index 
77.59 130.82 86.99 81.32 100.73 128.7 93.15 84.69 91.83 104.6 103.4 

Hyper 

Weiner 

Index 

6075 21975 8151 7342 9505 13669 8045 5362 5688 9668 9986 

Szeged 

Index 
2081 5958 2564 2436 3308 4056 2592 2139 2282 3033 3082 

Wiener 

Index 
1399 3887 1771 1612 2073 3048 1858 1404 1508 2213 2254 

Wiener 

polarity 
32 51 35 33 43 47 37 35 40 41 39 

Table 8: Molecular Descriptors of Test Set Compounds 
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  1834473 2312466 256322 271308 3353068 3648287 3648298 3655942 3655956 474746 490722 

Total 

Molweight 
348.773 436.47 352.4 319.3 362.38 454.59 351.40 320.35 334.37 379.4 379.4 

clogP 2.241 2.0433 2.629 2.001 2.1436 2.7118 2.1121 2.2175 2.1407 2.994 2.046 

clogS -3.989 -3.913 -3.817 -3.854 -2.593 -2.824 -2.568 -3.814 -3.914 -3.206 -2.82 

H-Acceptors 8 9 5 6 7 7 6 6 6 6 7 

H-Donors 3 3 3 3 2 2 3 3 3 3 3 

Total 

Surface 

Area 

246.2 335.78 276.4 253.2 272.13 351.39 279.03 249.82 259.99 303.7 296.7 

Relative 

PSA 
0.46019 0.3069 0.298 0.288 0.2646 0.2325 0.2456 0.2842 0.2730 0.225 0.274 

Polar 

Surface 

Area 

141.16 123.12 108.2 92.93 87.46 106.67 87.38 87.14 87.14 87.38 104.4 

Shape Index 0.69565 0.6060 0.68 0.666 0.6296 0.5 0.6153 0.5416 0.52 0.571 0.571 

Metal-

Atoms 
0 0 0 0 0 0 0 0 0 0 0 

Rotatable 

Bonds 
4 6 6 5 3 9 7 5 5 8 8 

Amides 0 1 1 1 1 0 0 0 0 0 0 

GPCR 

ligand 
-0.34 0.12 -0.07 0.05 0.28 0.3 0.25 0.01 0.21 0.11 0.33 

Ion channel 

modulator 
-0.94 0.27 -0.28 -0.11 -0.07 -28 -0.18 -0.37 -0.04 -0.24 -0.11 

Kinase 

inhibitor 
0.47 0.7 0.28 0.39 0.38 0.18 0.23 0.35 0.38 0.05 0.11 

Nuclear 

receptor 

ligand 

-0.61 -0.45 -0.33 -0.29 -55 -0.03 0.07 -0.27 0.09 0.05 0.17 

Protease 

inhibitor 
0.02 -0.2 0 -0.14 0.52 0.39 0.34 0.32 0.58 0.29 0.39 

Enzyme 

inhibitor 
0.29 0.12 0.12 0.17 0.46 0.59 0.51 0.32 0.45 0.4 0.53 

LE from 

clogP 
0.51592 0.3612 0.470 0.497 0.4404 0.3672 0.4577 0.4946 0.4757 0.417 0.425 

LLE from 

clogP 
6.4086 6.6464 5.950 6.697 6.5253 5.8549 6.5632 6.4366 6.5287 5.529 6.642 

LELP from 

clogP 
4.3437 5.6562 5.585 4.024 4.8666 7.3837 4.6141 4.4827 4.4998 7.169 4.807 

Mutagenic none none none none None none None none none None None 

Tumorigeni

c 
none none none none None none None none none None None 

Reproductiv

e Effective 
none none none none None none None none none None None 

Irritant none none none none None none None none none None None 

Table 9: Chemical And Physical Properties of Novel Compounds Identified Using 

DataWarrior. 

Pharmacokinetics and pharmacodynamics properties of predicted compounds were calculated 

using different standard descriptors to check the efficiency and efficacy of compound as a 

drug molecule. The properties such as protease inhibitor, enzyme inhibitor, kinase inhibitor, 

ion channel modulator, GPCR ligand, and nuclear receptor ligand were calculated along with 

Mutagenicity, Tumorigenic effect, and reproductive effect with the help of Molinspiration. 
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The results indicated that all the compounds did not show mutagenic, tumorigenic, and 

reproductive effect. 

4.4  Molecular Docking Analysis 

Comparison between the full fitness of 11 novel compounds to 7 known inhibitors explained 

that the three compounds such as ChEMBL1834473, ChEMBL271308, and ChEMBL490722 

have a higher binding affinity to both class I and class II HDAC due to which they have 

strong potential to be used as isoform-selective HDAC inhibitors. 

CHEMBLID HDAC1 HDAC2 HDAC3 HDAC4 HDAC5 HDAC6 HDAC7 HDAC8 HDAC10 

CHEMBL1834473 -2088.59 -1944.2 -1678.4 -1749.1 -1572.6 -1424.5 -1517.5 -1855.6 -2986.2 

CHEMBL490722 -2087.795 -1930.08 -1669.18 -1742.56 -1562.7 -1414.11 -1516.32 -1839.5 -2950.6 

CHEMBL271308 -2090.9 -1959.2 -1684.7 -1734 -1566.4 -1400.4 -1513.5 -1863.9 -2977.7 

CHEMBL2312466 -2087.54 -1954.1 -1683.7 -1736.5 -1564.7 -1383.6 -1514.7 -1843.9 -2956.8 

CHEMBL256322 -2037.16 -1860.7 -1637.2 -1694.1 -1518 -1363.5 -1463.5 -1792.6 -2922.1 

CHEMBL3353068 -1990.64 -1836.9 -1579 -1637.1 -1470.5 -1321.7 -1422.2 -1770.7 -2881.7 

CHEMBL3648287 -2028.31 -1882.6 -1611.6 -1672.2 -1520.9 -1368.8 -1459.7 -1790.3 -2895 

CHEMBL3648298 -2055.88 -1903.1 -1623.84 -1716.4 -1529 -1385.1 -1477.2 -1802.4 -2934.1 

CHEMBL3655942 -2075.97 -1920.6 -1668 -1742.9 -1559.2 -1412.2 -1506.6 -1839.3 -2947.7 

CHEMBL3655956 -2060.5 -1913.3 -1649.5 -1716.6 -1549.1 -1401.4 -1495.8 -1844.7 -2938.5 

CHEMBL474746 -2057.79 -1897.6 -1650.8 -1700.9 -1537.8 -1390 -1488.3 -1814.3 -2923.1 

Table 10: Binding Energy of Novel Compounds with Different Isoforms of Histone 

Deacetylase. 

Among the known inhibitors entinostat exhibit the highest binding affinity to all forms of 

HDAC. The three novel compounds have the maximum binding energy or a full fitness as 

compared to high energy compounds among the known HDAC inhibitors. Table above 

describes the full fitness or binding affinity of novel compounds with different isoform of 

HDAC. From the table, it is also observed that the compounds have a highest binding affinity 

with HDAC10 due to its structural and topographical features. 

From the study of Binding pocket and binding site analysis, it is cleared that 

ChEMBL271308 can be used to inhibit HDAC class I and class IIb but it cannot be used for 

HDAC class IIa due as the compound is unable to bind with central Zn2+ atom which is 
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characteristics feature as discussed earlier. Also, ChEMBL490722 can be used only with 

HDAC class IIb due to its specific binding with Zn2+ central atom present in the HDAC 

structure. In class I except HDAC8 other HDAC’s like HDAC1, HDAC2, HDAC3 binds with 

the novel compound to its specific position and in class IIa only HDAC7 shows the potential 

to binds with the compound with the central Zn2+ atom. Docking results of HDAC’s with the 

novel compounds also reflect that HDAC7 have two central Zn2+ atom that allows more 

space for the compound to bind with it specifically. 

 

Figure 12: Graphical Representation of Binding Energy of Novel compounds with 

Different Types of Histone Deacetylase. 
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Figure 13: Docking Pose of HDAC6 with ChEMBL1834473 in which The Ligand is 

Associated with Central Zn2+ Atom and the Residues Take Part in Binding of Receptor 

with Ligand were GLU742, ASP612, and VAL613. 

 

Figure 14: Binding Pocket of HDAC4 with ChEMBL1834473 



30 | P a g e  
 

 

Figure 15: Binding Pocket of HDAC1 and HDAC8 with ChEMBL1834473 

Another compound named as ChEMBL1834473 possess accurate results which have the 

ability to binds with class I, class IIa, and class IIb specifically and selectively with the Zn2+ 

atom. Thus from the studies, it can be said that ChEMBL1834473 can be used as isoform-

selective inhibitor of HDAC as a neuroprotective agent. 

4.5  Mutation Analysis 

Data obtained from COSMIC database shows critical ammino acid substitution in the ligand-

binding pocket of different types of HDAC’s. HDAC3, HDAC5, and HDAC7 are the proteins 

that do not undergo any mutation in its active site whether missense or silent coding 

mutation.  

Compound ID HDAC1 HDAC2 HDAC4 HDAC6 HDAC8 HDAC10 

ChEMBL1834473 -2078.9 -1932.9 -1717.5 -1382.8 -1840.9 -2957.9 

98 -2059.6 -1917 -1707.3 -1370.8 -1810.1 -2945.8 

99 -2018.2 -1863 -1663.7 -1231.6 -1775.4 -2895.4 

27759 -2039.1 -1927 -1711.6 -1352.6 -1817.2 -2938.1 

116620 -2039.1 -1884.1 -1683.4 -1352.3 -1787.5 -2890.3 

159249 -2026.3 -1879.4 -1677.4 -1345.5 -1780.6 -2921.4 

356066 -2002 -1850.5 -1647.3 -1312.1 -1752 -2875.3 

483254 -2025.2 -1867.5 -1666.2 -1336.5 -1776.1 -2882.6 

Table 11: Binding Energy of ChEMBL1834473 and Currently Used Inhibitors with 

Different Types of Mutated HDAC. 



31 | P a g e  
 

Hdac4 shows the maximum number of mutations that is 4 in its ligand binding domain on 

position such as 167, 168, 198, and 330. HDAC2, HDAC6, HDAC8, and HDAC10 possess 

one mutated site in its active site while HDAC1 possess two mutated ammino acid residues at 

active position. 

 

Figure 16: Binding Pocket of Mutated (A) HDAC1 and (B) HDAC2 with 

ChEMBL1834473. 

 

Figure 17: Binding Pocket of Mutated (A) HDAC6 and (B) HDAC10 with 

ChEMBL1834473. 
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Molecular docking of these mutated structures was carried out with ChEMBL1834473 and 7 

approved inhibitors in order to validate whether the novel drug-like compound has the 

potential to carry out binding process in single nucleotide polymorphism state. Results show 

that the novel drug-like compound has the higher binding energy of full fitness as compared 

to the binding energy of seven known inhibitors of HDAC class I and class II. Studies found 

out that in HDAC4, HDAC8 and HDAC10 mutation causes distortion in the structure due to 

which binding of several original inhibitors does not takes place in its active site and thus it is 

unable to facilitate the binding of compound to central Zn2+ atom. From the molecular 

docking results, it can be predicted that the proposed compound has the tendency to bind with 

the central Zn2+ atom in its mutated structure. 
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5 DISCUSSION 

Ligand-based drug designing, follows machine learning and molecular docking analysis 

approach based on the binding or full fitness energy of ligand to the receptor is considered as 

an effective tool in the drug detection procedure. Here we collected the number of novel 

compounds for the class I and class II HDAC by creating four machine learning models, for 

example, logistic model, k-star model, random forest model, and deep learning model based 

on the Pharmacophore and 2D/3D properties of Trichostatin A, dacinostat, entinostat, 

Vorinostat, CG-1521, SK683, and Panobinostat. The average accuracy (94.53), precision 

(0.950), TP rate (0.950), FP rate (0.071), and area under ROC curve of our generated models 

was quite high as compared to previously created model for selecting a novel isoform-

selective HDAC inhibitor. Consequently, 11 hits were identified through their 2D/3D and 

ADME properties. The protocol applied during the study was quite reliable and efficient as 

the whole study based on 19 different molecular descriptors of known inhibitors and novel 

compounds. Also, the data for testing the inhibitor potential includes more than 6000 novel 

compounds.   

Through molecular docking studies, the novel compounds with binding energy or full fitness 

for both class I and class II HDAC’s were selected for comprehensive analysis. The predicted 

compounds were having the characteristics feature that is a central Zn2+ atom in its binding 

region. Out of these 11 predicted compounds, ChEMBL1834473, ChEMBL490722, and 

ChEMBL271308 possess the greater binding energy for the class I and class II HDAC. Due 

to insufficient binding of ChEMBL490722 and ChEMBL271308, these compounds were 

discarded. ChEMBL1834473 involved in hydrogen bonding with central Zn2+ atom and 

possess the basic pharmacophore sites and hence considered as more potent isoform-selective 

HDAC inhibitor. Based on the analysis of the catalytic sites it was found out that 

ChEMBL1834473 forms a hydrogen bonding with ALA142, GLY149, ASN154, ILE156, 

TYR172, GLY180, GLY182, VAL183, PRO206, and TYR303 residues of HDAC1; 

GLY157, ASN172, VAL197, PRO298, GLU329, and GLY330 of HDAC4; ASP612, 

VAL63, HSE614, PHE642, PRO644, SER701, and GLU742 of HDAC6; and HSD143, 

TYR174, ASP176 GLY184, and VAL185 of HDAC 8. These bonding were carried out 

because of the conformational modification in the linker section of protein organization.  

Moreover to validate the inhibition effect of the compound when protein undergoes mutation, 

molecular docking of ChEMBL1834473 was carried out with the mutated structure of both 
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class I and class II HDACs. Single ammino acid replacement or missense mutation took place 

in the active sites of HDACs except for HDAC3, HDAC5, and HDAC7. Docking energy 

analysis shows that the compound has quite comparable energy values as compared to the 

binding energy of 7 known inhibitors of HDAC. However, the proposed compound was able 

to eliminate the discrepancies caused by the mutation which prevents the binding of known 

inhibitors to protein structure.    

Hence with respect to these results, our proposed novel compound may prove to be an 

effective therapeutic methodology to Alzheimer’s disease. Further studies were required to 

demarcate the inhibitory potential and effect on disease pathway through in-vitro and in-vivo 

assays. 
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6 CONCLUSION 

We carried out pharmacophoric properties analysis and machine learning approach to 

generate 4 models of around 6000 novel chemical compounds and classified them as inhibitor 

or non-inhibitor based upon 19 molecular descriptors. The generated models demonstrated 

the improved accuracy and predictability of screened hits. Total 11 compounds were selected 

as HDAC isoform-selective inhibitors based on 2D/3D and ADME properties. The selected 

compounds were tested for their binding potential through molecular docking method. 

Docking result analysis stated that three compounds have the higher potential to work as a 

drug for the proposed target that is HDAC class I and class II. Mutation studies of different 

types of HDAC also prove the predicted compounds as an effective drug for different 

HDACs. Thus on the basis of in-silico binding analysis approach, these novel compounds 

may prove as more potential drugs against class I and class II HDAC as compared to 

previously known inhibitors to correct the disequilibrium between acetylation and 

deacetylation activity of HDAC causes life threaten disease named as Alzheimer’s. 
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