Department of Civil Engineering Delhi Technological University (Formerly Delhi College of Engineering) Bawana Road, Delhi – 110042

CANDIDATE'S DECLARATION

I do hereby certify that the work presented is the report entitled "**Analysis of Cavitation in Centrifugal Pump using CFX**" in the partial fulfilment of the requirement for the award of the degree of "Master of Technology" in Hydraulic And Flood Control Engineering submitted in the Department of Civil Engineering, Delhi Technological University, is an authentic record of my own work carried out under the supervision of Prof. Rakesh Mehrotra , Department of Civil Engineering. I have not submitted the matter embodied in the report for the award of any other degree or diploma to any other institution.

> ABHISHEK AGRAWAL 2K16/HFE/01

Department of Civil Engineering Delhi Technological University (Formerly Delhi College of Engineering) Bawana Road, Delhi – 110042

CERTIFICATE

This is certified that the work contained in this minor project entitled "**Analysis of Cavitation in Centrifugal Pump using CFX**"by ABHISHEK AGRAWAL (2K16/HFE/01) is the requirement for the fulfilment of the degree of HYDRAULIC AND FLOOD CONTROL ENGINEERINGE at Delhi Technological University. This work was completed under my direct supervision and guidance. The student has completed his work with utmost sincerity and diligence.

Place Delhi Date :

Signature

(Asso. Pro. Rakesh Mehrotra) SUPERVISOR Department of Civil Engineering Delhi Technological University

ACKNOWLEDGEMENT

I would like to thank Vice Chancellor of Delhi Technological University, Prof. Yogesh Singh and Prof. Nirendra Dev (Head of Department, Civil Engineering, DTU) for providing all the facilities and equipments in the college to carry out this project work.

I would like to convey my thanks, great indebtedness and gratitude to my supervisor Asso. Prof. Rakesh Mehrotra, Department of Civil Engineering, Delhi Technological University, New Delhi, for his kind supervision, remarkable comments and constant encouragement.

Professors and faculties of the Department of Civil Engineering, DTU, have always extended their full co-operation and help. I would also like to thank my colleagues in the college.

I would like to address my seniors for their guidance.

(Abhishek Agrawal) (2K16/HFE/01)

ABSTRACT

In our every day existence we use many things which use concept of vacuum like vacuum cleanser, exhauster and so on. The phenomenon of cavitation use in various industry like hydraulic lifts etc, It's has various advantages and also disadvantages like in pumps. In centrifugal pump impeller rotates due to which suction creates (negative pressure), it suck the water from surrounding, due to decrease in these pressure boiling point of water decreases and water is now able to boil at low temperature, if in any instance if surrounding temp is more than boiling point (due to low temperature), water start boiling and form a bubble, now it not harmful till it burst, at outlet water have to flow at high pressure hence at this condition boiling point increases hence the present bubbles start bursting on the surface due to which deterioration of surface occurs. This deterioration cause unbalance condition during running result failure of machine. Cavitation also occurs due to air present in water, due to sucking of water at high pressure air coming out from the water and form bubble and leads to cavitation. In this project I am vary discharge at constant rpm to see variation of cavitation and observed that as discharge increases cavitation also increases. I also calculate efficiency at various discharge at constant R.P.M. and calculate change in NPSH_A and NPSH_R at various discharge and get the result that as discharge increases NPSH_A decreases and NPSH_R increase due to which cavitation occurs.

CONTENTS

TITLE		PAGE NO.	
DECLARATION		i	
CER	ii		
ACK	ACKNOWLEDGEMENT		
ABS	ABSTRACT		
CON	v-vi		
LIST OF FIGURES		vii-viii	
LIST OF TABLES		ix	
PUMP TERMINOLOGY ABBREVIATIONS		x-xi	
		xii	
CHAPTER 1 INTRODUCTION		1-10	
1.1	General	1-2	
1.2	Aim and Object	2-2	
1.3	Numerical Analysis	2-3	
1.4	Research Methodology	3-5	
1.5	Computational Fluid Dynamics	6-9	
1.6	Indication Of Pump and Cavitation	9-10	
1.7	Impact on Performance	10	
CHAPTER 2 LITERATURE REVIEW 1		11-33	
2.1	Mesh Models	11-13	

REFERENCES		59-60
CHAPTER 5 CONCLUSION		
CHAPTER 4 RESULTS AND DISCUSSION		40-57
CHAPTER 3 METHODOLOGY		34-39
2.11	Pump Scaling Laws	33-33
2.10	Cavitation Modelling	30-33
2.9	Cavitation Nuclei	29-30
2.8	Cavitation	23-29
2.7	Previous Research	21-23
2.6	Reynolds Averaged Navier-Stokes	16-20
2.5	Detached Eddy Simulation	16-16
2.4	Large Eddy Simulation	15-16
2.3	Direct Numerical Simulation	15-15
2.2	Turbulence Modeling	14-15

List of Figures

Figure No.	Description	Page No.
Figure No. 1.1	HEAD vs NET POSITIVE SUCTION HEAD AVAILABLE	6
Figure No. 1.2	CENTRIFUGAL PUMP IMPELLER	9
Figure No. 1.3	FRANCIS TURBINE RUNNER	9
Figure No. 2.1	AN EXAMPLE OF 3 PRISM LAYER	12
Figure No. 2.2	STRETCH FACTOR	13
Figure No. 2.3	TRAVELLING BUBBLE CAVITATION (FRANC, 2006)	24
Figure No. 2.4	LEADING EDGE CAVITATION (FRANC, 2006)	25
Figure No. 2.5	VORTEX CAVITATION GENERATED BY A THREE	26
	DIMENSIONAL HYDROFOIL (FRANC, 2006)	
Figure No. 2.6	TIP VORTEX CAVITATION IS USUALLY THE FIRST TYPE OF	27
	CAVITATION EXPERIENCED ON MARINE PROPELLERS.	
Figure No. 2.7	EQUILIBRIUM RADIUS OF A NUCLEUS AS A FUNCTION OF	29
	PRESSURE (FRANC, 2006)	
Figure No. 3.1	WORK BENCH 18.2 VARIOUS STEP TO DESIGN	34
Figure No. 3.2	IMPELLER GEOMETRY	35
Figure No. 3.3	OPERATING CONDIATION	35
Figure No. 3.4	RESULT OF IMPELLER	36
Figure No. 3.5	VOLUTE GEOMETRY	37
Figure No. 3.6	BLADE GENERATION	38
Figure No. 3.7	SETUP	38
Figure No. 4.1	MOMENTUM CURVE	40
Figure No. 4.2	TURBULANCE CURVE	41
Figure No. 4.3	SOLUTION	41
Figure No. 4.4	WALL AND BOUNDARY SCALE	42
Figure No. 4.5	PRESSURE DISTRIBUTION	42
Figure No. 4.6	CAVITATION PRESSURE DISTRIBUTION AT LOW	43

	DISCHARGE ($75\ m^3/hr$ LEFT HAND SIDE AND $100\ m^3/hr$	
	RIGHT HAND SIDE)	
Figure No. 4.7	CAVITATION PRESSURE DISTRIBUTION AT HIGH	43
	DISCHARGE ($150 \text{ m}^3/\text{hr}$ LEFT HAND SIDE AND $200 \text{ m}^3/\text{hr}$	
	RIGHT HAND SIDE)	
Figure No. 4.8	EFFICIENCY GRAPH OF IMPELLER	44
Figure No. 4.9	RESULT AND EFFICEINCY CUREVE OF VOLUTE	44
Figure No. 4.10	DISCHARGE VS CAVITATION AT CONSTANT RPM 2000	45
Figure No. 4.11	CAVITATION IN CENTRIFUGAL PUMP AT VARIOUS R.P.M.	46
	AT CONSTANT DISCHARGE OF 137.5 m ³ /hr	
Figure No. 4.12	CAVITATION IN CENTRIFUGAL PUMP AT VARIOUS R.P.M.	47
	AT CONSTANT DISCHARGE OF 125 m ³ /hr	
Figure No. 4.13	CAVITATION IN CENTRIFUGAL PUMP AT VARIOUS R.P.M.	48
	AT CONSTANT DISCHARGE OF 112.5 m ³ /hr	
Figure No. 4.14	CAVITATION IN CENTRIFUGAL PUMP AT VARIOUS R.P.M.	49
	AT CONSTANT DISCHARGE OF 100 m ³ /hr	
Figure No .4.15	CAVITATION IN CENTRIFUGAL PUMP AT VARIOUS R.P.M.	50
	AT CONSTANT DISCHARGE OF 75 m ³ /hr	
Figure No .4.16	NPSHA VS ABSOLUTE PRESSURE CURVE	52
Figure No .4.17	NET POSITIVE SUCTION HEAD AT BOILING POINT OF 55° C	52
Figure No .4.18	NPSHA VS TEMPERATURE CURVE	53
Figure No .4.19	ABSOLUTE VS TEMPERATURE CURVE	53
Figure No .4.20	HEAD VS DISCHARGE CURVE	55
Figure No .4.21	DISCHARGE VS EFFICIENCY CURVE	55
Figure No .4.22	NPSHR VS DISCHARGE CURVE	56
Figure No .4.23	POWER VS DISCHARGE CURVE	56

List of Tables

Table no. Description

Table 4.1	DISCHARGE VS CAVITATION AT CONSTANT RPM 2000	45
Table 4.2	CAVITATION VS R.P.M. AT CONSTANT DISCHARGE 137.5 m^3/hr	46
Table 4.3	CAVITATION VS R.P.M. AT CONSTANT DISCHARGE 125 m ³ / hr	47
Table 4.4	CAVITATION VS R.P.M. AT CONSTANT DISCHARGE 112.5 m^3/hr	48
Table 4.5	CAVITATION VS R.P.M. AT CONSTANT DISCHARGE 100 m ³ / hr	49
Table 4.6	CAVITATION VS R.P.M. AT CONSTANT DISCHARGE 75 $\rm m^3/hr$	50
Table 4.7	VARIATION OF BOILING POINT OF WATER WITH ABSOLUTE	51
	PRESSURE AND THEIR CORRESPONDING NET POSITIVE	
	SUCTION HEAD AVAILABLE	
Table 4.8	VARIATION OF HEAD, PUMP EFFICIENCY, NET POSITIVE	54
	SUCTION LEAD DECLIDED AND DOWED WITH CHANCE IN	

SUCTION HEAD REQUIRED AND POWER WITH CHANGE IN DISCHARGE

Pump Terminology

Impeller—The moving element in a pump that drives the liquid.

Volute — The spiral-shaped casing surrounding a pump impeller that collects the liquid discharged by the impeller.

Head—A measure of the pressure or force exerted by water expressed in feet. Centrifugal pump curves show pressure as head, which is the equivalent height of water with specific gravity = 1.

Static Head—The vertical height difference from the surface of a water source to the centerline of the impeller. The vertical height difference from the centerline of the impeller to the discharge point is called discharge static head, while the vertical height difference from the surface of the water source to the discharge point is known as total static head.

Total Head / Total Dynamic Head—The total height difference (total static head) plus friction losses and demand pressure from nozzles etc. (total discharge head) = total dynamic head.

Capacity/Flow—The rate of liquid flow that can be carried, typically measured in gallons per minute (gpm).

Net Positive Suction Head—How much suction lift a pump can achieve by creating a partial vacuum. Atmospheric pressure then pushes liquid into pump. A method of calculating if the pump will work or not.

Cavitation—Cavities or voids in liquid. Bubbles take up space leading to a drop in pump capacity. Collapsing bubbles can damage the impeller and volute, making cavitation a problem for both the pump and the mechanical seal.

Specific Gravity—The weight of liquid in comparison to water at approximately 20° C (SG = 1).

Specific Speed—A measure of the function of pump flow, head, and efficiency.

Vapor Pressure—The force exerted by the gas released by a liquid in a closed space. If the vapor pressure of a liquid is greater than the surrounding air pressure, the liquid will boil.

Viscosity—A measure of a liquid's resistance to flow (i.e., how thick it is). The viscosity determines the type of pump used, how fast it can run, and with gear pumps, the internal clearances required.

Friction Loss—The amount of pressure / head required to force liquid through pipes and fittings.

Pump Efficiency—The ratio of energy delivered by the pump to the energy supplied to the pump shaft. Some pump curves will show you the percent of efficiency at the best efficiency point. The number varies with impeller design and numbers from 60 percent to 80 percent are normal.

Best Efficiency Point—The point of highest efficiency of the pump

Head and Capacity Relationship – Every pump will be capable of developing a specific pressure at a specific. The pump will pump any liquid to a given height or head depending upon the diameter and speed of the impeller. The amount of pressure you get depends upon the weight of the liquid. Head is a convenient term because when combined with capacity you come up with the conversion for horsepower.

Abbreviations

А	Volume fraction
$oldsymbol{eta}^*$	Closure coefficient
C_{μ}	Closure coefficient
δ_{ij}	Kronecker delta
E	Dissipation per unit mass
Н	Head rise
I _{SP}	Specific impulse
К	Kinetic energy of turbulent fluctuations
Pc	Critical pressure
P_{g}	Gas pressure
\mathbf{P}_0	Total pressure
L	Turbulence length scale
n ₀	Number of bubbles per unit volume
Р	Static pressure
Pv	Vapour pressure
P_{∞}	Pressure outside the bubble
Q	Flow rate
ρ	Density
R	Radius of microbubble
R _C	Critical bubble radius
σ	Cavitation number
S	Surface tension
S _{ij}	Mean strain rate tensor
NPSH _R	Net Positive suction head required
NPSH _A	Net Positive suction head available
CFD	Computational Fluid Dynamics
FVM	Finite Volume Method